
Extending Conceptual Logic Programs with Arbitrary
Rules

Stijn Heymans, Davy Van Nieuwenborgh?, and Dirk Vermeir??
Dept. of Computer Science

Vrije Universiteit Brussel, VUB
Pleinlaan 2, B1050 Brussels, Belgiumfsheymans,dvnieuwe,dvermeirg@vub.ac.be

Abstract. We presentextended conceptual logic programs (ECLPs), for which
reasoning is decidable and, moreover, can be reduced to finite answer set pro-
gramming. ECLPs are useful to reason with both ontological and rule-based
knowledge, which is illustrated by simulating reasoning inan expressive descrip-
tion logic (DL) equipped with DL-safe rules. Furthermore, ECLPs are more ex-
pressive in the sense that they enable nonmonotonic reasoning, a desirable feature
in locally closed subareas of the Semantic Web.

1 Introduction

Reasoning with both ontological knowledge, in the form of a description logic (DL)
[1] knowledge base, and rule-based knowledge has recently gained in interest in the
Semantic Web community. The purpose of adding rules to ontological knowledge is to
have additional expressiveness. E.g., [19] extends a DL knowledge base withDL-safe
rules, i.e. Horn clauses where variables must appear in non-DL-atoms in the body of
rules. DL-safe rules can, e.g., express triangular knowledge not expressible with DLs
alone:unle(a; ) brother(a; b); parent(b; ).

DL-safe rules do not include thenegation as failure (naf)operator, and as a conse-
quence, do not cope well with incomplete or dynamically changing knowledge: like rea-
soning with DL, reasoning with DL knowledge bases and DL-safe rules is monotonic.
However, nonmonotonic reasoning may be useful in applications that involve well-
defined closed subareas of the Semantic Web, as illustrated in the following example.
Assume a business is setting up its website for processing customer feedback. It decides
to commit to an ontologyO which defines that if there are no complaints for a prod-
uct, it is a good product:good produt(X )  not omplaint(X ). The business has
its own particular business rules, e.g.i : invest(tps ; 10K )  not good produt(tps)
saying that if its particular top selling producttps cannot be shown to be a good product,
then the business has to invest 10K intps . Finally, the business maintains a repository? Supported by the FWO.?? This work was partially funded by the Information Society Technologies programme of the

European Commission, Future and Emerging Technologies under the IST-2001-37004 WASP
project.



28 Heymans, Van Nieuwenborgh and Vermeir

of dynamically changing knowledge, originating from user feedback collected on the
site, e.g. at a certain timeR1 = fomplaint(tps) g with a complaint fortps .

If the business wants to know whether to invest more intps it needs to checkO [ fig [ R1 j= invest(tps ; 10K ), i.e. whether the ontology, combined with its own
business rules, and the information repository, demand foran investment or not.

One can useextended conceptual logic programming (ECLP)to express the above
knowledge. Intuitively, any model ofO [ fig [ R1, must verifyomplaint(tps), and
thusgood produt(X )  not omplaint(X ) will not trigger andgood produt(tps)
will be false, which in turn, with rulei, allows to conclude that the business should
indeed invest.

Evaluating the same query with an updated repositoryR2 = fomplaint(tps)  ;good produt(tps)  g containing a survey result saying thattps is a good product,
no matter what complaints of individual users there may be, leads toO [ fig [ R2 6j=invest(tps ; 10K ), such that no further investments are necessary. Adding knowledge
thus invalidates previous conclusions making reasoning nonmonotonic; similar scenar-
ios can easily be imagined in any environment with dynamically changing knowledge.

In this paper, we formally introduce ECLP programs which consist of two (possi-
bly empty) parts: aconceptual logic program (CLP)capable of expressing conceptual
knowledge, as in e.g. DL knowledge bases, and an arbitraryfinite grounded program
which allows to relate constants/individuals in arbitraryways, enabling e.g. the expres-
sion of triangular knowledge. More specifically, ECLPs can simulate reasoning in the
DL ALCHOQ(t;u) equipped with DL-safe rules. Besides the advantage of uniform
syntax and semantics that ECLPs have over DLs equipped with DL-safe rules1, ECLPs
are capable, as indicated above, of nonmonotonic reasoningas well.

Furthermore, we will show that reasoning with ECLPs can be reduced to finite an-
swer set programming by virtue of the forest-model propertyand the bounded finite
model property. The reduction to finite ASP makes reasoning with ECLPs amenable
for existing answer set solvers such asDLV [17] or SMODELS [20].

The remainder of the paper is organized as follows. After recalling the open an-
swer set semantics in Section 2, ECLPs are formally introduced in Section 3. Section 4
describes the simulation of an expressive class of DLs equipped with DL-safe rules.
Section 5 highlights some related work while Section 6 contains conclusions and direc-
tions for further research. Due to space restrictions all proofs have been omitted; they
can be found at http://tinf2.vub.ac.be/˜sheymans/tech/oasp-sw.ps.gz.

2 Answer Set Programming with Open Domains

Answer set programming (ASP)[3] is a logic programming paradigm where knowl-
edge is represented by programs and answer sets provide for the intended seman-
tics of that knowledge. However, in certain cases ASP fails to capture the intention
of the program. Take the program consisting of the rulesbad(X )  not good(X )
and good(heather)  , where one is bad if not good and Heather is a good per-
son. In ASP a program is grounded with the constants in the program, resulting in

1 SWRL [15] also combines ontologies and rules in one uniform syntax and semantics; reason-
ing with it is, however, undecidable.



