Intelligence Analysis Using Quantitative Preferences

Davy Van Nieuwenborgh Stijn Heymans, and Dirk Vermeir

Dept. of Computer Science
Vrije Universiteit Brussel, VUB
Pleinlaan 2, B1050 Brussels, Belgium
{dvni euwe, sheynans, dver nei r }@ub. ac. be

Abstract. The extended answer set semantics for simple logic prograens

programs with only classical negation, allows for the def#faules to resolve

contradictions. In addition, a partial order relation oa gfrogram’s rules can be
used to deduce a preference relation on its extended anstgelrsthis paper, we
propose a “quantitative” preference relation that assesia weight with each
rule in a program. Intuitively, these weights define the tto$ defeating a rule.

An extended answer set is preferred if it minimizes the suthefwveights of its

defeated rules. We characterize the expressiveness aghking semantics and
show how the semantics can be conveniently extended to seegi®f weight

preferences, without increasing the expressiveness. Mg¢trdte an application
of the approach by showing how it can elegantly express $acgmmon sub-

graph and subgraph isomorphic approximation problems naeg often used
in intelligence analysis to find similarities or specific i@ts of interest in large
graphs of observed activity.

1 Introduction

Over the last decade a lot of research has been done on digelgmagramming us-
ing the answer set semantics [10, 2, 18], a generalizatitimeo$table model semantics
[8]. In answer set programming, one uses a logic program tdutaoly describe the
requirements that must be fulfilled by the solutions to aipaldr problem, i.e. the an-
swer sets of the program correspond to the intended sotutibthe problem. One of
the possible problems in answer set programming is the absefnany solutions in
case of inconsistent programs. To remedy this, the authhopoped [16] theextended
answer set semantieghich allows for thedefeatof problematic rules. E.g., the rules
a +, b < and—a <+ b are clearly inconsistent and have no classical answengkeilg,
both{a, b} and{—a, b} will be recognized as extended answer sets. Intuitivetys— b
is defeated by: < in {a, b}, while —a + b defeats: < in {—a, b}.

Within the context of inconsistent programs, it is natuoahéve some kind of pref-
erence relation that is used to prefer certain extendedersats above others. In [16],

* Supported by the FWO
** This work was partially funded by the Information Societycfirologies programme of the
European Commission, Future and Emerging Technologiesruhd IST-2001-37004 WASP
project

234 Davy Van Nieuwenborgh, Stijn Heymans, and Dirk Vermeir

a “qualitative” preference semantics is proposed, usingeéepence relation on rules,
to induce a partial ordering on the extended answer sets afgagm.

As an alternative, this paper considers a “quantitativeifgnence relation for the
extended answer set semantics on simple programs, i.egpnsgontaining only clas-
sical negation. We assign each rule in a program a (nonwegatieight, represent-
ing the cost associated with defeating the rule. Solutionghfese weighted programs,
calledweighted answer setare those extended answer sets that minimize the sum of
the weights of defeated rules.

The resulting semantics turns out to be more expressivediaasical answer set
programming, even in the absence of negation as failure. &@dstrate that e.g. the
membership problem is complete for the second level of therdgenistic class of the
polynomial hierarchy, i.eA’ -complete.

In some situations more than one actor is involved in thegeeof finding a solu-
tion to a particular problem. Quite often we have a sequehdedsion makers, where
each one sorts out the best solutions according to her prefes among the solutions
that are preferred by the previous one in the sequencetilealyj the solutions that are
still preferred by the last decision maker in the sequene¢erones that are acceptable
by all parties. E.qg., in a job selection procedure, the sagyevill only keep the appli-
cants that passed all the tests. Secondly, the head of tlaetaemt will prefer people
that have better marks on their math tests, and among tth@seanagement of the firm
will select those with a better psychological profile.

Such hierarchies of individual weight preferences are sttpd byweight sequence
programs where each rule in a program is equipped with a sequengg_, ,, of
weights corresponding to the cost each decision maker iasssavith defeating this
rule (w; has a higher priority thamw; ;). Semantically, weighted answer sets for such
programs will be obtained from first finding the weighted aesgets w.r.t. the weights
of the first decision maker, i.e. the weights, and among those finding the ones that
are minimal w.r.t. the weights of the second decision malerthe weightsu,, etc.
Regarding the complexity, it turns out that such sequentegmhts do not result in
any additional expressiveness of the formalism, nevezfisallowing to express certain
problems more intuitively.

