
Ontology Based Business Process Description

Agnes Koschmider and Andreas Oberweis

Institute of Applied Informatics and Formal Description Methods, Universität Karlsruhe,
76187 Karlsruhe, Germany

{koschmider,oberweis}@aifb.uni-karlsruhe.de

Abstract. Coupling of cross-organizational business processes in electronic
markets is a difficult and time-consuming task. In practice business processes
are geographically distributed which makes it particulary difficult for business
partners to coordinate their supply chains and customer relationship manage-
ment with business units. By using formal description languages such as Petri
nets for modeling inter-organizational business processes, purely syntactic
composition problems of distributed business environments can be solved.
However, the missing semantic representation of Petri nets can hamper the in-
terconnectivity of business processes. Usually, several business partners, even
if they share similar demands, have their own specific vocabularies. By repre-
senting business processes with Petri nets in combination with the Web Ontol-
ogy Language (OWL) our approach provides flexibility, ease of integration and
a significant level of automation of loosely coupled business processes even if
they do not share their respective vocabularies.

1 Introduction

Coupling of cross-organizational business processes in electronic markets is a difficult
and time-consuming task. The integration of different business partners into one sin-
gle value creation chain demands enormous coordination activities. Business proc-
esses of different companies have to fit in another organizational environment and
they have to complement each other. By using Petri nets [26] for modeling inter-
organizational business processes, purely syntactic composition problems of distrib-
uted business environments can be solved. Moreover, Petri nets obey an operational
semantics that facilitates composition, simulation, and validation of business proc-
esses. However, a missing semantic representation of Petri net components can ham-
per the interconnectivity of business processes. Usually, several business partners,
even if they share similar demands, have their own specific vocabularies. Further-
more, the rapid growth of electronic markets´ activities demands flexibility and auto-
mation of involved systems in order to facilitate the interconnectivity of business
processes and to reduce communication efforts. Semantic markup of business process
models and automated reasoning is required. An effective approach for improving
distributed systems communication can be provided by metadata-descriptions of the
related business objects. In order to reduce negotiation efforts, these metadata-
descriptions should be interpretable by machines. A necessary prerequisite for ma-

chine-interpretable metadata and (semi-)automated system cooperation is the avail-
ability of detailed knowledge about the underlying business process. Furthermore, not
only the syntax but also the application semantics of business process describing
metadata must be considered. The syntax defines the structure of data and can be
represented in XML notation. The Petri Net Markup Language (PNML) [28] is a
popular proposal of an XML based interchange format for Petri nets. Semantic Web
languages such as the Resource Description Framework (RDF) [30] and the Web
Ontology Language (OWL) [29] were proposed to make it particularly easy to model
data in a machine-interpretable form. Based upon RDF, a resource description lan-
guage for modeling metadata, OWL aims to describe semantic metadata in a com-
puter-interpretable markup. Thus, OWL may enable automation of a variety of tasks
currently being performed "manually" by human agents [2].

To make data computer-interpretable has become ever more important since recent
Web Services standards have paved the way for discovery and matching of semanti-
cally enriched data and services. Process modeling languages such as BPML [1],
WSFL [18] and more recently BPEL4WS [5] enable users to compose and orchestrate
services to perform certain tasks. But these modeling languages do not yet support
analysis methods to verify that business processes meet certain requirements. In order
to allow flexible automation and composition of semantic representations of web
services, OWL-S (OWL for Services) was proposed [24]. Due to the lack of formal
semantics in the OWL-S 1.0 specification, McIllraith and Narayanan use Petri nets to
test and verify the composition of Web Services based on OWL-S [21]. A lot of re-
search is currently being done on automated provision and reasoning of Web Services
[4, 21, 27]. Petri nets can be used to concisely represent and analyze distributed busi-
ness processes and are utilized to model inter-organizational processes. Moreover,
Petri nets are suitable both for modeling business processes, which are to be imple-
mented as web services, and their coordination [17]. But for interconnectivity and
business process coupling executed by machines, semantic representation of business
units remains a challenge and has to be addressed by research. In summary, our objec-
tive is to provide flexibility, ease of integration and a significant level of automation
of loosely coupled business processes even if they do not share their respective vo-
cabularies.

