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Abstract. In previous work, action languages have predominantly been con-
cerned with domains in which values are static unless changed by an action. Real
domains, however, often contain values that are in constant change. In this pa-
per we introduce an action language for modeling such hybrid domains called
the process description language. We discuss the syntax and semantics of the
language, model an example using this language, and give a provenly correct
translation into answer set programming.

1 Introduction

Designing an intelligent agent capable of reasoning, planning and acting in a changing
environment is one of the important research areas in the field of AI. Such an agent
should have knowledge about the domain in which it is intended to act and its capabili-
ties and goals.

In this paper we are interested in agents which view the world as a dynamical system
represented by a transition diagram whose nodes correspond to possible physical states
of the world and whose arcs are labeled by actions. A link,(s0, a, s1) of a diagram
indicates that actiona is executable ins0 and that after the execution ofa in s0 the
system may move to states1. Various approaches to representation of such diagrams [3,
6, 9] can be classified by languages used for their description. In this paper we will adopt
the approach in which the diagrams are represented by action theories - collections
of statement in so called action languages specifically designed for this purpose. This
approach allows for useful classification of dynamical systems and for the methodology
of design and implementation of deliberative agents based on answer set programming.

Most previous work deals with discrete dynamical systems. A state of such a system
consists of a set offluents- properties of the domain whose values can only be changed
by actions. An example of a fluent would be the position of an electrical switch. The
position of the switch can be changed only when an external force causes it to change.
Once changed, it stays in that position until it is changed yet again.

In this paper we focus on the design of action languages capable of describing dy-
namical systems which allowcontinuous processes- properties of an object whose
values change continuously with time. This paper is an evolution of work presented in
[18]. Major changes to the language resulted in a significantly simpler and less restric-
tive syntax and a more precise semantics based on the notion of transition diagrams
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(following the approach of McCain and Turner [10]). Several other formalisms exist
which also allow modeling of continuous processes [4, 15–17]. An advantage of our
approach is that, by generalizing McCain and Turner’s semantics, it gains the associ-
ated benefits (such as the ability to easily represent state constraints). Also, in some of
the other formalisms actions have duration, This can lead to problems when such ac-
tions overlap. Our actions are instantaneous. This allows us to avoid the problems with
overlapping action. Following the approach from [13], an action,A with duration can
still be represented using instantaneous actions which denoteA’s start and end. Due to
space considerations a more detailed discussion of the differences between approaches
will be left for a expanded version of the paper.

An example of a continuous process would be the function,height, of a freely falling
object. Suppose that a ball, 50 meters above the ground is dropped. The height of the
ball at any time is determined by Newton’s laws of motion. The height varies continu-
ously with time until someone catches the ball. Suppose that the ball was caught after 2
seconds. The corresponding transition diagram is shown in Figure 1.
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Fig. 1.Transitions caused bydrop andcatch

Notice that states of this diagram are represented by mapping of values to the symbols
holding and height over corresponding intervals of time. For example in states1,
holding is mapped to false andheight is defined by the functionf1(50, T ) where
T ranges over the interval[0, 2].

Intuitively, the time interval of a statesdenotes the time lapse between occurrences
of actions. The lower bound of the interval denotes start time ofs which is the time
at which an action initiatess. The upper bound denotes the end time ofs which is the
time at which an action terminatess. We assume that actions are instantaneous that is
the actual duration is negligible with respect to the duration of the units of time in our
domain. For computability reasons, we assign local time to states, therefore, the start
time of every states is 0 and the end time ofs is the time elapsed since the start ofs
till the occurrence of an action terminatings. For example, in Figure 1 the actiondrop
occurs immediately after the start of states0. The end time ofs0 is therefore 0. The
actioncatch occurs 2 time units after the start of states1. Therefore the end time ofs1

is 2.
The states2 in Figure 1 has the interval[0, 5] associated with it. This interval was

chosen randomly from an arbitrary collection of intervals of the form[0, n] wheren ≥
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0. Therefore, any of the intervals[0, 0] or [0, 1] or [0, 2] and so on could have been
associated withs2. In other words, performingcatch leads to an infinite collection of
states which differ from each other in their durations. The common feature among all
these states is thatheight is defined byf0(30, T ) andholding is true. We do not allow
the interval[0,∞] for any state. We assume that every state is associated with two
symbols - 0 andend. The constant 0 denotes the start time of the state and the symbol
end denotes the end time of the state. We will give a formal definition ofend when we
discuss the syntax of the language.

