
Challenges for a GPU-Accelerated Dynamic Programming
Approach for Join-Order Optimization

Andreas Meister, Gunter Saake
Otto-von-Guericke-University Magdeburg

Institute for Technical and Business Information Systems
Magdeburg, Germany

firstname.lastname@ovgu.de

ABSTRACT
Relational database management systems apply query opti-
mization in order to determine efficient execution plans for
declarative queries. Since the execution time of equivalent
query execution plans can differ by several orders of magni-
tude based on the used join order, join-order optimization is
one of the most important problems within query process-
ing. Since the time-budget of query optimization is limited,
efficient join-order optimization approaches are needed to
determine execution plans with low execution times. The
state of the art in commercial systems for determining op-
timal join orders is dynamic programming. Unfortunately,
existing algorithms are mainly sequential algorithms, which
do not benefit from current parallel system architectures.
In current system architectures, specialized co-processors,
such as GPUs, provide a higher computational power com-
pared to CPUs. If the full potential of GPUs is used, query
optimizer can provide optimal solutions for more complex
problems. Unfortunately, adapting existing dynamic pro-
gramming approaches for join-order optimization to GPUs is
not straightforward. In this paper, we discuss the challenges
for a GPU-accelerated dynamic programming approach for
join-order optimization, and propose different ways to han-
dle these challenges.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Relational
Databases; D.1.6 [Numerical Analysis]: Optimization—
Global Optimization

General Terms
GPGPU, Database Optimization

Keywords
GPU-Accelerated Optimization, Join-Order Optimization,
Dynamic Programming

28th GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), 24.05.2016 - 27.05.2016, Noerten-Hardenberg, Germany.
Copyright is held by the author/owner(s).

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

1600.0

1800.0

2000.0

2200.0

2400.0

2600.0

2800.0

3000.0

random query plans [sorted by runtime]

ru
nt

im
e

[m
s]

Figure 1: Execution times of different join orders for
Query 5 of TPC-H benchmark adapted from [17].
Execution of queries can vary by several orders of
magnitude depending on the join order.

1. INTRODUCTION
Relational Database Management Systems (DBMSs) use

declarative query languages, such as the Structured Query
Language (SQL). Within declarative query languages, queries
only specify what data should be retrieved, but not how the
data should be retrieved by the system. Therefore, the sys-
tem needs to transform the declarative query into an exe-
cutable plan. Based on the properties of the relational op-
erators, such as commutativity of joins, several equivalent
plans exist. In order to ensure an efficient query processing,
DBMSs need to select an efficient query execution plan. To
this end, DBMSs apply different heuristics, such as pushing
down selections, and optimization approaches to ensure the
selection of efficient query execution plans. The execution
time of a query can vary by several orders of magnitude
based on the join order [16], like in Query 5 of the TPC-H
benchmark [17], see Figure 1. Therefore, one of the most im-
portant optimization problems within the query processing
is join-order optimization.

Because join-order optimization is an NP-complete prob-
lem [22], providing optimal solutions is challenging. Often
heuristics, such as avoiding Cartesian products or evaluat-
ing only left-deep trees, are used in order to cope with the
complexity of join-order optimization by reducing the search
space [26]. Unfortunately, by reducing the search space also
efficient execution plans or even the optimal execution plan

86

Year CPU GFLOPS AMD GPU GFLOPS

2002 Pentium 4 (Northwood) 12.2 9700 Pro 31.2

2003 Pentium 4 (Northwood) 12.8 9800 XT 36.5

2004 Pentium 4 (Prescott) 15.2 X850 XT 103.7

2005 15.2 X1800 XT 134.4

2006 Core 2 Duo 23.4 X1950 375.0

2007 Core 2 Quad 48.0 HD 2900 XT 473.6

2008 Q9650 96.0 HD 4870 1200.0

2009 Core i7 960 102.4 HD 5870 2720.0

2010 Core i7 970 153.6 HD 6970 2703.0

2011 Core i7 3960X 316.8 HD7970 3789.0

2012 Core i7 3970X 336.0 HD 7970 GHz Edition 4301.0

Table 1: Theoretical computational power of CPUs and AMD GPUs adapted from [20]. GPUs provide a
higher computational power compared to CPUs

may not be considered during the optimization, leading to
inefficiencies within the query execution [26]. In order to
provide an optimal join order the dynamic programming ap-
proach was proposed [23], which is currently the state of the
art approach for providing an optimal join order in commer-
cial systems, such as Oracle1 or Postgres2.

