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Abstract. Description logics (DLs) are currently a de facto standard in
logic-based knowledge representation thanks to the last two decades of
research and their use as the underpinning of standardized and widely
adopted web ontology language (OWL), which also comes with the ad-
vantage of existing user-friendly modeling tools. It has, however, been
observed that OWL and description logics are utilized by logically less
skilled practitioners as constraint languages adopting a closed-world as-
sumption, contrary to the open world semantics imposed by the classical
definitions and the standards. Therefore, we came up with an alternative
formal semantics reflecting this “off-label use” of these widely adopted
formalisms. To that end, we introduce the fixed-domain semantics and
discuss that this semantics gives rise to the interesting new inferencing
task of model enumeration. We describe how the new semantics can be
axiomatized in very expressive DLs. We thoroughly investigate the com-
plexities for standard reasoning as well as query answering for a wide
range of DLs. We present an implementation of a fixed-domain DL rea-
soner based on the translation into answer set programming (ASP) and
provide first results that this tool is superior to alternative approaches
when used on constraint-satisfaction-type problems.

1 Introduction

Preferred knowledge representation formalisms are often the ones which are stan-
dardized, widely adopted and come with elaborate modeling tool support. One
outstanding example for this is certainly the Web Ontology Language OWL [32].
Ontology editors like Protégé [16] provide user-friendly interfaces and combined
with the natural-language-like Manchester syntax [12] possess perspicuous access
to an arguably complex and involved formalism.

This gives rise to scenarios in which OWL is chosen over other formalisms,
even if the application scenario does not match the typical usage of this language.
For example, the modeled problem might be of a constraint-satisfaction type
which does not go well with OWL’s standard semantics allowing for models of
arbitrary size. Consider the 3-coloring problem as a short but representative
constraint-satisfaction problem, for which one can easily envision some OWL
axioms imposing the conditions on valid colorings of a given graph. Then, asking
for consistency of the problem description is a natural task for OWL reasoners,



asking for colorability as such can be cast into a satisfiability problem, but asking
for concrete colorings already requires reasoning capabilities none of the OWL
reasoners we are aware of is furnished with.

To overcome these shortcomings, we propose fixed-domain reasoning for de-
scription logics – a family of logics providing the logical underpinning of OWL
and its sublanguages. By this intuitive and simple approach, we consider DLs
under a non-standard model-theoretic semantics, modifying the modelhood con-
dition by restricting the domain to an explicitly given fixed finite set. We in-
vestigate the combined complexity of reasoning in the presence of a given fixed
domain for a wide range of description logics, for which we establish tight bounds
for standard reasoning tasks as well as query answering for various query no-
tions. While satisfiability checking in OWL under the classical semantics is
N2ExpTime-complete [15] and query answering is not even known to be decid-
able, we show that these problems under the fixed-domain semantics are merely
NP-complete and ΠP

2 -complete, respectively.
We note that the fixed-domain condition can be axiomatized in OWL. Still,

employing the axiomatization, existing OWL reasoners struggle on fixed-domain
reasoning, due to the heavy combinatorics involved. Therefore, we propose a
different approach and define a translation of SROIQ knowledge bases (the
logical counterparts to OWL ontologies) into answer set programming (ASP) [4],
such that the set of (fixed-domain) models coincides with the set of answer-sets
of the obtained program. This allows us to use existing ASP solvers (see [5]
for an overview) for fixed-domain reasoning – including standard as well as non-
standard tasks. For the proposed translation, we provide an implementation and
present preliminary evaluations on typical constraint-satisfaction-type problems.
This not only demonstrates feasibility, but also suggests significant improvement
compared to the axiomatized approach using highly optimized OWL reasoners.

2 Preliminaries

We assume the reader to be familiar with the basics of description logics (DLs) [2,
26]. Nevertheless, we recall some basics of the description logic SROIQ as well
as the class of queries we consider in this work.

