
Intelligence Analysis Using Quantitative Preferences

Davy Van Nieuwenborgh?, Stijn Heymans, and Dirk Vermeir??
Dept. of Computer Science

Vrije Universiteit Brussel, VUB
Pleinlaan 2, B1050 Brussels, Belgiumfdvnieuwe,sheymans,dvermeirg@vub.ac.be

Abstract. The extended answer set semantics for simple logic programs, i.e.
programs with only classical negation, allows for the defeat of rules to resolve
contradictions. In addition, a partial order relation on the program’s rules can be
used to deduce a preference relation on its extended answer sets. In this paper, we
propose a “quantitative” preference relation that associates a weight with each
rule in a program. Intuitively, these weights define the “cost” of defeating a rule.
An extended answer set is preferred if it minimizes the sum ofthe weights of its
defeated rules. We characterize the expressiveness of the resulting semantics and
show how the semantics can be conveniently extended to sequences of weight
preferences, without increasing the expressiveness. We illustrate an application
of the approach by showing how it can elegantly express largest common sub-
graph and subgraph isomorphic approximation problems, a concept often used
in intelligence analysis to find similarities or specific regions of interest in large
graphs of observed activity.

1 Introduction

Over the last decade a lot of research has been done on declarative programming us-
ing the answer set semantics [10, 2, 18], a generalization ofthe stable model semantics
[8]. In answer set programming, one uses a logic program to modularly describe the
requirements that must be fulfilled by the solutions to a particular problem, i.e. the an-
swer sets of the program correspond to the intended solutions of the problem. One of
the possible problems in answer set programming is the absence of any solutions in
case of inconsistent programs. To remedy this, the authors proposed [16] theextended
answer set semanticswhich allows for thedefeatof problematic rules. E.g., the rulesa , b and:a b are clearly inconsistent and have no classical answer sets,while
bothfa; bg andf:a; bgwill be recognized as extended answer sets. Intuitively,:a b
is defeated bya in fa; bg, while:a b defeatsa in f:a; bg.

Within the context of inconsistent programs, it is natural to have some kind of pref-
erence relation that is used to prefer certain extended answer sets above others. In [16],? Supported by the FWO?? This work was partially funded by the Information Society Technologies programme of the

European Commission, Future and Emerging Technologies under the IST-2001-37004 WASP
project

234 Davy Van Nieuwenborgh, Stijn Heymans, and Dirk Vermeir

a “qualitative” preference semantics is proposed, using a preference relation on rules,
to induce a partial ordering on the extended answer sets of a program.

As an alternative, this paper considers a “quantitative” preference relation for the
extended answer set semantics on simple programs, i.e. programs containing only clas-
sical negation. We assign each rule in a program a (nonnegative) weight, represent-
ing the cost associated with defeating the rule. Solutions for these weighted programs,
calledweighted answer sets, are those extended answer sets that minimize the sum of
the weights of defeated rules.

The resulting semantics turns out to be more expressive thanclassical answer set
programming, even in the absence of negation as failure. We demonstrate that e.g. the
membership problem is complete for the second level of the deterministic class of the
polynomial hierarchy, i.e.�P2 -complete.

In some situations more than one actor is involved in the process of finding a solu-
tion to a particular problem. Quite often we have a sequence of decision makers, where
each one sorts out the best solutions according to her preferences among the solutions
that are preferred by the previous one in the sequence. Intuitively, the solutions that are
still preferred by the last decision maker in the sequence are the ones that are acceptable
by all parties. E.g., in a job selection procedure, the secretary will only keep the appli-
cants that passed all the tests. Secondly, the head of the department will prefer people
that have better marks on their math tests, and among those, the management of the firm
will select those with a better psychological profile.

Such hierarchies of individual weight preferences are supported byweight sequence
programs, where each rule in a program is equipped with a sequencehwiii=1;:::;n of
weights corresponding to the cost each decision maker associates with defeating this
rule (wi has a higher priority thanwi+1). Semantically, weighted answer sets for such
programs will be obtained from first finding the weighted answer sets w.r.t. the weights
of the first decision maker, i.e. the weightsw1, and among those finding the ones that
are minimal w.r.t. the weights of the second decision maker,i.e. the weightsw2, etc.
Regarding the complexity, it turns out that such sequences of weights do not result in
any additional expressiveness of the formalism, nevertheless allowing to express certain
problems more intuitively.

The proposed semantics has applications in several areas where quantitative prefer-
ences are useful. E.g., in the area of subgraph isomorphism algorithms [14] it is use-
ful, in case of absence of an exact match of the pattern graph in the larger graph, to
search forsubgraph isomorphic approximations(SIA for short) of the larger graph that
are minimal in some sense, i.e. searching for a “minimal” setof items to add to the
larger graph such that the pattern occurs in it. We show how the solutions of such SIA
problems correspond with the weighted answer sets of a weighted program that can
be constructed out of the given instance graphs. Applications of SIA can be found in
the area of intelligence analysis [9, 4], where it is common to search for a pattern of
interest in a large attributed relational graph [9] (ARG forshort). An ARG is a normal
graph where nodes and edges can carry additional attributese.g. denoting relationships.
In intelligence analysis, ARGs are used to model observed activity in the world un-
der consideration. We show how the translation of the SIA problem for graphs into
weighted programs can be intuitively adapted to the settingof ARGs, thus providing a

Intelligence Analysis Using Quantitative Preferences 235

useful tool for intelligence analysis. A similar approach can be applied for finding the
largest common subgraphs between two ARGs.

