
Transformation from Requirements to Design for
Service Oriented Information Systems1

Lina Ceponiene2 and Lina Nemuraite2

2 Kaunas University of Technology, Studentu 50-308,
LT 51368 Kaunas, Lithuania

kavalina@soften.ktu.lt, lina.nemuraite@ktu.lt

Abstract. Service-Oriented Architecture (SOA) and Web services are becom-
ing the universally accepted architectural style for development of modern in-
formation systems of enterprises. But the methods of design in SOA are not
well established yet. The most of current methodologies are focused on compo-
sition of business processes from services. In this work, SOA based design is
considered as design of information system where modelling of services and
processes composed of services is related to modelling of entities comprising
service execution context. It is demonstrated, that various forms of UML 2.0 in-
teractions and state machines fit well for representation of SOA related con-
cepts – services, protocols, choreography, orchestrations, and transactions. The
proposed design method consists of two steps – making comprehensive specifi-
cation of requirements and transforming it to design using State Coordinator
pattern that enables loose coupling of stateless services into system operating
on the base of information about states of entities.

1 Introduction

Service-Oriented Architecture (SOA) and Web services [22, 27] are becoming the
universally accepted architectural style for development of information systems of
enterprises. As foremost Web services have arisen as technological challenge in late
1999, methods of design of service-oriented systems are not well established up till
now. Existing modelling approaches such as Object-Oriented Analysis and Design
(OOAD), Software Component Based Design (CBD), Enterprise Architecture (EA)
frameworks, and Business Process Modelling (BPM) have provided high-quality
practices for development of enterprise information systems. But for development of
service oriented systems, as stated in [31], more advanced techniques are required.

What are features of service orientation that do not fit to familiar methodologies?
A service is an operation offered as an interface that stands alone in the model, with-
out encapsulating state, as entities and value objects [15]. Though concepts of ser-
vices have arisen from technical frameworks, in service-oriented design definition of
service must be originated from business domain, not from technology. Unlike enti-

1 The work is supported by Lithuanian State Science and Studies Foundation according to

Eureka programme project “IT-Europe” (Reg. No 3473)

164

 165

ties, service is described in terms of what it can do for a client; it has interface, speci-
fying set of operations, and makes contract with its client, so defining responsibilities
to fulfil this interface.

The exclusive feature of service-oriented design is the separation between behav-
ioural objects, i.e. services, and persistent entities (information objects), in contrast
with object oriented design. A good service design has three characteristics [15]: its
operations correspond to domain concepts that are not the natural parts of entities or
value objects; the interface is defined in terms of other elements of the domain model;
the operations are stateless. Statelessness of service means that it is independent of
context, and any client can use any instance of a particular service without regard to
the history of this instance. The execution of a service uses external information, and
may change that information. But the service does not hold the state of its own that
affects its own behaviour, unlikely the most domain objects.

In reality, the use of services is dependent on rules of business processes in hand.
These rules are often expressed in terms of states of information entities comprising
service execution context. In this work, design of information systems embracing
services of business domain is considered, and the State Coordinator pattern is pro-
posed for loose connection of stateless services into system that operates on the base
of information about persisted states of entities. SOA based design is considered as
design of information system where modelling of services and processes composed of
services is related with modelling of entities comprising context. This differs from
majority of proposed techniques, where emphasis is made on modelling of business
processes but information modelling is limited to definition of types of messages and
variables [1], textual notes [8], or not considered at all.

The proposed design method consists of two steps – making comprehensive speci-
fication of requirements (Design Independent Model (DIM) [10, 11]), and transform-
ing requirements to design – Platform Independent Model (PIM) in MDA terminol-
ogy [18]. It is demonstrated, that various forms of UML 2.0 [25] interactions and
state machines fit well for representation of SOA related concepts – services, proto-
cols, choreography, orchestration, and transactions. Secondly, it is shown that DIM
specification (using OCL [26, 28] and principles of contract-based design [12])
makes it possible to formalize transformation from requirements to design.

The paper is structured as follows: in Section 2 service concepts and related work
is characterized. In Section 3 the principles of requirements specification for service-
oriented design are presented and illustrated with the example. In Section 4 service
design pattern is proposed. In Section 5 transformation from requirements to design is
described. Finally, Section 6 makes conclusion and reasoning about future work.

