
Armstrong Relations for Ontology Design and
Evaluation

Henriette Harmse1, Katarina Britz2, and Aurona Gerber1

1 CSIR Meraka Institute and Department of Informatics, University of Pretoria,
South Africa

2 CSIR CAIR, Information Science Department, Stellenbosch University, South
Africa

Abstract. A challenge in ontology design is to ensure that the ontol-
ogy accurately represents the application domain and application con-
straints. Motivating scenarios provide the motivation for the representa-
tion choices made during design, and competency questions are subse-
quently used to evaluate the design. In this paper we show how the notion
of Armstrong relations from relational database theory can be used to
generate motivating scenarios and competency questions for uniqueness
constraints and not null constraints.

1 Introduction

In this paper3 our focus is on supporting an ontology engineer in designing an
ontology that captures the relevant constraints of the application domain based
on the input of a domain expert. The problem is that the expert might have
omitted to mention constraints that are of importance. The question now is, how
can the ontology engineer help the expert to determine all relevant constraints?

In an attempt to answer this, we translate Armstrong relations from re-
lational database theory to ontologies, which is the main contribution of this
paper. In relational database theory Armstrong relations are used to generate
“perfect test data” for a set of constraints. “Perfect test data” satisfies all con-
straints deemed relevant and violates all constraints considered irrelevant. For
arbitrary constraints Armstrong relations are undecidable [12], and we therefore
limit ourselves to uniqueness constraints and not null constraints.

Adopting the ontology design approach of Grüninger, et al.[9], we consider
each row in an an Armstrong relation as a potential motivating scenario since
it satisfies each meaningful constraint. The Armstrong relation will also violate
every irrelevant constraint and thus the Armstrong relation is a motivating sce-
nario for irrelevant constraints that could be used by a ontology engineer to
verify with an expert that the constraints that are violated, are indeed irrele-
vant. Once expert and ontology engineer agree on which constraints should be

3 This work was partially funded by the National Research Foundation of South Africa
under Grant No. 85482.

met and which not, these constraints and motivating scenarios can be used to
evaluate the design of the ontology through formal competency questions (CQs).

The paper is structured as follows: Section 2 presents preliminaries and Sec-
tion 3 develops the algorithm for generating an Armstrong ABox, which we relate
to ontology design and evaluation in Section 4. We conclude with Section 5.

2 Preliminaries

2.1 Ontology Design and Evaluation

The ontology design and evaluation approach of Grüninger, et al. [9], aims to
engineer an ontology based on first-order logic that matches a set of business
requirements expressed as a number of motivating scenarios. Each motivating
scenario gives rise to informal competency questions (CQ) which the ontology
should answer. Based on the informal CQs a terminology can be constructed
and the informal CQs can be translated into formal CQs. The last step in the
approach is to define the conditions under which the competency questions are
complete and to prove completeness.

Competency questions are defined by Grüninger, et al. [9] as follows:

Definition 1. Let Tontology be a terminology with related axioms, Tground a set
of ground literals and Q a first-order sentence expressed in terms of Tontology. A
formal competency question then has one of two forms:

Entailment CQ Determine whether Tontology ∪ Tground � Q
Consistency CQ Determine whether Tontology ∪ Tground 2 ¬Q

2.2 Armstrong Relations

Armstrong relations are the underlying notion to Armstrong ABoxes which we
present in Section 3. In this section we explain the benefit of using Armstrong
relations in relational database theory with some examples.

A challenge in database design is to determine the constraints that are rel-
evant and the constraints that are irrelevant for a set of business requirements.
This task is challenging due to the mismatch in expertise: typically domain ex-
perts have in-depth domain knowledge but limited modelling knowledge whilst
ontology engineers have modelling experience without domain knowledge. Test
data are therefore often used to validate, communicate and consolidate the con-
ceptual model [12].

In relational database theory perfect test data can be generated using Arm-
strong relations. The generated test data are said to be perfect since an Arm-
strong relation for a table schema is a set of data that satisfy all constraints that
are perceived to be relevant and violates all constraints that are perceived to
be irrelevant [12]4. As an example, consider the table schema Schedule used by

4 The formal definition of an Armstrong relation can be found in the Link, et. al.
paper, which is similar to that of an Armstrong ABox defined in Definition 8.