We assume that there is a global clock which is a function that maps every local
time point into global time. Figure 2 shows this mapping. Notice that this mapping
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Fig. 2.Mapping between local and global time

allows one to compute theheight of the ball at any global time,t ∈ [0,7]. This is
not necessarily true for the value ofholding. According to our mapping global time
0 corresponds to two local times: 0 in states0 and 0 in states1. Since the values of
holding in s0 ands1 are true and false respectively, the global value ofholding at
global time0 is not uniquely defined. Similar behavior can be observed at global time
2. The phenomena is caused by the presence of instantaneous actions in the model.
It indicates that0 and2 are the points of transition at which the value ofholding is
changed fromtrue to falseandfalseto true respectively. Therefore, it isfalse at1 and
true during the interval[3,7]. Since the instantaneous actionsdrop andcatch do not
have a direct effect onheight, its value at global time0 and2 is preserved, thereby
resulting in unique values forheight for everyt ∈ [0,7].

2 Syntax And Semantics ofH

2.1 Syntax

To define our language,H, we first need to fix a collection,∆, of time points. Ideally
∆ will be equal to the set,R+, of non-negative real numbers, but we can as well use
integers, rational numbers, etc. We will use the variable T for the elements of∆. We
will also need a collection,G, of functions defined on∆, which we will use to define
continuous processes. Elements ofG will be denoted by lower case greek lettersα, β,
etc.



306 Sandeep Chintabathina, Michael Gelfond, and Richard Watson

A process description language,H(Σ,G,∆), will be parameterized by∆, G and a
typed signatureΣ. Whenever possible the parametersΣ, G, ∆ will be omitted. We
assume thatΣ contains regular mathematical symbols including0, 1,+, <,≤,≥, 6=
, ∗, etc. In addition, it contains two special classes,A andP = F ∪ C of symbols
calledactionsandprocesses.

Elements ofA are elementary actions. A set{a1, . . . , an} of elementary actions
performed simultaneously is called acompound action. By actions we mean both ele-
mentary and compound actions. Actions will be denoted bya’s. Two types of actions
- agent and exogenous are allowed.agent actions are performed by an agent and
exogenous actions are performed by nature. Processes fromF are calledfluentswhile
those fromC are referred to ascontinuous processes. Elements ofP, F andC will be
denoted by (possibly indexed) lettersp’s, k’s andc’s respectively.F contains a special
functional fluentend that maps to∆. end will be used to denote the end time of a state.
We assume that for every continuous process,c ∈ C, F contains two special fluents,
c(0) andc(end). For example, the fluentsheight(0) andheight(end) corresponding to
height. Each processp ∈ P will be associated with a setrange(p) of objects referred
to as therange of p. E.g.range(height) = R+.

Atomsof H(Σ,G,∆) are divided intoregularatoms,c-atomsandf-atoms.

– regularatoms are defined as usual from symbols belonging to neitherA norP.
E.g. mother(X,Y), sqrt(X)=Y.

– c-atomsare of the formc = α whererange(c) = range(α).
E.g.height = 0, height = f0(Y, T ), height = f0(50, T ).
Note thatα is strictly a function of time. Therefore, any variable occurring in a
c-atomother than T is grounded.
E.g.height = f0(Y, T ) is a schema forheight = λT.f0(y, T ) wherey is a con-
stant.height = 0 is a schema forheight = λT.0 whereλT.0 denotes the constant
function 0.

– f-atomsare of the formk = y wherey ∈ range(k). If k is boolean, i.e.range(k) =
{>,⊥} thenk = > andk = ⊥ will be written simply ask and¬k respectively.
E.g.holding, height(0)=Y, height(end)=0. Note thatheight(0) = Y is a schema
for height(0) = y.

