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Abstract. This work presents a dissimilarity measure for an expressive
Description Logic endowed with the principal constructors employed in
the standard representations for ontological knowledge. In particular, the
focus is on the definition of a dissimilarity measure for the ALC descrip-
tion logic based both on the syntax and on the semantics of the descrip-
tions. The measure is shown to be applicable to assess the dissimilarity
for cases involving individuals.

1 Introduction

Ontological knowledge plays a key role for interoperability in the Semantic Web
perspective. Nowadays, standard ontology markup languages are supported by
well-founded semantics of Description Logics (DLs) together with a series of
available automated reasoning services [BCM+03]. However, several tasks in an
ontology life-cycle [SS04], such as their construction and/or integration are still
almost entirely delegated to knowledge engineers.

Similarity measures play an important role in information retrieval and in-
formation integration. In the Semantic Web perspective, the construction of the
knowledge bases should be supported by automated inductive inference services.
The induction of structural knowledge is not new in machine learning, espe-
cially in the context of concept formation, where clusters of similar objects are
aggregated in hierarchies according to heuristic criteria or similarity measures.
Almost all of these methods apply to zero-order representations while, as men-
tioned above, ontologies are expressed by means of fragments of first-order logic.
Yet, the problem of the induction of structural knowledge turns out to be hard
in first-order logic or equivalent representations. In relational learning attempts
have been made to extend the standard ILP techniques towards hybrid repre-
sentations based on both clausal and description logics [RV00, Kie02]. In order
to cope with the problem complexity, these methods are based on a heuristic
search and generally implement algorithms that tend to induce overly specific
concept definitions which may suffer for poor predictive capabilities, (such as
the LCS operator [CH94]).

In this perspective, we introduce a novel dissimilarity measure between con-
cept descriptions based also on semantics, which is suitable for expressive DLs



like ALC [SSS91, BCM+03]. Since a merely syntactic approach has proven too
weak to enforce standard inferences (namely subsumption) [BCM+03], when
expressive DLs are taken into account, a different approach is necessary. Also
a dissimilarity measure, then, should be founded on the underlying semantics,
rather than on the syntactic structure of concept descriptions.

Besides measuring the dissimilarity of two concept descriptions, we also pro-
pose a individual-to-concept and an individual-to-individual dissimilarity, based
on notion of most specific concept of an individual (see [BCM+03], chap. 2) for
applying the same measure to these different cases.

Similarity measures may support also retrieval and ontology integration. Such
a measure can be the basis for adapting an existing clustering method to this
representation (or devising a new one) operating in a top-down (partitional)
or bottom-up (agglomerative) fashion. Moreover, the dissimilarity measure can
be also employed for Information Retrieval or Information Integration purposes
applied to DL knowledge bases and also for Case-based Reasoning systems.

As discussed in the following, the method can effectively compute the dissim-
ilarity measure with a complexity which depends on the complexity of standard
inferences as a baseline.

The remainder of the paper is organized as follows. The next section reviews
related work on related measures. In Sect. 3 the representation language is pre-
sented. The dissimilarity measure is illustrated in Sect. 4 and is discussed in
Sect. 5. Possible developments of the method are examined in Sect. 6.

2 Related Work

Similarity and dissimilarity measures play an important role in information re-
trieval and information integration. Recent investigations in these fields have
emphasized the use of ontologies and semantic similarity functions as a mecha-
nism for comparing concepts and/or concept instances that can be retrieved or
integrated across heterogeneous repositories [JC97, GMV99].

A semantic similarity is typically determined as a function of the path distance
between terms in the hierarchical structure underlying the ontology [BHP94].
Other methods to assess semantic similarity within a single ontology are fea-
ture matching [Tve97] and information content [Res99]. The former approach
uses both common and discriminant features among concepts and/or concept
instances in order to compute the semantic similarity. The latter methods are
founded on Information Theory. They define a similarity measure between two
concepts within a concept hierarchy in terms of the amount of information con-
veyed by the immediate super-concept subsuming the concepts under compari-
son. This is a measure of the variation of information crossing from a description
level to a more general one.

A recent work [WB99] presents a number of measures for comparing con-
cepts located in different and possibly heterogeneous ontologies. The following
requirements are made for this measure:

– the formal representation supports inferences such as subsumption;



– local concepts in different ontologies inherit their definitional structure from
concepts in a shared ontology.