2

Link, et al. [12] (Figure 1), which defines a schedule of courses taught by lectur-
ers at given times in given rooms. Note that the primary key over C ID and Time

implies two constraints, namely that (1) the combination of C ID and Time is
unique and that (2) neither C ID nor Time is allowed to be null. An Armstrong
relation for these 2 constraints is given in the table in Figure 1. Note that ni is
used to represent a null marker or “no information”.

Fig. 1. Table schema Schedule with related Armstrong relation

The table is an Armstrong relation for the table schema in Figure 1 because
for all rows the combination of C ID and Time is unique and neither of these
columns contain any null values. Hence, it agrees with the uniqueness and not
null constraints that are relevant and it also violates all uniqueness and not
null constraints that are irrelevant. As an example it violates the uniqueness
constraint for C ID in rows 1 and 2.

An Armstrong relation is constructed with only a certain set of constraints
in mind. The Armstrong relation of Figure 1 only considers uniqueness and not
null constraints. Moreover, Armstrong relations are undecidable for arbitrary
constraints [2], but under certain conditions Armstrong relations do exist for
cardinality constraints, uniqueness constraints, functional dependencies, multi-
valued dependencies and not null constraints [8, 12]. In this paper we focus on
uniqueness- and not null constraints.

Based on the example data in Figure 1, a domain expert subsequently realizes
that having a lecturer teach two courses at the same time in the same room does
not make sense. They decide to revise the table schema to that of Figure 2,
which presents the related Armstrong relation as well.

Fig. 2. Redesigned table schema Schedule with related Armstrong relation

2.3 Important Description Logic Notions

In this paper we will use OWL 2 [11, 13], which we assume readers are familiar
with and therefore we only highlight the DL notions that are of relevance to this
paper, namely n-ary relations and uniqueness constraints.

n-ary Relations In general DLs only consider unary (concepts) and binary re-
lations (roles) and hence n-ary relations cannot be expressed directly [1]. Variants
of the DL DLR are the exception to the rule and explicitly include constructors

3

in their syntax for expressing n-ary relations [4]. However, n-ary relations can
still be expressed in DLs that do not cater for n-ary relations through the notion
of reification [1].

Uniqueness Constraints The requirement for expressing uniqueness is a need
that has been expressed often by users of ontologies. This lead to various imple-
mentations of identification constraints in DLs with different expressivity and
different behaviour [3, 5, 6, 13]. However, the underlying assumption on which
these implementations agree is that if two individuals x and y participate in
some inverse functional role r, then it follows that x = y. We will use Easy Keys
as defined in Parsia, et. al. [13].

3 Generating an Armstrong ABox

In this section we adapt the definitions and algorithm of Link, et al. [12], which
are applicable to relational database theory to ontologies. The translation has to
consider differences between DLs and relational database theory, in particular
the open world/closed world assumption. However, in constructing an Armstrong
ABox we will restrict ourselves to known individuals.

The translation will be presented by first providing an informal discussion
and/or example based on the table schemas and instances in Section 2.2. This
approach is adopted so that the parallels between relational database theory and
ontologies are clear, which will help to clarify why the Armstrong relation notion
can be applied to ontologies. These informal explanations are followed by the
formal DL related definitions and examples.

3.1 Ontology Structure for representing an Armstrong Relation

Intuitively a table schema maps to a TBox and a table instance to an ABox.
Hence, an Armstrong relation for a table schema Schema will translate to an
ontology OSchema where OSchema = TSchema ∪ ASchema.

The table schema of Figure 2 describes three different aspects of the table
schema Schedule namely:

1. The structure of the table schema Schedule, which consists of columns C ID,
Time, L Name and Room, where each column is associated with a countably in-
finite domain, which in this case is respectively CHAR[5], VARCHAR, CHAR[15]
and VARCHAR.

2. The primary key over C ID and Time, which states that for these columns
null values are not allowed, which we will refer to as null-free here.

3. The uniqueness constraint which is specified over C ID and Time and the
uniqueness constraint which is specified over Time, L Name and Room.