OWL 2 DL, the version of the Web Ontology Language we focus on, is
defined based on the description logic SROIQ (for details see [13]). Let NI ,
NC , and NR be finite, disjoint sets called individual names, concept names and
role names respectively. These atomic entities can be used to form complex ones.
A SROIQ knowledge base is a tuple (A, T ,R) where A is a SROIQ ABox, T
is a SROIQ TBox and R is a SROIQ RBox, and we will refer to each TBox
axiom as general concept inclusion (GCI). The semantics of SROIQ is defined
via interpretations I = (∆I , ·I) composed of a non-empty set ∆I called the
domain of I and a function ·I mapping individual names to elements of ∆I ,
concept names to subsets of ∆I and role names to subsets of ∆I × ∆I . This
mapping is extended to complex role and concept expressions and finally used
to define satisfaction of axioms (for details see [13]). We say that I satisfies a



knowledge base K = (A, T ,R) (or I is a model of K, written: I |= K), if it
satisfies all axioms of A, T , and R. We say that a knowledge base K entails an
axiom α (written K |= α) if all models of K are models of α.

Boolean Datalog Queries Here we briefly introduce syntax and semantics of
Datalog queries over description logic knowledge bases. A term can be a variable
from a countably infinite set V of variables, or an element of NI . An atom has the
form p(t1, . . . , tn) where t1, . . . , tn are terms and p is a predicate of arity n from
a set Π of predicates containing NC (arity 1) and NR (arity 2) and containing a
special predicate goal of arity 0. A Boolean Datalog query is a set of first order
logic Horn rules of the form ∀X.a1 ∧ . . .∧ ak → a where a1, . . . , an, a are atoms,
but the predicate of a is not from NC or NR. X ⊆ V denotes the set of variables
occurring in the atoms. Given a DL interpretation I, and a Boolean Datalog
query Q, an extended model for I and Q is a first-order interpretation J over
∆I that coincides with I on the interpretation of NC and NR and satisfies all the
rules from Q. We say that Q matches I and write I |= Q if J |= goal for every
extended model J for I and Q. For a DL knowledge base K, we say K entails Q
iff I |= Q for every model I of K. Bounded arity Datalog queries are classes of
queries where the arity of the used predicates is bounded by some constant. A
Boolean conjunctive query is a Boolean Datalog query with just one rule where
a1, . . . , an use only predicates from NC ∪NR and a = goal . In that case, such a
query can be equivalently written as the first-order formula ∃X.a1 ∧ . . . ∧ ak.

3 Models over Fixed Domains

In DLs, models can be of arbitrary cardinality. In many applications, however,
the domain of interest is known to be finite. In fact, restricting reasoning to
models of finite domain size (called finite model reasoning, a natural assumption
in database theory), has already become the focus of intense studies in DLs
[17, 6, 25, 27]. As opposed to assuming the domain to be merely finite (but of
arbitrary, unknown size), we consider the case where the domain has an a priori
known cardinality and use the term fixed domain. We refer to such models as
fixed-domain models and argue that in many applications, this modification of
the standard DL semantics represents a more intuitive definition of what is
considered and expected as a model of some knowledge base.

Definition 1 (Fixed-Domain Semantics). Given a DL knowledge base K
and a non-empty finite set ∆K ⊆ NI , called fixed domain, an interpretation
I=(∆I , ·I) is said to be ∆K-fixed (or just fixed, if ∆K is clear from the context),
if ∆I = ∆K and aI = a for all a ∈ ∆K. Accordingly, we call an interpretation
I a ∆K-model of K, if I is a ∆K-fixed interpretation and I |= K. A knowledge
base K is called ∆K-satisfiable if it has a model over ∆K. We say K ∆K-entails
an axiom α (K |=fd α) if every ∆K-model of K is also a model of α.