As the dynamic programming approach was proposed al-
most 40 years ago, where only traditional system architec-
tures with single-core CPUs were available, the traditional
dynamic programming approach is a sequential algorithm.
In the past, this was not a problem, because the clock-speed
of CPUs increased every year, and, hence, also the perfor-
mance and applicability of the dynamic programming ap-
proach increased automatically. Unfortunately, based on
physical effects, such as the power wall [2], increasing the
clock speed is not practicable anymore. In order to provide
more computational power, CPU vendors started to combine
multiple cores on one chip. With this approach the computa-
tional capacity of CPUs was increased in the past years, see
Table 1. Unfortunately, sequential algorithms do not ben-
efit from parallel processors, and, hence, the applicability
of the dynamic programming approach for join-order opti-
mization is practically limited to the optimization of queries
with up to 12 tables [7]. To utilize the potential powers of
multi-core CPUs, the execution of existing sequential algo-
rithms need to be parallelized. Han et al. proposed a par-
allel algorithm for multi-Core CPUs in order to apply the
dynamic programming approach to more complex optimiza-
tion problems [7]. By using different partitioning schemata
for assigning calculations to available CPU cores, Han et al.
achieve almost linear speedup and extend the practicable
limit of the dynamic programming approach to up to 20-25
tables depending on the topology of the queries [7]. Unfor-
tunately, increasing the numbers of CPU cores on one chip
is also limited. Based on the fixed energy-budget of CPUs,
the maximal number of CPU cores on one chip is estimated
to be between ten to around one hundred cores per chip [8].

1oracle.de
2postgresql.org/

To provide further computational power, the use of co-
processors was proposed. Co-processors, such as GPUs, FP-
GAs, and MICs, are specialized for specific calculations [4].
For example, GPUs are highly parallel co-processors, offer-
ing a higher computational power per dollar compared to
CPUs based on their specialized architecture [18], see Ta-
ble 1. In order to use the computational power of GPUs,
we need to adapt existing algorithms to the specialized ar-
chitecture of GPUs, similar to the change from single-core
CPUs to multi-core CPUs.

Many GPU-adapted approaches in the field of optimiza-
tion [5, 19] and DBMSs [3, 9, 11], show that the adaption
is worthwhile and high speedups are possible. Unfortu-
nately, in the field of query optimization only approaches
for selectivity estimation [10] are available. Other impor-
tant optimization problems, such as join-order optimization
are still lacking GPU-based approaches. We argue that
GPU-acceleration will be benefiting also for other optimiza-
tion approaches within the field of query optimization in
DBMSs [15] and, hence, plan to adapt the join-order opti-
mization on GPUs, starting with the dynamic programming
approach [14].

Unfortunately, the adaption of approaches from CPU-
based to GPU-based execution is challenging based on the
different architectures and resulting properties of GPUs and
CPUs. Therefore many challenges arise during the adap-
tion of the dynamic programming approach for join-order
optimization. In this paper, we discuss the challenges for a
GPU-accelerated dynamic programming approach for join-
order optimization, and propose different ways to handle
these challenges.

The remainder of this paper is structured as follow. In
Section 2, we discuss the difference between CPUs and GPUs.
In Section 3, we explain the basic concept of dynamic pro-
gramming approach. In Section 4, we illustrate the chal-
lenges for a GPU-based dynamic programming approach for
join-order optimization. In the last section, we conclude our
discussions.

Challenges for a GPU-Accelerated Dynamic Programming Approach for Join-Order Optimization

87

CPU

Cache

Control

GPU

DRAM

ALU

ALU ALU

ALU

Figure 2: Simplified architectures of CPUs and
GPUs adapted from [6]. The architecture of CPUs
and GPUs highly differ.