The Armstrong algorithm of Link, et al. [12] depends on the ability to discern
these different aspects of a table schema. We therefore partition TSchema such
that TSchema = T SSchema∪T

nf
Schema∪T ΣSchema, where T SSchema defines the structural

aspects, T nfSchema the null-free aspects and T ΣSchema the uniqueness constraints
that apply to the Schema representation in DLs.

4

3.2 Characterization of n-ary Relations

The definitions presented in this section establishes the terminology that will
be used to give a compact characterization of the DL representation of a ta-
ble schema. The structure of a table schema consisting of n columns can be
represented via reification, which we formalize in Definition 2 [1].

Definition 2. An n-ary relation Rn over components R1, . . . , Rn can be ex-
pressed as the reified concept CRn using n roles r1, . . . , rn such that

CRn v ≤ 1r1.> u . . . u ≤ 1rn.>
> v ∀r1.R1 u . . . u > v ∀rn.Rn

CRn hasKey (r1, . . . , rn)

where the key constraint ensures that no 2 individuals of CRn agrees on their
participation in roles r1, . . . , rn. For convenience we denote the DL axioms that
represent the n-ary relation Rn as T SRn .

Example 1. The corresponding TBox T SSched axioms for the table schema of Fig-
ure 2 are:

T S
Sched = {CSched v≤ 1rC ID.>u ≤ 1rTime.>u ≤ 1rL Name.>u ≤ 1rRoom.>,

> v ∀rC ID.Rchar[5],> v ∀rTime.Rvarchar,> v ∀rL Name.Rchar[15],

> v ∀rRoom.Rvarchar, CSched hasKey (rC ID, rTime, rL Name, rRoom)}

where RDchar[5], R
D
varchar, R

D
char[15] ⊆ 4

D and 4D is the domain of all data types.

For a given table schema various table instances can exist. The table instance
of Figure 2 is one possible table instance of the related table schema Schedule.
When for a given row certain column values are not null, the row is said to
be total for those columns. In the table instance of Figure 1, row 1 is total for
columns C ID, Time, L Name and Room, while row 4 is total only for columns C ID,
Time and Room. When all rows for a table instance are total for a set of columns,
the table instance is said to be total for those columns. Hence, the table instance
is total for columns C ID and Time.

A table instance is represented in DLs as an ABox, denoted by ARn , corre-
sponding to TBox TRn . For a given TRn any number of A0

Rn ,A1
Rn , . . . can exist,

where each AiRn represents a different table instance for a given table schema.
The next definition defines ARn and related notions.

Definition 3. An ABox ARn corresponding to TRn consists of a set of asser-
tions CRn(cj), j ≥ 1. A known individual c of CRn is said to be X-total, X ⊆
{r1, . . . , rn}, if there are known individuals hi, such that Ri(hi) and ri(c, hi), for
any ri ∈ X. ARn is said to be X-total if for all known individuals cj, j ≥ 1
such that CRn(cj) ∈ ARn we have that cj is X-total.

Example 2. The corresponding ASched is given for TSched in Table 1 where c1,
c2, c3 and c4 (for which the assertions are not explicitly shown) are individuals of
CSched. Table 1 is the ABox representation of the table instance of Figure 2. Note

5

that no assertions are added for null markers since this represents the semantics
of “no information” faithfully. Individual c1 is {rC ID, rTime, rL Name, rRoom}-
total and ASched is {rC ID, rTime}-total.

The table schema of Figure 2 states that columns C ID and Time together
represent the primary key of Schedule. One implication of this is that columns
C ID and Time represent a null-free subschema of Schedule and hence the table
instance of Figure 2 is {C ID,Time}-total.

