
Towards a Discipline of IoT-Oriented
Software Engineering

Franco Zambonelli
Dipartimento di Scienze e Metodi dell’Ingegneria

Universitá di Modena e Reggio Emilia
Reggio Emilia, Italia

franco.zambonelli@unimore.it

Abstract—Despite the rapid progresses in IoT research, a gen-
eral principled software engineering approach for the systematic
development of IoT systems and applications is still missing.
In this article, by synthesizing form the state of the art in the
area, we attempt at framing the key concepts and abstractions
that revolve around the design and development of IoT systems
and applications, and that could represent the ground on which
to start shaping the guidelines of a new IoT-oriented software
engineering discipline.

I. INTRODUCTION

The dramatic future impact of IoT in society, industry,
and commerce is already widely recognized [14]. However,
despite the great deal of worldwide researches in the area, the
technologies to make IoT a systematic reality are far form
being assessed. Early researchers in the IoT area have mostly
focussed on communication issues and on enabling interop-
erability [3]. More recently, great efforts has been devoted
at promoting means to facilitate the integration of resources
and services towards the provisioning of software-defined
distributed services for the IoT. For instance, as in the “Web
of Things” (WoT) vision [13], by promoting the provisioning
of resources in an IoT network in term of Web Services, and
thus making it possible to develop distributed and coordinated
IoT services by using standard Web technologies.

WoT is definitely promising and will most likely represent
a keystone technology in the future of IoT. Indeed, along the
WoT lines, a number of different approaches (in terms of,
e.g., supporting middleware [29], [17] and programming ap-
proaches [5], [16]) are being proposed to support the develop-
ment of IoT systems and applications. Yet, a common unifying
approach supporting their design and development, grounded
on a common set of abstractions, models, and methodologies,
is still missing. This undermines the possibility of promoting
a systematic and disciplined approach for the development
of complex IoT systems, and thus limits unfolding the full
potentials of the IoT vision.

Against this background, this article attempts at framing
some key general characteristics related to the engineering of
complex IoT systems and applications, by synthesizing the
common features of existing proposals and application sce-
narios. Such common characteristics are then used to identify
the key software engineering abstractions around which the
process of developing IoT systems and applications could

revolve, and via which to organize a set of guidelines towards
a general IoT-oriented software engineering discipline.

To exemplify the analysis, we refer a specific case study,
representative of a larger class of IoT scenarios: an IoT
enabled hotel with conference center. We assume the hotel
infrastructures (e.g., lightening, heating, etc.) and its facil-
ities (guest rooms, conference rooms, and their associated
appliances) are densely enriched with connected sensors and
actuators. There, different actors (from hotel managers to
hotel/conference guests) can contribute to set up a variety of
IoT services to support both the hotel management and the
activities of its guests.

II. BACKGROUND

The definition of general software engineering principles
requires identifying the general features and issues that char-
acterize most current approaches to IoT systems design and
development.

A. Things

The “things” in the IoT vision may encompass a large
number of physical objects, and also include places and
persons.

Physical objects and places can be made trackable and
controllable by connecting them to low-cost wireless electronic
devices. At the lower end of the spectrum, RFID tags or
bluetooth beacons, based on low-cost and short-range com-
munication protocols, can be attached to any kind of objects
to enable tracking their positions and status, and possibly to
associate some digital information with them. More advanced
devices integrating environmental or motion sensors (i.e., ac-
celerometers) can detect the present and the past activities as-
sociated with objects or with some place. In addition, one can
make objects actuable – enabling the remote control of their
configuration/status via proper digitally-controller actuators –
and possibly autonomous – delegating them of autonomously
direct their activities.

To exemplify, in the hotel scenario: attach RFID tags to
objects in rooms, such as to a remote control in order to detect
its presence and location in the room; integrate some kind of
Arduino-link controller to a roll-up board in the conference
room, in order to enable controlling via, e.g., a mobile phone

1



its rolling-unrolling; have the window obscuring systems au-
tonomously regulate lightening conditions depending on the
kind of activities detected in the conference room, and possibly
actuable walls that can dynamically change the shape and
dimensions of meeting rooms depending on needs [21]. In
this perspective, autonomous robots (or robotified objects [1])
can be somehow considered the highest end of the spectrum
in the world of smart “things”.

