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Abstract. The database landscape has been significantly diversified during the
last decade, resulting in the emergence of a variety of non-relational (also called
NoSQL) databases, e.g., XML and JSON-document databases, key-value stores,
and graph databases. To facilitate access to such databases and to enable data in-
tegration of non-relational data sources, we generalize the well-known ontology-
based data access (OBDA) framework so as to allow for querying arbitrary data-
bases through a mediating ontology. We instantiate this framework to MongoDB,
a popular JSON-document database, and implement an prototype extension of
the virtual OBDA system Ontop for answering SPARQL queries over MongoDB.

1 Introduction

Accessing data using native query languages is getting a more and more involved task
for users, as databases (DBs) increase in complexity and heterogeneity. The Ontology-
Based Data Access (OBDA) paradigm [10] has emerged as a proposal to simplify this
kind of access, by allowing users to write high-level ontological queries, which in the
classical virtual approach are translated automatically into low-level queries that DB
engines can handle. This separation of concerns between the conceptual level and the
DB level has been proven successful in practice, notably when data sources have a com-
plex structure and end-users have domain but not necessarily data management exper-
tise [5,4,1]. The OBDA approach is implemented by connecting a DB to an ontology by
means of mappings, where traditionally the ontology is expressed in the OWL 2 QL pro-
file of the Web Ontology Language OWL 2 [7], the queries are formulated in SPARQL,
the Semantic Web query language, and the DB is assumed to be relational [3].

As envisioned by Stonebraker and Cetintemel [13], a multitude of DB architectures
is needed to satisfy the needs of a wide variety of modern applications. This has been
confirmed by the significant diversification of the DB landscape during the last decade.
Some of these architectural changes have been proposed within the scope of relational
DBs (e.g., column-oriented storage), while many have gone beyond them, causing the
emergence of the so-called NoSQL (not only SQL) DBs. These non-relational DBs usu-
ally adopt one of four main data models, namely the column-family, key-value, docu-
ment, and graph data models, and provide an (intimidating) number of query languages
with varying querying capabilities. Notably, many of these new languages are limited
[9] and thus clients might need to set up compensating post-processing techniques so
as to satisfy advanced information needs.

We illustrate this novelty with a popular and representative instance of document
DBs, MongoDB (https://docs.mongodb.org/manual/), which has rich but not
yet full-fledged querying capabilities.

https://docs.mongodb.org/manual/


{ "_id": 4,
"awards": [
{"award": "Rosing Prize", "year": 1999, "by": "Norwegian Data Association"},
{"award": "Turing Award", "year": 2001, "by": "ACM" },
{"award": "IEEE John von Neumann Medal", "year": 2001, "by": "IEEE"} ],

"birth": "1926-08-27",
"contribs": ["OOP", "Simula"],
"death": "2002-08-10",
"name": {"first": "Kristen", "last": "Nygaard"}

}

Fig. 1. A sample MongoDB document in the bios collection.

Example 1. MongoDB stores data in collections of semi-structured JSON1-style docu-
ments. A sample MongoDB document consisting of (possibly nested) key-value pairs
and arrays is given in Figure 1. Thanks to its tree structure, this document gathers all rel-
evant information about Kristen Nygaard, thus providing an excellent level of locality.
In fact, it contains not only classical personal information (name, birth, etc.) but also in-
formation about the received awards. Note that in a normalized relational DB, this data
would be spread across multiple tables. Instead, grouping closely related information
adequately can significantly reduce the number of joins needed for answering queries.

MongoDB provides rather rich querying capabilities by means of the aggregation
framework. In fact, consider a collection bios of documents as in Figure 1 storing
information about prominent computer scientists, their names, dates of birth(/death),
their contributions, and received awards. Then we can retrieve all persons who received
two awards in the same year by the following aggregation framework query:

db.bios.aggregate([
{$project : {"name": true, "award1": "$awards", "award2": "$awards" }},
{$unwind: "$award1"},
{$unwind: "$award2"},
{$project: {"name": true, "award1": true, "award2": true,

"twoInOneYear": { $and: [
{$eq: ["$award1.year", "$award2.year"]},
{$ne: ["$award1.award", "$award2.award"]} ]}}},

{$match: {"twoInOneYear": true} },
{$project : {"firstName": "$name.first", "lastName": "$name.last" ,

"awardName1": "$award1.award", "awardName2": "$award2.award",
"year": "$award1.year" }}

])

We observe that this query performs a join within one document (in multiple stages).

