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Abstract. Mobile networks are managed by means of operations support sys-
tems (OSS) which facilitate performance, fault, and configuration management.
Network complexity is increasing due to the heterogeneity of cell types, devices,
and applications. Characterization and configuration of networks optimally in
such a scenario is challenging task. This paper introduces an experimental plat-
form that combines statistical relational learning and semantic technologies by
integrating a mobile network simulator, Markov Logic Network model (MLN)
and an OWL 2 ontology into a runtime environment tool. Our experiments, based
on a prototype implementation, indicate that the combination of an ontology and
MLN model can be utilized in network status characterization, optimization and
visualization.

1 Introduction

Mobile networks have become a crucial part of our society, and yet their significance
will increase in the future, as the number of users, devices, and applications are ex-
pected to drastically increase [5]. Thus, the future 5G networks need to cater for a mas-
sive increase in data volume and number of terminals, the latter due to the widespread
adoption of Internet of Things (IoT) [12].

Networks need to be configured optimally to provide customers a high service qual-
ity with low operational expenses. In legacy systems, network configurations have been
handled manually, but due to the increasing complexity of networks, more automation
is needed from Operations and Support Systems (OSS) [9]. Currently researched and
standardized technology in the telecommunication field is Self-Organizing Networks
(SON), which is essentially a closed-loop agent system reacting to measurements, typi-
cally by means of a fixed rule base [9]. The challenge with this approach is creating and
maintaining the rule bases in view of geographic and temporal variety on a cell level of
radio access networks.

Machine Learning (ML) is expected to increase the level of automation in the OSS
field by, for example, analyzing traffic patterns and cell-related data to learn statistical
correlations. The output of an ML system can be characterized as hypothetical in con-
trast to deterministic results of a traditional rule-based system. In the long run, it has
been argued that knowledge models would bring benefits as a basis of future telecom-
munication systems both in view of systems design and also from the perspective of
value networks [18].



In this paper we propose a new approach to automated mobile network management
by using statistical relational learning with a Markov Logic Network model (MLN) [20]
for handling uncertainty in mobile network analysis. In addition to the MLN model, we
propose an OWL 2 ontology above it to provide global meaning and description logic
(DL) reasoning capabilities to the system.

The paper is divided as follows: after presenting a short view of our system, section
3 briefly presents the MLN and how it is applied to our implementation. After this,
section 4 describes our OWL 2 model and section 5 presents dataset statistics and how
MLN reasoning results can be examined via an RDF-based GUI. Finally, section 6
discusses related work and section 7 concludes the paper and presents ideas for future
work.

2 System Overview

The novel idea of our system is to combine modeling of uncertainty and semantics in
an automated OSS system. The system contains a mobile network (LTE) simulator, an
MLN model for statistical reasoning, an OWL 2 model for semantic modeling and a
GUI for representing and interacting with the system. We simulate a small urban area
with 5000 citizens (network users) and with 32 cells.

The interface between the LTE simulator and the MLN model contains OSS man-
agement activities, such as reading performance data from the simulator and sending
configuration data back to it. The performance data contains key performance indica-
tors (KPIs) for various measurement cases. KPIs utilized in the MLN model are channel
quality indicator (CQI) for measuring the signal quality of a cell and radio link failures
(RLF) for measuring the amount of connection failures per cell. The configuration man-
agement contains changes in the transmission power (TXP) and angle (remote electrical
tilt, RET) of a cell antenna.

The MLN model processes the performance data into evidence that is used in the
MLN reasoning. The reasoner infers posterior marginal probabilities for potential net-
work configuration changes. The model parameters of the MLN reasoner can be fitted
based on historical performance data and executed configuration actions. The OWL 2
model is constructed by transforming the MLN reasoner’s model into a SHIF OWL
2 DL ontology that can be utilized with a Pellet reasoner1. In addition to DL reasoning
capabilities, the OWL 2 ontology is published as an RDF graph in a SPARQL endpoint.
An operator interface for managing the system and the underlying mobile network is
implemented on top of the SPARQL endpoint in HTML5.