Extending Conceptual Logic Programs with Arbitrary Rules 29bad(heather)  not good(heather) andgood(heather)  , after which the unique
answer setfgood(heather)g can be calculated. One would thus wrongfully conclude
that there can never be bad individuals. In [13], this was solved by consideringopen
domains, i.e. the program may be grounded with any superset of the present constants:
grounding with a universefx ; heatherg yields bad(heather)  not good(heather);bad(x ) not good(x ) andgood(heather)  , which has an answer setfbad(x ); good(heather)g, correctly capturing the intended meaning of the program.

We briefly recall the open answer set semantics from [13]. We call individual names
constantsand write them as lowercase letters,variableswill be denoted with uppercase
letters. Variables and constants areterms. Atomsare of the forma(t) or f(t1; t2), witha a unary predicate,f a binary predicate, andt, t1 andt2 terms. Aliteral is an atom or
an atom preceded by:. An extended literalis a literall or anaf-literalnot l wherel is a
literal. We will often denote a set of unary extended literalsfa1(s); : : : ; an(s)g, ranging
over a common terms, as�(s) with � = fa1; : : : ; ang. A set of binary extended literals
can be similarly denoted as�(s; t). The positive part of a set of extended literals� is�+ = fl j l 2 �; l literalg, the negative part is�� = fl j not l 2 �g. Furthermore, we
assume the existence of a binary predicate6=, with the usual interpretation.

A disjunctive logic program(DLP) is a finite set of rulesr : � � where� and�
are finite sets of extended literals andj�+j � 1. If � = ;, the rule is called aconstraint.
The set� is theheadof the ruler, denoted head(r), while� is called thebody, denoted
body(r). As usual, atoms, (extended) literals, rules, and programsthat do not contain
variables areground. For a setX of literals,:X = f:l jl 2 Xg, where, by definition,::a � a. A set of ground literalsX is consistentif X \ :X = ;.

For a DLPP , letHP be the set of constants appearing inP andvars(P ) the set
of its variables. A (possibly infinite) non-empty set of constantsH such thatHP � H,
is called auniversefor P . We callPH the grounded programobtained fromP by
substituting every variable inP by every possible constant inH. LetLP be the set of
literals that can be formed from a grounded programP , preds(P ) the set of predicates
of P , andupreds(P ) the set of unary predicates.

An interpretationI of a grounded programP is any consistent subset ofLP . For a
ground literall, we writeI j= l, if l 2 I , which extends toI j= not l if I 6j= l, and, for
a set of ground extended literalsX , I j= X if I j= x for everyx 2 X . A ground ruler : � � is satisfiedw.r.t. I , denotedI j= r, if I j= l for somel 2 � wheneverI j= �,
i.e.r is appliedwhenever it isapplicable. A ground constraint � is satisfied w.r.t.I
if I 6j= �. For asimplegrounded programP (i.e. a program withoutnot), I is amodel
of P if I satisfies every rule inP ; it is ananswer setof P if it is a subset minimal model
of P . For grounded programsP containingnot, theGL-reduct[10] w.r.t. I is defined
asP I , whereP I contains�+  �+ for �  � in P , �� \ I = ; and�� � I . I is
ananswer setof a groundedP if I is an answer set ofP I . An open interpretationof P
is a pair(H; I) whereH is a universe forP andI is an interpretation ofPH . An open
answer setof P is then an open interpretation(H;M) with M an answer set ofPH . In
the following, we will usually omit the “open” qualifier. We express the motivation of a
literal in an answer set formally by means of the operatorT that computes the closure
of a set of literals w.r.t. a GL-reduct. For a DLPP and an interpretation(H;M) of



30 Heymans, Van Nieuwenborgh and VermeirP , TPMH : LPMH ! LPMH is defined as2 T (B) = B [ faja  � 2 PMH ^ � � Bg.
Additionally, we haveT 0(B) = B, andTn+1(B) = T (Tn(B)). More detail than theT -operator is provided by thesupportof a literal a in an answer set(H;M), which
explicitly indicates the literals that support the presence ofa in the answer set. For the
leastn such thata 2 Tn, we inductively define the supportSk(a) on a certain level1 � k � n asSn(a) = fag andSk(a) = f� j b  � 2 PMH ; � � T k; � 6� T k�1; b 2Sk+1(a)g, 1 � k < n. A support fora is thenS (a) = [nk=1Sk(a).

Take, for example, the programP with a rulep(X ) _ not p(X )  . Grounding
w.r.t. to a universefx; yg yields the programPfx;yg consisting ofp(x ) _ not p(x )  
and p(y) _ not p(y)  . We have thatfp(x)g is an answer set ofPfx;yg, since
the GL-reduct isp(x )  which has only one minimal model:fp(x)g itself. Thus(fx; yg; fp(x)g) is an answer set ofP . Actually, a rule such as inP allows one to freely
introducep-literals (provided no other rules constrain this). We calla predicatep free ifp(X ;Y ) _ not p(X ;Y )  or p(X ) _ not p(X )  is in the program, for a binary
or unaryp respectively. Similarly, a ground literall is free if we havel _ not l  .

A programP is consistentif it has an answer set. For a unary predicatep, appearing
in P , p is satisfiablew.r.t.P if there exists an answer set(H;M) of P such thatp(a) 2M for somea 2 H. A program can be consistent without satisfying some particular
predicatep: a programp(X )  p(X ) has only answer sets(H; ;) for some arbitrary
universeH; the program is thus consistent butp is not satisfiable. For a ground literal�,
we haveP j= � if for all answer sets(H;M) of P , � 2M . Checking whetherP j= �
is calledquery answering. We can reduce query answering to consistency checking, i.e.P j= � iff P [ fnot �  g is not consistent. Consistency checking can be reduced to
satisfiability checking, by introducing some new free predicatep.

Finally, satisfiability checking for DLPs under the open answer set semantics is
undecidable since the undecidabledomino problem[2] can be reduced to it [13].

