
Software Re-Documentation Process and Tool

Nicolas Anquetil, Kathia M. Oliveira, Anita G.M. dos Santos, Paulo C.S. da
Silva jr., Laesse C. de Araujo jr., and Susa D.C.F. Vieira

UCB – Catholic University of Braśılia, Braśılia, Brazil
{anquetil,kathia}@ucb.br

Abstract. Researchers and professionals know the importance of the
documentation for the efficient maintenance of legacy software. Unfor-
tunately, many legacy systems lack this important artifact. Maintenance
then becomes a difficult process where software engineers must study
and understand the system over and over again. A possible solution out
of this situation is to re-document the legacy system. In this article we
will present a software re-documentation process, its main features, and
constituting activities. We will also present a tool we are developing to
automate this process as much as possible. This tools runs in Java and
is currently designed for Visual Basic legacy systems.

1 Introduction

It is an accepted fact that legacy software systems are generally poorly docu-
mented. This fact makes it extremely difficult to understand and maintain such
systems. Redocumenting them could be a great help to keep them “alive”. In this
paper, we describe a redocumentation process we designed and our first efforts to
automate it. A tool, called Redoc, will be described which currently automates
two of the activities of our process for legacy systems written in Visual Basic.

In the following sections, we will first present the software redocumentation
process (section 2). Then we discuss some existing approaches to redocumenta-
tion with a focus on existing tools (section 3). In section 4, we present the Redoc
tool. And finally we propose our conclusions and possible future work.

2 The Redocumentation Process

We were called to help redocumentating the main system of an organization. for
this, we had to define a redocumentation process. Common sense imposed that
the process should have the three following characteristics:

– Reverse engineering process: A redocumentation process should be based on
a bottom-up approach, taking advantage of the existing code.

– Light weight documentation: To lower the costs and maximize the chances
of the recreated documentation being maintained afterward, we will follow
Pressman’s recommendation [4, p.807] to limit it to the minimum required.

– Good quality/price ratio: We tried to favor documentation artifacts that
could be produce automatically or semi-automatically and still offered valu-
able information for maintenance.

As illustrated in Figure 1, our process is composed of three main phases
which include seven activities:

Preparation Phase: analyze the state of the software and its documentation.
Planning Phase: decide what parts of the system should be redocumented

first and what will be the general approach.
Redocumentation Phase: recreate the various documents, it constitutes the

core of the redocumentation process.

System
Assessment

System
Inventory

Redocumentation
Planning

PLANNINGPREPARATION

High Level View
Definition

Cross Reference
Extraction

Subsystems
Definition

Low Level
Documentation

REDOCUMENTATION

Fig. 1. Activities of the Redocumentation Process (black box: activity automated1,
gray box:activity is partially automated)

To keep the documentation to a minimum, we decided to do mostly without
what we call the intermediate documentation which, during development, would
be generated during the analysis and design activities.

We try, in the process, to concentrate on what we call the high level and the
low level documentation. Traceability between these two levels is guaranteed by a
set of cross references (e.g. between implemented funcionalities and implementing
routines) extracted automatically.

There are two activities to the Preparation phase:

System Inventory: The goal of the first activity is to get an idea of the size
of the problem and provide basic information needed in the following activ-
ities. It answers questions like: What exactly constitutes the system? What
is known about it? Where to find these informations and new ones? The
inventory is performed along three main axes: (i) software components and
functionalities, (ii) documentation and (iii) people.

System Assessment: The second step consists in assessing the level of confi-
dence one can have in the code, the documentation and the other sources
of information. This is useful to plan the redocumentation in itself and the
maintenance in general.

1 The automation of some activities will be discussed in section 4

There is only one activity to the Planning phase:

Redocumentation Planning: This activity is the prelude to the redocumen-
tation work in itself. It consists in defining how the redocumentation will
be performed and what are the priorities. The planning will be based on
results of the preceding phase. Other important points to consider are the
maintenance load expectancy and the strategic evaluation of the importance
of each part of the system.

There are four activities to the Redocumentation phase:

High Level View Definition: In this activity, one must document a first high
level view of the system: functionalities, interaction with other systems or
specific hardware, etc. Each functionality listed in the System Inventory
should be shortly described.