To let users query non-relational data sources at the conceptual level (with SPARQL),
in this paper, we propose to extend the OBDA framework to non-relational DBs. The
following example highlights differences between the (procedural) low-level MongoDB
query in Example 1 and a corresponding (declarative) high-level SPARQL query.

Example 2. Assume an ontology Scientist describing the bios information by
means of roles gotAward, awardedInYear, awardName, lastName, firstName with
the straightforward meaning, and connected to MongoDB by appropriate mappings.
Then the query in Example 1 can be expressed by the following SPARQL query.

1 JSON, or JavaScript Object Notation, is a tree-shaped format for structuring data.



SELECT ?firstName ?lastName ?awardName1 ?awardName2 ?year
WHERE { ?scientist :firstName ?firstName . ?scientist :lastName ?lastName .

?scientist :gotAward ?aw1 . ?scientist :gotAward ?aw2 .
?aw1 :awardedInYear ?year . ?aw2 :awardedInYear ?year .
?aw1 :awardName ?awardName1 . ?aw2 :awardName ?awardName2 .
FILTER (?aw1 != ?aw2) }

Observe that SPARQL abstracts away the complexity of the underlying query language
and how data is structured in the DB. Instead it focuses on describing the relationship
between entities of interest using the vocabulary provided by the ontology.

The contributions of this paper can be summarized as follows. To provide a uni-
form and well-founded way to access arbitrary DBs, we introduce a generalized OBDA
framework for a class D of DBs. This generalization relies on the notion of a rela-
tional wrapper for D, which is a function that represents the results of native queries
as relations, and thus provides a uniform view of non-relational queries. Towards the
virtual OBDA approach in the generalized setting, we revise the virtual OBDA architec-
ture, and adapt from the relational case the translation algorithm from SPARQL queries
to SQL queries [6] that uses relational algebra (RA) as an intermediate representation
of the queries. The adaptation for the non-relational case relies on two translations:
(i) SPARQL-to-RA, which makes use of the relational wrapper, and (ii) RA-to-Q

D
,

where Q
D

is the native-query-language for D, which needs to be defined for each D.
Then, we instantiate this framework to the case of MongoDB using the formalization in
[2]. Next, we implement a prototype system for answering SPARQL 1.0 queries under
OWL 2 QL entailment regime over MongoDB by extending the virtual OBDA sys-
tem Ontop [3], and provide some details about the implementation, which employs the
translation from RA to MongoDB queries in [2]. Finally, we review other approaches
for accessing data over non-relational DBs.

2 Preliminaries

MongoDB by Examples. As mentioned, MongoDB stores collections of documents,
see Figure 1. Roughly, a collection corresponds to a table in a relational DB, and a doc-
ument corresponds to a tuple (a row in a table). Recall that a document is an object that
consists of key-value pairs, where a value can be an atomic value (e.g., "Kristen"),
a nested object (e.g., {"first":"Kristen","last":"Nygaard"}), or an array of
values (e.g., ["OOP","Simula"]). Notice that, in MongoDB, the term ’key’ is used
with the meaning of ’attribute’ in relational DBs, hence it should not be confused with
the traditional notion of ’key constraint’. Here we adopt the same terminology. Thus,
a key-value pair can be seen as the column name and the corresponding record in a
tuple. A path is a concatenation of keys with ‘.’ used to separate component keys, e.g.,
awards, awards.year, birth, name.first in the document in Figure 1.