2 Service Concepts and Related Work

Related approaches for modelling in SOA are associated with Business Process Mod-
elling Languages BPML [2], BPMN [8], BPEL [1], WSCI [3], WS-CDL [17]; stan-
dards for Business Transactions [9], Unified Modelling Methodology (UMM) [24]
and ebXML [14]; the most popular implementation language is BPEL, or BPEL4WS;
relationships of these languages to Web Services Description Language (WSDL) [29]

 166

as well as generation of WSDL specifications from designs of services are well estab-
lished.

Design of services deals with three levels of abstraction: operations, services
(groupings of operations) and business processes. Operations represent atomic busi-
ness transactions (logical units of work). Execution of an operation usually causes
one or more persistent data records to be read, written, or modified, and additional
operations may be invoked. Service corresponds to class concept. For design of op-
erations of the service, object (e. a. [19]) or component-oriented (e. a. [12]) methods
are suitable, with the particularity, that services are pure behavioural concepts.

Business processes represent long running flows of actions and activities per-
formed in order to respond to business events, and to achieve business goals. Busi-
ness processes require multiple invocations of business internal services and services
rendered by external business systems. The rules of sequencing of message exchange
patterns of business-to-business collaborations across business process are termed as
process choreography. Besides choreography concept that is used for definition of
business-to-business processes, the concept of orchestration is essential for modelling
of internal business processes serving for execution of interactions that particular
process can manage. Concepts of choreography, orchestration and multiparty busi-
ness transactions are extensively used in Web services literature; the intelligible clari-
fication of terms may be found at EBPML Web site (e.g. [13, 22]).

The goal of service-oriented design is systematic construction of operations, ser-
vices, and organised sets of services. Many works are devoted to development of
business processes, composed of services; composition rules and phases [30]; emerg-
ing W3 Consortium and OASIS standards are concerned with choreography, orches-
tration, transaction, context and coordination frameworks. In current business process
modelling languages, devoted for composition of services, design of business proc-
esses is not integrated with design of services themselves. Similarly, object-oriented
and component-based methods, suitable for design of operations and services, are
lacking of service composition potential. In UMM, design of services is linked with
design of global business processes (choreographies), but orchestration is not consid-
ered and services are not integrated with entities of domain model; so this methodol-
ogy is also insufficient for end-to-end development of service systems.

In this work, system of services is constructed, rather than single business process,
and development process is considered going from requirements to code. Specifica-
tion of choreographies and orchestrations of business processes is based on UML 2.0
interactions and, specifically, interaction overview diagram that represents fruitful
combination of activity and sequence diagrams whereas established methods are
based on activity diagram-like representations or using activity and sequence dia-
grams alternately.

For execution of services, transition systems semantics and state machines mecha-
nisms are universally accepted (e.g. [5, 7, 4]), where states usually represent persis-
tent states observable in business domain. In our work, both persistent states and
behavioural states (performing actions or waiting for events) are taken into account,
and state machines of services are interrelated with state machines of entities. During
execution, system operates as composite state machine, where transitions are fired by
external events (received messages about requests of services) and restricted by per-

 167

sisted states of entities. Transition rules coincident with service usage contracts are
separated from services; they may be implemented using rule checking operations or
stored in rule base, so design may be flexible to possible changes in business domain.

The proposed transformation is based on State Coordinator pattern that is some-
what similar to combination of classical Façade and State patterns [16]. State Coordi-
nator serves as front end for receiving service request messages (as Facade), and
makes choice of operation for execution subject to context (as State). Additionally, it
takes into consideration interactions between services. For SOA design, many of
classical patterns are reused [16], and service-specific patterns are proposed [5, 23,
25], but service composition mostly is based on Business Process Modelling Lan-
guages. State Coordinator may be a simple variation of Business Process execution
engine that may be used for customary development as much as for model driven
design.

3 Requirements definition

In this section, principles of specification of requirements relevant for intended goals
to formalize service-oriented design are presented. Detailed model of requirements
must define overall state and behaviour of intended information system independently
of future design. Requirements definition consists of two phases: initial requirements
and system requirements.

Initial requirements are described informally using Use Case diagrams and Use
Case templates that are filled using terms from domain model. Every step of use case
is described as user interaction with the system using pre and post conditions. To be
precise, domain and use case model are constructed simultaneously: during use case
analysis every time when new object types are discovered domain model is updated.