Cross References Extraction: This activity will result in the identification of
cross references: “routine to routine” (call graph), “routine to data” (CRUD
table), “data to data” (data model), and “functionality to routine”. It will
be important to do such things as impact analysis, feature location, etc.

Subsystems Definition: This activity will result in a top down view of the sys-
tem, its subsystems and their components. If the architectural decomposition
is known and agreed upon by all, each subsystem listed in the System In-
ventory must be documented, describing its objective, and what components
and funcionalities it contains. In case there is no agreed upon decomposition,
we propose to create one using some clustering algorithm (e.g. [1,3,7]).

Low Level Documentation: In this final activity, each independent item iden-
tified during the planning will be commented. This activity is to a large
extent a manual one, the software engineers must consider each item inde-
pendently, analyse it and document it.

3 Existing Approaches to Software Re-Documentation

Redocumentation is mainly a problem for large systems where the size alone is
already a significant complexity factor. This is one of the reason why there has
been a lot of work on automation of this task over the years.

Freeman and Munroe, in [2], discuss some requirements for a redocumenta-
tion tool and what documents should be produced during redocumentation.

There already exists some tools to help redocumenting. The simplest would
be the tools to extract some documentation from the source code (e.g. javadoc).
These tools extract the signature of classes, methods, etc. and sometimes also
format comments.

Rajlich [5] proposes a tool to incrementally generate an hypertext documen-
tation of a software as it is maintained. But there is no specific process for
redocumentation per se.

Rigi [8] is a reverse engineering environment to help understand, restructure,
and visualize the components of a legacy system. It could help in a redocu-
mentation effort, but it is primarily a program comprehension tool and it does

not, in itself, specify how one goes about redocumenting. A more organizational
approach is adopted in [6], where Tilley et al. specify some requirements for
re-documentation and show how Rigi could help in producing it. However the
work does not specify a process (sequence of steps).

4 A Software Re-Documentation Environment

We started to develop a software environment to support software engineers
in the execution of the various activities of the redocumentation process. The
“Redoc” environment has two goals:

– First, it should guide its users through the execution of the various activities,
allowing them to register the result of these activities.

– Second, it should provide automate as much as possible the activities of the
process that may be automated.

The Redoc environnement is still in an early stage. It is developed in java
using the graphical library Swing. It currently parses systems written in Visual
Basic and implements the two activities of the software redocumentation process
which may be automated (in black in Figure 1).

In the System Inventory activity, one must list the components of the sys-
tem, and its functionalities. Since Visual Basic (VB) is Object Oriented2, the
components will be classes and their methods. One must also list the tables that
make up the system.

The Redoc environment uses javacc3 to parse the Visual Basic code:

– Extraction of classes and methods is straightforward, they are readily avail-
able in the language grammar.

– To discover all the functionalities implemented in the system, we use the
menus of the application. This is possible because, in VB, the graphical
interface is built through a tool which generates the code in a standardized
way. Other languages may raise more difficulties.

– To identify the tables used in the system, we also parse the code to identify
the SQL queries it contains and to what tables they refer. Usually the SQL
queries are manually programmed and do not follow the same strict patterns
as graphical instructions do. They may also be dynamically constructed in
the program from data entered by the user. This would make them impossible
to be automatically analyzed in the general case. Fortunately, in practice,
SQL queries are dynamic only with regard to the values of the columns, and
not the tables accessed. This allows our approach to work in most cases.

Figure 2, left part, presents a snapshot of the inventory window. The window
shows the functionalities, the classes and their methods, and the tables. All these
informations are extracted automatically. The rigth part of the figure presents
a snapshot of the window to enter (manually) a new contact person. A similar
window exist for documents.
2 Actually, VB is not truly OO, but it does contain classes, methods . . .
3 https://javacc.dev.java.net/

Fig. 2. Result of the automated System Inventory for a system in Visual Basic (left)
and a window to enter a new contact person that may help in the redocumentation
process (right)

These two examples illustrate the two goals of the environment: automating
some activities for the user (left part of the picture), and keeping track of the
realization of the activities and registering their result (right part).

The second automated activity is the Cross Reference Extraction. There are
four types of cross references:

Data X data: The data X data cross-reference corresponds to finding the re-
lations between the tables used in the system. This is done, again, parsing
the SQL queries to detect the joins made between tables.