Concerning persons, other than simply users of the tech-
nology, they can also be perceived at first-class entities of the
overall IoT vision. Simply for the fact of having a mobile
phone, they can be sensed in their activities and positions,
and they can be asked to act in the environment or supply
sensing. In the hotel scenario, one may think continuously
detecting the position and activities of people, in order to get
ready to manage any possible emergency situation in the most
efficient way.

B. Software Infrastructures

To make “things” usable and capable of serving purposes,
there is need of software infrastructures (that is, of IoT
middleware [22]) capable both of supporting the “gluing” of
different things and of providing some means for stakeholders
and users to access the IoT system and take advantage of its
functionalities.

Concerning the “glue”, this involves a variety of technical
issues:

• Interoperability. To enable a variety of very heteroge-
neous things to interact with each other, a set of shared
tele-communication protocols and data representation
schemes must be put in place [20], other than means to
identify things [24]. The study of these issues dates to the
very early stages of IoT researches, a number of different
proposals exists, and the way towards assessed standards
in well paved.

• Semantics. Beyond mere interoperability, a common se-
mantics for concepts must be defined to enable co-
operation and integration of things [4]. Also for this
issue, a number of proposals grounded on standard Web
technologies, and ontologies and schemas specifically
suited for the physically and socially embedded nature
of the , exists [20].

• Discovery, Group Formation, and Coordination. IoT sys-
tems’ functionalities derive from the orchestrated ex-
ploitation of a variety of things, possibly involving a
variety of users and stakeholders. In the hotel scenario,
configuring a conference rooms for slide presentation
requires involving the beam projector, the lightening
system, other than the conference organizers and the
speakers. This requires means to discovery and establish
relations between things, between things and humans,
and coordinating their activities also accounting for their
social relations [2].

• Context-awareness and self-adaptation. The inherent
ephemerality, unreliability, and mobility of system com-
ponents (e.g., things such as chairs or flipboards in the

hotel conference centre can come and go, can be moved
around, and can be placed in corners without wireless
connections) makes it impossible to anticipate which
things will be available and for how long during their
exploitation. This requires mechanisms for discovery,
group formation, and coordination are that are capable of
dynamically self-adapting to the general context in which
they act, or possibly even self-organize in a context-aware
way [31].

Concerning the “access” to the functionalities and capa-
bilities of individual things by users, the scene is currently
dominate by the so called “Web of Things” (WoT) vision [13].
The idea is to expose services and functionalities of individual
things in terms of REST services, enabling the adoption of
assessed web technologies as far as discovery of things and
provisioning of coordinated group services are concerned.
Concerning middleware infrastructures, a variety of proposal
to support the provisioning of IoT services and applications
have appeared [29], [5], [16], [22]. Beside their specificities,
most of these proposals rely on: some basic infrastructure to
support the WoT approach (i.e., to expose things in terms of
simple services); some means to support, in according to a
specific coordination model, the discovery of things (and of
their associated services), and the coordinated activities of
groups of things; and some solutions to make services and
applications capable of self-adapting and self-organizing in a
context-aware and unsupervised way.

C. Services and Applications

With the term “IoT System” we generally refer to the
overall set of IoT devices and to the associated middleware
infrastructure devoted to manage their networking and their
context-aware interactions. Logically above an IoT system,
specific software can be deployed to orchestrate the activities
of the system so as to provide:

• A number of specific services. That is, means to enable
stakeholders and users to access and exploit individual
things and direct/activate their sensing/actuating capabil-
ities, but also coordinated services that access groups of
things and coordinate their sensing/actuating capabilities.
For instance, in a conference room of the hotel, other than
to services to access and control individual appliances,
one can think at providing a coordinated service that, by
accessing and directing the lightening system, the light
sensors, and the windows obscuring system, can modify
the overall situation of the room from “presentation state”
to ”discussion state” and viceversa.

• A number of more general-purpose applications or suites,
intended as more comprehensive software systems in-
tended to both regulate the overall functioning of an IoT
system (or of some of its parts), so as to ensure specific
overall behaviour of the system, as well as to provide
an harmonized set of services to access the system and
(possibly) its configuration. In the hotel scenario, one
can think at applications to control the overall heating
systems and lightening systems, and giving to hotel clerks

2



Fig. 1. Key concepts and abstractions for IoT engineering.

the access to services to change the configuration of the
associated parameter.

