
An ILP Perspective on the Semantic Web

Francesca A. Lisi and Floriana Esposito

Dipartimento di Informatica, Università degli Studi di Bari
Via Orabona 4, 70125 Bari, Italy
{lisi, esposito}@di.uniba.it

Abstract. Building rules on top of ontologies is the goal of the logi-
cal layer of the Semantic Web. The system AL-log, originally conceived
for hybrid Knowledge Representation and Reasoning (KR&R), has been
very recently mentioned as the blueprint for well-founded Semantic Web
rule mark-up languages. It integrates the description logic ALC and the
function-free Horn clausal language Datalog. In this paper we provide a
framework for learning Semantic Web rules which adopts Inductive Logic
Programming (ILP) as methodological apparatus and AL-log as KR&R
setting. In this framework inductive hypotheses are represented as con-
strained Datalog clauses, organized according to the B-subsumption
relation, and evaluated against observations by means of coverage rela-
tions. The framework is valid whatever the scope of induction (descrip-
tion vs. prediction) is. Yet, for illustrative purposes, we concentrate on
an instantiation of the framework which supports description.

1 Introduction

The logical layer of the Semantic Web [2] poses several challenges in the field
of Knowledge Representation and Reasoning (KR&R). The mark-up language
SWRL (http://www.w3.org/Submission/SWRL/) has been recently submitted
to W3C for standardization. It extends OWL, the standard mark-up language for
the ontological layer, with constructs inspired to Horn clauses in order to meet
the primary requirement of the logical layer: ’to build rules on top of ontologies’.
The design of OWL has been based on Description Logics (DLs) [1], more pre-
cisely on the DL SHIQ [13]. Thus SWRL is intended to bridge the notorious
expressive gap between DLs and Horn clausal logic [4] in a way that is similar in
the spirit to hybridization in KR&R systems. Generally speaking, hybrid systems
are KR&R systems which are constituted by two or more subsystems dealing
with distinct portions of a single knowledge base by performing specific reason-
ing procedures [12]. The motivation for building hybrid systems is to improve
on two basic features of knowledge representation formalisms, namely represen-
tational adequacy and deductive power. In particular, AL-log [8] integrates ALC
[24] and Datalog [6] by using ALC concept assertions essentially as type con-
straints on variables. It has been very recently mentioned as the blueprint for
well-founded Semantic Web rule mark-up languages because its underlying form
of integration (called safe) assures semantic and computational advantages that
SWRL - though more expressive than AL-log - currently can not assure [22].

Building rules on top of ontologies is a very demanding task also from the
viewpoint of Knowledge Acquisition. When performing this task, Semantic Web
practitioners could take benefit from the application of Machine Learning meth-
ods and techniques. The approach known under the name of Inductive Logic
Programming (ILP) seems to be particularly promising due to the common
roots with computational logic [9]. ILP has been historically concerned with
concept learning from examples and background knowledge within the repre-
sentation framework of Horn clausal logic and with the aim of prediction. More
recently ILP has moved towards either different first-order logic fragments (e.g.,
DLs) or new learning goals (e.g., description). In this paper we resort to the
methodological apparatus of ILP to define a general framework for learning in
AL-log. Inductive hypotheses are represented as constrained Datalog clauses,
organized according to the B-subsumption relation, and evaluated against obser-
vations by applying coverage relations that depend on the representation chosen
for the observations. The framework proposed is general in the sense that it
is valid whatever the scope of induction (description vs. prediction) is. For the
sake of illustration we concentrate on an instantiation of the framework which
corresponds to the logical setting of characteristic induction from intepretations
and is particularly suitable for descriptive data mining tasks such as frequent
pattern discovery (and its variants) [7].

The paper is organized as follows. Section 2 introduces the basic notions of
AL-log. Section 3 defines the framework for learning in AL-log. Section 4 illus-
trates the instantiation of the framework in the case of characteristic induction
from intepretations. Section 5 concludes the paper with final remarks.

2 Representing Semantic Web rules with AL-log

The system AL-log [8] integrates two KR&R systems: Structural and relational.

2.1 The structural subsystem

The structural part Σ is based on ALC [24] and allows for the specification of
knowledge in terms of classes (concepts), binary relations between classes (roles),
and instances (individuals). Complex concepts can be defined from atomic con-
cepts and roles by means of constructors (see Table 1). Also Σ can state both
is-a relations between concepts (axioms) and instance-of relations between indi-
viduals (resp. couples of individuals) and concepts (resp. roles) (assertions). The
mapping from ALC to OWL is reported in Table 2. We would like to remind the
reader that from the viewpoint of expressiveness ALC is a subset of SHIQ, or
equivalently of OWL DL.

An interpretation I = (∆I , ·I) for Σ consists of a domain ∆I and a mapping
function ·I . In particular, individuals are mapped to elements of ∆I such that
aI 6= bI if a 6= b (Unique Names Assumption (UNA) [21]). If O ⊆ ∆I and
∀a ∈ O : aI = a, I is called O-interpretation. Also Σ represents many different
interpretations, i.e. all its models (Open World Assumption (OWA) [1]).

