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Abstract. The need for evaluation-methodologies emerged very early in the 
field of ontology development and reuse and it has grown steadily. Yet, no 
comprehensive and global approach to this problem has been proposed to date. 
This situation may become a serious obstacle for the success of ontology-based 
Knowledge Technology, especially in the industrial and commercial sectors. In 
this paper we look at existing ontology-evaluation methods from the 
perspective of their integration in one single framework. Based on a catalogue 
of qualitative and quantitative measures for ontologies, we set up a formal 
model for ontology. The proposed formal model consists of a meta-ontology -
O2- that characterizes ontologies as semiotic objects. The meta-ontology is 
complemented with an ontology of ontology evaluation and validation - oQual. 
Based on O2 and oQual, we identify three main types of measures for ontology 
evaluation: structural measures, that are typical of ontologies represented as 
graphs; functional measures, that are related to the intended use of an ontology 
and of its components, i.e. their function; usability-related measures, that 
depend on the level of annotation of the considered ontology. 

1. Introduction 

The need for evaluation-methodologies in the field of ontology development and 
reuse emerged as soon as 1994 [Sure 2004] and it has grown steadily ever since. Yet, 
no comprehensive and global approach to this problem has been proposed to date. 
This situation may become a serious obstacle for the success of ontology-based 
Knowledge Technology, especially in the industrial and commercial sectors. A typical 
example in this sense is the development of the Semantic Web. On the one hand, the 
idea of conveying semantics through ontologies arouses the interest of large parts of 
the Software Industry. Ontologies promise to be crucial components of web-like 
technologies that are able to cope with high interconnection, constant change and 
incompleteness. On the other hand, though, the lack of well-understood notions of 
ontology evaluation, validation and certification significantly slows down the 
transition of ontologies from esoteric symbolic structures into reliable industrial 
components. 
In this paper we look at existing ontology-evaluation methods from the perspective of 
their integration in one single framework. We first provide a brief overview of the 
state of the art. Partially based on such catalogue of qualitative and quantitative 
measures for ontologies, we set up a formal model for ontology-evaluation, mainly 
focusing on theoretical issues. The proposed formal model consists of a meta-
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ontology – called O2 – which characterizes ontologies as semiotic objects. O2 is meant 
to provide a meta-theoretical foundation to ontology evaluation and annotation. The 
meta-ontology is complemented with an ontology of ontology evaluation and 
validation – oQual – which allows to pick up ontology elements by means of O2, and 
which provides quality-parameters and, when feasible, their ordering functions. In 
practice, we model ontology evaluation as a diagnostic task based on ontology-
descriptions. Such descriptions make explicit knowledge that is key to ontology-
evaluation, namely: roles and functions of the elements of the ontology that is subject 
to evaluation; parameters for the descriptions that typically denote the quality of an 
ontology; functions that compose those parameters according to a preferential 
ordering. Based on O2 and oQual it is possible to identify three main types of 
measures for ontology evaluation: structural measures, that are typical of ontologies 
represented as graphs; functional measures, that are related to the intended use of an 
ontology and of its components, i.e. their function; usability-related measures, that 
depend on the level of annotation of the considered ontology. For each of these 
measure-types our paper provides (formal) definitions as well as examples of 
preferential orders. Finally, some conclusions are drawn. 