Clearly, depending on the specific scenario, one can think at
IoT systems in which services may exist only confined within
the context of some general application, but also at scenarios
in which there are services that can be deployed as stand-alone
software.

III. KEY SOFTWARE ENGINEERING CONCEPTS AND
ABSTRACTIONS

Based on the above overview of IoT issues, we now try to
synthesize the central concepts and abstractions around which
the development of IoT systems (spanning analysis, design,
and implementation) should be centered. Figure 1 graphically
frames such concepts in a logical stack.

A. Stakeholders and Users

The first activity in the analysis of a system-to-be concern
identifying the stakeholders and users of the system, aka the
“actors”. That is, those persons/organizations who will own,
manage, and/or use the system and its functionalities, and from
which requirements should be elicited.

In the case of IoT systems, the distinction between IoT
services and applications, and the presence of an IoT mid-
dleware to support them and to manage individual things,
naturally leads to the identification of three main abstract
classes of“actors”:

• Global Managers: These are the owners of an overall
IoT system and infrastructure, or delegates empowered to
exert control and establishing policies over the configura-
tion, structure, and overall functioning of its applications
and services. In the hotel scenario, the global manager
corresponds the system manager devoted to control the
overall IoT system of the hotel according to the directives
of the hotel management, e.g., for deciding heating levels
or for surveillance strategies.

• Local Managers: These are owners/delegates (whether
permanently or on a temporary basis) of a limited portion

of the IoT system, empowered to enforce local control
and policies for that portion of the system. In the hotel
scenario, these could correspond to hotel guests, empow-
ered to control the IoT system in their room, and tune
the local parameters and exploit its services according to
own specific needs. Or they can be conference organizers
in charge of managing and configuring the services of the
rented conference rooms.

• Users: These are persons or groups that have limited
access to the overall configuration of the IoT applications
and services, i.e., cannot impose policies on them, but are
nevertheless entitled to exploit its services. In the hotel
scenario, these include conference delegates authorized to
access the conference facilities (e.g., uploading presenta-
tions in the projector), but are not entitled to modify the
configuration of the conference rooms.

The three identified classes of actors are of a very general
nature, beside the hotel scenario. For example, in a scenario
of energy management in a smart city, they could correspond
to, respectively: city managers, house/shop owners, private
citizens and tourists. In the area of urban mobility, they
could correspond to, respectively: mobility managers, parking
owners or car sharing companies, private drivers.

B. Functionalities

Once the key actors are identified, the analysis preceding
design and implementation cannot – for IoT systems and
applications – simply reduce to elicit from them the function-
alities (i.e., the specific services) that things or group of things
has to provide, but has to account for a more comprehensive
approach. In fact:

• Beside things provided with basic sensing/actuating func-
tionalities, one should consider the presence of smarter
things that can be activated to perform in autonomy some
long-term activities associated with their nature and with
their role in the socio/physical environment in which they
situates. These can range from simply cleaning robots to
more sophisticated autonomous personal assistants [1].

• IoT applications are not simply concerned with providing
a suite of coordinated functionalities, but they should also
globally regulate the activities of the IoT systems on a
continuous basis, according to the policies established by
its stakeholders and to their objectives.

As a consequence, other than analyzing the specific func-
tionalities to deliver, one also has to identify the policies and
goals to be associated with services and applications [28], i.e.,
the desirable “state of the affairs” to strive for in the context
of the socio-cyber-physical system where IoT applications and
services operate.

In this perspective, the general classes of functionalities
to be identified for the development of IoT applications and
services include:

• Policies express desirable permanent configurations or
states of functioning of an overall IoT system (global
policies) or portions of it (local policies), and have the

3



aims of regulating the overall underlying IoT system.
In the hotel scenarios, global policies can be defined,
e.g., to specify the maximum occupancy levels in each
room and have this monitored by local cameras in order
to invite people to move in different rooms whenever
needed. Policies are meant to be alway active and actively
enforced. Although, from the software engineering view-
point, the focus is mostly on application-level policies,
policies can also account for the proper configuration
of the underlying hardware and network infrastructures.
The definition of global and local policies is generally in
charge of the global managers, although local managers
can be also entitled to enforce temporary local policies
on local portions of the system (provided they do not
contrast with the ones imposed by the global managers).

