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Abstract In this paper we consider an extension of the answer set semantics

allowing arbitrary use of strong negation. We prove that the strong negation ex-

tension of any intermediate logic provides a suitable basis for reasoning under

the answer set semantics. We propose two new notions of equivalence that are
more general than strong equivalensabstitution equivalencand contextual-

ized equivalence

1 Introduction

For many years the main line of research in the area of Answer Set Programming has
seen semantics in the traditional way of logic programming: reductions on logic pro-
grams and fixed-point style definitionsThe best known example of such definitions
is the Gelfond-Lifschitz reducthe original definition of the semantics [2]. The exten-
sions to wider families of programs that followed were also defined as reduétilans
Gelfond-Lifschitz from the introduction of strong negation [3] to nested programs [7],
a rather wide range of such reducts has been proposed.

Alternative approaches have been considered like proof theoretic characterizations
[9] or inference in different logics [6,8]. However, in contrast to reductions, they are
often seen more as theoretical tools than as definitions of the semantics. In this paper
we consider one of these alternative approaches: logic programs can be understood as
propositional theories and their answer sets are then defined as models in a formal logic
system. In particular, we follow the line of research started by Pearce [17], who focused
on establishing links between negation in the stable model semantics and negation in
logic [16]. As Pearce points out, the standdefault negatiorin stable inference can
be characterized by negation in Heytingisuitionistic logic Using the logicHT (an
extension of intuitionistic logic, see Section 2.1), he defiagdilibrium logig which
became very well accepted in the context of purely logical approaches to the answer
set semantics. A similar formalism calledfe beliefavas introduced by Osorio et al.
[13,14] establishing new results on the correspondence between answer sets and super-
intuitionistic logics. The answer set semantics of disjunctive and nested programs can
be seen as particular instances of both equilibrium models and safe beliefs. Additionally

! The termsanswer set semantiedstable model semantiese considered synonyms for the
purposes of this work.
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they define an extension of answer sets for theories with even more flexible syntax, for
example for programs that contain the implication connective in the body of rules [15].

1.1 About this Work

Since it was introduced in [3], strong negation has been well accepted in the answer set
programming communify However, this connective has not received a fair treatment.
While the answer set semantics has been extended to always more flexible classes of
logic programs where conjunctions, disjunctions and default negations are allowed to
occur unrestrictedly in any part of the formulas, strong negation has remained tied to
the atomic level. In some cases, to compute the semantics, strong negation is removed
from the program and ‘simulated’ introducing new atoms and constraints. Even the
purely logical approaches, less syntactically restricted, have often focused on programs
that do not contain strong negation [11,12]. Nevertheless, this connective is important
from the knowledge representation and application development perspective. Also from
atheoretical point of view, understanding its behaviour brings interesting insights about
constructive negation and negation in logic programming. We will study this connective
in more detail here. In particular we analyse the repercussion of its unrestricted use in
the answer set semantics.

It was also Pearce who provided core insights on the issue of strong negation. Based
on Nelson’s extension of intuitionistic logic with a new negation connective, Pearce en-
hanced equilibrium logic with the same connective. He proved that this extended logic
characterizes the answer sets semantics of programs with strong negation [16]. Despite
this correspondence, which lets the answer sets community take advantage of existing
work in Nelson’s logics, the issue had not been addressed in detail. Many questions
remained open, despite the availability of all machinery required to answer them. We
will list only a number of them:

1. What are the effects of allowing the arbitrary use of strong negation in logic pro-
grams? Are the existing results about equivalence, transformations, etc. still appli-
cable?

2. Are all Nelson extensions of intermediate logics invariant w.r.t. the answer set se-
mantics?

3. Can strong negation be effectively eliminated from any logic program or formula
in an unified way?

We will answer these questions in the current work. More specifically, we will ad-
dress 2 and 3 in Section 3. Then we will move to answering item 1, which will take
us through sections 4 and 5 where we will extend existing results in answer sets to the
case of arbitrary theories with two kinds of negation. In particular, we provide notions
of equivalence which are more general than strong equivalence. They allow us to do
program transformations that can not be properly captured by strong equivalence alone.
Some of them are also relevant in the absence of strong negation.