Note that, under the fixed-domain semantics, there is a one-to-one corre-
spondence between ∆K-interpretations and sets of ground facts. That is, for ev-
ery ∆K-interpretation I = (∆I , ·I), we find exactly one ABox AI with atomic



concept assertions and role assertions defined by AI := {r(a, b) | (a, b) ∈
rI} ∪ {A(a) | a ∈ AI} ∪ {Indc(a) | c ∈ NI(K) \ ∆K and cI = a} and like-
wise, every such ABox A gives rise to a corresponding interpretation IA.1 This
allows us to use ABoxes as convenient representations of models.

Example 1. We briefly demonstrate the effects of the fixed-domain semantics as
opposed to the finite-model semantics (with entailment |=fin) and the classical se-
mantics. Let K=(A, T ,R) and ∆K = {a, b} with A = {A(a), A(b), s(a, b)}, T =
{> v ∃r.B,> v 61 r−.>}, and R={Dis(s, r)}. First we note that K has a ∆K-
model I representable as AI = {A(a), A(b), B(a), B(b), s(a, b), r(a, a), r(b, b)},
thus K is satisfiable under all three semantics. Then α = > v ∃r.∃r.B holds in
all models of K, therefore K |= α, K |=fin α, and K |=fd α. Opposed to this,
β = > v B merely holds in all finite models, whence K |=fin β and K |=fd β, but
K 6|= β. Finally, γ = > v ∃r.Self only holds in all ∆K-models, thus K |=fd γ,
but K 6|=fin γ and K 6|= γ.

Extraction & Enumeration of ∆K-Models When performing knowledge base sat-
isfiability checking in DLs (the primary reasoning task usually considered), a
model constructed by a reasoner merely serves as witness to claim satisfiability,
rather than as an accessible artifact. However, as mentioned before, our approach
aims at scenarios where a knowledge base is a formal problem description for
which each model represents one solution; in particular the domain is part of the
problem description. Then, retrieval of one, several, or all models is a natural
task, as opposed to merely checking model existence. With model extraction we
denote the task of materializing an identified model in order to be able to work
with it, i.e. to inspect it in full detail and reuse it in downstream processes. The
natural continuation of model extraction is to make all models explicit, perform-
ing model enumeration. Conveniently, for both tasks, we can use the introduced
model representation via ABoxes. Most existing DL reasoning algorithms at-
tempt to successively construct a model representation of a given knowledge
base. However, most of the existing tableaux reasoners do not reveal the con-
structed model, besides the fact that models might end up being infinite such
that an explicit representation is impossible. Regarding enumeration, we state
that this task is not supported – not even implicitly – by any state-of-the-art DL
reasoner, also due to the reason that in the standard case, the number of models
is typically infinite and often even uncountable. We will use the notions of model
extraction and enumeration as their meaning should be quite intuitive. Related
thereto, the term model expansion is used in the general first-order case, e.g. in
the work of Mitchell and Ternovska [18]. There, an initial (partial) interpretation
representing a problem instance is expanded to ultimately find a model of the
given theory.

1 For the other direction, ∆I = {a, b | A(a) ∈ AI or r(a, b) ∈ AI}, and an individual
c not occurring in ∆I , we let cI = a, if Indc(a) ∈ AI .



Example 2. We consider the 3-coloring problem for an undirected graph G =
(V,E), encoded in K1 = (A1, T 1,R1), with T 1 = {N v Nr t Ng t Nb, Nr v
∀edge.(NgtNb), Ng v ∀edge.(NbtNr), Nb v ∀edge.(NrtNg), Nr v ¬Ng, Nr v
¬Nb, Ng v ¬Nb}. A1 = {N(vi) | ∀vi ∈ V = {v1, . . . , vn}} ∪ {edge(v, v′) |
∀(v, v′) ∈ E} ∪ {¬edge(v, v′) | ∀(v, v′) ∈ V × V \ E}, and R1 = {Sym(edge)}.
Let ∆K1

= {v1, . . . , vn} be the imposed fixed domain. It is not hard to see, that
there is a one-to-one correspondence between the ∆K1

-models of K1 and the
colorings of G.