MongoDB has a powerful querying mechanism provided by the aggregation frame-
work, in which a query consists of a pipeline of stages, each transforming a set of
documents into a new set of documents. We call this transformation pipeline an aggre-
gate query. (There is also a basic querying mechanism in the form of find queries that
can be expressed by aggregate queries, so we do not consider them here.) In this paper
we are interested in 5 stages: (i) the match stage filters out input documents according



to some (Boolean) criteria; (ii) the project stage can specify which key-value pairs (not
necessarily present in the input documents) should be present in the output; (iii) the
unwind stage allows us to ‘flatten’ arrays by introducing a new document for every el-
ement in the array; (iv) the group stage combines different documents into one; (v) the
lookup stage joins current trees with trees from an external collection.

Example 3. The following aggregate query selects from the bios collection the docu-
ments talking about scientists whose first name is Kristen, and for each document only
returns the full name (using new keys) and the date of birth.
db.bios.aggregate([

{$match: {"name.first": {$eq: "Kristen"}} },
{$project: {

"birth": true, "firstName": "$name.first", "lastName": "$name.last" } }
])

When applied to the document in Figure 1, it returns the following (shallow) tree:
{"_id": 4, "birth": "1926-08-27", "firstName": "Kristen", "lastName": "Nygaard"}

By default the document identifier id is included in the answer of the query.

Example 4. Consider the query in Example 1, which is an aggregate query consisting of
6 stages that retrieves from the collection bios all persons who received two awards in
one year. The first stage (project) flattens the complex object name, creates two copies
of the array awards, and projects away all other fields. The second and third stages
(unwind) flatten the two copies (award1 and award2) of the awards array, which intu-
itively creates a cross-product of the awards. The fourth step (project) compares awards
pairwise and creates a new key (twoInOneYear) whose value is true if the scientist
has two awards in the same year. The fifth one (match) selects the documents where
twoInOneYear is true, and the final stage (project) renames and projects keys.

By applying the query to the document in Example 1, we obtain:
{ "_id": 4,

"firstName": "Kristen",
"lastName": "Nygaard",
"awardName1": "IEEE John von Neumann Medal",
"awardName2": "Turing Award",
"year": 2001

}

Due to space limitations, we do not provide an example with group and lookup.

Ontology-based Data Access Paradigm. In traditional OBDA, one provides access
to an (external) relational DB through an ontology, which is connected to the DB by
means of mappings.

Given a source schema S and an ontology T , a (GAV) mapping assertion between
S and T is an expression of the form q(x)  (f(x) rdf:type A) or q′(x,x′)  
(f(x) P f ′(x′)), where A is a class name, P is a property name, q(x), q′(x,x′) are
arbitrary (SQL) queries expressed over S, and f, f ′ are template functions. An OBDA
specification is a triple P = 〈T ,M,S〉, where T is an ontology, S is a relational DB
schema, andM is a mapping (a finite set of mapping assertions). T is typically a TBox
formulated in the OWL 2 QL profile [7], which guarantees that queries formulated over
the TBox can be rewritten into equivalent queries over the DB. An OBDA instance is



a pair 〈P, D〉, where P is an OBDA specification and D is a DB instance satisfying
S. The semantics of 〈P, D〉 is specified in terms of interpretations of the classes and
properties in T . We define it, by relying on the following RDF graphM(D) generated
byM from D (which can also be viewed as an ABox):

{(f(o) rdf:type A) | o ∈ ans(ψ,D) and ψ  (f(x) rdf:type A) inM}∪
{(f(o) P f ′(o′)) | (o,o′) ∈ ans(ψ,D) and ψ  (f(x) P f ′(x′)) inM}.

Then, a model of 〈P, D〉 is simply a model of the ontology 〈T ,M(D)〉.
In OBDA, there are mainly two approaches to query answering. The first (material-

ization) approach is to materialize the RDF graphM(D), load it into a triplestore, and
rely on the standard query answering engine provided by the triplestore. This approach
involves an ETL (Extract, Transform, and Load) process, which can be expensive, espe-
cially when the underlying DBs are updated frequently. The second (virtual) approach
avoids explicitly constructing the RDF graph. Instead, it is based on query rewriting
techniques and relies on the underlying DB engine for query evaluation. Thus, when
the user asks a SPARQL query to the OBDA system, the query is first rewritten to an-
other SPARQL query taking into account the ontology, then translated into an (SQL)
query over the DB using the mapping, evaluated by the DB engine, and finally the SQL
result is converted into a SPARQL result (cf. Figure 2).