2. State of the art in ontology evaluation 

The available literature on ontology evaluation is rather complex and fragmentary. 
Any given approach may address more or less specific evaluation issues, and often 
more than one quality-criterion is discussed at the same time, therefore only partially 
clarifying the problems at stake. 
As opposed to this situation, [Hartmann 2004] tries to systematically disentangle 
issues by providing a classification-grid for ontology evaluation methods. In this 
review, we present various existing approaches and, in order to allow the comparison 
between them, we often use the classification-grid proposed in [Hartmann 2004] as 
background structure. Such grid allows to present ontology evaluation methods in 
terms of answers to the following questions: what is the considered method/tool like? 
Subordinately: what is its goal (Goal)? What functions are supported by it (Function)? 
At which stage of development of an ontology may it be applied (Application)? 
Furthermore, how useful is the method? Subordinately: for which type of users is it 
conceived (Users types: Knowledge Engineers, Project Managers, Application Users, 
Ontology Developers)? How relevant is it to practice (Usefulness)? How usable is it 
(Usability)? For which type of uses was it conceived in the first place (Use cases)? 
[Yao et al. 2005] defines a number of Cohesion Metrics that are specific to 
ontologies. There exists a number of mathematical theories of how to describe and 
measure (graphical) structures. The most general ones are Graph Theory and Metric 
Theory. These define notions that are certainly relevant to the problem of ontology 
evaluation, but their level of abstraction makes them unsuitable for direct application. 
In order to define ontology-specific metrics [Yao et al. 2005] propose to adapt 
software cohesion metrics, which traditionally refers to the degree to which the 
elements in a software module belong together. Since cohesion metrics usually are 
intended to measure modularity, metrics similar to the software cohesion metrics can 
be defined to measure relatedness of elements in ontologies. The authors propose to 
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see ontology cohesion metrics as part of a measure for ontology modularity: ontology 
cohesion refers to the degree of the relatedness of OWL classes, which are 
conceptually related by the properties. An ontology has a high cohesion value if its 
entities are strongly related. The idea behind this is that the concepts grouped in an 
ontology should be conceptually related for a particular domain or a sub-domain in 
order to achieve common goals. The paper proposes three main Coehesion Metrics, or 
functions: Number of Root Classes (NoR); Number of Leaf Classes (NoL);  Average 
Depth of Inheritance Tree of Leaf Nodes. 
Most of the literature on ontology evaluation focuses on functionality-related issues, 
rather than structural ones. The functionality of an ontology is mostly measured by 
evaluating its appropriateness as semantic backbone of either decision-support or 
information systems that operate in the domain represented by the ontology. 
[Lozano-Tello et al. 2004] proposes OntoMetric, an adaptation of the Analytic 
Hierarchy Process, i.e. a mathematical method for scaling priorities in hierarchical 
structures. The main goal of this method is to help choose the appropriate ontology 
for a new project. The functions supported by OntoMetric are the ordering by 
importance of project objectives, the qualitative analysis of candidate ontologies for 
the project, the quantitative measure of the suitability of each candidate. The 
application of OntoMetric can only follow ontology release. The method is meant for 
users types like Engineers or Project Managers who need to look for ontologies over 
the Web at the purpose of incorporating them into their systems. Therefore, 
OntoMetric makes itself useful as a support to the evaluation of the relative 
advantages and risks of choosing an ontology over others. The main drawback of 
OntoMetric is related to its usability: specifying the characteristics of an ontology is 
complicated and takes time; assessing its characteristics is quite subjective. On top of 
this, the number of use cases is limited, which is an important obstacle to defining 
(inter-subjective or objective) parameters based on a large enough number of 
comparable cases. 
[Welty et al., 2001] proposes OntoClean, which is meant for application at the pre-
modelling and modelling stages, i.e. during ontology development. The main goal is 
to detect both formal and semantic inconsistencies in the properties defined by an 
ontology. The main function of OntoClean is the formal evaluation of the properties 
defined in the ontology by means of a predefined ideal taxonomical structure of meta-
properties. 
[Spyns 2005] presents EvaLexon which finds application at the pre-
modelling/modeling stage. The main goal here is to evaluate at development time 
ontologies that are created by human beings from text. In sharp contrast with 
OntoClean, EvaLexon is meant for linguistic rather than conceptual evaluation. Its 
main function is the measurement of how appropriate are the terms (to be) used in an 
ontology. A term is judged more or less appropriate depending on its frequency both 
in the text from which the ontology is (being) derived and in a list of relevant domain-
specific terms. Regression allows for direct and indirect measurement of the 
ontology’s recall, precision, coverage and accuracy. 
In [Porzel et al., 2004], partly building on [Brewster et al., 2004], a linguistics-based 
approach partly comparable to EvaLexon is defined. The goal of the proposal is to 
evaluate ontologies with respect to three basic levels: vocabulary, taxonomy and 
(non-taxonomic) semantic relations. The functions proposed in [Porzel et al. 2004] are 
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based on two key arguments: the task and the gold standard. The task needs to be 
sufficiently complex to constitute a suitable benchmark for examining a given 
ontology. The gold standard is a perfectly annotated corpus of part-of-speech tags, 
word senses, tag ontological relations, given sets of answers (so-called keys) used to 
evaluate the performance of algorithms that are run on the ontology to perform the 
task. 
[Gómez-Pérez, 2003] draws a distinction between two main evaluation dimensions: 
content evaluation and ontology technology evaluation. Content evaluation is related 
to the Knowledge Representation (KR) paradigm that underlies the language in which 
the ontology is implemented (be it RDF schemas, description logic, first order logic, 
etc.). The goal of content evaluation is to detect inconsistencies or redundancies before 
these spread out in applications. The application of content evaluation techniques 
should take place during the entire ontology life-cycle, as well as during the entire 
ontology-building process. Functions should support the evaluation of concept 
taxonomies, properties, relations and axioms. On the other hand, ontology technology, 
i.e. ontology development tools like OILed and Protégé, should be subject to 
evaluation too. Here the goal is to ensure smooth and correct integration with 
industrial software environments. The application of such evaluation should be 
directed at the expressiveness of the KR model underlying the ontology editor; the 
tool’s interoperability, in terms of quality of import/export functions (i.e. how much 
knowledge is lost with format transformation), scalability (i.e. how different building 
platforms scale when managing large ontologies with thousands of components, as 
well as time required to open and save, etc.), navigability (e.g. how easy it is to search 
for a component), usability (e.g. user interfaces’ clarity and consistency), and available 
content evaluation functions. 
[Daelemans et al., 2004] points out how recently developed NPL techniques can be - 
and currently are - used for evaluating ontologies’ semantics (vs their syntax). NLP 
not only helps content collection from huge amounts of text and maintenance, but it 
also provides the means for showing that ontologies indeed represent “consensual 
conceptualizations and not just one person’s ideas”. 
In [Noy, 2004] it is argued that, although most structural and functional evaluation 
methods are necessary, none are helpful to ontology consumers, who need to discover 
which ontologies exist and, more important, which ones would be suitable for their 
tasks at hand. Knowing whether an ontology is correct according to some specific 
formal criteria might help in the ultimate decision to use an ontology but will shed 
little light on whether or not it is good for a particular purpose or task. What is needed 
is not only a system for objectively evaluating ontologies from some generic 
viewpoint, but also practical ways (function) for ontology consumers to discover and 
evaluate ontologies. Information such as the number of concepts or even an 
ontology’s complete formal correctness is probably not the most important criteria in 
this task (although it is often the easiest to obtain). Based on this considerations 
alternative techniques are proposed: ontology summarization, e-pinions for 
ontologies, views and customization. 
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3. O2: a semiotic meta-ontology 