The atomp = v wherev denotes the value of processp will be used to refer to either a
c-atomor anf-atom. An atomu or its negation¬u are referred to asliterals. Negation
of = will be often written as6=. E.g.¬holding, height(0) 6= 20.

Definition 1. An action descriptionof H is a collection of statements of the form:

l0 if l1, . . . , ln. (1)

ae causesl0 if l1, . . . , ln. (2)

impossiblea if l1, . . . , ln. (3)

whereae anda are elementary and arbitrary actions respectively andl’s are literals
of H(Σ,G,∆). The l0’s are called theheads of the statements (1) and (2). The set



Modeling Hybrid Domains Using Process Description Language 307

{l1, . . . , ln} of literals is referred to as thebody of the statements (1), (2) and, (3).
Please note that literals constructed fromf-atomsof the form end = y will not be
allowed in the heads of statements of H.

A statement of the form (1) is called astate constraint. It guarantees that any state
satisfyingl1, . . . , ln also satisfiesl0. A dynamic causal law(2) says if an action,ae,
were executed in a states0 satisfying literalsl1, . . . , ln then any successor states1

would satisfyl0. An executability condition(3) states that actiona cannot be executed
in a state satisfyingl1, . . . , ln. If n = 0 thenif is dropped from (1), (2), (3).

Example 1.Let us now construct an action descriptionAD0 describing the transition
diagram from fig (1). LetG0 contain functions

f0(Y, T ) = Y.

f1(Y, T ) = Y − 1
2
gT 2.

whereY ∈ range(height), g is acceleration due to gravity, andT is a variable fortime
points.

The description is given in language H whose signatureΣ0 contains actionsdrop and
catch, a continuous processheight, and fluentsholding, height(0) andheight(end).
holding is a boolean fluent;range(height) is the set of non-negative real numbers.

drop causes ¬holding. (4)

impossible drop if ¬holding. (5)

impossible drop if height(end) = 0. (6)

catch causes holding. (7)

impossible catch if holding. (8)

height = f0(Y, T ) if height(0) = Y, holding. (9)

height = f1(Y, T ) if height(0) = Y, ¬holding. (10)

It is easy to see that statements (4) and (7) are dynamic causal laws while statements (5),
(6) and (8) are executability conditions and statements (9) and (10) are state constraints.

2.2 Semantics

The semantics ofprocess description language, H, is similar to the semantics of action
language B given by McCain and Turner [10, 11]. An action descriptionAD of H,
describes a transition diagram,TD(AD), whose nodes represent possible states of the
world and whose arcs are labeled by actions. Whenever possible the parameterAD will
be omitted.
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Definition 2. An interpretation, I, of H is a mapping that assigns (properly typed)
values to the processes ofH such that for every continuous process,c, I(c(end)) =
I(c)(I(end)) andI(c(0)) = I(c)(0).

A mappingI0 below is an example of an interpretation of action language of Example 1.

I0(end) = 0,
I0(holding) = >,
I0(height(0)) = 50,
I0(height(end)) = 50,
I0(height) = f0(50, T ).

Definition 3. An atomp = v is true in interpretationI (symbolicallyI |= p = v) if
I(p) = v. Similarly, I |= p 6= v if I(p) 6= v.

An interpretationI is closed under the state constraints ofAD if for any state constraint
(1) of AD, I |= li for everyi, 1 ≤ i ≤ n thenI |= l0.

Definition 4. A state, s, of TD(AD) is an interpretation closed under the state con-
straints ofAD.

It is easy to see that interpretationI0 corresponds to the states0 in fig (1). By definition,
the states ofTD(AD) arecomplete.

Whenever convenient, a state,s, will be represented by acomplete set{l : s |= l} of
literals. For example, in Figure 1, the states0 will be the set

s0 = { end = 0, holding, height(0) = 50,
height(end) = 50, height = f0(50, T ) }

Please note that only atoms are shown here.s0 also contains the literalsholding 6= ⊥,
height(0) 6= 10, height(0) 6= 20 and so on.