The proposed semantics has applications in several areas whantitative prefer-
ences are useful. E.g., in the area of subgraph isomorphgoritams [14] it is use-
ful, in case of absence of an exact match of the pattern grajptei larger graph, to
search fossubgraph isomorphic approximatio(SIA for short) of the larger graph that
are minimal in some sense, i.e. searching for a “minimal’afatems to add to the
larger graph such that the pattern occurs in it. We show hevstiutions of such SIA
problems correspond with the weighted answer sets of a wegbrogram that can
be constructed out of the given instance graphs. Applinataf SIA can be found in
the area of intelligence analysis [9, 4], where it is commmiseéarch for a pattern of
interest in a large attributed relational graph [9] (ARG $biort). An ARG is a normal
graph where nodes and edges can carry additional attrieigedenoting relationships.
In intelligence analysis, ARGs are used to model observéditycin the world un-
der consideration. We show how the translation of the SlAbjenm for graphs into
weighted programs can be intuitively adapted to the settf®RGs, thus providing a

Intelligence Analysis Using Quantitative Preferences 235

useful tool for intelligence analysis. A similar approa@nde applied for finding the
largest common subgraphs between two ARGs.

The remainder of this paper is organized as follows: Se@&imroduces weighted
programs and the corresponding weighted answer set sesaotjether with a char-
acterization of the expressiveness. Section 3 formalizgiw sequence programs and
we show that these systems do not have additional expressivén comparison to
normal weighted programs. In Section 4, we introduce thélpro of largest common
subgraphs, as well as subgraph isomorphic approximatiogsaph theory, and show
how weighted programs can be conveniently used to compeite.tSection 5 discusses
a generalization of these graphs in the area of attributetioral graphs. Finally, we
conclude in Section 6. Due to space restrictions, proofs baen omitted.

2 Weighted Programs

We use the following basic definitions and notatiorlit&ral is anatoma or a negated
atom-a. For a set of literals, =X denotes{—a | a € X} where-—a = a. X is
consistentf X N =X = (. An interpretation! is a consistent set of literals. gimple
rule r is of the forma < 3 with {a} U 3 a finite set of literal& The ruler is satisfied
by I, denoted |= r, if a € I whenevers C I, i.e. if r is applicable(8 C I), then it
must beapplied(a € I).

A countable set of simple rules is callecsianple logic program(SLP). TheHer-
brand baseBp of a SLP P contains all atoms appearing in. For a SLPP and an
interpretation/ we say that a rule < § € P is defeatedw.r.t. I iff there exists an
appliedcompeting rule-a « ' € P. Furthermore, we us&; C P to denote the
reductof Pw.rt. I, i.e. Py = {r € P | I = r}, the set of rules satisfied by

An interpretation/ is called a model of a SLP if P; = P, i.e. [satisfies all rules
in P. If there is no model of P such that/ C I, I is a minimal model oanswer set
of P. An extended answer séir P is any interpretatiod such that/ is an answer set
of P; and each unsatisfied rule in\ P; is defeated.

Example 1.Consider the following SLE about diabetes.

hypoglycemia < diabetes sugar < hypoglycemia
—sugar < diabetes cola_light < —sugar cola < sugar

Clearly, while this program has no traditional answer sittas, however, two ex-
tended answer sefs= {diabetes, hypoglycemia, sugar, cola} and.J = {diabetes,
hypoglycemia, —sugar, colalight}.

The extended answer sets of a program are not always equeafred. E.g., in
the above example, when low on sugagfoglycemia), one would prefer drinking
cola, rather than taking no sugar at athfugar). So, defeating the ruleugar <«
hypoglycemia is “worse” than defeating the rutesugar « diabetes. Therefore, we
equip the rules in simple programs with a weight represgritie “penalty” involved

! They are available in http://tinf2.vub.ac.be/"dvnieugvaphasptech.ps
2 As usual, we assume that programs have already been grounded

236 Davy Van Nieuwenborgh, Stijn Heymans, and Dirk Vermeir

when defeating the rule. Naturally, extended answer satsiimimize the total penalty
of a program are to be preferred over others.

Definition 1. A simple weight ruleis a ruler of the forma « S(w), where{a} U g

is a finite set of literals and’ is an associated weight value, i.e. a non-negative integer.
We usew(r) to denote the weight of A countable set of such simple weight rules is
a simple weight program (SWP). Thextended answer sets of a SWPP coincide with

the extended answer sets of the S/Robtained fromP by removing the weights from
the rules.