In practice, the translation is done in two steps (cf. Figure 4): (i) using the mapping,
the SPARQL query is ‘unfolded’ into a relational algebra (RA) query by substituting
each triple t with the union of all q such that q  t′ is in M and t′ unifies with t
(for simplicity, here we omit the template functions), then (ii) the obtained relational
algebra query is optimized and translated into an actual SQL query. The optimization
step heavily relies on the schema (e.g., primary and foreign keys, unique attributes) to
perform a number of semantic optimizations (e.g., eliminating redundant joins) [3].

3 Generalized OBDA framework

In this section we propose a generalized virtual OBDA framework over arbitrary DBs.
We instantiate this framework in Section 5, using MongoDB.

We consider fixed countably infinite sets C of DB values, and ED of elements built
over C, e.g., named tuples, trees, or XML documents. We assume to deal with a class D
of DBs, where each DB in D is a finite subset of ED, e.g., relational DBs, MongoDB,
or XML DBs. Moreover, we assume that D comes equipped with:

– Suitable forms of constraints, which might express both information about the
structure of the data in DBs of D, e.g., the schema information in relational DBs,
and “constraints” in the usual sense of DBs, e.g., primary and foreign key con-
straints for relational DBs. We call a collection of such constraints a D-schema.

– A query language Q
D

, such that, for each query q ∈ Q
D

and for each instance
D ∈ D, the answer ans(q,D) of q over D is defined, and is itself a DB in D.

– A relational wrapper [[·]]
D

, which is a function transforming a Q
D

-query q into a
new query [[q]]

D
that takes a DB in D and returns a relation over C (i.e., a relation



in first normal form)2. The role of the wrapper is to present ans(q,D) as a relation,
by actually computing a query that retrieves from D what can be considered as the
relational representation of ans(q,D). In particular, when q is the identity query,
[[q]]

D
is the query computing the relational view of a DB D ∈ D.

Having these building blocks at hand, we now define D-mapping assertions and
their semantics. We start by introducing the notion of variable-to-RDF-term map,
which is a generalization of the RDF-term template in relational OBDA. We say that
f(x1, . . . , xn) is an RDF term constructor if it is a (partial) function f : Cn → I ∪ L,
where I is the set of IRIs and L is the set of RDF literals. Then, a variable-to-(RDF)-
term map κ (for variable ?X) has the form ?X 7→ f(x1, . . . , xn). In the following,
πx1,...,xn denotes the standard projection operator of relational algebra.

Definition 1. A D-mapping assertion m is an expression q  K h where:
– q is a Q

D
-query, called source query;

– h is an RDF triple pattern, called target, of the form (?X1 rdf:type A) or
(?X1 P ?X2), where A is a class name, and P is a property name;

– K is a set of variable-to-term maps, one for each variable ?Xi appearing in h.
The mapping assertion m is safe if for each ?Xi 7→ f(x1, . . . , xn) in K, we have that
the function πx1,...,xn ◦ [[q]]D is well-defined.

A D-mappingM is a finite set of D-mapping assertions.

Notice that, the mapping assertion m is safe if and only if, for each variable-to-term
map ?Xi 7→ f(x1, . . . , xn) used by m, the wrapper [[·]]

D
, when applied to the source

query q of m, returns a query producing a relation whose attributes contain x1, . . . , xn.

