
An Algebraic Account of Modularity in ID-logic

Joost Vennekens and Marc Denecker?

{joost.vennekens, marc.denecker }@cs.kuleuven.ac.be
Dept. of Computer Science, K.U.Leuven

Celestijnenlaan 200A
B-3001 Leuven, Belgium

Abstract. ID-logic uses ideas from the field of logic programming to extend sec-
ond order logic with non-monotone inductive defintions. In this work, we refor-
mulate the semantics of this logic in terms of approximation theory, an algebraic
theory which generalizes the semantics of several non-monotonic reasoning for-
malisms. This allows us to apply certain abstract modularity theorems, developed
within the framework of approximation theory, to ID-logic. As such, we are able
to offer elegant and simple proofs of generalizations of known theorems, as well
as some new results.

1 Introduction

Inductive definitions are common in mathematical practice. For instance, the non-monotone
inductive definition of the satisfaction relation|= (see Definition 1 in Section 2.2) can
be found in most textbooks on first-order logic. This prevalence of inductive definitions
indicates that these offer a natural and well-understood way of representing knowledge.
At the same time, inductive definitions cannot easily be expressed in classical logic. For
instance, the transitive closure of a graph is one of the simplest concepts typically de-
fined by induction—such a definition might consist of the following two rules: if(x, y)
is an edge of the graph,(x, y) belongs to the transitive closure and if∃z such that both
(x, z) and(z, y) belong to the transitive closure, then(x, y) belongs to the transitive
closure—yet it can be shown that this concept cannot be defined in first-order logic.
While second-order logic does allow the representation of such simple definitions, the
resulting formula might not always be very natural and the use of second-order logic it-
self may be undesirable, e.g., due to computational considerations. Moreover, even this
methodology breaks down when faced with non-monotone inductive definitions, such
as that of the satisfaction relation.

It turns out, however, that certain knowledge representation logics do allow even
non-monotone inductive definitions to be correctly formalized in an intuitive way. Par-
ticularly suited for this are logic programs under the well-founded model semantics.
In fact, one could even go so far as to explain the semantical foundations of this logic
themselves as precisely a formalization of the principle of inductive definition [Den01].
The language ofID-logic uses the well-founded semantics to extend classical logic

? This work is supported by FWO-Vlaanderen, European Framework 5 Project WASP, and by
GOA/2003/08.

58 Vennekens and Denecker

with a new “inductive definition” primitive. In the resulting formalism, all kinds of
definitions regularly found in mathematical practice—e.g., monotone inductive defini-
tions, non-monotone inductive definitions over a well-ordered set, and iterated inductive
definitions—can be represented in a uniform way. Moreover, this representation neatly
corresponds to the form such a definitions would take in a mathematical text. For in-
stance, in ID-logic the transitive closure of a graph can be defined as:

{
∀x, y TransCl(x, y)← Edge(x, y).
∀x, y TransCl(x, y)← (∃z TransCl(x, z) ∧ TransCl(z, y)).

}

However, ID-logic is able to handle more than only mathematical concepts. In-
deed, inductive definitions are also useful in common-sense reasoning. For instance, in
[DT04a], it was shown that situation calculus can be given a natural representation as
an iterated inductive definition. The resulting theory is able to correctly handle tricky
issues such as recursive ramifications, and is in fact, to the best of our knowledge, the
most general representation of this calculus to date. In general, definitions are a distinc-
tive and important form of human expert knowledge; as a uniform and natural way of
representing this kind of knowledge, ID-logic provides a useful contribution to the field
of knowledge representation.

The goal of this paper is to study modularity properties for ID-logic. Modularity
properties deal with the relation between a theory and its components. Typical examples
are so-called splitting results, which allow large theories to be rewritten as equivalent
sets of sub-theories. Such properties are of interest, because they may offer additional
insight into the semantics of a formalism, can be used to guarantee that certain trans-
formations are equivalence preserving, or may lead allow more efficient computations.

Modularity properties have been studied for a large number of different formalisms.
Recently, an algebraic theory of modularity [VGD04b,VGD04a] was developed within
the framework ofapproximation theory, a general fixpoint theory for arbitrary opera-
tors, which naturally captures the semantics of logic programs, auto-epistemic logic,
and default logic [DMT03,DMT00]. These abstract results have since been used to
unify several concrete splitting theorems: [VGD04a] generalizes results concerning au-
toepistemic logic [GP92], and [VGD04b] (partially) generalizes results for logic pro-
gramming [LT94].

Here, we apply this algebraic modularity theory to ID-logic. First, we show how the
semantics of this logic can be reformulated in terms of approximation theory. By doing
so, we are able to apply the aforementioned splitting theorems (and a small extension
thereof) to ID-logic and obtain a generalization of results from [DT04b], as well as
some new results.

The structure of this paper is as follows. Section 2 introduces approximation theory
and ID-logic. Section 3 summarizes the algebraic modularity results which will be used.
In Section 4, we then apply those results to ID-logic.