In second phase, initial requirements are further evolved. Every use case is trans-
formed into interface between the user and the system, capturing interactions between
(possibly external) interfaces, and every use case step is transformed to operation; use
cases are detailed using sequence diagrams, where operations are specified in OCL.
Initial use case diagram and DIM of illustrative Publication Agency are presented in
Figure 1; sequence diagrams representing interactions between user and system dur-
ing execution of single use case (Submit) is presented in Figure 2, together with
specification of operation. Two kinds of sequence diagrams are used for use cases:
interaction between two participants (Business interaction protocol that may be repre-
sented by protocol state machine) and namely interaction protocol that may be repre-
sented by interaction (Business transaction) state machine. Protocol state machines
are introduced in UML 2.0, but interaction state machines are not considered. Some-
times they may coincide with port state machines [20] but in general port may be
designed for collection of interactions.

The interactions and patterns of interactions between participants of business proc-
ess represent choreographies of this process executed using services; the process of
internal coordination of all interactions performed in the system of individual partici-
pant makes the orchestration. State Coordinator pattern proposed in this paper may be
considered as a kind of orchestration engine.

 168

Revise

Reviewer
Review

Committee

Submit

Approve

Author

Register
PersonInfo IRegister

register()

Author

AuthorInfo

Reviewer

ReviewerInfo

ISubmit

submit()
resp_revise()

IReview

appoint()

Committee

Approval

IRevise

revise()
resp_appoint()
approve()

<<use>>

<<use>>

Publication 0..n

1

0..1

1
Critique 0..n

1

0..n 1 1

0..1

1
0..n

1

0..n

0..n

1

Fig. 1. Initial requirements (Use Cases) and requirements specification (DIM)

a

 : Author
 : ISubmit

1: submit()

2: accept_submit()

3: resp_submit()

b

 : Author : ISubmit : IRevise
1: submit()

2: accept_submit()

3: revise()

4: resp_revise()

5: resp_submit()

Context ISubmit::submit(p:Publication,a:Author,d:Date)
pre: a.oclInState(Registered)and a.AuthorPublication->forAll(ap|ap.Publication<>p)
post: p.oclIsNew() and p.oclInState(Submitted) and a.AuthorPublication->size()=
a.AuthorPublication->size()@pre+1 and Author^accept_submit() and IRevise r̂evise(p,d)

Fig. 2. Actor/Interface interaction (a) and Interface interaction (b)

Sequence diagrams like Figure 2a, representing client viewpoint, are not sufficient for
comprehensive specification of requirements, because realization of use case may
require usage of other services supported by the intended system, or other business
systems. Both offered and required interfaces are captured in interaction sequence
diagrams like Figure 2b. In Figure 3, interaction fragments represent choreography of
global business process “Submission” (for illustrative purpose, suppose that Isubmit,
IRevise and IReview are interfaces of different business systems, and “Revise” is
automatic service).

 169

 : Author : ISubmit_ : IRevise : IReview : Reviewer

sd1

sd2

sd7

sd8

sd3 loop(1..minCritiques)

sd4

sd5

sd6

submit()

revise()
appoint()

checkAppointments()

resp_checkAppointments()

submitReview()
resp_submitReview()

resp_appoint()

resp_revise()
resp_submit()

accept_submit()

approve()

a

[Publication.Reviewer>=MinCritiques]

 : Author

 :
ISubmit

submit()

accept_submit()

 :
IRevise

 :
IReview

appoint()

 :
ISubmit

 :
IRevise

revise()

resp_checkAppointments()

 :
IReview

 :
Reviewer

checkAppointments()

b

Fig. 3. Interaction fragments (a) and interaction overview (b) representing choreographies

For reconciliation of DIM, all interactions are transformed to state machines where
states of the system are represented by states of interfaces and entities of domain
model (Fig. 4); composite state machines render compound business transactions.
 ISubmitStateMachine

Include/IRevise
StateMachine

SubmitStateWaitState Include/IRevise
StateMachine

SubmitStateWaitState

ISubmit.resp_revise()

IReviseStateMachine

WaitState AppointState Include/IReview
StateMachine

ApproveState WaitState AppointState Include/IReview
StateMachine

ApproveState

Committee.appoint()[publication.Reviewer->size<=MinCritiques]

ISubmit.resp_revise()

[not(Author.oclInState(Registered))]

Committee.approve[Publication.Critique->size>=MinCritiques]
Reviewer.review()[not(publication.AuthorInfo->exists(a|a=ReviewerInfo))]

IReviewStateMachine
WaitState

ReviewState

WaitState

ReviewState
Reviewer.review()

Committee.resp_review()
submit()[Author.oclInState(Registered)] ^Author.accept_submit()

Committee.revise()[Publication.oclInState(Submitted)]

Author.resp_submit()

Committee.appoint(publication)

PublicationStateMachine

Submitted Revised ApprovedSubmitted Revised
Committee.revise()

Approved
Committee.approve()

AuthorStateMachine

RegisteredRegistered
[Publication.Critique->
size>=MinCritiques]

Fig. 4. Concordance between state machines of interfaces and entities

State machine is the next-to-last requirements modelling step that may be performed
semi-automatically with support of CASE tool [10]. During this step different interac-

 170

tion scenarios are consolidated and converted to class diagram like the one in Figure
1 (detailed specification is not presented due to limits of space).