This study assumes that the intersection of sets of concept instances is an
indication of the correspondence between these concepts. Three main types of
measures for comparing concept descriptions are discussed in this work:

1. filter measures based on a path-distance
2. matching measures based on graph matching establish one-to-one correspon-

dence between elements of the concept descriptions, and
3. probabilistic measures that give the correspondence in terms of the joint

distribution of concepts.

Other similarity measures have been developed to compute similarity values
among classes (concepts) belonging to different ontologies. These measures are
able to take into account the difference in the levels of explicitness and formaliza-
tion of the different ontology specifications. Particularly, in [RE03] a similarity
function determines similar entity classes by using a matching process making
use of synonym sets, semantic neighborhood, and discriminating features that
are classified into parts, functions, and attributes.

Another approach [Man00], aimed at finding commonalities among concepts
or among assertions, employs the Least Specific Concept operator (LCS [CH94,
BCM+03]) that computes the most specific generalization of the input concepts
(with respect to subsumption, see the next section for a formal definition). This
approach is generally intended for information retrieval purposes. Considered a
knowledge base and a query concept, a filter mechanism selects another concept
from the knowledge base that is relevant for the query concept. Then the LCS
of the two concepts is computed and finally all concepts subsumed by the LCS
are returned.

Most of the cited works adopt a semantic approach in conjunction with the
structure of the considered concept descriptions. Thus, they are liable to the phe-
nomenon of the rapid growth of the description granularity. Besides the syntactic
structure of concept descriptions becomes much less important when richer DL
representations are adopted due to the expressive operators that can be em-
ployed. For these reasons, we have decided to focus our attention to a measure
which is strongly based on semantics. In this respect, to the best of our knowl-
edge, there has been no comparable effort in the literature, except the ideas in
[BWH05].

3 The Representation Language

In relational learning, several solutions have been proposed for the adoption of
an expressive fragment of first-order logic endowed with efficient inference pro-
cedures. Alternatively, the data model of a knowledge base can be expressed
by means of DL concept languages which are empowered with precise semantics
and effective inference services [BCM+03]. Besides, most of the ontology markup



Table 1. ALC constructors and their meaning.

Name Syntax Semantics

top concept > ∆I

bottom concept ⊥ ∅
concept C CI ⊆ ∆I

concept negation ¬C ∆I \ CI

concept conjunction C1 u C2 CI
1 ∩ CI

2

concept disjunction C1 t C2 CI
1 ∪ CI

2

existential restriction ∃R.C {x ∈ ∆I | ∃y ∈ ∆I((x, y) ∈ RI ∧ y ∈ CI)}
universal restriction ∀R.C {x ∈ ∆I | ∀y ∈ ∆I((x, y) ∈ RI → y ∈ CI)}

languages for the Semantic Web (e.g., OWL) are founded in Description Log-
ics: representation languages borrow and implement the typical constructors of
the DL languages. Although it can be assumed that annotations and concep-
tual models are maintained and transported using the XML-based languages
mentioned above, the syntax of the representation adopted here is taken from
the standard constructors proposed in the DL literature [BCM+03]. These DL
representations turn out to be both sufficiently expressive and efficient from an
inferential viewpoint.

In this section we recall syntax and semantics for the reference representation
ALC [SSS91] which is adopted in the rest paper for it turns out to be sufficiently
expressive to support most of the principal constructors of an ontology markup
language for the Semantic Web.

In a DL language, primitive concepts, denoted with names taken from NC =
{C,D, . . .}, are interpreted as subsets of a certain domain of objects (resources)
or equivalently as unary relation on such domain and primitive roles, denoted
with names taken from NR = {R,S, . . .}, are interpreted as binary relations on
such a domain (properties). Complex concept descriptions can be built using
primitive concepts and roles by means of the constructors in Table 1. Their
semantics is defined by an interpretation I = (∆I , ·I), where ∆I is the domain
of the interpretation and the functor ·I stands for the interpretation function,
mapping the intension of concepts and roles to their extension.

A knowledge base K = 〈T ,A〉 contains two components: A T-box T and an
A-box A. T is a set of concept definitions C ≡ D, meaning CI = DI , where
C is the concept name and D is a description given in terms of the language
constructors. A contains extensional assertions on concepts and roles, e.g. C(a)
and R(a, b), meaning, respectively, that aI ∈ CI and (aI , bI) ∈ RI ; C(a) and
R(a, b) are said respectively instance of the concept C and instance of the role
R, more generally it is said (without loss of generality) that the individual a is
instance of the concept C and the same for the role. A notion of subsumption
between concepts is given in terms of the interpretations:



Definition 3.1 (subsumption). Given two concept descriptions C and D, C
subsumes D, denoted by C w D, iff for every interpretation I it holds that
CI ⊇ DI .