The structure of this paper is as follows. Firstly, we recall the main notions of Petri
nets. Secondly, we present a novel process ontology for Petri nets. Thirdly, we eluci-
date how the petri net ontology can be realized with OWL elements and introduce
shortly into the area of ontology mapping techniques and their task to work around
ambiguity issues caused by the use of different ontology elements. The development
of a tool for modeling ontology based Petri nets is described in the next section. Fi-
nally, we discuss open problems and give an outlook on future work.

2 Distributed Business Processes

To concisely represent and analyze distributed business processes different variants
of Petri nets have been proposed [26]. Moreover, Petri nets can be utilized to model
inter-organizational processes [16]. Formally, a Petri net is a bipartite graph consist-

ing of places (drawn as circles) and transitions (drawn as rectangles). Places and
transitions may be connected by directed arcs. Transitions are interpreted as dynamic
elements and represent actions or activities of a process. Conditions for the execution
of activities are described by places. In elementary Petri nets (place/transition nets)
tokens representing anonymous objects define the process flow. When a transition
fires tokens are removed from its input places and tokens are inserted into its output
places.

For modeling business processes and workflows with identifiable objects high-
level Petri nets such as predicate-transition nets (Pr/T nets) [10], Coloured Petri nets
(CPN) [15] or XML nets [16] have been proposed. In high-level Petri nets tokens in
places represent objects with individual properties. In Pr/T nets places are regarded as
relation schemata which define admissible markings of the respective place. A mark-
ing of a place is given as a relation of the respective schema, i.e. a set of tuples. When
a transition fires, tupels are removed from the transition's input places and inserted
into the transition's output places according to the respective arc inscriptions. Figure 1
shows the Pr/T net representation of product order and delivery processes of two
business partners.

q2=q+q1

receive

DELIVERY

STOCK

CONFIRMATION

<c,a,q> <c,a,q,p>

<a,q1> <a,q2>

STOCK
Article Quantity

A1 25000

DELIVERY
Client Article Quantity

TMG AG A1 20000

CONFIRMATION
Client Article Quantity Proceesnr

TMG AG A1 20000 157

n2=n1+1

enter

ORDER

ORDERNR

VERIFICATION <c,a,q>

<n2>
<n1>

<c,a,q,n1>

ORDER
Customer Article Quantity

Smith
Miller

A1
A3

200
150

ORDERNR
Number

42

VERIFICATION
Customer Article Quantity Number

Smith A1 100 42
Miller A3 150 42

Business process I

Business process II

Fig. 1: Pr/T net representation of business processes (excerpts)

 Petri nets comprise an operational semantics for processes based on a formal inter-
pretation of the net components and their dynamic behavior. However, collaboration
between business partners requires that there is a common understanding of the real
world meaning of the places and transitions. Furthermore, to facilitate semantic inter-
connectivity between business processes (semi)automated system cooperation is de-
manded. For this reason we describe an ontology based extension for business proc-
ess models in the following section.