An Algebraic Account of Modularity in ID-logic 59

2 Preliminaries

2.1 Approximation theory

Approximation theory is a general fixpoint theory for arbitrary operators. Our presen-
tation of this theory is based on [DMT00,DMT03].

Let 〈L,≤〉 be a lattice. An element(x, y) of the squareL2 of the domain of such
a lattice, can be seen as denoting an interval[x, y] = {z ∈ L | x ≤ z ≤ y}. Using
this intuition, we can derive aprecisionorder≤p on the setL2 from the order≤ onL:
for eachx, y, x′, y′ ∈ L, (x, y) ≤p (x′, y′) iff x ≤ x′ andy′ ≤ y. Indeed, if(x, y) ≤p

(x′, y′), then [x, y] ⊇ [x′, y′]. It can easily be shown that〈L2,≤p〉 is also a lattice,
which is called thebilattice corresponding toL. Moreover, ifL is complete, then so is
L2. As an interval[x, x] contains precisely one element, namelyx itself, elements(x, x)
of L2 are calledexact. The set of all exact elements ofL2 forms a natural embedding
of L in L2. A pair (x, y) only corresponds to a non-empty interval ifx ≤ y. Such pairs
are calledconsistent.

Approximation theory is based on the study of operators on bilatticesL2 which are
monotone w.r.t. the precision order≤p. Such operators are calledapproximations. For
an approximationA andx, y ∈ L, we denote byA1(x, y) andA2(x, y) the unique
elements ofL, for which A(x, y) = (A1(x, y),A2(x, y)). An approximationapproxi-
matesan operatorO on L if for eachx ∈ L, A(x, x) containsO(x), i.e. A1(x, x) ≤
O(x) ≤ A2(x, x). An approximation issymmetricif for each pair(x, y) ∈ L2, if
A(x, y) = (x′, y′) thenA(y, x) = (y′, x′).

For an approximationA onL2, the following two operators onL can be defined: the
functionA1(·, y) maps an elementx ∈ L to A1(x, y), i.e.A1(·, y) = λx.A1(x, y), and
the functionA2(x, ·) maps an elementy ∈ L to A2(x, y), i.e.A2(x, ·) = λy.A2(x, y).
As all such operators are monotone, they all have a unique least fixpoint. We define
an operatorC↓

A on L, which maps eachy ∈ L to lfp(A1(·, y)) and, similarly, an
operatorC↑

A, which maps eachx ∈ L to lfp(A2(x, ·)). C↓
A is called thelower stable

operatorof A, whileC↑
A is theupper stable operatorof A. Both these operators are anti-

monotone. Combining these two operators, the operatorCA onL2 maps each pair(x, y)
to (C↓

A(y), C↑
A(x)). This operator is called thepartial stable operatorof A. Because

the lower and upper partial stable operatorsC↓
A andC↑

A are anti-monotone, the partial
stable operatorCA is monotone. If an approximationA is symmetric, its lower and
upper partial stable operators will always be equal, i.e.C↓

A = C↑
A.

An approximationA defines a number of different fixpoints: the least fixpoint of
an approximationA is called itsKripke-Kleene fixpoint, fixpoints of its partial stable
operatorCA arestable fixpointsand the least fixpoint ofCA is called thewell-founded
fixpoint of A. As shown in [DMT00,DMT03], these fixpoints correspond to various
semantics of logic programming, auto-epistemic logic and default logic.

Finally, it should also be noted that the concept of an approximation as defined in
[DMT00] corresponds to our definition of asymmetricapproximation.

60 Vennekens and Denecker

2.2 ID-Logic

ID-logic [DT04b,DT04a] extends second-order logic with non-monotone inductive def-
initions. Before defining this logic in its entirity, we first introduce basic second order
logic. Following [DT04a], we do this in a slightly non-standard way. In particular, no
distinction is made between constant symbols and variables.

We assume an infinite supply ofobject symbolsx, y, . . ., function symbolsf/n, g/n, . . .
of every arityn, andpredicate symbolsP/n, Q/n, . . . of every arityn. A vocabulary
Σ is a set of symbols. We denote byΣo the object symbols inΣ, by Σf the function
symbols, and byΣP the predicate symbols.Termsandatomsof Σ are defined in the
usual way. Aformula ofΣ is inductively defined as:

– aΣ-atomP (t1, . . . , tn) is aΣ-formula;
– if φ is aΣ-formula, then so is¬φ;
– if φ1 andφ2 areΣ-formulas, then so is(φ1 ∨ φ2);
– if φ is a (Σ ∪ {σ})-formula andσ an (object, function or predicate) symbol, then

(∃σ φ) is aΣ-formula.

If in all quantifications∃σ of a formulaφ, σ is an object symbol,φ is calledfirst order.
Given a certain domainD, a symbolσ can be assigned avaluein D:

– if σ ∈ Σo, a value forσ in D is an element ofD;
– if σ/n ∈ Σf , a value forσ in D is a function of arityn in D;
– if σ/n ∈ ΣP , a value forσ in D is a relation of arityn in D.

