
Applying DLs to workflow reuse and repurposing

Antoon Goderis, Ulrike Sattler and Carole Goble
University of Manchester, UK

{goderis,sattler,carole}@cs.man.ac.uk

1 Reuse and repurposing in e-Science

Workflow techniques are an important part of in silico experimentation, poten-
tially allowing a scientist to describe and enact their experimental processes in
a structured, repeatable and verifiable way. The myGrid (www.mygrid.org.uk)
workbench, a set of components to build workflows in bioinformatics, currently
allows access to a thousand globally distributed services and a hundred work-
flows, some of which orchestrate up to fifty services. Figure 2 shows the example
of a myGrid workflow which gathers information about genetic sequences in sup-
port of research on Williams-Beuren syndrome [10].

Much of the research geared towards the construction of on-line processes
(i.e. workflows) is led by a vision of automatic composition of services based
on extensive formalisation (see for example www.daml.org/services/owl-s/pub-
archive.html). Such research can be complemented with techniques that exploit
those cases where existing workflows and fragments of workflows can be reused,
thereby benefitting from hard-won human experience in composing services. A
workflow fragment is a piece of an experimental description that is a coherent
sub-workflow that makes sense to a domain specialist. Each fragment forms a
useful resource in its own right and is identified and annotated at publication
time. We distinguish between reuse, where workflows and workflow fragments
created by one user might be used as is, and repurposing, where they are used
as a starting point by others. The idea of repurposing is that a user looks
for workflows that are close enough to the user’s requirements so that these
workflows can be fit to a new purpose. In Figure 1, we show the lifecycle of a
repurposed workflow.

1. Before embarking on a new design the scientist consults a registry of ex-
isting workflows. Search facilities based on an ontology and a database
repository identify any existing workflows that are relevant to them.

2. Workflows or their fragments are potentially edited; services are parame-
terised or bound to end points but rarely altered. Other services, workflows
or workflow fragments are sought, or new ones are created.



Figure 1: The role of annotation in the workflow repurposing lifecycle

3. The workflow is tested and generates results which are stored in a database.
4. It must then be a simple task to publish the workflow, annotate with

a description and additional knowledge on the suitability of the original
workflow for this task, so that others can benefit. Building workflows can
take months, even years. Keeping others in the organisation informed of
new, even incomplete, workflows and to publish early results is important.

5. We cycle through this process until the scientist is happy, and the workflow
has proven its worth.

6. The user publishes the workflow to the wider Web community, for instance
to back up results in a journal paper. Because workflows often contain
sensitive information or refer to services that are unavailable outside an
organisation, not all of the information in the workflow can be shared with
the outside world. The excluded parts are left incomplete.

In this paper, we reflect on how the description logic (DL) based Web On-
tology Language OWL Lite [7] could be used for searching workflow fragments.
We use this expressive DL because of: (i) it being a standardised KR language;
(ii) the support it offers for classifying a large collection of workflow fragments;
(iii) the potential to describe and query for workflows at a level of abstraction
suited for a domain scientist through query languages; (iv) the support for repre-
senting incomplete workflows. Various authors have experimented with service
discovery based on DL reasoning, typically based on the OWL-S Profile [11] or
WSMO Capability descriptions [9]. Unlike this DL discovery work, we envisage
the discovery of workflow fragments. Fragments incorporate a simple notion of
control flow, which is exploited for discovery. This is in contrast to the Profile
or Capability descriptions, where control flow is not used during discovery. We



Figure 2: A myGrid workflow to annotate genetic sequence

want to capture a layer of abstraction suitable to a scientist to retrieve work-
flows, thereby explicitly ignoring complex control flow which may be present in
the workflow specification.

We start by extending an existing T-Box service ontology [12] and then use
this representation to answer a set of queries over a type of workflow fragments
common in bioinformatics. We conclude by discussing the need for handling
more complicated fragments and a hybrid approach to repurposing.

2 Example queries

From observing bioinformaticians and other scientists build workflows, we have
collected the following set of practical queries. We shall refer to these queries
throughout the text.

