
Ontology-Based Remote Collaboration for the
Development of Software System

M. Mari, A. Poggi, P. Turci

Dipartimento di Ingegneria dell’Informazione, Università di Parma
Parco Area delle Scienze 181/A 43100 Parma - Italy

{mari, poggi, turci}@ce.unipr.it

Abstract. RAP (Remote Assistant for Programmers) is a Web and multi-agent
based system to support remote students and programmers during common pro-
jects or activities based on the Java programming language. RAP helps users to
solve problems proposing information extracted from dedicated repositories
and forwarding answers received from other users, recommended as experts. Its
peculiar characteristic is the integration of the agent technology with the seman-
tic Web technology. In fact, in order to improve filtering and recommendation
techniques, RAP takes advantage of an ontological approach to user and docu-
ment profiling. A RAP system is not a closed system, instead it is based on a
dynamic network of RAP platforms managing groups of geographically local-
ized users and documents. Therefore, recommendations should take into ac-
count of the accessible experts and documents. At this purpose, RAP users and
documents profile management subsystems provide a mechanism that dynami-
cally adapts the relevance of each profile. An initial prototype of the RAP Sys-
tem is under development by using JADE.

1 Introduction

Finding relevant information is a longstanding problem in computing. Conventional
approaches such as databases, information retrieval systems and Web search engines
partially address this problem. Often, however, the most valuable information is not
widely available and may not even be indexed or catalogued: such information may
only be accessed by asking the right people. The challenge of finding relevant infor-
mation then reduces to finding the “expert”. But on the other hand, people may easily
get tired of receiving banal questions or different times the same question; therefore,
who wishes help for solving a certain problem should look initially for documents
related to the problem and then possibly look for a possible expert on the topic.
In this paper we present a multi-agent based system called RAP (Remote Assistant for
Programmers) that integrates information and expert searching facilities for communi-
ties of student and researchers working on related projects or work and using Java
programming language.
Its peculiar characteristic is the integration of the agent technology with the semantic
Web technology. Recently, we have seen an explosion of interest in ontologies as

artefacts to represent human knowledge and as a critical component in several applica-
tions. Moreover the “marriage” between agents and ontologies seems to be the kind of
technology that can significantly improve recommender systems.
On the one hand, ontologies enable agents to communicate in a semantic way, ex-
changing messages which convey information according to explicit domain ontolo-
gies. On the other hand, an ontological approach to user and document profiling can
significantly improve the outcome of the matching process.
Clearly we are aware that it is a challenge problem, nevertheless the realizations of
prototype systems can be of great help in order to raise awareness of the concrete
issues and delineate possible solutions.
In the next section we discuss the related work. In the third section we illustrate the
RAP system, its architecture and a description of its behaviour, highlighting the traits
related to the semantic interoperability. The fourth section is dedicated to the profile
management. In section five we describe the current state of the implementation of a
prototype of the system and some preliminary evaluation results. The paper ends by
outlining some considerations regarding future possible developments, and by drawing
some conclusions around the results of the work done.

2 Related Work

In the last years a lot of work has been done in the fields of document and expert rec-
ommendation and in the development of tools and systems for supporting e-learning
and, in particular, computer programming activities.
Some of the most important proposed systems are applied to the recommendation of
Web pages and therefore they are not specialized for computer programming docu-
ments, even if they usually allow the customization for different subjects. GroupLens
is the first system that used collaborative filtering for document recommendation [17].
This system determinates similarities among users and then is able to recommend a
document to a user on the basis of the rating of similar users on the recommend docu-
ment.
Adaptive Web Site Agent is an agent-based system for document recommendation
[15]. This system works on the documents of a Web site and recommends documents
to visitors using different criteria: user preferences for the subject area, similarity
between documents, frequency of citation and frequency of access.
Several prior systems support expertise recommendations. Vivacqua and Lieberman
[20] developed a system, called Expert Finder, that recommends individuals who are
likely to have expertise in Java programming. This system analyzes Java code and
creates user profiles based on a model of significant features in the Java programming
language and class libraries written by the user. User profiles are then used to assist
novice users in finding experts by matching her/his queries with user profiles. MARS
is a referral system based on the idea of social network [13]. This system is fully dis-
tributed and includes agents who preserve the privacy and autonomy of their users.
These agents build a social network learning models of each other in terms of exper-
tise (ability to produce correct domain answers), and sociability (ability to produce