3 Adding Grounded Rules to Conceptual Logic Programs

In [13], the syntax of DLPs was restricted in order to regain decidability of reasoning
and to enable a reduction of reasoning to normal answer set programming, resulting in
conceptual logic programs (CLPs). We recall the intuition and definition of CLPs.

Consider a programP1 defining when one cheats one’s spouse, i.e. if one is married
to someone that is different than the person one is dating. Wehave a specialized rule
saying when one is cheating one’s spouse with the spouse’s friend Jane. Furthermore,
some justice is introduced by a constraint ensuring that cheaters will in turn be cheated.heats(X ) marr(X ;Y1 ); dates(X ;Y2 );Y1 6= Y2heats with jane(X ) marr(X ;Y ); friend(Y ; jane); dates(X ; jane);Y 6= jane heats(X ); dates(X ;Y );not marr(X ;Y );not heats(Y )
with marr , friend anddates free predicates. An (infinite) answer set of this program
that satisfiesheats with jane is depicted in Figure 1, where e.g.heats in the label

2 We omit the subscript if it is clear from the context and, furthermore, we will usually writeT
instead ofT (;).



Extending Conceptual Logic Programs with Arbitrary Rules 31

of x indicates thatheats(x ) is in the answer set. One sees thatx cheats his spouse
with Jane sincex dates Jane but is married tox1. Furthermore, by the constraint, we
must have that Jane is also a cheater, and thus, by minimalityof answer sets, we must
have that Jane is married to somejane1 and datesjane2, who in turn must be cheating,
resulting in an infinite answer set3. Formally, a CLP is a DLP consisting of the following

friendmarrxx1 fheats; heats with janeg fheatsg fheatsg
fheatsgjane1marr marr dates dates

jane jane2jane21 jane22
dates

Fig. 1.Forest-Model

types of rules [13]:

– free rulesl _ not l  for a literall,
– unary rulesa(s)  �(s);[mm(s ; tm);[mÆm(tm);[i 6=j ti 6= tj , such that, ifm 6= ; then+m 6= ;, and, in casetm is a variable: ifÆm 6= ; thenm 6= ;,
– binary rulesf (s ; t) �(s); (s ; t); Æ(t) with + 6= ; if t is a variable,
– constraints a(s).

wherei and j are within the range ofm. Note that the example programP1 is not
directly a CLP due to the presence of the literalsmarr(X ;Y ); friend(Y ; jane) in the
second rule wherejane is not directly connected toX , as is required for unary rules.
However, we can rewrite it as a CLP rule by replacingfriend(Y ; jane) by somea(Y )
and adding the unary rulea(Y )  friend(Y ; jane). In general, programs where the
rules have a tree-like body can be easily rewritten as CLPs. Although CLPs allow only
constraints of the very simple form a(s) we can reduce constraints � to a CLP
rule by introducing the unary rulea(s) � and a(s).

CLPs were designed to ensure theforest-model property(and to a lesser extent the
bounded finite model property, cfr. infra). This forest-model property ensures that if a
CLP has an answer set where a certain unary predicate is satisfied, then there must be an
answer set that has the form of a forest such that the predicate is true at the root of a tree
in such a forest. E.g., the answer set in Figure 1 consists of atree with ananonymous4

elementx as root and the constantjane as the root of another tree. It appears that
the clean forest structure (i.e. disjoint trees) is perturbed by the connections between

3 We represent then successors of a nodex, asx1; : : : ; xn.
4 I.e. a domain element not appearing as a constant in the program.



32 Heymans, Van Nieuwenborgh and Vermeirx, x1 andjane . However, it is easy to see that we can encode e.g.dates(x ; jane) asdatesa (x ) and thus keepdatesa in the label ofx. Since there are only a finite number of
constants in a program, the labels of the trees are also finite. In effect, a forest-model is
a set of trees, with arbitrary connections from elements to constants. Consequently, the
connections between constants, i.e. the roots of the trees,may form an arbitrary graph.

A particular forest-model constructed from an answer set ofa program withn con-
stants containsn+1 trees, i.e. one for each constant (which is the root of that tree) and
an additional one for some anonymous element that contains the predicate of which
satisfiability is being checked.

The syntax of a CLP ensures that the forest-model property isvalid for CLPs [13].
E.g. one cannot havep(X ) not f (X ;Y ), since an answer set(fx; yg; fp(x)g) can-
not be transformed into a tree: we have nothing to connectx with y. Similarly, we
cannot havef (X ;Y )  p(X ) since, forp(x), this would introduce arbitrary connec-
tions betweenx and all other domain elementsy, and thus would clearly violate the
tree structure. However, it is allowed to havep(X )  q(a) for a constanta, since,
intuitively, a is a root of its own tree.

As the tree-like rules impose a rather strict format upon therepresentation of knowl-
edge, we extend CLPs by allowing for a component with arbitrary DLP rules that may
only be grounded with the combined program’s constants.

Definition 1. Anextended conceptual logic program (ECLP)P is a pair(Q;R)whereQ is a CLP andR is a finite DLP. We denoteQwith lp(P ) andR with e(P ). AnECLP
answer setof (Q;R) is an open answer set ofQ[RH(Q[R) . Satisfiability checking and
query answering w.r.t.(Q;R) are modified accordingly.

To avoid confusion with ECLP answer sets and open answer sets, we assume an ECLPP is a CLPQ extended with a ground DLPR, i.e.P = Q [ R, under an open answer
set semantics. It is easy to see that the ECLP answer set semantics of an ECLP can be
reduced to the open answer set semantics of a CLP with an arbitrary ground part.