We consider an ontology as a semiotic object, i.e. an object constituted by an 
information object and an intended conceptualization established within a 
communication setting. 
The basic intuition is that information is any pattern that is used to represent another 
pattern, whereas that representation is interpretable by some rational agent (this 
intuition comes back at least to C.S. Peirce [Peirce 1931]) as an explanation, an 
instruction, a command, etc. 
 

 
Figure 1. The O2 design pattern, based on the Information↔Description pattern from 
the DOLCE-Lite-Plus ontology library [Masolo et al, 2004]. Ontologies are graphs 
that express a conceptualization and can be profiled by additional information that 
expresses their usage context. An ontology graph has (“q-represents”) a formal 
semantics if it is admitted by the conceptualization. These constraints are the sensible 
part of ontology evaluation: does the formal semantics of a graph catch the intended 
conceptualization (the “cognitive” semantics)? 
 
That intuition is formalized by applying an ontology design pattern called 
Description↔Situation [Gangemi, 2005], and originates a new pattern called O2 
(because it is a “meta-ontology”), which formalizes the following specification: an 
ontology is a special kind of information, whose patterns are graph-like structures, and 
whose represented patterns are intended conceptualizations, i.e. internal 
representations (for a rational agent) of entity types. For example, one can define an 
ontology for subways, but one will hardly consider the London Underground graph as 
an ontology (it would be eventually considered a model of an appropriate subway 
ontology). 
The UML class diagram in Fig.1 summarizes O2: an ontology graph has an intended 
conceptualization and a formal semantic space admitted by the conceptualization. The 
graph and the conceptualization are kept together by a rational agent who 
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encodes/interprets the graph. An agent can also provide a profile of the structural and 
functional properties of an ontology graph in order to enhance or to enforce its 
usability. 

4. oQual: a model of ontology evaluation and validation 

We model ontology evaluation and validation as a diagnostic task over ontology 
elements, processes, and attributes (Fig.s 2,3) involving:  
• Quality-Oriented Ontology Descriptions (qoods), which provide the roles and 
tasks of the elements resp. processes from/on an ontology, and have elementary 
qoods (called principles) as parts. For example, a type of qood is retrieve, which 
formalizes the requirement to be able to answer a certain competency question. In 
Fig. 3, the retrieve type is instantiated as a requirement to the ontology to be able 
to retrieve the “family history for a condition related to haemocancer”, in an 
ontology project for “haemocancer information service”. 
• Value spaces (“attributes”) of ontology elements. For example, the presence of a 
relation such as: R(p,f,c,i), where Patient(p), Family(f), Condition(c), Indicator(i). 
• Principles for assessing the ontology fitness, which are modelled as elementary 
qoods, and are typically parts of a project-oriented qood. For example, “description 
of fitness to expertise” is a principle. 
• Parameters (ranging over the attributes -value spaces- of ontologies or ontology 
elements), defined within a principle. For example, “relation fitness to competency 
question” is a parameter for the relation R(p,f,c,i). 

 

 
Figure 2. The ontology evaluation design pattern (oQual). 
 
• Parameter dependencies occurring across principles because of the 
interdependencies between the value spaces of the measured ontology elements. 
For example, the “relation fitness to competency question” parameter is dependent 
on either “first-order expressiveness” or “presence of a relation reification method” 
parameters ranging on the logical language of the ontology, because the relation 
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R(p,f,c,i) has four arguments and it’s not straightforwardly expressible in e.g. 
OWL(DL). 
• Preferential ordering functions that compose parameters from different 
principles. For example, in a “haemocancer information service” project, the 
“relation fitness to competency question” parameter may be composed with the 
“computational complexity” parameter. 
• Trade-offs, which provide a conflict resolution description when combining 
principles with conflicting parameters. For example, the two abovementioned 
parameters might be conflicting when the cost of the expressiveness or of the 
reification method are too high in terms of computational efficiency. A trade-off in 
this case describes a guideline to simplify the competency question, or a strategy to 
implement the relation differently. 

 

 
Figure 3. Applying oQual to a clinical use case. 
 
The formal model for ontology diagnostic tasks, called oQual, is based on the the 
Description↔Situation pattern [Gangemi, 2005] from the DOLCE-Lite-Plus ontology 
library [Masolo et al., 2004], which is integrated with the Information↔Description 
pattern used for O2. 
Ontology descriptions, roles, parameters, and ordering functions are defined on the 
results of the measurement types that can be performed on an ontology graph, 
conceptualization, or profile. The results are represented as regions within value 
spaces). Quality parameters constrain those regions within a particular qood. 