accurate referrals), and take advantage of the information derived from such a social
network for helping their users to find other users on the basis of their interests.
A lot of work has been also done in the development of tools and systems for support-
ing e-learning and, in particular, computer programming activities. WBT (Web Based
Teaching) is an agent based collaborative learning support system providing commu-
nity Web services [11]. The system is centred on a Web site containing teaching mate-
rials for computer programming practice and an electronic bulletin board system for
question answering to assist students during their programming practice activities. In
this system agents have the duty of distributing questions to the teacher or to on-line
students that previously answered to similar questions. I-MINDS is a multi-agent
system that enables students to actively participate in a virtual classroom rather than
passively listening to lectures in a traditional virtual classroom [12]. This system is
based on three kinds of agents: teacher agents, student agents and remote proxy
agents. Teacher agents interact with teachers and are responsible for: disseminating
information to student agents and remote proxy agents; maintaining student profiles
and, on the basis of these profiles generating individual quizzes and exercises; filter-
ing students questions; managing classroom sessions progress. Student agents support
the interaction with the teacher, maintain the profiles of the other students to identify
potential “helpers” and, when it is necessary, solicit answers from such “helpers”.
Remote proxy agents support the interaction with the teacher and other students when
a student is connected with a low-speed internet connection (e.g., they filters messages
to reduce the traffic).

3 Agents for Remote Collaboration

A key feature of our system is that it relies on an agent-based infrastructure which
gives it significant advantages. Besides being an ideal mechanism for implementing
complex systems, agent technology is well-suited to applications that are communica-
tions-centric, based on distributed computational and information systems, and requir-
ing autonomous components readily adaptable to changes. Indeed, the agent-oriented
paradigm provides both an appropriate level of abstraction in modelling distributed
applications and a natural merging of object orientation and knowledge-based tech-
nologies that can facilitate the incorporation of reasoning, learning and high-level
dialogue capabilities to realize intelligent and adaptive applications. Furthermore its
integration with other key emerging technologies, such as semantic Web, may be the
basis for the realization of successful and innovative agent-based systems supporting
remote collaboration applications.
The first prototype of the RAP system has been realized by using JADE [9], which is
considered the reference implementation of the FIPA [8] specifications and one of the
most used and promising agent development framework.

3.1 Multi-Agent System Architecture

The system is based on seven different kinds of agents: Personal Assistants, Code

Documentation Managers, Answer Managers, User Profile Managers, Mail Manager,
Starter Agents and Directory Facilitators.

Fig. 1 - Main interactions among agents and users

Personal Assistants are the agents that allow the interaction between the user and the
different parts of the system and, in particular, among the users themselves. This agent
is also responsible for building the user profile and maintaining it when the user is
“on-line”. User-agent interactions can be performed in two different ways: when the
user is active in the system, through a Web-based interface; when he/she is “off-line”,
through e-mails. Usually there is a Personal Assistant for each on-line user, but, when
needed, Personal Assistants are created to interact with “off-line” users via e-mail.
User Profile Managers are responsible for maintaining the user profiles and for acti-
vating Personal Assistants when it is necessary that they interact with their “off-line”
users via e-mail.
Code Documentation Managers are responsible for maintaining code documentation
and for finding the appropriate “pieces of information” to answer the queries supplied
by the users.
Answer Managers are responsible for maintaining the answers done by users during
the life of the system and for finding the appropriate answers to new queries of the
users. Besides providing an answer to a user, this agent is responsible for updating the
score of the answer and forwarding the vote to either the Personal Assistant or the
User Profile Manager for updating the user profile.
Mail Manager is responsible for receiving e-mails from “off-line” users and forward-
ing them to the corresponding Personal Assistants.
Starter Agent is responsible for activating a Personal Assistant when either a user
logs on or another agent requests it.
Directory Facilitator is responsible for informing an agent about the addresses of the
other agents active in the system (e.g., a Personal Assistant can ask about the address
of all the other Personal Assistants, the Code Documentation Managers, etc.).

Personal
Assistants

Code
Documentation

Manager

Users

User Profile
Managers

Answers
Managers

Mail
Manager

Fig. 1 gives a graphical representation of a RAP platform focusing on the major inter-
actions. Note that a RAP platform can be distributed on different computation nodes
and that a RAP system can be composed of different RAP platforms connected via
Internet. Finally, in a RAP system there is a Directory Facilitator for each platform.