Axiomatization of ∆K-Models When introducing a new semantics for some logic,
it is worthwhile to ask if existing reasoners can be used. Indeed, it is easy to see
that, assuming ∆K = {a1, . . . , an}, adding the GCI > v {a1, . . . , an} as well as
the set of inequality axioms containing ai 6≈ aj with i < j to K will rule out all
models of K, not having ∆K as their domain. Denoting these additional axioms
with FD, we then find that K is ∆K-satisfiable iff K∪FD is satisfiable under the
classical DL semantics and, likewise, K |=fd α iff K ∪ FD |= α for any axiom α.
Consequently, any off-the-shelf SROIQ reasoner can be used for fixed-domain
reasoning, at least when it comes to the classical reasoning tasks.

However, the fact that the currently available DL reasoners are not optimized
towards reasoning with axioms of the prescribed type (featuring disjunctions
over potentially large sets of individuals) and that available reasoners do not
support model extraction and model enumeration led us to develop an alternative
computational approach based on ASP.

4 Complexity Analysis

The combined complexity of standard reasoning in SROIQ is known to be
N2ExpTime-complete, both for arbitrary models and finite models [15]. Re-
stricting to fixed domains leads to a drastic drop in complexity. Contrarily, im-
posing fixed domains on (allegedly) inexpressive fragments such as DL-Litecore,
turns reasoning into a hard problem.

Therefore, let DLmin be a minimalistic description logic that merely allows
TBox axioms of the form A v ¬B, with A,B ∈ NC . Moreover, only atomic
assertions of the form A(a) and r(a, b) are admitted. We first demonstrate that
satisfiability checking in DLmin is NP-hard, allowing us to bequeath hardness up
to more expressive DLs such as SROIQ. Subsequently, we demonstrate that
fixed-domain satisfiability checking in SROIQ is in NP, and thus obtaining
NP-completeness for all languages between DLmin and SROIQ.

Proposition 1. The combined complexity of checking fixed-domain satisfiability
of a DLmin knowledge base K=(A, T ) is NP-hard.

Proof. (Sketch) We obtain hardness by reducing the 3-colorability problem to the
following DLmin axioms. Let G=(V,E) be the input graph. Then, for each node
vi ∈ V ={v1, . . . , vn} we introduce a concept name Vi, and encode the edges as
disjointness axioms, such that T = {Vi v ¬Vj | (vi, vj) ∈ E,∀i, j ∈ {1, . . . , n}}.



The ABox A consists of the assertions Vi(ai) for each Vi ∈ {V1, . . . , Vn}. Now
let ∆K = {r, g, b}, such that under any ∆K-fixed interpretation I, necessarily
aIi ∈ {r, g, b}, 1 ≤ i ≤ n. Consequently, G has a 3-coloring, iff K = (A, T ) is
∆K-satisfiable. The reduction is linear in the size of G.

Proposition 2. The combined complexity of checking fixed-domain satisfiability
of SROIQ knowledge bases is in NP.

Proof. (Sketch) LetK be a SROIQ knowledge base and∆K be the fixed domain.
To show membership, we note that after guessing a ∆K-fixed interpretation I,
modelhood can be checked in polynomial time. For this we let C contain all the
concept expressions occurring in K (including subexpressions). Furthermore, let
R contain all role expressions and role chains (including subchains) occurring
in K. Obviously, C and R are of polynomial size. Then, in a bottom-up fashion,
we can compute the extension CI of every element C of C and the extension
rI of every element r of R along the defined semantics. Obviously, each such
computation step requires only polynomial time. Finally, based on the computed
extensions, every axiom of K can be checked – again in polynomial time.

Combining these propositions yields the following theorem.

Theorem 1. Fixed-domain satisfiability checking in any language between DLmin

and SROIQ is NP-complete.