A structureS for vocabularyΣ, or Σ-structureS, consists of a domain, denoted
SD, and a mapping from each symbolσ in Σ to a valueσS in SD for σ. A vocubalary
Σ is asub-vocabularyof Σ′ iff Σ ⊆ Σ′. TherestrictionS′|Σ of a Σ′-structureS′ to
a sub-vocabularyΣ, is theΣ-structureS for which SD = S′

D and, for each symbolσ
of Σ, σS = σS′

. Under the same conditions,S′ is called anextensionof S to Σ′. The
set of all structures extendingS to Σ′ is denoted bySS

Σ′ . For each valuea in SD for a
symbolσ, we denote byS[σ/a] the extensionS′ of S to Σ∪{σ}, such thatσS′

= a.We
also extend this notation to tuplesx anda, and to pairs(X, Y) of Σ-structures sharing
the same domain, i.e.,(X, Y)[x/a] = (X[x/a], Y [x/a]).

Thevalueof a Σ-termt in a Σ-structureS, also denotedtS , is inductively defined
as:(f(t1, . . . , tn))S = fS(tS1 , . . . , tSn), for a function symbolf and termst1, . . . , tn.
We now define a satisfaction relation between structures and formulas:

Definition 1. For a Σ-structureS andΣ-formulaφ, the relation “S satisfiesφ”, de-
notedS |= φ, is inductively defined as:

– S |= P (t) iff tS ∈ PS ;
– S |= (φ1 ∨ φ2) iff S |= φ1 or S |= φ2;
– S |= ¬φ iff S 6|= φ;
– S |= (∃σ φ) iff there exists a valuea for σ in the domainSD, such thatS[σ/a] |= φ;

An Algebraic Account of Modularity in ID-logic 61

A pre-interpretationH for Σ is a structure for the languageΣo ∪ Σf , i.e., one
which interprets only the object and function symbols ofΣ. A structureS extending
H to Σ is called anH-interpretation. Clearly,H-interpretations can only differ in their
assignment of relations (over the common domainSH) to predicate symbols. Given a
domainD, a domain atomis a pair(P,a), with P/n a predicate ofΣ anda ∈ Dn.
We also write such a pair asP (a). The functionAtH is defined as mapping anH-
interpretationS to the set of all domain atomsP (a) in HD, for whicha ∈ PS . AtH is
a one-to-one correspondence betweenH-interpretations and sets of domain atoms for
HD. The set of allH-interpretations is a complete lattice w.r.t. to the truth order≤t,
defined as:S ≤t S′ iff AtH(S) ⊆ AtH(S′) (or, equivalently, for each predicateP ,
PS ⊆ PS′

).
Next, we explain how this logic can be extended with inductive definitions. We do

this using concepts from approximation theory. In this, our presentation differs from the
more direct approach taken in [DT04a].

As a first step, we extend the notion of satisfation to pairs(X, Y) of structures.

Definition 2. Let H be a pre-interpretation forΣ, X andY H-interpretations, andφ
a Σ-formula. The relation “(X, Y) satisfiesφ”, denoted(X, Y) |= φ is inductively
defined by:

– (X, Y) |= P (t) iff tH ∈ PX ;
– (X, Y) |= (φ1 ∨ φ2) iff (X, Y) |= φ1 or (X, Y) |= φ2;
– (X, Y) |= ¬φ iff (Y, X) 6|= φ;
– (X, Y) |= (∃σ φ) iff there exists a valuea for σ in HD, such that(X, Y)[σ/a] |= φ;

Observe that in the rule for¬φ, the roles ofX andY are switched. This causes
all positively occurring atoms inφ to be evaluated inX, while all negatively occurring
atoms inφ are evaluated inY . To motivate this definition, let us consider a structureS
approximated by(X, Y), i.e. such thatX ≤t S ≤t Y . In the evaluation ofφ in (X, Y),
all positively occurring atoms are evaluated with respect to the underestimateX of S,
and all negatively occurring atoms are evaluated with respect to the overestimateY
of S. Therefore, the truth value ofφ in (X, Y) is an underestimate of the value ofφ
in S. Vice versa, in the evaluation ofφ in (Y, X), all positively occurring atoms are
evaluated in the overestimateY while all negatively occurring atoms are evaluated in
the underestimateX, and hence, the truth value ofφ in (Y, X) is an overestimate of the
value ofφ in S.

Considering satisfaction in pairs of structures rather than single structures, corre-
sponds to switching to a four-valued logic:φ is trueaccording to(X, Y) if (X, Y) |= φ
and(Y,X) |= φ , false if (X, Y) 6|= φ and(Y,X) 6|= φ, unkownif (X, Y) 6|= φ and
(Y, X) |= φ, andinconsistentif (X, Y) |= φ and(Y,X) 6|= φ .