Definition 5. Action a is executablein a state,s, if for every non-empty subseta′ of a,
there is no executability condition

impossiblea′ if l1, . . . , ln.

of AD such thats |= li for everyi, 1 ≤ i ≤ n.

Let ae be an elementary action that is executable in a states. Es(ae) denotes the set of
all direct effects ofae, i.e. the set of all literalsl0 for which there is a dynamic causal
law

ae causes l0 if l1, . . . , ln

in AD such thats |= li for every i, 1 ≤ i ≤ n . If a is a compound action then
Es(a) =

⋃
ae∈a Es(ae).
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A set L of literals of H is closed under a set, Z, of state constraints of AD if L includes
the head,l0, of every state constraint

l0 if l1, . . . , ln

of AD such that{l1, . . . , ln} ⊆ L.

The setCnZ(L1) of consequences ofL1 under Z is the smallest set of literals that
containsL1 and is closed under Z.

A transition diagram TD is a tuple〈Φ, Ψ〉 where
1. Φ is a set of states.
2. Ψ is a set of all triples〈s, a, s′〉 such thata is executable ins ands′ is a state which
satisfies the condition

s′ = CnZ( Es(a) ∪ (s ∩ s′ ) ) ∪ {end = t′} (11)

whereZ is the set of state constraints ofAD andt′ is theend time ofs′ that iss′(end) =
t′. The argument toCnZ in (11) is the union of the setEs(a) of the “direct effects” ofa
with the sets∩ s′ of facts that are “preserved by inertia”. The application ofCnZ adds
the “indirect effects” to this union. Sinces′ is the successor state ofs with end = t′,
the union of the set resulting after application ofCnZ with the set{end = t′} givess′.

In the example from figure 1, the setEs0(drop) of direct effects ofdrop will be defined
as

Es0(drop) = {¬holding}

The instantaneous actiondrop occurs at global time0 and has no direct effect on the
value ofheight at 0. This means that the value ofheight at theend of s0 will be
preserved at time 0 ofs1. Therefore,

s0 ∩ s1 = {height(0) = 50}

The application ofCnZ to Es0(drop) ∪ (s0 ∩ s1) gives the set

Q = {¬holding, height(0) = 50, height = f1(50, T )}

where Z contains the state constraints (9) and (10). The set Q will not represent the state
s1 unlessend is defined. In the example,s1(end) = 2, therefore, we get

s1 = { end = 2, ¬holding, height(0) = 50,
height(end) = 30, height = f1(50, T ) }

Please note that, again, only atoms are shown here.

3 Specifying history

In addition to the action description, the agent’s knowledge base may contain the do-
main’s recorded history- observations made by the agent together with a record of its
own actions.
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The recorded history defines a collection of paths in the diagram which, from the
standpoint of the agent, can be interpreted as the system’s possible pasts. If the agent’s
knowledge is complete (e.g., it has complete information about the initial state and the
occurrences of actions, and the system’s actions are deterministic) then there is only
one such path.

TheRecorded history, Γn, of a system up to a current momentn is a collection of
observations, that is statements of the form:

obs(v, p, t, i).
hpd(a, t, i).

wherei is an integer from the interval[0, n) and time point,t ∈ ∆. i is an index of
the trajectory. For example,i = 5 denotes the step 5 of the trajectory reached after
performing a sequence of 5 actions. The statementobs(v, p, t, i) means that processp
was observed to have valuev at timet of stepi. Note thatp is any process other than
end. The statementhpd(a, t, i) means that actiona was observed to have happened at
time t of stepi. Observations of the formobs(y, p, 0, 0) will define the initial values of
processes.

Definition 6. A pair 〈AD,Γ 〉 whereAD is an action description of H andΓ is a set of
observations, is called adomain description.

