
Dynamic Configurability of a Semantic
Matchmaker for Ontology-based Resource
Discovery in Open Distributed Systems ?

Silvana Castano, Alfio Ferrara, and Stefano Montanelli
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Abstract. An important requirement for dynamic collaboration and
semantic interoperability in open distributed systems is to minimize the
effort needed for answering resource discovery queries by simultaneously
guaranteeing the accuracy of the answers. In this paper, we propose
query policies for dynamically configuring the matchmaker of a given
node by taking into account the current workload of the peer as well as
the requested degree of accuracy of the matching process embedded in
the incoming request.

1 Introduction

We consider the semantic interoperability problem in open distributed contexts
like semantic Grids and peer-based systems, where a set of independent peer
nodes without prior reciprocal knowledge and no degree of relationship dynam-
ically need to cooperate by sharing their resources (such as data, documents,
services). Furthermore, due to the dynamicity and variability of collaboration
and sharing requirements, we assume that no centralized authority manages a
comprehensive view of the resources shared by all the nodes in the system [1].
Rather, each node is responsible of providing the knowledge description of the re-
sources to be shared through its own ontology, thus originating a multi-ontology
interoperability context. Each node implements a semantic matchmaker which
is responsible for the evaluation of semantic affinity between an incoming query
and its node ontology in order to assess whether it can provide resources match-
ing the target. An important requirement for dynamic collaboration in such open
contexts is to minimize the effort required for answering queries while simulta-
neously guaranteeing the quality of the answers for effective resource sharing
and interoperability [2]. In this paper, we propose query policies for dynamically
configuring the matchmaker of a given node by taking into account the effort
that it can afford as well as the requested degree of accuracy of the answer. In
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particular, in Section 2 we describe resource discovery in the Helios open dis-
tributed system. In Section 3, we present resource discovery queries and policies
in Helios, while in Section 4 we describe policy selection for ontology matching
configuration. In Section 5, we discuss the main applicability issues. In Section 6,
we discuss related work. Finally, in Section 7, we give our concluding remarks.

2 Resource discovery in Helios

Helios (Helios EvoLving Interaction-based Ontology knowledge Sharing) is a
system for ontology-based knowledge discovery and sharing in peer-based open
distributed systems. In Helios, each peer provides a semantically rich repre-
sentation of the information resources to be shared by means of a peer ontology
which is defined according to H-Model [3]. H-Model is a language indepen-
dent ontology model capable of representing the relevant features of the infor-
mation resources to be shared in a Semantic Web-compatible manner, in terms
of concepts, properties, and semantic relations. The Helios resource discovery
process is based on appropriate queries, called probe queries, that are used to for-
mulate knowledge requests among the peers of the system. A receiving peer uses
a semantic matchmaker, called H-Match [4], to evaluate the semantic affinity
between the target resources specified in the probe query and its peer ontology.
A peer answers to an incoming probe query by sending back the matching con-
cept descriptions in form of metadata extracted from its peer ontology. The idea
behind this approach is to first discover the peers that provide knowledge about
one or more resources of interest, to subsequently propagate queries to acquire
data in an optimized way. A graphical representation of the Helios knowledge
discovery process is shown in Figure 1. H-Match computes a semantic affinity
value SA(c, c′), that is, the measure of the level of matching of two concepts
c and c′, by properly considering both their linguistic and contextual features.
Linguistic features refer to names of concepts and their meaning. Contextual
features refer to the concept context, namely the set of properties and concepts
directly related to the given concept in an ontology. H-Match performs ontol-
ogy concepts matching at different levels of depth, with four different matching
models spanning from surface to intensive matching, with the goal of provid-
ing a wide spectrum of metrics suited for dealing with many different matching
scenarios that can be encountered in comparing concept descriptions of real on-
tologies. The surface matching is defined to consider only the names of concepts.
Surface matching is suited for dealing with high-level, poorly structured onto-
logical descriptions. The shallow matching is defined to consider both concept
names and concept properties. With this model, we want a more accurate level
of matching, by taking into account not only the concept names but also infor-
mation about the presence of properties and about their cardinality constraints.
The deep matching model is defined to consider concept names and the whole
context of concepts, by considering also semantic relations. Finally, the inten-
sive matching model is defined to consider, in addition to the features of the
deep model, also property values, for providing the highest accuracy in semantic
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Fig. 1. Knowledge discovery process in Helios

affinity evaluation. The semantic affinity SA(c, c′) is evaluated as follows:

SA(c, c′) = WLA · LA(c, c′) + (1−WLA) · CA(c, c′) (1)

where WLA is a weight expressing the relevance of the linguistic affinity in the
semantic affinity evaluation. A threshold Thr specifies the minimum semantic
affinity value required to consider c and c′ as matching concepts. For a more
detailed description of H-Match and of the different matching models see [3].
The H-Match algorithm is exploited as a matchmaker tool by the peers for
processing incoming requests over the ontology. An important requirement for
peer-based collaboration and interoperability is related to the capability of a
peer of balancing the effort requested for processing an incoming query with
its actual workload, in order to satisfy a great number of incoming queries at
the best. In Helios, this problem can be addressed by dynamically configuring
the H-Match parameters, that is WLA and Thr, based on the contents of a
probe query by simultaneously taking into account the processing capabilities
of the answering peer. To this end, we introduce the notion of query policy and
a mechanism for policy selection based on i) an accuracy factor for the answer
and ii) a cost factor for query processing.

3 Query policies

A policy in Helios specifies a parameter setting for the H-Match matchmaker
configuration and it is defined as follows.

Definition 1. A policy P is a 4-tuple in the form < QType,MModel, Thr,-
WLA >, where:



– QType = simple | conjunctive | disjunctive: it denotes the query type associated
with the policy. In particular, simple queries are composed by a single target
concept. Conjunctive queries and disjunctive queries are composed by more
than one target concept. Conjunctive queries are satisfied by answers that
contain at least a matching concept for each concept in the query target.
Disjunctive queries are satisfied by answers that contain a matching concept
for at least one concept of the query target.

– MModel = surface | shallow | deep | intensive: it specifies the matching model
to be used for configuring H-Match.

– Thr ∈ (0, 1]: it denotes the matching threshold value to be used to configure
H-Match.

– WLA ∈ [0, 1]; it denotes the linguistic affinity weight to be used for configur-
ing H-Match.

In Helios, policies are associated both with probe queries and with the peers
of the network. A probe query in Helios is defined as follows.

Definition 2. A probe query Q is a pair of the form < TQ, PQ >, where TQ

denotes the target of Q and PQ denotes the policy embedded in Q.

The probe query target specifies a set of concepts describing the resources that
a peer is going to discover over the network, while the embedded policy denotes
the parameters to be used for configuring H-Match at the destination for pro-
cessing Q. An example of probe queries with their embedded policies is shown
in Figure 2, together with the corresponding H-Model graphical representation
of their target concepts. The clause Find contains the description of the target
concept(s). Each target concept c is characterized by an optional set of proper-
ties and semantic relations, represented by the With Property clause and by the
With Relation clause, respectively. Properties and/or relations can be specified to
constrain the semantics of a target concept.

4 Policy selection for resource discovery

Each Helios peer is configured with a set of pre-defined policies for processing
incoming probe queries. When a probe query is received, the answering peer
compares the embedded query policy against its pre-defined policies. If the em-
bedded query policy is compatible with the pre-defined policies of the answering
peer, the embedded policy is used to configure H-Match. Otherwise, the an-
swering peer choses its pre-defined policy that best fits the incoming probe query.
The process of policy selection is shown in Figure 3.

4.1 Cost and accuracy factors

For policy selection, a policy P is associated with a cost factor CFP and with
an accuracy factor AFP .
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Fig. 2. Example of probe query composition

Cost factor. The cost factor of a policy P , denoted by CFP , provides a mea-
sure of the computational cost of probe query processing using P , and depends
basically on the number of H-Match executions and on the complexity of each
H-Match execution, respectively. The number of H-Match executions is basi-
cally affected by the query type and by the threshold value, while the complexity
of a single H-Match execution depends on the matching model. A formal defi-
nition of the cost factor is given in [5].

Accuracy factor. The accuracy factor of a policy P , denoted by AFP , provides
a measure of the accuracy of the query results obtained using P in terms of
precision and recall [6]. Precision is defined as the number of relevant concepts
effectively retrieved over the total number of retrieved concepts. Recall is defined
as the number of relevant concepts effectively retrieved over the total number
of relevant concepts. The accuracy factor is affected by the matching model,
by the threshold, and by the WLA weight. In particular, we have determined
experimentally five accuracy classes of policies. Each class has associated an
accuracy factor AF from 1 to 5. The higher the AF , the higher the answer
accuracy provided by the policy. Given a policy P , the accuracy factor AFP
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associated with P is determined by means of a heuristics that associates a value of
accuracy with each combination of matching model, threshold, and WLA weight
on an experimental basis. A formal definition of the accuracy factor is given
in [5].