3.2 System Behaviour

A quite complete description of the system behaviour can be given showing the sce-
nario in which a user asks information to her/his Personal Assistant to solve a problem
in her/his code and the Personal Assistant finds one (or more) “pieces of information”
that may help her/him. The description of this scenario can be divided in the following
steps: (1) selecting answer types, (2) submitting a query, (3) finding answers and (4)
rating answer.
(1) Selecting answer types: the user can receive information extracted from code
documentation, answers extracted from the answer repositories and new answers sent
by the other users of the system. Therefore, before submitting the query, the user can
select the types of answers (one or more) she/he likes to receive.
(2) Submitting a query: the user, through the interface, provides the query to her/his
Personal Assistant. In particular, the user can query either about a class or an aggrega-
tion of classes for implementing a particular task or about a problem related to her/his
current implementation. The query is composed of two parts. The first part (we call it
“annotation”) identifies the context of the query and can contain concepts an individu-
als from the domain ontology and/or the identification of classes and/or methods in a
univocal way (i.e., the user needs to specify the complete package name for a class
and adds the class name for a method). The second part contains the textual content of
the query.
(3) Finding answers: the Personal Assistant performs different actions and interacts
with different agents to collect the various types of answers. For getting code docu-
mentation, the Personal Assistant asks the Directory Facilitator about all the Code
Documentation Managers. The Personal Assistant forwards the query to all these
agents; these agents search “pieces” of code documentation related to the query and
send them to the Personal Assistant associating a score with each “piece”. For getting
answers from the answer system repositories, the Personal Assistant asks the Directory
Facilitator about all the Answer Managers. These agents search answers related to the
query and send them to the querying Personal Assistant associating a score with each
answer.
The reception of new answers from the system users is a more complex activity and its
description can be divided in four further steps: (3.1) finding experts, (3.2) receiving
experts rating, (3.3) selecting experts, (3.4) receiving answers.
(3.1) Finding experts: the Personal Assistant asks the Directory Facilitator about the
other active Personal Assistants (e.g., the Personal Assistants of the user that are “on-
line”) and all the User Profile Managers of the system (e.g., the agents managing the
profile of the users that are not “on-line”). After receiving this information, the Per-
sonal Assistant forwards the query to all these agents.
(3.2) Receiving expert rating: Personal Assistants and User Profile Managers com-

pute the rating of their users to answer to the query on the basis of the query itself and
of the user profile. Agents that compute a positive score (e.g., their users may give an
appropriate answer to the query) reply to the querying Personal Assistant with the
rating of a single user (in the case of a Personal Assistant) or a certain number of users
(in the case of User Profile Manager).
(3.3) Selecting experts: the Personal Assistant divides on-line and off-line users,
orders them on the basis of their rating and, finally, presents these two lists to its user.
Then, the Personal Assistant sends the query to the selected Personal Assistants or
User Profile Managers.
(3.4) Receiving answers: the selected Personal Assistants immediately present the
query to their users and forward the answer as soon as the users provide it. User Pro-
file Manager activates the Personal Assistants of the involved users through the Starter
Agent; these Personal Assistants forward the query to their users via e-mail and then
terminate themselves. Users can answer either via e-mail or when they log again on
the system. In the case of e-mail, the Mail Manager starts the right Personal Assistant
that extracts the answer from the e-mail and forwards it. When the querying Personal
Assistant receives an answer, it quickly forwards it to its user.
(4) Rating answers: after the reception of all the answers, or when the deadline for
sending them expired, or, finally, when the user has already found an answer satisfy-
ing her/his request, the Personal Assistant presents the list of the answers to its user
asking her/him to rate them. Afterwards, the agent forwards each rating to the corre-
sponding Personal Assistant, Code Documentation Manager, Answer Manager or User
Profile Manager to update the user profile and/or the answer rating (when a user rates
an answer retrieved from the answer repository, this rating is also used to updated the
user profile of the user that previously proposed the answer). Note that in the case of
rating of users answers, the rating cannot be known by the user that sent the answer.

3.3 Agent Communication

A major aim of multi-agent systems is to enable software integration on a deeper level,
namely shifting the integration process from syntactic interoperability to semantic
interoperability.
During the last years, the FIPA standard organization produced a comprehensive set
of specifications for interoperable multi-agent systems. It defines the agent communi-
cation language, the requirements for a content language, the technologies enabling
agents to manage ontologies, containing entities from the domain of discourse.
In Fig. 2 the FIPA Communication Conceptual Model is represented. Two semantic
levels can be distinguished. The semantics at communication protocol level, which is
domain independent, and the semantics at content language level, which most likely
depends on the application domain. The information is represented as a content ex-
pression, consistent with a proper content language and with an application-specific
ontology, defining concepts and their relations.
From the figure it is clear that the reference ontology is used as a “contract” between
agents undertaking a conversation; in other words they each claim to be using an in-
terpretation of the terms, used in the content of messages, conforming to the specified

ontology.
Though ACL semantics and a shared ontology are essential, they still are not enough
to achieve semantic interoperability: the conversational and social contexts need to be
taken into account. The FIPA standard, therefore, contains a set of interaction proto-
cols, detailing standard conversation templates that can be reused.

Fig. 2 - FIPA Communication Conceptual Model

In the following subsections the issues connected with the ontological support and the
formal language and protocol for querying agents, both required in order to support
and facilitate a querying-answering dialogue among agents, are dealt with in more
details, with a particular focus on the agent platform used (i.e. JADE).