We now define the ID-logic syntax used for inductive definitions. LetΣ be a vo-
cabulary. Adefinitional ruler of Σ is a formula∀x A ← φ, with A a Σ-atom and
φ a first-order(Σ ∪ x)-formula. The atomA is called thehead,head(r), of r andφ
is called thebody,body(r), of r. Note that the symbol “←” in such a rule should not
be read as material implication, but rather as a new language primitive: thedefinitional
implication. A rule r is said to be adefining ruleof a predicateP if P is the predicate
of head(r). A Σ-definition∆ is a set of definitional rules. A predicate symbol having

62 Vennekens and Denecker

at least one defining ruler in ∆, is called adefined predicate of∆. The set of all such
predicates is denoted byPd

∆. Predicates ofΣP which are not defined by∆ areopen in
∆ and the set of all such predicates is denoted byPo

∆. The notationsΣo
∆ andΣd

∆ are
used to denote the vocabulariesΣo ∪Σf ∪ Po

∆ andΣo ∪Σf ∪ Pd
∆, respectively.

Using this syntax, the well-known simultaneous inductive definition of the even
and odd numbers (i.e.,0 is an even number, each successor of an even number is an odd
number, and vice versa) can be written as:

Example 1.

∆even =

Even(0).

∀x Even(s(x))← Odd(x).
∀x Odd(s(x))← Even(x).

Intuitively, such an inductive definition describes a process by which, given some

fixed interpretation of the open predicates, new elements of the defined relations can be
derived from a set of already known elements. The formal definition of the semantics
of ID-logic captures this intuition, by associating a class of operators to a definition∆.
More precisely, for each interpretationO of the open predicates of∆, an operatorT O

∆

is defined, which maps an estimate(X, Y) of the defined relations to a more precise
estimateT O

∆ (X, Y) = (X ′, Y ′). The new lower boundX ′ is constructed by underes-
timating the truth of the bodies of the rules in∆, i.e., by evaluating these in(X, Y).
When constructing the new upper boundY ′, on the other hand, the truth of the bodies
of these rules is overestimated, i.e., evaluated in(Y, X).

Definition 3. Let∆ be aΣ-definition andO a Σo
∆-structure. We define a functionUO

∆

from the bilattice(SO
Σ)2 to SO

Σ asUO
∆ (X, Y) = S, with for eachP ∈ Σd

∆: a ∈ PS iff
there exists a rule(∀x P (t)← φ) in ∆ and a valuec for x, such that(X, Y)[x/c] |= φ
anda = tS[x/c]. The operatorT O

∆ on (SO
Σ)2 is defined as, for allX, Y ∈ SO

Σ :

T O
∆ (X, Y) = (UO

∆ (X, Y), UO
∆ (Y, X)).

If an estimate(X, Y) is more precise than an estimate(X ′, Y ′), i.e.,X ′ ≤t X and
Y ≤t Y ′, thenT O

∆ (X, Y) will also be more precise thanT O
∆ (X ′, Y ′). In other words,

each operatorT O
∆ is an approximation. As such, eachT O

∆ has a well-founded fixpoint.
We now use this to define the semantics of the logic.

Definition 4. Let Σ be a vocabulary. AnID-logic formula is inductively defined by
extending the definition of a formula with the additional base case:

– A definition∆ is an ID-logic formula.

The corresponding base case for the satisfaction relation is:

– S |= ∆ iff X|Σd
∆

= S|Σd
∆

= Y |Σd
∆

, with (X, Y) the well-founded fixpoint ofT O
∆ ,

with O = S|Σo
∆

.

Note that, even though this definition uses the operatorT S
∆ on pairs of structures,

the eventual models of a definition are always single structuresS. The intuition here is
that a definition should completely define its defined predicates, i.e., there should be no
tuples for which it is “unknown” whether they belong to the defined relations or not.

An Algebraic Account of Modularity in ID-logic 63

Definition 5. LetΣ be a vocabulary. AΣ-definition∆ is total in a Σo
∆-structureO iff

X = Y , with (X, Y) the well-founded fixpoint ofT O
∆ .

3 Algebraic splitting results

In this section, we summarize and extend results from [VGD04b]. First, we introduce
some basic definitions and notations. LetI be a set, which we call theindex set, and for
eachi ∈ I, let Si be a set. Theproduct set

⊗
i∈I Si is the following set of functions:⊗

i∈I

Si = {f | f : I →
⋃
i∈I

Si such that∀i ∈ I : f(i) ∈ Si}.

If, for instance,I is {1, . . . , n}, the product
⊗

i∈I Si is (isomorphic to) the cartesian
productS1 × · · · × Sn.

If eachSi is partially ordered by some≤i, this induces theproduct order≤⊗ on
⊗i∈ISi: ∀x, y ∈ ⊗i∈ISi, x ≤⊗ y iff ∀i ∈ I : x(i) ≤i y(i). It can easily be shown that
if all 〈Si,≤i〉 are (complete) lattices, then〈⊗i∈ISi,≤⊗〉 is also a (complete) lattice;
this is theproduct latticeof the latticesSi.

From now on, we only consider product lattices with awell-foundedindex set, i.e.,
index setsI with a partial order� such that each non-empty subset ofI has a�-
minimal element. This allows us to use inductive arguments in dealing with elements
of product lattices.