Table 1. Syntax and semantics of ALC.

bottom (resp. top) concept ⊥ (resp. >) ∅ (resp. ∆I)
atomic concept A AI ⊆ ∆I

role R RI ⊆ ∆I ×∆I

individual a aI ∈ ∆I

concept negation ¬C ∆I \ CI

concept conjunction C uD CI ∩DI

concept disjunction C tD CI ∪DI

value restriction ∀R.C {x ∈ ∆I | ∀y (x, y) ∈ RI → y ∈ CI}
existential restriction ∃R.C {x ∈ ∆I | ∃y (x, y) ∈ RI ∧ y ∈ CI}

equivalence axiom C ≡ D CI = DI

subsumption axiom C v D CI ⊆ DI

concept assertion a : C aI ∈ CI

role assertion 〈a, b〉 : R (aI , bI) ∈ RI

The main reasoning task for Σ is the consistency check. This test is performed
with a tableau calculus that starts with the tableau branch S = Σ and adds
assertions to S by means of propagation rules such as

– S →t S ∪ {s : D} if

1. s : C1 t C2 is in S,
2. D = C1 and D = C2,
3. neither s : C1 nor s : C2 is in S

– S →∀ S ∪ {t : C} if

1. s : ∀R.C is in S,
2. sRt is in S,
3. t : C is not in S

– S →v S ∪ {s : C ′ tD} if

1. C v D is in S,
2. s appears in S,
3. C ′ is the NNF concept equivalent to ¬C

4. s : ¬C tD is not in S

– S →⊥ {s : ⊥} if

1. s : A and s : ¬A are in S, or
2. s : ¬> is in S,
3. s : ⊥ is not in S

until either a contradiction is generated or an interpretation satisfying S can be
easily obtained from it.

Table 2. Mapping from ALC to OWL

¬C <owl:Class>

<owl:complementOf><owl:Class rdf:ID="C" /></owl:complementOf>

</owl:Class>

C uD <owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:ID="C" /><owl:Class rdf:ID="D" />

</owl:intersectionOf>

</owl:Class>

C tD <owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:ID="C" /><owl:Class rdf:ID="D" />

</owl:unionOf>

</owl:Class>

∃R.C <owl:Restriction>

<owl:onProperty rdf:resource="#R" />

<owl:someValuesFrom rdf:resource="#C" />

</owl:Restriction>

∀R.C <owl:Restriction>

<owl:onProperty rdf:resource="#R" />

<owl:allValuesFrom rdf:resource="#C" />

</owl:Restriction>

C ≡ D <owl:Class rdf:ID="C">

<owl:sameAs rdf:resource="#D" />

</owl:Class>

C v D <owl:Class rdf:ID="C">

<rdfs:subClassOf rdf:resource="#D" />

</owl:Class>

a : C <C rdf:ID="a" />

〈a, b〉 : R <C rdf:ID="a"><R rdf:resource="#b" />

2.2 The relational subsystem

The relational part of AL-log allows one to define Datalog1 programs enriched
with constraints of the form s : C where s is either a constant or a variable,
and C is an ALC-concept. Note that the usage of concepts as typing constraints
applies only to variables and constants that already appear in the clause. The
symbol & separates constraints from Datalog atoms in a clause.

Definition 1. A constrained Datalog clause is an implication of the form
α0 ← α1, . . . , αm&γ1, . . . , γn where m ≥ 0, n ≥ 0, αi are Datalog atoms and
γj are constraints. A constrained Datalog program Π is a set of constrained
Datalog clauses.

1 For the sake of brevity we assume the reader to be familiar with Datalog.

An AL-log knowledge base B is the pair 〈Σ,Π〉 where Σ is an ALC knowledge
base and Π is a constrained Datalog program. For a knowledge base to be
acceptable, it must satisfy the following conditions:

– The set of Datalog predicate symbols appearing in Π is disjoint from the
set of concept and role symbols appearing in Σ.

– The alphabet of constants in Π coincides with the alphabet O of the indi-
viduals in Σ. Furthermore, every constant in Π appears also in Σ.

– For each clause in Π, each variable occurring in the constraint part occurs
also in the Datalog part.

These properties state a safe interaction between the structural and the rela-
tional part of an AL-log knowledge base, thus solving the semantic mismatch
between the OWA of ALC and the CWA of Datalog [22]. This interaction is
also at the basis of a model-theoretic semantics for AL-log. We call ΠD the set of
Datalog clauses obtained from the clauses of Π by deleting their constraints.
We define an interpretation J for B as the union of an O-interpretation IO
for Σ (i.e. an interpretation compliant with the unique names assumption) and
an Herbrand interpretation IH for ΠD. An interpretation J is a model of B if
IO is a model of Σ, and for each ground instance α′0 ← α′1, . . . , α

′
m&γ′1, . . . , γ

′
n

of each clause α0 ← α1, . . . , αm&γ′1, . . . , γ
′
n in Π, either there exists one γ′i,

i ∈ {1, . . . , n}, that is not satisfied by J , or α′0 ← α′1, . . . , α
′
m is satisfied by J .