The program from Example 1 can be extended to a SWP contairdarger “penalty”
weight for the hypoglycemiarules, i.e. the program:

hypoglycemia <+ (0) diabetes <+ (0) sugar < hypoglycemia (1)
—sugar < diabetes(0) cola_light < —sugar(0) cola < sugar(0)

This program still had andJ as its extended answer sets, but intuitivélis better
thanJ as it satisfies the rule with weight 1 whiledoes not, which we formalize in the
following definition.

Definition 2. Thepenalty of an extended answer s8tw.r.t. a SWPP, is defined by
Pp(S) = 3, cpp, w(r), i.e. the sum of the weights of all defeated rule®im.r.t. 5.
For two extended answer sefs and S, of P, we defineS; < S iff &p(S5;) <
& p(S2). Aweighted answer set of P is an extended answer set Bfthat is minimal
w.r.t. < (a < biff @ < b and notb < a) among the set of all extended answer setB of
A weighted answer sétof P with #p(S) = 0 is called aproper weighted answer set.

Intuitively, weighted answer sets are those solutions thimimize the penalties
incurred by defeating rules. For the weighted version ofgtagram from Example 1
one obtains thabp(I) = 0 and®p(J) = 1 such thatl < J, which corresponds with
our intuition.

While the previous example uses only two different weighues, the following
example shows that one can use the proposed semanticségseapcomplex relations
between defeated rules.

Example 2.Consider a company that wants to hire an employee. To get,lyioei have
to do some tests and based on these results the companydecide

math < (0) lang < (0) psych + (0) prac < (0) phys < (0)
—math < (0) —lang < (0) —psych + (0) —prac < (0) —phys < (0)
hire + (3) —hire < —math(1) =hire < —lang(1)

—hire < —psych(3) =hire < —prac(2) —hire < —phys(4)

Intuitively, the rules with weight 0, i.e. no penalty invelsd when defeated, represent
the choice between passing or not passing a certain tegihdromore, the last five rules
encode which penalty is involved when a person fails a getést, but still gets hired.
E.g., not passing the practical test is the same as failitlg imath and language. On
the other hand, not passing the physical is considered eptatde while failing the

Intelligence Analysis Using Quantitative Preferences 237

psychological test will be tolerated only if it is the onlyiléd test. Finally, the rule
hire < (3) expresses the company’s policy: defeating this rule is pletom the
moment the penalty gets higher th&an

Some of the program’s extended answer setdére= {math, lang, psych, prac,
phys, hire}, My = {—math,—lang, psych, prac, phys, hire}, Ms = {math,lang,
psych, —prac, phys, hire}, My = {-math,lang, psych, —prac, phys, hire} and
M; = {—math,lang, psych, —prac, phys, —hire}.

Computing the penalties for these extended answer setbsr@sdp (M) = 0,
Sp(Ms) = &p(Ms) =2 and®p(My) = &p(Ms) = 3. These values imply the fol-
lowing order among the given extended answer sefis=< { My, M3} < { My, M5}. It
can be checked, thadt; is the only (proper) weighted answer setffWhile M, has
a penalty of 2 by defeating two rules with weightM/z only defeats a single rule, but
with weight 2, yielding that\/, and M3 are incomparable, and thus equally preferred.
Similarly, M, and M5 only differ in the hire atom and are incomparable with each
other, both having a penalty 8f

Combining simple programs with weights turns out to be nagixpressive.

Theorem 1. Let P be a SWP and let be a literal. Deciding whether there exists a
weighted answer sét/ of P containingl is AL-complete.

3 Weight Sequences

In [15] an intuitive semantics is presented for sequencasdifidual complex qualita-
tive preferences. The idea is to apply each individual pegfee in the sequence in turn
and to let it sort out the preferred answer sets left over bypttevious preferences in
the sequence. It is shown in [15] that this semantics is gifgessive as it can han-
dle arbitrary complete problems of the polynomial hiergrdfiore specifically, for a
sequence of preference relations, the semantic£i§, , -complete.

It is natural to wonder if a similar semantics for sequendeisdividual weights
will also yield a complexity blow-up depending on the lengftthe sequence. It turns
out that this is not the case as sequences of weights reffaicomplete.

Definition 3. An n-weight sequence rule is a ruler of the forma « S(w;)i=1,... n,
where{a} U 3 is a finite set of literals andw;),_, _, is a sequence of associated
weight values, i.e. a sequence of non-negative integersus#/e;(r) to denote the
weightw; of r. A countable set ofi-weight sequence rules is anweight sequence
program (nWSP). Thextended answer sets of annWSPP coincide with the extended
answer sets of the SLP' obtained fromP by removing the weight sequences from the
rules.