The following notations are used. LetL be a product lattice⊗i∈ILi. Forx ∈ L and
i ∈ I, we abbreviate the restrictionx|{j∈I|j�i} by x|�i. We also use similar abbrevi-
ationsx|≺i, x|i andx|6�i. If i is a minimal element of the well-founded setI, x|≺i is
defined as the empty function. For any subsetJ of I, the set{x|J | x ∈ L}, ordered by
the appropriate restriction≤⊗|J of the product order, is also a lattice. This sublattice of
L is of course equal to the product lattice⊗j∈JLj . If J is of the form{j ∈ I | j � i}
for somei, we simply writeL|�i for L|J . Similarly,L|≺i is written for⊗j≺iLi.

If f, g are functionsf : A → B, g : C → D and the domainsA and C are
disjoint, we denote byf t g the function fromA∪C to B ∪D, such that for alla ∈ A,
(f t g)(a) = f(a) and for allc ∈ C, (f t g)(c) = g(c). Furthermore, for anyg whose
domain is disjoint from the domain off , we call f t g an extensionof f . For each
elementx of a product latticeL and each indexi ∈ I, the extensionx|≺i t x|i of x|≺i

is clearly equal tox|�i. To ease notation, we sometimes writex(i) instead ofx|i in such
expressions, i.e. we identify an elementa of the ith latticeLi with the function from
{i} to Li which mapsi to a. Similarly,x|≺i t x(i) t x|6�i = x.

Our goal is now to study operators on product lattices. Let〈I,�〉 be a well-founded
index set and letL = ⊗i∈ILi be a product lattice. Intuitively, an operatorO on L
is stratifiable over�, if the value(O(x))(i) of O(x) in the ith level only depends on
valuesx(j) for which j � i.

Definition 6. An operatorO on a product latticeL is stratifiableiff ∀x, y ∈ L,∀i ∈ I :
if x|�i = y|�i thenO(x)|�i = O(y)|�i.

It is possible to characterize stratifiablity in a more constructive manner. The fol-
lowing proposition shows that stratifiablity of an operatorO on a product latticeL is

64 Vennekens and Denecker

equivalent to the existence of a family of operators on each latticeLi (one for each
partial elementu of L|≺i), which mimics the behaviour ofO on this lattice.

Proposition 1. LetO be an operator on a product latticeL. O is stratifiable iff for each
i ∈ I andu ∈ L|≺i there exists a unique operatorOu

i onLi, such that for allx ∈ L:

If x|≺i = u then(O(x))(i) = Ou
i (x(i)).

The operatorsOu
i are called thecomponentsof O. The main results of [VGD04b]

are the following correspondences between various kinds of fixpoints of the original
operatorO and those of its componentsOu

i :

Theorem 1. LetL be a product lattice⊗i∈ILi.

– If O is a stratifiable operator onL, then for eachx ∈ L: x is a fixpoint ofO iff
∀i ∈ I : x(i) is a fixpoint ofOx|≺i

i .
– If O is a monotone stratifiable operator onL, then for eachx ∈ L: x is the least

fixpoint ofO iff ∀i ∈ I : x(i) is the least fixpoint ofOx|≺i

i .
– If O is a stratifiable approximation on the bilatticeL2, then for eachx ∈ L2: x

is a stable (well-founded) fixpoint ofO iff ∀i ∈ I : x(i) is a stable (well-founded,

respectively) fixpoint ofOx|≺i

i .

This theorem allows us to incrementally construct any kind of fixpoint of a strat-
ifiable operator, by constructing the corresponding fixpoints of its components in a
bottom-up manner w.r.t. the well-founded order� on the index set.

We now extend this material from [VGD04b] with some additional results. More
specifically, we not only want to split a stratifiable operators into its components, but
also into sets of “bigger” operators, i.e., operators which may encompass several levels.
For a subsetJ of I andx ∈ L|I\J , we denote byOx

J the operator onL|J which maps
eachy ∈ L|J to O(x t y)|J . Such operatorsOx

J are calledrecombinations ofO. Our
goal is now to show that, for each partitionJ of I, a stratifiable operatorO can be split
into the recombinationsOx

J , with J ∈ J . We do this, by showing that a recombination
Ox

J is also stratifiable and can be split into the components ofO itself.

Proposition 2. LetO be a stratifiable operator. For eachJ ⊆ I andx ∈ L|I\J , Ox
J is

stratifiable.

Proof. Let Ox
J be as above,i ∈ J , andy, y′ ∈ L|J , such thaty|�i = y′|�i. By defini-

tion, Ox
J(y) = O(x t y)|J . Because(x t y)|�i = (x t y′)|�i, we have that, by strati-

fiability of O, Ox
J(y)|�i = O(x t y)|{j∈J|j�i} = O(x t y′)|{j∈J|j�i} = Ox

J(y′)|�i.

Proposition 3. LetO be a stratifiable operator. For eachJ ⊆ I, x ∈ L|I\J , i ∈ J , and

u ∈ L|{j∈J|j≺i}, the component(Ox
J)u

i of Ox
J equals the componentO

ut(x|≺i)
i of O.