The notion of logical consequence paves the way to the definition of answer set
for queries. Queries to AL-log knowledge bases are special cases of Definition
1. An answer to the query Q is a ground substitution σ for the variables in
Q. The answer σ is correct w.r.t. a AL-log knowledge base B if Qσ is a logical
consequence of B (B |= Qσ). The answer set of Q in B contains all the correct
answers to Q w.r.t. B.

Reasoning forAL-log knowledge bases is based on constrained SLD-resolution
[8], i.e. an extension of SLD-resolution to deal with constraints. In particular, the
constraints of the resolvent of a query Q and a constrained Datalog clause E
are recursively simplified by replacing couples of constraints t : C, t : D with the
equivalent constraint t : C u D. The one-to-one mapping between constrained
SLD-derivations and the SLD-derivations obtained by ignoring the constraints is
exploited to extend known results for Datalog to AL-log. Note that in AL-log
a derivation of the empty clause with associated constraints does not represent
a refutation. It actually infers that the query is true in those models of B that
satisfy its constraints. Therefore in order to answer a query it is necessary to
collect enough derivations ending with a constrained empty clause such that
every model of B satisfies the constraints associated with the final query of at
least one derivation.

Definition 2. Let Q(0) be a query ← β1, . . . , βm&γ1, . . . , γn to a AL-log knowl-
edge base B . A constrained SLD-refutation for Q(0) in B is a finite set {d1, . . . , ds}
of constrained SLD-derivations for Q(0) in B such that:

1. for each derivation di, 1 ≤ i ≤ s, the last query Q(ni) of di is a constrained
empty clause;

2. for every model J of B, there exists at least one derivation di, 1 ≤ i ≤ s,
such that J |= Q(ni)

Constrained SLD-refutation is a complete and sound method for answering
ground queries.

Lemma 1. [8] Let Q be a ground query to an AL-log knowledge base B. It holds
that B ` Q if and only if B |= Q.

An answer σ to a query Q is a computed answer if there exists a constrained
SLD-refutation for Qσ in B (B ` Qσ). The set of computed answers is called
the success set of Q in B. Furthermore, given any query Q, the success set of
Q in B coincides with the answer set of Q in B. This provides an operational
means for computing correct answers to queries. Indeed, it is straightforward to
see that the usual reasoning methods for Datalog allow us to collect in a finite
number of steps enough constrained SLD-derivations for Q in B to construct a
refutation - if any. Derivations must satisfy both conditions of Definition 2. In
particular, the latter requires some reasoning on the structural component of B.
This is done by applying the tableau calculus as shown in the following example.

Constrained SLD-resolution is decidable. Furthermore, because of the safe
interaction between ALC and Datalog, it supports a form of closed world rea-
soning, i.e. it allows one to pose queries under the assumption that part of the
knowledge base is complete.

3 Learning in AL-log: The General Framework

In our framework for learning in AL-log we represent inductive hypotheses as
constrained Datalog clauses and data as an AL-log knowledge base B. In par-
ticular B is composed of a background knowledge K and a set O of observations.
We assume K ∩O = ∅.

To define the framework we resort to the methodological apparatus of ILP
which requires the following ingredients to be chosen:

– the language L of hypotheses
– a generality order � for L to structure the space of hypotheses
– a relation to test the coverage of hypotheses in L against observations in O

w.r.t. K

The framework is general, meaning that it is valid whatever the scope of
induction (description/prediction) is. Therefore the Datalog literal q(X)2 in
the head of hypotheses represents a concept to be either discriminated from
others (discriminant induction) or characterized (characteristic induction).

2 X is a tuple of variables

3.1 The language of hypotheses

To be suitable as language of hypotheses, constrained Datalog clauses must
satisfy the following restrictions.

First, we impose constrained Datalog clauses to be linked and connected
(or range-restricted) as usual in ILP.

Definition 3. Let H be a constrained Datalog clause. A term t in some literal
li ∈ H is linked with linking-chain of length 0, if t occurs in head(H), and is
linked with linking-chain of length d + 1, if some other term in li is linked with
linking-chain of length d. The link-depth of a term t in some li ∈ H is the length
of the shortest linking-chain of t. A literal li ∈ H is linked if at least one of its
terms is linked. The clause H itself is linked if each li ∈ H is linked. The clause
H is connected if each variable occurring in head(H) also occur in body(H).

Second, we impose constrained Datalog clauses to be compliant with the
bias of Object Identity (OI) [25]. This bias can be considered as an extension
of the unique names assumption from the semantic level to the syntactic one
of AL-log. We would like to remind the reader that this assumption holds in
ALC. Also it holds naturally for ground constrained Datalog clauses because
the semantics of AL-log adopts Herbrand models for the Datalog part and
O-models for the constraint part. Conversely it is not guaranteed in the case of
non-ground constrained Datalog clauses, e.g. different variables can be unified.
The OI bias can be the starting point for the definition of either an equational
theory or a quasi-order for constrained Datalog clauses. The latter option relies
on a restricted form of substitution whose bindings avoid the identification of
terms.