Thepenalty of an extended answer sgtw.r.t. the weights (1 < i < n) and an
nWSPP, is defined bypi,(S) = 2 repps wi(r), 1.e. the sum of the weights; of all
defeated rules itP? w.r.t. S. Each of the penaltieg’, induces a preference relatior;
between the extended answer sets, as in Definition 2.

We define the preference of extended answer sets up to ancergiht level by
induction.

238 Davy Van Nieuwenborgh, Stijn Heymans, and Dirk Vermeir

Definition 4. Let P be anWSP. An extended answer $eis preferable up to weight
level<;, 1 < i <n,iff

— 4 =1andS is minimal w.r.t.<, or
— 1 > 1, S is preferable up to<;_1, and there is nd’, preferable up to<;_1, such
thatT <; S.

An extended answer sgtof P is aweighted answer set iff it is preferable up to<,,.

Example 3.Consider the problem of two people having to decide whattfoeainner.
After checking the available ingredients, the cook pregatine dinner decides to let his
wife propose some possible combinations from which he widlase the final one. As
his wife is rather hungry, she decides to choose the mealhaikiquickest to make,
the reason for which she assigns weights correspondingtints needed to make a
particular part of the meal. On the other hand, her husbatices and wants to make
a meal that is easy to prepare, yielding weights represgtti@ difficulty to make a
particular part of the meal. Further, they agree on somet@ints that each meal should
satisfy, e.g. with french fries they take mayonnaise, ele 2WSP corresponding with
this problem is shown below.

Note that the rule-w < v(200, 200) enforces the satisfaction of the common con-
straints, as it implies that every solution not making on¢hefrules withw in the head
applicable, is better than any solution making one of thakesrapplicable.

french_fries < (0,0) rice < (0,0) steak < (0,0)
—french_fries < (15,1) —rice < (5,1) —steak < (10,1)
stew < (0,0) meat_ball < (0, 0) mayonnaise < (0,0)
—stew < (75, 3) —meat_ball < (20, 2) —mayonnaise < (10, 5)
tomato_sauce < (0, 0) —tomato_sauce < (10,2)
v < —french_fries, ﬂmce<0, 0) v —steak, —meat_ball, —stew (0, 0)
v < steak, —french_fries(0,0) v < rice, meat_ball, ~tomato_sauce(0,0)

v < french_fries, ~mayonnaise (0, 0) - <+ v(200, 200)

For the extended answer s = {french_fries, steak, mayonnaise} andSy =
{rice, meat_ball, tomato_sauce} one can check thatlL(S;) = ¢5(S2) = 35 and
no other extended answer sets exists with a smaller peraltf, yielding that both
S, and S, are preferable up to weight level;. On the other hand?(S;) = 7 and
#%(S2) = 5, making S, preferable up to weight levek,, yielding thatS, is the
weighted answer set for this problem.

Finally, rearranging the weight sequence yields, in gdnéiféerent solutions. E.g.,
if the cook first decides which meals he wants to make andvedier his wife can
choose a particular one, it can be checked fiat {rice, stew} will be the weighted
answer set of the problem.

In the following theorem we show that anweight sequence program can be trans-
formed into a simple weight program such that the weightesiven sets of the former
coincide with the weighted answer sets of the latter.

3 To keep the size of the extended answer sets small, we onliderthe positive literals.

Intelligence Analysis Using Quantitative Preferences 239

Theorem 2. Let P be annWSP and lef”’ be the SWP defined by
P' = {a + B{w; x 10%) | a + B{w;)i=1...n} »

whereg, = 0andé; = 3 cpiyy.. (length (3, o pw;(r))) otherwise, withength ()
the number of digits in, e.g.length(2611) = 4.
Then,S is a weighted answer set &fiff S is a weighted answer set &f.

Reconsider the rulesstew <« (75,3) from Example 3. In the SWP version of
this program, the rule would yield the rulestew < (3) and-stew « (75000), as
> ep wa(r) = 215, yielding thatlength(215) = 3 and75 x 10 = 75000.

The above transformation can be performed in polynomiat tiyielding the fol-
lowing complexity result fon-weighted sequence programs.

Corollary 1. Let P be annWSP. Deciding whether there exists a weighted answer set
S of P containingl is AF-complete.

This resultimplies that, unlike for sequences of qualiafireferences [15], introducing
sequences of weights does not yield an increase of expeesss. Nevertheless, these
sequences allow for a more intuitive expression of certedblems.