2. GPU-ACCELERATION
The architecture for CPUs and GPUs highly differ, see

Figure 2, based on different execution focus.
CPUs efficiently support a wide range of applications from

control-intensive workflows to simple mathematical oper-
ations. Therefore, CPUs provide advanced techniques to
support the broad variance of applications. CPUs provide
branch-prediction techniques to support control intensive
applications, and pipelining in order to increase the through-
put, when multiple operations are executed concurrently.
These techniques require additional functionality. Hence, a
large part of CPU chips are used for the control logic to pro-
vide this required functionality. In order to provide a low
response time for multiple concurrent operations, CPU cores
are independent, whereby each core has a high clock rate up
to four GHz. Based on the high clock-speed and indepen-
dent execution, only few cores (currently up to 18 cores) can
be put on one CPU chip. A CPU chip can directly access
the main memory. Since the access to the main memory
is slow compared to the access of the internal register and
clock speed of CPUs, large caches (up to 45 MB) are used
in order to reduce the access gap to main memory. Hereby,
each core has access to the complete shared cache.

In contrast to CPUs, GPU cores cannot directly access the
main memory. Therefore, GPUs provide their own memory
on the device, accessible by the GPU cores. Before the GPU
cores can process data, the data needs to be transferred
from the main memory to the device memory of the GPU
via the Peripheral Component Interconnect Express (PCIe)
bus. Although GPUs provide a high computational power
based on the number of cores (up to around 5000), the com-
putational power and also the capabilities of a single GPU
core is limited compared to CPU cores. In order to manage
the high number of cores, GPU cores cannot work indepen-
dently. GPU cores are grouped to streaming processors,
whereby the number of cores can vary depending on the ar-
chitecture of the GPU. For each streaming processor, only
one control unit and cache is provided. Hence, all cores of
one streaming processor need to execute the same instruc-
tion. Additionally, each core of a streaming processor has a
lower clock speed (up to 900 Mhz) compared to CPU cores,
and lacks such advanced techniques such as branch predic-
tion or pipelining. Based on the simple core model, switches
between different executions can be performed without much
overhead. The execution of operations and memory transfer
from and to the GPU device for general purpose computa-
tions are managed by the CPU. The management of execu-
tions by the CPU are performed by C-like application pro-

Tables
1 2 3 4

T1

T2

T3

T4

...

T3,4

T1,2,3

...

T1,2,3,4

T1,2,3,4

T1,2

...

Figure 3: Execution schema of the dynamic pro-
gramming approach for join-order optimization. So-
lutions for complex problems are provided by com-
bining existing solutions.

gramming interfaces (APIs), such as CUDA3 and OpenCL4,
provided by all GPU vendors.

Based on the different architecture, CPUs and GPUs are
suitable for different application scenarios. CPUs are suit-
able for control-intensive applications and executing differ-
ent operations on few data items. Whereas GPUs are well
suited for parallel calculations, where operations are per-
formed on a huge data set in parallel.

As already mentioned, Han et al. proved with their CPU-
based dynamic programming approach that the dynamic
programming approach for join-order optimization benefits
from parallelization [7]. Unfortunately, the CPU-based dy-
namic programming approach proposed by Han et al. is not
directly applicable to GPUs, based on the different architec-
ture of GPUs compared to CPUs. In order to understand the
challenges of adapting the dynamic programming approach
for GPUs, we will first explain the approach of dynamic pro-
gramming for join-order optimization.

3. DYNAMIC PROGRAMMING FOR JOIN-
ORDER OPTIMIZATION

The dynamic programming approach for join-order opti-
mization [23] is the state of the art approach for providing an
optimal solution within commercial DBMSs, such as Oracle
or Postgres. In contrast to randomized approaches, such as
genetic algorithms [1], the dynamic programming approach
is a deterministic approach, providing always the same so-
lution for the same input. The dynamic programming ap-
proach applies an exhaustive search in order to determine
the optimal solution for the join-order problem. In order to
avoid the evaluation of non-optimal join-orders, the dynamic
programming approach solves an optimization problem, by
splitting up the problem into subproblems. The splitting of
a complex problem into subproblems is done based on the
assumption that an optimal solution can only contain opti-
mal subsolutions. Hence, the subproblems are solved in an
optimal way, and combined to solutions for more complex
problems or the optimal solution for the overall optimiza-
tion problem, see Figure 3. Based on the combination of
existing subsolutions, the dynamic programming approach
avoids the calculation of non-optimal join orders in contrast
to a brute-force approach. Since, in general, for each subso-
lution multiple equivalent join-orders are available, the op-
timal subsolution must be selected based on a cost model.
Based on the focus of the optimization, different cost mod-
els, such as page accesses [25], communication overhead [13],

3developer.nvidia.com/cuda-zone
4khronos.org/opencl/

Challenges for a GPU-Accelerated Dynamic Programming Approach for Join-Order Optimization

88

execution time [24], or number of intermediate results [12]
can be used.