The remainder of this paper is organized as follows: Section2 introduces weighted
programs and the corresponding weighted answer set semantics, together with a char-
acterization of the expressiveness. Section 3 formalizes weight sequence programs and
we show that these systems do not have additional expressiveness in comparison to
normal weighted programs. In Section 4, we introduce the problem of largest common
subgraphs, as well as subgraph isomorphic approximations in graph theory, and show
how weighted programs can be conveniently used to compute them. Section 5 discusses
a generalization of these graphs in the area of attributed relational graphs. Finally, we
conclude in Section 6. Due to space restrictions, proofs have been omitted.1

2 Weighted Programs

We use the following basic definitions and notation. Aliteral is anatoma or a negated
atom:a. For a set of literalsX , :X denotesf:a j a 2 Xg where::a = a. X is
consistentif X \ :X = ;. An interpretationI is a consistent set of literals. Asimple
rule r is of the forma � with fag [� a finite set of literals2. The ruler is satisfied
by I , denotedI j= r, if a 2 I whenever� � I , i.e. if r is applicable(� � I), then it
must beapplied(a 2 I).

A countable set of simple rules is called asimple logic program(SLP). TheHer-
brand baseBP of a SLPP contains all atoms appearing inP . For a SLPP and an
interpretationI we say that a rulea � 2 P is defeatedw.r.t. I iff there exists an
appliedcompeting rule:a �0 2 P . Furthermore, we usePI � P to denote the
reductof P w.r.t. I , i.e.PI = fr 2 P j I j= rg, the set of rules satisfied byI .

An interpretationI is called a model of a SLPP if PI = P , i.e.I satisfies all rules
in P . If there is no modelJ of P such thatJ � I , I is a minimal model oranswer set
of P . An extended answer setfor P is any interpretationI such thatI is an answer set
of PI and each unsatisfied rule inP nPI is defeated.

Example 1.Consider the following SLPP about diabetes.hypoglyemia diabetes sugar hypoglyemia:sugar diabetes ola light :sugar ola sugar
Clearly, while this program has no traditional answer sets,it has, however, two ex-
tended answer setsI = fdiabetes; hypoglyemia; sugar; olag andJ = fdiabetes;hypoglyemia;:sugar; ola lightg.

The extended answer sets of a program are not always equally preferred. E.g., in
the above example, when low on sugar (hypoglyemia), one would prefer drinkingola , rather than taking no sugar at all (:sugar). So, defeating the rulesugar hypoglyemia is “worse” than defeating the rule:sugar diabetes. Therefore, we
equip the rules in simple programs with a weight representing the “penalty” involved

1 They are available in http://tinf2.vub.ac.be/˜dvnieuwe/graphasptech.ps
2 As usual, we assume that programs have already been grounded.

236 Davy Van Nieuwenborgh, Stijn Heymans, and Dirk Vermeir

when defeating the rule. Naturally, extended answer sets that minimize the total penalty
of a program are to be preferred over others.

Definition 1. A simple weight rule is a ruler of the forma �hwi, wherefag [�
is a finite set of literals andw is an associated weight value, i.e. a non-negative integer.
We usew(r) to denote the weight ofr. A countable set of such simple weight rules is
a simple weight program (SWP). Theextended answer sets of a SWPP coincide with
the extended answer sets of the SLPP 0 obtained fromP by removing the weights from
the rules.

The program from Example 1 can be extended to a SWP containinga larger “penalty”
weight for the hypoglycemia rules, i.e. the program:hypoglyemia h0i diabetes h0i sugar hypoglyemiah1i:sugar diabetesh0i ola light :sugarh0i ola sugarh0i
This program still hasI andJ as its extended answer sets, but intuitivelyI is better
thanJ as it satisfies the rule with weight 1 whileJ does not, which we formalize in the
following definition.

Definition 2. Thepenalty of an extended answer setS w.r.t. a SWPP , is defined by�P (S) =Pr2PnPS w(r), i.e. the sum of the weights of all defeated rules inP w.r.t.S.
For two extended answer setsS1 andS2 of P , we defineS1 � S2 iff �P (S1) ��P (S2). A weighted answer set of P is an extended answer set ofP that is minimal

w.r.t.� (a � b iff a � b and notb � a) among the set of all extended answer sets ofP .
A weighted answer setS ofP with�P (S) = 0 is called aproper weighted answer set.

Intuitively, weighted answer sets are those solutions thatminimize the penalties
incurred by defeating rules. For the weighted version of theprogram from Example 1
one obtains that�P (I) = 0 and�P (J) = 1 such thatI � J , which corresponds with
our intuition.

While the previous example uses only two different weight values, the following
example shows that one can use the proposed semantics to represent complex relations
between defeated rules.

Example 2.Consider a company that wants to hire an employee. To get hired, you have
to do some tests and based on these results the company decides.math h0i lang h0i psyh h0i pra h0i phys h0i:math h0i :lang h0i :psyh h0i :pra h0i :phys h0ihire h3i :hire :mathh1i :hire :langh1i:hire :psyhh3i :hire :prah2i :hire :physh4i

Intuitively, the rules with weight 0, i.e. no penalty involved when defeated, represent
the choice between passing or not passing a certain test. Furthermore, the last five rules
encode which penalty is involved when a person fails a certain test, but still gets hired.
E.g., not passing the practical test is the same as failing both math and language. On
the other hand, not passing the physical is considered unacceptable while failing the

Intelligence Analysis Using Quantitative Preferences 237

psychological test will be tolerated only if it is the only failed test. Finally, the rulehire h3i expresses the company’s policy: defeating this rule is cheaper from the
moment the penalty gets higher than3.