3 An Ontology for Business Processes

Our approach is based on defining semantic metadata for business processes modeled
with Petri nets. This makes it particularly easy to automate the communication among
process-implementing software components. Our starting point is a concise specifica-
tion of Petri net elements with the OWL elements Classes, together with the taxo-
nomic construct SubClassesOf and Properties. Every individual in the OWL world is
a member of the class owl:Thing. Thus each user-defined class is implicitly a sub-
class of owl:Thing. In the next step we describe some constructs of the ontology
modeled with OWL. If software components of different business partners should
interact it must be known what is represented by a place, the meaning of objects con-
tained in places and their relation to other objects.
 Figure 2 shows the hierarchy of core elements of our novel Petri net ontology. The
Petri net structure comprises the elements place, transition and arc, thus we categorize
the Petri net elements in nodes (place and transition) and arcs (fromPlace and to-
Place). We express this coherency by adding to the Petri net class the properties has-
Node and hasArc. The main Petri net elements are modeled by corresponding classes.
The class transition has as property a place reference (= placeRef). The subclass of
transition is the class logicalConcept with the properties hasOperation and hasAttrib-
ute. In Figure 1 the transition receive of Business process I is described by the Op-
eration to sum up the attributes q and q1 to q2. In contrast, places are defined by
transition reference (transRef) and their appropriate marking. Petri net marking de-
pends on the Petri net type. In elementary Petri nets such as place/transition nets
places may contain several tokens and a capacity limit representing the maximal ca-
pacity of a place. (place – hasMarking – number). A place of a condition/event net
contains one or zero tokens, thus the marking is indistinguishable. The marking of a
place in a Pr/T net is regarded as a set of tuples (place – hasMarking – individual-
DataItem). As demonstrated in Figure 1 the marking of places are sets of individual-
DataItem with attributes and attribute values. To represent this structure of elements
in our ontology we add to the class individualDataItem the property hasAttribute. The
arcs between places and transitions describe different meaning, thus we distinguish
between two types of arcs. The first one is directed from place to transition (from-
Place) and the other from transition to place (toPlace). An arc connecting a transition
to a place indicates an insert operation, inserting for example attribute values into the
transition´s output place. An arc connecting a place to a transition indicates a delete
operation. In Figure 2 we added to the arcs between two classes cardinality restric-
tions, this describe quantitative dependencies between of two classes, for example a
Petri net consists of 1 to * places.

Petri net
hasNode
hasArc

place

hasMarking
transRef

fromPlace

hasInscription

logicalConcept
hasOperation
hasAttribute

number
hasToken
hasCapacityLimit

indistinguishable
hasToken

individualDataItem
hasAttribute

hasInscription

toPlace

insert

hasAttribute

delete

hasAttribute

transition

placeRef

attribute

hasValue

value

11..* 1
0..*

1
1..*

1 0..*

1
1..*

1

1..*

1

1..*

1

1..* 11..*

1 1

generalization

composition

 Fig. 2: An ontology for Petri nets – hierarchy of core Petri net concepts

Figure 2 shows the core concepts of the Petri net ontology. Note that an ontology
language defines more constructs, e. g. specific properties, as mentioned above. In the
next section we will describe the elements of the ontology in detail.

 4 Realization

 The OWL language provides three increasingly expressive sublanguages (OWL
Lite, OWL DL and OWL Full). OWL DL (OWL Description Logics) places a number
of constraints on the use of the OWL language constructs. In order to significantly
automate the composition of loosely coupled business processes even with non-shared
vocabulary we are using OWL DL. The sublanguage OWL Lite only uses some of the
OWL language components, e.g. classes can only be defined in terms of named su-
perclasses (superclasses cannot be arbitrary expressions), and only certain kinds of
class restrictions can be used. OWL Full is not yet supported by reasoning software.
With OWL DL determinable reasoning in ontologies is provided by SHIQ(D) [13].

 The Web Ontology Language defines different properties such as Object Proper-
ties, (link an individual to an individual), Data Properties (link an individual to an
XML Schema data type value or to an rdf literal), Domains and Ranges (properties
link individuals from one domain to individuals from another domain), Datatypes and
Restriction Types (Quantifier Restrictions, hasValue Restrictions and Cardinality
Restrictions) to build an ontology.
 The SubClasses place and transition of the Petri net class have to be defined as
Disjoint Classes such that a single individual cannot be an instance of more than one
of these two classes. The disjointness of a places and transitions can be expressed
using the owl:disjointWith constructor:

<owl:Class rdf:about="#transition">

<owl:disjointWith rdf:resource="#place"/>
<rdfs:subClassOf rdf:resource="#PetriNet"/>

</owl:Class>

 Figure 2 shows that the property hasAttribute is included in the classes logical-
Concept, individualDataItem, delete and insert. To express this coherence OWL
provides the owl:unionOf construct. The OWL-code is as follows:

<owl:ObjectProperty rdf:about="#hasAttribute">

 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#individualDataItem"/>
 <owl:Class rdf:about="#delete"/>
 <owl:Class rdf:about="#insert"/>
 <owl:Class rdf:about="#logicalConcept"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>
 <rdfs:range rdf:resource="#attribute"/>

</owl:ObjectProperty>

 For modeling inverse properties OWL proposes the OWL Property Characteris-
tics owl:inverseOf. For a given individual, there can be at most one individual
related to that individual via the property.

transRef

placeRef

transitionplace

Fig. 3: owl:inverseOf Property

 The description of the inverse property shown in Figure 3 including the range and
domain of the ObjectProperty is as follows:

<owl:ObjectProperty rdf:ID="transRef">
 <owl:inverseOf>
 <owl:ObjectProperty rdf:ID="placeRef"/>
 </owl:inverseOf>
 <rdfs:range>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">

 <owl:Class rdf:about="#toPlace"/>
 <owl:Class rdf:about="#transition"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:range>
 <rdfs:domain>
 <owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#place"/>
 <owl:Class rdf:about="#fromPlace"/>
 </owl:unionOf>
 </owl:Class>
 </rdfs:domain>
 </owl:ObjectProperty>

Important constructs in OWL are different restriction types, which are used to re-
strict the individuals that belong to a class. Restrictions in OWL fall into three main
categories: Quantifier Restrictions (allValuesFrom, someValuesFrom), Cardinality
Restrictions (minCardinality, maxCardinality, cardinality) and hasValue Restrictions.
Quantifier Restrictions specify the exact number of relationships that an individual
must participate in for a given property. In our Petri net ontology we denote that the
class individualDataItem has at least one attribute:

<owl:Class rdf:ID="individualDataItem">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:minCardinality rdfdatatype=http://www.w3.org/2001/XMLSchema#int>1
 </owl:minCardinality>
 <owl:onProperty>
 <owl:ObjectProperty rdf:ID="hasAttribute"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

Quantifier restrictions consist of three parts:
1. A quantifier, which is either the existential quantifier (∃), or the universal quan-

tifier (∀)
2. A property, along which the restriction holds
3. A filler that is a class description

 For a given individual, the quantifier effectively puts constraints on the relation-
ships that the individual participates in. This is done by specifying that at least one
kind of relationship must exist, or by specifying the only kinds of relationships that
can exist. Existential restrictions describe the set of individuals that have at least one
specific kind of relationship to individuals that are members of a specific class. In our
ontology, a restriction is defined that the arc inscriptions (fromPlace) are defined by
individuals from the class attribute:

<owl:Restriction>
 <owl:onProperty>

 <owl:ObjectProperty rdf:ID="hasInscription"/>
 </owl:onProperty>
 <owl:someValuesFrom>
 <owl:Class rdf:ID="attribute"/>

 </owl:someValuesFrom>
</owl:Restriction>

 Our starting point was a concise specification of Petri net elements with the OWL
element Class, the taxonomic constructor SubClassesOf and Property and their mod-
eling in OWL. In the following we show the modeling of Individuals which is the
third OWL element besides Classes and Properties. Individuals or instances are
specified by the modeler and depend on the modeling target. As an example, we show
for the place ORDER of business process II in Figure 1 mapping individuals to the
OWL elements.