For the join-order optimization this means that the dy-
namic programming approach starts with determining the
cost of accessing each individual table, see Algorithm 1 line
1 to 4. In DBMSs, different options to access tables are avail-
able (e.g., table scan or indexes). Hence, all options need
to be evaluated and the best option need to be selected via
pruning, see Algorithm 1 line 3. Hereby, for example differ-
ent access operators can be evaluated, such as table access
or index access. After determining the access costs of the
table the second iteration combines two tables by a join. In
the third iteration, one solution of the first and one solution
of the second iteration is combined, whereby the validity of
the intermediate results must be checked such as that both
solutions do not contain identical tables. Within each iter-
ation, we construct solutions containing exactly one table
more than the previous iteration, see Algorithm 1 line 5 to
14. Similar to the table access, multiple equivalents solutions
are created. By pruning, we select the optimal solution, see
Algorithm 1 line 11.

Algorithm 1 Sequential dynamic programming approach
for join-order optimization

Input: Query Q joining n tables (t1, · · · , tn)
Output: Optimal join order for query Q
1: for i = 1 to n do
2: optimal results[ti]+ = create access plans(ti);
3: prune plans(optimal results[ti]);
4: end for
5: for i = 2 to n do
6: for all s ⊆ {t1, · · · , tn} with |s| = i do
7: optimal results[s] = {} ;
8: for all tk ∈ s do
9: optimal results[s]+ =

10: create join(optimal results[s− {tk}], tk);
11: prune plans(optimal results[s]);
12: end for
13: end for
14: end for

return optimal results[t1, · · · , tn]

Since the evaluation of one iteration is dependent on all
previous iterations, the dynamic programming approach is
only parallelizable within one partition, but not over all par-
titions [7], see Algorithm 1 line 6 to 13. Han et al. used this
limited parallelism to speed up the dynamic approach us-
ing multi-core CPUs. The basic idea of their approach is
to determine within each iteration, which calculations need
to be evaluated. The necessary calculations are partitioned
based on the number of available CPU-cores. The cores can
execute the calculation independent of each other. When
all CPU cores finished their execution, the results of all
cores are merged. In the next step, the merged results are
pruned, so that only the optimal solution for one subproblem
is stored. This continues until the final result can be pro-
vided. In order to avoid an unbalanced load between proces-
sors, they evaluated several partition schemata. Based on a
proposed data structure, invalid solutions, where the tables
of the two join partners are overlapping, are skipped. Using
the parallel execution of multi-core CPUs and their adapted
approach, Han et al. achieve an almost linear speed up for
the dynamic programming approach on multi-core CPUs.

Based on the parallel architecture of GPUs, GPUs provide
a higher computational power compared to CPUs. Since the
dynamic programming approach benefits from the parallel
execution on CPUs, we also claim that the dynamic pro-
gramming approach will benefit from the parallel execution
on GPUs.

4. CHALLENGES FOR DP ON GPUS
Although a parallel dynamic programming approach ex-

ists for multi-core CPUs, it is not directly applicable to
GPUs. In the following, we will explain why the adaption
of the dynamic programming approach is challenging.

Although GPUs offer the advantage of an high theoreti-
cal computational power, reaching the peak performance of
GPUs is a cumbersome and challenging task. Hereby, the
main challenge is the efficient use of the architecture, which
is completely different to CPUs, cf. Section 2. In order to
provide an efficient application on GPUs, applications need
to consider the following aspects:

• Avoid branching
• Transfer bottleneck
• Memory hierarchy
• Parallel calculations
• Limited storage

In the following, we will describe these challenges and pro-
pose how to handle these challenges for the dynamic pro-
gramming approach on GPUs.