Definition 7. Given an action description AD of H that describes a transition diagram
TD(AD), and recorded history,Γn, up to moment n, a path

〈s0, a0, s1, . . . , an−1, sn〉

in the TD(AD) is amodel of Γn with respect to TD(AD), if for everyi, 0 ≤ i ≤ n and
t ∈ ∆

1. ai = {a : hpd(a, t, i) ∈ Γn} ;
2. if obs(v, p, t, i) ∈ Γn thenp = v ∈ si.

4 Translation into Logic Program

In this section we will discuss the translation of a domain description written in lan-
guage H into rules of anA-Prologprogram.A-Prolog is a language of logic programs
under the answer set semantics [5]. For this paper our translation will comply with the
syntax of the SMODELS [12] inference engine.

We know that the statements of H contain continuous functions. Translating these
statements into rules of A-Prolog is straight forward, however, due to issues involved
with grounding, to run the resulting program under SMODELS, the functions should
be discretized. We will now look at how to discretize these functions.

Let f : A → B be a function of H. A discretized set,Ah1 corresponding toA is
obtained as follows. First, a unith1 is selected. Next,Ah1 is constructed by selecting all
those elements ofA that are multiples ofh1. Since, in H, the domain of each function
is time, we only consider positive multiples. Therefore,
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Ah1 = {0, h1, 2h1, 3h1, . . . . . .}

After Ah1 is defined, the discretized setBd corresponding toB is then defined as
Bd = {f(x)|x ∈ Ah1}.

Let g : Ah1 → Bd. The functiong : Ah1 → Bd is called the discretizedε −
approximation of f if ∀x ∈ Ah1

| f(x)− g(x) |< ε

whereε > 0.

Definition 8. Given an action descriptionAD of H(Σ, δ,G), the discretized action
descriptionAD

′
with respect toAD is obtained by replacing the occurrence of every

function f ∈ G in the statements ofAD by the functiong whereg is the discretized
ε− approximation of f .

From now on, we will deal with discretized action descriptions. We assume that
the agent makes observations at discrete time points and observes only the discretized
values of processes.

Definition 9. Given a domain descriptionD = 〈AD,Γn〉, thediscretized domain de-
scriptionD′

with respect toD is the pair〈AD
′
, Γn〉whereAD

′
is the discretized action

description with respect toAD andΓn is the recorded history up to momentn.

Next we will show how to translate discretized domain descriptions. Note that, from
now on, when we say domain description (or action description) we refer to the dis-
cretized one. First, let us look at the general way of declaring actions and processes.

4.1 Declarations

Let us look at a general way of declaring actions and processes:

action(action name, action type).
process(process name, process type).

action nameandaction typeare non-numeric constants denoting the name of an action
and its type respectively. Similarly,processnameand processtype are non-numeric
constants denoting the name of a process and its type respectively. For instance in ex-
ample 1 the actions and processes are declared as follows:

action(drop, agent).
action(catch, agent).

process(height, continuous).
process(holding, fluent).
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Now let us see how the range of a process is declared. There are a couple of ways of
doing this. The range ofheight from Example 1 is the set of non-negative real numbers.
In logic programming this would lead to an infinite grounding. Therefore, we made a
compromise and chose integers ranging from 0 to 50.

values(0..50).
range(height, Y ) : − values(Y ).

holding is a boolean fluent. Therefore, we write

range(holding, true).
range(holding, false).

Suppose we have a switch that can be set in three different positions, the range of the
processswitchpositionis declared as:

range(switch position, low).
range(switch position,medium).
range(switch position, high).

In order to talk about the values of processes and occurrences of actions we have to
consider thetime andstep parameters. Integers from some interval[0, n] will be used
to denote thestep of a trajectory. I’s will be used as variables forstep. Everystep has
a duration associated with it. Integers from some interval[0,m] will be used to denote
the time points of everystep. In this case,m will be the maximum allowed duration
for anystep. T’s will be used as variables fortime. Therefore, we write

step(0..n).
time(0..m).

Assume that n and m are sufficiently large for our applications. Then we add the rules

#domain step(I; I1).
#domain time(T ;T1;T2).

for declaring the variablesI, I1, T, T1 and,T2 in the language of SMODELS. The
first domain declaration asserts that the variablesI andI1 should get their domain from
the literalstep(I).