Proof. Let (Ox
J)u

i be as above and lety ∈ Li. By definition, for anyz extendingu t y

to J , (Ox
J)u

i (y) = O(x t z)|i = (O(xtz)|≺i

i (z|i))|i = O
x|≺itu
i (y).

These two propositions now imply the wanted result.

An Algebraic Account of Modularity in ID-logic 65

Theorem 2. Let O be a stratifiable operator and letJ be a partition ofI. Then, for
eachx ∈ L, x is a fixpoint (least fixpoint, stable fixpoint, or well-founded fixpoint) of
O (assuming thatO is monotone or an approximation, where appropriate) iff for each
J ∈ J , x|J is a fixpoint (least fixpoint, stable fixpoint, or well-founded fixpoint) of

O
x|I\J

J .

Proof. We only show the correspondence between fixpoints; the proofs of the other
correspondences are similar. Letx be a fixpoint ofO. By Theorem 1, this is equivalent
to: ∀i ∈ I, x|i is a fixpoint of Ox|≺i

i . BecauseJ partitionsI, this is equivalent to

∀J ∈ J , ∀i ∈ J , x|i is a fixpoint ofOx|≺i

i . By Proposition 3, such a componentO
x|≺i

i

is equal to(Ox|I\J

J)x|{j∈J|j≺i}
i . By Proposition 2 and Theorem 1,∀J ∈ J , ∀i ∈ J , x|i

is a fixpoint(Ox|I\J

J)x|{j∈J|j≺i}
i iff ∀J ∈ J , x|J is a fixpoint ofO

x|I\J

J .

4 Modularity results for ID-logic

Now, we apply the algebraic results presented in Section 3 to ID-logic. We fix a vo-
cabularyΣ and a pre-interpretationH for Σ. Also, we restrict our attention toH-
interpretations, which can therefore be viewed as sets of domain atoms.

The basic notion needed to split an ID-logic theory, is that of adependence relation
between domain atoms. Roughly speaking, such a relation is supposed to express which
domain atomsQ(c) can influence whether an operatorT O

∆ will derive a certainP (a)
in a pair(X, Y). We require that dependence relations are well-founded.

Definition 7. A well-founded pre-order6 on domain atoms is called adependence
relation. We denote byE6 the set of all equivalence classesP (a) = {Q(c) | P (a) 6
Q(c) andQ(c) 6 P (a)}, together with the well-founded order4, defined asP (a) 4
Q(c) iff P (a) 6 Q(c).

Such a dependence relation now gives us a product lattice in which to study stratifi-
ability of the operatorsT O

∆ . Recall that we can only apply the algebraic splitting results,
if T O

∆ can be seen as operating on the square of some product lattice⊗i∈ILi. It turns
out that the product of the powersets of all equivalence classesE in E6 can give us such
a lattice. We denote byS6 the lattice

⊗
E∈E6 2E . Now,S6 is isomorphic to the pow-

erset of all domain atoms, which is in turn isomorpic to the set of allH-interpretations.
An operatorT O

∆ can therefore be seen as operating on the square of the setS6
O of all

elements ofS6 which extendO (or, more precisely, whose image under the appropriate
isomorphism extendsO).

When dealing with the definition∆even from Example 1, we will consider the ob-
vious pre-interpretationHN with domainN. The set of domain atoms then consists of
{Even(n) | n ∈ N} ∪ {Odd(n) | n ∈ N}. We will use the dependence relation6 con-
sisting of:Odd(n) 6 Even(n+1) andEven(n) 6 Odd(n+1), for all n ∈ N. The fact
that6 is well-founded follows from the fact thatN is well-founded. The setE6 consists
of the equivalence classes{Even(n) | n ∈ N} ∪ {Odd(n) | n ∈ N}, which are all
singletons, i.e., for alln ∈ N, Even(n) = {Even(n)} andOdd(n) = {Odd(n)}. The
relation4 consists of the pairsEven(n) 4 Odd(n + 1) andOdd(n) 4 Even(n + 1)
with n ∈ N.

66 Vennekens and Denecker

Definition 8. A dependence relation6 stratifiesa definition∆ given anH-interpretation
O of Σo

∆ iff the operatorT O
∆ is a stratifiable approximation on the product latticeS6

O .

In [DT04b], a dependence relation that stratifies a definition, is called areduction
relation. In case of our example, the dependence relation6 defined above stratifies
∆even. Now, the results presented in Section 3 can be used to show the equivalence of
a definition∆ and certain partitions of∆.

Definition 9. Let ∆ be a definition and let6 be a dependence relation. A partition
{∆1, . . . ,∆n} of ∆ is a 6-partition iff, for each1 ≤ j ≤ n, if ∆j contains a rule
defining a predicateP , then∆j also contains all rules defining a predicateQ, for
which there exist tuplesa, c of domain elements, such thatQ(c) ∈ P (a).

In order to show the desired equivalence, we relate the concept of6-partitions to
that of recombinations.