Some of the program’s extended answer sets areM1 = fmath; lang; psyh; pra;phys; hireg, M2 = f:math;:lang; psyh; pra; phys; hireg, M3 = fmath; lang;psyh;:pra; phys; hireg, M4 = f:math; lang; psyh;:pra; phys; hireg andM5 = f:math; lang; psyh;:pra; phys;:hireg.
Computing the penalties for these extended answer sets results in �P (M1) = 0,�P (M2) = �P (M3) = 2 and�P (M4) = �P (M5) = 3. These values imply the fol-

lowing order among the given extended answer sets:M1 � fM2;M3g � fM4;M5g. It
can be checked, thatM1 is the only (proper) weighted answer set ofP . WhileM2 has
a penalty of 2 by defeating two rules with weight 1,M3 only defeats a single rule, but
with weight 2, yielding thatM2 andM3 are incomparable, and thus equally preferred.
Similarly, M4 andM5 only differ in thehire atom and are incomparable with each
other, both having a penalty of3.

Combining simple programs with weights turns out to be rather expressive.

Theorem 1. Let P be a SWP and letl be a literal. Deciding whether there exists a
weighted answer setM ofP containingl is�P2 -complete.

3 Weight Sequences

In [15] an intuitive semantics is presented for sequences ofindividual complex qualita-
tive preferences. The idea is to apply each individual preference in the sequence in turn
and to let it sort out the preferred answer sets left over by the previous preferences in
the sequence. It is shown in [15] that this semantics is quiteexpressive as it can han-
dle arbitrary complete problems of the polynomial hierarchy. More specifically, for a
sequence ofn preference relations, the semantics is�Pn+1-complete.

It is natural to wonder if a similar semantics for sequences of individual weights
will also yield a complexity blow-up depending on the lengthof the sequence. It turns
out that this is not the case as sequences of weights remain�P2 -complete.

Definition 3. An n-weight sequence rule is a rule r of the forma �hwiii=1;:::;n,
wherefag [� is a finite set of literals andhwiii=1;:::;n is a sequence ofn associated
weight values, i.e. a sequence of non-negative integers. Weusewi(r) to denote the
weightwi of r. A countable set ofn-weight sequence rules is ann-weight sequence
program (nWSP). Theextended answer sets of annWSPP coincide with the extended
answer sets of the SLPP 0 obtained fromP by removing the weight sequences from the
rules.

Thepenalty of an extended answer setS w.r.t. the weightsi (1 � i � n) and annWSPP , is defined by�iP (S) = Pr2PnPS wi(r), i.e. the sum of the weightswi of all

defeated rules inP w.r.t.S. Each of the penalties�iP induces a preference relation�i
between the extended answer sets, as in Definition 2.

We define the preference of extended answer sets up to a certain weight level by
induction.

238 Davy Van Nieuwenborgh, Stijn Heymans, and Dirk Vermeir

Definition 4. Let P be anWSP. An extended answer setS is preferable up to weight
level�i, 1 � i � n, iff

– i = 1 andS is minimal w.r.t.�1, or
– i > 1, S is preferable up to�i�1, and there is noT , preferable up to�i�1, such

thatT �i S.

An extended answer setS of P is a weighted answer set iff it is preferable up to�n.

Example 3.Consider the problem of two people having to decide what to eat for dinner.
After checking the available ingredients, the cook preparing the dinner decides to let his
wife propose some possible combinations from which he will choose the final one. As
his wife is rather hungry, she decides to choose the meal which is quickest to make,
the reason for which she assigns weights corresponding withtimes needed to make a
particular part of the meal. On the other hand, her husband istired and wants to make
a meal that is easy to prepare, yielding weights representing the difficulty to make a
particular part of the meal. Further, they agree on some constraints that each meal should
satisfy, e.g. with french fries they take mayonnaise, etc. The2WSP corresponding with
this problem is shown below.

Note that the rule:v vh200; 200i enforces the satisfaction of the common con-
straints, as it implies that every solution not making one ofthe rules withv in the head
applicable, is better than any solution making one of those rules applicable.frenh fries h0; 0i rie h0; 0i steak h0; 0i:frenh fries h15; 1i :rie h5; 1i :steak h10; 1istew h0; 0i meat ball h0; 0i mayonnaise h0; 0i:stew h75; 3i :meat ball h20; 2i :mayonnaise h10; 5itomato saue h0; 0i :tomato saue h10; 2iv :frenh fries ;:rieh0; 0i v :steak ;:meat ball ;:stew h0; 0iv steak ;:frenh friesh0; 0i v rie;meat ball ;:tomato saueh0; 0iv frenh fries ;:mayonnaiseh0; 0i :v vh200; 200i

For the extended answer sets3 S1 = ffrenh fries ; steak ;mayonnaiseg andS2 =frie;meat ball ; tomato saueg one can check that�1P (S1) = �1P (S2) = 35 and
no other extended answer sets exists with a smaller penalty for �1P , yielding that bothS1 andS2 are preferable up to weight level�1. On the other hand,�2P (S1) = 7 and�2P (S2) = 5, makingS2 preferable up to weight level�2, yielding thatS2 is the
weighted answer set for this problem.

Finally, rearranging the weight sequence yields, in general, different solutions. E.g.,
if the cook first decides which meals he wants to make and afterward his wife can
choose a particular one, it can be checked thatS3 = frie; stewg will be the weighted
answer set of the problem.

In the following theorem we show that ann-weight sequence program can be trans-
formed into a simple weight program such that the weighted answer sets of the former
coincide with the weighted answer sets of the latter.