Table 1. Corresponding ABox, ASched, for the table instance of Figure 2

C ID Time L Name Room

rC ID(c1, “11301”) rTime(c1, “Mon, 10am”) rL Name(c1, “Church”) rRoom(c1, “Red”)
rC ID(c2, “11301”) rTime(c2, “Tue, 02pm”) rL Name(c2, “Church”) rRoom(c2, “Red”)
rC ID(c3, “78200”) rTime(c3, “Mon, 10am”) rL Name(c3, “Church”)
rC ID(c4, “99120”) rTime(c4, “Mon, 10am”) rRoom(c4, “Red”)

Definition 4. Let X ⊆ {r1, . . . , rn} be a subset of the components of Rn that

are null-free in the application domain, we define T nfRn such that it consists of

the axioms CRn v ∃ri.>, for any ri ∈ X. If T nfRn is non-empty we say TRn is
null-free for X, which we abbreviate by nf(TRn , X). When ARn is also X-total
and therefore ARn satisfies nf(TRn , X), we say that ARn is null-free for X,
which we denote by ARn nf(TRn , X).

Example 3. When {CSched v ∃rC ID.>, CSched v ∃rC Time.>} ⊆ T nfSched, we say
that the Schedule relation is null-free for rC ID and rTime, which we denote by
nf(TSched, {rC ID, rTime}). From Table 1 we determine that ASched is null-free
for rC ID and rTime since ASched is {rC ID, rTime}-total. Hence, we have that
ASched nf(TSched, {rC ID, rTime}).

A cardinality constraint (CC) over columns of a table schema constrains how
many times a combination of values can be duplicated for those columns in a
table instance. This is expressed as card(columns) ≤ b. As an example, the table
instance of Figure 2 satisfies card(L Name,Room) ≤ 2.

Definition 5. A cardinality constraint (CC) over T SRn is a statement
card(TRn , X) ≤ b where X ⊆ {r1, . . . , rn} and b is a positive integer. The CC
card(TRn , X) ≤ b is satisfied by ARn , which we denote by
ARn card(TRn , X) ≤ b, if and only if for each rk ∈ X there is a named
individual hk such that

]{cj |cj is X-total, CRn(cj) ∈ ARn and for each ri ∈ X, ∃hi such that

Ri(hi) ∈ ARn , ri(cj , hi) ∈ ARn} ≤ b.

In the special case where b = 1 for a CC, the CC is called a uniqueness con-
straint (UC) and is represented by u(TRn , X), which if satisfied by ARn is de-
noted by ARn u(TRn , X) 5.

Example 4. For Table 1 ASched card(TSched, {rL Name, rRoom}) ≤ 2.

5 We explicitly ignore non-standard CCs and UCs, that is where X = ∅.

6

3.3 C-Armstrong ABoxes

Recall from Section 2.2 that an Armstrong relation satisfies all constraints that
are relevant and violates all constraints that are irrelevant. I.e., the table schema
of Figure 2 states that there is a UC over columns C ID and Time. Hence, there
is no row in the Armstrong relation of Figure 2 that violates this constraint.

Definition 6. Let Σ be a set of constraints (i.e. UCs) over T SRn . We say that
ARn satisfies Σ, denoted by ARn Σ, if ARn satisfies every element of Σ.
If for some σ ∈ Σ, ARn does not satisfy σ we say ARn violates σ and write
ARn 1 σ. By extension we have that ARn also violates Σ, which we denote by
ARn 1 Σ. For convenience we represent the axioms that represent Σ as T ΣRn .

Example 5. For ASched of Table 1 we have that ASched Σ where
Σ = {u(rC ID, rTime), u(rTime, rL Name, rRoom)}. However, for
Σ = {u(rC ID), u(rL Name, rRoom)} we have that ASched 1 Σ.

Figure 2 states that there is a UC over columns C ID and Time, which implies
the following UCs: (1) the UC over C ID, Time and L Name, (2) the UC over C ID,
Time and Room, and (3) the UC over C ID, Time, L Name and Room.