2 By strong negatiorwe mearclassical negatiotin [3]. See Section 2.2.
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2 Preliminaries

2.1 Intermediate Logics and Strong Negation Extensions

We will represent classical propositional logic by the symB@nd Heyting’s Intuition-
istic Logic byI. The setZ := {A,V,—, L} denotes the connectives bfI-formulas
are the formulas built from the connectiveZiin the standard way. The symbeiwill

be calledintuitionistic negationand —« is an abbreviation oft — L for any formula

a. We will denote byN := 7 U {~} the set of connectives of Nelson’s logics, where
~ is an unary connective callesfrong negatiof. The formulas constructed using the
connectives inV are calledN-formulas.

For any formulasy, 3, will use the following abbreviationst := L — 1, a «

B := (a — B) A (B — «). For alogicX and a formulax, the expressiofrx «
represents the standard derivability relation in loXici.e. « can be derived from the
axioms inX using modus ponens as the only inference ralé-x « can be read as
Fx 8 — aandg d-x «is an abbreviation of -x « anda Fx 5.

An atomis a propositional variable. A--literal is either an atomu or its strong
negation~a. When we use the terititeral alone, we mean a--literal [ or its weak
negation—i. A theory is a set of formulas. In a slight abuse of notation, we may write
any finite theoryl” as a formulay, wherey := /\%F . For any formulap, the sig-
nature ofp is the set of propositional variables that occurdnas well as the strong
negation of each propositional variable, i.e. a set.dfterals. We will represent it by
L,. Sometimes, we are only interested in the (positive) atoms of a signature. In this
case, we will call itatomic signatureand denote it b)ng. For example, given the for-
mulaa := a, its signature isC, = {a,~a}, and its atomic signatur€’ = {a}.
Given a set of literalsi, we use the notatiorA := {-a | a € A}; A" := A\, 40,

A, = {alaecL,\ A} and4, := AU -A,. We will just use the termsl and A
when the formulg is clear by context.

An axiomatic formalization of is given in [10]. By adding additional axioms to
intuitionistic logic, we obtain the logics that are usually knowirdsrmediateor super
intuitionistic logics. Here we will use the terflogic to refer to any axiomatic exten-
sion ofI, that is strictly weaker tha@ *. I-logics form a lattice in which the supreme is
the unique lower cover of. Many names for this logic can be found in the literature,
like Smetanich logicthe logic ofHere and Ther¢HT)®, etc. We will refer to it a3,
since it is also the three valued logic used byd@l. It can be obtained by addingXo
the axiom schemé-q — p) — (((p — ¢) — p) — p).

3 Unfortunately, there is a mismatch between the traditional notation in intermediate logics and
the one used by the answer set community, wherdten denotes strong negation. We will
adhere to the intermediate logics standard, since we want to emphasize that negation in these
logics properly captures negation in answer sets.

4 In a slight abuse of notation we will use the same symbol to refer to a formal logic system as
well as to its theorems. We say thstis strictly weaker tharY iff X C Y.

5 This is the name usually found in he works of Pearce. The name is due to the fact of it being
characterized by the Kripke frames containing exactly two worldshéneworld and thethere
world.
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For anyI-logic X, we can add the following axiom schemata to the axiomatization
of X to obtainN(X), theleast strong negation extensiof X:

NL ~(a— fB) o aA~p
N2. ~(aAf) & ~aV~f
N3. ~(aV () & ~aA~f
N4. o «— ~~a«

N5, ~—a - «

N6. ~a — —a for atomica

These axioms are introduced in [20,21], where they were addedlimce~a —
-« is a theorem for any (not only atoms), the- connective is called strong negation.
It was introduced by Nelson in [1] and intuitively it means that something is known to
be false, not only assumed false due to the absence of a proof. We will use the term
N-logics to refer to the least strong negation extensionklogjics. In particular, we
will denoteN(I) by N andIN(G3) by N5 °. N-logics form a lattice that was studied in
detail by Kracht [4]. We will denote aKY) the set ofl-formulas that are theorems of
anN-logic Y and call it thel-fragmentof Y. Since the axiom schemaldl. to N6. do
not add any theorems in the basic language df-tgic, I(IN(X)) = X is anI-logic.

We will recall some of the results from [4] that we will use in the following sections.

Definition 1 (Standard Form). AnN-formula is said to be istandard fornif its built
from ~-literals using only intuitionistic connectives.