5. Measures 

Based on the O2 pattern, we have devised a large amount of possible measurement 
methods for ontologies. We introduce here the main distinctions among measure sets, 
and provide some examples of them. 
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5.1 Measure types 
Ontology evaluation deals with establishing the measures for an ontology, and 
deploying them within a qood. We want to answer the following three questions. 
What to measure in an ontology? and how? the quality of an ontology may be 
assessed relatively to various dimensions. As explained above (see Section 1), by 
ontology we mean any kind of graph of metadata, and we propose to measure its 
quality relatively to three main groups of dimensions: structural, functional and 
usability-related dimensions. 
An ontology shows its structural dimensions when represented as a graph. In this 
form, the topological and logical properties of an ontology may be measured by 
means of a metric. The existence of these structural dimensions, however, can be 
considered independent from the metric is being used. 
The functional dimensions are related to the intended use of a given ontology and of 
its components, i.e. their function. Functional dimensions include agreement, task, 
topic, design, etc. Such dimensions become apparent in an ontology depending on the 
context, which in turn is given by how the ontology is chosen, built, exploited, etc. 
Finally, the usability-related dimensions depend on the level of annotation of a given 
ontology. How easy it is for users to recognize its properties? How easy is to find out 
which one is more (economically, computationally) suitable for a given (series of) 
task(s)? 
 
Notice that those dimensions follow a partition into logical types: structurally, we 
look at an ontology as an (information) object; functionally, we look at it as a 
language (information object+intended conceptualization), and from the usability 
viewpoint, we look at its meta-language (the profile about the semiotic context of an 
ontology). Therefore, the dimension types correspond to the constituents of the O2 
pattern (Fig.1), and heterogeneous measurement methods are needed. 
Which parameters for the quality of an ontology? Each measure can have more than 
one quality parameter, depending on other parameters/measures, and the overall 
composition for a given ontology project implies a non-linear procedure to quality 
assessment. For example, in an ontology project we may want to combine measures 
like logical complexity and presence of dense areas (e.g. of design patterns). If high 
density is chosen as a quality parameter, then the parameter associated with high 
complexity is chosen too, because usually dense areas involve a lot of restrictions, 
sometimes with indirect cycles; in other words, high-density parameter depends on 
the high-complexity parameter. On the other hand, if the quality parameter is lower 
complexity, then the parameter associated with lower density is chosen too, because 
the first depends on the second. Actually, this is an application of a general pattern of 
parameter composition ranging on mutually dependent scalar spaces: when we 
compose two parameters p1 and p2 ranging respectively on value spaces s1 and s2 with 
a scalar metrics, and p1 ranges over the higher part of s1, and also depends on p2 
ranging over the lower part of s2, then the converse is true, i.e. that a parameter p3 
ranging on the higher part of s2 depends on a parameter p4 ranging on the lower part of 
s1. Hence, different trade-offs denote good/bad quality according to which criterion is 
preferred. oQual formalizes the observation that quality parameters are defined 
according to some principle, e.g. in the example, “high” parameters could be defined 
with reference to a transparency principle, while the “low” parameters could be 
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defined with reference to a computational efficiency principle. When combining 
principles, the need for a trade-off typically arises, producing either a preference 
ordering function, or a relaxation of parameters. In our example project, the 
preference ordering function is: x

i

rqrq pcpppppref a),,,,( 2121
, where q a and r 

are principles, 

! 

pi
x  is a parameter defined by a principle, and c is a local constraint (a 

“meta-parameter”), e.g. availability of resources, user overruling, good practice, etc.  
If no local constraint can be applied to create a preference ordering function, the 
trade-off can resort to a relaxation of parameters. In our example project, either high 
density can be relaxed to e.g. medium-high density, or low complexity can be 
increased to e.g. medium-low complexity. 
Which examples? There are typical examples and patterns of good/bad quality for 
each measure. In the next future, examples will be provided after the analysis of a 
sample set of ontologies, and an appropriate processing of user feedback (e.g. from 
the KnowledgeZone initiative.1 

5.2 Measuring the structural dimension 
The structural dimension of ontologies focuses on syntax (e.g. graph structure), and 
formal semantics. 

Here we propose our own treatment of structural dimensions. The idea is to define a 
general function like the following: 

! 

M = D,S,mp,c , where dimension D is a 
graph property or concept we want to measure: the intensional counterpart of the 
metric space; the set of graph elements S is a collection of elements in the graph 
(which may be seen as the ontology structure); mp is a measurement procedure; and c 
is a coefficient of measurement error. 

The value of M is a real number obtained by applying a measurement procedure mp 
for a dimension D to a set S of graph elements, modulo a coefficient c (if any), i.e.: 

! 

mpD,c,S yields
" # " " m $ %  

 
Within the possible sets of graph elements, we consider here the following sets: 
 

• The set of graph nodes G from a graph g, G ⊆ S 
• The set of root nodes ROO ⊆ G, where the root nodes are those having no outgoing 

isa arcs in a graph g. 
• The set of leaf nodes LEA ⊆ G, where the leaf nodes are those having no ingoing 

isa arcs in a graph g. 
• The sets of sibling nodes SIBj∈G connected to a same node j in a graph g through 

isa arcs. 
• The set of paths P where ∀j∈P ⇒ j⊆G, where a path j is any sequence of directly 

connected nodes in a digraph g starting from a root node x∈ROO and ending at a leaf 
node y∈LEA. 