Definition 2. Let D be a class of DBs, m = q  K h a D-mapping assertion, and
D ∈ D. The RDF graph m(D) generated by m from D is defined as follows:

– when h = (?X1 rdf:typeA), then
m(D) = {(s rdf:typeA) | s = f(v1, . . . , vn),

κ = ?X1 7→ f(x1, . . . , xn), K = {κ},
(v1, . . . , vn) ∈ πx1,...,xn([[q]]D(D)) }

– when h = (?X1 P ?X2), then
m(D) = {(s P o) | s = f1(v1, . . . , vn), o = f2(v

′
1, . . . , v

′
m),

κ1 = ?X1 7→ f1(x1, . . . , xn),
κ2 = ?X2 7→ f2(x

′
1, . . . , x

′
m), K = {κ1, κ2},

(v1, . . . , vn) ∈ πx1,...,xn([[q]]D(D)),
(v′1, . . . , v

′
m) ∈ πx′

1,...,x
′
m
([[q]]

D
(D)) }

For a D-mappingM, the RDF graphM(D) is defined as
⋃

m∈Mm(D).

Now, as in the relational case, an OBDA specification for D is a triple 〈T ,M,S〉,
where T is an ontology, S is a D-schema, andM is a D-mapping. An OBDA instance
for D consists of an OBDA specification 〈T ,M,S〉 for D and an instance D ∈ D
satisfying S. The semantics of such an instance is derived naturally from the semantics
of D-mapping assertions.

2 Discussing the specific form and properties of wrappers is outside the scope of this paper.



Ontology T

Mapping M

Schema S

Database D

qSPARQL

qrSPARQL

qtSQL

rqtrelational result

rqSPARQL result

Rewriting a

Translation b

Evaluation c

Post-processing
d

Fig. 2. Traditional virtual OBDA architecture

Ontology T

Mapping M

Schema S

Database D

QSPARQL

Qr SPARQL

q SPARQL

qt native query

rq native result

rQ result

Rewritinga

Decomposition
F

Translationb

Evaluationc

Post-processing
d

Fig. 3. Generalized virtual OBDA architecture

4 Generalized virtual OBDA architecture

The drawbacks of the materialization-based approach over the virtual approach to
OBDA pointed out in Section 2 hold independently of the actual DB system used.
Therefore, next we propose a generalized architecture of an OBDA system implement-
ing the virtual approach to query answering, and we propose a two-step translation from
SPARQL to the native query language.

Recall that in the virtual approach to relational OBDA, query answering consists
of four steps: a rewriting, b translation, c evaluation, and d post-processing. In our
generalized setting, the rewriting step a is exactly the same as in the relational case;
the evaluation step c is simply delegated to the underlying DB engine. As for the
translation step b , unlike in relational OBDA where an arbitrary SPARQL query can be
translated into an SQL query, it cannot be guaranteed that every SPARQL query can be
translated into a query in Q

D
. For instance, many key-value stores do not natively sup-

port joins. Moreover, even though it might be possible to translate a query, the resulting
query might be highly inefficient. Therefore, the following issues come up:

– Given a SPARQL query, can we translate it w.r.t.M and S into a Q
D

-query?
– How can we decompose a SPARQL query into a set of Q

D
-translatable subqueries

so that the SPARQL query can be answered efficiently?
To address them, we modify the “traditional” virtual OBDA architecture depicted in
Figure 2, obtaining the architecture depicted in Figure 3. The notable difference with re-
spect to the relational architecture is an intermediate step between the rewriting step a
and the translation step b , which we call decomposition step F . This decomposition
step gets as input the rewritten SPARQL query and decomposes it into a set of SPARQL
subqueries, with the aim that each of these subqueries is translatable into a Q

D
-query,

which possibly is efficiently executable. We observe that, in order for a subquery to be
translatable, the decomposition step might need to select only a subset of the mapping
for its translation. The post-processing step d is now more involved than in the rela-
tional case, since it might also need to compose the results of intermediate subqueries
according to SPARQL constructs (e.g., OPTIONAL, FILTER, JOIN).

Next, our goal is to adapt the two-step translation from the relational case to the
generalized setting as in Figure 5. To this purpose, we show how to translate the input
SPARQL query into an RA query using a D-mapping ( i in Figure 5) . Then, for an arbi-
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trary D, a translation from SPARQL toQ
D

can be obtained by providing a translation ii
from RA to Q

D
, which can be independent of the mapping component.