4.2 General translations

We will now discuss a general translation of statements of H into rules of A-prolog. Ifa
is an elementary action occurring in a statement that is being translated, it is translated
as

o(a, T, I)

which is read as “action a occurs at time T of step I”. If a is a compound action then
each elementary actionae ∈ a will be translated in the same manner.
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If l is a literal occurring in any part of a statement, other than the head of a dynamic
causal law, then it will be written as

α0(l, T, I)

whereα0(l, T, I) is a function, described below, that denotes a case-specific translation
of literal l. A literal, l, occurring in the head of a dynamic causal law will be written as

α0(l, 0, I + 1)

In this paper, due to difficulties with generalizing inertia axioms, we limit ourselves to
action descriptions of H in which the heads of dynamic causal laws are eitherf-atomsor
their negations. This can be done without loss of generality as all other dynamic causal
laws can be replaced using a dynamic causal law/state constraint pair. From now on we
will only consider such action descriptions.

Definition 10. Let AD be an action description of H,n andm be positive integers, and
Σ(AD) be the signature ofAD. We will usen andm as the maximum values for steps
and time points respectively.Σn

m(AD) denotes the signature obtained as follows:
const(Σn

m(AD)) = 〈const(Σ(AD)) ∪ {0, . . . , n} ∪ {0, . . . ,m}〉;
pred(Σn

m(AD)) = {val,−val, o, process, action, range, step, time, values}

Let
αn

0 (AD) = 〈α0(AD), Σn
m(AD)〉, (12)

where
α0(AD) =

⋃
r∈AD

α0(r), (13)

andα0(r) is defined as follows:

– α0(l0 if l1, . . . , ln.) is

α0(l0, T, I) : − α0(l1, T, I), . . . , α0(ln, T, I). (14)

– α0(ae causesl0 if l1, . . . , ln.) is

α0(l0, 0, I + 1) : − o(ae, T, I), α0(l1, T, I), . . . , α0(ln, T, I). (15)

– α0(impossiblea if l1, . . . , ln.) is

: − o(a, T, I), α0(l1, T, I), . . . , α0(ln, T, I). (16)

In statement (3), ifa is the non-empty compound action{a1, . . . , am} theno(a, T, I) in
rule (16) will be replaced byo(a1, T, I), . . . , o(am, T, I). The construction ofαn

0 (AD)
in equation (12) is such that the declarations from section (4.1) are added toα0(AD).

α0(l, T, I) will be replaced by

– val(V, c, 0, I) if l is an atom of the formc(0) = v. It is read as “V is the value of
process c at time 0 of step I”.
E.g.height(0) = Y will be translated asval(Y, height, 0, I).
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– −val(V, c, 0, I) if l is of the formc(0) 6= v. It is read as “V is not the value of
process c at time 0 of step I”.

– val(V, p, T, I) if l is an atom of the formp = v other thanc(0) = v. It is read as
“V is the value of process p at time T of step I”.
E.g.height(end) = 0 will be translated asval(0, height, T, I).

– −val(V, p, T, I) if l is of the formp 6= v other thanc(0) 6= v. It is read as “V is not
the value of process p at time T of step I”.

α0(l, 0, I + 1) will be replaced by

– val(V, p, 0, I + 1) if l is of the formp = v.
– −val(V, p, 0, I + 1) if l is of the formp 6= v.

Note that when translating thef-atom, end = y we will not follow the above conven-
tions. Instead we translate it asend(T, I) where T denotes theend of stepI. Before we
look at some examples we will discuss domain independent axioms.

4.3 Domain independent axioms

Domain independent axioms define properties that are common to every domain. We
will denote such a collection of axioms byΠd. Given a action descriptionAD of H, let

αn(AD) = αn
0 (AD) ∪Πd. (17)

Πd is the following set of rules:

1. End of state axioms. These axioms will define theend of every states. The end of
a state is the local time at which an action terminatess. When it comes to imple-
mentation we talk about theend of astep instead of state. Therefore, we write

end(T, I) : − o(A, T, I). (18)

If no action occurs during astep thenend will be the maximum time point allowed
for thatstep. This is accomplished by using the choice rule

{end(m, I)}1. (19)

The consequence of the rule (19) is that the number of end(m,I) that will be true is
either 0 or 1. Astep cannot have more than oneend. This is expressed by (20).

