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The need for extending Description Logics (DLs) with nonmonotonic features has
led, in the last decade, to the development of many extensions of DLs, obtained by
combining them with the most well-known formalisms for nonmonomtnic reasoning
[24, 2, 9, 11, 13, 16, 15, 18, 6, 4, 8, 23, 19, 7, 3] to deal with defeasible reasoning and in-
heritance, to allow for prototypical properties of concepts and to combine DLs with
nonmonotonic rule-based languages [11, 10, 19, 17].

In this work we study a preferential extension of the logic SROEL(u,×), intro-
duced by Krötzsch [21], which is a low-complexity description logic of the EL family
[1] that includes local reflexivity, conjunction of roles and concept products and is at the
basis of OWL 2 EL. Our extension is based on Kraus, Lehmann and Magidor (KLM)
preferential semantics [20], and, specifically, on ranked models [22]. We call the logic
SROEL(u,×)RT and define notions of rational and minimal entailment for it.

The semantics of ranked interpretations for DLs was first studied in [6], where a ra-
tional extension of ALC is developed allowing for defeasible concept inclusions of the
formC@˜D. In this work, following [14, 16], we extend the language of SROEL(u,×)
with typicality concepts T(C), whose instances are intended to be the typical C ele-
ments. Defeasible inclusions T(C) v D mean that “the typical C elements are Ds”.
Here, however, as in [5, 12], typicality concepts can freely occur in concept inclusions.
The language is then more general than in [16], where minimal ranked models have
been shown to provide a semantic characterization to rational closure for ALC, which
extends the rational closure by Lehmann and Magidor [22]. Alternative constructions
of rational closure for ALC have been proposed in [8, 7]. All such constructions re-
gard languages only containing strict or defeasible inclusions (i.e., in the language with
typicality concepts, T(C ) may only occur in inclusions T(C ) v D and in assertions).

In this work we define a Datalog translation for SROEL(u,×)RT which builds
on the materialization calculus in [21], and, for typicality reasoning, is based on prop-
erties of ranked models, showing that instance checking under rational entailment is
polynomial. While this result has the consequence that the Rational Closure (based on
the definition in [16]) can be computed in polynomial time, we show that, for gen-
eral SROEL(u,×)RT KBs, deciding instance checking under minimal entailment is
CONP-hard (while minimal entailment coincides with Rational Closure for ALC).

The notion of concept in SROEL(u,×), as defined by Krötzsch [21], is extended
with typicality concepts. We let NC be a set of concept names, NR a set of role names
and NI a set of individual names. A concept in SROEL(u,×) is defined as follows:

C := A | > | ⊥ | C u C | ∃r.C | ∃S.Self | {a}

where A ∈ NC and r ∈ NR. We introduce a notion of extended concept CE as follows:
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CE := C | T(C) | CE u CE | ∃S.CE

where C is a SROEL(u,×) concept; i.e., extended concepts include typicality con-
cepts T(C), which can occur in conjunctions and existential restrictions, but T cannot
be nested.

A KB is a triple (TBox ,RBox ,ABox ). TBox contains a finite set of general con-
cept inclusions (GCI)C v D, whereC andD are extended concepts; RBox (as in [21])
contains a finite set of role inclusions of the form S v T , R ◦ S v T , S1 u S2 v T ,
R v C × D, where C and D are concepts, R,S, T ∈ NR. ABox contains individ-
ual assertions of the form C(a) and R(a, b), where a, b ∈ NI , R ∈ NR and C is an
extended concept. Restrictions are imposed on the use of roles as in [21].

Following [6, 16], a semantics for the extended language is defined, adding to in-
terpretations in SROEL(u,×) [21] a preference relation < on the domain, which is
intended to compare the “typicality” of domain elements.

Definition 1. A SROEL(u,×)RT interpretationM is any structure 〈∆,<, ·I〉where:
(i) ∆ and ·I are a domain and an interpretation function as in a SROEL(u,×) in-
terpretations; (ii) < is an irreflexive, transitive, well-founded and modular relation
over ∆; (iii) the interpretation of concept T(C) is defined as follows: (T(C))I =
Min<(C

I), where Min<(S) = {u : u ∈ S and @z ∈ S s.t. z < u}. An irreflex-
ive and transitive relation < is well-founded if, for all S ⊆ ∆, for all x ∈ S, either
x ∈Min<(S) or ∃y ∈Min<(S) such that y < x. It is modular if, for all x, y, z ∈ ∆,
x < y implies x < z or z < y.