Definition 7. Assume T SRn is given with nf(TRn , X), X ⊆ {r1, . . . , rn}, with
Σ ∪ {ϕ} a finite set of constraints over TRn . We say that Σ implies ϕ in
the presence of nf(TRn , X), denoted by Σ,nf(TRn , X) � ϕ, if every X-total
ARn that satisfies Σ also satisfies ϕ. If Σ does not imply ϕ in the presence
of nf(TRn , X) it is denoted by Σ,nf(TRn , X) 2 ϕ. We denote the semantic
closure of Σ and nf(TRn , X) by Σ∗nf(TRn ,X), which we define as

Σ∗nf(TRn ,X) = {ϕ|Σ,nf(TRn , X) � ϕ}

Example 6. For T SSched, nf(TSched, {rC ID, rTime}) and
Σ = {u(rC ID, rTime), u(rTime, rL Name, rRoom)} we have that

Σ∗nf(TSched,{rC ID,rTime}) = {u(rC ID, rTime), u(rTime, rL Name, rRoom),

u(rC ID, rTime, rL Name), u(rC ID, rTime, rRoom),

u(rC ID, rTime, rL Name, rRoom)}

Given the previous definitions it is now possible to formalize the notion of
an Armstrong ABox for an n-ary relation Rn.

Definition 8. Let C denote a class of constraints and let Σ be a finite set of
elements from C. Assume nf(TRn , X), X ⊆ S holds where S = {r1, . . . , rn}. We
say ARn is C-Armstrong for Σ and nf(TRn , X) if and only if

1. ARn satisfies Σ, which we write as ARn Σ,
2. ARn violates every ϕ /∈ Σ∗nf(TRn ,X), which we write as ARn 1 ϕ for each

ϕ /∈ Σ∗nf(TRn ,X),
3. ARn is X-total, which is written as ARn nf(TRn , X), and
4. for any H ⊆ S −X, ARn is not H-total, which we write as ARn 1 nf(TRn , H).

7

Example 7. For T SSched, nf(TSchedtheoremstar, {rC ID, rTime}) and
Σ = {u(rC ID, rTime), u(rTime, rL Name, rRoom)}, we can confirm that ASched of
Table 1 is C-Armstrong, where C represents the class of UCs, by verifying that:

1. ASched satisfies Σ,

2. ASched violates every ϕ /∈ Σ∗nf(TSched,{rC ID,rTime}),

3. ASched is {rC ID, rTime}-total and

4. ASched is not {rL Name}-total or {rRoom}-total.

3.4 Anti-keys and Strong Agreement Sets

Calculating an Armstrong relation for the class of UCs depends on the ability
to determine those columns for which no UC is implied in order for them to
be violated. Rather than violating all UCs not implied, it is sufficient to only
violate those that are maximal with the property that they are not implied by
Σ in the presence of the null-free subschema. Evidence for this intuition can be
seen in Figure 2. The combination of C ID, L Name and Room as a potential UC is
violated by rows 1 and 2, which implies that no subset of these columns can be
a UC. In relational database theory the combination of Time, L Name and Room

is referred to as an anti-key [12].

An anti-key satisfies the following 3 conditions: (1) anti-keys are columns of
a table schema, (2) anti-keys are non-empty sets of columns of a table schema
for which no UC hold, and (3) anti-keys are maximal w.r.t. condition (2).

Definition 9. Let Σ be a set of UCs, S = {r1, . . . , rn}, X ⊆ S and assume
nf(TRn , X) holds for T SRn . For Y ⊆ S, we denote that Y is an anti-key by a(Y).
The set Σ−1 of all anti-keys is defined as

Σ−1 = {a(Y)|Y ⊆ S and Σ,nf(TRn , X) 2 u(TRn , Y) and

for any H ⊆ (S − Y)[Σ,nf(TRn , X) � u(TRn , Y ∪H)]}

Example 8. The anti-keys for TSched with nf(TRn , {rC ID, rTime}) and UCs Σ =
{u(rC ID, rTime), u(rTime, rL Name, rRoom)} is given by
Σ−1 = {a(rC ID, rL Name, rRoom), a(rTime, rL Name), a(rTime, rRoom)}.

Anti-keys can be calculated using hypergraphs where the columns of the table
schema and the sets of columns representing UCs are respectively the vertexes
and the edges [12]. Since only minimal UCs are used, the hypergraph is a simple
hypergraph. We illustrate the calculation of anti-keys through an example. The
minimal transversal [7] of H is given by Tr(H) = {{Time}, {C ID, Room},
{C ID, L Name}}. Anti-keys are maximal such that they are not UCs. Since each
element of the transversal represent columns that form part of minimal UCs, the
set difference between the set of columns representing the table schema and an
element of the transversal delivers an anti-key. I.e., the set difference between the
columns of Schedule and {Time}, the first element of the transversal, delivers
the anti-key over C ID, L Name and Room.