Axioms based on subsumption (C w D) are generally also allowed in the
T-boxes as partial definitions. Indeed, C ≡ D amounts to C w D and D w C.

Example 3.1. An instance of concept definition in the proposed language is:

Father ≡ Male u ∃hasChild.Person

which corresponds to the sentence: ”a father is a male (person) that has some
persons as his children”.

The following are instances of simple assertions:
Male(Leonardo), Male(Vito), hasChild(Leonardo,Vito).
Supposing that Male v Person is known (in the T-box), one can deduce that:

Person(Leonardo), Person(Vito) and then Father(Leonardo).
Given these primitive concepts and roles, it is possible to define many other

related concepts:
Parent ≡ Person u ∃hasChild.Person

and

FatherWithoutSons ≡ Male u ∃hasChild.Person u
∀hasChild.(¬Male)

It is easy to see that the following relationships hold: Parent w Father and
Father w FatherWithoutSons. ut

One of the most important inference services from the inductive learning
viewpoint is instance checking, that is deciding whether an individual is an in-
stance of a concept (w.r.t. an A-box). Related to this problem, it is often neces-
sary to solve the realization problem that requires to compute, given an A-box
and an individual the concepts which the individual belongs to:

Definition 3.2 (most specific concept).
Given an A-box A and an individual a, the most specific concept of a w.r.t.
A is the concept C, denoted MSCA(a), such that A |= C(a) and ∀D such that
A |= D(a), it holds: C v D
where |= stands for the standard semantic deduction [CL73].

In the general case of a cyclic A-box expressed in a an expressive DL endowed
with existential or numeric restriction the MSC cannot be expressed as a finite
concept description [BCM+03], thus it can only be approximated.

Since the existence of the MSC for an individual w.r.t. an A-box is not guar-
anteed or it is difficult to compute, generally an approximation of the MSC is
considered up to a certain depth k. The maximum depth k has been shown to
correspond to the depth of the considered A-box, as defined in [Man00].



Henceforth we will indicate generically an approximation to the maximum
depth with MSC∗.

Especially for rich DL languages such as ALC, many semantically equivalent
(yet syntactically different) descriptions can be given for the same concept, which
is the reason for preferring employing semantic approaches to reasoning over
structural ones. Nevertheless equivalent concepts can be reduced to a normal
form by means of rewriting rules that preserve their equivalence, such as: ∀R.C1u
∀R.C2 ≡ ∀R.(C1 u C2) (see [BCM+03] for issues related to normalization and
simplification).

Particularly, an ALC normal form can be defined as follows:

Definition 3.3 (ALC normal form). A concept description D is in ALC nor-
mal form iff D ≡ ⊥ or D ≡ > or if D = D1 t · · · tDn with

Di =
l

A∈prim(Di)

A u
l

R∈NR

∀R.valR(Di) u
l

E∈exR(Di)

∃R.E


where

– for all i = 1, . . . , n, Di 6≡ ⊥
– prim(C) denotes the set of all (negated) concept names occurring at the top

level of the description C;
– valR(C) denotes the conjunction of concepts C1 u · · · u Cn in the value re-

striction of role R, if any (otherwise valR(C) = >);
– exR(C) denotes the set of concepts in the value restriction of the role R.
– for any R, every sub-description in exR(Di) and valR(Di) is in normal form.

This form can be employed for defining an ordering over the concept descrip-
tions.

4 The Dissimilarity Measure

As a first step we need to define a dissimilarity measure for ALC descriptions.
In order to achieve this goal, we introduce a function which is necessary for the
correct definition of a dissimilarity measure. This should be a definite positive
function on the set of ALC normal form concept description, defined making
use of the syntax and semantics of the concepts (and roles) involved in the
descriptions.