Note that this finding contrasts with the observation that fixed-domain rea-
soning in first-order logic is PSpace-complete. We omit the full proof here, just
noting that membership and hardness can be easily shown based on the fact
that checking modelhood in FOL is known to be PSpace-complete [31] and,
for the membership part, keeping in mind that NPSpace = PSpace thanks to
Savitch’s Theorem [28]. This emphasizes the fact that, while the fixed-domain
restriction turns reasoning in FOL decidable, restricting to SROIQ still gives
a further advantage in terms of complexity (assuming NP 6= PSpace).

Query Entailment We next consider the complexity of query entailment for DLs.
Again, we will notice a very uniform behavior over a wide range of DLs and query
types. We will start by showing a hardness result for a very minimalistic setting.

Proposition 3. The combined complexity of fixed-domain entailment of con-
junctive queries from a DLmin knowledge base is ΠP

2 -hard.

Proof. We show hardness by providing a polynomial reduction from evaluation
of quantified Boolean formulae of the form Φ = ∀p1, . . . , p`∃q1, . . . , qmϕ such
that ϕ is a Boolean formula where the propositional symbols are from the set
{p1, . . . , p`, q1, . . . , qm}. Note that w.l.o.g. we can assume ϕ to be in conjunctive
normal form, i.e. it has the shape

∨
L1 ∧ . . . ∧

∨
Ln where the Li are sets of

negated or unnegated propositional symbols.
Given such a formula Φ, we now construct a DLmin knowledge base K, a

domain ∆K, and a conjunctive query Q (all of polynomial size) such that K
∆K-entails Q if and only if Φ evaluates to true. We let ∆K consist of elements
dtrue
t and dfalse

t for all t ∈ {p1, . . . , p`, q1, . . . , qm}, and K consist of the axioms:



– InClauseL(dtrue
t ) whenever t ∈ L and InClauseL(dfalse

t ) whenever ¬t ∈ L
– compatible(dtrue

t , dtrue
u ) and compatible(dfalse

t , dfalse
u )

for all {t, u} ⊆ {p1, . . . , p`, q1, . . . , qm}
– compatible(dfalse

t , dtrue
u ) and compatible(dtrue

t , dfalse
u )

for all {t, u} ⊆ {p1, . . . , p`, q1, . . . , qm} with t 6= u

– Select(dt), Ct(dt) for all t ∈ {p1, . . . , p`}
– Select(dtrue

t ) and Select(dfalse
t ) for all t ∈ {q1, . . . , qm}

– Ct(d
true
t ), Ct(d

false
t ) for all t ∈ {p1, . . . , p`, q1, . . . , qm}

– Ct u Cu v ⊥ for all {t, u} ∈ {p1, . . . , p`, q1, . . . , qm} with t 6= u

Finally, we let Q be the conjunctive query using the variables xL1
, . . . , xLn

and
consisting of the atoms InClauseL(xL), Select(xL) for all L ∈ {L1, . . . , Ln} as
well as compatible(xL, xL′) for all {L,L′} ∈ {L1, . . . , Ln}.

We now sketch the argument why the above claimed correspondence holds.
By construction, the minimal ∆K-models I for every i ∈ {1, . . . ,m} are exactly
those where (next to the explicitly stated concept and role memberships) either
dtrue
pi

∈ SelectI or dfalse
pi

∈ SelectI holds. Consequently Q is entailed, iff for
each of these models (representing all possible truth assignments to p1, . . . , p`),
one literal from every clause Li can be selected such that (a) this selection is
consistent (i.e., no contradicting literals are selected) and (b) whenever a literal
w.r.t. p1, . . . , p` is selected, it must be the one corresponding with the model’s
predefined truth assignment for these propositional symbols. However, this is
the case exactly if Φ is valid.

We continue by showing that even for very expressive DLs and query lan-
guages, query entailment under the fixed domain semantics is still in the second
level of the polynomial hierarchy.

Proposition 4. The combined complexity of the fixed-domain entailment of
bounded-arity Datalog queries from a SROIQ knowledge base is in ΠP

2 .