A formula in standard form has all occurrences of theonnective just in front
of an atom. It is easy to see that for any given formula, due to axigin® N6, the
~ connective can be pushed in until the formula is in standard form. We will denote
by s(¢) the standard form of alN-formula. In the following definition we present a
transformation ofN-formulas intoI-formulas.

Definition 2. Lety be anyN-formula in standard form and let’ be a signature of the
same cardinality a} such thatC’ N £} = 0. We define aariable twisting function
as a bijective function : L} — L. Foranyp € Lo the atomt(p) will be called the
twistor of p and denoted by’. The mapping op to theI-formulay°® over the signature
Ejg U L' is defined recursively as follows:

If o = 1, theny® := L

If ¢ = a, wherea is any atom, thep° := a

If o = ~a, whereqa is any atom, thep® := t(a) = o’

If ¢ = a#3, wherea and 8 are any pair of formulas angt € {A,V,—1}, then
P = At

Theconstraint sedf ¢, written as¥,, is defined as follows?,, := /\pec:g p — —p.Ur
is just an abbreviation of\ | - 7.

Finally, definep® := ¥, A ¢° and pyq := ¥,, — ¢°. The formulap,, will be called
twist of .

For any N-formula v that is not in standard form, také., := s(¢). and ¢® :=
s()®.

5 The name is due to its semantic characterization in terms of 5-valued truth tables. See [18].

N
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The following propositions show the relevance of the twist of a formula

Proposition 1 (Theorem 8 in [4]). For anyI-logic X and N-formulay, Fn(x) « iff
Fx O+

Proposition 2 (Theorem 9 in [4]). For any N-logic X and I-formula ¢, Fx ¢ iff
"I(X) ©-

As for the second rewriting given in the previous definitipfi, its importance will
be made clear when we state Theorem 1 in Section 3.

2.2 General Notation

A formula « is defined to be--inconsistent in logiX if both o Fx g anda Fx ~3

hold for some3. A formula« is defined to be--inconsistent in logiX if both a Fx 5
anda Fx —3 hold for someg. Since it is easy to see that-inconsistency aneh-
inconsistency imply each other, we will just refer to formulas that are inconsistent in
logic X. For anyI-logics (N-logics) X andY, if a formulac« is inconsistent irX then

« is inconsistent inY, hence we may omit the logic and say thais inconsistent. A
formula« is defined to beomplete in logicX w.r.t. a signaturel if for any formulag

such thatCs C L, eithera Fx forabFx —f.

Logic programs as propositional formulas. A logic program is usually defined as

a set of rules. In our approach, logic programs are simply particular cases of proposi-
tional theories with a restricted syntax. For the purpose of this work the terms formula,
program and theory might be considered equivalent. We will use the standard logic no-
tation to refer to logic programs. A rule that would be writtenths— B or H :— B in

logic programming is represented by the formdla— H. Conjunctions and disjunc-
tions are denoted by theandv connectives. In order to be consistent with the notation
used forN-logics, thenegation as failureonnective denotedot in logic programs is

here represented by the symbglandstrong negatioris denoted with the symbao}.

We will use the nam&-nested formula for formulas of the form— 3 where bothy

and 3 areN-formulas in standard form with no occurrences of theconnective. An
I-nested formula is aiN-nested formula with no occurrences-of

2.3 [-Safe Beliefs, Equilibrium Models and Answer Sets

[-Safe Beliefs. We will briefly recall safe beliefsthe work of Osorio et.al. [13,14], in
order to extend their results to propositional theories with strong negation.

Definition 3 (X-Safe Beliefs)Let X be anyI-logic and lety be anyI-formula. A set
M of atoms such thap A (=—M)" +-x M is called aX-safe belief ofp.

7 Since in [4]N-logics are given an algebraic treatment, both theorems are stated for varieties
of algebras. Here we present them in terms of theoremhood.
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Note that we simply write> A (=—3)" +-x 3 instead ofp A (== M)" Hhx
H:. When we talk about safe beliefs, we will usually do this simplification on the
notation®.

Intuitively, we can explain safe beliefs as follows: Our formula or program repre-
sents our knowledge. We want its semantics to be a complete theory. For some atoms
a in the language, either or —a can be infered directly from the information in the
program. If this is not the case, we will have to complete our theory by making some
additional assumptions. However, we want to be cautious and assume as little infor-
mation as possible. Hence we only assume a set of weakly negated literals. From an
intuitionistic perspective, this can be read as assuming that we have no proof of the
truth or falsity of the assumed literals, which seems cautious enough. If this weak as-
sumptions are enough to complete our theory without falling into inconsistency, then
we have a safe belief.