4.1 Overlap Function

The function is formally defined as follows:

Definition 4.1 (overlap function).
Let L = ALC/≡ be the set of all concepts in ALC normal form and let A be an
A-box with canonical interpretation I and let |∆| be the number of all individuals



in the A-box. f is a function1 f : L × L 7→ R+ defined as follows:

for all C,D ∈ L, with C =
⊔n

i=1 Ci and D =
⊔m

j=1 Dj

f(C,D) := ft(C,D) =


|∆| if C ≡ D
0 if C uD = ⊥
1 + λ ·maxi ∈ [1, n]

j ∈ [1, m]

fu(Ci, Dj) o.w.

where λ is a weighting factor

fu(Ci, Dj) := fP (prim(Ci), prim(Dj)) + f∀(Ci, Dj) + f∃(Ci, Dj)

fP (prim(Ci), prim(Dj)) :=
|PE(Ci) ∪ PE(Dj)|

|(PE(Ci) ∪ PE(Dj)) \ (PE(Ci) ∩ PE(Dj))|

where,

– PE(Ci) := (
d

P∈prim(Ci)
P )I and PE(Dj) := (

d
P∈prim(Dj)

P )I

(extension of the primitive concepts conjunctions)
– fP (prim(Ci), prim(Dj)) = |∆| when (prim(Ci))I = (prim(Dj))I

f∀(Ci, Dj) :=
∑

R∈NR

ft(valR(Ci), valR(Dj))

f∃(Ci, Dj) :=
∑

R∈NR

N∑
k=1

max
p=1,...,M

ft(Ck
i , Dp

j )

where Ck
i ∈ exR(Ci) and Dp

j ∈ exR(Dj) and we suppose w.l.o.g. that N =
|exR(Ci)| ≥ |exR(Dj)| = M , otherwise the indices N and M are to be exchanged
in the formula above.

The function f represents a measure of the overlap between two concept
descriptions (namely C and D) expressed in ALC normal form. It is defined
recursively beginning from the top level of the concept descriptions (a disjunctive
level) up to the bottom level represented by (conjunctions of) primitive concepts.

In case of disjunction, the overlap between the two concepts is equal to the
maximum of the overlaps calculated among all couples of disjuncts (Ci, Dj) that
make up the top level of the considered concepts, decreased by the weighting fac-
tor λ which might be defined as a function of the level where the (sub-concepts)
occur within the overall concept descriptions (e.g. λ = 1/level). This weight is
useful to decrease the importance of the overlap of the sub-concepts; particularly
the importance of the overlap decreases with the increasing of the level.

Then, since every disjunct is a conjunction of descriptions, it is necessary to
calculate the overlap between conjunctive concepts. This overlap is calculated
1 we omit the name A of the A-box for keeping the notation as simple as possible.



as the sum of the overlap measure calculated on the parts that make up the
conjunctive concept description. Specifically, a conjunctive form can have three
different types of terms: primitive concepts, universal restrictions and existential
restrictions. Since concept conjunction (u) is a symmetric operator by definition,
it is possible to put together every type of restriction (occurring at the same level)
so it is possible to consider the conjunctions of primitive concepts (prim(Ci),
prim(Dj)), the conjunctions of existential restrictions and the conjunction of
universal restrictions as specified in the definition of ALC normal form.

Next, the amount of the overlap for the three different type of conjunc-
tion is defined. Particularly, the amount of overlap between two conjunctions
of (negated) primitive concepts is minimal if the they do not share any indi-
vidual in their extension. Conversely, if the two concepts share some individual
the overlap between them is computed as a measure of the intersection of their
extensions with respect to their union.

The computation of the overlap between, respectively, concept descriptions
expressed by universal and existential restrictions is a bit more complex. Con-
sidering the conjunction of universal restrictions, it is worthwhile to recall that
every such restriction is a single conjunction linked by respect to a different role
(since it is possible to write ∀R.C u ∀R.D = ∀R.(C uD)). Moreover, recall that
the scope of each universal restriction is expressed in ALC normal form. Thus,
the amount of the overlap between two concepts (within the disjuncts Ci and in
Dj , resp.) that are scope of a universal restriction w.r.t. a certain role R is given
by the amount of the overlap between two concepts expressed in ALC normal
form (computed by ft, as reported above); of course, if no disjunction occurs at
the top level, it is possible to regard the concept description as a disjunction of
single term to which ft applies in a simple way. Since we may have a conjunc-
tion of different concepts with universal restrictions, one per different role, the
amount of the overlap of this conjunction is given by the sum of the overlap cal-
culated for every universal restriction, rather than for every scope of a universal
restriction. It is worth noting that, when a universal restriction on a certain role
(say R) occurs in a disjunct (e.g. in Ci), but no such restriction on the same role
occurs in the other description (say Dj), then we have that valR(Dj) = >.

