
NOWHERE - An Open Service Architecture to

support Agents and Services within the

Semantic Web

Nicola Dragoni, Mauro Gaspari, and Davide Guidi

Dipartimento di Scienze dell’Informazione, University of Bologna, ITALY
{gaspari, dragoni, dguidi}@cs.unibo.it

Extended Abstract

Agents are one of the main building blocks of the World Wide Web under
the Semantic Web activity [1]. The Web is evolving toward an open, service-
oriented architecture, which is a software infrastructure that makes an open set
of information services available to users and agents. The role of agents is to
retrieve, execute and compose available services providing more sophisticated
instances of them. Knowledge is playing an increasingly important role in this
scenario, services are being extended with semantic information [11] and agents
will provide complex problem solving capabilities to perform their tasks.

Although there are many small-scale examples of implemented systems which
use formalised knowledge to achieve intelligent behaviours, for example personal
assistants which collect and organise information, there is still a major gap be-
tween these isolated systems and the vision of the Semantic Web.

Agents have been recognised as one of the main technologies to fill this gap
[10], but their role in the emerging Semantic Web infrastructure is still not com-
pletely depicted. For example, their relationship with more standard components
such as Web Servers and clients, is still not clear. Most of the examples of agents
in the Web are User agents which provide intelligent support and advanced
services to users. However, whenever an agent provides a set of complex problem
solving capabilities, it becomes reasonable to reuse its skill in realizing other in-
telligent applications. This suggests another possible role for agents: to enhance
the functionality of servers. Worker agents, providing complex problem solving
capabilities with respect to a given application domain, can be published and
shared on the Web, for example by means of a set of well defined Web Services
and an associated ontology. However, there is still not a widely accepted archi-
tecture for integrating agents in a distributed reasoning infrastructure on the
Web.

In this paper we highlight the features of our NOWHERE architecture, an
Open Service Architecture (OSA) that supports agents and services within the
Semantic Web, which is described in detail in [6,7]. A general view of our archi-
tecture is depicted in Figure 1.

Agents can be both Worker agents, which can be published in Web agent
servers, or User agents which, if necessary, can be downloaded and activated in
mobile devices. These agents can be realized with any programming language



Fig. 1. Architecture of the agent-based OSA.

or traditional AI technologies provided that they are able to access the RDF-
based triple-space. Agents are connected through a Distributed Facilitator

Service. In the following we summarise the main features of our architecture.

Dynamic and Open Architecture. In the research on Multi-Agent Systems there
is an increasing emphasis on the open-ended nature of agent systems, which
refers to the feature of allowing the dynamic integration of new agents into an
existing agent system. This feature becomes particularly relevant when agents
are developed on the Web where they are usually implemented by different people
at different times. Our OSA allows new agents to dynamically connect themselves
to the system, providing new capabilities to other agents.

High Level Inter-Agent Communication. Agents access services and communi-
cate with each other using an advanced high level Agent Communication Lan-
guage (FT-ACL) [3,5]. FT-ACL provides a small set of fault-tolerant conversa-
tion performatives and supports a fault-tolerant anonymous interaction protocol

based on one-to-many requests for knowledge. Moreover FT-ACL has been de-
signed for open architectures and deals with a dynamic set of agents [4].

Integration of Agents and Web Services. Agents can be published as Web Ser-
vices and existing Web Services can be registered or agentified enhancing agents’
ability to discover and invoke them with the fault-tolerant ACL. This integration
can be configured dynamically realizing an Open Service Architecture. New Web
Agent Servers can be added dynamically to provide one or more Web Services.
This set of Web Services can dynamically change because of the creation of new
services on the Web Agent Server or the modification of existing ones.



Support for Interoperability. In our architecture agents can be realized in any
programming language including AI languages or knowledge representation lan-
guages, provided that they react to a well defined protocol based on the standard
primitives of FT-ACL. Although all the emerging standards for the Semantic
Web use formalisms based on XML, most of AI systems are still being devel-
oped using specific AI technologies and languages which usually are not compli-
ant with Web standards, but provide powerful engines and a rich set of libraries.
From a practical point of view it is not feasible to translate all these technologies
in XML based formalism or to commit to a single programming language. Thus,
enabling the integration of agents written in different programming languages is
essential to a large scale exploitation of Knowledge-Level agents on the Web.

Sound Failure Model. To support distributed reasoning protocols which function
in presence of failure we adopt a well-known failure model. We assume agents
are subject to possible failures. Following a well-known classification of process
failures in distributed systems [12], we say that an agent is faulty in an execution
if its behaviour deviates from that prescribed by the algorithm it is running;
otherwise, it is correct. The failure model we consider is crash failures of agents
in a fully asynchronous Multi-Agent System: a faulty agent has crashed if it stops
prematurely and does nothing from that point on. Before stopping, however, it
behaves correctly. Note that considering only crash failures is a common fault
assumption in distributed systems, since several mechanisms can be used to
detect more severe failures and to force a crash in case of detection. FT-ACL

primitives are designed to react to agents’ crashes. In this way several concurrent
and fault tolerant properties of the ACL can be proved [2,5].