3.3.1 Ontological Support
JADE offers a general support for ontologies with the goal of enabling agents to
communicate in a semantic way, exchanging messages which convey information
according to explicit ontologies. The idea which mostly inspired its design was to
define an ontology independent abstract model of the content language that could be
subsequently bound to any domain ontology representation expressed using an object-
oriented data model. The model of the content language is FIPA compliant and is
able to describe: i) concepts, construct that represents an identifiable entity; this is
mainly important to realize a typed knowledge base; ii) predicates, identifying the
status of a part of the world; iii) actions, expressing the actions that can be performed
by the agents, and iv) identifying reference expressions, identifying the entities for
which a given predicate is true.
This ontological support has been conceived when the Semantic Web was on its very
early stage of research and development and OWL was not already established as a
standard. Consequently its expressive power is clearly limited with respect to OWL
and basically allows expressing taxonomy of concepts, predicate and actions and

therefore it is not able to represent completely the different application domains where
JADE agent may be used.
In order to provide a JADE agent with an adequate expressive power (i.e., equivalent
to the one offered by OWL DL [3]), it is necessary either to replace or to integrate the
JADE ontological support. In the attempt of finding a suitable solution to this problem
one has to cope with a scenario characterized by different domain knowledge model-
ling techniques and by different needs. While on the web the increasing interest in
ontologies is driven by the large volumes of information available and by the need of
automating many information retrieval activities that were traditionally performed
manually, in the agent context the focal point is slightly different and it is mainly on
communicative acts - communications which implies actions. In particular a peculiar
characteristic of the agent community is the heterogeneity of resources available and
the roles played by different agents of a system. This leads us to choose different ap-
proaches in different contexts. Our solution was to realize a compound tool, called
OWLBeans [6], that allows the use of ontologies described by using OWL DL. These
ontologies can be used by agents both for performing their tasks in cooperation with
other agents and for interoperating with external entities (e.g., legacy software sys-
tems). OWLBeans is based on a two-level approach with the aim of coping with both
the issues of managing complex ontologies and of providing ontology management
support to lightweight agents, which seldom need to deal with the whole complexity of
a OWL DL ontology. Therefore, lightweight agents maintain the simple JADE ontol-
ogy support whereas one or more dedicated agents, acting as ontology servers, are
able to use and manage complete OWL DL ontologies and provide service to the
agents that need it.
The main functionality of OWLBeans is to extract JADE ontologies from OWL DL
ontologies realizing a set of ontologies usable by JADE agents, with the obvious
shortcoming that not all the information maintained in the original OWL ontologies
are taken into account. Therefore, for all those systems that need a complete support
for OWL DL ontologies, OWLBeans offers a set of ontology server agents, imple-
mented as JADE agents, providing a common knowledge base and reasoning facili-
ties. These ontology servers use the Jena toolkit [10] to load, maintain and reasoning
about OWL ontologies. The other agents of the system do not need to know anything
about the Jena toolkit given that these ontology servers provide them with a set of
simple actions for querying and manipulating the ontologies. Furthermore OWLBeans
takes into account proper authorization mechanisms. In particular, the underlying
JADE security support has been leveraged to implement a certificate-based access
control. Only authenticated and authorized users will be granted access to managed
ontologies. The delegation mechanisms of JADE allow the creation of communities of
trusted users, which can share a common ontology, centrally managed by the Ontology
Server.
Finally, despite the fact that the JADE ontological support is quite simple, it could still
be complex for some devices with limited resources such as smart phones. This is the
reason why we have decided to improve OWLBeans adding a further feature which
allows agents to import taxonomies and classifications from OWL ontologies, in the
form of a hierarchy of Java classes with the purpose of providing very simple artefacts
to access structured information. Given its modular architecture, based on an interme-

diate ontology model, OWLBeans also provides further functionalities, e.g., saving a
JADE ontology into an OWL file, or generating a package of JavaBeans from the
description provided by a JADE ontology.