Now we turn to analyze the computation of the amount of the overlap be-
tween two descriptions made up of conjunctions of existential restrictions. For
the dissimilarity between existential restrictions, we may recur the notion of ex-
istential mapping [KM01]. Let us suppose N = |exR(Ci)| ≥ M = |exR(Dj)|.
Such a mapping can be defined as a function:

α : {1, . . . , N} 7→ {1, . . . ,M}

If each element of exR(Ci) and exR(Dj) is indexed with an integer in the ranges
[1, N ] and [1,M ], respectively, then any function α maps each concept description
Ck

i ∈ exR(Ci) with every descriptions Dp
j ∈ exR(Dj). Since each Ck

i (resp. Dp
j )

is in ALC normal form, it is possible to calculate the amount of their overlap
using ft. Fixed a role R and considered a certain Ck

i (with k ∈ [1, N ]), the
amount of the overlap between Ck

i and Dp
j (with p ∈ [1,M ]) is computed. We



are supposing that N ≥ M , thus each existential restriction on role R is coupled
with the one on the same role in other description scoring the maximum amount
of overlap. These maxima are summed up per single role, then the sum is made
also varying the role considered. In case of one role restriction on a certain role
S is absent from either description then it is considered as the concept >.

4.2 A Dissimilarity Measure

After clarifying the definition of f function, its meaning in all of its components,
it is possible to derive a dissimilarity measure from f as shown in the following.

Definition 4.2 (dissimilarity measure). Let L be the set of all concepts in
normal form in ALC and let A be an A-box with canonical interpretation I. The
dissimilarity measure d is a function

d : L × L 7→ [0, 1]

defined as follows:

for all C =
⊔n

i=1 Ci and D =
⊔m

j=1 Dj concept descriptions in ALC normal
form, let

d(C,D) :=

1 if f(C,D) = 0
0 if f(C,D) = |∆|
1/f(C,D) otherwise

where f is the function defined above.

The function d measures the level of dissimilarity between two concept in
ALC normal form using the function f that expresses the amount of overlap
between the two concepts, say C and D. Particularly, if the overlap is mini-
mal, i.e. f(C,D) = 0, then this means that there is no overlap between the
considered concepts, therefore d must indicate that the two concepts are totally
different, indeed d(C,D) = 1, i.e. it amounts to the maximum value of its range.
If f(C,D) = |∆| this means that the two concepts are totally overlapped and
consequently d(C,D) = 0 that means that the two concept are undistinguish-
able, indeed d assumes the minimum value of its range. If the considered con-
cepts have a partial overlap then their dissimilarity is lower as much as the two
concept are more overlapped, since in this case f(C,D) > 1 and consequently
0 < d(C,D) < 1.

An example is reported to clarify the usage of the dissimilarity measure:

Example 4.1. Let be C and D two concepts in ALC normal form and defined as
follows:
C ≡ A2 u ∃R.B1 u ∀T.(∀Q.(A4 uB5)) tA1

D ≡ A1 uB2 u ∃R.A3 u ∃R.B2 u ∀S.B3 u ∀T.(B6 uB4) tB2

where Ai and Bj are all primitive concepts.
Now we calculate the amount of dissimilarity among the two concepts C and

D; first, it is necessary to compute f(C,D). Known that neither C nor D are



semantically equivalent nor are inconsistent, the value of f is estimated as in the
third case of its definition. Let us denote with C1 := A2u∃R.B1u∀T.(∀Q.(A4u
B5)) and with D1 := A1 u B2 u ∃R.A3 u ∃R.B2 u ∀S.B3 u ∀T.(B6 u B4). The
computation of f is as follows

f(C,D) = 1 + λ ·max{ fu(C1, D1), fu(C1, B2), fu(A1, D1), fu(A1, B2) }

For brevity, we consider the computation of fu(C1, D1). fu is computed as the
sum of fP , f∀, f∃ i.e., respectively, f applied to primitive concepts, f applied
to concepts in the universal restrictions, f applied to concepts in the existential
restrictions.