 <place rdf:ID="ORDER">

<hasMarking>
 <initial_individualDataItem
rdf:ID="R_ORDER">

 <hasAttribute>
 <attribute rdf:ID="Customer">
 <hasValue rdf:resource="#Smith"/>
 <hasValue rdf:resource="#Miller"/>
 </attribute>
 <attribute rdf:ID="Article">
 <hasValue rdf:resource="#A1"/>
 <hasValue rdf:resource="#A3"/>
 </attribute>
 <attribute rdf:ID="Quantity">
 <hasValue rdf:resource="#200"/>
 <hasValue rdf:resource="#150/>
 </attribute>
 </hasAttribute>
</initial_individualDataItem>
</hasMarking>
….
….

ORDER
Customer Article Quantity
 Smith
 Miller

 A1
 A3

 200
 150

ORDER

Fig. 4: Mapping Individuals to Classes and Properties

In business relationships a commonly agreed vocabulary can usually not be postu-
lated. In Figure 1, e.g., the business partners use different terms having the same
meaning. Business partner I utilizes “Client” for customer and business partner II
“Customer”. Another example for synonyms is “Article” and “Position”. To express
synonyms in OWL the construct owl:equivalentClass is utilized. Equivalent
classes have the same instances. From this a reasoner can deduce that any individual
that is an individual of “Client” is also an individual of “Customer” and vice versa.

Client Customer
Synonym

<owl:equivalentClass>
 <attribute rdf:ID="Customer">
 <owl:equivalentClass
rdf:resource="#Client"/>
 </attribute
</owl:equivalentClass>

Fig. 5: Construct owl:equivalentClass

 To automatically find synonyms and antonyms OWL mapping techniques for
Individuals are required. Mapping expressions enable translating data from one
source to the other. Thus, transferring source ontology IndividualsS to target ontology
IndividualsT according to the semantic relations of both is required [23]. An auto-

matic finding of synonyms and antonyms is needed because usually several business
partners, even if they share similar demands, have their own specific vocabularies. In
practice an agreement of using a common vocabulary for interpreting places and
transitions cannot be postulated. Mistakes appear in interpreting objects contained in
places: the attribute organization (in the sense of planning, administration), e.g., is
unequal to organization (in the sense of company). Furthermore, ambiguities are
caused by [9]:

- utilizing different items for the same issues (synonyms)
- unequal units (€, $)
- different abstraction levels (name vs. first name and last name)
- diver item structure for complex data types (for example address)

A lot of research is currently being done in the field of mapping techniques for on-
tologies, for examples see, e.g. [6, 7, 19].

5 Implementation

 A Petri net ontology has to be created by using an OWL editor such as Protégé1 or
an editor included in the Semantic Web Development Environment (SWeDE)2.
SWeDE provides syntax highlighting, autocompletion, and error-detection. Further-
more, in the SWeDE framework the API generation tools Kazuki and Jena Schema-
Gen are integrated. Kazuki generates Java interfaces for objects contained in an OWL
ontology file, based on the structure of the ontology. It is build on Jena2. Jena Sche-
maGen generates a Java vocabulary class for use with the Jena2 libraries. Jena2 is the
most popular ontology management system, an opensource Java framework for writ-
ing Semantic Web applications [11]. By creating OWL files with Protégé, the Jena2
API can read the OWL files generated by the editor, and apply changes to the model.
For storing the OWL files in Jena2 a database management system is not required.
But Jena2 supports relational database management systems such as MySQL, Oracle
and PostgreSQL for persistent storage.

The extraction of ontological descriptions of business processes and the mapping
to the Petri net ontology is being carried out during the modeling process and is not
directly visible to the modeler. The user can model his business processes using a
graphical business process editor as shown in Figure 6. After modeling business proc-
esses the models can be exported to OWL code and afterwards be sent to the respec-
tive business partners. The ontology management system of the business partner is
needed for parsing and interpreting the data contained in the Petri net. An ontology
management system is not only needed for utilizing mapping techniques, but also for
reasoning about the data.
 An appropriate tool Ontology Business Processes Modeler (OBPM) is currently
being developed. For modeling business processes with Petri net elements (place,
transition and arc) a Petri net editor can be used. The relationship to our novel proc-
ess ontology is provided by the specification of data contained in Petri net elements.