For example, in addition toP1, we may have a rule representing that if Leo is mar-
ried to Jane, Jane dates Felix, and Leo himself is not cheating, then Leo dislikes Fe-
lix: dislikes(leo; felix )  marr(leo; jane); dates(jane; felix );not heats(leo). This
ground rule does not have a tree structure, it relates the three constants in an arbitrary
graph-like manner. Note that the ground rules can be full-fledged DLP, i.e. with nega-
tion as failure. Moreover, predicates ine(P ) may be defined in the CLPlp(P ), as is
the case formarr , dates andheats . Vice versa, we may have predicates appearing in
the CLP part that are defined in the ground rule part, e.g.dislikes could appear in the
CLP part as adislikes(X ;Y ) literal.

ECLPs still have the forest-model property, since, intuitively, graph-like connec-
tions between constants are allowed in a forest, which is allthe ground parte(P ) of an
ECLPP can ever introduce.

Theorem 1. Extended conceptual logic programs have the forest-model property.

A forest-model of the example ECLP would be the forest-modelof Figure 1 with ad-
ditionally fdislikes(leo; felix );marr(leo; jane); dates(jane; felix )g. As for CLPs in
[13], we would like to establish a bounded finite model property for ECLPs. This prop-
erty enables the transformation of an (infinite) answer set into a finite one, and, more



Extending Conceptual Logic Programs with Arbitrary Rules 33

specifically, it establishes a bound on the number of domain elements that are needed for
such a construction. Moreover, this bound depends solely onthe program at hand, such
that, by introducing a sufficient number of domain elements,we can simulate reasoning
with ECLPs by normal finite answer set programming.

We sketch thecuttingtechnique from [13]5 to transform an infinite forest-model into
a finite answer set. For every path in a tree in such a forest-model, and every first pair
of nodes with equal labels on such a path from the root, we cut away the tree below the
second node in the pair and duplicate the outgoing edges of the first node in the second
node in the pair. Intuitively, once we encounter on a path a label (a “state”) we already
encountered, we act as if in the first occurrence of the label instead of going down the
tree thereby ignoring the infinite part. For example, Figure2 shows the cutting of the
forest-model on the left, resulting in the finite answer set on the right. Sincex1 andA CCA AB D BBa1aa11x2x1 x B

Fig. 2. Cutting a Forest-Modelx2 have the same labelA asx we replace all outgoing edges fromx1 andx2 with the
outgoing edges fromx: we have connections fromx to x1, fromx to x2, and fromx to
the constanta. Thus we introduce forxi, i 2 f1; 2g connections fromxi to x1, fromxi to x2, and fromxi to a. The tree with constant root is cut in a similar way, but note
that one only starts considering duplicate pairs from belowthe root and thus(a1; a11)
is the first pair with duplicate labels to consider. This because it might be that a rulet(a)  introducest in the label ofa, however, such a rule cannot be used to motivate
the presence oft lower in the tree. Below the root, at would be motivated by a rule with
headt(X), which can be matched against any lower node.

Taking into account that forest-models have a finite boundedbranching, and that on
every path we must always encounter duplicate labels after abounded depth, together
with the fact that there aren + 1 trees, forn constants, leads to a finite boundk of
needed domain elements, which can be read from the program: the branching can be
determined from the branching of the unary rules, and the number of possible labels de-
pends on the number of unary predicates in the program. The number of different labels
is exponential in the size of the program such that, taking into account the branching of
the program,k is in general double exponential.

5 For a formal definition of cutting, we refer the reader to the proof of Theorem 4 in
http://tinf2.vub.ac.be/˜sheymans/tech/oasp-sw.ps.gz.



34 Heymans, Van Nieuwenborgh and Vermeir

However, one has to be cautious with this cutting, e.g. the program with rulesa(X )  f (X ;Y ); a(Y ), anda(X )  b(X ) with b andf free, has a tree-model6fa(x); f(x; x1); a(x1); f(x1; x11); a(x11); b(x11)g. If one cuts at the first occurrence
of a duplicate label, which would be atx1 in this case, thena(x) would no longer have
a valid support -b(x11) has been cut away - and thus the resulting model would not
be minimal. Note that cutting is somewhat similar in spirit to blocking in description
logics [1], however,minimalitydemands some extra precautions, as indicated above.

This problem was solved in [13] for CLPs by enforcing the local model property:
forest-models of a CLP should belocally supported, i.e. for every literalq(x) (f(x; y))
the forest-model can only be motivated byx, one ofx’s successors, and/or constants.
This way, when we cut the trees we never remove the support of any higher nodes
in the tree. An extra condition for local supportedness was that ag(xi; a), although it
involves only a successor ofx and a constant, cannot be in the support ofq(x) (f(x; y))
since upon cutting atxi, g(xi; a) could be removed while it provides support forq(x)
(f(x; y)). In the cheating example we have that the forest-model depicted in Figure 1 is
not locally supported sincefriend(x1 ; jane) is in the support ofheats with jane(x )
- to deriveheats with jane(x ) we needfriend(x1 ; jane).

In the ECLP case, however, where we have an arbitrary ground part, the local
model property of [13] is not sufficient. Take, for example, aruledoesnt are(felix )  marr(leo; jane); dates(jane; felix ); heats(leo), where Felix does not care about dat-
ing the married Jane if her husband Leo is cheating as well. Together with theheats
rule from the cheating example, one has thatdoesnt are(felix ) is in an answer set ifmarr(leo; jane), dates(jane; felix ),heats(leo),marr(leo; leo1 ), anddates(leo; leo2 )
for successorsleo1 andleo2 of leo are in the answer set. Thus, although the cheats rule
in itself does not violate the local model property, adding aground rule does so, since
supports may involve also successors of constants which is not allowed according to the
local model property definition for CLPs in [13].