4 Largest Common Subgraphs
and Approximate Subgraph Isomorphisms

While largest common subgraphs and approximate subgrapioiphisms are similar
to finding largest common subtrees [1], the formalizationimteoduce in this section
is, to the best of our knowledge, new.

A graphis a tupleG = (N, E), whereN is afinite set ohodesandE C N x N is
a set of tuples representing thdgesn the graph. We assume that graphs are directed;
an undirected edge from to m can still be represented by having bdth, n) and
(n,m)inE.

Two graphs#; = (N, E1) andG> = (N,, E») are said to bésomorphic denoted
G1 = (., if there exists a bijectiorf : Ny — N, such thatf(F;) = E,, where
f(Ey) denotes((f(t), f(h)) | (t,h) € E}. On the other handy- is called asubgraph
of G1, denotedG, < G4, iff Ny C N; andE; C E;. Furthermore(- is called
subgraph isomorphito G, denotedd, < G, if there exists a subgraphi; < G,
such thatGs = G3. A graphG, is called acommon subgrapbf G; andG,, denoted
Gy < {Gl,GQ}, if G4 =< Gy and“ Gy j G.

For certain applications the notion of common subgraphsasweak and one is
more interested in finding the largest common subgraph legtviwo given graphs.
Formally, a graplt7, is alargest common subgrapsf G; andG,, denoted7, <™*
{G1,G>y}if G4 < {G1, G} and there does not exist a gra@h < {G1, G»} such that
|Es| > | E4]. The set of all largest common subgraphs is denote@(B¥ , G).

* Note that the demand thét, is a subgraph off; is needed to guarantee the finiteness of the
set off all common subgraphs betwe@n andG-.

240 Davy Van Nieuwenborgh, Stijn Heymans, and Dirk Vermeir

On the other hand, subgraph isomorphism is sometimes toagst notion for
certain applications. E.g., when a grafh = (N, E») is not subgraph isomorphic to
a graphGG; = (Ny, Ey), it may be interesting to know what is “missing” @, for G,
to be subgraph isomorphic to it. In this context, a gréapgh= (N5, E3) is called an
extensiorof G; w.r.t. G, just whenG; < G3 andN; = N; when|N;| > |N»| or
N3 = Ny U{z; | 1 < i < |Ns| — |Ny|} otherwise, where the; are new nodes not
occurring inNy. The latter construction a¥; is necessary to handle the cases in which
the graph to search for is bigger than the graph to search gmnaphGs is asubgraph
isomorphic approximatiof G; w.r.t. G, iff G5 is an extension off; w.r.t. G, and
G2 2 G5. We useis ggl G5 to denote thaf/; is approximately subgraph isomorphic
to G3 w.r.t. Gy, i.e. Gz is a subgraph isomorphic approximation@f w.r.t. G,. The
set of all subgraph isomorphic approximationgafw.r.t. G is denoted byd¢, (G2).

Obviously, not every subgraph isomorphic approximafigre A¢, (G-2) is equally
interesting. E.g., the fully connected grafi¥i;, N5 x N3) is, clearly, always a subgraph
isomorphic approximation and thus iy, (G2). However, in most cases there will ex-
ist smaller extensions d¥; in Ag, (G2). Therefore, we are particularly interested in
elements frond g, (G2) that have a minimal, in some sense, difference with the maigi
graphG1. Here we use\, (G3) to denote theinidirectional edge differendgetween
G1 andG3, i.e.A(;l (G3) = E3\E1.

Two minimality criteria, which are widely used in areas lifgnostic reasoning
[5,6,17], are cardinal minimality and subset minimality.the former case, we select
those elements fromlg, (G») that are minimal w.r.t. cardinality among the elements
in Ag, (G2). Formally, a grapltys € Ag, (G») is said to be @ubgraph isomorphic c-
approximationiff there does not exist a graghly € Ag, (G2) such thatAg, (G4)| <
|Ag, (G3)|. The set of all c-approximations is denoted d§; (G2).

Example 4.Consider the four undirected graptis, G2, G3 and G4 represented in
Figure 1. It is clear thaf/, is one of the largest common subgraphs betw@&erand

Fig. 1. The graphs7:, G2, G3 andG,4 of Example 4.

Gs,.e.Gy € C(Gl,Gg).