Q1 Given a data point, service, fragment or workflow, where has this item
been used before?

Q2 Show the common data, services, service graphs or data graphs between
two fragments or workflows.

Q3 Given a set of data points, services, or fragments, have these been con-
nected up in an existing base of workflows? If not, what are the closest
available alternatives for doing so? How do these alternatives rank?

Q4 As more and more workflows become available, fragments are reused and
repurposed in a variety of workflows. How can one systematically keep
track of these interrelationships?

Q5 Which workflows are work in progress?
Q6 Show the differences between two workflow versions.
Q7 Show the evolution of a workflow over time.

3 Representing workflows / workflow fragments

Consider the Williams-Beuren syndrome gene annotation pipeline in Figure 2.
Similar to most workflows we find in bioinformatics, this workflow is a pipeline
that fans out: one starts out with a limited number of inputs, and ends up with



many more outputs. We want to represent such a tree-like workflow in a DL. We
assume that the T-Box collects generic descriptions of workflows which, given
their generality, hardly change, while the A-Box provides a place for scientists
and workflow developers to add new workflows.

T-Box Services are the basic building blocks of a workflow. We adopt the
definition of a service used in the myGrid ontology [12]. This ontology, originally
in DAML+OIL and now in OWL Lite, contains 550 concepts and 69 roles and
describes bioinformatics service classes. A myGridService service class (shown
in what follows as Service) usesOrProduces one or more BioDomainConcept.
Optionally, it includes a performsTask role relationship, as well as other, bioin-
formatics specific, roles (not shown).

hasInput v̇ usesOrProduces

hasOutput v̇ usesOrProduces

Service
.
= BioProcess u ∃usesOrProduces.BioDomainConcept

We define workflows as entities that contain at least one service, by means
of the transitive has part role hp.

WF
.
= Process u ∃hp.Service

Adding an ordering is made possible through the has direct successor role hds.
The following is a partial T-Box description for the sequence analyzer SeqAna

fragment combining 3 services of Figure 2.

SyntaxTranslator v̇ Mediator Mediator v̇ Service

RepeatMasker v̇ RemRedDNA RemRedDNA v̇ Service

BLAST v̇ SeqSimSearch SeqSimSearch v̇ Service

BLASTn v̇ BLAST

Biologists often precede BLASTing a genetic sequence (i.e. running it through
a BLAST service) with a RepeatMasker service to remove redundant structures
and obtain a non-redundant sequence. We acknowledge the importance of this
service combination for the biology domain by introducing a BLASTNRSeq work-
flow fragment in the T-Box. In general, concept expressions describing workflows
are called abstract workflows.

BLASTNRSeq
.
= WF u ∃hp.(RepeatMasker u ∃hds.BLAST)

SeqAna
.
= WF u ∃hp.(BLASTNRSeq u ∃hds.Mediator)

The use of the hds and hp roles allows to derive that, for instance, SeqAna is
subsumed by

myFragment
.
= ∃hp.(RemRedDNA u ∃hds.BLAST)



s3:SyntaxTranslator

w2:WF w3:WF

hp hp

hp

hds

s1:RepeatMasker

w1:WF

hp
hp

hp

hds

hp

s2:BLASTn

Figure 3: Contents of the A-Box without the hs roles, hp transitivity and inverses

We also wish to be able to deduce when one service (or piece of data) succeeds
another even when a few services are in between (Q3). Introducing a role hier-
archy has the desired effect. We define the has successor role hs to be transitive
and a super role of hds by adding hds v̇ hs and Trans(hs) to the role hierarchy.

Moreover, it would be logical to expect that if a service, Service 1, is followed
by a workflow fragment of which Service 2 is the first service, then Service 1 is
succeeded by Service 2. To model such a derivation in a clean way, we would
need to say that any has successor relationship between A and B followed by a
has part relationship between B and C implies a has successor between A and
C. This type of derivation can be achieved by means of a complex role inclusion
axiom [8]. Unfortunately the role composition construct is unavailable in OWL
Lite (and OWL DL). We approximate the desired inference by making the has
part role hp as a sub role of has successor hs. It remains to be seen in how far this
approximation yields undesired effects. Alternatively, because we know which
roles will be combined before querying time, we could introduce a preprocessing
step and enumerate all role assertions ourselves explicitly.