However, cutting of forest-models never removes any successors of constants and,
moreover, a successor of a constant is never considered as a candidate for the second
node in a duplicate pair since, by definition, the root in a constant tree is not taken into
account as a candidate for the first node in a duplicate pair. Thus, we can safely relax
the local model property definition from [13] for ECLPs by also allowing successors
of constants in the support. In the definition below, we useHS(l) to denote the domain
elements inS (l), the support ofl.
Definition 2. A forest-model(H;M) of an ECLPP is locally supportedif8l = q(x) 2M _ l = f(x; y) 2M �(HS(l) � fx; xi j xi successor ofxg [ fa; ai j a 2 HP ; ai successor ofag)^(8f(z; a) 2 S (l); a 2 HP � z 6= xi), p 2 upreds(P ) is locally satisfiablew.r.t. P if
there is a locally supported forest-model, alocal modelfor short, (H;M) such thatp(") 2 M for a root" in H. An ECLPP has thelocal model propertyif the following
holds: ifp 2 upreds(P ) is satisfiable w.r.t.P then it is locally satisfiable.

Thus, a forest-model is locally supported if the support foreveryq(x) or f(x; y)
involves onlyx itself, successors ofx, constants and/or successors of constants. ECLPs

6 A tree-model is a forest-model containing only one tree.



Extending Conceptual Logic Programs with Arbitrary Rules 35

with the local model property then have the desired bounded finite model property, i.e.
if a (unary) predicatep is satisfiable w.r.t. an ECLPP then it is satisfiable by a finite
answer set(H;M) with jHj < k wherek is solely determined by the programP .

Theorem 2. LetP be an ECLP with the local model property. Then,P has the bounded
finite model property.

Thanks to this property we can reduce reasoning with ECLPs tonormal answer set
programming by introducing a sufficiently large bound.

Theorem 3. LetP be an ECLP with the local model property.p 2 upreds(P ) is sat-
isfiable w.r.t.P iff there is an answer setM of  (P ) containing ap(xi), 1 � i � k,
wherek is as derived above and (P ) = P [ fte(xi ) j 1 � i � kg.
The local model property characterizes those ECLPs for which reasoning can be re-
duced to normal finite answer set programming. However, it isa semantical characteri-
zation, which makes it non-trivial to recognize ECLPs satisfying this property. We now
identify a class of ECLPs, based on their syntactic structure, that have the local model
property.

Local CLPsare CLPs where each unarya(s)  �(s); m (s ; tm); �m(tm); ti 6= tj
and each binaryf (s ; t)  �(s); (s ; t); �(t) is such that everyb 2 �+(m) is either a
free predicate, or ift(m) is a constant,b(t(m)) is a free literal, or for everyr : b(u)  
body(r), body(r)+ = ;. Intuitively, to prove ana(s) (f(s; t)) one needs to descend at
most one level in the tree, where one can locally provea(s) (f(s; t)), i.e. without the
need to go further down the tree. Of course, in the level belows one may need to check
more literals which could amount going further down the tree, but whilst doing this one
does not need to remember which literals need to be proved above in the tree - in a way
a local CLP is memoryless. In [13] local CLPs were shown to have the local model
property.

We then definelocal ECLPsas the union of a local CLP and an arbitrary ground
DLP.

Definition 3. A local ECLPP is an ECLP wherelp(P ) is local.

By the extension of the local model property of CLPs to accommodate for ECLPs,
where also successors of constants are allowed in the local support, local ECLPs have
the local model property, i.e. the arbitrary ground rules have no influence on the locality.

Theorem 4. Local ECLPs have the local model property.

Furthermore, adding a finite number of ground rules to a CLP does not augment the
complexity of reasoning.

Theorem 5. Let P be an ECLP with the local model property. Satisfiability checking
w.r.t.P is in 3-NEXPTIME.

Indeed, we have that the boundk of needed domain elements to simulate reasoning
w.r.t. an ECLPP with finite answer set programming is double exponential in the size
of P , and thus the size of the translated program (P ) (as in Theorem 3) is double
exponential in the size ofP . Since satisfiability checking w.r.t. (P ) is in NEXPTIME

w.r.t. the size of the program [6, 3], we have a3-NEXPTIME bound w.r.t. the size of the
original ECLP.



36 Heymans, Van Nieuwenborgh and Vermeir

4 Nonmonotonic Ontological and Rule-based Reasoning with
Extended Conceptual Logic Programs

We consider the DLALCHOQ(t;u) which is the basic DLALC with support for
role hierarchies (H), nominals/individuals (O), qualified number restrictions (Q), and
conjunction (u) and disjunction (t) of roles.ALCHOQ(t;u) is a DL related to the
ontology language OWL DL [4], extending it in certain aspects and restricting it in oth-
ers: OWL DL is a notational variant of the DLSHOIN (D)[16], which adds transitive
roles (turningALC into S), inverse roles (I), and data types (D) to ALCHOQ(t;u)
while removing support for role constructors and qualified number restrictions from it,
and allowing only unqualified number restrictions (N ).