3 To keep the size of the extended answer sets small, we only provide the positive literals.

Intelligence Analysis Using Quantitative Preferences 239

Theorem 2. LetP be annWSP and letP 0 be the SWP defined byP 0 = fa �hwi � 10�ii j a �hwiii=1;:::;ng ;
where�n = 0 and�i =Pj2[i+1:::n℄ �length �Pr2P wj(r)�� otherwise, withlength(x)
the number of digits inx, e.g.length(2611) = 4.

Then,S is a weighted answer set ofP iff S is a weighted answer set ofP 0.
Reconsider the rule:stew h75; 3i from Example 3. In the SWP version of

this program, the rule would yield the rules:stew h3i and:stew h75000i, asPr2P w2(r) = 215, yielding thatlength(215) = 3 and75� 103 = 75000.
The above transformation can be performed in polynomial time, yielding the fol-

lowing complexity result forn-weighted sequence programs.

Corollary 1. LetP be annWSP. Deciding whether there exists a weighted answer setS of P containingl is�P2 -complete.

This result implies that, unlike for sequences of qualitative preferences [15], introducing
sequences of weights does not yield an increase of expressiveness. Nevertheless, these
sequences allow for a more intuitive expression of certain problems.

4 Largest Common Subgraphs
and Approximate Subgraph Isomorphisms

While largest common subgraphs and approximate subgraph isomorphisms are similar
to finding largest common subtrees [1], the formalization weintroduce in this section
is, to the best of our knowledge, new.

A graphis a tupleG = hN;Ei, whereN is a finite set ofnodes, andE � N �N is
a set of tuples representing theedgesin the graph. We assume that graphs are directed;
an undirected edge fromn to m can still be represented by having bothhm;ni andhn;mi in E.

Two graphsG1 = hN1; E1i andG2 = hN2; E2i are said to beisomorphic, denotedG1 �= G2, if there exists a bijectionf : N1 ! N2 such thatf(E1) = E2, wheref(E1) denotesfhf(t); f(h)i j ht; hi 2 Eg. On the other hand,G2 is called asubgraph
of G1, denotedG2 � G1, iff N2 � N1 andE2 � E1. Furthermore,G2 is called
subgraph isomorphicto G1, denotedG2 - G1, if there exists a subgraphG3 � G1
such thatG2 �= G3. A graphG4 is called acommon subgraphof G1 andG2, denotedG4 � fG1; G2g, if G4 � G1 and4 G4 - G2.

For certain applications the notion of common subgraphs is too weak and one is
more interested in finding the largest common subgraph between two given graphs.
Formally, a graphG4 is a largest common subgraphof G1 andG2, denotedG4 �maxfG1; G2g if G4 � fG1; G2g and there does not exist a graphG5 � fG1; G2g such thatjE5j > jE4j. The set of all largest common subgraphs is denoted byC(G1; G2).

4 Note that the demand thatG4 is a subgraph ofG1 is needed to guarantee the finiteness of the
set off all common subgraphs betweenG1 andG2.

240 Davy Van Nieuwenborgh, Stijn Heymans, and Dirk Vermeir

On the other hand, subgraph isomorphism is sometimes too strong a notion for
certain applications. E.g., when a graphG2 = hN2; E2i is not subgraph isomorphic to
a graphG1 = hN1; E1i, it may be interesting to know what is “missing” inG1 for G2
to be subgraph isomorphic to it. In this context, a graphG3 = hN3; E3i is called an
extensionof G1 w.r.t. G2 just whenG1 � G3 andN3 = N1 when jN1j � jN2j orN3 = N1 [fxi j 1 � i � jN2j � jN1jg otherwise, where thexi are new nodes not
occurring inN1. The latter construction ofN3 is necessary to handle the cases in which
the graph to search for is bigger than the graph to search in. AgraphG3 is asubgraph
isomorphic approximationof G1 w.r.t. G2 iff G3 is an extension ofG1 w.r.t. G2 andG2 - G3. We useG2 wG1 G3 to denote thatG2 is approximately subgraph isomorphic
to G3 w.r.t. G1, i.e.G3 is a subgraph isomorphic approximation ofG1 w.r.t.G2. The
set of all subgraph isomorphic approximations ofG1 w.r.t.G2 is denoted byAG1(G2).

Obviously, not every subgraph isomorphic approximationG3 2 AG1(G2) is equally
interesting. E.g., the fully connected graphhN3; N3�N3i is, clearly, always a subgraph
isomorphic approximation and thus inAG1(G2). However, in most cases there will ex-
ist smaller extensions ofG1 in AG1(G2). Therefore, we are particularly interested in
elements fromAG1(G2) that have a minimal, in some sense, difference with the original
graphG1. Here we use�G1(G3) to denote theunidirectional edge differencebetweenG1 andG3, i.e.�G1(G3) = E3nE1.

Two minimality criteria, which are widely used in areas likediagnostic reasoning
[5, 6, 17], are cardinal minimality and subset minimality. In the former case, we select
those elements fromAG1(G2) that are minimal w.r.t. cardinality among the elements
in AG1(G2). Formally, a graphG3 2 AG1(G2) is said to be asubgraph isomorphic c-
approximationiff there does not exist a graphG4 2 AG1(G2) such thatj�G1(G4)j <j�G1(G3)j. The set of all c-approximations is denoted byAG1(G2).
Example 4.Consider the four undirected graphsG1, G2, G3 andG4 represented in
Figure 1. It is clear thatG4 is one of the largest common subgraphs betweenG1 and

l hj G2e ig kf m nop q rs tuv w
G3G1a b d abG4

d
Fig. 1.The graphsG1,G2,G3 andG4 of Example 4.G3, i.e.G4 2 C(G1; G3).