On the other hand7; is subgraph isomorphic t&'s, i.e. Gy = Gs, but not to
G'3. However, adding a single (bidirectional) edge betweenre.@ndr in Gs, i.e.
G5 = (N3, E3 U {{m,r),(r,m)}), results in a subgraph isomorphic approximation

Intelligence Analysis Using Quantitative Preferences 241

of Gz w.rt. Gy, i.e. G1 Zg, Gs. Obviously,Gs is cardinal minimal yielding that
Gs € A%g (Gl)

Subset minimal isomorphic approximations can be definedsimédar way. How-
ever, in contrast with diagnostic reasoning, subset milifynis less intuitive in this
setting. E.g. adding the edgés o), (o, w), (w,v) and(v, p) (and their reverses) G’
in Example 4 yields a subset minimal isomorphic approxioratv.r.t. G;. However,
if we see(G; as an activity graph an@; as a pattern of interest, as is often done by
intelligence agencies for detecting possible threatdi] previously mentioned subset
minimal approximation is not very useful as it forces theragyyeto checkd possible
relations between currently unrelated things. On the dihed, the approximations in
Ag, (G1) are of much more value as they all yield one missing link to piate the
pattern, implying that the agency can quickly confirm thedat®ns (see also the next
section).

Obviously, when a graph is subgraph isomorphic to another the latter is the
only c-approximation of itself.

Theorem 3. LetGy andG» be graphs such that's 3 Gi. Then, A (Ga) = {G1}.

Using the weighted answer set semantics, we have the meeffisdtively compute,
for given graphs7, andG-, the largest common subgraphs®@f andG»; or the c-
approximations o&7; w.r.t. G». In what follows, we will sometimes use non-grounded
rules for clarity, but grounding is performed as usual. Catimy the largest common
subgraphs can be done using the following transformation.

Definition 5. LetGy = (N1, Ey) andGy = (N,, E») be graphs. The weighted pro-
gram, denoted’(G1, G=), computing the largest common subgraphs betwegeand
G- is defined by the rules (whete= |Ny|? + 1

1. {nodel(z) < (0) | z € N1} U {node2(z) < (0) | z € Na} ; ‘

2. {edgel(z,y) + (0) | (@) € E1} U {edgel(z,) < (0) | (2,5) € EP\Ey} 5
3. {edge2(z.y) < (0) | (0.9) € Eo} U {~edge2(a.y) + (0) | (z.y) € E3\Es} :
4. {-no_con(z,y) + (0) | € N1,y € N2} ;

5. {con(X,Y) < nodel(X),node2(Y), ~no_con(X,Y)(T)} ;

6. {no_con(X,Y) «+ con(X',Y),nodel(X), X # X'(1)} ;

7. {no_con(X,Y) < con(X,Y"),node2(Y),Y #Y'(T)} ;

8. {common(X,Y) + edgel(X,Y),con(X,X"),con(Y,Y"),edge2(X"',Y"){(0)} ;
9. {threshold + (T} ;

10. {—threshold < edgel(X,Y),con(X, X"),con(Y,Y"), medge2(X", Y")(1)} ;

Intuitively, the rules in (1) introduce the nodes of the giggaphs as facts, while the
rules in (2) and (3) introduce the edges of the graphs asiyoficts and the edges not
appearing in the graphs as negative facts. Further, the inul@) are used to introduce
negation as failure for theo_con/2 predicate, while the rules in (5), (6) and (7) are
used to setup an injective relation between the nodég aindG,. The rules in (8) are
used to retrieve the largest common subgrapb/pfand G,. Finally, the rules in (9)
and (10) ensure that only the largest common subgraphs arputed, i.e. the rule in
(9) will never be defeated due to its high threshold and salbes in (10) count the

242 Davy Van Nieuwenborgh, Stijn Heymans, and Dirk Vermeir

missing edges in the subgraph w.r.t. the original graph asing edges lead to defeated
rules.

Reconsidering the graplis andG; from Example 4, one of the possible weighted
answer sets fof (G, G2) will contain, besides the numerous other predicates, &a-pr
icates{common(a, b), common(b, ¢), common(b, a), common(c, b)}, corresponding
to the largest common subgraph in Example 4. This behavior is confirmed by the
following theorem.

Theorem 4. Let Gy = (N1, Ey) andGs = (N, E») be two graphs. Ther?s =
(N3, E3) € C(G1,G2) iff there exists a weighted answer det of £L(G1,G»), with
Dr(Gy,a0) (M) < T, such that{common(z,y) | (z,y) € E3} C M.

