
Optimised Classification for Taxonomic
Knowledge Bases

Dmitry Tsarkov and Ian Horrocks
University of Manchester, Manchester, UK

{tsarkov|horrocks}@cs.man.ac.uk

Abstract

Many legacy ontologies are now being translated into Description
Logic (DL) based ontology languages in order to take advantage of DL
based tools and reasoning services. The resulting DL Knowledge Bases
(KBs) are typically of large size, but have a very simple structure, i.e.,
they consist mainly of shallow taxonomies. The classification algorithms
used in state-of-the-art DL reasoners may not deal well with such KBs
In this paper we propose an optimisation which dramatically speeds-up
classification for such KBs.

1 Introduction
Motivated by the W3C recommendation, and the availability of DL based tools
and reasoning services, many legacy ontologies are now being translated into the
Description Logic (DL) based OWL DL ontology language [3]. The resulting DL
Knowledge Bases (KBs) are typically of (very) large size, but often have only a
(very) simple structure. In particular, the sub-class hierarchy often resembles a
taxonomy (i.e., an asserted hierarchy of primitive concepts), and is very broad
and shallow.

The classification algorithms used in state-of-the-art DL reasoners (such as
FaCT and RACER) may not deal well with such KBs, mainly due to the fact that
some classes in the hierarchy will have very large numbers of direct sub-classes.
For such KBs, the top-down phase of the standard classification algorithm [2]
will perform a very large number of subsumption tests, almost all of which will
fail (i.e., conclude that no subsumption relationship holds). Although the simple
structure of the KB means that the time required for each such test is small,
the very large number of tests can still lead to performance problems.

In this paper we present a classification optimisation that identifies (subsets
of) KBs for which it is possible to compute the concept hierarchy without per-
forming any subsumption tests. This technique is very effective when used on
the kinds of legacy KB described above as it avoids performing large numbers



of negative subsumption tests. It also turns out to produce (smaller) improve-
ments in classification times for some more complex ontologies, as even in these
ontologies a significant part of the upper level structure often resembles a tax-
onomy.

The drawback of this new optimisation is that it is only applicable to purely
“definitional” knowledge bases, i.e., those that do not contain any general con-
cept inclusion axioms (GCIs). However, the well known absorption optimisation
has already been shown to be able to eliminate GCIs from typical ontologies [6]
and, moreover, when absorption fails to eliminate GCIs, we may already expect
serious reasoning performance problems from other sources (i.e., the hardness
of individual subsumption tests). It is also only applicable to that portion of
a KB which has the necessary simple structure, but this is often a major part
of legacy KBs and, as mentioned above, is usually a significant part of more
complex KBs.

2 Preliminaries
Description Logics are concept (class) based knowledge representation systems.
They are (usually) decidable fragments of First Order Predicate Calculus, and
have a have standard first order style model theoretic semantics [1]. The formal
specification of semantics coupled with decidability allows for the design of deci-
sion procedures (sound, complete and terminating algorithms) for key reasoning
tasks such as concept subsumption.

A DL Knowledge Base is often thought of as consisting of two parts: a Tbox
and an Abox. The Tbox consists of a set of axioms that describe constraints on
instances of given concepts (roughly akin to a conceptual schema in a database
setting); the Abox consists of a set of axioms that assert instance relationships
between individuals and concepts, and role relationships between pairs of indi-
viduals (roughly akin to data in a database setting). Tbox axioms are of the
form C v D or C ≡ D, where C and D are concepts. When C is a concept
name, such an axiom is often called a definition (of C), and when a definition
is of the form C v D, C is called a primitive concept.

Classification of a Tbox is the task of computing and caching the concept
hierarchy for all of the named concepts that occur in the Tbox, i.e., computing
the subsumption partial ordering of the named concepts.1 Tbox classification is a
basic reasoning task for DL reasoners—the concept hierarchy may be interesting
in its own right, and is used to optimise many other reasoning tasks (e.g., query
answering). This latter point is particularly important as, even if the Tbox part
of a KB is very simple, the Abox may describe instances of complex concept
expressions. This is typical, e.g., for applications of the Gene Ontology [4].

We will first briefly recall the optimised procedure for computing the concept

1We assume w.l.o.g. that all concept names occurring in the Abox also occur in the Tbox;
this can be achieved by adding axioms of the form C v > to the Tbox for any concept name
C that would otherwise occur only in the Abox.



hierarchy first described in [2]. In this procedure, all concept names are sorted
into definitional order, i.e. if concept name D occurs in the definition of concept
name C, then D ≤ C.2 The concept hierarchy is initialised to contain the two
concepts > and ⊥ (with > being a super concept of ⊥), and the named concepts
are classified (added to the hierarchy in the appropriate position) one at a time
in definitional order.