                                                             
1 http://smi-protege.stanford.edu:8080/KnowledgeZone. 
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• The set of levels (“generations”) L where ∀j∈L ⇒ j⊆G, where a generation j is the 
set of all sibling node sets having the same distance from (one of) the root node(s) 
r∈ROO of a digraph g. 

• The sets of graph nodes 

! 

N j"P  from a same path j in a digraph g 
• The sets of graph nodes 

! 

N j"L  from a same level j in a digraph g 
• The set M of modules from a graph g. A module is any subgraph sg of g, where the 

set of graph elements S’ from sg is such that S’ ⊆ S. Two modules sg1 and sg2 are 
taxonomically disjoint when only ≥0 isa arcs ai connect sg1 to sg2, and each ai has 
the same direction.  
 
Several structural measures can be defined, involving dimensions such as depth, 

breadth, tangledness, leaf and sibling distribution, density, modularity, consistency, 
complexity, logical elements distribution, etc. An extended list of the measures 
definable within those dimensions is presented in [Gangemi et al., 2005]; here we 
include some of them as examples. 

Depth is a graph property related to the cardinality of paths in a graph, where the 
arcs considered are only isa arcs. This measure type only applies to digraphs (directed 
graphs). E.g., average depth, where 

! 

N j"P  is the cardinality of each path j from the 

set of paths P in a graph g, and 

! 

nP"g  is the cardinality of P: 

! 

m =
1

nP"g
N j#P

j

P

$
.
 

Breadth is a property related to the cardinality of levels (“generations”) in a graph, 
where the arcs considered here are again only isa arcs. E.g. average breadth, where 

! 

N j"L  is the cardinality of each generation j from the set of generations L in a digraph 

g, and 

! 

nL"g  is the cardinality of L: 

! 

m =
1

nL"g
N j#L

j

L

$
.
 

Tangledness is related to the multihierarchical nodes of a graph. In the tagledness 
measure 

! 

n
G

 is the cardinality of G, and 

! 

t"G#$a1 ,a2 (isa(m,a1 )#(isa(m,a2 )
 is the cardinality 

of the set of nodes with more than one ingoing isa arc in g: 

! 

m =
n
G

t"G#$a1 ,a2 (isa(m,a1 )#(isa(m,a2 ) .
 

Fan-outness is related to the “dispersion” of graph nodes, along isa arcs. We 
distinguish the fan-outness measures related to leaf node sets, and fan-outness 
measures related to sibling node sets (“internal dispersion”). For example, in the ratio 

of leaf fan-outness 

! 

nLEA"g  is the cardinality of the set LEA in the digraph g, and 

! 

n
G

 is the cardinality of G: 

! 

m =
nLEA"g

nG

 

Density can be defined as the presence of clusters of classes with many non-
taxonomical relations holding among them (wrt to overall ontology graph). For 
example, so-called core ontology patterns (e.g. including thematic roles in events, 
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contracts, diagnoses, etc.) usually constitute dense areas in an ontology. The 
following measures can be established. 
1. Various clustering techniques can be used to detect dense areas, and the absolute 

size and number of them can be measured. 
2. A measure of the relevance of those areas for the overall ontology can be obtained 

by calculating the proportion of classes and properties in the ontology, which 
logically depend on the dense areas. 

3. Dense areas can be -explicitly or implicitly- a specialization of content ontology 
design patterns [Gangemi 2005]. 
 
Modularity is related to the asserted modules of a graph, where the arcs considered 

here are either isa or non-isa arcs. For example, the modularity rate, where 

! 

n
M

is 
the cardinality of M, and 

! 

n
S
 is the cardinality of S (the set of graph elements) within a 

module: 

! 

m =
n
M

n
S

 

Logical adequacy is related to graphs having a formal semantics, where the arcs 
considered here are either isa or conceptual relation arcs. For example, the consistency 
ratio, where 

! 

n
Inc

is the cardinality of the set of consistent classes from g, and 

! 

n
G

 is 

the cardinality of the set of (class) nodes from g: 

! 

m =
n
Cons

n
G

 

5.3 Measuring the functional dimension 
The functional dimension is coincident with the main purpose of an ontology, i.e. 
specifying a given conceptualization, or a set of contextual assumptions about an area 
of interest. Such specifications, however, are always approximate, since the 
relationship between an ontology and a conceptualization is always dependent (Fig. 1) 
on a rational agent that conceives that conceptualization (the “cognitive” semantics) 
and on the formal encoding of that conceptualization (the “formal” semantics). Hence, 
an appropriate evaluation strategy should involve a measurement of the degree of how 
those dependencies are implemented. We refer to this as the matching problem. 

The matching problem requires us to find ways of measuring the extent to which 
an ontology mirrors a given expertise [Steels, 1990], competency [Uschold, 1996], or 
task: something that is in the experience of a given community and that includes not 
only a corpus of documents, but also theories, practices and know-hows that are not 
necessarily represented in their entirety in the available documents. This seems to 
imply that no automatized method will ever suffice to the task and that intellectual 
judgement will always be needed. However, both automatic and semi-automatic 
techniques can be applied that make such evaluation easier, less subjective, more 
complete and faster (cf. [Daelemans et al. 2004]). 