On the other hand,G1 is subgraph isomorphic toG2, i.e. G1 - G2, but not toG3. However, adding a single (bidirectional) edge between e.g. m andr in G3, i.e.G5 = hN3; E3 [fhm; ri; hr;migi, results in a subgraph isomorphic approximation

Intelligence Analysis Using Quantitative Preferences 241

of G3 w.r.t. G1, i.e. G1 wG3 G5. Obviously,G5 is cardinal minimal yielding thatG5 2 AG3(G1).
Subset minimal isomorphic approximations can be defined in asimilar way. How-

ever, in contrast with diagnostic reasoning, subset minimality is less intuitive in this
setting. E.g. adding the edgeshp; oi, ho; wi, hw; vi andhv; pi (and their reverses) toG3
in Example 4 yields a subset minimal isomorphic approximation w.r.t.G1. However,
if we seeG3 as an activity graph andG1 as a pattern of interest, as is often done by
intelligence agencies for detecting possible threats [4],the previously mentioned subset
minimal approximation is not very useful as it forces the agency to check4 possible
relations between currently unrelated things. On the otherhand, the approximations inAG3(G1) are of much more value as they all yield one missing link to complete the
pattern, implying that the agency can quickly confirm these solutions (see also the next
section).

Obviously, when a graph is subgraph isomorphic to another one, the latter is the
only c-approximation of itself.

Theorem 3. LetG1 andG2 be graphs such thatG2 - G1. Then,AG1(G2) = fG1g.
Using the weighted answer set semantics, we have the means toeffectively compute,

for given graphsG1 andG2, the largest common subgraphs ofG1 andG2; or the c-
approximations ofG1 w.r.t.G2. In what follows, we will sometimes use non-grounded
rules for clarity, but grounding is performed as usual. Computing the largest common
subgraphs can be done using the following transformation.

Definition 5. LetG1 = hN1; E1i andG2 = hN2; E2i be graphs. The weighted pro-
gram, denotedL(G1; G2), computing the largest common subgraphs betweenG1 andG2 is defined by the rules (where� = jN1j2 + 1):

1. fnode1(x) h0i j x 2 N1g [fnode2(x) h0i j x 2 N2g ;
2. fedge1(x; y) h0i j hx; yi 2 E1g [f:edge1(x; y) h0i j hx; yi 2 E21 nE1g ;
3. fedge2(x; y) h0i j hx; yi 2 E2g [f:edge2(x; y) h0i j hx; yi 2 E22 nE2g ;
4. f:no on(x; y) h0i j x 2 N1; y 2 N2g ;
5. fon(X;Y) node1(X); node2(Y);:no on(X;Y)h� ig ;
6. fno on(X;Y) on(X 0; Y); node1(X); X 6= X 0h� ig ;
7. fno on(X;Y) on(X;Y 0); node2(Y); Y 6= Y 0h� ig ;
8. fommon(X;Y) edge1(X;Y); on(X;X 0); on(Y; Y 0); edge2(X 0; Y 0)h0ig ;
9. fthreshold h� ig ;

10. f:threshold edge1(X;Y); on(X;X 0); on(Y; Y 0);:edge2(X 0; Y 0)h1ig ;
Intuitively, the rules in (1) introduce the nodes of the given graphs as facts, while the

rules in (2) and (3) introduce the edges of the graphs as positive facts and the edges not
appearing in the graphs as negative facts. Further, the rules in (4) are used to introduce
negation as failure for theno on=2 predicate, while the rules in (5), (6) and (7) are
used to setup an injective relation between the nodes ofG1 andG2. The rules in (8) are
used to retrieve the largest common subgraph ofG1 andG2. Finally, the rules in (9)
and (10) ensure that only the largest common subgraphs are computed, i.e. the rule in
(9) will never be defeated due to its high threshold and so therules in (10) count the

242 Davy Van Nieuwenborgh, Stijn Heymans, and Dirk Vermeir

missing edges in the subgraph w.r.t. the original graph as missing edges lead to defeated
rules.

Reconsidering the graphsG1 andG3 from Example 4, one of the possible weighted
answer sets forL(G1; G2)will contain, besides the numerous other predicates, the pred-
icatesfommon(a; b); ommon(b;); ommon(b; a); ommon(; b)g, corresponding
to the largest common subgraphG4 in Example 4. This behavior is confirmed by the
following theorem.

Theorem 4. Let G1 = hN1; E1i andG2 = hN2; E2i be two graphs. Then,G3 =hN3; E3i 2 C(G1; G2) iff there exists a weighted answer setM of L(G1; G2), with�L(G1;G2)(M) < � , such thatfommon(x; y) j hx; yi 2 E3g �M .

To compute c-approximations of given graphs, we introduce the edges ofG1 as facts
of the formedge(x; y) h0i, wherehx; yi 2 E1. For each possible edgehx; yi 62 E1,
with x; y 2 N1, we give a choice to either include it or not in an approximation by
introducing the factsedge(x; y) h0i and:edge(x; y) h1i. The penalty involved
in the latter fact is to ensure that the computed approximations are cardinal minimal,
i.e. not inserting an edge (defeating the former rule) can bedone freely, but inserting an
edge (defeating the latter rule) has to be minimized. In casejN1j < jN2j we also add
edges to thejN2j � jN1j new nodes.