• Goals express desirable situations or state of the affairs
that, in specific cases, can/should be achieved. The ac-
tivation of a goal may rely on specific pre-conditions
(i.e., the occurrence of specific events or the recognition
of some specific configurations in the IoT system) or
may also be specifically activated upon user action (e.g.,
the activation of a goal is invokable “as a service”).
The typical post-condition (deactivating the pursuing of
a goal) is the achievement of the goal itself. In the hotel
scenario, the clearer example could be that of activating
an evacuation procedure upon detection of fire by some
sensors (pre-condition), whose goal (and post-condition)
is to achieve a quick evacuation of all people inside the
building. To this end, the activation of a goal can trigger
the activities of digital signages and controllable doors in
order to rationally guide people towards the exits. As it
was the case for policies, the definition of global and local
goals is generally in charge of global, and sometimes of
local, managers, whereas users can be sometimes entitled
to activate simple local goals (or goals associated to
individual things) “as a service”.

• Functions define the sensing/computing/actuating capa-
bilities of individual things or of group of things, or
the specific resources that are to be made available
to managers and users in the context of specific IoT
application and services. Functions are typically made
accessible in the form of services, and can sometime
involve the coordinated access to the functions of a
multitude of individual things. In the hotel scenario, one
can think at the individual functionalities of the appli-
ances in a conference room (e.g., open/close a curtain,
display slide / change slide in a projector), as well as
more complex functionalities that can be achieved by
orchestrating things (e.g., set up room for presentation by
closing all curtains and switching off all lights). Functions
and the associated services are typically defined by global
and possibly local managers, but are exploited also by the
everyday users of the IoT systems (e.g., the hotel guests
and the conference attendees).

Figure 2 shows the different roles of IoT actors in defining

Fig. 2. IoT actors and the functionalities of IoT systems.

and exploiting the above framed functionalities.

C. Avatars and Coalitions

Moving from analysis to design, one should consider that
the “things” to be involved in the implementation of the iden-
tified functionalities can correspond to a variety of different
objects and devices, other than to places and humans, each
relying on a pletora of different technologies and capabilities.
Accordingly, from both the gluing software infrastructure and
the software engineering viewpoints, it is necessary to define
higher-level abstractions to practically and conceptually handle
the design and development of application and services, and
to harmonically exploit all the components of the IoT system.

Most of the proposal for programming models and mid-
dleware acknowledge this need, by virtualizing individual
things in some sort of software abstraction [13]. The WoT
perspective abstracts things and their functionalities in terms of
generic resources, to be accessed via RESTful calls, possibly
associating external software HTTP “gateways” to individual
things if they cannot directly support HTTP interfacing [6].
Other approaches suggest adopting a more standard SOA or
object-oriented approach [23]. Also, some proposals consider
associating autonomous software agents to individual things
[27], which we think well suits the fact that goals to be pursued
in autonomy may be associated to things.

In addition, as already stated, some “things” make no sense
as individual entities as far as the provisioning of specific ser-
vices and applications is concerned, and are to be considered
part of a group and be capable of providing their services as
a coordinated group. This applies both to the cases in which a
multitude of equivalent devices must be collectively exploited
abstracting from the presence of the individuals [5], and to the
cases in which the functionalities of the group complement
with each other and needs to be orchestrated [27].

With these considerations in mind, in an effort of synthe-
sizing from a variety of different proposals, we suggest the
unifying abstractions of avatars and coalitions (See Figure 3).

4



Avatars. Borrowing the term from [17], we define an avatar
as the general abstraction for individual things and also for
group of things (and possibly other avatars) that contribute
to define a unique functionality/service. Avatars abstract away
form the specific physical/social/technological characteristics
of the things their represent, and are defined by means of:

• Identity. An avatar has a unique identity and is address-
able. An avatar representing a group does not necessarily
hides the identities of inner avatars, but it has its own
identity.

• Services. These represent access point for exploiting the
peculiar capabilities of avatars. That is, depending on the
kinds of things and functionalities a service abstracts:
triggering and directing the sensing/computing/actuating
capabilities, or accessing some managed resources.

• Goals. Goals, in the sense of desired state of the affairs,
can be associated to avatars. A goals have may a pre-
condition for autonomous activation, or may be explicitly
activated by a user or by another avatar.

• Events. Events represent specific state of the affairs that
can be detected by an avatar, and that may be of interests
to other avatars or to users. Other avatars or users can
subscribe to events of interest.