4 State Coordinator pattern

Transformation from design independent model to design (PIM) consists of several
steps and may be done in several ways. Mapping interfaces to services results in
coarse design, and mapping operation constraints to methods is in responsibility of
detailed design. Here we are considering architectural design, during which elements
of specification are allocated to realizing architectural elements. For service-oriented
design, the State Coordinator pattern is proposed (Fig. 5). The Coordinator handles
incoming messages that may be of two types: requests for some service operation and
response from the service about operation execution results. In Figure 5, Coordina-
tor’s reaction to received messages is presented graphically using sequence diagram
and specified in OCL as post-conditions of Coordinator’s operations.

Constraint

Actor

response()
exception()
accept()

ConcreteService

Coordinator

request()
response()

Checker

checkPre()
checkPost()

Service

operation()

Entity

 : Service : Actor : Coordinator : Checker

request(MessageEntity)

checkPre(Operation):Boolean

operation(MessageEntity) [checkPre.result=true]

checkPost(Operation):Set(Message)

response(MessageEntity)

response(MessageEntity)

Fig. 5. State Coordinator pattern and its principle of working

Context Coordinator::request(m:Message)
post:
let pr:oclMessage=Checker^checkPre(m.Operation) in pr.hasReturned()
 and if pr.result()=true then m.Operation.Service^m.Operation(m)
 else Actor^exception(m.Operation.ExceptionMessage) endif
Context Coordinator::response(m:Message)
post:
let ps:oclMessage=Checker^checkPost(m.Operation) in ps.hasReturned()
 and ps.result() forAll(msg|let op: Operation = msg.Operation in
 if msg.receiver.oclisKindOf(Interface) then
 let pr:oclMessage=Checker^checkPre(op) in pr.hasReturned() and
 if pr.result()=true then op.Service^op(op.RequestMessage)
 else Actor^exception(op.ExceptionMessage) endif endif
 if msg.receiver.oclIsKindOf(Actor) then
 if op.clIsKindOf(Acceptance)
 then Actor^acceptance(op.Request.AcceptanceMessage)
 else Actor^response(op.Request.ResponseMessage)
 endif

On received request, State Coordinator handles message, unfolds the name of re-
quested operation and calls checker to check precondition of that operation. Precondi-

 171

tions and post conditions are specified in Constraint base using attributes and rela-
tionships of entities from domain model. If Checker returns “false”, the rejection
message is sent. If Checker returns “true”, Coordinator calls operation and service
returns response about delivery or acceptance of service. Before sending response to
requestor, Coordinator asks Checker to check message expressions specified in post
conditions and possibly returns the set of messages that must be sent to internal or
external services to fulfil the request. It may be zero, one or more messages that must
be sent sequentially, in parallel or broadcast. If there are no messages to send, Coor-
dinator resends response to the requestor (as shown in Fig.5). Otherwise, it sends
messages to internal or external services as specified in message expressions, and
treats received responses in the same way as before.

Message expressions mostly denote sending of message to successive interface,
but they may express sequence of messages, messages sent in parallel to different
targets (messages joined with “and”) or even multicast message flow with dynamic
targets. Indeed, every kind of these interactions may be described in OCL. If re-
sponses must be received during operation execution it means that there is composite
operation, and every received message presents different operation described with pre
and post conditions. In other words, every request, acceptance or response is treated
as separate operation what significantly streamline reasoning. Using message expres-
sions in post conditions, services may be composed to the system in the recursive way
as services secondarily called may have calls to other services, and so on. The imple-
mentation of Checker and Constraint may vary from direct checking operations to
complex rule checking engines and repositories.

The purpose of Coordinator is the same as of other design patterns [16]: to “nor-
malise” behaviour, discovering recurring activities and concentrating them in separate
classes thus making the cohesive units of behaviour. In compound Web services
environment, such recurring behaviour is receiving/sending of messages, checking
context and selecting services for execution. State Coordinator pattern was con-
structed on the base of Facade and State patterns, as it was no suitable Web Service
pattern for this purpose [5, 23, 25]. It is obvious, that for practical development con-
siderably more patterns should be used. In large systems, coordinator may be attached
to every composite service.