Proposition 4. Let∆ be a definition, let6 be a dependence relation, and{∆1, . . . ,∆n}
a 6-partition. LetO be anH-interpretation ofΣo

∆j
, for some1 ≤ j ≤ n. ThenT O

∆j

is equal to the recombination(T O1
∆)O2

J , with O1 = O|Σo
∆

, O2 = O|(Σo
∆j

\Σo
∆), and

J = {P (a) | ∆j definesP}.

Proof. Let T O
∆j

and (T O1
∆)O2

J be as above. We first note that anH-interpretationX
extendsO iff it extendsO1 t O2. It now follows directly from the definitions of the
two operators, thatT O

∆j
= (T O1

∆)O2
J iff for all X, Y extendingO, the following two

statements are equivalent:

– There exists a rule∀x P (t)← φ in ∆j , for which there exists ac ∈ Hn
D, such that

(X, Y)[x/c] |= φ.
– There exists a rule∀x P (t) ← φ in ∆, for which there exists ac ∈ Hn

D, such that
(X, Y)[x/c] |= φ.

Because, for eachP ∈ Pd
∆j

, ∆j contains precisely all rules from∆ definingP , this is
the case.

As a direct consequence of this proposition and Theorem 2, we now have the fol-
lowing equivalence between a definition and its6-partitions:

Theorem 3. Let ∆ be a definition,6 a dependence relation, and{∆1, . . . ,∆n} a 6-
partition. Let O be a Σ-structure, such that6 stratifies∆ given O. Then for each
Σ-structureS, such thatS|Σo

∆
= O|Σo

∆
:

S |= ∆ iff S |= ∆1 ∧ · · · ∧∆n.

[DT04b] contains a theorem which corresponds to the restriction of this theorem to
those cases where each∆j is total givenO. Our result is strictly more general.

An Algebraic Account of Modularity in ID-logic 67

We can now use this result to split the example∆even. Recall that above we already
defined a dependence relation6 which stratifies∆even. A corresponding6-partition
of ∆even is:

∆1 =

{
Even(0).

∀x Even(s(x))← Odd(x).

}
∆2 =

{
∀x Odd(s(x))← Even(x).

}
Therefore, for everyH-interpretationS, S |= ∆even iff S |= ∆1 ∧∆2.

We now characterize the components of the operatorsT O
∆ in more detail. Recall

that a stratifiable operatorT O
∆ has a component(T O

∆)(U,V)
E for each levelE ∈ E6 and

(U, V) in (S6
O |≺E)2. Our goal is now to find a way of deriving some new definition

∆
(U,V)
E from ∆, which characterizes such a component, i.e., such that(T O

∆)(U,V)
E =

(U
∆

(U,V)
E

, U
∆

(V,U)
E

).

Intuitively, there are two main steps in constructing a component-definition∆
(U,V)
E .

First, we need to ground∆ w.r.t. to the set of domain atomsE. To do this, we need to
assume domain closure, i.e., that for eacha ∈ HD, there exists some termt of Σ, such
thattH = a. Such a term is denoted̂a; for a tuplea = (a1, . . . , an) ∈ Hn

D, we denote
(â1, . . . , ân) by â. Roughly speaking, in the grounding step, a ruler should be replaced
by all rules that can be obtained by replacing the universally quantified variablesx
of r by someâ, such that the head of this new rule corresponds to a domain atom in
E. Additionally, existential quantifiers also need to be eliminated; this can be done by
replacing such a quantifier by a disjunction over all domain elements.

In the following definition, the notationφ[x/y] is used to denote the result of sub-
stituting in φ every free occurence of a symbolx ∈ x by the corresponding symbol
y ∈ y.

Definition 10. Let∆ be a definition,E ∈ E6. For a rule(∀x A← φ) ∈ ∆ and domain
tuplea, the rulera is the ruleA′ ← φ′, with A′ = A[x/â] andφ′ = γ(φ[x/â]), with γ
defined as:

– for each atomA, γ(A) = A;
– γ(φ1 ∨ φ2) = γ(φ1) ∨ γ(φ2) andγ(¬φ) = ¬γ(φ);
– γ(∃x φ) =

∨
a∈HD

γ(φ[x/â]);

ThegroundingbrcE of a ruler = (∀x P (t)← φ) ∈ ∆, is the set of rulesra, with a a
domain tuple, such thatP (tH[x/a]) ∈ E. Thegroundingb∆cE of ∆ is

⋃
r∈∆brcE .

In a second step, we now replace ground atomsP (t) for which P (tH) ≺ E, by
their truth-value according to(U, V); atoms such thatP (tH) ∈ E are left as they are.
We make the small technical assumption that two predicate symbolsT andF exist,
such thatT holds andF does not.

Definition 11. Let∆ be a definition,E ∈ E6, and(U, V) ∈ (S6
O |≺E)2. For each rule

r = (A ← φ) ∈ b∆cE , we definer(U,V) as the ruleA ← δ(U,V)(φ), with δ(U,V)

inductively defined as:

68 Vennekens and Denecker

– for each atomA = P (t), such thatP (tH) 6∈ E:
δ(U,V)(A) is T if (U, V) |= A andF otherwise;

– for each other atomA, δ(U,V)(A) = A;
– δ(U,V)(φ1 ∨ φ2) = δ(U,V)(φ1) ∨ δ(U,V)(φ2);
– δ(U,V)(¬φ) = ¬δ(V,U)(φ).