To matchG2 with the possible approximations, we need to introduce for each noden 2 N2 a unique new variable nameN . Searching for a match ofG2 in the ap-
proximation is done by the single rulemath �h0i, where� = fedge(X;Y) jhx; yi 2 E2g [fX 6= Y j hx; yi 2 E2 ^ x 6= yg. Finally, we add the single rulemath notmathh0i which forces any solution to contain a match (note that this
rule cannot be defeated).

Definition 6. LetG1 = hN1; E1i andG2 = hN2; E2i be graphs. The program com-
puting the c-approximations ofG1 w.r.t.G2, denotedLG1(G2), is defined by the rules:

– fedge(x; y) h0i j hx; yi 2 E1g ;
– fedge(x; y) h0i ; :edge(x; y) h1i j x; y 2 N1 [fxi j (jN1j < jN2j)^ (1 �i � jN2j � jN1j)g ^ hx; yi 62 E1g ;
– fmath �h0ig, where� = fedge(X;Y) j hx; yi 2 E2g [fX 6= Y j hx; yi 2E2 ^ x 6= yg ; and
– fmath notmathh0ig :

If we reconsider the graphsG1 andG3 from Example 4, the programLG3(G1)
contains, besides the numerousedge=2 facts, the rulemath edge(A;B); edge(B;D); edge(D;C); edge(C;A); edge(B;A); edge(D;B)edge(C;D); edge(A;C); A 6= B;B 6= D;D 6= C;C 6= A :
One of the possible weighted answer sets ofLG3(G1) is e.g.S = fedge(x; y) jhx; yi 2 E3g [fedge(m; r); edge(r;m)g [(f:edge(x; y) j x; y 2 N3 ^ hx; yi 62E3gnfedge(m; r); edge(r;m)g). Clearly,S corresponds with the extensionG4 from
Example 4, which is a cardinal minimal approximation ofG3 w.r.t.G1. This behavior
is confirmed by the following theorem.

Intelligence Analysis Using Quantitative Preferences 243

Theorem 5. LetG1 = hN1; E1i andG2 = hN2; E2i be graphs. Then,G3 = hN3; E3i 2AG1(G2) iff M = fedge(x; y) j hx; yi 2 E3g [f:edge(x; y) j x; y 2 N3 ^ hx; yi 62E3g [fmathg is a weighted answer set ofLG1(G2).
In the current approach no distinction is made between the edges that can be added

to a graph to obtain an approximation. However, one can imagine situations in which
adding one edge is more “difficult” than adding another, i.e.the cost of adding an edge
may vary. E.g., for an intelligence agency, it may be easier to check a relationship be-
tween people in the home country, than between people in foreign countries, but check-
ing 4 internal relationships may be as hard as checking1 external relationship, resulting
in a cost of4 for edges between externals and a cost of1 for edges between internals.
Such costs represent a quantitative preference relation between edge additions.

In this case, optimal solutions are approximations that minimize the sum of all costs
associated with the added edges in the approximation. It is not difficult to see that this
kind of minimization can easily be computed by an adapted version of the program in
Definition 6: just replace the weights1 with the cost associated for adding the edge to
an approximation. Clearly, Theorem 5 remains valid in this extension.

Similarly, we could think of an agency where possible threats are first selected, by
some field agent, depending on the effort needed to check certain relationships. After-
ward, the supervisor will apply, on the proposed investigations of his field agent, another
kind of quantitative preferences, e.g. using information from other departments. In case
there are still a number of possible solutions left over after the supervisor, even a third
individual, e.g. the director, could apply his preferenceson these possibilities. Again, it
is not difficult to see that this problem can be elegantly modeled by an adapted version
of the program in Definition 6, this time using then-weight sequence programs intro-
duced in Section 3. Also in this extension, an adapted version of Theorem 5 remains
valid.

5 An Application in Intelligence Analysis

Attributed relational graphs (ARGs), an extension of the abstract directed graphs de-
fined in the previous section, are often used in e.g. intelligence analysis to understand
complex, and often uncertain, situations. The nodes in suchARGs are used to describe
objects in the observed world, e.g. persons, organizations, ..., while the edges are used
to represent relationships between the nodes, e.g. interaction, ownership, trust,

In addition, ARG nodes and edges may have additional attributes that describe the
details of the specific objects or relationships: e.g. the name of a person, the kind of
chemical, the type of conversation. An example of such an ARG, based on an example
from [4], can be found in Figure 3. Here, a person named Bill has rented a truck for
carrying liquids and that same person resides in a house at 123 Main street together
with a person called Ted. Furthermore, Ted has been observing a factory called Acme
Inc. and he also bought large quantities of the chemicalHCl .

Intelligence analysts normally define small abstract patterns which are believed to
be indications of possible threats. An example of such a pattern, based on the same ex-
ample from [4], can be found in Figure 2. Intuitively, it states that two persons residing

244 Davy Van Nieuwenborgh, Stijn Heymans, and Dirk Vermeir

Person

observeobserve

Factory

reside reside

Person

rent buy

Truck House Chemicals

Fig. 2. The pattern
graph [4].

House,21 West St Car, Honda House, 34 East St

Person, Tom
Person, Richard Person, Harry

Factory,Acme Inc.

House, 123 Main St
Person, Ted

Person, Bill

Chemicals,Gasoline

Chemicals,HCl
Person, Ben

Car, Bentley Person, Jennifer
Conve

rsa
tio

n,Phone ca
llC

on
ve

rs
at

io
n,

P
ho

ne
ca

ll Conversation, Letter

Person, Alice

buy

buy

reside

reside

rent

observe

reside reside

work
observe

work

friends

drives

drives

drives

married

Truck, Liquids

Fig. 3.The observed activity graph [4].

at the same place and both observing the same factory can be dangerous if one person
buys some chemical, while the other rents a truck.