1 http://protege.stanford.edu/
2 http://owl-eclipse.projects.semwebcentral.org/

SubClasses of the class place – name (=individualDataItem), attribute and value - are
fixed. The user has to insert the Individuals of the classes/subClasses by his own.
Describing arcs and transitions can be applied accordingly like specifying data con-
tained in places. By inserting a place a corresponding window will be opened.

Fig. 6: A graphical tool for modeling ontology based business process descriptions

6 Conclusion and Outlook

The task to make business data computer-interpretable has become ever more impor-
tant since recent Web Services standards have paved the way for discovery and
matching of semantically enriched data and services. Furthermore, the rapid growth
of data and communication technologies demand to companies to focus on the con-
tent of data. Our approach provides semantic markup of Petri nets and enables to
interpret Petri net content by machines. With this semantics one can define restric-
tions and reason about the process data contained in Petri net components. Beyond
the ontological representation of a Petri net we discussed the need of automated map-
ping techniques that enable structured data to be interpreted unambiguously. Finally,
we presented an implementation approach and a tool for modeling ontology based
business processes which is currently under development.
 The benefits of our approach are flexibility and automation of involved systems in
order to facilitate the semantic interconnectivity of business processes and to shorten
communication among process-implementing software components.

 By defining an ontology based business process description a basis for solving
further open problems is provided. In the next step we will apply reasoning tech-
niques such as SWRL [31] and SHIQ(D) [13] to reason about data contained in
places. The use of reasoning rules referring to Figure 1 would be to answer questions
such as “show all clients that received a confirmation when the stock quantity of
article A1 was 25000”.

References

1. Arkin, A.: Business Process Modeling Language. http://www.bpmi.org/bpml.esp
2. Baader, F.; McGuinness, D.; Nardi, D.; Patel-Schneider, P.: The Description Logic Hand-

book. Cambridge, 2003
3. Codd, E.F.: A Relational Model of Data for Large Shared Data Banks, CACM 13, June

1970, pp. 377-387
4. Cordoso, J.; Sheth, A.: Semantic e-Workflow Composition, Technical Report, LSDIS Lab,

Computer Science, University of Georgia, July 2002
5. Curbera, F.; Goland, Y., Klein, J., Leymann, F., Roller, D., S. Thatte, Weerawarana, S.

Business Process Execution Language for Web Services.
http://www.ibm.com/developerworks/library/ws-bpel/

6. Doan, A.; Halevy, A.Y.; Noy, N.F.: Introduction to the special issue on semantic integra-
tion, ACM SIGMOD Record, vol 33, (4), December 2004, pp. 11 - 13

7. Dou, D.; McDermott, D.; Qi, P.: Ontology translation by ontology merging and automated
reasoning, in: Proceedings of the EKAW2002, Workshop on Ontologies for Multi-Agent
Systems, Spain, 2002, pp. 3-18

8. Falkovych, K: Ontology Extraction from UML Diagrams, Master Thesis, Vrije Univer-
siteit, Amsterdam, 27 August 2002

9. Gahleitner, E.; Wöß, W.: Enabling Distribution and Reuse of Ontology Mapping Informa-
tion for Semantically Enriched Communication Services, in: 15th International DEXA
Workshop, Zaragoza/Spain, August 2004

10. Genrich, H. J. ; Lautenbach, K.: System Modelling with High-Level Petri Nets, Theoretical
Computer Science, vol. 13, 1981

11. HP: Jena 2 - A Semantic Web Framework: http://www.hpl.hp.com/semweb/jena.htm
12. Horrocks, I.; Patel-Schneider, P.F.: A Proposal for an OWL Rules Language, in: The 13th