State Coordinator pattern is simple alternative for Business Process execution en-
gine. Coordinator handles incoming message and passes it to services according to its
actual context. Coordinator uses the assistance of Checker that checks constraints
(pre-conditions and post-conditions) of operations. According to the principles of
good SOA design, operations of services must be stateless. Information about states is
captured by entities, and all constraints describing services subject to state changes
are kept in Constraint base.

Coordinator may interact with external services or own composite services but
nevertheless they are treated as stateless services. It deals with constraints and signa-
tures of operations described by constraints that represent logic of usage of these
operations in Information System, and selects concrete service to fulfil request or
sends response about inability to do this. If new services are inserted or business rules
are changed, constraints must be supplemented or modified.

 172

There are many ways to proceed from requirements to design though we believe
that it would be valid to use State Coordinator in SOA related design when business
process execution language is not used. Resulting design may be implemented using
J2EE, MS .Net or other framework with message-oriented middleware, creating op-
erations for checking constraints. Checker also may be thought as some kind of rule
checking component when rules are stored declaratively in rule base.

5 Transformation to design

Transformation from DIM to PIM, based on State Coordination pattern, is presented
in Figure 6. Transformations concerning detailed design and implementation are not
considered in this design phase. Signatures and body conditions of PIM operations
are obtained from body conditions of DIM query operations or post-conditions of
non-query operations (except of message expressions that together with preconditions
are allocated to constraints). For meaningful design, operations in DIM must have
been discovered in the way ensuring right division of responsibilities, and description
of post-conditions must hold all information for design of methods implementing
behaviour.

The transformation from DIM to PIM is based on mapping between elements of
meta-models. This mapping is described by the set of rules that define how the ele-
ments of the source model (DIM) are allocated to elements of the target model (PIM).
Main elements of DIM and PIM meta-models related by transformation rules are
depicted in Figure 6. These rules are specified using simple transformation language
based on OCL [18, 28]; the main transformations are shown in Figure 7, hiding de-
tails how every relationship, attribute, association end, etc. is transformed.

Transformations using State Coordinator pattern mainly are straightforward:
� Coordinator service and abstract Actor class are created in PIM (transformations

DIM2Coordinator and DIM2Actor);
� DIM entities are transformed to PIM entities (transformation Entity2Entity);
� DIM interfaces are transformed to PIM services with interfaces (transformations

Interface2Service and Interface2ServiceInterface);
� DIM operations are transformed to PIM operations. All the parameters of each

DIM operation are allocated to one parameter (of type MessageEntity) of PIM op-
eration (transformation Operation2Operation);

� PIM message entities (MessageEntity) (also called value objects) are created for
DIM request, response, acceptance operations and operation preconditions. The
parameters of the operation (object types and data types from model of problem
domain) are transformed into elements (MessageElement) of message entities
(transformation Operation2Messages);

 173

Classifier

Constraint

Constraint

Response
Message

Acceptance
Message

Exception
Message

Request
Message

0..1
1

0..1
1

0..1

1

0..1

1

0..1

1

0..1

1

PIM
Element

PIM

0..n

0..1

0..n

0..1

StateList

Property Entity
Relationship

StateList
PropertyEntity

Relationship

Entity

0..1
1

0..1
1

0..1

0..n

0..1
+attribute
0..n 0..n

1

0..n
+Role2

1

0..n

1

0..n
+Role1

1

Entity

0..1

1

0..1

1
0..1

0..n

0..1

+attribute 0..n0..n

1

0..n
+Role2

1

0..n

1

0..n

+Role1
1

Entity2Entity
<<transformation>>

Classifier

DataType

Classifier

Classifier

Postcondition

messageSet()
bodyPart()