Definition 4. A substitution σ is an OI-substitution w.r.t. a set of terms T iff
∀t1, t2 ∈ T : t1 6= t2 yields that t1σ 6= t2σ.

From now on, we assume that substitutions are OI-compliant.

3.2 The generality relation

The definition of a generality relation for constrained Datalog clauses can
disregard neither the peculiarities of AL-log nor the methodological apparatus
of ILP. Therefore we rely on the reasoning mechanisms made available by AL-log
knowledge bases and propose to adapt Buntine’s generalized subsumption [5] to
our framework as follows.

Definition 5. Let H be a constrained Datalog clause, α a ground Datalog
atom, and J an interpretation. We say that H covers α under J if there is a
ground substitution θ for H (Hθ is ground) such that body(H)θ is true under J
and head(H)θ = α.

Definition 6. Let H1, H2 be two constrained Datalog clauses and B an AL-
log knowledge base. We say that H1 B-subsumes H2 if for every model J of
B and every ground atom α such that H2 covers α under J , we have that H1

covers α under J .

We can define a generality relation �B for constrained Datalog clauses on
the basis of B-subsumption. It can be easily proven that �B is a quasi-order (i.e.
it is a reflexive and transitive relation) for constrained Datalog clauses.

Definition 7. Let H1, H2 be two constrained Datalog clauses and B an AL-
log knowledge base. We say that H1 is at least as general as H2 under B-
subsumption, H1 �B H2, iff H1 B-subsumes H2. Furthermore, H1 is more gen-
eral than H2 under B-subsumption, H1 �B H2, iff H1 �B H2 and H2 �B H1.
Finally, H1 is equivalent to H2 under B-subsumption, H1 ∼B H2, iff H1 �B H2

and H2 �B H1.

The next lemma shows the definition of B-subsumption to be equivalent to
another formulation, which will be more convenient in later proofs than the
definition based on covering.

Definition 8. Let B be an AL-log knowledge base and H be a constrained Dat-
alog clause. Let X1, . . . , Xn be all the variables appearing in H, and a1, . . . , an

be distinct constants (individuals) not appearing in B or H. Then the substitution
{X1/a1, . . . , Xn/an} is called a Skolem substitution for H w.r.t. B.

Lemma 2. [17] Let H1, H2 be two constrained Datalog clauses, B an AL-log
knowledge base, and σ a Skolem substitution for H2 with respect to {H1} ∪ B.
We say that H1 �B H2 iff there exists a ground substitution θ for H1 such that
(i) head(H1)θ = head(H2)σ and (ii) B ∪ body(H2)σ |= body(H1)θ.

The relation between B-subsumption and constrained SLD-resolution is given
below. It provides an operational means for checking B-subsumption.

Theorem 1 Let H1, H2 be two constrained Datalog clauses, B an AL-log
knowledge base, and σ a Skolem substitution for H2 with respect to {H1} ∪ B.
We say that H1 �B H2 iff there exists a substitution θ for H1 such that (i)
head(H1)θ = head(H2) and (ii) B∪body(H2)σ ` body(H1)θσ where body(H1)θσ
is ground.

Proof. By Lemma 2, we have H1 �B H2 iff there exists a ground substitution θ′

for H1, such that head(H1)θ′ = head(H2)σ and B ∪ body(H2)σ |= body(H1)θ′.
Since σ is a Skolem substitution, we can define a substitution θ such that H1θσ =
H1θ

′ and none of the Skolem constants of σ occurs in θ. Then head(H1)θ =
head(H2) and B ∪ body(H2)σ |= body(H1)θσ. Since body(H1)θσ is ground, by
Lemma 1 we have B ∪ body(H2)σ ` body(H1)θσ, so the thesis follows.

The decidability of B-subsumption follows from the decidability of both gen-
eralized subsumption in Datalog [5] and query answering in AL-log [8].

3.3 Coverage relations

When defining coverage relations we make assumptions as regards the represen-
tation of observations because it impacts the definition of coverage.

In the logical setting of learning from entailment extended to AL-log, an
observation oi ∈ O is represented as a ground constrained Datalog clause
having a ground atom q(ai)3 in the head.

Definition 9. Let H ∈ L be a hypothesis, K a background knowledge and oi ∈ O
an observation. We say that H covers oi under entailment w.r.t K iff K∪H |= oi.

Theorem 2 [16] Let H ∈ L be a hypothesis, K a background knowledge, and
oi ∈ O an observation. We say that H covers oi under entailment w.r.t. K iff
K ∪ body(oi) ∪H ` q(ai).

In the logical setting of learning from interpretations extended to AL-log,
an observation oi ∈ O is represented as a couple (q(ai),Ai) where Ai is a set
containing ground Datalog facts concerning the individual i.

