
ANALYSIS OF PROPOSALS TO
GENERATION OF SYSTEM TEST CASES

FROM SYSTEM REQUISITES

J. J. Gutiérrez, M. J. Escalona, M. Mejías, J. Torres
Department de Lenguajes y Sistemas Informáticos

University of Sevilla
(+34) 954552777, 954553867, 954552769, fax: 054557139

{javierj, escalona, risotto, jtorres}@lsi.us.es

ABSTRACT.
System test cases allow to verify the functionality of a software system. System testing is a
basic technique to guarantee quality of software systems. This work describes, analyzes and
compares five proposals to generate test cases from functional requirements in a systematic
way. Test cases generated will verify the adequate implementation of those functional
requirements. The objective of this analysis is to determine the grade of mature of those
proposals, evaluating if they can be applied in real projects and identifying which aspects needs
to me improved.

KEY WORDS.
Test case, system test, use cases, functional requirements.

1. INTRODUCTION.

System testing phase begins when the building of the software system is finished.
The objectives of system testing phase are to test the system in depth and verify its
global functionality and integrity, running the system in an environment as similar as
the final production environment. This verification is based on observation of a
controlled set of executions called testing cases. Test process can be expressed like a
searching problem. Its main objective is to discover and to correct most bugs as soon
as possible [Binder1999].

Nowadays, use cases are the most used tool to express functional requirements.
Use cases are also a good artefact to generate system tests cases [Fröhlich2000].
Actually, there are several proposals that describe how to generate test cases from use
cases. This work resumes a comparative analysis among five proposals.

This comparative analysis started in March of 2004 and it is still active. Today this
comparative includes 12 proposals. The objective of this comparative is to evaluate in
depth the state of the art in system test case generation and to build the basis of a new
proposal.

Some results from this comparative analysis have been included in
[Gutierrez2004]. This work includes a different set of proposals and more
comparative characteristics. Conclusions in this work are more precise due this work
includes more proposals.

This work is structured as follows. In section 2 the state of the art is described. In
section three analyzed proposals are introduced. In section 4 results from the analysis
are showed. In section 5 conclusions and future work are described.

2. STATE OF THE ART.

Briefly, process of system test generation from functional requirements consists of
build a system model from functional requirements. From that system model, input
data, events and expected results are generated [Jacobs2004]. This process is
described in figure 1.

Figure 1. System test cases generation.

Use Case Title
Goal

This use case deals with the testing of the new EPX Database on a Rocket system.
This use case is started in an online environment.Basic Flow of Events

1 . The user starts the EpxTool (sub use case “StartUp” is exe cuted).
2 . The user selects “Open” and enters the name of his EPX Database file.
3 . The system reads the EPX data from the file.
4 . The user selects “StoreToSystem”. He also specifies the configuration details of the par ticular system.
5 . The EpxTool extracts the data for the chosen system configuration and stores the data on the Rocket

sy s tem.
6 . The user selects the BatchVerification func tion.
7 . The EpxTool reports that there are no problems found during the verification process.
8 . The user selects the Activate Settings func tion.
9 . The EpxTool activates the EPX parameters in the Rocket system. The Clinical User will now be able to

use them.
1 0 . The user exits the EpxTool (sub use case “Shut down” is executed).
1 1 . The use case ends.Alternative Flow 1: Handle Errors

In Step 7 of the Basic Flow,
If the EpxTool reports that one or more errors have been found during the BatchVerification THEN
1 . The user has to solve the problems by modifying some of the EPX parameters in the EpxTool.
2 . The user selects “Save”, “StoreToSystem” and “BatchVerification” again.
3 . The EpxTool will now validate the EPX Applications again and report that no errors are found. If

there are still errors, repeat the steps 1 and 2 of this Alternative Flow again.
The use case continues at step 8 of the Basic Flow.Alternative Flow 2: Rollback EPX Database

In Step 8 of the Basic Flow,
If the Activate Settings function does not execute successfully THEN
1 . The user uses the RollBack EPX Database to restore the previous EPX Database on the Rocket

system again.