BodyCondition

Precondition

Interface2Service
<<transformation>>

Service

Interface

Interface

0..n

1

0..n

1

Interface2
ServiceInterface

<<transformation>>

Operation2
Messages

<<transformation>>

Postcondition

BodyCondition

Precondition

Classifier

Parameter
direction : ParameterDirectionKind

DataType

Parameter
direction : ParameterDirectionKind

0..n

1

0..n

1

DataType

MessageElement

1

0..n

1

0..n

MessageEntity 0..n0..n
+receiver

0..n
+input

0..n

0..n0..n
+sender

0..n
+output

0..n
0..n

1
+elements

0..n

1

Operation
isQuery : Boolean

0..1

1

0..1

1

0..1

1

0..1

1 1

0..1

1

0..1

0..n

1

0..n

1

0..1

0..n

0..1

+formalParameter
0..n

Operation
isQuery : Boolean

0..1
1

0..1
1

0..1

1

0..1

1

0..n

1

0..n

1
0..11 0..11

1

0..n

1

0..n

0..1

0..n

0..1

+formalParameter
0..n

Operation2
Operation

<<transformation>>

Coordinator

DIM
Element

DIM2PIM
<<transformation>>

DIM2Coordinator
<<transformation>>

DIM0..1

0..n

0..1

0..n

Actor

DIM2Actor
<<transformation>>

Response

Request

0..1

1

0..1

1

Acceptance 0..1

11

0..1

 Fig. 6. Transformation from requirements model (DIM) to design (PIM)

 174

Transformation DIM2PIM (UML, UML)

 {source DIM : UML :: Package;
 target PIM : UML :: Package;
source condition DIM.Interface notEmpty();
target condition DIM.name=PIM.name;
bidirectional;
mapping
 try Interface2Service on DIM.Interface <~> PIM.Service;
 try Entity2Entity on DIM.Entity <~> PIM.Entity;
 try DIM2Actor on DIM <~> PIM.Actor;
 try DIM2Coordinator on DIM <~> PIM.Coordinator;}

Transformation Interface2Service(UML,UML)

{source int:UML:Interface;
 target s:UML:Service;
target condition s.name=int.name.concat(‘Service’);
bidirectional;
mapping
 try Operation2Operation on int.Operation <~> s.Operation;
 try Interface2ServiceInterface on int <~> s.Interface}

Transformation Operation2Operation(UML,UML)

{source opDIM:UML::Operation;
 target opPIM:UML::Operation;
target condition
 opPIM.name=opDIM.name and opPIM.Precondition=opDIM.Precondition and
 opPIM.Bodycondition = opDIM.Bodycondition and
 opPIM.Postcondition= opDIM.Postcondition and
 opPIM.formalParameter exists(m| m.oclIsKindOf(MessageEntity);
bidirectional;
mapping try Operation2Messages on opDIM <~>opPIM.MessageEntity}

Transformation Operation2Messages(UML,UML)

{params req:UML::RequestMessage; resp:UML::ResponseMessage;
 xcp:UML::ExceptionMessage; accp:UML::AcceptanceMessage;
source op:UML::Operation;
target msg:UML::Set(MessageEntity);
target condition
 req.name=op.name.concat(‘ReqMsg’) and
 req.elements=op.formalParameter iterate(p;acc:Set(MessageElement)|
 if p.direction=in or p.direction=inout then
 let elem:MessageElement=p in acc.including(elem) endif) and
 msg.including(req) and resp=req.ResponseMessage and
 resp notEmpty() and resp.name=op.name.concat(‘RespMsg’) and
 resp.elements=op.formalParameter iterate(p;acc:Set(MessageElement)|
 if p.direction=out or p.direction=inout then
 let elem:MessageElement=p in acc.including(elem) endif) and
 msg.including(resp) and
 if op.Precondition notEmpty then
 excp=req.ExceptionMessage and excp notEmpty and
 excp.name=op.name.concat(‘ExcpMsg’) and
 let pr:MessageElement in pr.oclIsTypeOf(Constraint) and
 pr=op.Precondition and excp.elements=req.elements.including(pr)
 and msg.including(excp) endif and
 if op.Acceptance notEmpty() then
 req.AcceptanceMessage=accp and accp notEmpty and
 accp.name=op.name.concat(‘AccpMsg’) and accp.elements=req.elements
 and msg.including(accp) endif;
 bidirectional;}

Fig.7. Part of transformations from DIM to PIM

� Preconditions and message parts of post conditions of DIM operations are trans-
formed to preconditions and post conditions of PIM operations; body conditions

 175

(of post conditions) of DIM operations are transformed to body conditions (of
methods) of PIM operations (this transformation (Constraint2Constraint) is not
shown on the Figure 6 as soon as other details). The ultimate design of methods is
deferred to the phase of detailed design; the implementation of methods sometimes
may be achieved by direct transformation from OCL to program code, sometimes
it must be fulfilled manually.

In presented transformation some assumptions were made that may vary in different
circumstances, for example, concrete naming scheme. Also, all preconditions here
have textual descriptions, and exception messages are created by concatenation of
negation of precondition and standard textual phrase. In practice, requirements for
message entities may be predefined in requirements phase.