Avoid branching: As mentioned previously, the GPU cores
are grouped to streaming processors. Since cores of one
streaming processor share cache and control logic of the
streaming processor, all cores of one streaming processor
can only execute the same instruction. If cores of a stream-
ing processor need to execute different operations, for ex-
ample based on branching, the different operations will be
executed sequentially. While sequentially executing differ-
ent operations, one part of cores of the streaming proces-
sor stalls, while the other part of the group executes an
operation. Since only part of the cores are active, not the
complete computational potential of GPUs is used, reduc-
ing the efficiency and also the usefulness of GPUs. Hence,
branching should be avoided for GPU-accelerated applica-
tions. For the dynamic programming approach, this means
that we should try to eliminate invalid calculations, and
maybe not simply execute and skip invalid calculations as
done in the approach for multi-core CPUs of Han et al. [7].

Transfer bottleneck: Similar to CPUs, data need to be
available in the caches of streaming processors for the pro-
cessing. Unfortunately, the data cannot be loaded directly
into the cache of streaming processors on GPUs. Before a
GPU can load the data into the cache of streaming proces-
sors, the data need to be stored in the device memory of
GPUs. To store data on the device memory, data need to
be transferred from the main memory to the device mem-
ory via the PCIe bus. Unfortunately, the bandwidth of
the PCIe bus is limited compared to the internal mem-
ory bandwidth of GPUs. Therefore, the PCIe bus poses
a major bottleneck for data intensive applications. GPU-
accelerated applications should avoid the inefficient trans-
fer from main memory to GPU device memory or should
overlap the transfer with calculations to hide the limited

Challenges for a GPU-Accelerated Dynamic Programming Approach for Join-Order Optimization

89

bandwidth of the PCIe bus. For the dynamic programming
approach, this means that we should perform all calcula-
tions on the GPU if possible. Hence, only statistics, such as
selectivity estimations and cardinality of tables, need to be
transferred at the beginning to the GPU, and, at the end,
only the optimized plan should be transferred back to the
main memory. Since statistics do not need to be transac-
tional consistent, the caching of these statistics on the GPU
is also an alternative to further reduce the communication
via the PCIe bus.

Memory hierarchy: When the data is available on the de-
vice, the data can be processed by the streaming processor
of GPUs. In contrast to CPUs, in GPUs, there are differ-
ent types of memory available, providing different access
speed and cacheability. The memory of GPUs consists of
global memory, constant memory, texture memory, shared
and local memory [21]. Global memory is the largest avail-
able storage, whereas the access speed of read and write
operations is the lowest. In contrast to global memory, con-
stant memory is a read only memory. Although constant
memory also uses the global memory, streaming processors
provide special caches for constant memory. Therefore, the
access speed to constant memory is increased by a better
cacheability. Similar to constant memory, texture memory
is read only memory, which is cached for streaming proces-
sors. In contrast to constant memory, the texture memory
is optimized for two dimensional data. Shared memory
resides on streaming processors, hereby, each core of the
streaming processor can directly access the shared mem-
ory. Since shared memory resides on streaming processors,
the size is smaller than the global memory, but the access
speed is faster. Local memory is only accessible by one
specific core. Unfortunately, there is no dedicated memory
available for this type of memory, and, hence, global mem-
ory is used. Since constant memory and texture memory
provide good cacheability and shared memory is fast ac-
cessible, the usage of these memory types is essential for
an efficient execution on GPUs. For the dynamic program-
ming approach, this means that we should transfer results
of each iteration into the cacheable memory (Constant or
texture memory). For the transfer from global memory
to the constant memory coalesced memory accesses should
be used, because coalesced accesses are more efficient on
GPUs compared to sequential memory accesses. In addi-
tion to the use of cacheable memory, shared memory should
be used during the needed merge and reduction phase.

Parallel calculations: As pointed out, we need to avoid
branching, avoid transfers from and to main memory, and
use the fast on-chip memory to achieve the peak perfor-
mance of GPUs by parallel calculations. When we consider
a GPU-accelerated dynamic programming approach, pro-
viding enough parallel calculations poses a challenge. As
mentioned previously, the execution of the dynamic pro-
gramming approach requires that all previous iterations are
finished before evaluating a new iteration. The consequence
for a GPU-accelerated dynamic programming approach is
that enough calculations need to be available in order to
utilize the high computational power of GPUs. Depend-
ing on the topology of queries, this is easily fulfilled, see
Figure 4. Although for linear and cyclic query topologies,
only a small number of intermediate results need to be eval-
uated for an optimal result (2680 and 7240 for 20 tables),

Figure 4: Number of valid intermediate results of
the dynamic programming approach. Especially,
clique and star queries need to evaluate a high num-
ber of intermediate results.