Use Case Title
Goal

This use case deals with the testing of the new EPX Database on a Rocket system.
This use case is started in an online environment.Basic Flow of Events

1 . The user starts the EpxTool (sub use case “StartUp” is exe cuted).
2 . The user selects “Open” and enters the name of his EPX Database file.
3 . The system reads the EPX data from the file.
4 . The user selects “StoreToSystem”. He also specifies the configuration details of the par ticular system.
5 . The EpxTool extracts the data for the chosen system configuration and stores the data on the Rocket

sy s tem.
6 . The user selects the BatchVerification func tion.
7 . The EpxTool reports that there are no problems found during the verification process.
8 . The user selects the Activate Settings func tion.
9 . The EpxTool activates the EPX parameters in the Rocket system. The Clinical User will now be able to

use them.
1 0 . The user exits the EpxTool (sub use case “Shut down” is executed).
1 1 . The use case ends.Alternative Flow 1: Handle Errors

In Step 7 of the Basic Flow,
If the EpxTool reports that one or more errors have been found during the BatchVerification THEN
1 . The user has to solve the problems by modifying some of the EPX parameters in the EpxTool.
2 . The user selects “Save”, “StoreToSystem” and “BatchVerification” again.
3 . The EpxTool will now validate the EPX Applications again and report that no errors are found. If

there are still errors, repeat the steps 1 and 2 of this Alternative Flow again.
The use case continues at step 8 of the Basic Flow.Alternative Flow 2: Rollback EPX Database

In Step 8 of the Basic Flow,
If the Activate Settings function does not execute successfully THEN
1 . The user uses the RollBack EPX Database to restore the previous EPX Database on the Rocket

system again.

Use Case Document

Open File

BatchVerification

Activate Settings

Extracts the data for the specific system
configuration

Successfull End

Handle Errors[errors are reported]
<<Alt.Flow 1>>

Rollback EPX
Database

Failure End

[not successfull]
<<Alt.Flow 2>>

Use Case Model

Scenario Nr Pr
ot

ec
te

d
at

tri
bu

te
 =

M

an
ua

lP
ro

te
cte

d

au
to

m
at

io
n

ta
sk

fa
ile

d

P
P

S
 M

an
ag

er
 is

 no
t

co
nf

ig
ur

ed
 or

 no
t

op
er

ab
le

E
xa

m
Fo

ld
er

 =
C

ur
re

nt
Vi

ew
in

g
E

xa
m

F
ol

de
r

Ex
am

Fo
ld

er
 no

t

se
le

ct
ed

 fo
r

A
cq

1 (BF) N N N N NA
2Y N N N NA
3N A Y NA N NA

4N NA Y N NA
5Y NA Y N NA
6N N N Y N
7Y N N Y N
8N A Y NA Y N
9N NA Y Y N

10Y NA Y Y N
11N N N Y Y
12Y N N Y Y
13N A Y NA Y Y

Scenario
1 Basic Flow AF1
2 Basic Flow AF10 AF12
3 Basic Flow AF10 AF13 AF14

4 Basic Flow AF10 AF13
5 Basic Flow AF10 AF14
6 Basic Flow AF10
7 Basic Flow AF11 AF12
8 Basic Flow AF11 AF13 AF14

9 Basic Flow AF11 AF13
10 Basic Flow AF11 AF14
11 Basic Flow AF11
12 Basic Flow AF12

13 Basic Flow AF13 AF14
14 Basic Flow AF13
15 Basic Flow AF14
16 Basic Flow AF2

17 Basic Flow AF3
18 Basic Flow AF4 AF10 AF12
19 Basic Flow AF4 AF10 AF13
20 Basic Flow AF4 AF10 AF13 AF14
21 Basic Flow AF4 AF10 AF14