Classifying a concept involves two phases: a top-down phase in which its par-
ents (i.e., direct subsumers) are computed, and a bottom-up phase in which its
children (i.e., direct subsumees) are computed. In many cases, adding concepts
in definitional order may allow the bottom-up phase to be omitted (because
when a new concept is classified its only child will be ⊥).

Various optimisations are used in order to minimise the number of subsump-
tion tests needed in each phase. For example, when adding a concept C to the
hierarchy, a top-down breadth first traversal is used that only checks if D sub-
sumes C when it has already been determined that C is subsumed by all the
concepts in the hierarchy that subsume D. The structure of Tbox axioms is also
used to compute a set of told subsumers of C (i.e., trivially obvious subsumers).
For example, if the Tbox contains an axiom C v D1 u D2, then both D1 and
D2, as well as all their told subsumers, are told subsumers of C. As subsump-
tion is immediate for told subsumers, no tests need to be performed w.r.t. these
concepts. In order to maximise the benefit of this optimisation, all of the told
subsumers of a concept C are classified before C itself is classified.

The told subsumer optimisation can be used to approximate the position of
C in the hierarchy: all of its told subsumers, and any super-concepts of these
told-subsumers, can be marked as subsumers of C. The most specific concepts
in this set of marked concepts are then candidates to be parents of C. In the
standard algorithm, however, it is necessary to check (recursively) if the children
of these concepts are also subsumers of C. When it has been determined for
some subsumer D of C that none of the children of D subsume C, then we know
that D is a parent of C.

At the end of the top-down phase we will have computed the set of parents
of C; all of the concepts in this set, along with all their super-concepts, are
subsumers of C; all other concepts are non-subsumers of C. The next step
is to determine the set of children of C (as mentioned above, this step can be
omitted for a primitive concept when concepts have been classified in definitional
order [2]). This phase is very similar to (the reverse of) the top-down one, and
as our optimisation only relates to the top-down phase we won’t describe it
here—interested readers can refer to [1] for full details.

For large and shallow taxonomies, a concept D may have hundreds or even
thousands of children. If, when classifying a concept C, one of its told subsumers
is D, then the above algorithm may lead to all of the other children of D being

2In the FaCT++ implementation we actually use quasi-definitional order, as proposed in [5],
but to simplify the presentation we will assume that definitional order is used.



checked to see if they subsume C. Although the time taken for each such test
may be small, the cumulative cost of all these tests may be prohibitive when
classifying such a Tbox. Moreover, in many cases all of these tests will be
negative (i.e., no subsumption relationship will be found), and might be thought
of as somehow “wasted”. The objective of our optimisation is to avoid these
“wasted” tests.

3 Completely Defined Concepts
Given a Tbox T , a primitive concept C is said to be completely defined w.r.t.
T when, for the definition C v C1 u . . . u Cn in T , it holds that:

1. For all 1 6 i 6 n, Ci is a primitive concept.

2. (minimality) There exist no i 6= j such that 1 ≤ i, j ≤ n and Ci v Cj u . . ..

When the Tbox is obvious from the context we will talk about completely defined
concepts without reference to the Tbox.

If we assume a cycle-free Tbox containing only CD concepts and no GCIs,
then the classification process is very simple. In fact, we don’t need to perform
any subsumption tests at all: the position of every concept in the hierarchy is
completely defined by its told subsumers. If concepts are processed in definitional
order, then when a concept C is classified, where C is defined by the axiom
C v C1 u . . . u Cn, the parents of C are C1, . . . , Cn, and the only child of C is
⊥. Note that every concept in such a taxonomy is satisfiable, because there is
no use of negation.

The following theorem is straightforward:

Theorem 1 If a cycle-free KB contains only completely-defined concepts and
no general axioms, then the taxonomy built by the above method will be correct.

This theorem is, however, of very little practical value due to the very strin-
gent conditions on the structure of the Tbox. In the following we will show
how the basic technique can be made more useful by weakening some of these
conditions.

Primitivity. In general, a CD concept should not have non-primitive concepts
in its definition. This is because, when the hierarchy already includes non-
primitive concepts (which will be the case given definitional order classification),
the bottom-up phase can not be omitted, and the CD method could therefore
lead to incorrect results. Assume, e.g., a TBox

{C v C1 u C2 u C3, C ′ = C1 u C2}. (1)

Using the CD classification approach, C will be classified under C1, C2, C3,
whereas it should be classified under C ′ and C3.