Finally, the has direct precursor, has precursor, and is part of roles are
modelled as the respective inverse roles of hds, hs and hp.

A-Box Service instances and concrete workflows in the A-Box instantiate the
service classes and abstract workflows from the T-Box. As a guiding princi-
ple, abstract workflows are used for structuring the ontology, whereas concrete
workflows are used for query answering. Concrete workflows are used for the
annotation of snippets of working code, and this is what the user is interested
in. Figure 3 shows part of an A-Box containing three concrete workflows and
three service instances, based on the T-Box defined earlier.



4 Querying workflows and workflow fragments

With the T-Box and A-Box described so far, we now demonstrate some of the
queries (relating to Q1, Q2 and Q3) that can be answered based on the repre-
sentation developed in the previous section. We have used Racer1 to support
retrieval of fragments and follow the syntax of [5]. We then consider the querying
of incomplete workflows (Q4), as well as inexact fragment retrieval (Q3).

Example queries for workflow fragments

Find the workflows that analyse a non-redundant sequence for similarity and
then manipulate the results. Both queries are acyclic conjunctive. They return
w1 and w3.

(w) : − WF(w), hp(w, w′), BLASTNRSeq(w′), hds(w′, s), Mediator(s)
(w) : − hp(w, s), hp(w, y), hds(s, t), hds(t, y),

RemRedDNA(s), SeqSimSearch(t), Mediator(y)

Which workflows contain a service that does similarity search and a service that
removes redundant information in DNA (the first query returns w1, w2 and w3)?
Which workflows connect these 2 services (the next query yields w1, w2 and w3)?

(w) : − WF(w), hp(w, s), hp(w, t), SeqSimSearch(s), RemRedDNA(t)
(w) : − hp(w, s), hp(w, t), hs(s, t), RemRedDNA(s), SeqSimSearch(t)

Note the use of the hs role to indicate that intermediate links between s and
t can be present. Neither Racer, the Manchester and Stanford OWL-QL im-
plementations,2 nor Pellet of U. Maryland3 support the retrieval of the trace
between role relations, i.e. to return the intermediate role relations linking two
services or pieces of data. Postprocessing the returned role assertions with a
shortest path algorithm solves the issue.

Querying for incomplete workflows

The open world semantics of description logics allows to query for incomplete
workflows (Q5). Suppose that, in the example in Figure 2, a developer of a
workflow has decided that a mediator service will be used, but has yet to decide
where to put this service relative to the other services in the workflow. Even
though the description is incomplete, it would still be of interest to other devel-
opers who are interested in the same type of mediation and thus it is useful to
be able to publish and query such incomplete knowledge.

1Web site: www.sts.tu-harburg.de/˜r.f.moeller/racer/
2Web sites: www.cs.man.ac.uk/˜glimmbx/ and onto.stanford.edu:8080/owql/FrontEnd
3Web site: www.mindswap.org/2003/pellet/index.shtml



Querying for similar workflow fragments

So far, the queries involved the exact retrieval of fragments based on A-Box
retrieval. One would also like to retrieve fragments that are largely relevant
to a user (Q3) but happen to fall outside a strict subsumption relationship,
e.g. the structure of two fragments is the same, except there are two services
which are not in a subsumption relationship. A mechanism is needed to measure
(dis-)similarity between fragments, calculating for instance how many services
are to be moved, removed, added, replaced, merged or split to relate different
fragments.