3.3.2 OWL-QL as a Query Language and Protocol
The messages exchanged by JADE agents have a format specified by the ACL lan-
guage defined by the FIPA international standard for agent interoperability. This for-
mat comprises a number of fields, which are almost all optional. The only one that is
mandatory in all ACL messages is the performative, indicating what the sender intends
to achieve by sending the message. In particular the “query-if “performative can be
used when the sender wants to know whether or not a given condition holds while the
“query-ref” is the act of asking another agent to inform the requester of the object
identified by a descriptor. The message content of these two performatives is respec-
tively a proposition and a referential expression. FIPA does not indicate any content
language as mandatory even if some languages are proposed; among these the SL
language.
Agents can be involved in conversations, that is sequences of messages exchanged by
two or more agents with well defined causal and temporal relations. Complex conver-
sations are typically carried out following a well defined interaction protocol.
Considering the RAP system, we have decided to use the support provided by JADE
for all the conversations, except for the specific conversations concerning data re-
trieval. After a in depth analysis of the possible dialogues which can happen between
an agent asking for information and an agent providing it, we have come to the deci-
sion of utilizing the semantic Web technology, even if in this field it is still in its in-
fancy.
The reason of our choice was twofold: (i) the content languages provided by JADE for
querying information, that is the SL language, is not widely used and quite complex;
(ii) the query interaction protocol, the only suitable for information retrieval, is quite
limited since it does not support a conversation between a server and a client consist-
ing of several steps. Indeed, in general we cannot expect that a server will produce all
the answers at once, moreover the client normally prefers to receive the results of an
incomplete search instead of waiting an exhaustive search to be completed.
For this reasons we have decide to use a query language targeting the Ontology Web
Language and specifically OWL-QL [7], a formal language and protocol for query-
answering dialogues among semantic-aware agents using knowledge represented in
OWL.

4 User and Document Profile Management

In our system, the management of user and document profiles is performed in two
different phases: an initialization phase and an updating phase.
In order to simplify, speed up and reduce the possibility of inaccuracy, we decided to
build the initial profile of the users and documents in an automated way which, for the
users, is very similar to the one used by Expert Finder system [20]. Profiles are repre-

sented by vectors of weighted terms whose value are related to the frequency of the
term in the document or to the frequency of the use of the term by the user. The set of
terms used in the profiles is not extracted from a training set of documents, but corre-
sponds to the terms included in the domain ontology, provided to the users for anno-
tating their queries, and to the names of the classes and methods of the Java and JADE
software libraries used by the community of the users of the system.
Document and user profiles are computed by using “Term Frequency Inverse Docu-
ment Frequency (TF-IDF)” algorithm [18] and profiles weighted terms correspond to
the TF-IDF weights. Some problems have risen applying this approach in our multi-
platform and distributed system: we present these problems and discuss the solutions
in the following subsection. Each user profile is built by user’s Personal Assistant
through the analysis of the Java code she/he has written. The profile built by Personal
Assistants is only the initial user’s profile and it will be updated during the system
lifetime when the user writes new software and especially when the user helps other
users answering their queries.
The updating of user and document profiles is done in three cases: (1) a user asks
about a problem and then rates some of the received answers, (2) a new software li-
brary is added to the ones used by the community or some new terms are introduced in
the domain ontology, and (3) a user writes new software.
In the first case, there are three possible behaviours according to the source of the
answer (user, document repository or answer repository). If the answer comes from a
user, her/his profile is updated on the basis of the expressed rating. Moreover, if the
rating is positive, the answer is added to the answer repository and its profile is built
from the query annotation and the related rating. If the answer comes from the docu-
ment repository and the rating is positive, the answer is added to the answer repository
and its profile is the original document profile updated by the new rating. Finally, if
the answer comes from the answer repository and the rating is positive, the part of the
answer profile related to the terms involved in the query annotation is updated on the
basis of the received rating. Moreover, in the case that this positive rated answer
comes from a user, also the part of the user profile related to the terms involved in the
query annotation is updated on the basis of the received rating. Finally, the query
corresponding to such positive rated answer is added in the repository (e.g., the an-
swer was good for one or more previous queries, but also for the current one).
We decided to avoid the use of negative evaluation for updating the profile of the
answers in the answer repository. In fact, if an answer is in the repository, it means
that at least a user considered the answer useful to solve her/his problem; therefore, if
later this answer received a negative score, it only means that the answer is not appro-
priate for the last query.
When a new software library is available for the users of the system or some new
terms are introduced in the domain ontology, all the document and user profiles have
to be updated. While document profiles are rebuilt on the basis of the new complete
set of terms, user profiles are updated adding the new weighted terms, of course with a
weight equal to their frequency in the user’s Java code.
Finally, the user’s profile is updated, adding only the new weighted terms, even when
the user writes new software.