22 Basic Flow AF4 AF10
23 Basic Flow AF4 AF11 AF12
24 Basic Flow AF4 AF11 AF13
25 Basic Flow AF4 AF11 AF13 AF14

26 Basic Flow AF4 AF11 AF14
27 Basic Flow AF4 AF11

3 Basic Flow AF10 AF13 AF14
CurrentAcquisition ExaminationFolder is not changed
CurrentViewing ExaminationFolder is changed to the next ExaminationFolder

with ExaminationStatus = Suspended
EndDate is set to current date and time
AutoArchive job is finished
AutoPrint job is finished
Protected Attribute of the ExamFolder is Manual Protected
ExamStatus = Completed

Input Data
Events Expected Results

Generate

Through the time, evolution of proposals has been focused in changing how to
express system model. First proposals were based on finite state machines to represent
system behaviour. Later, with the apogee of diagrams proposed in UML notation, a
new set of proposals and tools appeared to develop system-testing process from use
scenarios described by UML diagrams.

Nowadays, there are a great number of techniques to represent functional
specifications and derivate test from them. Some examples are model-based
specification languages such as Z, algebraic specification languages o sate-based
specifications. A complete description can be found in [Offutt1999].

Actually, UML diagrams are widely used to build system model [Bertolino2004].
Diagrams used more often are activity diagram, state diagrams and interaction
diagram. A comparative study among these diagrams can be found in [Fröhlich2000].

3. BRIEF DESCRIPTION OF PROPOSALS.

Proposals included in this article are the most actual we have found. None of
examined proposals is previous to year 2,002 Next paragraph describes briefly
proposals analyzed in section 4.

SCENT [Ryser2003] is a methodological proposal divided in two blocks. In first
block, SCENT describes a process to define use scenarios. In second block, SCENT
describes how to systematically generate system-testing cases from scenarios obtained
in block one. Generation of test cases accomplishes intervening a three steps process.
In first step, each test case is defined, indicating what it goes to test. After that, test
cases are generated from the distinct paths that can be gone over in the state diagram.
Finally, test cases obtained are refined and completed with more test cases developed
by classical methods, like stress tests, user interface tests, etc.

Test Cases from Use Cases (TCUC) [Heumann2002] develops a method to obtain
a set of system test cases from use cases in three steps. First, all possible path of
execution are generated from every use case. Every possible execution path generates
a test case. Finally, test values for every test case are identified. Test values include
valid and invalid values and outputs expected.

AGEDIS [Hartman2004] is an investigation project financed by the European
Union concluded at the beginning of 2,004. AGEDIS main objective has been the
development of a set of tools for the automatic generation and exe cution of tests to
verify systems based in distributed components. Although AGEDIS can be applied to
any kind of system, better results are obtained applying AGEDIS to control systems,
as communication protocols, than to information transformation systems, like
compilers. AGEDIS focuses in two products: A system model written in a modelling
language called IF, and a set of UML class and state diagrams. These products allow
automatic generation of sets of tests and groups of test case objects to link system
model and its implementation. This one allows executing tests with system model and
system implementation and comparing outputs from model with outputs from
implementation.

Use Case Path Analysis (UCPA) [Ahlowalia2002] describes a process composed
by 5 steps. The starting point is a textual description of a use case. A flow chart is
built from the use case. Using path analysis process a set of test cases is generated.

Requirements by Contract (RBC) [Nebut2003] is divided in two blocks. In first
block, this proposal shows how to extend UML use case diagrams adding pre-
conditions, post-conditions and parameters. In second block this proposal describes
several algorithms to generate test cases from extended use case diagrams. At the end
of this process, a set of test objectives is obtained. A test objective is a sequence of
instantiated use cases. A test case generator has to be used in order to produce
concrete test cases from those test objectives.

3. ANALYSIS OF PROPOSAL.

3.1. Comparative analysis.

Eleven factors were evaluated for each proposal. Table 1 shows the most relevant
factors and next paragraphs describe those factors.

Table 1. Comparative analysis.

