
Determination of the Next Release of a Software
Product: an Approach using Integer Linear

Programming�

J.M. van den Akker, S. Brinkkemper, G. Diepen, J. Versendaal

Institute for Information and Computing Sciences,
Universiteit Utrecht, P.O. Box 80089, 3508 TB Utrecht, The Netherlands.
e-mail: {j.m.vandenakker, s.brinkkemper, g.diepen, j.versendaal}@cs.uu.nl

Abstract. Selection of the requirements for the next release of a soft-
ware product is a inherently complex task due to the high volume of
intricate requirements and to the varied interests of the stake holders
involved. In this paper we apply integer linear programming techniques
to aid requirements managers of product software companies in release
planning. The applied techniques take candidate requirements, estimated
revenue per requirement (or combination of requirements), and available
resources as input. Planning suppleness is added by way of allowing flex-
ibility in team composition, team transfers, extension of deadlines and
hiring external resources. Through experiments the application of the
proposed approach is demonstrated with real life data. Future additions
to the model are identified, as well as improved validation.

1 Planning the next release

Companies developing product or embedded software face challenges in deter-
mining the set of requirements for an upcoming release. Confronted with hun-
dreds, if not thousands, of requirements proposed by users, potential customers,
marketing and sales managers, architects and software engineers, it is far from
trivial to select those requirements that add most value to the product. Different
stake holders in the planning process may each have their own preferred content
in view of the projected revenue estimations and required development efforts.
In Figure 1 the requirements management process is depicted in relation to the
development of a release. The picture is derived from Natt och Dag et al. (2005)
and shows the practice Baan (an enterprise resource planning software company,
now part SSA Global). We use this process to describe the context of the release
planning process.

Market requirements represent the wishes from existing and potential cus-
tomers of the software product. Product requirements are defined as generic
customer wishes that can be included in the software solution to be developed

� Supported by BSIK grant 03018 (BRICKS: Basic Research in Informatics for Cre-
ating the knowledge Society)

Fig. 1. The requirements management process related to development management

by the software vendor. Release initiation is a formal document triggering the re-
lease of a development project. The release definition contains the list of product
requirements to be developed in the upcoming release. Conceptual solutions in
requirements management are used to sketch the business context of one or more
product requirements, and help developers to view the ‘big picture’ of the de-
velopment of a product requirement. Finally, the selected product requirements
will be developed into software components.

Provided the set of all product requirements, many aspects influence the def-
inition of an optimal set of requirements for a next release. For example, the
importance or business value of the requirement, personal preference of certain
customers and other stake holders, penalty if not developed, cost of development
in man-days, development lead-time, requirement volatility, requirement depen-
dencies, ability to reuse, and requirements quality (e.g. Berander and Andrews
(2005); Firesmith (2004); Ruhe et al. (2003); Natt och Dag et al. (2004); Natt och
Dag et al. (2005)). So we address what an adequate set of product requirements
is for an upcoming release of the software, in the context of business continuity
of the product software company.

We develop and demonstrate an optimization technique, based on Integer
Linear Programming (ILP) (see e.g. Wolsey (1998) for a general introduction on
ILP; see e.g. Van den Akker, et al. (1999A) and Van den Akker, et al. (1999B)
for application of ILP in the area of scheduling), to support software vendors
in determining the next release of product software. Our technique is based on
the assumption that a release’s best set of requirements is the set that results
maximum projected revenue against available resources in a given time period.
We take into account practical aspects, including the total list of requirements,
whether or not requirements are dependent on one another, a requirement’s pro-
jected revenue, and a requirements resource claim per development team. To
further increase its application in practice, we enhance our technique with man-
agerial steering mechanisms, i.c. enabling of team transfers, conceding release

deadline extension, allowing extra resources, and more. By introducing these
aspects and managerial steering mechanisms into ILP models for the release
composition process we extend the work of Jung (1998), who also applied linear
programming techniques in the context of release planning.

Our approach is original in three ways. Firstly, we include a unique set of
aspects, among others needed team capacity per requirement. Secondly, we in-
troduce unique yet practical managerial steering mechanisms that can help prod-
uct managers and development project managers in release planning: enabling
of team transfers, and deadlines and extra resources. Thirdly, we apply ILP
techniques in a unique way.