4.1 Open and Distributed Communities

An important requirement that has guided the design of RAP has been the support for
open and distributed user communities. In fact, the retrieving of experts and informa-
tion can take a great advantage if the community has the capability to grow and in-
clude new users or new sub-communities.
The community beneath RAP is distributed and the whole system can consist of dy-
namic groups of local communities. Each community can exist and operate isolated,
but can also decide to join a group of communities, sharing the experts and the docu-
ment repositories. The joining and the leaving of a community are dynamic opera-
tions; the single communities of a group are fully independent, just like the compo-
nents of a peer-to-peer network.
The open and distributed nature of the system provides the best conditions for sharing
and retrieving information, but also entails some significant problems in profile
evaluation. In fact, the evaluation of both experts and documents strongly depends on
the actual composition of the community group. For instance, if at a given moment a
user is rated the maximum expert to answer a particular query, he is rated considering
only the users registered in the system at that moment. If a new local community joins
the group, it is possible that a user with more experience has become available. In this
case, information like “user A has called n times a method of the class X” is still valid,
but information such as “user A is the maximum expert of class X” may change ac-
cording to new composition of the community.
The problem rises from the fact that, while the user personal information is still valid,
the rating and all other information related to the community should be recalculated.
As a matter of fact, TF-IDF algorithm can be easily used in a centralized system where
all the profiles and the data to build them are managed. Our context is more complex.
Only the Personal Assistant can access, for privacy and security reasons, to the soft-
ware of its user and the profiles are maintained by the corresponding Personal Assis-
tants or by User Profile Managers when the Personal Assistant is not alive. For these
reasons, each profile component of the RAP system is associated with two elements:
an absolute element and a TF-IDF weighted element. The absolute one depends only
on the user (or document) profile and it is updated only in the cases described in the
previous section; the TF-IDF weighted element depends on both the user profile and
the whole community profiles. While the absolute element is stored in a database, the
weighted one is maintained in memory and it is recalculated when necessary. Obvi-
ously, every rating is determined on the basis of the weighted elements.
The situations in which it could be necessary to recompute the weighted element of
the profile components can be slightly frequent:
� a new community joins or leaves the community group;
� a new user registers or is deleted from the system;
� some components of a user profile change: for example the user submits new

software or receives a rating for an answer.

4.2 Ontology-Based Profiles

The Rap system is basically characterized by two kinds of models (a code model and a
domain model, which in turn originates from the integration of two domain models:
Java programming language and JADE framework) and two kinds of profiles (user
and answer/document profiles) based on the ontologies corresponding to the models.
As far as our specific domain model and the code model are concerned the research is
still at the beginning and the corresponding ontologies are almost missing. Therefore
the ontologies built in the context of RAP system are still just experimental. The
methodology we have adopted in ontology engineering has been based on two essen-
tial principles. First, we would like our ontologies to gradually evolve. We have
started with largely incomplete ontologies, which will most likely grow incrementally
and iteratively over time. Second, we have exploited state-of-the-art languages and
tools provided by W3C Consortium.
Using ontologies instead of a flat list of unstructured topics, such as the SUN “Glos-
sary of Java Related Terms” [19], has different advantages.
First of all the results of the queries can be more precise if relationships such as
part-of, prerequisite and is-a are considered, since such relationships increase the
accuracy of profiles and hence the usefulness of recommendations. Secondly the num-
ber of keywords, selected among the terms that are frequently referred in documents,
can be very high with respect to relevant ontological concepts required to define an
exhaustive domain ontology. Therefore the use of ontologies would decrease the pro-
file size, without loss of information, requiring a smaller amount of time for reasoning.
Moreover we would have a more flexible way of classification and different levels of
detail from the hierarchy could be used to represent profiles. Lastly reasoning can be
employed to augment the data and automate the localisation of even more information,
allowing expertise and interests to be discovered that were not directly observed for
instance in the user’s behaviour.
Choosing to follow the ontology approach, the first problem decision we had to make
was to settle on the relations to be used to map the list of keywords to the concepts of
the ontologies. In recent years the relation between ontological knowledge and lexical
resources has been investigated by researchers. In [16] an analysis of the different
methods which may guide the linking of ontologies and lexical resources have been
carried out, leading to three possible methodological options. In our case we have
estimated that a satisfactory approach would have been to define an ontology (basi-
cally the TBox part only) and populating it with lexical information.
Our domain model is a description of the terms of required know-how. We have im-
plemented a very simple version of an ontology whose concepts were inspired by
ACM2002 classification hierarchy; namely “area”, “unit”, “topic” and “subtopic”.
Afterwards we have populated the ontology with individuals picked out among the
terms belonging to the Sun “Glossary of Java Related Terms”, the computer science
classification made by the Open Directory Project [14] and the JADE glossary. We
have chosen to refer to existing glossaries and taxonomies in order to speed up the
building time and provide a potential route for the integration with other future on-
tologies. We have initially identified three primary relationships, namely is-a, part-of
and prerequisite relationships. Is-a relations are used to indicate specialization of

concepts while part-of and prerequisite relations denote required sub-concepts for the
understanding of a given concept. In this way we are able to set up an initial ontology
describing our view on know-how about our application domain.
The code model on the other hand was implemented with a simple ontology which
was derived empirically on the basis of the kind of searches performed by the devel-
opers (e.g. packages, classes, methods, etc.). The part of this ontology concerning the
individuals is generated automatically from the code. The code manager agent reads
the code, extracts the needed information and finally creates an OWL file which will
be processed by the Jena toolkit embedded in the manager agents. The ontology repre-
senting the code model contains very few concepts but it is populated with a large
number of individuals.