Knowledge-Level Requirements. One of the main features of our OSA is its
Knowledge-Level characterization including support for Knowledge-Level agents
and Knowledge-Level communication using FT-ACL. We assume Knowledge-

Level agents, that is, agents concerned with the use, request and supply of
knowledge which do not deal with symbol level issues. In [8] requirements for
Knowledge-Level communication are postulated which need a careful analysis of
the ACL and the underlying agent architecture in order to ensure Knowledge-
Level behaviour. We list again these Knowledge-Level Programming Require-

ments below extended to deal with crashes of agents (condition (4)).

(1) The programmer should not have to handle physical addresses of agents
explicitly.

(2) The programmer should not have to handle communication faults explicitly.
(3) The programmer should not have to handle starvation issues explicitly. A

situation of starvation arises when an agent’s primitive never gets executed
despite being enabled.

(4) The programmer should not have to handle communication deadlocks ex-
plicitly. A communication deadlock situation occurs when two agents try to
communicate, but they do not succeed; for instance because they mutually
wait for each other to answer a query [13] or because an agent endlessly
waits for a reply of a crashed agent.



FT-ACL supports these Knowledge-Level requirements [2,3]. Note that the
introduction of these requirements becomes particularly relevant in open agents’
architectures which use ACLs for inter-agent communication. In fact, if an ACL
supports these Knowledge-Level requirements several properties can be inferred
in the resulting agent system, for example:

– Deadlock Avoidance: new agents can be freely added to the system with-
out introducing communication deadlocks. This is guaranteed by require-
ment (4).

– Firewalls Independence: most Internet subnets employ firewalls to pro-
tect their hosts from Internet invaders and attacks. Thus agents developed
in different networks often have to go through firewalls to communicate. Re-
quirement (1) states the programmer of agents should not have to handle
physical addresses of agents explicitly. Thus agents should be reachable us-
ing their logical names which should not depend of the physical information
that is usually analyzed by packet firewalls such as port numbers.

Ontology Driven Communication: We assume two agents must share a service

ontology to communicate. According to Gruber [9], an ontology is a formal-
ization of a shared conceptualization. In our architecture a service ontology de-
scribes all the services of a given application domain and the related terminology.
As soon as an agent is created it must commit to a specific service ontology to
take part to a conversation. Two agents can interact together only after a prior
agreement upon a shared service ontology. In fact in our vision ontologies for
agents are similar to languages for human beings. Concerning the description of
individual services our architecture supports both standard formalisms such as
WSDL and more powerful formalisms to realize Semantic Web Services.

In summary, our approach demonstrates that different issues, such as high-
level inter-agent communication and fault tolerance, can be successfully inte-
grated in an open and dynamic agent-based OSA which provides Web Services
maintaining a clean design of the architecture and a Knowledge-Level charac-
terization.

References

1. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Ameri-

can, 284, 2001.
2. N. Dragoni and M. Gaspari. An Object Based Algebra for Specifying A Fault

Tolerant Software Architecture. Journal of Logic and Algebraic Programming,
63(2):271–297, 2005.

3. N. Dragoni and M. Gaspari. Fault Tolerant Knowledge Level Communication
in Open Asynchronous Multi-Agent Systems. Technical Report UBLCS-2005-10,
Department of Computer Science, University of Bologna (ITALY), April 2005.

4. N. Dragoni, M. Gaspari, and D. Guidi. A Fault Tolerant Agent Communication
Language for Supporting Web Agent Interaction. In Agent Communication - In-

ternational Workshop on Agent Communication, AC 2005, To appear in Lecture
Notes in Computer Science. Springer Verlag.



5. N. Dragoni, M. Gaspari, and D. Guidi. An ACL for Specifying Fault-Tolerant
Protocols. In Proceedings of AIIA Conference, Lecture Notes in Computer Science,
pages 237–248, Milan, ITALY, 2005. Springer Verlag.

6. N. Dragoni, M. Gaspari, and D. Guidi. Integrating Knowledge-Level Agents in
the (Semantic) Web: an Agent-based Open Service Architecture. In Proceedings

of the 18th International FLAIRS Conference, Clearwater Beach, Florida, USA,
2005. AAAI Press.

7. N. Dragoni, M. Gaspari, and D. Guidi. An Infrastructure to Support Cooperation
of Knowledge-Level Agents on the Semantic Grid. To appear in International
Journal of Applied Intelligence (Special Issue on Agent-based Grid Computing),
2006.

8. M. Gaspari. Concurrency and Knowledge-Level Communication in Agent Lan-
guages. Artificial Intelligence, 105(1-2):1–45, 1998.

9. T. Gruber. A Translation Approach to Portable Ontologies. Knowledge Acquisi-

tion, 5(2):199–220, 1993.
10. J. Hendler. Agents and the Semantic Web. IEEE Intelligent Systems, 16(2), 2001.
11. S. McIlraith and D. Martin. Bringing Semantics to Web Services. IEEE Intelligent

Systems, 18(1):90–93, 2003.
12. S. Mullender. Distributed Systems. Addison Wesley, 1993.
13. M. Singhal. Deadlock Detection in Distributed Systems. IEEE Computer,

22(11):37–48, 1989.