Figure 5: Number of stored intermediate results
of the dynamic programming approach. Especially,
clique and star queries have high storage require-
ments.

the number of intermediate results, which we need to eval-
uate, explodes when clique query topology or queries with
cross-joins are considered (3.5 billion for 20 tables). For
the dynamic programming approach, this means that, on
GPUs, we should especially focus on the compute inten-
sive optimization, such as clique or star query topologies
or queries with cross joins.

Limited storage: Unfortunately, with the number of in-
termediate results also the storage requirements for the dy-
namic programming approach rises. In our previous work,
we argued that the query optimization only requires little
storage sizes to provide results of their optimization [14].
Although for the dynamic programming approach, this is
true for the inputs, it might not be true for the storage
of the optimal subsolutions, see Figure 5. Although the
output of the dynamic programming approach is only one
optimal plan for a given query, the dynamic programming
approach need to store intermediate results in order to en-
sure an efficient optimization. Hence, for every solution
of a subproblem one result need to be stored. Although
Vance et al. argue that for one solution only 16 bytes need
to be stored [26], this can already be challenging for larger
queries. In Figure 5, we show the number of intermediate
results, stored during the execution of the dynamic pro-
gramming approach. Whereas for linear, and cyclic queries
the number of solution is small and manageable (211 and
382 for 20 tables), the number of intermediate results ex-
plodes, when we consider cross joins, or clique and star
query topologies (1 million, 1 million and 0,5 million for

Challenges for a GPU-Accelerated Dynamic Programming Approach for Join-Order Optimization

90

20 tables). Since even high end class GPUs provide only a
small device memory (24 GB for the Nvidia Tesla K 80),
the storage requirements for the intermediate results poses
a further challenge. For the dynamic programming ap-
proach, this means that on the one hand, we need an effi-
cient storage structure for storing intermediate results. On
the other hand, we need mechanisms to partition the evalu-
ation of iterations for queries with higher numbers of tables
similar to the vectorized executions in DBMSs [27].

Although a high number of challenges exists for the adap-
tion of the dynamic programming approach for join-order
optimization on GPUs, we can use existing techniques and
considerations to solve these challenges. By solving these
challenges, we can use the GPU-acceleration for the dynamic
programming approach to extend the applicability to more
complex optimization problems and to reduce the optimiza-
tion time for simple optimization problems.

5. SUMMARY
Within this paper, we discuss the challenges for a GPU-

accelerated dynamic programming approach for join-order
optimization. Based on the properties of GPUs and the
execution model of the dynamic programming approach dif-
ferent challenges arise. Although the challenges for a GPU-
accelerated application, such as branching, transfer bottle-
neck, memory hierarchy, parallel calculations and limited
storage amount, are well known, within each algorithms
these challenges have to be handled in different ways. Hence,
we proposed different ways how to handle and avoid these
different challenges.

6. REFERENCES
[1] K. Bennett, M. C. Ferris, and Y. E. Ioannidis. A

Genetic Algorithm for Database Query Optimization.
ICGA, pages 400–407. Morgan Kaufmann Publishers,
1991.

[2] S. Borkar and A. A. Chien. The future of
microprocessors. CACM, 54(5):67–77, May 2011.

[3] S. Breß, N. Siegmund, M. Heimel, M. Saecker,
T. Lauer, L. Bellatreche, and G. Saake. Load-Aware
Inter-Co-Processor Parallelism in Database Query
Processing. Data & Knowledge Engineering, 2014.

[4] D. Broneske, S. Breß, M. Heimel, and G. Saake.
Toward Hardware-Sensitive Database Operations. In
EDBT, pages 229–234. OpenProceedings.org, 2014.

[5] J. M. Cecilia, J. M. Garćıa, A. Nisbet, M. Amos, and
M. Ujaldón. Enhancing data parallelism for Ant
Colony Optimization on GPUs. Journal of Parallel
and Distributed Computing, 73(1):42–51, 2013.