To compute c-approximations of given graphs, we introdheetiges of/; as facts
of the formedge(z,y) + (0), where(x,y) € E;. For each possible edde, y) ¢ E1,
with =,y € Np, we give a choice to either include it or not in an approxio@tdy
introducing the factedge(z,y) + (0) and—edge(z,y) < (1). The penalty involved
in the latter fact is to ensure that the computed approxomatare cardinal minimal,
i.e. notinserting an edge (defeating the former rule) catidoee freely, but inserting an
edge (defeating the latter rule) has to be minimized. In ¢&s¢ < |N-2| we also add
edges to theN,| — | N;| new nodes.

To matchGs with the possible approximations, we need to introduce &ochenode
n € N, a unique new variable nam¥. Searching for a match aff, in the ap-
proximation is done by the single ruteatch «+ 3(0), whereg = {edge(X,Y) |
(r,y) € Ex} U{X #Y | (z,y) € Ex Az # y}. Finally, we add the single rule
match < notmatch(0) which forces any solution to contain a match (note that this
rule cannot be defeated).

Definition 6. LetGy = (Ny, Ey) andG> = (N,, E») be graphs. The program com-
puting the c-approximations @&, w.r.t. G5, denotedCq, (G-), is defined by the rules:

— {edge(z,y) « (0) | (z,y) € Ex} ;

— {edge(z,y) + (0) ; medge(z,y) « (1) | z,y € NyU{z; | (|N1] < [N2[)A(1 <
i <|No| = [N1))} A(z,y) € Er} s

— {match «+ 3(0)}, whereg = {edge(X,Y) | (z,y) € B2} U{X £Y | (2,y) €
Ey ANz #y} ;and

— {match + notmatch(0)} .

If we reconsider the graphS; and Gs from Example 4, the programic, (G1)
contains, besides the numeraudge/2 facts, the rule

match < edge(A, B), edge(B, D), edge(D, C), edge(C, A), edge(B, A), edge(D, B)
edge(C, D), edge(A,C),A# B,B# D,D #C,C # A .

One of the possible weighted answer setsCef, (G1) is e.g.S = {edge(z,y) |
(x,y) € Es} U {edge(m,r),edge(r,m)} U ({—edge(z,y) | =,y € N3 A (z,y) &
Es}\ {edge(m,r),edge(r,m)}). Clearly,S corresponds with the extensi@#, from
Example 4, which is a cardinal minimal approximationtef w.r.t. G;. This behavior
is confirmed by the following theorem.

Intelligence Analysis Using Quantitative Preferences 243

Theorem 5. LetGy = (N4, Ey) andG, = (N», E>) be graphs. Thers = (N3, E3) €
Ag, (Go) iff M = {edge(z,y) | (z,y) € B3} U {-edge(z,y) | v,y € N3 A(z,y) ¢
Es} U {match} is a weighted answer set 8, (G»).

In the current approach no distinction is made between tgesthat can be added
to a graph to obtain an approximation. However, one can inggituations in which
adding one edge is more “difficult” than adding another,the.cost of adding an edge
may vary. E.g., for an intelligence agency, it may be easi@hieck a relationship be-
tween people in the home country, than between people ilgfoo®untries, but check-
ing 4 internal relationships may be as hard as checkiagternal relationship, resulting
in a cost of4 for edges between externals and a cost fifr edges between internals.
Such costs represent a quantitative preference relatiwreba edge additions.

In this case, optimal solutions are approximations thaimiize the sum of all costs
associated with the added edges in the approximation. ttiglifficult to see that this
kind of minimization can easily be computed by an adaptedigarof the program in
Definition 6: just replace the weightswith the cost associated for adding the edge to
an approximation. Clearly, Theorem 5 remains valid in thkiglsion.

Similarly, we could think of an agency where possible trseat first selected, by
some field agent, depending on the effort needed to checkiceeiationships. After-
ward, the supervisor will apply, on the proposed investigest of his field agent, another
kind of quantitative preferences, e.g. using informati@mf other departments. In case
there are still a number of possible solutions left overrdfie supervisor, even a third
individual, e.g. the director, could apply his preferenceshese possibilities. Again, it
is not difficult to see that this problem can be elegantly niediby an adapted version
of the program in Definition 6, this time using theweight sequence programs intro-
duced in Section 3. Also in this extension, an adapted versiorheorem 5 remains
valid.