The functional measures provided in [Gangemi et al., 2005] are variants of the 
measures introduced by [Guarino 2004], which uses an analogy with precision, recall, 
and accuracy measures, which are widely used in information retrieval (cf. [Baeza-
Yates & Ribeiro-Neto, 1999]). Due to the matching problem, the adaptation of 
precision, recall and accuracy to ontology evaluation is by no means straightforward. 
Since expertise is by default in the cognitive “black-box” of rational agents, ontology 
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engineers have to elicit it from the agents, or they can assume a set of data as a 
qualified expression of expertise and task, e.g. texts, pictures, diagrams, database 
records, terminologies, metadata schemas, etc. 

Based on these assumptions, precision, recall and accuracy of an ontology can be 
measured against: a) experts’ judgment, or b) a data set assumed as a qualified 
expression of experts’ judgment. Therefore, we distinguish between black-box and 
glass-box measurement methods: 

 
(1) Agreement (black-box). It is measured through the proportion of agreement 

that experts have with respect to ontology elements; when a group of experts 
is considered, we may also want to measure the consensus reached by the 
group’s members. 

(2) User-satisfaction (black-box). It can be measured by means of dedicated 
polls, or by means of provenance, popularity, and trust assessment. 

(3) Task: what has to be supported by an ontology? (glass-box). It deals with 
measuring an ontology according to its fitness to some goals, preconditions, 
postconditions, constraints, options, etc. This makes the measurement very 
reliable at design-time, while it needs a reassessment at reuse-time. 

(4) Topic: what are the boundaries of the knowledge domain addressed by an 
ontology? (glass-box). It deals with measuring an ontology according to its 
fitness to an existing knowledge repository. This makes the measurement 
reliable both at design-time, and at reuse-time, but is based on the 
availability of data that can be safely assumed as related to the (supposed) 
topic covered by an ontology. Natural Language Processing (NLP)-based 
methods fit into this category, and are currently the most reliable method for 
ontology evaluation, at least for lightweight ontologies. 

(5) Modularity: what are the building blocks for the design of an ontology? 
(glass-box). It is based on the availability of data about the design of an 
ontology. Therefore, it deals with measuring an ontology according to its 
fitness to an existing repository of reusable components. This makes the 
measurement very reliable both at design-time, and at reuse-time. On the 
other hand, modularity can only be assessed easily on ontologies that have 
been designed with an appropriate methodology. 

 
Black-box methods require rational agents, because they don't explicitly use 

knowledge of the internal structure of an expertise. 
Glass-box methods require a data set that “samples” that knowledge, and, on this 

basis, we can treat the internal structure of those data as if it is the internal structure of 
an expertise. 

[Gangemi et al., 2005] has extensive discussions on the abovementioned methods, 
which cannot be summarized here. The most automatized techniques are currently 
NLP-based, and here we present a summary of them. 

5.4 NLP-driven evaluation 
When the ontology is lexicalized; i.e., it defines, at least to some extent, what 
instances of classes and relations are called in natural language, and there exists a 
substantial amount of textual documents that contain information about the content of 
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the ontology, NLP can support ontology evaluation in several ways. A typical such 
case is when the ontology directly supports information retrieval or text mining 
applications and thus concerns objects mentioned in web-pages or other large 
repositories of texts (e.g., newswire, biomedical or legal literature, etc.). One of the 
simplest examples of lexicalized ontology is the kind used for newswire information 
extraction which is usually based on three classes: “person” (e.g., Kofi Annan), 
“location” (e.g., South East Asia), and “organization” (e.g., U.N.). Sometimes these 
classes are also associated with relations such as is-located-in(Djakarta, 
South_East_Asia) or works-for(Kofi_Annan,U.N.). 

If there is a corpus of documents that contains the kind of information 
conceptualized in the ontology, NLP can be used to identify occurrences in text of 
classes and relations. A corpus-based analysis of the ontology can reveal important 
properties of the ontology that might not be discovered otherwise. Most importantly, 
it allows to estimate empirically the accuracy and the coverage of the ontology. 

By identifying mentions of ontological elements in the corpus, it is possible to 
count the frequency of classes (or relations). The relative frequency of each class c (or 
relation r) is the proportion of mentions of ontology instances which are equal to c; 
i.e., P(c) = count(c)/sumi count(ci). The relative frequency measures the importance of 
each class and provides a first simple measure of the ontology quality. For example, 
in newswire text the three classes above have somewhat similar frequencies, while if 
the corpus analysis reveals that one of the classes is much more unlikely than the 
others this means that there is something wrong with the instances of that class. this 
might indicate that the low frequency class is underrepresented in the ontology, at the 
lexical level. If the ontology has a hierarchical structure, it is also possible to estimate 
the frequencies of higher of superordinate concepts, the frequency of a class c then 
would be the sum of the frequencies of its descendants. The probability of a concept 
in a hierarchy can be computed as P(c) = sumi{cj is descendant of c} count(cj)/sumi 
count(ci). Each class can be seen as a random variable, and this can be useful to 
estimate the information-theoretical measures such as entropy H(c) = -sumj {cj is 
descendant of c} P(cj)logP(cj). Entropy and other information theoretic measures can 
be used to identify classes that are particularly useful or “basic” [Gluck & Corter, 
1985]. Thus for example in a general purpose ontology, a concept such as “tree”, 
which has many descendants similar to each other, is likely more important than a 
concept such as “entity” which has very dissimilar descendants (e.g., organisms, 
artifacts, etc.). 