In Theorem 4.1 in [14] the authors prove tB&atsafe beliefs are equivalent for any
I-logic X. Hence we may refer to safe beliefs without mentioning a partidulagic.
We will call I-safe belief ofp a set of atom3/ such thatV is aX-safe belief ofp for
anyI-logic X.

Equilibrium Models. The original definition of an equilibrium model of daformula

can be found in [17], where they are definedGs models satisfying some particular
conditions. Since the equivalence lbgafe beliefs and equilibrium models has been
proved (see Proposition 3.1 in [14] and Proposition 2.4 in [17]), we might consider
equilibrium models and-safe beliefs as synonyms. For the cas®eformulas, Pearce
extended his characterization of equilibrium models ud¥igmodels [16]. The safe
beliefs counterpart of this extension will be given in Section 3.

Answer Sets.We will not present the traditional definition of the answer set seman-
tics. As we have mentioned, it is defined through the Gelfond-Lifschitz reduct [2]. This
reduction has been extended to families of programs with less restricted syntax. The
most general reduct proposed until now that is relevant for the current work is the one
for N-nested formulas given in [7]. However, for other classes of formulas (for exam-
ple, formulas containing embedded implications) there is no obvious way to extend the
reduction.

Both equilibrium inference anilsafe beliefs were proposed as characterizations
of the answer set semantics. The equivalence of both formalisms and answer sets for
I-nested formulas was proved independently. Lemma 3 in [5] states that a set of atoms
is an equilibrium model of ad-nested formula iff it is an answer set of it. Equiva-
lently, Corollary 4.1 in [14] stablishes the same result for safe beliefs. Additionally,
these formalisms give a semantics tolafbrmulas and are a natural generalization of
answer sets for the cases where extended reducts are not available. In this work, we will
consider them as the definition of the answer sets semantics for arfiif@myulas.

8 We are using thel- symbol, instead of- used in [13]. The equivalence of both notations in
the context of this definition follows from completenes%ﬁ.
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3 N-Safe Beliefs

Now that we have introduced the necessary preliminaries, we will provide an equivalent
of I-safe beliefs folN-formulas. We do it in the natural way:

Definition 4 (X-Safe Beliefs)LetX be anyN-logic. Lety be an N-formula and/ a
set of~-literals. M is called aX-safe belief of; if ¢ A (=—21)" H-x 3" holds.

Note that as we used sets of atoms when talking albcteife Beliefs, now we
will refer to sets of~-literals. The reader should keep in mind that we do not exclude
inconsistent sets of-literals (i.e. sets that contain bothand ~a for some atonu).

Due to this assumption, an inconsistent formula does not have any safe beliefs. It is a
common practice in the answer sets community to consider only consistent sets of
literals as potential answer sets. In the case of inconsistent formulas, the entire signature
is by definition the only answer seX-safe beliefs generalize answer sets modulo this
consideration. The definition dK-safe beliefs can be restricted to consistent sets of
~-literals in the natural way.

To be able to relate safe beliefs of Biiformula ¢ with I-safe beliefs and answer
sets, we will use th& function in Definition 2. In the context of the answer set seman-
tics, strong negation is usually eliminated from logic programs by a simple transfor-
mation, initially proposed by Gelfond and Lifschitz [3]. This transformation coincides
with ©® for the restricted case wheteis a disjunctive formula. The authors proved
that a consistent set ef-literals M is an answer set a@f iff M/° is an answer set @f®.

The® transformation became the standard way to approach logic programs with strong
negation. In [5] it was extended to nested logic programs. The definitigrfdbr an
arbitrary N-formula ¢ provides a natural generalization of this result. Now we prove
that under this transformatioX -safe beliefs for anyN-logic X coincide withI-safe
beliefs. This is the first of our key results, since it provides a uniform way to eliminate
strong negation from arbitra@¥-formulas under the safe beliefs semantics.

Theorem 1. Let X be anylI-logic, M a set of~-literals andy an N-formula. M is an
N(X)-Safe belief ofy iff M° is al-Safe belief ofp®.