Suppose that (A2)I 6= (A1 uB2)I . Then:

fP (C1, D1) = fP (prim(C1), prim(D1))
= fP (A2, {A1, B2})

=
|PE(A2) ∪ PE({A1, B2})|

|(PE(A2) ∪ PE({A1, B2})) \ (PE(A2) ∩ PE({A1, B2}))|

=
|(A2)I ∪ (A1 uB2)I |

|((A2)I ∪ (A1 uB2)I) \ ((A2)I ∩ (A1 uB2)I)|

In order to compute f∀ it is necessary to note that there are two roles at
the same level (T and S), thus the summation over the different roles consists
of two terms. Besides, the role S occurs only in D1 and not in C1, consequently
valR(C1) = >. Thus, in this case, we have:

f∀(C1, D1) =
∑

R∈NR

ft(valR(C1), valR(D1)) =

= ft(valT(C1), valT(D1)) + ft(valS(C1), valS(D1)) =
= ft(∀Q.(A4 uB5), B6 uB4) + ft(>, B3)

The computation of ft(∀Q.(A4 u B5), B6 u B4) and ft(>, B3) is the same
reported above.

Now, by the definition of f∃, it is necessary to note that here is only a sin-
gle role R, so the first summation collapses in one element. Then the number of
conjunctive descriptions with existential restrictions w.r.t. the same role (S), are
respectively N = 2 and M = 1, so we would have to find the max in a singleton,
which is a simple case. So, we have:

f∃(C1, D1) =
∑2

k=1 ft(exR(C1), exR(Dk
1 )) = ft(B1, A3) + ft(B1, B2)

Also in this case, the computation of ft is similar to the case reported above.
In order to determine the dissimilarity value of C and D it is necessary to

apply the same operations to the other elements and finally find the overlap. Af-
ter that, the dissimilarity value can be computed straightforwardly by inverting
the overlap.



4.3 Dissimilarity Measures for Individuals

The notion of Most Specific Concept MSC is commonly exploited for lifting indi-
viduals to the concept level. On performing experiments related to a similarity
measure exclusively based on concept extensions [dFE05], we noticed that, re-
sorting to the MSC, for adapting that measure to the individual to concept case,
just falls short: indeed the MSCs may be too specific and unable to include other
(similar) individuals in their extensions.

By comparing concept descriptions reduced to the normal form we have given
a more structural definition of dissimilarity. However, since MSCs are computed
from the same A-box assertions, reflecting the current knowledge state, this guar-
antees that structurally similar representations will be obtained for semantically
similar concepts.

Let us recall that, given the A-box, it is possible to calculate the most specific
concept of an individual a w.r.t. the A-box, MSC(a) (see Def. 3.2) or at least its
approximation MSCk(a) up to a certain description depth k. In the following we
suppose to have fixed this k to the depth of the A-box, as shown in [Man00]. In
some cases these are equivalent concepts but in general we have that MSCk(a) w
MSC(a).

Given two individuals a and b in the A-box, we consider MSCk(a) and
MSCk(b) (supposed in normal form). Now, in order to assess the dissimilarity
between the individuals, the d measure can be applied to these concept descrip-
tions, as follows:

d(a, b) := d(MSCk(a),MSCk(b))

Analogously, the dissimilarity value between an individual a and a concept de-
scription C can be computed by determining the (approximation of the) MSC
of the individual and then applying the dissimilarity measure:

∀a : d(a,C) := d(MSCk(a), C)

These cases may turn out to be particularly handy in several tasks, namely
both in inductive reasoning (construction, repairing of knowledge bases) and in
information retrieval.

5 Discussion

In this section we intend to show that the function d presented in the previ-
ous section is really a dissimilarity measure and discuss some complexity issues
related to its computation.

5.1 Properties of the Dissimilarity Measure

We prove that d function actually is a dissimilarity measure (or dissimilarity
function [Boc99]), according to the following formal definition:



Definition 5.1 (dissimilarity measure). Let S be a non empty set of ele-
ments. A dissimilarity measure for S is a real-valued function r defined on the
set S × S that fulfills the following properties:

1. r(a, b) ≥ 0 ∀a, b ∈ S (positive definiteness)
2. r(a, b) = r(b, a) ∀a, b ∈ S (symmetry)
3. ∀a, b ∈ S : r(a, b) ≥ r(a, a)

Proposition 5.1. The function d is a dissimilarity measure for L = ALC/≡.

Proof.

1. (positive definiteness)
trivial: by construction d computes dissimilarity by using sums of positive
quantities and maxima computed on sets of such values.