One case in which this condition can be weakened is for synonyms. A non-
primitive concept C is a synonym if it’s definition is of the form C = D, where



D is a primitive concept. Synonyms may came from an application domain, or
occur as a result of KB simplification, KB merging, etc.

It is easy to see that synonyms don’t require special classification: once D is
classified, C will take the same place in the hierarchy. So, adding synonyms to
the CD-only KB still allows application of the CD approach.

Minimality. Non-minimal concepts may occur as a result of badly designed
ontologies and/or due to absorption of GCIs. The minimality check may, how-
ever, be removed from the definition of CD concepts in the classification algo-
rithm. Indeed, checking if each Ci in a definition C v C1 u . . . u Cn is really a
parent of C (i.e., has no children that are subsumers of C) is exactly the check
that is needed in order to detect non-minimality. This check is relatively cheap
and already exists in the classification algorithm.

Non-CD concepts. This is the most important case, because “interesting”
ontologies, including most ontologies designed using DL based languages, will
contain concept constructors other than conjunction, and this will lead to some
concepts being non-CD. This means that, in its current form, the CD approach
will usually be largely useless. On the other hand, almost all KBs will contain
some CD concepts. In this case, it may be possible to split the Tbox into two
parts—a CD part (i.e., containing only CD concepts) and a non-CD part—and
use the CD algorithm only for the CD part.

Note that such a split will not introduce any problems if the CD part of
the classification is performed first—in fact the classification of the CD part
is independent of the non-CD part of the Tbox because the definitions of CD
concepts only refer to other CD concepts. In the Tbox 1 above, for example,
concepts C1, C2, C3 and C will be in the CD part, and C ′ in the non-CD part.
After CD-classification C will have 3 parents, and standard algorithm then insert
C ′ with parents C1, C2 and child C.

Cycles. We will distinguish two kinds of definitional cycles. The first (and
simplest) is a cycle via concept names, as in the Tbox K = {A v B u C, B v
A}. This kind of cycle can be detected syntactically and transformed into an
equivalent definition K ′ = {A v C, B = A} where A is a CD concept and B is
a synonym of A.

Any other kind of terminological cycle must involve non-CD concepts, and
so must occur in the non-CD part of TBox. In this case it will be dealt with in
the normal way by the standard classification algorithm.

General axioms. GCIs are axioms of the form C v D, where C and D are
arbitrary concept expressions.3 It is easy to see that, in the general case, the
CD approach cannot be used in the presence of GCIs. Consider, for example, a
Tbox K = {C v >,> v D}. In this case, the CD algorithm classifies C under
>, whereas it should be classified under D.

3Note that, in case there are multiple axioms of the form C v D or C ≡ D for some
concept name C, then only one of these can be considered the definition of C, and the rest
must be treated as GCIs (or, in the case of C ≡ D, as a pair of GCIs C v D and D v C).



Fortunately, most realistic KBs contain only general axioms that can be
absorbed into either concept implications [6] or role domain restrictions [8], and
in this case the CD approach is still applicable.

4 Two-stage Approach Using CD.
The two-stage CD classification algorithm has been implemented in our FaCT++
reasoner as follows. First of all, the following transformations are performed
on the Tbox (only transformations relevant to the classification algorithm are
mentioned here):

1. Absorb general axioms into concept definitions and/or role domains. If
some of the axioms are not absorbable, set useCD to false. If all the
axioms were absorbed, set useCD to true.

2. Transform simple cycles into sets of synonyms.

3. If useCD is true, mark some concepts as CD. Namely, > is marked as
CD; a primitive concept C is marked as CD iff it has the definition C v
C1 u . . . u Cn and every Ci is marked CD; a non-primitive concept D is
marked CD iff it has definition D = C and C is marked CD.

If useCD is true after the preprocessing, the CD classifier is run prior to
the general classifier. The CD classifier works on concepts that are marked CD,
processing them in definitional order. For each such concept C, the steps it
performs are as follows:

1. If C is a synonym of some already classified concept D, then insert C at
the same place as D.

2. For CD C with definition C v C1 u . . . u Cn, concepts C1, . . . , Cn are
candidates to be parents of C.

3. For every candidate Ci, check whether it is redundant, i.e. whether Ci

has a child that is an ancestor of a C. This can be done by labelling all
ancestors of candidate concepts: labelled candidates will be redundant.
Remove redundant candidates from the list of candidates.

4. Insert C into the taxonomy with the remaining candidates as parents and
⊥ as the only child.

Then the rest of the ontology is then classified using the standard classifica-
tion algorithm.