Formally, the syntax ofALCHOQ(t;u) concept and role expressions can be de-
fined as in Table 1 for concept expressionsD, E, concept namesA, role expressionsR, S, role namesQ, and nominalso. The semantics is given by a tupleI = (�I ; �I)
where�I is a non-empty set, representing the set of available domainelements, and�I is an interpretation function such thatAI � �I andQI � �I � �I for concept
namesA and role namesQ, and every nominalo is mapped to someoI 2 �I . For
complex concept expressions,�I is defined as in Table 1, where we additionally assume

Table 1.Syntax and SemanticsALCHOQ(t;u)
concept names AI � �I

role names QI � �I ��I
individuals fogI = foIg

conjunction of concepts (D u E)I = DI \EI
disjunction of concepts (D t E)I = DI [EI

conjunction of roles (R u S)I = RI \ SI
disjunction of roles (R t S)I = RI [ SI

existential restriction (9R:D)I = fxj9y : (x; y) 2 RI ^ y 2 DIg
universal restriction (8R:D)I = fxj8y : (x; y) 2 RI ) y 2 DIg

qualified number restriction(� n R:D)I = fxj#fyj(x; y) 2 RI ^ y 2 DIg � ng(� n R:D)I = fxj#fyj(x; y) 2 RI ^ y 2 DIg � ng
the unique name assumptionfor nominals, i.e. ifo1 6= o2, thenoI1 6= oI2 . Note that
OWL does not have the unique name assumption [21], and thus different individuals
can point to the same resource. However, the open answer set semantics gives an Her-
brand interpretation to constants, i.e. constants are interpreted as themselves, and for
consistency we assume that also DL nominals are interpretedthis way. Thus, from a
Semantic Web point of view, we assume all individuals are URI’s that point to a unique
resource.

A DL knowledge baseconsists ofterminological axiomsC1 v C2 androle axiomsR1 v R2 for concept expressionsC1 andC2, and role expressionsR1 andR2. Axioms
express a subset relation: an interpretationI satisfiesan axiomC1 v C2 (R1 v R2) ifCI1 � CI2 (RI1 � RI2 ). An interpretation is amodelof a knowledge base� if it satisfies



Extending Conceptual Logic Programs with Arbitrary Rules 37

every axiom in�. A conceptC is satisfiablew.r.t.� if there is a modelI of � such
thatCI 6= ;.

The ontology layer for the Semantic Web is becoming a realitywith languages
such as OWL DL. Consequently, the rule layer, which providesadditional inferencing
capabilities on top of DL reasoning, is gaining interest in the Semantic Web community.
For example, in [19], integrated reasoning of DLs withDL-saferules was introduced.
DL-safe rules are unrestricted Horn clauses where only the communication between the
DL knowledge base and the rules is restricted; they enable one to express knowledge
inexpressible with DLs alone, e.g. triangular knowledge such as [19]BadChild(X )  Grandhild(X ); parent(X ;Y ); parent(Z ;Y ); hates(X ;Z )
saying that a grandchild that hates its sibling is a bad child.

We introduce DL-safe rules as in [19]. For a DL knowledge base� letNC andNR
be the concept and role names in� andNP is a set of predicate symbols such thatNC [NR � NP . A DL-atomis an atom of the formA(s) orR(s; t) for A 2 NC andR 2 NR. A DL-safe ruleis a rule of the forma  b1 ; : : : ; bn wherea; bi are atoms
and every variable in the rule appears in a non-DL-atom in therule body. ADL-safe
programis a finite set of DL-safe rules. Letts(�;P ) be the set of nominals in� and
constants inP .

The semantics of the combined(�;P ) for a knowledge base� and a DL-safe
programP is given by interpreting� as a first-order theory�(�), see e.g. [5], every
DL-safe rulea  b1 ; : : : ; bn as the clausea_:b1_ : : :_:bn, and then considering the
first-order interpretation of�(�) [ P . The main reasoning procedure in [19] isquery
answering, i.e. checking whether a ground atom� is true in every first-order model of�(�) [ P , denoted as(�;P ) j= �.

We provide an alternative semantics based on DL interpretations as in [14] rather
than on first-order interpretations. However, both semantics are compatible as indicated
in [19]. For (�;P ) and an interpretationI = (�I ; �I) of � we extend�I for NP
andHP such that for unary predicatesp 2 NP , pI � �I , for binary predicatesf 2NP , fI � �I � �I , andoI 2 �I for o 2 HP ; such an extended interpretation is,
by definition, an interpretation of(�;P ). Furthermore, we impose the unique name
assumption such that ifo1 6= o2, thenoI1 6= oI2 , for elementso 2 ts(�;P ). A binding
for an interpretationI of (�;P ) is a function� : vars(P ) [ ts(�;P ) ! �I with�(o) = oI for o 2 ts(�;P ); it maps constants/nominals and variables to domain
elements. A unary atoma(s) is then true w.r.t.� andI if �(s) 2 aI , and a binary
atomf(s; t) is true w.r.t.� andI if (�(s); �(t)) 2 fI . A rule r is satisfied byI iff for
every binding� w.r.t.I that makes the atoms in the body true, the head is also true. An
interpretation of(�;P ) is a model if it is a model of� and it satisfies every rule inP .
Query answering(�;P ) j= � amounts then to checking whether for every (DL) modelI of (�;P ), the ground atom� is true inI.

In [13], ALCHOQ(t;u) satisfiability checking is reduced to CLP satisfiability
checking. Here we reduce query answering w.r.t.ALCHOQ(t;u) extended with DL-
safe rules to query answering w.r.t. ECLPs. We first provide some intuition with an
example. Take a knowledge base� = f9manuf in:Co u 9has prie v Produtg,
expressing that if something is manufactured in some country and it has a price then