8

Algorithm 1 Algorithm for calculating an Armstrong ABox

Input: TBox T S
Rn , S = {r1, . . . , rn}, Σ a set of UCs and nf(TRn , X), X ⊆ S

Output: Armstrong ABox ARn for Σ and nf(TRn , X) where
hri,jri

, i = {1, . . . , n}, jri ≥ 1, are individuals such that Ri(hri,jri
)

A1: ARn = ARn ∪ {CRn(c1), ri(c1, hri,1)}, i = {1, . . . , n}
A2: Compute Σ−1 using hypergraph methods
A3: k = 2, jri = 2, i = {1, . . . , n};
A4: for all Y such that a(Y) ∈ Σ−1 do

ARn = ARn ∪ {CRn(ck), ri(ck, hri,jri
)}, i = {1, . . . , n} where

hri,jri
=

hri,1, if ri ∈ Y
hri,jri

, jri = jri + 1, if ri ∈ X − Y
do nothing, else

; k = k + 1;

A5: Let Z ⊆ S be such that ARn is Z-total
if Z −X 6= ∅ then
ARn = ARn ∪ {CRn(ck), ri(ck, hri,jri

)}, i = {1, . . . , n} where

hri,jri
=

{
do nothing, if ri ∈ X − Z
hri,jri

, else
; return ARn

else return ARn

Lemma 1. Define the hypergraph H for T SRn , S = {r1, . . . , rn}, with Σ a set
of minimal UCs, with nf(TRn , X), X ⊆ S, as H = (V,E) where V = S and
E = {Z|u(Z) ∈ Σ}. Then the set of anti-keys is defined as

Σ−1 = {a(S −W)|W ∈ Tr(H)}

where Tr(H) denotes the minimal transversal of the hypergraph H.

Example 9. For T SSched and Σ = {u(rC ID, rTime), u(rTime, rL Name, rRoom)} we
create the hypergraph H = (V,E) where V = {rC ID, rTime, rL Name, rRoom}
and E = {{rC ID, rTime}, {rTime, rL Name, rRoom}}. We then have that
Tr(H) = {{rTime}, {rC ID, rRoom}, {rC ID, rL Name}} from which follows that
Σ−1 = {a(rC ID, rL Name, rRoom), a(rTime, rL Name), a(rTime, rRoom)}.

A notion related to that of anti-keys is strong agreement sets. Two rows of a
table instance is said to strongly agree on a set of columns if for those columns
the two rows agree on their total values. For the table instance in Figure 2 row
1 and 2 strongly agree on columns C ID, L Name and Room.

Definition 10. Given ARn we say two individuals c1 and c2 of concept CRn

strongly agree on the roles X, X ⊆ S, where S = {r1, . . . , rn}, if they are
X-total and the fillers of each ri ∈ X are filled by the same individuals. The
strong agreement set of c1 and c2, denoted by ags(c1, c2), is given by

ags(c1, c2) = {ri|ri-total , CRn(c1) ∈ ARn , CRn(c2) ∈ ARn , and ∃yi, zi such that

Ri(yi) ∈ ARn , Ri(zi) ∈ ARn , ri(c1, yi) ∈ ARn , ri(c2, zi) ∈ ARn

and yi = zi for any ri ∈ X}.

9

The strong agreement set of ARn is given by ags(ARn) which we define as

ags(ARn) = {ags(c1, c2)|CRn(c1) ∧ CRn(c2) ∧ c1 6= c2}

Example 10. The strong agreement set of ARn of Table 1 is given by

ags(ASched) = {{rC ID, rL Name, rRoom}, {rTime, rL Name}, {rTime, rRoom},
{rL Name}, {rRoom}, {rTime}}

3.5 Algorithm for generating an Armstrong ABox

Anti-keys and strong agreement sets are useful to characterize an Armstrong
relation for the class of UCs and a null-free subschema. A table instance is
Armstrong for the class of UCs and a null-free subschema if and only if the
following conditions hold:

1. Each anti-key is an element of a strong agreement set.
2. There is no uniqueness constraint such that the set of columns representing

a uniqueness constraint is a subset of a strong agreement set.
3. The set of columns over which the table instance is total is the same as the

null-free subschema.