Definition 10. Let H ∈ L be a hypothesis, K a background knowledge and
oi ∈ O an observation. We say that H covers oi under interpretations w.r.t. K
iff K ∪Ai ∪H |= q(ai).

Theorem 3 [16] Let H ∈ L be a hypothesis, K a background knowledge, and
oi ∈ O an observation. We say that H covers oi under interpretations w.r.t. K
iff K ∪Ai ∪H ` q(ai).

Note that the both coverage tests can be reduced to query answering.

4 Learning in AL-log: An Instantiation of the Framework

As an instantiation of our general framework for learning inAL-log we choose the
case of characteristic induction from interpretations which is defined as follows.

Definition 11. Let L be a hypothesis language, K a background knowledge, O a
set of observations, and M(B) a model constructed from B = K∪O. The goal of
characteristic induction from interpretations is to find a set H ⊆ L of hypotheses
such that (i) H is true in M(B), and (ii) for each H ∈ L, if H is true in M(B)
then H |= H.

The logical setting of characteristic induction has been considered very close
to that form of data mining, called descriptive data mining, which focuses on
finding human-interpretable patterns describing a data set r [7]. Scalability is a
crucial issue in descriptive data mining. Recently, the setting of learning from in-
terpretations has been shown to be a promising way of scaling up ILP algorithms
in real-world applications [3].

3 ai is a tuple of constants

4.1 A task of characteristic induction

Among descriptive data mining tasks, frequent pattern discovery aims at the
extraction of all patterns whose cardinality exceeds a user-defined threshold.
Indeed each pattern is considered as an intensional description (expressed in a
given language L) of a subset of r.

The blueprint of most algorithms for frequent pattern discovery is the level-
wise search [20]. It is based on the following assumption: If a generality order
� for the language L of patterns can be found such that � is monotonic w.r.t.
the evaluation function supp, then the resulting space (L,�) can be searched
breadth-first starting from the most general pattern in L and by alternating
candidate generation and candidate evaluation phases. In particular, candidate
generation consists of a refinement step followed by a pruning step. The for-
mer derives candidates for the current search level from patterns found frequent
in the previous search level. The latter allows some infrequent patterns to be
detected and discarded prior to evaluation thanks to the monotonicity of �.

We consider a variant of this task which takes concept hierarchies into ac-
count during the discovery process, thus yielding descriptions of r at multiple
granularity levels [19]. More formally, given

– a data set r including a taxonomy T where a reference concept Cref and
task-relevant concepts are designated,

– a multi-grained language L = {Ll}1≤l≤maxG of patterns
– a set {minsupl}1≤l≤maxG of support thresholds

the problem of frequent pattern discovery at l levels of description granularity,
1 ≤ l ≤ maxG, is to find the set F of all the patterns P ∈ Ll frequent in r,
namely P ’s with support s such that (i) s ≥ minsupl and (ii) all ancestors of P
w.r.t. T are frequent in r.

4.2 Casting the framework to the task

When casting our general framework for learning in AL-log to the task of fre-
quent pattern discovery at multiple levels of description granularity, the data set
r is represented as an AL-log knowledge base.

Example 1. As a running example, we consider an AL-log knowledge base BCIA
that enriches Datalog facts4 extracted from the on-line 1996 CIA World Fact
Book5 with ALC ontologies. The structural subsystem Σ of BCIA focuses on the
concepts Country, EthnicGroup, Language, and Religion. Axioms like

AsianCountry @ Country.
MiddleEasternEthnicGroup @ EthnicGroup.
MiddleEastCountry ≡ AsianCountry u ∃Hosts.MiddleEasternEthnicGroup.
IndoEuropeanLanguage @ Language.

4 http://www.dbis.informatik.uni-goettingen.de/Mondial/mondial-rel-facts.flp
5 http://www.odci.gov/cia/publications/factbook/

<owl:Class rdf:ID="MiddleEastCountry">

<owl:sameAs>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:ID="AsianCountry" />

<owl:Restriction>

<owl:onProperty rdf:resource="#Hosts" />

<owl:someValuesFrom rdf:resource="#MiddleEasternEthnicGroup" />

</owl:Restriction>

</owl:intersectionOf>

</owl:sameAs>

</owl:Class>

Fig. 1. Definition of the concept MiddleEastCountry in OWL

IndoIranianLanguage @ IndoEuropeanLanguage.
MonotheisticReligion @ Religion.
ChristianReligion @ MonotheisticReligion.
MuslimReligion @ MonotheisticReligion.

define four taxonomies, one for each concept above. Note that Middle East coun-
tries (concept MiddleEastCountry, whose definition in OWL is reported in Fig-
ure 1) have been defined as Asian countries that host at least one Middle Eastern
ethnic group. Assertions like

’ARM’:AsianCountry.
’IR’:AsianCountry.
’Arab’:MiddleEasternEthnicGroup.
’Armenian’:MiddleEasternEthnicGroup.
<’ARM’,’Armenian’>:Hosts.
<’IR’,’Arab’>:Hosts.
’Armenian’:IndoEuropeanLanguage.
’Persian’:IndoIranianLanguage.
’Armenian Orthodox’:ChristianReligion.
’Shia’:MuslimReligion.
’Sunni’:MuslimReligion.

belong to the extensional part of Σ. In particular, Armenia (’ARM’) and Iran
(’IR’) are two of the 14 countries that are classified as Middle Eastern.