As in [22], modularity in preferential models can be equivalently defined by postu-
lating the existence of a ranking function kM : ∆ 7−→ Ω, where Ω is a totally ordered
set and x < y if and only if kM(x) < kM(y). Hence, modular preferential models
are called ranked models . In the following we assume that such a ranking function is
associated with a model. Satisfiability and models of a KB is defined as usual for DLs.

Definition 2 (Rational entailment). Let a query F be either a concept inclusion C v
D, where C and D are extended concepts, or an individual assertion. F is entailed by
K, written K |=sroelrt F , if for all modelsM =〈∆,<, ·I〉 of K,M satisfies F .

Example 1. TBox :
(a) T(Italian) v ∃hasHair .{Black} (b) T(Student) v MathHater
(c) ∃hasHair .{Black} u ∃hasHair .{Blond} v ⊥ (d) T(Student) v Young
(e) ∃friendOf .{mary} v T(Student) (f)MathLover uMathHater v ⊥

ABox : {Student(mary), friendOf (mario,mary), (Student u Italian)(mario),
T(Student u Italian)(luigi), T(Student uYoung)(paul)}

Standard DL inferences hold for T(C) concepts and T(C) v D inclusions. For
instance, we can conclude that Mario is a typical student (by (e)) and young (by (d)).
However, by the properties of defeasible inclusions, Luigi, who is a typical Italian stu-
dent, and Paul, who is a typical young student, both inherit the property of typical
students of being math haters. In this logic we cannot conclude that all typical young
Italians have black hair (and that Luigi has black hair), according to Rational Mono-
tonicity in [22], as we do not know whether there is some typical Italian who is young.
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To supports such a stronger nonmonotonic inference, a minimal model semantics (and
minimal entailment) is needed to select the interpretations where individuals are as typ-
ical as possible (see below).

A normal form can be defined for SROEL(u,×)RT knowledge bases. A KB is in
normal form if it admits axioms of a SROEL(u,×) KB in normal form, and axioms
of the form: A v T(B) and T(B) v C with A,B,C ∈ NC . Extending the results in
[1, 21], it is easy to see that, given a SROEL(u,×)RT KB, a semantically equivalent
KB in normal form (over an extended signature) can be computed in linear time.

For normalized KBs, the Datalog materialization calculus for SROEL(u,×) pro-
posed by Krötzsch [21] can be extended to define a polynomial Datalog encoding for
instance checking under rational entailment.

Theorem 1. Instance checking under rational entailment in SROEL(u,×)RT can be
decided in polynomial time for normalized KBs.

Exploiting the approach presented in [21], a version of the Datalog specification
where predicates have an additional parameter can also be used to check subsump-
tion for SROEL(u,×)RT in polynomial time. This also provides a polynomial upper
bound for a rational closure construction analogous to the one in [16].

We now consider the notion of minimal canonical model in [16]. Given a KB K
and a query F , let S be the set of all the concepts (and subconcepts) occurring in K or
F together with their complements (S is finite).

Definition 3 (Canonical models). A model M = 〈∆,<, I〉 of K is canonical if, for
each set of SROEL(u,×)RT concepts {C1, C2, . . . , Cn} ⊆ S consistent withK (i.e.,
s.t. K 6|=sroelrt C1 u C2 u . . . u Cn v ⊥), there exists a domain element x ∈ ∆ such
that x ∈ (C1 u C2 u . . . u Cn)

I .

Among canonical models, we select the minimal ones according to the following prefer-
ence relation≺ over the set of ranked interpretations. An interpretationM =〈∆,<, I〉
is preferred toM′ = 〈∆′, <′, I ′〉 (M≺M′) if:∆ = ∆′;CI = CI′

for all conceptsC;
for all x ∈ ∆, kM(x) ≤ kM′(x), and there exists y ∈ ∆ such that kM(y) < kM′(y).

Definition 4 (Minimal entailment). M is a minimal canonical model of K if it is a
canonical model of K and it is minimal among all the canonical models of K wrt.
the preference relation ≺. Given a query F , F is minimally entailed by K, written
K |=min F if, for all minimal canonical modelsM of K,M satisfies F .

Under minimal entailment, in Example 1 we can conclude ∃hasHair .{Black}(luigi)
and T(Young u Italian) v ∃hasHair .{Black}.
Theorem 2. Instance checking in SROEL(u,×)RT under minimal entailment is CONP-
hard.

The proof is based on a reduction from tautology checking of propositional 3DNF for-
mulae to instance checking in SROEL(u,×)RT.

For KBs which only allow typicality concepts to occur on the left hand side of
typicality inclusions, and are in the language of ALC, the result in [16] guarantees that
all minimal canonical models of the KB assign the same ranks to concepts, namely,
the ranks determined by the rational closure construction. This is not true, however, for
general KBs in SROEL(u,×).
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