2 Integer linear programming models for release planning

Let {R1, R2, . . . , Rn} be the set of candidate requirements. For each requirement
Rj we assume we can estimate its revenue vj . Further assume that we have a
fixed development period. We have to find the subset of requirements for the
next release such that the revenue is maximal and the available capacity is
not exceeded. We denote our development period by T and define d(T) as the
number of working days in the development period. Moreover, let Q be the
number of persons working in the development teams of the company. Then, the
available capacity equals d(T)Q man-days. Moreover, we have an estimate aj
of the amount of man days needed for the implementation of requirement Rj .
We model the requirements selection problem in terms of binary variables xj
(j = 1, . . . , n), where

xj =
{

1 if requirement Rj is selected;
0 otherwise.

The problem can be modeled as an ILP problem in the following way:

max
n∑
j=1

vjxj

subject to
n∑
j=1

ajxj ≤ d(T)Q, (1)

xj ∈ {0, 1}, for j = 1, . . . , n.

If the company decides that, in any case, some of the requirements have to be
included in the new release, this can be achieved by fixing the corresponding
variables xj at 1, i.e. adding the equation xj = 1 to the above model. If the
number of working days in the planning period is different for different persons
the total capacity is given by

∑
dp(T), where dp(T) is the number of working

days of person p in period T and the sum is over all persons in the company.
Especially in larger product software companies there are different develop-

ment teams, each with their own specialization. Let m be the number of teams

and suppose team Gi (i = 1, . . . ,m) consists of Qi persons. We assume that the
implementation of requirement Rj needs a given amount aij of man days from
team Gi (i = 1, . . . ,m). Now the team capacities can be included by replacing
constraint 1 by:

n∑
j=1

aijxj ≤ d(T)Qi, for i = 1, . . . ,m. (2)

Note that for m = 1, this coincides with the model for one pool of developers.
By allowing people to work in a different team, there is more flexibility that

can increase revenue. We assume that if a person from team Gi works in another
team Gk his contribution in terms of man days is multiplied by αik, i.e. if the
person works one day this contributes only αik to the work delivered by team
Gk. Besides the variables xj , we now define the variables yik as the number man-
days from team Gi deployed in team Gk. Let mi be the number of man-days in
team Gi. Including transfers results in the following model:

max
n∑
j=1

vjxj

subject to
n∑
j=1

aijxj ≤ yii +
∑
k:k �=i

αkiyki for , i = 1, . . . ,m, (3)

m∑
k=1

yik = mi, for i = 1, . . . ,m, (4)

xj ∈ {0, 1}, for j = 1, . . . , n,
yik nonnegative and integral, for j = 1, . . . , n.

3 Experimentation

As a proof-of-concept we implemented a prototype of a requirements selection
system. For testing the program different data sets were used. The different sets
were: small with 9 requirements and 3 teams, AA, BB, CC with 24 requirements
and 17 teams and different ratios of available and total required capacity and
master with 99 requirements and 17 teams. All of the used data sets are available
online for research purposes at http://www.cs.uu.nl/~diepen/ReqMan.

The following table presents the total revenues for the optimal requirement
selection for the different problems that were tested.

Data Pool No-X-Teams X-Teams
small 182 147 182
AA 700 510 685
BB 810 570 790
CC 835 670 810
master 46220 42730 44810

Table 1. Revenue values for the three types of data sets

The first column in Table 1 represents the scenario of a development organi-
zation consisting of one big pool of developers. In practice, however, there will be
different teams (especially with larger development organizations); the second
column therefore depicts the scenario with multiple teams in the development
organization (with no transfers allowed). The last column depicts the scenario
with multiple teams, and team transfers allowed (αik = 0.7 for all i �= k). The
case with one big pool of developers leads to the highest revenue. Introducing
multiple teams will decrease total revenue. From the theory this is explained by
the fact that this model imposes stricter conditions in assigning labor to require-
ments. However, allowing transfers between teams (for αik = 0.7 for all i �= k)
again increases flexibility and hence revenue.

4 Extensions to the base model

Until now we have assumed that all requirements can be implemented indepen-
dently Suppose that the functionality imposed by a certain requirement can only
be effective if one or more other requirements are also implemented, say if we
select requirement Rj we also have to select Rk. In the model, we have to ensure
that

xj = 1 ⇒ xk = 1.

This can be done by extending our model with the linear inequality

xj ≤ xk. (5)

Note that if two requirements are dependent in the sense that they cannot be
realized separately from each other, this can be handled by considering them as
one requirement.