Let M be a D-mapping. We now construct a relational mapping Mr and then
define the translation of a SPARQL query q′ to a RA query w.r.t.M to be the translation
of q′ w.r.t.Mr as defined in the relational case [10]. For a D-query q, denote by Rq the
name (and the corresponding signature) of the relational views [[q]]

D
(D), for D ∈ D.

The relational mapping Mr induced by the D-mapping M and the wrapper [[·]]
D

is
defined as {Rq  K(h) | q  K h ∈ M}, where K(h) is the triple resulting from
substituting the variables in h with the corresponding RDF term constructor in K.

5 OBDA Framework over MongoDB

In this section we instantiate the generalized OBDA framework to MongoDB. This
instantiation relies on work in [2], where we obtain the following results:

– We formalize a fragment of MongoDB aggregate queries that consists of match,
unwind, project, group, and lookup stages, and that we call MUPGL. All example
MongoDB queries in Sections 1 and 2 are MUPGL queries (actually, MUP queries,
i.e., MUPGL queries without group and lookup stages).

– We propose a notion of MongoDB type constraints. These constraints allow one to
specify that certain paths must point to an array (e.g., awards), or an atomic value
(e.g., name.last), or an object (e.g., name).

– We define a relational view over MongoDB with respect to a set of type constraints.
– We develop a translation from RA expressions (over the relational view) to MUPGL

queries. This translation shows that full RA can be captured by MUPGL, while RA
over a single collection can be captured by MUPG.
We start by introducing a compact notation for MongoDB mapping assertions,

which we also use to specify type constraints. We consider two extensions of paths
called array paths. An array index path is a path where a key is followed by any com-
bination of keys and ‘#’, separated by dots. An array element path is the concatenation
of an array index path with ‘.[#]’. Intuitively, for (simple) paths p1 and p2, any of the
array paths p1.#.p2, p1.#, or p1.[#] imply that p1 must point to an array. Moreover, the
path p1.#.p2 (e.g., awards.#.year) is used to access the value of the path p2 inside the
array pointed to by p1, while p1.# (e.g., awards.#) is used to denote the indices and
p1.[#] (e.g., contribs.[#]) to denote the single elements of such an array. Hence, the
presence of ‘#’ or ‘[#]’ requires that the path preceding it points to an array, whereas a



path that does not end with ‘#’ or ‘[#]’ must point to atomic values. We use extended
paths to refer both to normal paths and to array paths.

The source queries we consider are a restricted form of MUP queries and can be rep-
resented as a pair (C,ϕ), where C is a collection name and ϕ is a criterion constructed
using extended paths. Let K be a set of variable-to-term maps ?X 7→ f(p1, . . . , pn),
where each pi is an extended path. Then, a MongoDB mapping assertion is an expres-
sion of the form (C,ϕ)  K h, where the variables in h constitute the domain of K.
Here, we implicitly assume that two occurrences in K of ‘#’ (or ‘[#]’) preceded by the
same extended path refer to the same array index.

Example 5. Consider the bios collection from Example 1. Let ff={name.first},
f`={name.last}, fx=:/{ id}, fa=:/{ id}/Award/{awards.#}, fy={awards.#.year},
and fn={awards.#.award}. Denote the source query (bios, true) by qs. Below is the
MongoDB mappingM consisting of 6 mapping assertions from bios to the ontology
Scientist that we assumed for the OBDA setting in Example 2.
1) qs→{?X 7→fx} (?X a :Scientist)
2) qs→{?X 7→fx,?F 7→ff}(?X :firstName ?F )
3) qs→{?X 7→fx,?L 7→f`} (?X :lastName ?L)

4) qs→{?X 7→fx,?A 7→fa} (?X :gotAward ?A)
5) qs→{?A 7→fa,?Y 7→fy} (?A :awardedInYear ?Y )
6) qs→{?A 7→fa,?N 7→fn}(?A :awardName ?N )