Having both an ARG of observed activity and a pattern, the analysts need tools
for finding specific regions in the ARG that “closely” match the defined threat pat-
tern. Subgraph isomorphic approximations turn out to be valuable tools to accomplish
this task [4]. The framework and results we developed in Section 4 can be intuitively
adapted to the setting of ARGs, where the transformation into a weighted program al-
lows an analyst to compute subgraph isomorphic approximations that are minimal in
some quantitative sense. In situations where investigating missing additional relation-
ships is equally hard, the analyst can use the cardinal minimal approximations. On the
other hand, if investigating some relationship has a highercost than investigating oth-
ers, an analyst could rely upon the extension of the framework of Section 4, i.e. defining
a cost with each relationship (edge) that can be added to havea subgraph isomorphic
approximation and only keeping the approximations that minimize the sum of the costs.
Similarly, it could be the case that the analyst is not the only one in charge of making
the final decision or that he has multiple equivalent possibilities. In such situations, it
can be useful to apply the quantitative preferences of some other people, e.g. a super-
visor or the director, to refine the number of solutions, so obtaining the most preferred
solution. By using the second extension of the framework of Section 4, also this kind of
reasoning with ARGs can be solved, i.e. by using weight sequence programs.

Instead of formally adapting the framework and the results,we illustrate the adap-
tation, and its usefulness, using the example on intelligence analysis: we will translate
the ARG and pattern of Figures 3 and 2 into a weighted program and show that the so-
lutions of the program correspond with the regions of threatin the ARG w.r.t. the given
pattern.

First we translate, for convenience, the nodes of the ARG tonode-predicates. E.g.
a person named Bill forces the factnode(person; bill) h0i into the program, while
the factory Acme Inc. is responsible for the factnode(fatory ; ame in) h0i. In
total, we have 17 of such facts in our weighted program.

Next, we have to describe the relationships between the nodes using extended ver-
sions of theedge/2-predicates used in the previous section. E.g. Ted residingat the

Intelligence Analysis Using Quantitative Preferences 245

house in 123 Main street gives rise to the factedge(person; ted ; reside; house; 123 main street) h0i ;
while the conversation between Jennifer and Bill can be described by the factedge(person; bill ; onversation; phone; person; jennifer) h0i :
Note that the differentedge-facts can have different arities, which is not a problem
as long as the arities, and the ordering of the arguments, arethe same for the same
relationship. E.g.edge-facts representing the conversation relationship alwayshave six
arguments: the first two correspond to a node, the third has tobe “conversation”, the
fourth the type of conversation and the last two again correspond to a node.

Also note that ARGs are directed graphs, but certain relations are bidirectional, e.g.
friendsandmarried. For these relationships we have to explicitly add both directions
using theedge-facts: e.g. bothedge(person; rihard ; friend ; person; tom) h0i andedge(person; tom; friend ; person; rihard) h0i have to be present in the weighted
program. One could argue that a conversation through phone is also bidirectional, but
we use a directed edge here to represent who initiated the call.

The pattern in Figure 2 can be translated into the following rule, where names start-
ing with an uppercase letter correspond to a variable:math edge(person;NamePerson1 ; observe; fatory ;NameFatory);edge(person;NamePerson2 ; observe; fatory ;NameFatory);edge(person;NamePerson1 ; reside; house;AddressHouse);edge(person;NamePerson2 ; reside; house;AddressHouse);edge(person;NamePerson1 ; rent ; truk ;KindOfTruk);edge(person;NamePerson2 ; buy ; hemials ;KindOfChemial)h0i

The above pattern matching rule also matches situations where only one person
observes a factory and does both the renting of the truck and the buying of the chemi-
cals. If one wants to have explicitly two different persons,we need to add the conditionNamePerson1 6= NamePerson2 to the rule.

Finally, we have to add rules for the edges that can eventually be added to our ac-
tivity graph to obtain a subgraph isomorphic approximation. These edges will directly
point out the region of interest in the activity graph as the minimization assures that
only edges are added where necessary, i.e. on those places inthe activity graph where
the pattern (almost) matches. While we introduced all possible edges in the simula-
tion of Section 4, doing the same in the context of ARGs may notbe the best way to
go. Indeed, ARGs can have multiple edges between the same nodes but with differ-
ent attributes, which are not always useful to define betweencertain types of nodes.
E.g. edge(hemial ; hl ; buys ; hemial ; gasoline) h0i is theoretically possible,
but useless in real life. Therefore, one should avoid the introduction of meaningless
edges in the program, possibly by adding extra semantical constraints, e.g. typing the

246 Davy Van Nieuwenborgh, Stijn Heymans, and Dirk Vermeir

attributes in ARGS. Some examples of choices of edges to add are:edge(person; bill ; observe; fatory ; ame in) h0i: edge(person; bill ; observe; fatory ; ame in) hviedge(person; bill ; buy ; hemial ; hl) h0i: edge(person; bill ; buy ; hemial ; hl) hwiedge(person; alie; onversation; phone; person; ted) h0i: edge(person; alie; onversation; phone; person; ted) hzi
In the above rules for possible edges to add, the rules with a positive occurrences of
theedge-predicate always have a weight of0, as not adding an edge, i.e. defeating the
rule, can be done for free. On the other hand, the negative occurrences have a weight
corresponding to the cost associated with adding the edge. In case we use cardinal
minimality, the costs (e.g.v,w andz) will all be 1, while in case of total cost minimality
we could definev = 4, w = 2 andz = 1 yielding that it is twice as hard to check if
someone observed a factory than checking if he bought some chemical, which in turn
is twice as hard than checking if he made a phone call.