: − end(T1, I), end(T2, I), neq(T1, T2). (20)

Everystep must end. Therefore, we write

ends(I) : − end(T, I). (21)

: − not ends(I). (22)
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Everystep, i, is associated with an interval[0, e] where 0 denotes the start time and
e denotes the end time ofi. We will use the relationout to define the time points,
t /∈ [0, e] andin to define the time points,t ∈ [0, e].

out(T, I) : − end(T1, I), T > T1. (23)

in(T, I) : − not out(T, I). (24)

By using these relations in our rules we can avoid computing process values at time
points,t /∈ [0, e].

2. Inertia axiom. The inertia axiom states thatthings normally stay as they are. It has
the following form:

val(Y, P, 0, I + 1) : − val(Y, P, T, I), end(T, I), not − val(Y, P, 0, I + 1).
(25)

Intuitively, rule (25) says that actions are instantaneous. In the example from fig-
ure 1, the value ofheight at global time0 remains 50 when the actiondrop occurs
at0.

3. Other axioms. A fluent remains constant throughout the duration of astep. This is
expressed by the axiom (26).

val(Y, P, T, I) : − val(Y, P, 0, I), process(P, fluent), in(T, I). (26)

Axiom (27) says that no process can have more than one value at the same time.

−val(Y 1, P, T, I) : − val(Y 2, P, T, I), neq(Y 1, Y 2). (27)

Adding history Given an action descriptionAD of H and recorded historyΓn up to
momentn, we will construct a logic program that contains translations of the statements
of AD andΓn.

Γn contains observations of the formobs(v, p, t, i) andhpd(a, t, i) which are trans-
lated as facts of A-Prolog programs. LetΣn

m,Γ (AD) denote the signature obtained as
follows:

– const(Σn
m,Γ (AD)) = const(Σn

m(AD));
– pred(Σn

m,Γ (AD)) = pred(Σn
m(AD)) ∪ {hpd, obs}.

Let
αn(AD,Γn) = 〈ΠΓ , Σn

m,Γ (AD)〉. (28)

where
ΠΓ = αn(AD) ∪ Π̂ ∪ Γn. (29)

andΠ̂ is the set of rules:

1. Reality check axiom that guarantees that the agent’s predictions match with his
observations.

: − obs(Y, P, T, I), −val(Y, P, T, I). (30)
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2. The following rule says that if actionA was observed to have happened at time T
of step I then it must have occurred at time T of step I.

o(A, T, I) : − hpd(A, T, I). (31)

3. The following rule is for defining the initial values of processes.

val(Y, P, 0, 0) : − obs(Y, P, 0, 0). (32)

Henceαn(AD,Γn) is the resulting logic program containing translations for the
statements of AD andΓn.

4.4 Correctness

The following definitions will be useful for describing the relationship between answer
sets ofαn(AD,Γn) and models ofΓn.

Definition 11. Let AD be an action description of H andA be a set of literals over
αn(AD,Γn). We say thatA defines the sequence〈σ0, a0, σ1, . . . , an−1, σn〉 if

σi = {l | α0(l, t, i) ∈ A} ∪ {end = t | end(t, i) ∈ A}

for 0 ≤ i ≤ n, and

ai = {a | o(a, t, i) ∈ A}

for 0 ≤ i < n.

Definition 12. The initial situation ofΓn is complete if and only if for any processp
of Σ, Γn containsobs(v, p, 0, 0).

The following theorem establishes the relationship between the theory of actions in H
and logic programming.

Theorem 1. Given a discretized domain descriptionD = 〈AD,Γn〉; if the initial sit-
uation ofΓn is complete then M is a model ofΓn with respect toTD(AD) iff M is
defined by some answer set ofαn(AD,Γn).