The relational subsystem Π of BCIA expresses the CIA facts as a constrained
Datalog program. The extensional part of Π consists of Datalog facts like

language(’ARM’,’Armenian’,96).
language(’IR’,’Persian’,58).
religion(’ARM’,’Armenian Orthodox’,94).
religion(’IR’,’Shia’,89).
religion(’IR’,’Sunni’,10).

whereas the intensional part defines two views on language and religion:

<ruleml:imp>

<ruleml: body>

<swrlx:classAtom>

<owlx:Class owlx:name="&MiddleEastCountry" />

<ruleml:var>X</ruleml:var>

</swrlx:classAtom>

<swrlx:classAtom>

<owlx:Class owlx:name="&Religion" />

<ruleml:var>Y</ruleml:var>

</swrlx:classAtom>

<swrlx:individualPropertyAtom swrlx:property="&believes">

<ruleml:var>X</ruleml:var><ruleml:var>Y</ruleml:var>

</swrlx:individualPropertyAtom>

</ruleml: body>

<ruleml: head>

<swrlx:individualPropertyAtom swrlx:property="&q">

<ruleml:var>X</ruleml:var>

</owlx:individualPropertyAtom>

</ruleml: head>

</ruleml:imp>

Fig. 2. Representation of the O-query Q1 in SWRL

speaks(CountryID, LanguageN)←language(CountryID,LanguageN,Perc)
& CountryID:Country, LanguageN:Language

believes(CountryID, ReligionN)←religion(CountryID,ReligionN,Perc)
& CountryID:Country, ReligionN:Religion

that can deduce new Datalog facts when triggered on BCIA.
The language L for a given problem instance is implicitly defined by a declar-

ative bias specification that allows for the generation of expressions, called O-
queries, relating individuals of Cref to individuals of the task-relevant concepts.

Definition 12. Given a ALC concept Cref , an O-query Q to an AL-log knowl-
edge base B is a (linked, connected, and OI-compliant) constrained Datalog
clause of the form

Q = q(X)← α1, . . . , αm&X : Cref , γ1, . . . , γn

where X is the distinguished variable and the remaining variables occurring in
the body of Q are the existential variables.

The O-query Qt = q(X)← &X : Cref is called trivial for L.

Example 2. We want to describe Middle East countries (individuals of the ref-
erence concept) with respect to the religions believed and the languages spo-
ken (individuals of the task-relevant concepts) at three levels of granularity
(maxG = 3). To this aim we define LCIA as the set of O-queries with Cref =
MiddleEastCountry that can be generated from the alphabet A= {believes/2,
speaks/2} of Datalog binary predicate names, and the alphabets

Γ 1= {Language, Religion}
Γ 2= {IndoEuropeanLanguage, . . . , MonotheisticReligion, . . .}
Γ 3= {IndoIranianLanguage, . . . , MuslimReligion, . . .}
of ALC concept names for 1 ≤ l ≤ 3. Examples of O-queries in LCIA are:

Qt= q(X) ← & X:MiddleEastCountry
Q1= q(X) ← believes(X,Y) & X:MiddleEastCountry, Y:Religion
Q2= q(X) ← believes(X,Y), speaks(X,Z) & X:MiddleEastCountry,

Y:MonotheisticReligion, Z:IndoEuropeanLanguage
Q3= q(X) ← believes(X,Y), speaks(X,Z) & X:MiddleEastCountry,

Y:MuslimReligion, Z:IndoIranianLanguage

where Qt is the trivial O-query for LCIA, Q1 ∈ L1
CIA, Q2 ∈ L2

CIA, and Q3 ∈ L3
CIA.

A representation of Q1 in SWRL is reported in Figure 2.

Being a special case of constrained Datalog clauses, O-queries can be �B-
ordered. Also note that the underlying reasoning mechanism of AL-log makes
B-subsumption more powerful than generalized subsumption as illustrated in
the following example.

Example 3. We want to check whether Q1 B-subsumes the O-query

Q4= q(A) ← believes(A,B) & A:MiddleEastCountry, B:MonotheisticReligion

belonging to L2
CIA. Let σ={A/a, B/b} a Skolem substitution for Q4 w.r.t. BCIA ∪

{Q1} and θ={X/A, Y/B} a substitution for Q1. The condition (i) of Theorem 1
is immediately verified. It remains to verify that (ii) B′ =

BCIA ∪ {believes(a,b), a:MiddleEastCountry, b:MonotheisticReligion}
|=believes(a,b) & a:MiddleEastCountry, b:Religion.