3 Markov Logic Network Model

This section briefly introduces the Markov logic [20] by giving a definition of the MLN,
explaining the inference of marginal probabilities, and describing how the MLN is
adapted to our OSS system.

1 https://github.com/Complexible/pellet



3.1 Definition

MLNs allow uncertain and contradictory knowledge in a first-order logic (FOL) model
by introducing a weight parameter for each formula in the FOL knowledge base. The
weighted set of formulas defines a template for a Markov network, in which the cliques
and clique potentials are determined by the formulas and formula weights.

Definition 1. A Markov logic network L is a set of pairs (Fi, wi), where Fi is a first-
order formula and wi is a real-valued weight parameter. Together with a set C of con-
stant terms, over which the formulas in L are applied, it defines a Markov network
ML,C with a binary variable for each possible grounding of each predicate appearing
in L and a feature for each possible grounding of each formula in L. The value of the
feature corresponding to a grounding of formula Fi is 1 if the ground formula is true,
and 0 otherwise. The weight of the feature is wi, the weight associated with Fi in L.

Each state of the variables in a Markov network ML,C represents a possible world, i.e.,
a truth assignment for each of the ground atoms for (L,C). The probability distribution
over possible worlds x ∈ X specified by ML,C is

P (X = x) =
1

Z
exp

(∑
i

wini(x)

)
, (1)

where ni(x) is the number of true groundings of Fi in x and Z is a partition function
given by Z =

∑
x∈X exp (

∑
i wini(x)). Intuitively this means that the weights of the

true ground formulas give the logarithmized factors of the distribution function. If two
worlds differ only on a single ground formula, then the weight of the formula gives the
logarithmic odds of choosing one world over the other.

3.2 Inference

A typical inference task is to infer the most likely state or a marginal distribution of
some subset of the variables using the values of all other variables as evidence. In prac-
tice, exact inference over an MLN model is infeasible. Richardson and Domingos [20]
introduce an efficient stochastic algorithm for this problem.

3.3 Application in OSS setting

We define our MLN model in terms of three types of predicates:

– Context predicates indicate the current status of the network and the environment.
A context predicate can indicate, for example, that some KPI value for a cell is
currently below the acceptable level or that two cells are neighbors in the network
topology.

– Objective predicates indicate required changes to KPI values to achieve perfor-
mance targets defined by the operator. For example, an objective predicate can in-
dicate that a particular KPI value for some cell is too low and needs to be increased.

– Action predicates indicate changes to network configuration parameter values.



Each predicate represents an attribute of a cell in the network or a relation among the
cells. The domain of a predicate can be either the set of cells X or an n-ary Cartesian
product of X .

The MLN model is composed of rules with these predicates. We wish the rules to
describe a correlation between a set of Objectives and a set of Actions in a certain
Context. A typical inference task is to query for appropriate actions using the cur-
rent context data and objective requirements as evidence. Therefore, the rule format is
defined as

C(x) ⇒
(
O(x) ⇔ A(x)

)
.

Example 1. Let L be a simple MLN model consisting of the weighted rules defined
in Table 1. Here variables c and d denote a cell in the mobile network. Suppose that

wi Fi

0.5 HighRlf(c) ⇒ (DecRlf(c) ⇔ IncTxp(c))
0.2 HighRlf(c) ⇒ (DecRlf(c) ⇔ DecRet(c))
0.7 (Neighbor(c, d) ∧ LowCqi(c)) ⇒ (IncCqi(c) ⇔ (DecRet(c) ∧ IncTxp(d)))

Table 1. Examples of weighted rules in the MLN model

we have a mobile network with two neighbor cells named C1 and C2 and that we
measured a low CQI value for cell C1 and high RLF value for C2. We would like to
use this information to infer proper configuration actions to get the CQI and RLF values
to a normal level. We use the MLN reasoner to query the MLN model L for marginal
probability distributions for action proposals IncTxp(c), DecTxp(c), IncRet(c), and
DecRet(c) for each cell c given the evidence:

E = {Neighbor(C1, C2), LowCqi(C1), HighRlf(C2), IncCqi(C1), DecRlf(C2)}

An example of the reasoning output is shown in Table 2, which shows inferred
marginal probabilities for cell configurations given the model L and the evidence E.
The output indicates that decreasing RET for cell C1 and increasing TXP for cell C2
are the most likely actions to achieve the objectives according to the model.