The proof is omitted due to space considerations.

5 Conclusions and Future Work

In this paper we presented a new type of action language, theprocess description lan-
guage. Our language,H, is capable of representing domains containing continuous
processes in a simple and concise manner. In sample runs, computation of small, dis-
crete domains (using the translated action description and SMODELS) is reasonable,
but, in general, efficient processing will require a non-ground solver.

The authors would like to thank ARDA, United Space Alliance, and NASA who’s
grants helped fund this research.



Modeling Hybrid Domains Using Process Description Language 317

References

1. [BG03] M. Balduccini and M. Gelfond. Diagnostic reasoning with A-Prolog. InJournal of
Theory and Practice of Logic Programming (TPLP), 3(4-5):425-461, Jul 2003.

2. [BG03a] M. Balduccini and M. Gelfond. Logic Programs with Consistency-Restoring Rules.
In AAAI Spring 2003 Symposium, 2003.

3. [BG00] C. Baral and M. Gelfond. Reasoning agents in dynamic domains. In Minker, J,. ed.,
Logic-Based AI, Kluwer Academic publishers,(2000),257-279.

4. [BST02] C. Baral, T. Son and L. Tuan. A transition function based characterization of actions
with delayed and continuous effects. InProc. of KR’02, pages 291-302.

5. [GL88] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming, In
Logic Programming: Proc. of the Fifth International Conference and Symposium, 1988, pp.
1070-1080.

6. [GL98] M. Gelfond and V. Lifschitz. Action Languages. InElectronic Transactions on Arti-
ficial Intelligence, 3(6),1998.

7. [GW98] M. Gelfond and R. Watson. On Methodology of Representing Knowledge in Dy-
namic Domains. InProc. of the 1998 ARO/ONR/NSF/DARPA Monterey Workshop on Engi-
neering Automation for Computer Based Systems, pp. 57-66, 1999.

8. [Lif97] V. Lifschitz, Two components of an action language, InAnnals of Mathematics and
Artificial Intelligence, Vol. 21, 1997, pp. 305-320.

9. [Lif99] V. Lifschitz. Action languages, Answer Sets and planning. InThe Logic Program-
ming Paradigm:a 25 year perspective.357-373, Springer Verlag,1999.

10. [MT95] N. McCain and H. Turner. A causal theory of ramifications and qualifications. In
Proc. of IJCAI-95, pages 1978-1984, 1995.

11. [MT97] N. McCain and H. Turner. Causal theories of action and change. InProc. of AAAI-
97, pages 460-465, 1997.

12. [NS97] I. Niemela and P. Simons. Smodels - an implementation of the stable model and well
founded semantics for normal logic programs. InProc. of LPNMR’97, pages 420-429,1997.

13. [Pin94] J.A. Pinto.Temporal Reasoning in the Situation Calculus.PhD Thesis, Department
of Computer Science, University of Toronto, 1994.

14. [Rei96] R. Reiter. Natural actions, concurrency and continuous time in the situation calculus.
In Principles of Knowledge Representation and Reasoning: Proc. of the Fifth International
Conference (KR’96), pages 2-13, Cambridge, Massachusetts, U.S.A., November 1996.

15. [Rei01] R. Reiter. Time, concurrency and processes. InKnowledge in action: Logical Foun-
dations for specifying and implementing dynamical systems, pages 149-183, ISBN 0-262-
18218-1, MIT, 2001.

16. [San89]E. Sandewall. Filter Preferential entailment for the logic of action in almost continu-
ous worlds. InProc. of IJCAI’89, pages 894-899, 1989.

17. [Sha89]M. Shanahan. Representing continuous change in the Event Calculus. InProc. of the
European Conference on Artificial Intelligence, pages 598-603, 1990.

18. [WC03] R. Watson and S. Chintabathina. Modeling hybrid systems in action languages.
In Proc. of the 2nd International ASP’03 workshop, pages 356-370, Messina, Sicily, Italy,
September 2003.