38 Heymans, Van Nieuwenborgh and Vermeir

it is a product. We have some facts in a DL-safe programP about the world we are
considering: is produt of (p; 1 ) manuf in(p; japan)  is produt of (p; 2 ) Co(japan)  
saying thatp is a product of company1 and company2, that p is manufactured

in Japan and that Japan is a country. Those facts are vacuously DL-safe since they
do not contain variables. Additionally, we have a DL-safe rule in P saying that if
a product is a product of 2 companies then those companies arecompetitors7, r1 :ompetitors(C1 ;C2 ) Produt(P); is produt of (P ;C1 ); is produt of (P ;C2 ).
Note that this is indeed a DL-safe rule since every variable occurs in ais produt of
atom, which is a non-DL-atom in the body of the rule. The only DL-atom in the rule isProdut(P). A possible modelI of (�;P ) would beI = (fjapan; 1 ; 2 ; p; xg; �I)8

with �I : CoI = fjapang, ProdutI = fpg, manuf inI = f(p; japan)g, has prieI= f(p; x )g, is produt of I = f(p; 1 ); (p; 2 )g andompetitorsI = f(1 ; 2 )g.
We translate(�;P ) now to an ECLP: the DL axiom is translated to the constraint (9manuf in:Co u 9has prie)(X );not Produt(X ), where we introduce predi-

cates corresponding to the concept expressions. Furthermore, we define these predicates
by the rules(9manuf in:Co u 9has prie)(X )  (9manuf in:Co)(X ); (9has prie)(X )(9manuf in:Co)(X )  manuf in(X ;Y );Co(Y )(9has prie)(X )  has prie(X ;Y )
such that if an answer set contains(9manuf in:Co u 9has prie)(x ), then, by mini-
mality of answer sets and the first rule,(9manuf in:Co)(x ) and(9has prie)(x ) are
in the answer set, and, by the second and third rule, there must be ay1 and ay2 such
thatmanuf in(x ; y1 ), Co(y1 ), andhas prie(x ; y2 ) are in the answer set. The op-
posite direction is also valid, i.e. ifmanuf in(x ; y1 ), Co(y1 ), andhas prie(x ; y2 )
are in the answer set then(9manuf in:Co u 9has prie)(x ) is in the answer set since
rules need to be satisfied. This kind of behavior exactly mimics the DL semantics of
the corresponding constructs. Furthermore, we introduce the concept and role names
by means of free rules, indicating that a domain element (or apair of domain elements)
is of a certain type or not. Produt(X ) _ not Produt(X ) Co(X ) _ not Co(X ) manuf in(X ;Y ) _ not manuf in(X ;Y ) has prie(X ;Y ) _ not has prie(X ;Y ) 
This concludes the CLP part of the translation of(�;P ). The ground DLP part consists
of the same facts as in the DL-safe part; it also contains the grounding of the ruler1 in

7 Actually, to correspond entirely with the desired semantics, we would need to indicate thatC1
andC2 are different companies. This seems to be not possible with the DL-safe rules in [19],
however, it is with ECLPs using6=.

8 We takeoI = o, o 2 ts(�;P ), for ease of notation.



Extending Conceptual Logic Programs with Arbitrary Rules 39P with constantsfjapan; p; 1 ; 2g, e.g. the ruler2 : ompetitors(1 ; 2 ) Produt(p); is produt of (p; 1 ); is produt of (p; 2 )
Since DL-safe rules have a first-order interpretation one may have that(1; 2) 2ompetitorsI for a modelI of (�;P ) without any justification inI, i.e. the body

of r1 in P does not need to be satisfied in order to have(1; 2) 2 ompetitorsI . The
answer set semantics however only deducesompetitors(1 ; 2 ) in an answer set if
e.g. the body ofr2 is satisfied in that answer set, since otherwise the answer set would
not be minimal (one could omitompetitors(1 ; 2 ) and still have an answer set).

To solve this, we introduce for each heada of a rule in the ground DLP part, a free
rule a _ not a  , e.g.ompetitor(1 ; 2 ) _ not ompetitor(1 ; 2 )  such that
one has always a motivation forompetitor(1 ; 2 ), mimicking the first-order seman-
tics.

We refer to [13] for the definition of the closurelos(�) of a ALCHOQ(t;u)
knowledge base�, but basically, for a concept expressionD in � it includes the
subconcepts ofD. Formally, we define the CLP�1(�;P ) for a ALCHOQ(t;u)
knowledge base� and a DL-safe programP as the program containing for every con-
cept expressionD 2 los(�) the rules in Table 2. Furthermore, for every concept

Table 2.CLP Translation�1(�;P ):D(X)  not D(X) D u E(X) D(X); E(X)D tE(X) D(X) D t E(X) E(X)9R:D(X) R(X;Y ); D(Y ) 8R:D(X)  not 9R::D(X)R t S(X; Y ) R(X;Y ) R u S(X;Y ) R(X;Y ); S(X;Y )R t S(X; Y ) S(X; Y ) (� n R:D)(X)  not (� n+ 1 R:D)(X)(� n R:D)(X) R(X;Y1); : : : ; R(X;Yn); D(Y1); : : : ; D(Yn); Y1 6= Y2; : : :
nameA and role nameQ in �, we add the free rulesA(X ) _ not A(X )  andR(X ;Y ) _ not R(X ;Y )  . Nominalso in � are handled by introducing predicatesfog with factsfog(o)  in �1(�;P ), such that we can only have thatfog(x) is in an
answer set ifx = o. �1(�;P ) is not a local ECLP, but due to the fact that the body of a
rule becomes structurally smaller one can transform it to a local ECLP while preserving
satisfiability [13].

We define�2(�;P ) as the ground DLPPts(�;P ), i.e.P grounded with all con-
stants and nominals in� andP , together with free rules head(r) _ not head(r) for
eachr 2 Pts(�;P ).
Theorem 6. For anALCHOQ(t;u) knowledge base� and a DL-safe programP ,
we have(�;P ) j= � iff �1(�;P ) [ �2(�;P ) j= �.9

9 Moreover, the models of(�;P ) are in a one-to-one correspondence with the open answer sets
of�1(�;P )[�2(�;P ), see the proof in http://tinf2.vub.ac.be/˜sheymans/tech/oasp-sw.ps.gz.



