
GraphScale:
Adding Expressive Reasoning to Semantic Data Stores

Thorsten Liebig, Vincent Vialard, Michael Opitz, and Sandra Metzl

derivo GmbH, Ulm, Germany

Abstract. We present GraphScale, a technology that empowers semantic data
stores with OWL reasoning. It connects a given data store with any state of the
art OWL reasoner. The underlying abstraction approach allows to efficiently per-
form a full materialization of the store based on sound and complete OWL 2 RL
reasoning for high-performance querying.

1 Motivation

Triple stores and graph databases are popular systems for storing and retrieving seman-
tic data. Like other types of databases their key features are capacity of data volume and
query performance, but most of them also provide some reasoning functionality. Rea-
soning allows to enrich the original data with facts that follow from background knowl-
edge typically expressed by an ontology. Most of the popular systems only support low
level reasoning (RDF/RDFS). Some support selected OWL language constructs only by
enabling additional inference rules. However, reasoning and querying data at an expres-
sivity of OWL 2 RL is not efficient enough in practise. In contrast, efficient reasoners
for expressive ontologies are typically in-memory systems that can not deal with huge
amounts of data without expensive hardware. There is no satisfiable solution so far that
combines efficient and expressive reasoning with a scalable storage back end.

Disk

triple
store

abstraction

OWL 2
reasoner

query
(via GraphScale)

query
(on materialized

triple store)

re
ad

wr
ite

Fig. 1. The GraphScale approach

GraphScale is a bridging technology
for adding efficient OWL 2 RL reason-
ing to potentially any data store. The ap-
proach sketched in Figure 1 is based on
an abstraction refinement technique that
builds a compact representation of the
data suitable for a state of the art in-
memory OWL 2 reasoning system. The
facts derived for this abstract represen-
tation are propagated back to the data
store, and the abstraction is updated ac-
cordingly. This process is repeated until
no new facts can be derived. The result is
a fully materialized data store ready for
querying via its built-in query interface
or via the GraphScale API that uses the
abstraction as an index.



The whole process is achievable using standard interfaces of the data store and any
OWL 2 reasoner. As a consequence the GraphScale technology allows the addition of
expressive and efficient reasoning to existing data repositories at minimal cost.

2 GraphScale Approach

The idea behind GraphScale is based on the observation that entities within a data repos-
itory often have similar structure. For a resource in a triple store this refers to identical
rdf:type information and same sets of properties. When considering the LUBM data set
for example, there are many entities which are similar in terms of being a student and
male, attending some courses and liking some sport. From a reasoning perspective they
can be treated the same way for many inferences.

The GraphScale approach takes advantage of these similarities and computes a con-
densed version of the original data called abstraction, based on equivalence classes of
entities that share a similar structure. The abstraction is an OWL ontology consisting of
a set of star-shaped structures (see right panel in Figure 2) each of which is a represen-
tative for an equivalence class. Since the abstraction is typically a lot smaller (and less
connected) than the original ontology, it can be fed to any existing in-memory OWL 2
reasoning system.

The facts derived by the OWL 2 reasoning system for the abstraction are propagated
back to the data store. This might lead to entities being no longer similar and by using
an iterative refinement step the abstraction is revised until a fixpoint is reached.

The process for computing and maintaining this abstraction follows a strategy that
is provable sound and complete for the description logic Horn ALCHOI. The corre-
sponding proof as well as a detailed description of the abstraction refinement can be
found in our previous work [2].

The ALCHOI logic covers almost all of the OWL 2 RL language profile. This
profile is interesting for industry-scale semantic data processing because of its fair ex-
pressivity. In order to cover all of OWL 2 RL we extended the refinement procedure
with property features such as functionality and property chains. The local derivations
caused by the latter language features have to be carried out on the original data as a
preprocessing step before building and updating the abstraction.

Figure 1 depicts the overall procedure of the GraphScale materialization. Graph-
Scale builds the abstraction from the original data (read arrow) and collectively writes
back all consequences (write arrow) derived with the help of an external, standard
OWL 2 reasoning system. Any preprocessing also is a read-write cycle on the data
back-end.