Clearly, for group of avatars, an internal orchestra-
tion scheme must be defined for coordinating the activi-
ties/functionalities of the things (or of the other avatars) it
includes. In general terms, an orchestration scheme defines the
internal workflow of activities among the composing thungs
and avatars, and the constrains/conditions they are subjected
to. Orchestration scheme may also account for contextual in-
formation, to make the activities of the group of context-aware.
The need of defining orchestrations schemes and constraints
to rules the access and usage of (group of) things is generally
attributed – with specific characteristics and terminologies – in
most middleware and programming approaches for IoT [23],
[29], [5].

More in general, the avatar abstraction is in line, and
account for all the typical characteristics, of most existing
IoT approaches. Although the idea is not fully in line with
that of RESTful WoT approaches, because of the stateful
concepts of goals and events, most of them recognize the
need to somehow incorporate similar concepts within RESTful
architectures [13], to suit the dynamic and contextual nature
of IoT systems and applications.

Coalitions. Borrowing the term from the area of multiagent
systems [7], we define a coalition as a group of avatars that
coordinate each other’s activities in order to reach specific
goals, or enact specific policies. Accordingly, coalitions may
be of a temporary or permanent nature. Unlike avatar groups,
coalitions does not necessarily have an identity, and does not
necessarily provide services.

To define and bring a coalition in action, the abstraction of
coalition must be defined (at least) in terms of a coordination
scheme that should include:

• Rules for membership, to specify the conditions upon

Fig. 3. Avatars, groups, and coalitions.

which an avatar should/could enter a coalitions. From
the viewpoint of individual avatars, the act of entering a
coalition can be represented by the activation of a specific
goal based on pre-conditions that correspond to the rules
for membership.

• Coordination pattern, to define the pattern (interaction
protocol and shared strategy) by which the members of
the coalition have to interact. The coordination pattern
may include an explicit representation of the goal by
which the coalition has been activated. However, such
goal can also be implicit in the definition of the protocol
and of the strategy.

• Coordination law, to express constraints that must be
enforced in the way the avatars involved in the coalition
should act and interact.

In addition, one can consider the possibility to subscribe to
events occurring within the coalition.

The view of avatar coalitions can be of use to realize
policies, or to aggregate groups of avatar based on similarity,
so as to make them work collectively in a mission-oriented
way without forcing them to specific identity-centered orches-
tration scheme. This is coherent with the idea of aggregate
programming in sensor networks and in spatial computing
systems [5], to realize nature-inspired coordination schemes
[31], to enable the dynamic formation of service ensembles
focused on short-term goals or sharing specific attributes [9].

D. From Design to Implementation

The identification of avatars, avatar groups, and coali-
tions, abstracts away from implementation issues. However,
the implementation of individual avatars associated to actual
“things” and of the necessary software for supporting for the
orchestration schemes of avatar groups and the coordination
patterns of coalitions, has to eventually follow.

In our perspective, and comparing against the state of the art
in the area, avatars, groups and coalitions are abstract enough

5



concepts to tolerate implementation above most existing sys-
tems and infrastructures. If not, this article at least contributes
proposing a starting point from where to reason further on
the expressiveness and necessity of the identified abstractions,
and on the desirable features of IoT programming systems and
middleware.

IV. RELATED WORK

In the past few years, research in the area of IoT has
exploded. Nevertheless, a few research work has explicitly
attacked the problem of defining new software engineering
approaches specifically conceived for the IoT.

Some proposals for development frameworks for the IoT
or for the WoT (whether middleware architecture [17] or
programming models [5], [16]), are also accompanied by
guidelines towards the development of applications. However,
such guidelines are not grounded on general abstractions and
haven’t a general applicability beside the specific framework
in which they are conceived. Similar considerations apply to
the area of smart cities and urban computing [30], where
middleware and programming approaches are being proposed
– mostly of a special-purpose nature and focussed on specific
application scenarios such as participatory sensing [11], [12]
or mobility management [25] – but without accounting for the
issue of defining general design and development methodolo-
gies.

Agent-oriented software engineering research is strictly
related to IoT engineering [32]. Indeed, AOSE tackles the
problem of engineering large-scale systems, goal-oriented en-
tities, possibly including robots [26] and humans [15] with
conflicting goals and a multitude of stakeholders. This is
somehow related to the IoT problems of accommodating
services and a multitude of goals [27]. Indeed, the idea of
goal-oriented groups we have introduce somehow borrow from
the agent-oriented software engineering area. However, IoT
requires the introduction of specific concepts and abstractions
that AOSE, in general terms, do not address.