International World Wide Web Conference, New York, 2004, pp. 723-731
13. Hustadt, U.; Motik, B.; Sattler, U.: Reducing SHIQ Descrption Logic to Disjunctive Data-

log Programs, in: Proceedings of the 9th International Conference on Knowledge Repre-
sentation and Reasoning, Whistler/Canada, June 2004, pp. 152-162

14. ISO 11179: Information Technology-Specification and Standardization of Data Elements
15. Jensen, K.: A Brief Introduction to Coloured Petri Nets, in: Brinksma, E.: Lecture Notes in

Computer Science, Vol. 1217: Tools and Algorithms for the Construction and Analysis of
Systems. Proceedings of the TACAS'97 Workshop, Enschede/The Netherlands 1997, pages
201-208. Springer-Verlag, 1997

16. Lenz, K.; Oberweis, A.: Interorganizational Business Process Management with XML
Nets, In H. Ehrig, W. Reisig, G. Rozenberg, H. Weber, Petri Net Technology for Commu-
nication-Based Systems, Advances in Petri Nets vol. 2472 of LNCS, pp. 243-263.
Springer-Verlag, 2003.

17. Lenz, K.; Oberweis, A.: Workflow Services: A Petri Net-Based Approach to Web Services,
in: Proceedings of Int. Symposium on Leveraging Applications of Formal Methods,
Paphos/Cyprus, November 2004, pp. 35-42

18. Leymann, F.: Web Services Flow Language. http://www-
3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

19. Maedche, A. et alt: MAFRA - An Ontology Mapping Framework in the Semantic Web,
Proceedings of the ECAI Workshop on Knowledge Transformation, Lyon, July 2002

20. Magkanaraki, A. et al.: Benchmarking RDF Schemas for the Semantic Web, First Interna-
tional Semantic Web Conference, Sardinia, June 2002

21. Martin, D. et al.: Bringing Semantics to Web Services: The OWL-S Approach, Proceedings
of the First International Workshop on Semantic Web Services and Web Process Composi-
tion, San Diego, July 2004

22. McIlraith, S.; Narayanan, S.: Analysis and Simulation of Web services, in: Computer Net-
works: The International Journal of Computer and Telecommunications Networking, vol.
42 (5), August 2003, pp. 675 – 693

23. Silva, N.; Rocha J.: Semantic Web Complex Ontology Mapping, in: Web Intelligence and
Agent Systems Journal; IOS Press; 2003; 1(3-4); pp. 235-248

24. The OWL Services Coalition. OWL-S: semantic Markup for Web-Services.
http://www.daml.org/services, 2004

25. Powers, S.: Practical RDF, 1. ed. Beijing; Köln: O´Reilly, 2003
26. Reisig, W.; Rozenberg, G. (eds.): Lectures on Petri Nets I: Basic Models. Lecture Notes in

Computer Science, Vol. 1491, Springer-Verlag, Berlin, 1998
27. Shahmehri, N.; Takkinen, J.; Åberg, C.: Towards Creating Workflows On-the-Fly and

Maintaining Them Using the Semantic Web: The sButler Project at Linköpings universitet,
Presented as a poster at The 12th International World Wide Web Conference, Budapest,
May 2003

28. Weber, M.; Kindler, E.: The Petri Net Markup Language, In: Ehrig, H.: Petri Net Technol-
ogy for Communication-Based Systems, Advances in Petri Nets Berlin, Springer, 2003, S.
1-21

29. W3C. OWL Web Ontology Language Overview, February 2004, Recommendation,
http://www.w3.org/TR/owl-features/

30. W3C. RDF Primer, Februar 2004, Recommendation, http://www.w3.org/TR/rdf-primer/
31. W3C. Semantic Web Rule Language Combining OWL and RuleML, May 2004, W3C

Member Submission, http://www.w3.org/Submission/SWRL/#1