Given a MongoDB mappingM, we first extract from it the MongoDB schema SM
(a set of type constraints), and then define a relational wrapper [[·]]MongoDB for the source
queries in M. Let AM be the set of all paths a such that there is a path of the form
p1.#.p2, p1.#, or p1.[#] in M, for an extended path p1, and a is obtained from p1 by
removing all occurrences of ‘#’ and ‘[#]’, denoted a = sim(p1). Let LM be the set of
all paths ` such that there is a path of the form p.k inM, for an extended path p and a
key k, and ` = sim(p.k). Let OM be the set of all paths o such that there is a path of
the form p1.k1.k2.p2 inM, for extended (possibly empty) paths p1, p2 and keys k1, k2,
and o = sim(p1.k1). We say thatM is well-formed if AM, LM, and OM are mutually
disjoint. The schema SM implied by a well-formed M is the set of type constraints
stating that each path in AM points to an array, each path in LM points to an atomic
(literal) value, and each path in OM points to an object. Additionally, SM contains a
type constraint stating that a path a in AM points to an array of atomic values, if inM
there is a path of the form p.[#] for a = sim(p). Now, the relational wrapper [[·]]MongoDB

for the source queries q inM is defined as the relational view with respect to SM of the
result of evaluating q, cf. [2]. Intuitively, the signature of the relational views exported
by the wrapper consists of all paths pointing to atomic values, and of the paths a.index,
such that a ∈ AM and inM there is a path of the form p.# for a = sim(p).

Example 6. The signature of the relational view w.r.t. SM, for M in Example 5 is
Rbios( id, name.first, name.last, awards.index, awards.year, awards.award).

The RDF graphM({d}), for the document d in Figure 1, is as follows:
(:/4 a :Scientist)
(:/4 :firstName "Kristen")
(:/4 :lastName "Nygaard")
(:/4 :gotAward :/4/Award/0)
(:/4 :gotAward :/4/Award/1)
(:/4 :gotAward :/4/Award/2)

(:/4/Award/0 :awardedInYear 1999)
(:/4/Award/1 :awardedInYear 2001)
(:/4/Award/2 :awardedInYear 2001)
(:/4/Award/0 :awardName "Rosing Prize")
(:/4/Award/1 :awardName "Turing Award")
(:/4/Award/2 :awardName "von Neumann Medal")

where :/4 is the URI of the object denoting Kristen Nygaard, and :/4/Award/0,
:/4/Award/1, :/4/Award/2 are the URIs of the objects denoting his awards
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Since full RA can be captured by MUPGL [2], and SPARQL 1.0 can be translated
into RA [6], it turns out that, given a mappingM, every SPARQL 1.0 query is translat-
able w.r.t.M and SM into an MUPGL query. Note that this translation works in theory,
but in practice, it might be still interesting to decompose input SPARQL queries. For in-
stance, it might be more efficient to compute the union of two subqueries over different
collections in the post-processing step than to delegate it to MongoDB.

6 Implementing generalized OBDA over MongoDB

We built a prototype implementation for answering SPARQL queries over MongoDB
as an extension of the state-of-the-art OBDA system Ontop [3]. Below, we provide a
description of the Ontop architecture and highlight which components require a new
implementation in order to support MongoDB (or any other non-relational DB).
Architecture of Ontop. Query answering (QA) in Ontop under the OWL 2 QL entail-
ment regime involves an offline and an online stage. The offline stage (highlighted in
gray in Figure 6) takes as input the mapping and the ontology files and produces three
entities used by the online QA stage: the classified ontology, the DB schema (extracted
from the mapping file), and the so-called T-mapping, which is crucial for optimization
and which is constructed by ‘compiling’ the classified ontology into the input mapping
[11]. The online stage handles individual SPARQL queries, and can be split into 8 main
steps: 1 the input SPARQL query is parsed and 2 rewritten according to the ontology,
then it is 3 unfolded w.r.t. the T-mapping; 4 (the internal representation of) the result-
ing RA query is simplified by applying structural (e.g., replacing join of unions by union
of joins) and semantic (e.g., redundant self-join elimination) optimization techniques;
5 the RA query is normalized and (possibly) decomposed so that it can be directly
handled by the RA-to-native-query translator (e.g., renaming variables shared among
multiple views in the relational case); 6 each normalized RA (sub)query is translated
into a native query, which is then 7 evaluated by the DB engine; 8 the native results
are post-processed into SPARQL results. These steps are related to the 5 steps of the gen-
eralized virtual OBDA architecture in Figure 3 as follows: rewriting a coincides with
step 2 . For practical reasons, decomposition F is implemented by step 5 , which is
part of translation b , implemented by steps 3 – 6 . In fact, doing decomposition F be-
fore translation b would require to repeat some actions, e.g., unfolding w.r.t. mappings.
Evaluation c and post-processing d correspond to steps 7 and 8 , respectively.
Implementation for MongoDB. We observe that steps ii – iv and 1 – 4 are indepen-
dent of the actual class D of DBs (white boxes in Figure 6), while steps i and 5 – 8
require specific implementations according to D (gray boxes). Therefore, our prototype