SCENT TCUC UCPA AGEDIS RBC
New
notation

Yes No Yes Yes Yes

Full
systematized

No No No Yes No

Practical
cases

Yes No No Yes No

Automated
level

Medium Low Medium Full Medium

Use of
standards

No No No Yes Yes

Supporting
tools

No No No Yes Yes

Difficulty of
implantation

Middle Low Low High Middle

Application
Examples

Yes Yes Yes Yes No

Coverage
criterion

Path Analysis Path Analysis Path Analysis Several Several

Test values No No No Yes No
Test case
optimization

No No Yes Yes No

Multiple use
cases

Yes No No Yes Yes

Test case
order

Yes No No Yes Yes

Steps 16+3 (1) 3 5 6 4
(1) - 16 steps to obtain scenarios and 3 steps to generate test cases.

New notation indicates if a proposal proposes its own notation or diagrams.
SCENT introduces a proprietary usage diagram and UCPA a proprietary notation for
flow diagram. RBC introduces a proprietary notation to extend use case diagrams .
AGESIS uses IF Language to model the system. TCUC uses natural language only.

Full systematized indicates if a proposal describe how to perform all steps
indicates. If proposal is not fully systematized some steps, like build system model
form requirements, are not systematically detailed. Only AGEDIS if fully
systematized and has a complete set of tools to perform the whole generation process.

Practical cases indicate if there are real project reports in which a proposal has
been applied. Only SCENT and AGEDIS includes references to real projects.

Automated level measures the grade in which that proposal can be implanted in
software tool. AGEDIS is the only proposal with full level.

Use of standards indicates if a proposal is based in diagrams largely used like
UML diagrams. Only AGEDIS and RBC use UML diagrams.

Supporting tools indicate if, nowadays, there are tools to support the proposal.
Difficulty of implantation is based in quantity and difficulty of transformations to

realize in each step. A low difficulty indicates a simple proposal to realize, without
specific preparation. A medium difficulty indicates that there is new notation or some
process that needs a previous preparation. A high difficulty indicates that a proposal
cannot be applied without a depth study of its elements.

Application examples indicate if a proposal includes examples, aside from
practical cases. All proposals, except RBT, include a practical case.

Coverage criterion indicates the method to generate test cases from system model.
Several means that proposal exposes different coverage criterions.

Test values indicate if proposal exposes how to select test values for test cases
generated.

Test case optimization indicates which proposal describes how to select some of
test cases generated without losing of quality or coverage.

Multiple use cases indicate if proposal can generate test cases that involve more
than one use case or proposal can only generate test cases from one use case in
isolation.

Test case order indicates if proposal describes the order to execute test cases
generated.

3.2. Strong and weak points.

This section describes briefly main strong and weak point of each proposal.
SCENT offers a detailed method to manipulate and organize use scenarios. It

includes two references to real projects where it has been successfully applied.
However, it is necessary to make a very drawn-out job, 16 steps, with scenarios
before generating test cases.

TCUC works with use cases written in natural language, instead of formal use
cases . This makes suitable to rapidly obtain test cases, but difficult the automated of
process by tools.

UCPA proposes a technique to determine which execution paths are most
frequent and critical and which execution path are useless for testing purposes. This
technique allows decreasing number of test without affect quality. Weak points are:
flow chart notation is simple and hard to apply over complex requirements, and
UCPA does not detail how to build test cases once identifies execution paths.

AGEDIS is the most complete proposal. AGEDIS includes generation and
execution of test cases. This proposal provides references to five real successful
projects. It has a complete tool kit to support all steps of the process. However,
AGEDIS cannot be applied to all kind of projects, just only projects that flow controls
is more important that information transforming. Tool kit is free for educational
purposes only. AGEDIS obligates to adapt to AGEDIS tools.

RBC is supported by a prototype open-source tool called UCTSystem
[Generating2003]. RBC generates test cases that include several use cases and
describe several coverage criterions to concrete types of system. However, RBC
extends use cases ignoring extension rules proposed by UML Consortium. RBC treats
use case as black boxes. This means that this proposal cannot generate test cases to
verify the whole set of interactions in a use case in isolation.