We have defined three different pre-defined policies (see Figure 4); each peer
of the system is equipped with one or more pre-defined policies depending on
its computational capabilities. The first pre-defined policy PLC/LA is the low

PLC/LA =< surface, simple, 0.9, 0.8 >
PMC/MA =< shallow, conjunctive, 0.7, 0.7 >
PHC/HA =< intensive, disjunctive, 0.4, 0.6 >

Fig. 4. The three pre-defined policies

cost/low accuracy policy. It can be adopted by a peer that is overloaded by a high
number of incoming requests. This policy provides a low level of answer accuracy
but a high level of efficiency in probe query processing. The second pre-defined



policy PMC/MA represents the medium cost/medium accuracy policy. The third
pre-defined policy PHC/HA represents the high cost/high accuracy policy. It has
the highest level of accuracy but requires a higher computational effort to the
answering peer.

4.2 Policy selection

When a probe query is received, the answering peer has to determine whether the
embedded query policy is compatible with its pre-defined policies. To this end, a
compatibility threshold CT is set by the peer, representing the minimum level of
compatibility required to consider an embedded policy to fit a pre-defined policy.
The compatibility between PQ and a pre-defined policy Pi is evaluated by taking
into account i) the compatibility between the cost factors of PQ and Pi and ii)
the compatibility between the accuracy factors of PQ and Pi. A comprehensive
policy selection factor PSF (PQ, Pi) is evaluated by taking into account the cost
and accuracy factors of PQ and Pi, respectively. If PQ is compatible with Pi (i.e.,
PSF (PQ, Pi) ≥ CT ), PQ is selected for processing the incoming probe query Q;
otherwise the pre-defined policy Pi with the highest PSF (PQ, Pi) is selected for
processing the incoming probe query Q. In order to evaluate the PSF (PQ, Pi)
factor, we define the coefficients ACost(PQ, Pi), Cost-based Applicability, and
AAccuracy(PQ, Pi), Accuracy-based Applicability, defined as follows:

ACost(PQ, Pi) = min(1,
CFPi

CFPQ
) (2)

AAccuracy(PQ, Pi) = min(1,
AFPi

AFPQ
) (3)

where CFPi and CFPQ denote the cost factor of Pi and PQ, respectively, and
AFPi and AFPQ denote the accuracy factor of Pi and PQ, respectively. Based
on the cost-based and accuracy-based applicability coefficients, we provide the
following definition of policy selection factor for an embedded policy PQ and a
pre-defined policy Pi.

Definition 3. Given an embedded policy PQ and a pre-defined policy Pi, the
policy selection factor PSF (PQ, Pi) between PQ and Pi is defined as:

PSF (PQ, Pi) =
ACost(PQ, Pi) + AAccuracy(PQ, Pi)

2
(4)

The policy selection factor ensures that the embedded query policy is always
selected as far as it is compatible the pre-defined policies at the destination.
Otherwise, the answering peer supplies an answer which is the most accurate
answer that can be provided given the actual peer workload.

Once a policy P is selected the H-Match algorithm is configured according
to the parameters specified by P and the probe query answer is composed by in-
cluding all matching concepts exceeding the matching threshold (simple query).
For conjunctive queries, the answer includes all matching concepts exceeding the



matching threshold if there is at least one matching concept for each concept
in the query target. For disjunctive queries, the answer is includes all matching
concepts exceeding the threshold for at least one concept in the query target.

5 Applicability issues and considerations

As an example of resource discovery, we consider the probe queries of Figure 2, to-
gether with their embedded policies. In the example we assume that three peers,
namely P1, P2, and P3, share the same peer ontology, shown in Figure 5, describ-
ing knowledge in the tourism domain. Peers are configured with the pre-defined
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Fig. 5. Example of a peer ontology

policies in Figure 4. In particular, P1 is configured with the policy PLC/LA,
P2 is configured with the policy PMC/MA, and P3 is configured with the policy
PHC/HA, as shown in Figure 6. The probe queries in Figure 2 search for concepts
similar to Journey and to Hotel and Hostel against the peer ontology in Figure 5.