Proof (Sketch)With Definition 2 as well as Propositions 1 and 2, the reader can easily
verify thatg A (=——M)" Frex) M iff @ A (-—M)™)° bx M. That M Fyx)

@ A (=DM iff M°" Fx @ A ((=—M)")° follows from completeness ot (resp.
My wirt. L, (resp.La).

Our second important result is to answer a question that remained open until now.
A N-formula has exactly the sam&-safe beliefs in everiN-logic X.

Theorem 2. Letp be anN-formula and lefX, Y be any twdN-logics. A set of literals
M is aX-Safe Belief of iff M is a’Y-safe belief ofp.

Proof (Sketch)Theorem 4.1 in [14] proves th&tsafe beliefs are invariant w.r.t. tfie
safe beliefs semantics. From this result and Theorem 1, it follows that a-selitefals
M is aN5-safe belief of alN-formulay iff M is alN- safe belief ofp, hence the result
also holds for an\N-logic stronger thaiN and weaker thaiN5.



Nelson’s Strong Negation, Safe Beliefs and the Answer Set Semantics 77

We have proved thaN-logics are invariant w.r.t. the safe beliefs semantics, hence
we may omit particular logics when refering M-safe beliefs. A sef/ of ~-literals
such thatM is aX-safe belief ofy for everyN-logic X will be called aN-safe belief of
~. Now we can us&-safe beliefs to correctly characterize the answer set semantics of
arbitraryN-formulas. It is worth pointing out that these results are not really surprising.
The relation between Pearce’s equilibrium modelsErghfe beliefs is clear. In partic-
ular, N5-safe beliefs are just a notational variation of equilibrium models (with strong
negation). Already in [17] Pearce had proved that equilibrium models are a generaliza-
tion of the answer set semantics of nested programs. In the rest of this work, answer
sets of an arbitrariN-formula will be, by definition, theN-safe beliefs ofp.

4  Substitution in N-logics

One peculiar feature dX-logics is that the standard substitution theorem does not hold
in general and some restricted versions of it have to be used instead. We devote this
section to substitution, since it will play a key role in the rest of our work.

First, we will consideistandardsubstitution, here represented with the usual nota-
tion: a[3/p] will denote the formula that results from substituting the form@ifar the
atomp, wherever the atom occurs in the formula.

Intuitively, in a N-formula in standard form, each-literal represents a different
atom. Hence, sometimes we would like to apply a substitution replacing either all posi-
tive occurrences of a particular atom, or all its negative instances. For practical purposes,
we will introduce a special notation for his kind of substitution. Given a formuia
standard form, and ar-literal I, p[« || {] will denote the formula that results from
substituting the occurrences of theliteral [ by the formulac, but leaving all occur-
rences of the complementary literal unchangedigfof the forma for some atomie:,
the occurrences ofa remained untouched. Analogously/ifs ~a, strongly negated
occurrences of are substituted.

4.1 Cautious Substitution

Additionally, we will introduce another type of substitution, which will be calteal-
tious substitutiorand denoted as{3/p} for formulasa, 5 and an atonp. It can also
be denoted{°3/p} and its recursive definition is as follows:

16} if «is the atonmp

Q@ if ais L or an atom different fronp

a1 {°8/p}#a2{°B/p} if ais aformula of the formw; #as
where# is eitherA or v

a1{°8/p} — a2{°B/p} if ais aformula of the formy; — aq

~a{18/p} if o is a formula of the formva;

a{%8/p} :=
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! if ais L oran atom

ar{16/p}#az{1B/p} if ais aformula of the form; #as
o{1B/p} = where# is eitherA or v

a1{°8/p} — a2{'3/p} if ais aformula of the formy; — as

~a1{°8/p} if o is a formula of the formva;

Intuitively, the key issue of ourautious substitutiors that it takes into account the
scope of strong negation. If we apply it to a formula in standard form, it coincides with
standard substitution (considering eactliteral as a different atom). For formulas that
are not in standard form, the following property assures a desirable behavior of cautious
substitution:

Proposition 3. Lety, « be anyN-formulas ang an atom. Ther(¢¥{a/p}) = s(s(¢)[ ||
pl)-

Proof (Sketch)By straightforward induction on the formula prove tkét{°a/p}) =
s(s(y)[ex || p]) ands(~({ a/p})) = s(s(~)[ex || p])-

4.2 Substitution theorems forN-logics

A patrticular feature ofN-logics is that the symbot- does not define a congruential
relation on formulas: it can be the case that o < 8 holds, buttx ~a < ~0
doesn’t. Thus, when we refer tequivalenceof formulas, we will have to be more
precise and make some particular considerations. Theweak equivalenceill mean
Fx a < [. We will use the abbreviatiohx o < g when both+x o« <« 3 and
Fx ~a < ~f hold. This stronger condition will be calleM-equivalenceand in
contrast to weak equivalence, defines a congruential relatidi-tarmulas.