DL role-based approaches and implementations relying on structural algo-
rithms have been developed for FL− in [3], which uses shared roles and role
values for inexact matching, and in [1], which counts shared parent concepts. In
[4] a structural algorithm based on abduction and contraction is presented for
a fragment of ALC. A tableaux algorithm for abduction and contraction based
matching in ALN is proven in [6]. Directly applying role-based approaches on
the workflow ontology and the myGrid domain ontology has not proved possible,
given the constructs used in the workflow and domain ontology. In case no ab-
duction algorithm for OWL Lite is devised, approximation [2] might offer a way
out by simplifying the ontology in a non trivial way to the level of expressivity
the abduction algorithm can handle. Another option is to stay within OWL Lite
and devise query relaxation strategies for a query manager.

5 Outlook

Capturing data flow and more complex control flow The current repre-
sentation largely ignores data flow. In future we plan to introduce data objects
that have input and output relationships in the A-Box. For control flow, due to
the lack of expressive power of OWL, we must abstract from the structure of the
concrete workflows when they are described in the T-Box. So far, we only use
hds to represent control flow. For the fragment discovery purposes of scientists,
this is probably what one wants to do anyway: these users are not interested in
intricate control flow details. There may be cases where more complex control
mechanisms such as loop, conditionals or concurrency constraints need to be
modelled. We can easily capture part of a conditional in the T-Box by introduc-
ing e.g. has possible successor roles. With respect to loops, one cannot define
and query for loops in the abstract workflows. One is still able to query for loops
over concrete workflows in the A-Box.

A hybrid approach to repurposing It is clear that, when building work-
flows, we are often confronted with various problems that can (and should) be
solved “syntactically” such as versioning support (Q6 and Q7). Moreover, en-
acting workflows generates data points which people query for. It seems sensible



to represent such objects not in the A-Box but in a database, as in effect one
has generated everything there is to know about a particular enacted workflow
and no extra inferences can be drawn.

References

[1] S. Bechhofer and C. Goble. Classification Based Navigation and Retrieval for
Picture Archives. In IFIP WG2.6 Conference on Data Semantics, DS8, 1999.

[2] S. Brandt, R. Küsters, and A.-Y. Turhan. Approximation and difference in
description logics. In KR2002, pages 203–214, San Francisco, USA, 2002.

[3] J. Bullock and C. Goble. Tourist: the application of a description logic based
semantic hypermedia system for tourism. In 9th ACM conference on Hypertext
and Hypermedia, pages 132–141, 1998.

[4] A. Cali, D. Calvanese, S. Colucci, T. Di Noia, and F. M. Donini. A description
logic based approach for matching user profiles. In DL2004, 2004.

[5] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query
containment under constraints. In 17th ACM SIGACT SIGMOD SIGART Symp
PODS, pages 149–158, 1998.

[6] S. Colucci, T. Di Noia, E. Di Sciascio, F.M. Donini, and M. Mongiello. A uni-
form tableaux-based approach to concept abduction and contraction in ALN. In
DL2004, 2004.

[7] I. Horrocks, P. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to
OWL: The making of a web ontology language. J. of Web Semantics, 1(1), 2003.

[8] I. Horrocks and U. Sattler. Decidability of SHIQ with Complex Role Inclusion
Axioms. In IJCAI-03, 2003.

[9] U. Keller, R. Lara, A. Polleres, et al. Wsmo web service discovery. WSML
Working Draft D5.1 v0.1, University of Innsbruck, 12 November 2004.

[10] R.D. Stevens, H.J. Tipney, C.J. Wroe, T.M. Oinn, M. Senger, P.W. Lord, C.A.
Goble, A. Brass, and M. Tassabehji. Exploring Williams Beuren Syndrome Using
myGrid. Bioinformatics, 20:303–310, 2004.

[11] K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan. Automated discovery,
interaction and composition of semantic web services. Web Semantics: Science,
Services and Agents on the WWW, 1(1):27–46, 2003.

[12] C. Wroe, R. Stevens, C. Goble, A. Roberts, and M. Greenwood. A suite of
daml+oil ontologies to describe bioinformatics web services and data. Intl. J. of
Cooperative Information Systems, 12(2):197–224, 2003.