Routine X Data: The routine X data cross-reference is easy to compute once
the table inventory problem is solved. Knowing what tables are accessed
from the SQL queries, it is simple to know in what method this query occurs
and therefore which methods access which tables. A bit more difficult is to
built a CRUD table where each access is marked as Create, Read, Update,
or Delete. For this, the tool analyzes the first word of each query (insert,
select, update, or delete).

Routine X routine: The routine X routine cross-reference is a simple call
graph among the methods and offers no special difficulties.

Funcionalidade X routine: The Functionalities X routine cross-reference con-
sists in identifying what routines implements a functionality. As we identify
functionalities from the application menus, it is a simple matter to identify
the starting point of a functionality and then compute transitive closure
on the call graph from that point. However, there is more to it than that,
because a functionality will usually call one or several windows where the
actual execution of the functionality will be triggered by clicking a button.

5 Conclusion and Future Work

It is generally accepted in software engineering that most of legacy software
suffer from a lack of up-to-date documentation. Redocumentation is the natural
solution to help maintaining these software systems. However, there is little work
on how this can be done and what tools we need to actually redocument.

In this article, we presented a process for software redocumentation and the
steps we are taking to automate it as much as possible. We are developing a
software redocumentation environment that will (a) help people register the
results of the various activities of the process, and (b) help people gathering the
information they need by automating some activities.

Two activities (System Inventory and Cross-Reference Extraction) have al-
ready been automated and we are now working on a new project to help automate
a third activity (System Quality Assessment)

Acknowledgment

This work is part of the “Knowledge Management in Software Engineering” project,

which is supported by the CNPq, an institution of the Brazilian government for scien-

tific and technological development.

References

1. Nicolas Anquetil and Timothy C. Lethbridge. Experiments with Clustering as a
Software Remodularization Method. In Working Conference on Reverse Engineer-
ing, pages 235–255. IEEE, IEEE Comp. Soc. Press, Oct. 1999.

2. Robert M. Freeman and Malcolm Munro. Redocumentation for the maintenance
of software. In Proceedings of the ACM 30th Annual Southeast Conference, pages
413–16. ACM, ACM Press, Apr 1992.

3. Arun Lakhotia. A unified framework for expressing software subsystem classification
techniques. J. of Systems and Software, 36:211–231, Mar 1997.

4. Roger S. Pressman. Software Engineering: A Practitioner’s Approach. McGraw-Hill,
5th edition, 2001.

5. Václav Rajlich. Incremental redocumentation using the web. IEEE Software,
17(5):102–6, Sep 2000.

6. Scott R. Tilley. Documenting-in-the-large vs. documenting-in-the-small. In Pro-
ceedings of CASCON’93, pages 1083–90. IBM Centre for Advanced Studies, Oct.
1993.

7. Theo A. Wiggerts. Using Clustering Algorithms in Legacy Systems Remodulariza-
tion. In Working Conference on Reverse Engineering, pages 33–43. IEEE, IEEE
Comp. Soc. Press, Oct. 1997.

8. Kenny Wong, Scott R. Tilley, Hausi A. Müller, and Margaret-Anne D. Storey. Struc-
tural redocumentation: A case study. IEEE Software, 12(1):46–54, Jan 1995.

	textHeader_Forum/019-319-CFP-Nicolas-et-al:
	pdf_0: 95
	pdf_1: 96 Nicolas Anquetil, Kathia M.de Oliveira, Anita G.M. dos Santos, Paulo C. S.Silva Jr. ...
	pdf_2: 97
	pdf_3: 98 Nicolas Anquetil, Kathia M.de Oliveira, Anita G.M. dos Santos, Paulo C. S.Silva Jr. ...
	pdf_4: 99
	pdf_5: 100 Nicolas Anquetil, Kathia M.de Oliveira, Anita G.M. dos Santos, Paulo C. S.Silva Jr. ...

	textFooter_Forum\019-319-CFP-Nicolas-et-al:
	pdf_0: Proceedings of the CAiSE'05 Forum - O. Belo, J. Eder, J. Falcão e Cunha, O. Pastor (Eds.)
© Faculdade de Engenharia da Universidade do Porto, Portugal 2005 - ISBN 972-752-078-2