Until now, we assumed that the total revenue of a release is the sum of the
revenues of the individual requirements included in the release. However, the
revenue may be larger if some collection of requirements is completely realized.
A typical example is when these requirements together provide a ‘package’ in
some area within the software product. We can include this in our model by
using a binary variable xS indicating if the set S is completely realized. Further
details are omitted for reasons of brevity.

To increase the capacity for the development of the next release, the company
may consider to hire external personnel in some of the development teams. In our
model, this can be included by to adding the external capacity to the right-hand
side of constraints (2) and including the cost in the revenue function. Again, we
omit further details for reasons of brevity. Another possibility is postponing the
delivery date for the new release. This can be included in a similar way.

5 Conclusions and future research

We have shown that ILP models and methods can be used in flexible release
planning by implementing a subset of the managerial steering mechanisms in a

prototype tool. ILP techniques can be used to help product and requirements
managers in software release planning. In this paper we specifically optimized
revenues against available resources in a given time period. Scenarios dealing
with one pool of developers, different development teams, including the possi-
bility of transfer of developers between teams are discussed and demonstrated
through experimentation. Moreover a number of extensions were modeled.

Our approach simplified the task of computing the set of release require-
ments to a great extend. We aim for more support during release development
as in the dynamics of the project workload turns out to be overestimated or
underestimated, and that the revenue projections are changing due to a chang-
ing market. We further plan to test the validity of our model through multiple
business cases. In such cases an appropriate approach is to use our model for
release planning on the one hand, and compare its outcome with the company’s
proprietary way of release planning. We finally note that our approach supports
the release planning at the start of the release planning process. In practice the
value of requirements may evolve over time, as the release is being developed;
dealing with this is a further extension of our current approach.

References

1. van den Akker, J.M., C.P.M. van Hoesel, and M.W.P. Savelsbergh (1999). A poly-
hedral approach to single-machine scheduling problems. Mathematical Program-
ming 85, 541-572.

2. van den Akker, J.M., J.A. Hoogeveen, and S.L. van de Velde (1999). Parallel ma-
chine scheduling by column generation. Operations Research, Vol. 47, No. 6, 862-
872.

3. Berander, P. and Andrews, A. (2005), Requirements Prioritization. In: Engineering
and Managing Software Requirements, A. Aurum and C. Wohlin (eds.), Berlin,
Germany, Springer Verlag (Forthcoming).

4. Jung, H.-W. (1998), Optimizing Value and Cost in Requirements Analysis, IEEE
Software, July/August 1998 pp 74-78.

5. Natt och Dag, J., Gervasi, V., Brinkkemper, S. and Regnell, B. (2005), A Lin-
guistic Engineering Approach to Large-Scale Requirements Management, IEEE
Software, Special Issue on Requirements Engineering, vol 22, no 1, pp 32-39, Jan-
uary/February 2005.

6. Natt och Dag, J., Gervasi, V., Brinkkemper, S. and Regnell, B. (2004), Speeding
up Requirements Management in a Product Software Company: Linking Customer
Wishes to Product Requirements through Linguistic Engineering. In: Proceedings
of the 12th International Requirements Engineering Conference, N.A.M. Maiden
(Ed.), IEEE Computer Science Press, pp 283-294, September 2004.

7. Ruhe, G., Eberlein, A., Pfahl, D. (2003), Trade-off Analysis for Requirements Selec-
tion, International Journal of Software Engineering and Knowledge Engineering,
vol 13, no 4, pp 345-366.

8. Wolsey L.A. (1998) Integer programming Wiley-Interscience Series In Discrete
Mathematics and Optimization.

	textHeader_Forum/022a-CAiSE05Forumpaper126:
	pdf_0: 119
	pdf_1: 120 J.M. van den Akker, S. Brinkkemper, G. Diepen, J. Versendaal
	pdf_2: 121
	pdf_3: 122 J.M. van den Akker, S. Brinkkemper, G. Diepen, J. Versendaal
	pdf_4: 123
	pdf_5: 124 J.M. van den Akker, S. Brinkkemper, G. Diepen, J. Versendaal

	textFooter_Forum\022a-CAiSE05Forumpaper126:
	pdf_0: Proceedings of the CAiSE'05 Forum - O. Belo, J. Eder, J. Falcão e Cunha, O. Pastor (Eds.)© Faculdade de Engenharia da Universidade do Porto, Portugal 2005 - ISBN 972-752-078-2