4. CONCLUSIONS.

Comparative analysis shows that AGEDIS is the most modern and complete
proposal but, due its weak points, it is not the definitive solution. None of proposals
are definitive; all proposals have some advantage over the rest and some weak points.

There are main elements which are not described with enough detail to be applied in
practice. Examples are: coverage criterions, or how to use storage requirement to
derive test values. None of analyzed proposals describe clearly the result of the
generation process. None of analyzed proposals describe de grade of detail of results.
All proposals generate test but: how test cases are expressed? can they be directly
implemented?. Examples included into proposals describe test cases as tables, but
none of proposals defines clearly how to express a test case. Except AGEDIS, none of
proposals defines detail level of generated test cases. They also do not generate test
cases, only test descriptions that must be refined an implemented.

Actually we are working in answer these questions. Our goal is not to define a
new proposal, but takes all elements in exiting proposals and complete their lacks,
like several coverage criterions, a formal specification to a test cases, how to generate
test code from that specification, etc.

6. REFERENCES.

[Ahlowalia2002] Ahlowalia, Naresh. 2002. Testing From Use Cases Using Path
Analysis Technique. International Conference on Software Testing Analysis &
Review.

[Bertolino2004] A. Bertolino, E. Marchetti, H. Muccini. 2004. Introducing a
Reasonably Complete and Coherent Approach for Model-based. Electronic Notes
in Theoretical Computer Science.

[Binder1999] Binder, Rober V. 1999. Testing Object-Oriented Systems. Addison
Wesley.

[Fröhlich2000] Fröhlich P., Link J. 2000. Automated Test Case Generation from
Dynamic Models. ECOOP'00. Sophia Antipolis and Cannes, France.

[Generating2003] Generating tests from requirements tool.
http://www.irisa.fr/triskell/results/ISSRE03/UCTSystem/

[Gutierrez2004] Gutiérrez, J.J., Escalona, M.J., Mejías, M., Torres, J. 2004.
Comparative Analysis of Methodological proposes to systematic generation of
system test cases from systems requirements. Proceeding of the 3rd workshop on
System Testing and Validation. pp 151-160. Paris, France.

[Hartman2004] Hartman A., Nagin A. 2004. The AGEDIS Tools for Model Based
Testing. ISSTA04. Boston, Massachusetts .

[Heumann2002] Heumann , Jim, 2002. Generating Test Cases from Use Cases.
Journal of Software Testing Professionals.

[Jacobs2004] Jacobs, F. 2004. Automatic generation of test cases from use cases.
ICSTEST'04. Bilbao. Spain.

[Nebut2003] Nebut, C.F., et-al. 2003. Requirements by contract allow automated
system testing. Procedings of the 14th International symposium of Software
Reliability Engineering (ISSRE'03). Denver, Colorado. EEUU.

[Offutt1999] Offut, A., et-al. 1999. Criteria for Generating Specification-based Tests.
ICECCS '99. Las Vegas, Nevada.

[Ryser2003] J. Ryser, M. Glinz 2003. SCENT: A Method Employing Scenarios to
Systematically Derive Test Cases for System Test. Technical Report 2000/03,
Institut für Informatik, Universität Zürich.

	textHeader_Forum/022b-CAiSE05Forumpaper130:
	pdf_0: 125
	pdf_1: 126 J. J. Gutiérrez, M. J. Escalona, M. Mejías, J. Torres
	pdf_2: 127
	pdf_3: 128 J. J. Gutiérrez, M. J. Escalona, M. Mejías, J. Torres
	pdf_4: 129
	pdf_5: 130 J. J. Gutiérrez, M. J. Escalona, M. Mejías, J. Torres

	textFooter_Forum\022b-CAiSE05Forumpaper130:
	pdf_0: Proceedings of the CAiSE'05 Forum - O. Belo, J. Eder, J. Falcão e Cunha, O. Pastor (Eds.)
© Faculdade de Engenharia da Universidade do Porto, Portugal 2005 - ISBN 972-752-078-2