One problem with trying to estimate distributional properties of the ontology 
directly is that the existing lexicon associated with the ontology might be insufficient 
because it contains only the names that the experts have listed. Notice that creating 
such “dictionaries” requires not only domain expertise but also lexicographic 
expertise and it is a slow and expensive process. Therefore typically the starting 
ontology lexicon is quite limited. This issue impacts on the matching problem, and the 
related measures of precision and recall for ontology. 

Intuitively, precision measures the ability of a system in recognizing instances of a 
given class, while recall measures the coverage of the system, that is how many true 
instances were left out. Measuring precision and recall requires manual tagging of 
enough textual data to be able to compare the empirical lexicon so generated with the 
ontology lexicon. Typically, the lexicon that is defined by the experts has a good 
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precision because it is unlikely that wrong instances were placed in any class/relation 
lists. However, the lexicon defined by the experts can be limited on several aspects, 
because it can have very low coverage, thus miss important instances, or it is not a 
sample of the domain thus it can over-represent certain types of objects and under-
represent others. 

NLP can be used for assisting experts in populating the objects defined by the 
ontology. Machine learning methods for supervised and unsupervised classification 
can be applied to corpus data to retrieve unknown instances of ontology objects. So 
far most of the work in this area has concentrated on the problem of finding new 
members of a class of objects [Riloff, 1996][Roark & Charniak, 1998], and on finding 
examples of structural relations such as is-a [Hearst, 1992][Pantel & Ravichandran, 
2004] or part-of [Berland & Charniak, 1999]. Recent work however has focused also 
on discovering class attributes [Almuhareb & Poesio, 2004] and arbitrary relation 
between classes [Ciaramita et al., 2005]. Automatic or semi-automatic population of 
ontology objects is valuable also in terms of evaluation. In fact, it is possible that new 
senses of already known instances are discovered, for example because the instance is 
polysemous/ambiguous (e.g., “Washington” is a person and a location). 

5.5 Measuring the usability-profile of ontologies 
Usability-profiling measures focus on the ontology profile, which typically addresses 
the communication context of an ontology (i.e. its pragmatics). An ontology profile is 
a set of ontology annotations, i.e. the metadata about an ontology and its elements. 
Presence, amount, completeness, and reliability are the usability measures ranging on 
annotations. 

Annotations contain information about structural, functional, or user-oriented 
properties of an ontology. There are also purely user-oriented properties, e.g. 
authorship, price, versioning, organizational deployment, interfacing, etc. 

Three basic levels of usability profiling have been singled out: recognition, 
efficiency, and interfacing.  

The recognition level makes objects, actions, and options visible. Users need an 
easy access to the instructions for using ontologies in an effective way, and an 
efficient process to retrieve appropriate meta-information. That is, “give your users 
the information that they need and allow them to pick what they want”. Hence 
recognition is about having a complete documentation and to be sure to guarantee an 
effective access. Recognition annotations include at least the following ones: 
1. Annotations (of the overall ontology) about the ontology structure: graph 

measures; logic-type and computational complexity; meta-consistency; 
modularization (e.g. owl:imports) 

2. Annotations about the ontology function (either at design-time or reuse-time): 
lexical annotation of ontology elements (incl. multilingual); glosses (e.g. 
rdfs:comment) about ontology elements; agreement status; user satisfaction (e.g. 
http://smi-protege.stanford.edu:8080/KnowledgeZone/) and trust rating; task of 
the overall ontology (both originally and during its lifecycle); topic (e.g. rdf:about) 
of the overall ontology; and modularization design of the overall ontology 

3. Annotations about the ontology lifecycle (either of the overall ontology, or of its 
elements): provenance; methods employed; versioning (e.g. owl:versionInfo), 
compatibility (e.g. owl:incompatibleWith) 
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Notice that annotations can be resident in an ontology file, linked through a URI, 

dynamically produced when needed (e.g. by a local software component, or through a 
web service), or retrieved from an incrementally growing repository (e.g. from a 
portal that collects users’ feedback). 

The efficiency level includes organizational, commercial, and developmental 
annotations. Large organizations tend to be compartmentalized, with each group 
looking out for its own interests, sometimes to the detriment of the organization as a 
whole. Information resource departments often fall into the trap of creating or 
adopting ontologies that result in increased efficiency and lowered costs for the 
information resources department, but only at the cost of lowered productivity for the 
company as a whole. This managing-operating-balance principle boils down to some 
requisites (parameters) for the organization-oriented design of ontology libraries (or 
of distributed ontologies), which provide constraints to one or more of the following 
entities: organization architecture, (complex) application middleware, trading 
properties, cost, accessibility, development effort. These parameters are defined by 
the principle of organizational fitness, and are annotated as follows: 

1. Annotations (either on the overall ontology, or on ontology elements) about 
the organizational design of a modularized ontology, and about the 
middleware that allows its deployment. 

2. Annotations about the commercial (trading, pricing) and legal (policy, 
disclaimer) semantics. 

3. Annotations about the application history -with reference to development 
effort (task- or topic-specificity applied to a token scenario) of an ontology. 