General approaches for the engineering of self-organizing
computing systems have been proposed [19], [33], [18], [31],
[10]. There, the key issue is to engineering complex distributed
behaviours in large-scale systems lacking centralized control.
These two characteristics are mostly shared by IoT systems,
and indeed the problems of enabling self-organization of
specific behaviors have been outlined in the previous sections.

Mainstream software engineering researches have recently
put great attention to the problem of promoting self-adaptive
features in software [8], to attack the problem of increased
dynamically and impredictability of operational environments.
Such dynamics also affects IoT systems, in which the problem
of ensuring continuity in functionalities requires the embed-
ding of close control loops (along similar lines of those
promoted in self-adaptive systems researches) to continuously
monitor the activities of the system and its environment, and
eventually plan corrective actions.

V. CONCLUSIONS AND FUTURE WORK

Despite the large number of research works that attack
specific problems related to the design and development of
IoT applications and services, a general software engineering
approach is still missing. This paper, by having proposed and
framed some key conceptual abstractions revolving about the
IoT universe, can represent a first small step towards a general
discipline for engineering IoT systems and applications.

As IoT technologies mature, and real-world experiences
accumulate, more research in the area of software engineering
for IoT systems will be needed, possibly exploiting con-
taminations with the related areas of agent-oriented software
engineering [32] and software engineering for self-adaptive
and self-organizing systems [8], and eventually leading to the
identification of a widely accepted general methodology – and
associated tools – for the IoT-oriented software engineering.

REFERENCES

[1] Harshit Agrawal, Sang-won Leigh, and Pattie Maes.
L’evolved: Autonomous and ubiquitous utilities as smart
agents. In ACM International Joint Conference on
Pervasive and Ubiquitous Computing, pages 487–491,
New York, NY, USA, 2015. ACM.

[2] Luigi Atzori, Davide Carboni, and Antonio Iera. Smart
things in the social loop: Paradigms, technologies, and
potentials. Ad Hoc Networks, 18:121–132, 2014.

[3] Luigi Atzori, Antonio Iera, and Giacomo Morabito.
The internet of things: A survey. Computer Networks,
54(15):2787–2805, 2010.

[4] Payam Barnaghi, Wei Wang, Cory Henson, and Kerry
Taylor. Semantics for the internet of things: early
progress and back to the future. International Journal
on Semantic Web and Information Systems, 8(1):1–21,
2012.

[5] Jacob Beal, Danilo Pianini, and Mirko Viroli. Aggregate
programming for the internet of things. IEEE Computer,
48(9):22–30, 2015.

[6] Gérôme Bovet and Jean Hennebert. Offering web-
of-things connectivity to building networks. In ACM
Conference on Pervasive and Ubiquitous Computing -
Adjunct Publication, pages 1555–1564, New York, NY,
USA, 2013. ACM.

[7] Yongcan Cao, Wenwu Yu, Wei Ren, and Guanrong Chen.
An overview of recent progress in the study of distributed
multi-agent coordination. Industrial Informatics, IEEE
Transactions on, 9(1):427–438, 2013.

[8] B. H. C. Cheng and al. Software engineering for self-
adaptive systems: A research roadmap. In Software
Engineering for Self-Adaptive Systems, volume 5525
of Lecture Notes in Computer Science, pages 1–26.
Springer, 2009.

[9] Rocco De Nicola, Diego Latella, Alberto Lluch-Lafuente,
Michele Loreti, Andrea Margheri, Mieke Massink, An-
drea Morichetta, Rosario Pugliese, Francesco Tiezzi, and

6



Andrea Vandin. The SCEL language: Design, imple-
mentation, verification. In Software Engineering for
Collective Autonomic Systems - The ASCENS Approach,
pages 3–71. Springer Verlag, 2015.

[10] J.L Fernandez-Marquez, G. Di Marzo Serugendo,
S. Montagna, M. Viroli, and J. Arcos. Description and
composition of bio-inspired design patterns: a complete
overview. Natural Computing, 12(1):43 – 67, 2013.