The implementation of transformations from DIM to PIM as extensions of UML
CASE tools may be another topic of research. There are many alternatives to choose
of:
� To base transformations on MOF to XML mapping (Metadata Interchange (XMl)

– OMG specification of standard model transfer format), but there are difficulties
raised by incompatibility of different implementations of different XMI versions
by CASE tools vendors.

� Other alternative is to base on MOF to Java mapping − Java™ Metadata Interface
(JMI) created by Sun Microsystems. It is platform independent dynamic infrastruc-
ture for metadata creation, storage, interchange and management. But dependency
on application programming interface (API) of CASE tool remains unresolved.

� There are many other similar mappings and repositories with analogous problems.
� Eclipse Modelling Framework supports several metadata management scenarios

and seems the most promising solution capable to sustain compatibility for differ-
ent functionalities of CASE tools. Transformations in such a case may be imple-
mented as Eclipse plugins.
Trial implementations of transformations, concerned with this work, were made

(and are under further development) as extensions to UML CASE tools Argo UML
(using native API) and Magic Draw (using JMI and API). Though our objectives are
to propose conceptual solution for going from requirements to design and implemen-
tation serves only as demonstration of its validity, in the future the implementation
issues should be more deeply concerned focusing on Eclipse Modelling Framework.

6 Conclusion

Behaviour has many forms that must be modelled during requirements definition
phase for subsequent service-oriented design: party interaction protocols; choreo-
graphies and orchestration of business processes, and transactions; interfaces and
interface interactions; entities, operations and constraints. It is demonstrated that all
of these concepts may be defined, analysed, and reconciled in Design Independent
Modelling, where possibilities of UML 2.0 and OCL are employed.

The main purpose of the work was to demonstrate that comprehensive definition of
requirements of Information System enables to obtain meaningful design in formal
way. As result, transformation from requirements to architectural design is presented,

 176

during which elements, defined in requirement specification, are allocated to design
elements following State Coordinator pattern proposed for service-oriented design of
Information Systems.

Resulting design may be further subjected to detailed design of operations and
transformed to implementation in WSDL and web services framework. Proposed
pattern is simple alternative for development of service-oriented information systems
when business process execution languages are not used.

References

1. Andrews, T. et all: Business Process Execution Language for Web Services Version 1.1.
(2003) http://www-128.ibm.com/developerworks/library/specification/ws-bpel

2. Arkin, A.: Business Process Modeling Language. BPMI.org. (2002) http://www.bpmi.org
3. Arkin, A. (ed.): Web Services Choreography Interface (WSCI) 1.0. BEA Systems, Intalio,

SAP, Sun Microsystems (2002) http://www.w3.org/TR/wsci
4. Baina, K., Benatallah, B., Casati, F., Toumani, F.: Model-Driven Web Service Development.

In: A.Persson, J.Stirna (eds.): Advanced Information Systems Engineering. 16th interna-
tional Conference, CaiSE 2004. Riga, Latvia, June 7-11, 2004, Springer-Verlag Berlin Hei-
delberg New York (2004) 290-306

5. Benatalah, B., Dumas, M., Fauvet, M.C., Rabhi, F.A., Sheng, Q.Z.: Overview of some pat-
terns for architecting and managing composite web services. ACM SIGecom Exchanges ar-
chive, Vol. 3, Issue 3, Summer, 2002 (2002) 9-16

6. Benatallah, B., Casati, F., Toumani, F., Hamadi, R.: Conceptual Modeling of Web Service
Conversations. In: Goos, G., Hartmanis, J., van Leeuwen, J. (eds.): Proceedings of the 15th
International Conference on Advanced Information Systems Engineering (CAiSE'03),
LNCS vol. 2681, Springer Verlag, Klagenfurt, Austria (2003) 449-467

7. Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M.: A foundational
vision of e-services. In: Goos, G., Hartmanis, J., van Leeuwen, J. (eds). Proc. of the CAiSE
2003 Workshop on Web Services, LNCS, vol. 3095 (2003) 28-40

8. Business Process Modelling Notation (BPMN). Version 1.0 – May 3 2004, BPMI.org.
(2004) http://www.bpmn.org

9. Business Transaction Protocol Primer. Organization for the Advancement of Structured
Information Systems (2002) http://www.oasis-open.org

10. Ceponiene, L., Nemuraite, L.: Design Independent Modeling of Information Systems Using
UML and OCL. In: Barzdins, J. et all, (eds.): Databases and Information Systems, Com-
puter Science and Information Technologies, Vol. 672. Sixth International Baltic Confer-
ence on Data Bases and Information Systems (DB&IS'2004), Riga, Latvia (2004) 357-372