We have tested our implementation using several KBs: NCI is the National
Cancer Research Institute ontology; GO is the Gene Ontology from the Gene
Ontology Consortium; GALEN is the anatomical part of the well-known medi-
cal terminology ontology [7]. Details of KB characteristics are given in Table 1,



KB PConcepts nCD NConcepts Synonyms
NCI 27652 15195 0 0
GO 13926 11718 3 0
GALEN 2048 546 699 18

Table 1: test KB properties

KB CD time nOps nTests nCache
NCI no 76.40 1,614,903 0 10,311,489

yes 3.61 1,012,281 0 766,054
GO no 7.40 835,194 30,834 5,184,070

yes 3.67 783,024 29,768 1,432,892
GALEN no 204.70 67,524,538 25,660 82,962

yes 204.54 68,032,698 25,722 43,043

Table 2: test KB results

where PConcepts is the number of primitive concepts, nCD the number of com-
pletely defined concepts, NConcepts the number of non-primitive concepts, and
Synonyms the number of synonyms. All experiments used v.0.99.4 of FaCT++
running under Linux on an Athlon 1.3GHz machine with 768Mb of memory.

The results of the classification tests are given in Table 2, where time is the
time taken to classify the KB (in seconds), nOps is the number of expansion
rule applications during the classification process, nTests is the number of sub-
sumption tests, and nCache is the number of subsumptions that were computed
using cached models [6].

Using CD speeds up the classification of NCI by a factor of more than 20. In
both cases, all subsumption tests are solved cheaply using cached models, but
more than ten million tests are performed when CD is not used; employing CD
reduces this number to less than one million. Classification of GO is twice as fast
with CD than without it. Again, GO has a simple structure, but is very broad,
so CD still gives a significant reduction in the large number of cache based tests.
GALEN behaves differently. It is the only KB where more “real” (non cache
based) subsumption tests are performed with CD than without. This is due to
the large number of non-primitive concepts that are classified in the middle of
the hierarchy. Even in this case, however, saving large numbers of cache based
tests leads to a slightly smaller overall classification time.

5 Discussion
The proposed classification technique is applicable to a large number of real-
life ontologies, i.e., those where there are no non-absorbed GCIs. The best
results are, of course, for ontologies with large numbers of primitive concepts
and a simple structure, but even in cases where it has little beneficial effect, it
does not appear to have any detrimental one. The number of such ontologies
may decrease, because newly created ontologies will (probably) use more of



the expressive possibilities provided by modern DLs. With legacy ontologies,
however, the method may prove to be very useful.

In [5] the so-called bucket method was proposed as a way to deal with broad
and shallow hierarchies. In this method, when some concept in the hierarchy
is found to have a large number of children, a new “virtual” concept is added
to the hierarchy; this non-primitive concept is defined to be equivalent to the
disjunction of some of the children of the original concept, and is used in fast
cache-based comparison.

It is possible to use the bucket method at the second stage of the CD clas-
sification algorithm. However, this method will not improve first stage of the
algorithm, since no search is actually performed there.

References

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implemen-
tation and Applications. Cambridge University Press, 2003.

[2] F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.-J. Profitlich. An
empirical analysis of optimization techniques for terminological representa-
tion systems or: Making KRIS get a move on. Applied Artificial Intelligence.
Special Issue on Knowledge Base Management, 4:109–132, 1994.

[3] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuin-
ness, P. F. Patel-Schneider, and L. A. Stein. OWL web ontology lan-
guage reference. W3C Recommendation, 10 February 2004. Available at
http://www.w3.org/TR/owl-ref/.

[4] GOA project. European Bioinformatics Institute. http://www.ebi.ac.uk/
GOA/.

[5] V. Haarslev and R. Möller. High performance reasoning with very large
knowledge bases: A practical case study. In Proc. of the 17th Int. Joint
Conf. on Artificial Intelligence (IJCAI 2001), pages 161–168, 2001.

[6] I. Horrocks. Using an expressive description logic: FaCT or fiction? In
Proc. of the 6th Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR’98), pages 636–647, 1998.

[7] J. E. Rogers, A. Roberts, W. D. Solomon, E. van der Haring, C. J. Wroe,
P. E. Zanstra, and A. L. Rector. GALEN ten years on: Tasks and supporting
tools. In Proc. of MEDINFO2001, pages 256–260, 2001.

[8] D. Tsarkov and I. Horrocks. Efficient reasoning with range and domain
constraints. In Proc. of the 2004 Description Logic Workshop (DL 2004),
pages 41–50, 2004.