Proof. Satisfaction of a bounded-arity Datalog query in a database (or finite
interpretation) is in NP: there are only polynomially many ground atoms that
can be derived, hence, whenever the query is entailed, there is a ground proof tree
of polynomial size which can be verified in polynomial time. Consequently, fixed-
domain non-entailment of such a query Q from a SROIQ knowledge base K can
be realized by (a) guessing an interpretation I (b) verifying I |= K in polynomial
time (cf. the proof of Proposition 2) and (c) using an NP oracle to verify I 6|= Q.

Consequently, checking fixed-domain entailment is in coNPNP = ΠP
2 .

Bounded-arity Datalog queries over DLs are rather expressive, they subsume
many of the prominent query classes in knowledge representation and databases,
including (unions of) conjunctive queries, positive queries, (unions of) conjunc-
tive 2-way regular path queries [7], positive 2-way regular path queries, (unions
of) conjunctive nested 2-way regular path queries [3] and regular queries as de-
fined in [24]. Combining the two propositions, we obtain the following theorem.



Theorem 2. For any class of queries subsuming conjunctive queries and sub-
sumed by bounded-arity Datalog queries and any DL subsuming DLmin and sub-
sumed by SROIQ, the combined complexity of fixed-domain query entailment is
ΠP

2 -complete.

5 Practical Fixed-Domain Reasoning

In Section 3 we already claimed that available reasoners perform poorly on
knowledge bases when axiomatizing the fixed-domain semantics, and we sup-
port this statement with an evaluation in the sequel (cf. Section 5.3). Thus, a
more viable approach is required when considering practical reasoning. To this
end, we propose an encoding of arbitrary SROIQ knowledge bases into an-
swer set programs. This allows us to use existing ASP machinery to perform
both standard reasoning as well as the non-standard tasks model extraction &
enumeration and query entailment quite elegantly.

We review the basic notions of answer set programming [22] under the stable
model semantics [10], for further details we refer to [4]. We consider atoms,
predicates and terms as defined in Section 2. Each term is either a variable or
a constant from a domain U . An atom is ground if it is free of variables. BU
denotes the set of all ground atoms over U . A (disjunctive) rule ρ is of the form

a1 ∨ · · · ∨ an ← b1, . . . , bk, not bk+1, . . . , not bm,

with n ≥ 0, m ≥ k ≥ 0, n+m > 0, where a1, . . . , an, b1, . . . , bm are atoms, and
“not ” stands for default negation. The head of ρ is the set H(ρ) = {a1, . . . , an}
and the body of ρ is B(ρ) = {b1, . . . , bk, not bk+1, . . . , not bm}. Furthermore,
B+(ρ) = {b1, . . . , bk} and B−(ρ) = {bk+1, . . . , bm}. An interpretation I ⊆ BU
satisfies a ground rule ρ iff H(ρ)∩ I 6= ∅ whenever B+(ρ) ⊆ I, B−(ρ)∩ I = ∅. I
satisfies a ground program Π, if each ρ ∈ Π is satisfied by I. A non-ground rule ρ
(resp., a program Π) is satisfied by an interpretation I iff I satisfies all groundings
of ρ (resp., Gr(Π)). I ⊆ BU is an answer-set of Π iff it is a subset-minimal set
satisfying the reduct ΠI = {H(ρ) ← B+(ρ) | I ∩ B−(ρ) = ∅, ρ ∈ Gr(Π)}. For a
program Π, we denote the set of its answer-sets by AS(Π).

5.1 ASP Encodings of DL Knowledge Bases

Due to the identified complexity results, our ASP based approach suits perfectly
for all involved reasoning tasks [4]. Intuitively, the set of all ∆K-interpretations
defines a search space, which can be traversed searching for ∆K-models, guided
by appropriate constraints. We thus propose a translation Π(K) for any SROIQ
knowledge base K; i.e. Π(K) = Πgen(K) ∪ Πchk(K), consisting of a generating
part Πgen(K) that defines all potential candidate interpretations, and a con-
straining part Πchk(K) that rules out interpretations violating axioms in K.
However, we can only sketch the translation and refer to [8], where we intro-
duced the main idea of the translation already.