After these remarks we can present the substitution theoreM-fogics. The proof
of it is available in [19].

Theorem 3 (Substitution theorem forIN-logics).Let «, 5 and« be N-formulas and
let p be an atom. LeX be anyN-logic. If Fx a < 8 thentx ¢[a/p] < ¥[5/p].

As we can see, to be able to substitute we usually redNliegjuivalence of formulas
to hold. However, in certain cases this condition may be too strong. We will see two
particular cases where weak equivalence suffices. The first is when substitution is not
done inside the scope of~asymbol. The second is when we use cautious substitution.

Theorem 4. Let«, 8 andvy be N-formulas and lep be an atom such that does not
occur iny within the scope of a- symbol. LetX be anyN-logic. If Fx « < ( then

Fx Yla/pl < ¢[B/p].

Proof (Sketch)The proof can be done by a straight forward induction on the construc-
tion of 1. The key point is to observe that whenis of the form~1)’ thenp does not

occur iny’ and hence)|a/p] = ¥[5/p] = 9.
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The following corollary is useful since it states that when formulas are written in
standard form, weak equivalence is a sufficient condition to apply substitution. Recall
that when we are dealing wilN-formulas in standard form, eaehliteral is considered
a different atom.

Corollary 1. Leta, 8 andvy be N-formulas such that) is in standard form and let
be a~-literal. Let X be anyN-logic. If-x a « §thentx ¢la || 1] < ¥[6 || I].

Proof. Take the formula) in Theorem 4 to be)°. Takep asa if [ is an atoma, and
p asd’ if [ is the strong negation of an atom of the forma. Then we have thatx
Y°la/p] « ¥°[B/p]. The reader can easily verify that singeis in standard form,

Fx ¢°[y/p] < (¢[y || 1])° for any formulay. Sincetx (Y[ || 1)) < (¥[8 || 1])°
impliest-x ¢[a || 1] < ¥[8 || {] the corollary holds.

Cautious substitution allows us to establish another form of the substitution theo-
rem for N-logics. This substitution can be safely applied when weak equivalence of
formulas holds.

Theorem 5 (Cautious Substitution theorem forIN-logics). Let «, 8 and ¢ be N-
formulas and lep be an atom. LeX be anyN-logic. IfFx a < gthentx ¢{a/p} —

Y{B/p}

Proof. Since-x o < 3, then by Corollary x s(¥)[a || p] < s(¥)[8 || p]. Thuskx

s(s(¥)[a || pl) < s(s(¢)[6 || p]). By Proposition 3f-x s(y{a/p}) < s(4{8/p})
and it follows that-x ¥{«/p} < ¥{3/p}.

5 Equivalence

In logic programming, equivalence is a crucial issue since it allows to replace parts of
programs and do transformations on them. Under the answer set semantics two pro-
gramslil; andIl, are said to bequivalentwhenI7; has the same answer setsias

In [5] the authors propos&trong equivalengea condition that ensures that equivalence

is preserved under extensions of programs. Another very important contribution of [5]
is to establish a relationship between equivalence of logic programs and equivalence
in logic when logic programs are understood as propositional theories. Following this
approach we will propose some new notions of equivalence. As the reader will see, they
are natural generalizations of strong equivalence. In this section we wifBég) to

denote the set of all sets ofliterals that aréN-safe beliefs of a formula.

5.1 Strong, Substitution and Contextualized Equivalence

We will first recall the definition of strong equivalence from [5], rewritten according to
our notation. Originally the definition was only stated for the case wherg andvy

are nested programs, but the authors point out that it can also be read in the context of
arbitrary theories as we do here.