We try to build a constrained SLD-refutation for

Q(0) = ← believes(a,b) & a:MiddleEastCountry, b:Religion

in B′. Let E(1) be believes(a,b). A resolvent for Q(0) and E(1) with the empty
substitution σ(1) is the constrained empty clause

Q(1) = ← & a:MiddleEastCountry, b:Religion

The consistency of Σ′′ = Σ′ ∪ {a:MiddleEastCountry, b:Religion} needs
now to be checked. The first unsatisfiability check operates on the initial tableau
S

(0)
1 = Σ′ ∪ {a:¬MiddleEastCountry}. The application of the propagation rule
→⊥ to S

(0)
1 produces the final tableau S

(1)
1 = {a:⊥}. Therefore S

(0)
1 is unsat-

isfiable. The second check starts with S
(0)
2 = Σ′ ∪ {b:¬Religion}. The rule

→v w.r.t. MonotheisticReligionvReligion, the only one applicable to S
(0)
2 ,

produces S
(1)
2 = Σ ∪ {b:¬Religion, b:¬MonotheisticReligiontReligion}.

By applying →t to S
(1)
2 w.r.t. Religion we obtain S

(2)
2 = Σ ∪ {b:¬Religion,

b:Religion} which brings to the final tableau S
(3)
2 = {b:⊥} via →⊥.

Having proved the consistency of Σ′′, we have proved the existence of a
constrained SLD-refutation for Q(0) in B′. Therefore we can say that Q1 �B Q4.
Conversely, Q4 6�B Q1. Similarly it can be proved that Q2 �B Q3 and Q3 6�B Q2.

Example 4. It can be easily verified that Q1 B-subsumes the following query

Q5= q(A) ← believes(A,B), believes(A,C) & A:MiddleEastCountry, B:Religion

by choosing σ={A/a, B/b, C/c} as a Skolem substitution for Q5 w.r.t. BCIA∪{Q1}
and θ={X/A, Y/B} as a substitution for Q1. Note that Q5 6�B Q1 under the OI
bias. Indeed this bias does not admit the substitution {A/X, B/Y, C/Y} for Q5

which would make possible to verify conditions (i) and (ii) of Theorem 1.

The coverage test reduces to query answering. An answer to an O-query Q
is a ground substitution θ for the distinguished variable of Q. The conditions
of well-formedness reported in Definition 3 guarantee that the evaluation of O-
queries is sound according to the following notions of answer/success set.

Definition 13. An answer θ to an O-query Q is a correct (resp. computed)
answer w.r.t. an AL-log knowledge base B if there exists at least one correct
(resp. computed) answer to body(Q)θ w.r.t. B.

Therefore proving that an O-query Q covers an observation (q(ai),Ai) w.r.t. K
equals to proving that θi = {X/ai} is a correct answer to Q w.r.t. Bi = K ∪Ai.

Example 5. With reference to Example 1, the background knowledge KCIA en-
compasses the strcutural part and the intensional relational part of BCIA. We
want to check whether the O-query Q1 reported in Example 2 covers the obser-
vation (q(’IR’),AIR) w.r.t. KCIA. This is equivalent to answering the query

← q(’IR’)

w.r.t. KCIA∪AIR∪Q1. Note that AIR contains all the Datalog facts concerning
the individual IR.

The support of an O-query Q ∈ L w.r.t. B supplies the percentage of indi-
viduals of Cref that satisfy Q and is defined as

supp(Q,B) =| answerset(Q,B) | / | answerset(Qt,B) |

where answerset(Q,B) is the set of correct answers to Q w.r.t. B.

Example 6. Since | answerset(Q1,BCIA) |= 14 and | answerset(Qt,BCIA) |=|
MiddleEastCountry |= 14, then supp(Q1,BCIA) = 100%.

It has been proved that �B is monotone w.r.t. supp [19]. This has allowed us
to implement the levelwise search. The resulting ILP system has been called
AL-QuIn (AL-log Query Induction) [18,16].

5 Final Remarks

Building rules on top of ontologies is a task that can be automated by applying
Machine Learning algorithms to data expressed with hybrid formalims combining
DLs and Horn clauses. Learning in DL-based hybrid languages has very recently

attracted attention in the ILP community. In [23] the chosen language is Carin-
ALN , therefore example coverage and subsumption between two hypotheses are
based on the existential entailment algorithm of Carin [15]. Following [23], Kietz
studies the learnability of Carin-ALN , thus providing a pre-processing method
which enables ILP systems to learn Carin-ALN rules [14]. In [19], Lisi and
Malerba propose AL-log as a KR&R framework for the induction of association
rules. Closely related to DL-based hybrid systems are the proposals arising from
the study of many-sorted logics, where a first-order language is combined with a
sort language which can be regarded as an elementary DL [10]. In this respect the
study of a sorted downward refinement [11] can be also considered a contribution
to learning in hybrid languages.

The main contribution of this paper is the definition of a framework for learn-
ing in AL-log. It extends previous work on the case of characteristic induction
from interpretations [18,16] to the general case, i.e. independent on both the
scope of induction and the representation of the observations. We would like to
emphasize that AL-log has been preferred to CARIN for two desirable proper-
ties which are particularly appreciated in ILP: safety and decidability. For the
future we plan to extend the framework towards more expressive hybrid lan-
guages along the direction shown in [22] in order to make it closer to SWRL.
Also we wish to investigate other instantiations of the framework, e.g. the ones
having prediction as the scope of induction.