Action P (Action|L,E) Action P (Action|L,E)

IncTxp(C1) 0.32 IncRet(C1) 0.27
DecTxp(C1) 0.36 DecRet(C1) 0.50

IncTxp(C2) 0.56 IncRet(C2) 0.31
DecTxp(C2) 0.24 DecRet(C2) 0.37

Table 2. Marginal probabilities for cell configurations



4 OWL 2 Model

The OWL 22 ontology generalizes (with URIs and semantic annotation) terms and vari-
ables used in the MLN reasoning into a semantic model. Logically, the ontology con-
sists of two subontologies: the OSS and MLN ontology. A semantic mapping between
the OSS and MLN ontologies will enhance the interoperability between the heteroge-
neous mobile network environment and the MLN rule base extracted from it.

4.1 OSS Ontology

The OSS ontology describes network context retrieved from the LTE simulator and
used by the MLN reasoner as evidence. Figure 1 briefly depicts the TBox structure of
the OSS ontology. The most fundamental class in the model is Cell which defines
1) network topology with a cellHasNeighbor relation to other Cell instances, 2)
configuration parameters with a cellHasParameter relation to Parameter in-
stances, and 3) performance measurements with a cellHasIndicator relation to
Indicator instances. The current version of the OSS ontology models the MLN evi-
dence rather than network context generally. Thus, the only subclasses for Parameter
are Txp and Ret and for Indicator, Rlf and Cqi. The Parameter and Indica-
tor instances can be related to events by the property cellHasEvent, such as con-
figurations inferred by the MLN model. Events are instances of the class Event where
the value of the property eventHasImpact is an instance of Impact (Decrease
or Increase) with a numerical value indicating the current and previous values.

Fig. 1. The OSS ontology TBox

2 https://www.w3.org/TR/owl2-overview/



4.2 MLN Ontology

The MLN ontology can be seen as an OWL 2 interpretation of the MLN evidence
and action proposals that are semantically bound to mobile network concepts. Figure
2 depicts a TBox model of an MLN rule. The MLNRule class defines a rule and it
has a numerical value ruleWeight defining its weight and relations to rule parts
MLNContext, MLNObjective, and MLNAction. The figure also shows that the
rule parts are bound to network classes Parameter, Indicator, and Impact. For
example, an MLNAction class has a relation to a subclass of Parameter (e.g. Txp)
and to a subclass of Impact (e.g. Increase). Similarly, MLNObjective have re-
lations to subclasses of Indicator and Impact and MLNContext have relations to
a subclass of Indicator and to a crisp value of an indicator (High, Medium, or
Low).

Fig. 2. Rules in the MLN ontology TBOx

Figure 3 shows how an ActionProposal class is modeled in the MLN ontol-
ogy. Cell has a relation to ActionProposal whose content is defined with rela-
tions to an Impact and Parameter (for example Increase and Txp). Moreover,
a data property hasActionProbability defines the marginal probability of the
ActionProposal.

Fig. 3. Action proposals in the MLN ontology TBox



5 Evaluation

The model presented above has been implemented and tested using the LTE simulator.
This section presents evaluation of our system by analyzing sizes of the MLN and OWL
model and then showing a visualization of the reasoning outcome.

5.1 Dataset Statistics

Table 3 clarifies the average sizes of the two models. As it can be seen, the rule base is
the major part of both the MLN model (5450 rules) and the OWL 2 ontology (58000
triples). The high amount of MLN rules is due to the combinatorial generation of rules.
The rule base could be optimized by removing insignificant rules, i.e. rules which have
little or no impact on the inference in view of data used in analysis.