3 GraphScale System

The GraphScale system1 is a Java-based implementation of the abstraction refinement
briefly explained in the previous section. As a bridging technology the system provides

1 http://graphscale.de

2



interfaces to the external OWL 2 reasoning engine as well as to the data back-end in
order to support different options on either side.

By supporting the OWL API and OWLlink [3] the GraphScale system is open to
virtually any available OWL 2 reasoning system. As of now we have mostly used Kon-
clude [4] as well as HermiT [1] as OWL 2 engines. The data store interface requires just
basic read/write access to entities, their type information and their properties, which is
achievable through SPARQL Query + Update provided by most triple stores. A native
API allowing combined operations will however allow for better performance. As of
now there are implementations of native bindings to the graph database Neo4J2 as well
as to Oracle 12c.

The GraphScale approach offers parallelization options on both sides, the reasoner
and the data store. Due to its unconnected structure, the abstraction can be split easily
and fed to multiple prover instances running on different computers in order to save
time. A more effective way to further increase throughput for reasoning or querying
would be to replicate or shard the data store for better read/write performance. Since the
abstraction is the key element for reasoning, existing replication or sharding technolo-
gies can be used for data storage and update without jeopardising soundness and com-
pleteness of reasoning. The GraphScale system can also run with its own in-memory
data store for trading memory consumption for processing speed.

When using the GraphScale query interface to query the data store, the abstraction
is used as a dedicated index. It contains precise structural information useful for query
planing and even allows to answer type queries without accessing the data store.

4 Showcase

First, we will provide a live demonstration of a visualization tool that displays the orig-
inal data and its abstract representation side by side (for data sets of moderate size).
As an example, Figure 2 depicts the data graph of the NTN ontology3 on the left and
the collection of star shaped structures of the corresponding abstraction on the right.
Among other features, the tool interactively highlights entities in the original ontology
and their representatives in the abstraction. In the snapshot of Figure 2 the pointer is
placed over a representative of the abstraction in the right panel and all corresponding
entities of the original data set are highlighted in the left panel.

We will also provide recent benchmark results exhibiting the advantages of the ab-
straction for materialization and querying for a number of data sets with different char-
acteristics. The scalability of the approach will be demonstrated using the LUBM and
UOBM data sets at various sizes. These results will be compared with the results of
other data stores with reasoning abilities such as RDFox4, GraphDB5 or Blazegraph6.

2 http://neo4j.com
3 New Testament Names Ontology: http://semanticbible.com/ntn/
4 http://www.cs.ox.ac.uk/isg/tools/RDFox/
5 http://graphdb.ontotext.com/
6 http://www.blazegraph.com

3



Fig. 2. Visualization of original data and its abstraction (both only partially visible)

We will show that GraphScale can even materialize ontologies faster than the ex-
pressive reasoning system it uses for the reasoning about the abstraction, thanks to the
very small size of the abstraction in comparison to the original data.

5 Status

The GraphScale implementation shows extremely promising results for dealing with
large and complex semantic data sets. We are currently optimizing the query planing
and the next task will be the extension of the parallelization. We also plan to extend
reasoning for streaming data. The system will be released under a dual license distin-
guishing academic and evaluation usage from commercial deployment.

References
1. B. Glimm, I. Horrocks, B. Motik, G. Stoilos, and Z. Wang. Hermit: An owl 2 reasoner. Journal

of Automated Reasoning (JAR), 53(3):245–269, 2014.
2. B. Glimm, Y. Kazakov, T. Liebig, T.-K. Tran, and V. Vialard. Abstraction refinement for

ontology materialization. In Proceedings of the 13th International Semantic Web Conference
(ISWC 2014), volume 8796. Springer-Verlag, 2014.

3. T. Liebig, M. Luther, O. Noppens, and M. Wessel. Owllink. Semantic Web – Interoperability,
Usability, Applicability, 2(1):23–32, 2011.

4. A. Steigmiller, T. Liebig, and B. Glimm. Konclude: System description. Journal of Web
Semantics, 27(1):78–85, 2014.

4