Theorem 1. For T SRn let Σ be a set of UCs and assume nf(TRn , X), X ⊆ S
where S = {r1, . . . , rn} holds. An ABox ARn for T SRn , Σ and nf(TRn , X) is an
Armstrong ABox if and only if the following conditions hold:

1. ∀a(Y) ∈ Σ−1[Y ∈ ags(ARn)],
2. (∀u(TRn , Y) ∈ Σ)(∀Z ∈ ags(ARn))[(Y * Z)],
3. Let Z ⊆ S be such that ARn is Z-total, then Z = X [10, 12].

Example 11. Examples 9 and 10 calculated Σ−1 and ags(ASched) for TSched with
nf(TRn , {rC ID, rTime}) and Σ = {u(rC ID, rTime), u(rTime, rL Name, rRoom)}.
It therefore follows from Theorem 1 that ARn (Table 1) is an Armstrong ABox.

Table 2. ASched generated using Algorithm 1

C ID Time L Name Room

rC ID(c1, hrC ID,1) rTime(c1, hrTime,1) rL Name(c1, hrL Name,1) rRoom(c1, hrRoom,1)
rC ID(c2, hrC ID,1) rTime(c2, hrTime,2) rL Name(c2, hrL Name,1) rRoom(c2, hrRoom,1)
rC ID(c3, hrC ID,2) rTime(c3, hrTime,1) rL Name(c3, hrL Name,1)
rC ID(c4, hrC ID,3) rTime(c4, hrTime,1) rRoom(c4, hrRoom,1)

Algorithm 1 calculates an Armstrong ABox ARn for T SRn , S = {r1, . . . , rn},
with nf(TRn , X) for X ⊆ S and Σ is a set of UCs, using the following steps: (A1)
generates an arbitrary first tuple. (A2) calculates the anti-keys. (A3) initializes
indexes k and jri , where k keeps track of the number of individuals representing
tuples and indexes jri keep track of the number of different individuals used as
role fillers for each of the roles ri. (A4) generates for each anti-key an individual
ck with related assertions where hri,1 is re-used when ri forms part of an anti-key.
(A5) generates the equivalent of ni for any ri that is not null-free.

10

Example 12. For T SSched , Σ = {u(rC ID, rTime), u(rTime, rL Name, rRoom)} and
nf(T , {rC ID, rTime}) we generateASched (Table 2) using Algorithm 1, assuming
CRn(c1), . . . , CRn(c4) are implied. A mapping of each hri,jri delivers Table 1.

Theorem 2 follows from Lemma 1 and Theorem 1 [12].

Theorem 2. On input (T SRn , Σ, nf(TRn , X)) Algorithm 1 generates an Arm-
strong ABox ARn over T SRn that is Armstrong for Σ and nf(TRn , X).

The preceding definitions motivate the following definition:

Definition 11. Given T SRn with Σ a set of UCs and nf(TRn , X), X ⊆ S where
S = {r1, . . . , rn}, we define the corresponding TBox TRn as TRn = T SRn ∪ T ΣRn ∪
T nfRn where T ΣRn consists of the axioms representing Σ and T nfRn consists of the
axioms representing nf(TRn , X). The corresponding Armstrong ontology ORn is
given by ORn = TRn ∪ ARn where ARn is an Armstrong ABox for TRn .

4 Ontology Design and Evaluation using Armstrong
ABoxes

In this section we discuss how an Armstrong ABox can be used to generate
motivating scenarios and CQs.

Each row in Table 1 represents a scenario that supports the current design
decisions for the ontology since it satisfies all relevant constraints. Each row
in Table 1 is thus a motivating scenario. In order to ensure no latent UCs are
missed, the complete table also needs to be considered. To communicate the
current understanding of the relevant and irrelevant constraints, an ontology
engineer can use an informal notation such as the table instance in Figure 2. In
this way an Armstrong ABox can be used to systematically generate scenarios
which can help an expert to validate the design.