40 Heymans, Van Nieuwenborgh and Vermeir

In [19] theSHOIN (D) DL is considered instead ofALCHOQ(t;u), which extends
and at the same time restricts the type of allowed constructors. DL-safe rules allow for
variables, however, this does not make them more expressivethan ground DLP pro-
grams: [19] proves that(�;P ) j= � iff (�;P g) j= � whereP g is the grounding ofP
w.r.t. constants and nominals in(�;P ). Moreover, using ECLPs instead of a DL knowl-
edge base with DL-safe rules on top has the further advantageof nonmonotonicity by
means of negation as failure in both the CLP part and the grounded DLP part, whereas
both DLs and DL-safe rules are monotonic (DL-safe rules are Horn clauses and thus do
not allow for negation as failure).

5 Related Work

We highlight some of the current research trends on the application of nonmonotonicity
to the Semantic Web and refer the reader for further related work on the combination of
(not necessarily nonmonotonic) rules and ontologies to [13].

[7] combines the expressiveSHOIN (D), i.e. OWL DL, with ASP reasoning by
considering the DL knowledge base as a black box that can be queried from the rules.
Moreover, inferences made by rules can serve as input to the DL knowledge base as
well, leading to a bidirectional flow of information. A disadvantage of this approach, as
was remarked in [19], is that, since one considers only consequences of the DL knowl-
edge base, i.e. atoms that are true in all models, some more fine-grained inferences will
not be made by the rules. Since reasoning with CLPs can be reduced to finite ASP, it
can be trivially reduced to the approach in [7] with an empty DL knowledge base. In [8]
the approach of [7] was adapted for the well-founded semantics instead of the answer
set semantics.

[11] explains how reasoning with SWRL[15], i.e. OWL extended with Datalog in
RuleML, can be done by iteratively calling the DL reasonerRACER [12] and the rule-
based reasonerJess[9], each feeding the other with the inferences it made. Since SWRL
is undecidable, and such an iterative procedure is thus incomplete, it shows that in-
tractable worst-case complexity (or even undecidability)should not hold one back to
device practical and useful combined reasoners. A similar iterative angle is taken in
[18] where SWRL is extended with negation as failure and equipped with an answer set
semantics, resulting in a nonmonotonic but undecidable system.

6 Conclusions and Directions for Further Research

We extended CLPs with a finite set of arbitrary ground DLP rules, and showed that
reasoning with the resulting ECLPs can be reduced to finite answer set programming.
We established an upper complexity bound and simulated reasoning in a DL equipped
with DL-safe rules.

The upper3-NEXPTIME bound for reasoning with ECLPs is rather bad, however,
encouraged by practical algorithms for highly intractableDL algorithms, we believe
that, using heuristics, one can also implement practical reasoners for ECLPs. This is
subject for further research.



Extending Conceptual Logic Programs with Arbitrary Rules 41

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider.The Description
Logic Handbook. Cambridge University Press, 2003.

2. F. Baader and U. Sattler. Number Restrictions on Complex Roles in Description logics. In
Proc. of KR-96, pages 328–339, 1996.

3. C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge Press, 2003.

4. S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D.L. McGuinness, P. F.
Patel-Schneider, and L. A. Stein. OWL Web Ontology LanguageReference.
http://www.w3.org/TR/owl-ref/, 2004.

5. A. Borgida. On the Relative Expressiveness of Description Logics and Predicate Logics.
Artificial Intelligence, 82(1-2):353–367, 1996.

6. E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and Expressive Power of
Logic Programming.ACM Comput. Surv., 33(3):374–425, 2001.

7. T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits.Combining Answer Set Program-
ming with DLs for the Semantic Web. InProc. of KR 2004, pages 141–151, 2004.

8. T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits.Well-Founded Semantics for De-
scription Logic Programs in the Semantic Web. InProc. of RuleML 2004, number 3323 in
LNCS, pages 81–97. Springer, 2004.

9. E.J. Friendman-Hill. Jess homepage. http://herzberg.ca.sandia.gov/jess/.
10. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming. InProc.

of ICLP’88, pages 1070–1080, Cambridge, Massachusetts, 1988. MIT Press.
11. C. Golbreich. Combining Rule and Ontology Reasoners forthe Semantic Web. InProc. of

RuleML 2004, number 3323 in LNCS, pages 6–22. Springer, 2004.
12. V. Haarslev and R. Moller. Description of the RACER System and its Applications. InProc.

of Description Logics 2001, 2001.
13. S. Heymans, D. Van Nieuwenborgh, and D. Vermeir. Semantic Web Reasoning with Con-

ceptual Logic Programs. InProc. of RuleML 2004, number 3323 in LNCS, pages 113–127.
Springer, 2004.

14. I. Horrocks and P. F. Patel-Schneider. A Proposal for an OWL Rules Language. InProc. of
WWW 2004. ACM, 2004.

15. I. Horrocks, P. F. Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean. SWRL: A Semantic
Web Rule language Combining OWL and RuleML, May 2004.

16. Ian Horrocks and Peter Patel-Schneider. Reducing OWL Entailment to Description logic
Satisfiability.J. of Web Semantics, 1(4):345–357, 2004.

17. N. Leone, W. Faber, and G. Pfeifer. DLV homepage. http://www.dbai.tuwien.ac.at/proj/dlv/.
18. J. Mei, S. Liu, A. Yue, and Z. Lin. An Extension to OWL with General Rules. InProc. of

RuleML 2004, number 3323 in LNCS, pages 6–22. Springer, 2004.
19. Boris Motik, Ulrike Sattler, and Rudi Studer. Query Answering for OWL-DL with Rules. In

Proc. of ISWC 2004, number 3298 in LNCS, pages 549–563. Springer, 2004.
20. P. Simons. Smodels homepage. http://www.tcs.hut.fi/Software/smodels/.
21. M. Smith, C. Welty, and D. McGuinness. OWL Web Ontology Language Guide.

http://www.w3.org/TR/owl-guide/, 2004.