The knowledge base is required to be in normalized form, obtained by a
modified structural transformation Ω(K), based on the one proposed in [21]. A



GCI is normalized, if it is of the form > v
⊔n

i=1 Ci, where Ci is of the form B,
{a}, ∀r.B, ∃r.Self , ¬∃r.Self , ≥ n r.B, or ≤ n r.B, for B a literal concept, r a
role, and n a positive integer. A normalized knowledge base Ω(K) is a model-
conservative extension of K, i.e. every (∆K-) model of Ω(K) is a (∆K-) model of
K and every (∆K-) model of K can be turned into a (∆K-) model of Ω(K) by
finding appropriate interpretations for the concepts and roles introduced by Ω.
Thereby it is straightforward to extract a model for K, given a model of Ω(K).

Candidate Generation Following the generate & test paradigm, we let Πgen(K)
be the program that generates (all) possible interpretations over ∆K; i.e. for each
concept name A, role name r, and individual a all possible extensions over∆K are
generated. Thus, an answer-set A of Πgen(K) directly induces an interpretation
IA of K over the fixed-domain ∆K. We denote the set of all interpretations of
K over ∆K with BK.

Proposition 5. Let K be a SROIQ knowledge base and Πgen(K) the obtained
logic program. Then, it holds that BK coincides with the set of all answer-sets of
Πgen(K).

Axiom Encoding For the test part, we turn each axiom α ∈ T ∪ R into a
constraint, ultimately ruling out those candidate interpretations not satisfying
α, whence Πchk(K) = Πchk(T ) ∪ Πchk(R). Since each α ∈ T is of the form > v⊔n

i=1 Ci, we simply turn it into a negative constraint of the form
dn

i=1 ¬Ci v ⊥,
and add its direct translation to Πchk(T ). Role assertions and role inclusion
axioms are also turned into constraints, and we add their direct translation to
Πchk(R).

Theorem 3. For any normalized SROIQ knowledge base K = (A, T ,R) and
its translation Π(K), it holds AS(Π(K)) = {B |B ∈ BK and IB |= K}.

With this theorem in place, we benefit from the translation in many aspects.
Most notably, in addition to the standard DL reasoning tasks, model extrac-
tion and model enumeration can be carried out without additional efforts, since
both are natural tasks for answer set solvers. Moreover, all mentioned query
formalisms can be straightforwardly expressed in a rule-based way, whence in-
tegration in our framework is immediate.

Example 3. We reconsider K1 from Example 2. The axioms (a) N v NrtNgtNb

and (b) Nr v ∀edge.(Ng tNb), yield the following constraints:

← N(X),not Nr(X),not Ng(X),not Nb(X). (1)

← Nr(X), edge(X,Y ),not ANgtNb(Y ). (2)

← ANgtNb(X),not Ng(X),not Nb(X). (3)

Due to normalization, (b) results in constraints (2) & (3), ensuring that if there
is an edge from some red node X to Y , necessarily Y is either green or blue.



5.2 Prototype Implementation

We implemented our translation based approach as an open-source tool – named
Wolpertinger.2 The obtained logic programs can be evaluated with most mod-
ern ASP solvers. However, the evaluation was conducted using Clingo [9] for
grounding and solving, since it currently is the most prominent solver leading
the latest competitions [5]. We present preliminary evaluation results based on
simple ontologies, encoding constraint-satisfaction-type combinatorial problems.
Existing OWL ontologies typically used for benchmarking, e.g. SNOMED or
GALEN [29, 23], do not fit our purpose, since they are modeled with the classi-
cal semantics in mind and often have little or no ABox information.