5 System Implementation and Evaluation

A first prototype of the RAP System is under development by using JADE [5]. JADE
(Java Agent DEvelopment framework) is a software framework to aid the realization
of agent applications in compliance with the FIPA specifications for interoperable
intelligent multi-agent systems. JADE is an open source project, and the complete
system can be downloaded from JADE home page.
Given the distributed nature of JADE based agent systems, a RAP system can be dis-
tributed on a set of agent platforms connected usually via Internet and situated in dif-
ferent parts of the World. Each agent platform can be distributed on different compu-
tation nodes and it is connected to a Web server, for allowing direct interactions with
the users, and to a mail server, for allowing e-mail interactions with the users. In each
agent platform there is a unique Starter Agent and Mail Agent, but there might be
more than one User Profile Manager, Code Documentation Manager and Answer
Manager. This usually happens when the agent platform is distributed on different
nodes in order to cope with performance issues due to the number of the users to be
managed. Furthermore, distribution of a RAP platform on different computation nodes
and agents replication can be introduced for reliability reasons too (in this case, agents
manage copies of data). Finally, there can be one or more Directory Facilitators. In the
case of more than one Directory Facilitator, these agents build a hierarchical map of
the agents of the system; therefore, when an agent is created, the only information it
needs to know is simply the address of the main (root) Directory Facilitator.
A significant part of the first prototype of the system has been completed. In particu-
lar, the subsystem supporting interactions among Personal Assistants and the interac-
tion between each pair of Personal Assistant and the “on-line” user has been com-
pleted. This subsystem has been used with success by a small set of students, con-
nected from different labs or from home, for the development of JADE software
within some course works. In these activities, students could formulate queries anno-
tating them with concepts or class and method names (from source code) extracted
from both domain and code ontologies.
Even if in a very early stage of development we have been able to determine the effect
of the depth of the reference ontology on the accuracy of the profile. We have found

that profiles consisting of only the first two levels of ontology (namely, area and unit
concepts) provide essentially no personalization, whereas expanding the profile from
two levels to three and so on, i.e. moving towards more specific concepts, has allowed
us to build a more detailed profile with only a small drop in precision. Finally we have
found that a four-level ontology (i.e. area, unit, topic and subtopic) is a good compro-
mise between profiles precision and the time needed to compute them. Moreover, we
have performed some tests to compare the use of the system when the users perform
questions by using the keywords belonging to a glossary and when they also use the
ontological support. The result of these tests is that the use of the ontological support
reduces the number of queries necessary to get the right information of about a 20%
(of course, the right value of the query reduction will be given by a more exhaustive
and rigorous set of tests).

6 Future Work

The evaluation results are quite promising, but they have shown a main area of possi-
ble improvement. The quality of the results is indeed greatly affected by the accuracy
of the user and document profiles. Our research work resolves around using ontolo-
gies to represent users and documents conceptually. Due to the lack of ontologies for
our specific domain and the absence of powerful tools to support the building of do-
main ontologies, the ontologies used in the prototype represent a first attempt of clas-
sification ad are essentially experimental. Since our background was mainly in the
field of conceptual modelling and so we were moderately novices in ontological mod-
elling, our first choice was directed towards a straightforward approach, that is we
decided to map lexical units to ontological concepts, focusing basically on the “indi-
vidual level”. Using a most complete approach we could build more rigorous and
effective ontologies from both the point of view of the number of concepts and the
relationships between them. This would allow more powerful inference and thus give
a significant boost to profiling accuracy.
To this purpose we are developing a new ontological support with the expressive
power of OWL DL but more efficient from the point of view of memory and time
consuming than Jena. In particular, we are developing a set of Java based software
tools to handle, maintain and reasoning about OWL ontologies. These software tools
use an object-oriented model of OWL ontologies, more concise than the one proposed
in OWL-API [4], allowing a complete representation of OWL DL ontologies.
Considering the user profile there are several working groups and efforts with the aim
of defining a standard vocabulary. Since the model of a RAP user is quite close to that
of a learner in order to improve the accuracy of the matching process we will enrich
the RAP user profile with reference to the two efforts of standardizing learner profile,
that is IEEE Learning Technology Standards Committee and IMS Global Learning
Consortium. These standards reflect different perspectives. The structure of the IMS
Learner Information Package standard was derived from best practices in writing
CV’s and inter-personal relationships are not considered at all. The IEEE PAPI stan-
dard on the other hand has been developed from the perspective of a learner perform-

ance during his study. The main categories are thus performance, portfolio, certificates
and relations to other people. Our present user profile model will be improved adding
a subsets of both mentioned standards enhanced with some specific extensions for
RAP system. This will allow us to take into account new traits, such as behavioural
aspects (e.g. the level of activity of the users in the system) or the user’s role in the
company, that will contribute in defining a more accurate and valuable profile.