Definition 5 (Strong Equivalence).Let o and 5 be twoN-formulas. « is strongly
equivalento g if for any formulay, SB(y A «) = SB(y A ).
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This is considered the most useful notion or equivalence since given a prégram
we may safely replace a set of rulBghat are part o by a new set of rules' as long
asR and.S are strongly equivalent. However, strong equivalence has a restriction: we
can only replace entire rules in a program and not parts of them, i.e. only conjuncts in a
formula. Here we face this syntactical restriction and define a new type of equivalence.
It generalizes strong equivalence in the following sense: suppose that given a program
11, we are interested in replacing not a set of ruleg/inbut just parts of some rules.
This can be useful for some program transformations. The equivalence we introduce
for this purpose will be calledubstitution equivalencdt is more general than strong
equivalence, since formulas that are substitution equivalent are also strongly equivalent,
but the converse is not always true.

Definition 6 (Substitution Equivalence).Leta and 3 be twoN-formulas.« is substi-
tution equivalento 3 if for any formulay, SB(¢[a/p]) = SB(v[3/p]) andSB(y[~a/p]) =
SB(¢[~6/p))-

We are also interested in another kind of equivalence, since in many cases, both
strong and substitution equivalence are too strong. Two programs might not be equiva-
lent if we see them independently, but if some particular conditions hold in them, then
transformations might be safely applied.

Definition 7 (Contextualized Strong Equivalence)LlLet, 3, 8 be N-formulas. Then
« andg arestrongly equivalent in the context 6iff for everyN-formulay, SB(O A A ) =
SBO N AB).

Definition 8 (Contextualized Substitution Equivalence)Let«, 3, 8 be N-formulas.
Thena and 3 are substitution equivalent in the context ®fff for everyN-formulazp,

SB(0 A le/pl) = SB(O A[5/p]) andSB(6 A ¢p[~a/p]) = SB(O A [~F/p]).

As we can see, strong equivalence and substitution equivalence are only special
cases of equivalence in the contextiaf

5.2 Characterizing Equivalence

Since [5] it has been recognised that using the traditional notions of equivalence in logic
to study equivalence of logic programs has remarkable advantages. For formulas that do
not contain strong negation, equivalence in loGig characterizes strong equivalence.

Theorem 6 ([5]).Leta, 8 be two arbitraryI-formulas.cc and 3 are strongly equivalent
iff I—G3 (078 nd ﬂ

This result has also been generalized to the ca®é-fifrmulas. In [5], the authors
state that strong equivalenceNfnested formulas corresponds to equivalena .
Here we present the same result in a slightly more general setting, contextualized strong
equivalence of arbitrarilN-formulas. However, the generalization is trivial and the re-
sults follow straightforwardly from the ones in [5].

%In [5] the authors only refer to equivalence s, but they do not say whether they mean
Fng a <« Borkng o < (. By Theorem 4, itis clear that weak equivalence suffices.
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Proposition 4. Let «, 8 andd be anyN-formulas. Thenx is strongly equivalent t@
in the context of iff 6 Fn, a < S.

Proof (Sketch)(«<) Sincef Fn, a < gimplieskn, (0 A a) < (6 A 3), we know
thatd A a is strongly equivalent té A 8, henceSB(0 A a A ) = SB(O A B A ) for
anyy. (=) SB(O A a A) = SB(O A B A ) foranyy implies that(d A «) is strongly
equivalent tqd A 3). From the results in [5], we obtain that that, (6 A«) < (OA0),
and thud) Fn, a < S.

A further generalization can be done in order to prove that substitution equivalence
is characterized biN-equivalence.

Proposition 5. Leta, 8 andd be anyN-formulas. Then is substitution equivalent to
B in the context of iff 6 Fn, a < (.

Proof. The (<) direction follows trivially from the the substitution theorem (Theo. 3).
By 0 Fn, a < B bothn, ¥[a/p] A — ¥[3/p] A0 andbn, Y[~a/p] A O —
Y[~B/p] A 6 hold for any ), and thusSB(y[a/p] A0) = SB(w[G/p] A6) and
SB(y[~a/p] AO) = SB(y[~F/p] A 0) so« is substitution equivalent t6 in the con-
text of 6.