Acknowledgement This work has been partially supported by the 2005 project
”Apprendimento Induttivo per la Annotazione su Base Semantica di Documenti”
funded by the Università degli Studi di Bari.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P.F. Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, 2003.

2. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Ameri-
can, May, 2001.

3. H. Blockeel, L. De Raedt, N. Jacobs, and B. Demoen. Scaling Up Inductive Logic
Programming by Learning from Interpretations. Data Mining and Knowledge Dis-
covery, 3:59–93, 1999.

4. A. Borgida. On the relative expressiveness of description logics and predicate
logics. Artificial Intelligence, 82(1–2):353–367, 1996.

5. W. Buntine. Generalized subsumption and its application to induction and redun-
dancy. Artificial Intelligence, 36(2):149–176, 1988.

6. S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases. Springer,
1990.

7. L. De Raedt and L. Dehaspe. Clausal Discovery. Machine Learning, 26(2–3):99–
146, 1997.

8. F.M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. AL-log: Integrating Datalog
and Description Logics. Journal of Intelligent Information Systems, 10(3):227–252,
1998.

9. P. Flach and N. Lavrač. Learning in Clausal Logic: A Perspective on Inductive
Logic Programming. In A.C. Kakas and F. Sadri, editors, Computational Logic:
Logic Programming and Beyond, volume 2407 of Lecture Notes in Computer Sci-
ence, pages 437–471. Springer, 2002.

10. A.M. Frisch. The substitutional framework for sorted deduction: Fundamental
results on hybrid reasoning. Artificial Intelligence, 49:161–198, 1991.

11. A.M. Frisch. Sorted downward refinement: Building background knowledge into a
refinement operator for inductive logic programming. In S. Džeroski and P. Flach,
editors, Inductive Logic Programming, volume 1634 of Lecture Notes in Artificial
Intelligence, pages 104–115. Springer, 1999.

12. A.M. Frisch and A.G. Cohn. Thoughts and afterthoughts on the 1988 workshop
on principles of hybrid reasoning. AI Magazine, 11(5):84–87, 1991.

13. I. Horrocks, P.F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF
to OWL: The making of a web ontology language. Journal of Web Semantics,
1(1):7–26, 2003.

14. J.-U. Kietz. Learnability of description logic programs. In S. Matwin and C. Sam-
mut, editors, Inductive Logic Programming, volume 2583 of Lecture Notes in Arti-
ficial Intelligence, pages 117–132. Springer, 2003.

15. A.Y. Levy and M.-C. Rousset. Combining Horn rules and description logics in
CARIN. Artificial Intelligence, 104:165–209, 1998.

16. F.A. Lisi and F. Esposito. Efficient Evaluation of Candidate Hypotheses in AL-log.
In R. Camacho, R. King, and A. Srinivasan, editors, Inductive Logic Programming,
volume 3194 of Lecture Notes in Artificial Intelligence, pages 216–233. Springer,
2004.

17. F.A. Lisi and D. Malerba. Bridging the Gap between Horn Clausal Logic and
Description Logics in Inductive Learning. In A. Cappelli and F. Turini, editors,
AI*IA 2003: Advances in Artificial Intelligence, volume 2829 of Lecture Notes in
Artificial Intelligence, pages 49–60. Springer, 2003.

18. F.A. Lisi and D. Malerba. Ideal Refinement of Descriptions in AL-log. In T. Hor-
vath and A. Yamamoto, editors, Inductive Logic Programming, volume 2835 of
Lecture Notes in Artificial Intelligence, pages 215–232. Springer, 2003.

19. F.A. Lisi and D. Malerba. Inducing Multi-Level Association Rules from Multiple
Relations. Machine Learning, 55:175–210, 2004.

20. H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery, 1(3):241–258, 1997.

21. R. Reiter. Equality and domain closure in first order databases. Journal of ACM,
27:235–249, 1980.

22. R. Rosati. On the decidability and complexity of integrating ontologies and rules.
Journal of Web Semantics, 3(1), 2005.

23. C. Rouveirol and V. Ventos. Towards Learning in CARIN-ALN . In J. Cussens
and A. Frisch, editors, Inductive Logic Programming, volume 1866 of Lecture Notes
in Artificial Intelligence, pages 191–208. Springer, 2000.

24. M. Schmidt-Schauss and G. Smolka. Attributive concept descriptions with com-
plements. Artificial Intelligence, 48(1):1–26, 1991.

25. G. Semeraro, F. Esposito, D. Malerba, N. Fanizzi, and S. Ferilli. A logic framework
for the incremental inductive synthesis of Datalog theories. In N.E. Fuchs, editor,
Proceedings of 7th International Workshop on Logic Program Synthesis and Trans-
formation, volume 1463 of Lecture Notes in Computer Science, pages 300–321.
Springer, 1998.