MLN evidence contains 100 lines which are processed into 1600 triples and 15
action proposals are processed into 70 triples. Altogether, the OWL 2 model is approx-
imately 5.7 times bigger than the corresponding MLN model.

Evidence Rules Action proposals File size in MB
MLN model (lines) 100 5450 15 0.49

OWL 2 model (triples) 1600 58000 70 2.8
Table 3. Statistics of datasets

5.2 Visualization of the Reasoning Outcome

We have built an HTML5 application [1] to provide an empiric evaluation of the MLN
reasoning results (action proposals). The interface is built by using faceted browsing
activities and interactive visualization methods in order to support user’s information
exploration from RDF-based data. Figure 4 displays latest cell-specific action proposals
and their relations to the evidence of the reasoner (latest KPI values). Selected facet
values help the user to examine patterns that might occur between the network context
and MLN reasoning. For example, the figure demonstrates that if a cell has high RLF
value and low CQI value, it usually implies a proposal to increase the TXP of that cell.

6 Related Work

Reasoning under uncertainty has in the past been performed with a variety of methods,
including Markov Networks [11], Bayesian Networks [14], as well as probabilistic ex-
tensions to description logic ontologies such as to OWL [7]. A more recent additional
approach is the MLN [20], which makes it possible to compactly define statistical rela-
tional models containing both certain and uncertain facts as well as potentially contra-
dictory pieces of data using First Order Logic (FOL). In the telecommunications field,
there have been plenty of research projects which adapt these techniques into different



Fig. 4. Visualization for MLN reasoning outcome and evidence

network management tasks. For example, Bayesian Networks are proposed for auto-
matic network fault management [10][2] and MLN to diagnose anomalous cells [4].

In mobile network research, ontologies have been used to model general concepts
of the telecommunication field [17] as well as to model context in mobile network man-
agement [21][24]. The Linked Open Data (LOD)3 paradigm has also been addressed in
[22], where cells and terminals are modeled and combined with other data sources, for
example, with event data. However, there exists no research of using ontologies and
statistical reasoning together to analyze and configure the mobile network, as in this
paper.

In other problem domains there have been experiments of combining an ontological
approach with statistical relational learning. For example, Bayesian Networks and their
relational extensions, such as multi-entity Bayesian Networks (MEBN), have been ap-
plied with OWL ontologies in order to infer probabilistic results from a certain domain
[6]. BN-specific projects have use cases, for example, for medical decision support [25],
financial fraud detection [3], and instance matching in a geological domain [15].

MLNs have been applied with semantic technologies mainly in problem domains
for ontology matching [13] and for natural language processing, in which ontological
concepts are extracted from text [8][16]. Another model used for similar problems as
MLN is the Infinite Hidden Relational Model (IHRM) [23] and its semantic extension,
the Infinite Hidden Semantic Model (IHSM), which also combines certain and uncertain
facts. This technique has been demonstrated in social network analysis. [19]

7 Conclusion and Future Work

We have generated a mapping from our MLN model into a consistent SHIF OWL 2
DL ontology. The OWL 2 model is currently utilized only as an RDF graph by using
SPARQL queries (faceted navigation) in the HTML5 GUI. Advanced DL reasoning
tasks have not yet been implemented.

The next step in this project is to enhance the OWL-MLN interaction so that MLN
model settings can be dynamically modified by a human or a DL reasoner (Pellet).
Model settings include selection of measurement variables, their threshold values and
rules to be generated from the set of variables. Model settings could even include some

3 http://linkeddata.org/



initial rule weights with respect to prior knowledge. Moreover, our system will be en-
hanced by creating high-level goals which the user can use to modify the behaviour of
the reasoning system. For example, high-level goals could be mapped to corresponding
MLN model settings.

Altogether, the practical reason to combine semantic technologies with statistical
relational reasoning was to generalize the representation of the MLN model in order
to make it semantically adaptable. Current implementation gives promising results to
continue this work in order to enhance the system towards autonomic computing and
towards managing a more dynamic and heterogeneous environment.
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