 
The interfacing level concerns the process of matching an ontology to a user interface. 
As far as evaluation is concerned, we are only interested in the case when an ontology 
includes annotations to interfacing operations. For example, a contract negotiation 
ontology might contain annotations to allow an implementation of e.g. a visual 
contract modelling language. If such annotations exist, it is indeed an advantage for 
ontologies that are tightly bound to a certain (computational) service. On the other 
hand, such annotations may result unnecessary in those cases where an interface 
language exists that maps to the core elements of a core ontology e.g. for contract 
negotiation. 

6. Conclusions 

Current and future work is focusing on the empirical assessment of the framework by 
measuring existing ontologies, comparing the quality of distinct ontologies that 
represent the same domain, creating correlations between user-oriented and structural 
measures, and creating tools to assist ontology evaluation in large industry- and 
agency-scale projects. 



16      Aldo Gangemi, Carola Catenacci, Massimiliano Ciaramita, Jos Lehmann 

Bibliography 

Almuhareb A., Poesio M., 2004: “Attribute-based and value-based clustering: an evaluation”. 
In Proceedings of the Conference on Empirical Methods in Natural Language Processing. 
Berland M. and Charniak E., 1999: ''Finding parts in very large corpora.'' In Proceedings of 
ACL'99. 
Brewster C., Alani H,, Dasmahapatra S. and Wilks Y.: “Data-driven ontology evaluation”. 
Proceedings of LREC 2004. 
Ciaramita M., Gangemi A., Ratsch E., Saric J., and Rojas I., 2005: “Unsupervised Learning of 
Semantic Relations between Concepts of a Molecular Biology Ontology”. In Proceedings of the 
19th International Joint Conference on Artificial Intelligence.  
Daelemans W., Reinberger M.L. , 2004: “Shallow Text Understanding for Ontology Content 
Evaluation” . IEEE Intelligent Systems 1541-1672, 2004. 
Gangemi A., Catenacci C., Ciaramita M. Gil R., and Lehmann J., “Ontology evaluation: A 
review of methods and an integrated model for the quality diagnostic task”, Technical Report 
available at http://www.loa-cnr.it/Publications.html, 2005. 
Gangemi A.: “Ontology Design Patterns for Semantic Web Content”. In Motta E. and Gil Y., 
Proceedings of the Fourth International Semantic Web Conference, 2005. 
Gluck M. and Corter J., 1985: “Information, Uncertainty and the Utility of Categories”. In 
Proceedings of the 7th Annual Conference of the Cognitive Science Society. 
Gómez-Pérez A.: “Ontology Evaluation”, in Handbook on Ontologies, S. Staab and R. Studer, 
eds., Springer-Verlag, 2003,pp. 251–274.  
Guarino N.: “Towards a Formal Evaluation of Ontology Quality”. IEEE Intelligent Systems 
1541-1672, 2004. 
Hartmann J., Spyns P., Giboin A., Maynard D., Cuel R.,  Suárez-Figueroa M.C., and Sure Y., 
“Methods for ontology evaluation”. Knowledge Web Deliverable D1.2.3, v. 0.1 (2004).  
Kaakinen, J., Hyona, J., & Keenan, J.M. (2002). Individual differences in perspective effects on 
on-line text processing. Discourse Processes, 33, 159 - 173. 
Lozano-Tello, A. and Gomez-Perez A., 2004: “ONTOMETRIC: A method to choose the 
appropriate ontology”, J. of Database Management, 15(2). 
Masolo, C., A. Gangemi, N. Guarino, A. Oltramari and L. Schneider: WonderWeb Deliverable 
D18: The WonderWeb Library of Foundational Ontologies (2004). 
Noy, N., “Evaluation by Ontology Consumers”. IEEE Intelligent Systems 1541-1672, 2004. 
Pantel P. and Ravichandran D., 2004: “Automatically Labeling Semantic Classes”. In 
Proceedings of HLT-NAACL 2004. 
Peirce, Charles (1931-1958). Collected Papers, vols. 1-8, C. Hartshorne, P. Weiss and A.W. 
Burks (eds). Cambridge, MA: Harvard University Press. 
Porzel R. and Malaka R.: “A Task-based Approach for Ontology Evaluation”. Proc. of ECAI 
2004. 
Spyns P., EvaLexon: Assessing triples mined from texts. Technical Report 09, STAR Lab, 
Brussel, 2005. 
Steels L.: “Components of Expertise”, AI Magazine, 11, 2, 1990, pp. 30-49. 
Sure Y. (ed.), 2004: “Why Evaluate Ontology Technologies? Because It Works!”, IEEE 
Intelligent Systems 1541-1672. 
Uschold U. and Gruninger M.,”Ontologies: Principles, Methods, and Applications,” 
Knowledge Eng. Rev.,vol. 11,no. 2,1996,pp. 93–155. 
Welty C., Guarino N., "Supporting ontological analysis of taxonomic relationships", Data and 
Knowledge Engineering vol. 39, no. 1, pp. 51-74, 2001. 
Welty C., Kalra R., and Chu-Carroll J., 2003: “Evaluating Ontological Analysis”. In 
Proceedings of the ISWC-03 Workshop on Semantic Integration. 
Yao H., Orme A.M., and Etzkorn L., 2005: “Cohesion Metrics for Ontology Design and 
Application”, Journal of Computer Science, 1(1): 107-113, 2005. 