We define∆(U,V)
E as{r(U,V) | r ∈ b∆cE}.

The proof of the following theorem is omitted, as it follows easily from the various
definitions.

Theorem 4. Let∆ be a definition,E ∈ E6, U, V ∈ S6
O |≺E , andO anH-interpretation

of Σo
∆. Then(UO

∆)(U,V)
E = UO

∆
(U,V)
E

and(UO
∆)(V,U)

E = UO

∆
(V,U)
E

.

Let us look again at definition∆even from Example 1, with the obvious pre-interpretation
HN. If E = {Even(n+1)} for somen ∈ N, then for allU, V ∈ S6|≺E the component
(T∆even

)(U,V)
E is the constant function{Even(n + 1)} if n ∈ OddU and the constant

function{} otherwise. Similarly, for every levelE = {Odd(n + 1)}, (T∆even
)(U,V)
E is

the constant function{Odd(n + 1)} if n ∈ EvenU and the constant function{} other-
wise. The component(T∆even

){Even(0)} is the constant function{Even(0)}, while the
component(T∆even

){Odd(0)} is the constant function{}. From this, it follows that there
exists a unique model of∆even extendingHN, namely that which interpretsEven by
{n ∈ N | n is even} andOdd by {n ∈ N | n is odd}.

While space restrictions prevent us from discussing this here, this characterization
of the components of a stratifiable operator promises to be useful for the study of the
relation between ID-logic and known classes of mathematical inductive definitions. For
instance, we suspect that the class ofwell-founded inductionscoincides precisely with
the class of ID-logic definitions whoseT O

∆ -operators can be split into constant compo-
nents, as witnessed by the above example.

5 Conclusions and related work

Our work extends that from [VGD04b,VGD04a] about algebraic modularity results.
Firstly, we have extended these results to also allow operators to be split into recombi-
nations, rather than components. Secondly, our work is the first to apply these results
outside a propositional context.

Our work also extends previous work on modularity properties for ID-logic [DT04b],
by generalizing existing results in Theorem 3 and by the additional Theorem 4. It is in-
teresting to note that, although in the context of ID-logic we are only interested in the
well-founded fixpoints of the operators associated with definitions, our results also suf-
fice to show a similar correspondence between their Kripke-Kleene and stable fixpoints.
Indeed, this follows directly from the generality of the algebraic splitting theorem (The-
orem 1). As such, our work actually also generalizes the results from [VGD04b], which
in turn generalized part of the splitting theorem for the stable model semantics from
[LT94].

An Algebraic Account of Modularity in ID-logic 69

The work presented here demonstrates that approximation theory and algebraic
modularity results can be used to elegantly and easily derive useful results, even in
a complex setting. In our opinion, it therefore offers quite a convincing testimony to the
power of this approach.

References

[Den01] M. Denecker. Logic programming revisited: logic programs as inductive definitions.
In ACM Transactions on Computational Logic, 2(4):623-654, 2001.

[DMT00] M. Denecker, V. Marek, and M. Truszczynski. Approximating operators, stable op-
erators, well-founded fixpoints and applications in non-monotonic reasoning. In
Logic-based Artificial Intelligence, The Kluwer International Series in Engineering
and Computer Science, pages 127–144, 2000.

[DMT03] M. Denecker, V. Marek, and M. Truszczynski. Uniform semantic treatment of default
and autoepistemic logics.Artificial Intelligence, 143(1):79–122, 2003.

[DT04a] M. Denecker and E. Ternovska. Inductive situation calculus. InPrinciples of Knowl-
edge Representation and Reasoning: Proceedings of the Ninth International Confer-
ence (KR2004), pages 545–553. AAAI Press, 2004.

[DT04b] M. Denecker and E. Ternovska. A logic of non-monotone inductive definitions and
its modularity properties. In7th International Conference on Logic Programming and
Nonmonotonic Reasoning, 2004.

[GP92] M. Gelfond and H. Przymusinska. On consistency and completeness of autoepistemic
theories.Fundamenta Informaticae, 16(1):59–92, 1992.

[LT94] V. Lifschitz and H. Turner. Splitting a logic program. InProceedings of the 11th
International Conference on Logic Programming, pages 23–37, 1994.

[VGD04a] J. Vennekens, D. Gilis, and M. Denecker. Splitting an operator: An algebraic modu-
larity result and its application to auto-epistemic logic. InProceedings of International
Workshop on Non-Monotonic Reasoning, 2004.

[VGD04b] J. Vennekens, D. Gilis, and M. Denecker. Splitting an operator: An algebraic mod-
ularity result and its applications to logic programming. InLogic Programming, 20th
International Conference, ICLP 2004, Proceedings, volume 3132 ofLecture Notes in
Computer Science, pages 195–209. Springer, 2004.