For simplicity, we only consider cardinal minimality (and no sequences) in what
follows, i.e. we take all the weights of the rules with negative occurrence of anedge-
predicate to be1. If we consider the weighted program obtained in the way we described
above, we will have two weighted answer setsS andT . Both will contain all the edges
from the original activity graph together with the factmath . Additionally,S will con-
tain the factedge(person; bill ; observe; fatory ; ame in) together with all negated
versions of the otheredge-predicates we added to the program Similarly,T will con-
tain the factedge(person; ted ; rent ; truk ; liquids) together with all negated versions,
except the one occurring positively. Clearly, bothS andT correspond with the only
cardinal minimal subgraph isomorphic approximations of the problem.

As said before, we can add the conditionNamePerson1 6= NamePerson2 to the
pattern rule in our program if we explicitly want two different persons. When we con-
sider the weighted program obtained in that way,S will be the single weighted answer
set of the program, corresponding to the single subgraph isomorphic approximation of
the problem.

Finally, one can imagine situations in which one has two observed activity graphs,
e.g. provided by two different agencies, and one is interested in finding the largest
common observed activity in those ARGs. By using an adapted version of Definition 5
in the context of ARGs, the corresponding modified version ofTheorem 4 demonstrates
that also these kind of problems in intelligence analysis can be conveniently tackled by
the presented framework.

6 Conclusions and Directions for Further Research

We presented a simple and intuitive quantitative preferential semantics based on the ex-
tended answer set semantics, characterized its expressiveness and illustrated its useful-
ness using an application in the area of intelligence analysis. Other areas of possible ap-
plications that are interesting for further exploration include molecular biology, where
e.g. largest common subgraphs are used to detect similarities between large molecules

Intelligence Analysis Using Quantitative Preferences 247

[11, 13, 1]. Further research also encompasses the efficientimplementation of the se-
mantics, e.g. using existing answer set solvers such as dlv [7] or smodels [12]. Fur-
thermore, the relationships between the present proposal and other weighted semantics
such as weak constraints [3] need to be investigated.

References

1. Tatsuya Akutsu and Magnús M. Halldórsson. On the approximation of largest common
subtrees and largest common point sets.Theoretical Comp. Science, 233(1-2):33–50, 2000.

2. Chitta Baral.Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge Press, 2003.

3. Francesco Buccafurri, Nicola Leone, and Pasquale Rullo.Strong and weak constraints in dis-
junctive datalog. InProceedings of the 4th International Conference on Logic Programming
(LPNMR ’97), pages 2–17, 1997.

4. Thayne Coffman, Seth Greenblatt, and Sherry Marcus. Graph-based technologies for intel-
ligence analysis.Communications of the ACM, 47(3):45–47, 2004.

5. L. Console and P. Torasso. A spectrum of logical definitions of model-based diagnosis.
Computational Intelligence, 7(3):133–141, 1991.

6. Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. The diagnosis frontend of
the dlv system.AI Communications, 12(1-2):99–111, 1999.

7. Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Declarative problem-
solving using the dlv system.Logic-Based Artificial Intelligence, pages 79–103, 2000.

8. Michael Gelfond and Vladimir Lifschitz. The stable modelsemantics for logic programming.
In Logic Programming, Proceedings of the Fifth InternationalConference and Symposium,
pages 1070–1080. MIT Press, 1988.

9. R.J. Heuer. Psychology of intelligence analysis. Centerfor the Study of Intelligence, Central
Intelligence Agency, 2001.

10. Vladimir Lifschitz. Answer set programming and plan generation. Journal of Artificial
Intelligence, 138(1-2):39–54, 2002.

11. R. E. Stobaugh. Chemical substructure searching.Journal of Chemical Information and
Computer Sciences, 25:271–275, 1985.

12. Syrjänen T. and Niemelä I. The smodels system. InProceedings of the 6th International
Conference on Logic Programming and Nonmonotonic Reasoning, volume 2173 ofLecture
Notes in Computer Science, pages 434–438, Vienna, Austria, September 2001. Springer.

13. Y. Takahashi, Y. Satoh, H. Suzuki, and S. Sasaki. Recognition of largest common structural
fragment among a variety of chemical structures.Analytical Sciences, 3:23–28, 1987.

14. J.R. Ullman. An algorithm for subgraph isomorphism.J. of the ACM, 23(1):31–42, 1976.
15. Davy Van Nieuwenborgh, Stijn Heymans, and Dirk Vermeir.On programs with linearly

ordered multiple preferences. InProc. of 20th Intl. Conference on Logic Programming (ICLP
2004), volume 3132 ofLecture Notes in Computer Science, pages 180–194. Springer, 2004.

16. Davy Van Nieuwenborgh and Dirk Vermeir. Preferred answer sets for ordered logic pro-
grams. InEuropean Conference on Logics in Artificial Intelligence, JELIA 2002, volume
2424 ofLecture Notes in Artificial Intelligence, pages 432–443, 2002.

17. Davy Van Nieuwenborgh and Dirk Vermeir. Ordered diagnosis. In Proceedings of the 10th
International Conference on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR2003), volume 2850 ofLNAI, pages 244–258. Springer, 2003.

18. Marina De Vos and Dirk Vermeir. Logic programming agentsplaying games. InResearch
and Development in Intelligent Systems XIX (ES2002), BCS Conference Series, pages 323–
336. Springer-Verlag, 2002.