[6] G. K. Chen and Y. Guo. Discovering epistasis in large
scale genetic association studies by exploiting graphics
cards. Frontiers in Genetics, 4(266), 2013.

[7] W.-S. Han, W. Kwak, J. Lee, G. M. Lohman, and
V. Markl. Parallelizing Query Optimization. PVLDB,
1(1):188–200, 2008.

[8] N. Hardavellas, M. Ferdman, B. Falsafi, and
A. Ailamaki. Toward Dark Silicon in Servers. IEEE
Micro, 31(4):6–15, July 2011.

[9] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju,
Q. Luo, and P. V. Sander. Relational Query
Coprocessing on Graphics Processors. TODS,
34:21:1–21:39, 2009.

[10] M. Heimel, M. Kiefer, and V. Markl. Self-Tuning,
GPU-Accelerated Kernel Density Models for
Multidimensional Selectivity Estimation. SIGMOD,
pages 1477–1492. ACM, 2015.

[11] T. Karnagel, R. Müller, and G. M. Lohman.
Optimizing GPU-accelerated Group-By and
Aggregation. In ADMS, pages 13–24. ADMS, 2015.

[12] V. Leis, A. Gubichev, A. Mirchev, P. Boncz,
A. Kemper, and T. Neumann. How Good Are Query
Optimizers, Really? PVLDB, 9(3):204–215, Nov. 2015.

[13] L. F. Mackert and G. M. Lohman. R* Optimizer
Validation and Performance Evaluation for
Distributed Queries. VLDB, pages 149–159. Morgan
Kaufmann, 1986.

[14] A. Meister. GPU-accelerated join-order optimization.
VLDB PhD workshop, 2015.

[15] A. Meister, S. Breß, and G. Saake. Toward
GPU-accelerated Database Optimization.
Datenbank-Spektrum, 15(2):131–140, 2015.

[16] G. Moerkotte, P. Fender, and M. Eich. On the Correct
and Complete Enumeration of the Core Search Space.
SIGMOD, pages 493–504. ACM, 2013.

[17] T. Neumann. Engineering High-Performance Database
Engines. PVLDB, 7(13):1734–1741, 2014.

[18] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Krüger, A. Lefohn, and T. J. Purcell. A Survey of
General-Purpose Computation on Graphics Hardware.
Computer Graphics Forum, 26(1):80–113, 2007.

[19] P. Pospichal, J. Schwarz, and J. Jaros. Parallel
Genetic Algorithm Solving 0/1 Knapsack Problem
Running on the GPU. MENDEL, pages 64–70. Brno
University of Technology, 2010.

[20] P. Rogers, J. Macri, and S. Marinkovic. AMD
heterogeneous Uniform Memory Access. 2013.

[21] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S.
Stone, D. B. Kirk, and W.-m. W. Hwu. Optimization
Principles and Application Performance Evaluation of
a Multithreaded GPU Using CUDA. PPoPP, pages
73–82. ACM, 2008.

[22] W. Scheufele and G. Moerkotte. On the Complexity of
Generating Optimal Plans with Cross Products
(Extended Abstract). PODS, pages 238–248. ACM,
1997.

[23] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin,
R. A. Lorie, and T. G. Price. Access Path Selection in
a Relational Database Management System.
SIGMOD, pages 23–34. ACM, 1979.

[24] E. J. Shekita, H. C. Young, and K.-L. Tan. Multi-Join
Optimization for Symmetric Multiprocessors. VLDB,
pages 479–492. Morgan Kaufmann Publishers, 1993.

[25] M. Steinbrunn, G. Moerkotte, and A. Kemper.
Heuristic and Randomized Optimization for the Join
Ordering Problem. VLDB Journal, 6(3):191–208, Aug.
1997.

[26] B. Vance and D. Maier. Rapid Bushy Join-order
Optimization with Cartesian Products. SIGMOD,
pages 35–46. ACM, 1996.

[27] M. Zukowski, M. van de Wiel, and P. Boncz.
Vectorwise: A Vectorized Analytical DBMS. ICDE,
pages 1349–1350. IEEE, 2012.

Challenges for a GPU-Accelerated Dynamic Programming Approach for Join-Order Optimization

91