Our tests provide runtimes compared to the popular HermiT reasoner [11]
and Konclude[30]. Whereas a direct comparison would not be fair, the con-
ducted tests shall merely show the feasibility of our approach in comparison
to standard DL reasoners using the axiomatization. In particular we focus on
model enumeration, for which we can not conduct any comparison with existing
DL reasoners. The evaluation itself is conducted on a standard desktop machine
(Unix operating system, 2.7 Ghz Intel Core i5 Processor, 8 GB memory and
standard Java-VM settings).

5.3 Initial Experiments

Unsatisfiability We construct an unsatisfiable knowledge base Kn =(An, Tn, ∅),
with Tn = {A1 v ∃r.A2, . . . , An v ∃r.An+1, Ai u Aj v ⊥ | 1 ≤ i < j ≤
n + 1} and An = {A1(a1),>(a1), . . . ,>(an)}, together with the fixed-domain
∆K = {a1, . . . , an}. Inspired by common pigeonhole-type problems, we have Kn

enforce an r-chain of length n+ 1 without repeating elements, yet, having fixed
∆K to n elements such a model cannot exist. Table 1 depicts the runtimes for
detecting unsatisfiability of Kn, for increasing n. The durations correspond to
the pure solving time as stated by the tools (including grounding in the case
of Clingo), and neglecting pre-processing time. As the figures suggest, Kn is
a potential worst-case scenario, where any of the tools is doomed to test all
combinations. Whereas Wolpertinger is faster in claiming inconsistency in all
cases up to K10, HermiT is slightly faster up from K11 – both leaving Konclude

behind. However, K12 is already beyond a feasible time bound for all reasoners.

Model Extraction and Enumeration With Table 2, we next provide some figures
for model extraction and partial enumeration (retrieving a given number of ∆K
models). To this end, we created a knowledge base modeling fully and correctly
filled Sudokus, featuring 108 named individuals, 13 concept names and 1 role
name. When invoking a satisfiability test on this knowledge base (axiomatized)
using HermiT & Konclude, no answer was given within 15 minutes. On average,
a solution for a given Sudoku instance is provided in around 7 seconds, of which
more than 6 seconds are needed for grounding, while the actual solving is done in

2 https://github.com/wolpertinger-reasoner/Wolpertinger



Table 1. Runtimes: Detecting unsatisfiability of Kn.

# Kn Wolpertinger HermiT Konclude

1 5 < 0.01 s 0.48 s 0.04 s
2 6 < 0.01 s 0.67 s 0.07 s
3 7 0.04 s 0.94 s 0.26 s
4 8 0.33 s 1.81 s 1.79 s
5 9 3.72 s 9.52 s 16.19 s
6 10 68.53 s 87.88 s 152.37 s
7 11 1 095.49 s 1 027.33 s 1 682.41 s

Table 2. Runtimes: Enumerating Sudoku Instances.

# Models Time(Total) Time(Solving)

1 100 6.73 s 0.11 s
2 1 000 7.16 s 0.33 s
3 10 000 9.06 s 2.39 s
4 100 000 29.27 s 22.53 s
5 1 000 000 225.40 s 218.56 s

less than 0.1 seconds. For model enumeration, we used the knowledge base but
removed information concerning pre-filled cells, turning the task into generating
new Sudoku instances. The size of the grounded program is 20 MB, which takes
around 6 seconds to obtain, as reflected in Table 2.

6 Conclusion

For OWL ontologies which represent constraint-type problems, the fixed-domain
semantics allows to confine modelhood of interpretations towards more intu-
itional models. Although modeling features are limited, we argue that quite large
and involved problem scenarios can be modeled in OWL ontologies. Clearly, eval-
uations of our system with respect to such ontologies remain as imperative issue.
Moreover, we will consider translations into other formalisms, such as pure CSP
languages, or even SAT, as future work. While remaining in monotonic waters,
prospective considerations are in the direction of non-monotonic semantics. As
such, rule-based extensions of OWL – monotonic [14, 20] or nonmonotonic [19, 1]
– should be straightforward to accommodate. Moreover, we plan to incorporate
typical ontology engineering tasks such as explanation and axiom pinpointing
into our ASP-based framework.
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