implements the latter five components. The mapping parser i and the RA-to-native-
query translation 6 components are implemented according to what discussed in Sec-
tion 5. The evaluation step 7 is straightforward. As for the decomposition step 5 , it
decomposes a given RA query q into subqueries q′ in such a way that each q′ can be
translated into an MUP, or MUPG, or MUPGL query. Finally, the post-processing step 8
converts the result of a single MUPG query into SPARQL result (i.e., we are not yet able
to compose according to the SPARQL constructs the results of multiple MUPG queries).

The current implementation supports MongoDB 3.2 and is able to return sound
and complete answers to the subset of SPARQL queries that (i) correspond to BGPs
with filters consisting of comparisons, and (ii) can be translated into MUPG queries.
In particular, it can handle the SPARQL query in Example 2, whose translation w.r.t.
the mapping in Example 5 is the MUP query in Example 1. We are now working on
generating MUPGL queries for handling SPARQL 1.0 queries corresponding to BGPs
with Optional, Filter (consisting of comparisons), and Order-by operators.

7 Related and future work

In [8], the authors study the problem of ontology-mediated query answering over key-
value stores. They design a rule-based ontology language that uses keys as unary pred-
icates, and where the scope of rules is at the record level (a record is a set of key-value
pairs). Queries can be expressed as a combination of get and check operations, that
roughly, given a path, return a set of values accessible via this path. Then they study the
complexity of answering such queries under sets of rules. Strictly speaking, this work is
still far from the OBDA setting because of the absence of mappings, and consequently,
no distinction between user and native database query languages. Also note that their
ontology and query languages are not compliant with any Semantic Web standard.

On the practical side, some proposals have been made to provide a uniform full-
fledged query language for non-relational DBs. For instance, SQL++ [9] has been pro-
posed as an extension of SQL with formal semantics to handle relations with arbitrary
JSON-like nested values. It has been implemented in the virtual DB system FORWARD
(http://forward.ucsd.edu), which supports MongoDB and other non-relational
DBs, and allows for the creation of integrated views to hide heterogeneity between data
sources. A closely related system is Apache Drill (https://drill.apache.org),
which has a connector for MongoDB that currently uses the very limited MongoDB find
query language and thus delegates most of the query answering to its post-processing
components. These systems remain at the DB level so they could be embedded into
an OBDA setting as the DB component. Note that the traditional relational OBDA
framework is not sufficient to fully support these systems because they may have non
first normal-form tables and views. In the future, we plan to design relational wrap-
pers and RA-to-native query translators to support these systems in our generalized
framework. We also plan to investigate the relationship between our framework and
recent proposals for extending mappings towards additional datasources, such as RML
(http://rml.io/), and for mapping JSON documents to RDF [12].

Acknowledgement. This work is partially supported by the EU under IP project Op-
tique (Scalable End-user Access to Big Data), grant agreement n. FP7-318338.

http://forward.ucsd.edu
https://drill.apache.org
http://rml.io/


References
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