Cost and accuracy evaluation. When the probe queries are processed, the first
step is to evaluate their cost and accuracy factors, respectively. In our example,
we assume that the compatibility threshold CT is 0.6 for all the peers and we
determine the cost and accuracy factors as follows:

QueryA =
{

CF = 33.4
AF = 3

QueryB =
{

CF = 57.35
AF = 3

In the subsequent step, the cost factor and the accuracy factor are calculated
for the pre-defined policies associated with each peer as follows:

P1 → PLC/LA =
{

CF = 1
AF = 2

P2 → PMC/MA =
{

CF = 10.4
AF = 3
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Fig. 6. Example of a resource discovery scenario based on probe query policies

P3 → PHC/HA =
{

CF = 57.35
AF = 5

Then, the embedded policies are compared with the pre-defined policies of the
peers according to (4). The results of the comparison process are shown in Ta-
ble 1. Based on such results, the peer P1 cannot apply the embedded policies

Table 1. Compatibility results for policy selection

PLC/LA PMC/MA PHC/HA

QA 0.35 0.65 1

QB 0.33 0.59 1

for processing the probe queries, because they are incompatible with the policy
PLC/LA with respect to the compatibility threshold CT . The peer P2, that is
configured with the pre-defined policy PMC/MA, can apply the embedded pol-
icy only for QA, because the compatibility between its pre-defined policy and
the embedded policy of QA is higher than CT . Finally, P3, that is configured
with the pre-defined policy PHC/HA, can process both the query QA and the



query QB by using their embedded policies, because both are compatible with
its predefined policy.

The example shows how the peers P2 and P3, which are configured for sup-
porting the processing of probe queries with high computational costs, can effec-
tively answer to the incoming probe queries by adopting the embedded policy,
i.e., by guaranteeing the level of accuracy required by the requesting peer, while
the peer P1, which is capable to reply only to low cost queries, has to adopt its
own pre-defined policy in order to reply to the incoming queries.

6 Related work

The problem of answering queries has been deeply studied in the data integration
literature [7–9]. These approaches assume to have mappings over a set of models
and address the problem of computing the tuples that satisfy a query in all the
models in the set. With respect to the data integration approach, the focus of this
paper is on finding concepts that are similar to a set of target concepts expressed
in the query, without assuming to have pre-defined mappings among the peer
ontologies. Our approach provides an approximate measure of semantic similar-
ity between concepts, instead of a set of data answers to a query. An interesting
direction of future work is to combine our approach with the query answering
techniques proposed in data integration, with the aim of using H-Match for
finding the mappings that are required for query answering in data integration.
The problem of answering queries has been studied also in peer-based systems
mainly addressing the problem of the efficient routing of queries over the net-
work. For example, Edutella [10] provides an infrastructure for sharing metadata
in RDF format. The network is segmented into thematic clusters. In each clus-
ter, a mediator semantically integrates source metadata. A mediator handles a
request either directly or indirectly: directly, by answering queries using its own
integrated schema; indirectly, by querying other cluster mediators by means of
a datalog-based query processing module. With respect to Edutella, we refer to
a pure P2P system, where each peer has equal capabilities and functionalities,
without mediators. Each peer acquires a knowledge of the network by means of
probe queries, and exploits this knowledge for subsequently routing appropri-
ately queries for data retrieval. In the SWAP project [11] (Semantic Web and
Peer-to-Peer), each peer implements an ontology extraction method to extract
from its different information sources an RDF(S) description (ontology). Such
ontologies are used by the SeRQL Query Language to perform query processing.
Peers storing knowledge semantically related to a target concept are localized
through SeRQL views defined on specific similarity measures. Views from ex-
ternal peers are integrated through an ontology merging method to extend the
knowledge of the receiving peer according to a rating model. Our approach has in
common with SWAP the idea of using similarity measures for finding knowledge
over a P2P network. Contribution of our work with respect to this approach is
on one side related to a more flexible way of producing similarity measures with



H-Match and on the other side on the use of policies for configuring the query
processing of the peers in the system.

7 Concluding remarks

In this paper, we have proposed the notion of query policy for dynamically
configuring the matchmaker of a given node by taking into account its current
workload as well as the requested degree of accuracy for the matching process.
Our future work on this topic will be devoted to extensively test the policy-based
approach, in order to provide a complete set of experimental results regarding
the quality of query answers and the overall system efficiency using policy-based
matching configuration. To this end, we plan to use a network simulator for
testing the accuracy of query results by varying the peer workload. We are
combining this work with the semantic routing protocol we are developing [12]
in order to make query processing and routing more effective. A further work
will be devoted also to define a set of rules for automatically configuring each
peer, by taking into account its overload in terms of query received per time
unit. The idea is to have peers capable of reacting to the amount of network
traffic by re-configuring their query processing policies.
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