11. Ceponiene, L., Nemuraite, L., Paradauskas, B.: Design of schemas of state and behaviour
for emerging information systems. In: Thalheim, B., Fiedler, G. (eds.): Computer Science
Reports, Vol. 14. Branderburg University of Technology at Cottbus (2003) 27–31

12. D’Souza, D.F., Wills, A.C.: Objects, Components, and Frameworks with UML. The Ca-
talysis Approach. Addison Wesley, Boston (1999)

13. Dubray, J. J.: A new model for multiparty collaborations. EBPML.org, (2002)
http://www.ebpml.org

14. ebXML Business Process Specification Schema. Version 1.01. Business Process Project
Team, UN/CEFACT and OASIS (2001) http://www.ebxml.org/specs

15. Evans, E.: Domain Driven Design. Tackling complexity at the heart of software. Addison-
Wesley, Boston (2003)

http://www.bea.com/
http://www.sap.com/
http://www.sun.com/
http://www.dis.uniroma1.it/~berardi/
http://www.inf.unibz.it/~calvanese/
http://www.dis.uniroma1.it/~degiacom/
http://www.dis.uniroma1.it/~lenzerin/
http://www.ebpml.org/ebpml.doc

 177

16. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Pearson Education (1994)

17. Kavantzas, N. (ed), Olsson, G., Mischkinsky, J., Chapman, M.: Web Services Choreogra-
phy Definition Language. Oracle Corporation (2003)

18. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture™:
Practice and Promise. Addison Wesley, Boston (2003)

19. Mellor, S.J., Balcer, M.J.: Executable UML. A foundation for model-driven architecture.
Addison-Wesley, Boston (2002)

20. Mencl, V.: Specifying Component Behavior with Port State Machines. Electronic Notes in
Theoretical Computer Science 101 (2004) 129–153

21. Monday, P.B.: Web Service Patterns: Java Edition. Springer-Verlag New York, Inc. (2003)
22. Papazoglou, M. P., Dubray, J.: A Survey of Web service technologies. Technical Report

DIT-04-058, Informatica e Telecomunicazioni, University of Trento (2004)
23. Singh, I., Brydon, S., Murray, G., Ramachandran, V., Violleau, T., Stearns, B.: Designing

Web Services with the J2EE™ 1.4 Platform JAX-RPC, SOAP, and XML Technologies.
Addison Wesley, Boston (2004)

24. UN/CEFACT Modeling Methodology. UNCEFACT/TMWG. (2002)
http://www.unece.org/cefact/umm/ umm_index.htm

25. Unified Modeling Language Superstructure Specification. Version 2.0, OMG document
ptc/03-08-02 (2003) http://www.omg.org

26. Unified Modeling Language: OCL Version 2.0. OMG document ptc/03-08-08 (2003)
http://www.omg.org

27. W3 Consortium. Web Services Architecture. W3C WG (2004) http://www.w3.org
28. Warmer, J.B., Kleppe, A.G.: Object constraint language, The: Getting Your Models Ready

for MDA. Second Edition, Addison Wesley, Boston (2003)
29. Web Services Description Language (WSDL). Version 2.0 (2004)

http://www.w3.org/TR/2004
30. Yang, J., Papazoglou, M.P.: Service components for managing the life-cycle of service

compositions. Inf. Syst. 29(2) (2004) 97-125
31. Zimmerman, O., Krogdahl, P., Gee, C.: Elements of Service-Oriented Analysis and Design.

International Business Machines (2004) http://www-
106.ibm.com/developerworks/library/ws-soad1

http://www.awprofessional.com/authors/bio.asp?a=af633311-5cb0-4cb5-a4de-c7e93afd790e
http://www.awprofessional.com/authors/bio.asp?a=34edeb6f-c9d1-4791-abbc-bcc78cdaa84f
http://eprints.biblio.unitn.it/perl/advsearch?authors=%22Papazoglou,%20Michael%20P.%22&_order=byyear
http://eprints.biblio.unitn.it/perl/advsearch?authors=%22Dubray,%20Jean-jacques%22&_order=byyear
http://www.unece.org/cefact/
http://www.w3.org/TR/2004
http://www.informatik.uni-trier.de/~ley/db/journals/is/is29.html
http://www-106.ibm.com/developerworks/library/ws-soad1
http://www-106.ibm.com/developerworks/library/ws-soad1