7 Concluding Remarks

In this paper, we have presented a system called RAP (Remote Assistant for Pro-
grammers) with the aim of supporting communities of students and programmers
during shared and personal projects based on the use of Java programming language.
RAP associates a Personal Assistant with each user and this agent maintains her/his
profile and helps her/him to solve problems proposing information and answers ex-
tracted from some information repositories, proposing “experts” on these problems
and then forwarding their responses.
RAP has similarities with WBT [11], I-MINDS [12] and, in particular, with the Expert
Finder system [20]. In fact, all these three systems provide agents that recommend
possible “helpers”. However, none of them provides the integration of different
sources of information (experts, answers archive and code documentation), and none
of them integrates in the user profile information about user‘s day-to-day work prod-
ucts with information obtained from the answers the user has provided to the other
users of the system. Another original contribution of RAP is the design of a recom-
mendation system composed by an open and distributed group of communities. Each
community is independent and can dynamically join or leave a group. The system
automatically updates all the profile components that may vary on the basis of the
group composition.
A first prototype of RAP is under development: a part of the system has been com-
pleted and some tests have been already done. In particular, the tests regarding the
recommendation of experts have shown encouraging results.

References

1. @LIS Technet home page (2003). Available from http://www.alis-technet.org.
2. ANEMONE home page (2003). Available from http://aot.ce.unipr.it:8080/anemone.
3. Bechhofer, S., van Harmelen, F., Hendler, J. Horrocks, I., McGuinness, D.L., Patel-

Schneider, P.F., & Stein, L.A. OWL Web Ontology Language Reference. 2004. Available
from http://www.w3.org/TR/owl-ref/.

4. Bechhofer, R. Volz, and P. Lord. Cooking the semantic web with the OWL API. In Proc.
Int Semantic Web Conference, pages 659 - 675, Sanibel Island, FL, 2003.

5. Bellifemine, F., Poggi, A., Rimassa, G. Developing multi-agent systems with a FIPA-
compliant agent framework. Software Practice and Experience, 31 (2001), 103-128.

6. Bergenti, F., Poggi, A., Tomaiuolo, M., Turci, P. An Ontology Support for Semantic Aware
Agents. In Proc. Seventh International Bi-Conference Workshop on Agent-Oriented Infor-
mation Systems (AOIS-2005 @ AAMAS), Utrecht, The Netherlands, 2005.

7. Fikes, R., Hayes, P., Horrocks, I.: OWL-QL - A Language for Deductive Query Answering
on the Semantic Web. Technical Report KSL-03-14, (Knowledge Systems Lab, Stanford
University, CA, USA)

8. FIPA Specifications (1996). Available from http://www.fipa.org.
9. JADE home page (1998). Available from http://jade.tilab.com.
10. Jena, HP Labs Semantic Web Toolkit software and documentation.

http://jena.sourceforge.net/
11. Ishikawa, T., Matsuda, H., Takase, H. Agent Supported Collaborative Learning Using

Community Web Software. Proc. International Conference on Computers in Education,
Auckland, New Zealand, 2002, 42-43.

12. Liu, X., Zhang, X. Soh, L., Al-Jaroodi, J., Jiang, H. I-MINDS: An Application of Multi-
agent System Intelligence to On-line Education. Proc. IEEE Int. Conference on Systems,
Man & Cybernetics, Washington, DC, 2003, 4864-4871.

13. McDonald, D.W. Evaluating expertise recommendations. Proc. of the 2001 Int. ACM
SIGGROUP Conference on Supporting Group Work, Boulder, CO, 2001, 214-223.

14. Open Directory Project, home page http://dmoz.org/
15. Pazzani, M., Billsus, D. Adaptive Web Site Agents. Autonomous Agents and Multi-Agent

Systems, 5 (2002), 205–218.
16. Prevot, L., Borgo, S., Oltremari, O.: Interfacing Ontologies and Lexical Resources. Proc. of

the Ontologies and Lexical Resources: IJCNLP-05 workshop 2005
17. Resnick, P., Neophytos, I., Mitesh, S., Bergstrom, P., Riedl, J. GroupLens: An open archi-

tecture for collaborative filtering of netnews. Proc. Conference on Computer Supported
Cooperative Work, Chapel Hill, 1994, 175-186.

18. Salton, G. Automatic Text Processing. Addison-Wesley, 1989.
19. Sun Java Glossary (2004). Available from http://java.sun.com/docs/glossary.html.
20. Vivacqua, A. and Lieberman, H. Agents to Assist in Finding Help. Proc. ACM Conference

on Human Factors in Computing Systems (CHI 2000), San Francisco, CA, 2000, 65-72