The (=) direction can be proved by contrapositionflIf/n, « < S, then it must
be the case that eithéfzy, a A0 — B AG ort/n, ~aANB — ~F A6 Hence
eithera A 6 is not strongly equivalent t@ A 6, or ~a A 6 is not strongly equiva-
lent to~f3 A 6. Thus there is some s.t. eitherSB(a A0 A ) # SB(BAO A ) or
SB(~a N Ap)#£SB(~B8 A0 A p). Suppose that is substitution equivalent t8 in
the context o). ThenSB(0 A [a/p]) = SB(O A[3/p]) andSB(0 A [~a/p]) =
SB(0 A p[~B/p]) holds for any. In particular, take) to bep A p. Then we get that
bothSB(OAp Aa) =SBOApAB)andSB(O A p A ~a) =SB0 A ¢ A ~() hold
and we have a contradiction.

SinceN-equivalence implies weak equivalence of formulas, from Propositions 4
and 5 we get the following corollaries. They state that substitution equivalence ensures
strong equivalence.

Corollary 2. Leta, 8 andd be arbitraryN-formulas. Ifa and 5 are substitution equiv-
alent in the context df, thena and 3 are strongly equivalent in the contextéf

Corollary 3. Leta, 8 andd be arbitraryN-formulas. Ifa and 5 are substitution equiv-
alent in the context df, then~« and~ g are strongly equivalent in the contextéf

The converse, however, is not always true. To show that in the general case strong
equivalence does not imply substitution equivalence, we provide a counterexample.

Example 1.Let @ := ~—a andf := a. It is easy to verify that-n, o « [, so we
know thata is strongly equivalent t@. Now take the formul#@ := ~p — b. We see
that{a} € SB(8[a/p]), while SB(6[3/p]) = (. This proves that is not substitution
equivalent tg3. Note that/n, ~a < ~f.
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However, in many cases strong equivalence does imply substitution equivalence,
and hence weak equivalence of formulas suffices to arbitrarily replace any part of a
formula by another. This is of course the casd-dbrmulas, since weak equivalence
collapses withN-equivalence.

Corollary 4. Leta, 5 andd bel-formulas. It holds that and 3 are substitution equiv-
alent in the context df iff & and 3 are strongly equivalent in the contextéf

In general, forN-formulas, strong equivalence will suffice to ensure substitution
equivalence as long as the proper type of substitution is used. For example, if we con-
siderN-formulas in standard form, substitution must be done considering-editéral
as a different atom. The following corollary is a straightforward consequence of Propo-
sition 4 and Corollary 1.

Corollary 5. Leta and 8 be N-formulas. Ifa and § are strongly equivalent then for
anyN-formulay in standard formSB(y [« || 1]) = SB([6 || 1]).

When we consider arbitraf¥-formulas, strong equivalence implies cautions sub-
stitution equivalence. From Proposition 4 and Theorem 5, we get the following corol-
lary.

Corollary 6. Leta and 3 be N-formulas. Ifa and 8 are strongly equivalent then for
anyN-formulas, SB(v{a/p}) = SB({5/p}).

The notions of equivalence we have introduced give us more flexibility than tradi-
tional strong equivalence in two senses: first we might do partial transformations on
rules, and second we can safely transform logic programs when a certain context makes
them equivalent, without requiring equivalence to hold as a stand alone condition. De-
spite the theoretical nature of the results given in this section, these generalized notions
of equivalence have proved to be very useful when providing new results and extending
existing ones in the context of answer sets. Some previous proofs have been rewritten in
a more compact and general way, and some interesting new results have been achieved.
Unfortunately, due to space limitations, they can not be included in the current work.

6 Conclusions

In this paper, we have proposéHsafe beliefs and analyzed the answer set semantics
of theories where two types of negation are arbitrarily used. The results concerning
elimination of strong negation show thitsafe beliefs are no more expressive than
[-safe beliefs. However, we believe that the extension of the answer set semantics to ar-
bitrary propositional formulas with two different negation connectives can be valuable
for problem solving and more natural knowledge representation, as well as for technical
purposes like program transformations. We claim that when the semantics is bound to
a less restricted syntax, writing formal statements is more intuitive and accurate. Most
of the results in this work were obtained through the use of strong negation extensions
of intermediate logics. Our main goal in this sense is to help providing a clearer under-
standing of the advantage of logic-based approaches to the answer set semantics. They
are not harder to understand than other approaches. Additionally, they allow suitable
extensions and provide good intuitions about the semantics in general.
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