2. (symmetry)
by the commutativity of the sum and maximum operators.

3. (∀C,D ∈ L : d(C,D) ≥ d(C,C))
By the definition of d, it holds that d(C,C) = 0 and d(C,C ′) = 0 if C is
semantically equivalent to C ′. In all other different cases, ∀D ∈ L and D
not semantically equivalent to D (C 6≡ D), we have: d(C,D) > 0

5.2 Complexity Issues

The computational complexity of our dissimilarity measure d is strictly related
to the computational complexity of the function f defined above. Besides, our
measure relies on some reasoning services namely subsumption and instance-
checking (see Sect. 3), therefore its complexity depends on the complexity of
these inferences too. In order to define the complexity of d, we distinguish three
different cases descending from being d based on the definition of f (Compl(d) =
Compl(ft)) as in the following.

Let C,D be two concepts descriptions in normal form, with C =
⊔n

i=1 Ci

and D =
⊔m

j=1 Dj :

Case 1: C and D are semantically equivalent. In this case only subsumption is
involved in order to verify the semantic equivalence of the concepts. Thus

Compl(d) = 2 · Compl(w)

where Compl(·) represents the complexity and w represents the subsumption
operator

Case 2: C and D are not semantically equivalent and C and D are disjoint.
In this case subsumption and conjunction are involved. Anyway, being the
conjunction complexity constant in time, we have the same complexity of
the previous case



Case 3: C and D are not semantically equivalent and C and D are not disjoint.
In this case the complexity depends on the structure of the concepts involved.
Particularly, it is necessary to calculate fu for n ·m times; so the complexity
is the following:

Compl(d) = nm · Compl(fu) =
= nm · [Compl(fP ) + Compl(f∀) + Compl(f∃)]

Thus it is necessary to analyze the complexity of fP , f∀, f∃
In order to calculate fP the most important operation is Instance Checking
(IC) used for determining the concept extensions and there are two concepts
involved. So we can conclude that:

C(fP ) = 2 · C(IC)

The computation of f∀ and f∃ apply recursively the definition of ft on less
complex descriptions. Particularly, |NR| calls of ft are needed for computing
f∀ while the invocations of ft needed for f∃ are |NR| · N · M , where N =
|exR(Ci)| and M = |exR(Dj)| as in Def. 4.1. So we have that:

Compl(f∀) = |NR| · Compl(ft)

Compl(f∃) = |NR| ·M ·N · Compl(ft)

At this point we can sum up the complexity of this case as follows:

Compl(d) = nm · [(2 · Compl(IC)) +
+ (|NR| · Compl(ft)) +
+ (|NR| ·M ·N · Compl(ft))]

These considerations show that the complexity of the computation of d
strongly depends on the complexity of the instance-checking for ALC which is
P-space [BCM+03]. Nevertheless, in practical applications, these computations
may be efficiently carried out exploiting the statistics that are maintained by
the DBMSs query optimizers. Besides, the counts that are necessary for com-
puting the concept extensions could be estimated by means of the probability
distribution over the domain.

6 Conclusions and Further Developments

We have defined a measure of the overlap between concept descriptions expressed
in ALC and then we have derived a dissimilarity measure and showed how to
apply it to cases involving individuals.

Particularly the overlap function is based on both on the semantics and on
the structure of the concepts involved. It is semantic because it is grounded on
the concept extensions, as retrieved from current A-box. It is structural because



the measure is determined by computing the overlap of the sub-concepts nested
in the considered concepts. The importance on the overlap depends on the level
of the sub-concepts (in the normal form); this is expressed by the use of a
weighting factor λ which should be a function of this level. Nevertheless the
importance of primitive concepts and restrictions are different, therefore we are
currently investigating on an extension where different typologies of sub-concepts
are differently weighted.

Similarity and dissimilarity measures turn out to be useful in several ap-
plications and for many tasks such as commonality-based information retrieval
in the context of terminological knowledge representation systems (which is a
relatively new applicative context [Man00]), the realization of semantic search
engines, classification, case-based reasoning, clustering, etc. In particular, This is
our ultimate goal. A dissimilarity measure that is applicable both between con-
cepts and between individuals and between concept and individual is suitable
for both agglomerative and divisional clustering algorithms.

These ideas are being exploited also for defining other forms of similarity
measures, namely kernels for relational representations like DLs, thus allowing
the exploitation of the efficiency of the support vector machines, for example.
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