[11] Sara Hachem, Animesh Pathak, and Valérie Issarny.
Service-oriented middleware for large-scale mobile par-
ticipatory sensing. Pervasive and Mobile Computing,
10:66–82, 2014.

[12] Dries Harnie, Theo D’Hondt, Elisa Gonzalez Boix, and
Wolfgang De Meuter. Programming urban-area appli-
cations for mobility services. ACM Transactions on
Autonomous and Adaptive Systems, 9(2), 2014.

[13] J. Heuer, J. Hund, and O. Pfaff. Toward the web of
things: Applying web technologies to the physical world.
Computer, 48(5):34–42, May 2015.

[14] Marco Iansiti and Karin Lakhani. Digital ubiquity:
How connections, sensors, and data, are revolutionizing
business. Harvard Business Review, 2014.

[15] N. R. Jennings, L. Moreau, D. Nicholson, S. Ramchurn,
S. Roberts, T. Rodden, and A. Rogers. Human-agent col-
lectives. Commun. ACM ACM, 57(12):80–88, December
2014.

[16] E. Latronico, E.A. Lee, M. Lohstroh, C. Shaver, A. Wa-
sicek, and M. Weber. A vision of swarmlets. Internet
Computing, IEEE, 19(2):20–28, Mar 2015.

[17] M. Mrissa, L. Medini, J.-P. Jamont, N. Le Sommer, and
J. Laplace. An avatar architecture for the web of things.
Internet Computing, IEEE, 19(2):30–38, Mar 2015.

[18] Andrea Omicini and Mirko Viroli. Coordination mod-
els and languages: From parallel computing to self-
organisation. The Knowledge Engineering Review,
26(1):53–59, March 2011.

[19] Van Parunak. Go to the ant: Engineering principles
from natural multi-agent systems. Annals of Operations
Research, 75:69–101, 1997.

[20] C. Perera, A. Zaslavsky, P. Christen, and D. Geor-
gakopoulos. Context aware computing for the internet
of things: A survey. Communications Surveys Tutorials,
IEEE, 16(1):414–454, First 2014.

[21] M. Phillips. The slothbot moving wall projects,
http://arch-os.com/projects/slothbot/.

[22] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and
S. Clarke. Middleware for internet of things: A survey.
IEEE Internet of Things Journal, 3(1):70–95, Feb 2016.

[23] C. Sarkar, S.N.A.U. Nambi, R.V. Prasad, and A. Rahim.
A scalable distributed architecture towards unifying iot
applications. In IEEE World Forum on Internet of Things,
pages 508–513, March 2014.

[24] Amardeo C Sarma and João Girão. Identities in the future
internet of things. Wireless personal communications,
49(3):353–363, 2009.

[25] Andrea Sassi and Franco Zambonelli. Coordination

infrastructures for future smart social mobility services.
IEEE Intelligent Systems, 29(5):78–82, 2014.

[26] Nathan Schurr, Janusz Marecki, Milind Tambe, and Paul
Scerri. Towards flexible coordination of human-agent
teams. Multiagent and Grid Systems, 1(1):3–16, 2005.

[27] N. Spanoudakis and P. Moraitis. Engineering ambient
intelligence systems using agent technology. Intelligent
Systems, IEEE, 30(3):60–67, May 2015.

[28] Axel Van Lamsweerde. Goal-oriented requirements en-
gineering: A guided tour. In Fifth IEEE International
Symposium on Requirements Engineering, pages 249–
262. IEEE, 2001.

[29] Lina Yao, Q.Z. Sheng, and S. Dustdar. Web-based man-
agement of the internet of things. Internet Computing,
IEEE, 19(4):60–67, July 2015.

[30] Franco Zambonelli. Toward sociotechnical urban super-
organisms. IEEE Computer, 45(8):76–78, 2012.

[31] Franco Zambonelli and et al. Developing pervasive
multi-agent systems with nature-inspired coordination.
Pervasive and Mobile Computing, 37, 2015.

[32] Franco Zambonelli and Andrea Omicini. Challenges
and research directions in agent-oriented software engi-
neering. Autonomous Agents and Multi-Agent Systems,
9(3):253–283, November 2004.

[33] Franco Zambonelli and Mirko Viroli. A survey on nature-
inspired metaphors for pervasive service ecosystems.
Journal of Pervasive Computing and Communications,
7:186–204, 2011.

7