The design of the ontology can be evaluated through generated CQs. TRn rep-
resent the axioms that have to be satisfied in every model. Hence, it follows that
for every α ∈ TRn we have that TRn � α, which is referred to as an entailment CQ
in Section 2.1. Each row of Table 1 must be consistent for ORn , which we can ex-
press as ORn 2 ¬Q where for all i = {1, . . . n} Q = CRn(cj)∧R(hij)∧ri(cj , hij),
which is referred to as a consistency CQ in Section 2.1. Note that this last CQ
represents a means with which the motivating scenarios can be formally evalu-
ated since, as stated earlier, ARn consists of motivating scenarios.

5 Conclusion

We presented a preliminary theoretical framework for applying Armstrong re-
lations to ontology design within the context of the ontology design approach
of Grüninger, et al. [9], where motivating scenarios inform design decisions and
CQs are used to evaluate the ontology design. In future research we will investi-
gate the applicability of Armstrong ABoxes to other DL constraints and aim to
show how this framework can be used to revise existing populated ontologies.

11

References

1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.):
The Description Logic Handbook. Cambridge University Press (2007), 2nd edition

2. Beeri, C., Dowd, M., Fagin, R., Statman, R.: On the Structure of Armstrong Re-
lations for Functional Dependencies. J. ACM 31(1), 30–46 (1984)

3. Borgida, A., Weddell, G.E.: Adding Uniqueness Constraints to Description Logics
(Preliminary Report). In: Bry, F., Ramakrishnan, R., Ramamohanarao, K. (eds.)
DOOD. Lecture Notes in Computer Science, vol. 1341, pp. 85–102. Springer (1997)

4. Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: Description
Logic Framework for Information Integration. In: Principles of Knowledge Repre-
sentation and Reasoning. pp. 2–13. Citeseer (1998)

5. Calvanese, D., De Giacomo, G., Lenzerini, M.: Identification Constraints and Func-
tional Dependencies in Description Logics. In: Proceedings International Joint Con-
ference on Artificial Intelligence. vol. 17, pp. 155–160. Citeseer (2001)

6. Calvanese, D., Fischl, W., Pichler, R., Sallinger, E., Simkus, M.: Capturing rela-
tional schemas and functional dependencies in RDFS. In: Proceedings of the 28th
AAAI Conference on Artificial Intelligence. (2014)

7. Eiter, T., Gottlob, G.: Identifying the Minimal Transversals of a Hypergraph and
Related Problems. In: SIAM Journal on Computing. pp. 1278–1304. Society for
Industrial and Applied Mathematics (1995)

8. Fagin, R.: Armstrong Databases. Tech. rep. (May 1982)
9. Grüninger, M., Fox, M.: Methodology for the Design and Evaluation of Ontologies.

In: Proceedings of International Joint Conference on Artificial Intelligence, Work-
shop on Basic Ontological Issues in Knowledge Sharing, April 13, 1995 (1995)

10. Hartmann, S., Leck, U., Link, S.: On Codd Families of Keys over Incomplete Re-
lations. Comput. J. 54(7), 1166–1180 (2011)

11. I. Horrocks, O. Kutz, and U. Sattler. The even more irresistible SROIQ. In
P. Doherty, J. Mylopoulos, and C. A. Welty, editors, Proceedings of the 10th In-
ternational Conference on Principles of Knowledge Representation and Reasoning,
pages 57–67. AAAI Press, 2006.

12. Link, S.: Armstrong Databases: Validation, Communication and Consolidation of
Conceptual Models with Perfect Test Data. Proceedings of the Eighth Asia-Pacific
Conference on Conceptual Modelling (2012)

13. Parsia, B., Sattler, U., Schneider, T.: Easy Keys for OWL. In: Dolbear, C., Rutten-
berg, A., Sattler, U. (eds.) Proceedings of the 5th Workshop on OWL: Experiences
and Directions. CEUR Workshop Proceedings, vol. 432. CEUR Workshop Pro-
ceedings (2008)

12