5 An Application in Intelligence Analysis

Attributed relational graphs (ARGS), an extension of thstetrt directed graphs de-
fined in the previous section, are often used in e.g. in@fla@e analysis to understand
complex, and often uncertain, situations. The nodes in 8lREs are used to describe
objects in the observed world, e.g. persons, organizationg/hile the edges are used
to represent relationships between the nodes, e.qg. itiamaownership, trust,

In addition, ARG nodes and edges may have additional atgshthat describe the
details of the specific objects or relationships: e.g. theeaf a person, the kind of
chemical, the type of conversation. An example of such an ARGed on an example
from [4], can be found in Figure 3. Here, a person named B#l temted a truck for
carrying liquids and that same person resides in a house3aMbn street together
with a person called Ted. Furthermore, Ted has been obgeaviactory called Acme
Inc. and he also bought large quantities of the chenfit@.

Intelligence analysts normally define small abstract pastevhich are believed to
be indications of possible threats. An example of such &pgtbased on the same ex-
ample from [4], can be found in Figure 2. Intuitively, it statthat two persons residing

244 Davy Van Nieuwenborgh, Stijn Heymans, and Dirk Vermeir

House,21 West St Car, Honda House, 34 East St

Factory Person, Alice reside reside

friends

Person, Tom
<

Person, Richard Person, Harry

Factory,Acme Inc.
Chemicals,HCI

reside

Truck House Chemicals Person, Ted

. House, 123 Main St
Car, Bentley Person, Jennifer

Fig.2. The pattern
graph [4]. Fig. 3. The observed activity graph [4].

at the same place and both observing the same factory camgerdas if one person
buys some chemical, while the other rents a truck.

Having both an ARG of observed activity and a pattern, thdyateneed tools
for finding specific regions in the ARG that “closely” matctettefined threat pat-
tern. Subgraph isomorphic approximations turn out to baaltalk tools to accomplish
this task [4]. The framework and results we developed iniSeet can be intuitively
adapted to the setting of ARGs, where the transformatiananveighted program al-
lows an analyst to compute subgraph isomorphic approximatihat are minimal in
some quantitative sense. In situations where investigatiissing additional relation-
ships is equally hard, the analyst can use the cardinal ralrapproximations. On the
other hand, if investigating some relationship has a highst than investigating oth-
ers, an analyst could rely upon the extension of the framleafdBection 4, i.e. defining
a cost with each relationship (edge) that can be added todauégraph isomorphic
approximation and only keeping the approximations thaimmire the sum of the costs.
Similarly, it could be the case that the analyst is not they @mle in charge of making
the final decision or that he has multiple equivalent pobsés. In such situations, it
can be useful to apply the quantitative preferences of sdaher people, e.g. a super-
visor or the director, to refine the number of solutions, stailing the most preferred
solution. By using the second extension of the frameworlezti®n 4, also this kind of
reasoning with ARGs can be solved, i.e. by using weight secgiprograms.

Instead of formally adapting the framework and the resultsjllustrate the adap-
tation, and its usefulness, using the example on inteligemalysis: we will translate
the ARG and pattern of Figures 3 and 2 into a weighted progradrshow that the so-
lutions of the program correspond with the regions of thirétte ARG w.r.t. the given
pattern.

First we translate, for convenience, the nodes of the AR@Gotte predicates. E.g.
a person named Bill forces the fagtde (person, bill) < (0) into the program, while
the factory Acme Inc. is responsible for the factde (factory, acme_inc) < (0). In
total, we have 17 of such facts in our weighted program.

Next, we have to describe the relationships between thesnaglag extended ver-
sions of theedge/2predicates used in the previous section. E.g. Ted resigirthe

Intelligence Analysis Using Quantitative Preferences 245
house in 123 Main street gives rise to the fact
edge(person, ted, reside, house, 123 _main_street) < (0) ,
while the conversation between Jennifer and Bill can beritest by the fact
edge(person, bill, conversation, phone, person, jennifer) < (0) .

Note that the differenedgefacts can have different arities, which is not a problem
as long as the arities, and the ordering of the argumentgharsame for the same
relationship. E.gedgefacts representing the conversation relationship alviay® six
arguments: the first two correspond to a node, the third hag tiwonversation”, the
fourth the type of conversation and the last two again cpoed to a node.

Also note that ARGs are directed graphs, but certain relatése bidirectional, e.g.
friendsandmarried For these relationships we have to explicitly add bothdliogs
using theedgefacts: e.g. botledge(person, richard, friend, person, tom) < (0) and
edge(person, tom, friend, person, richard) < (0) have to be present in the weighted
program. One could argue that a conversation through plsoaksd bidirectional, but
we use a directed edge here to represent who initiated the cal

The pattern in Figure 2 can be translated into the followirlg,rwhere names start-
ing with an uppercase letter correspond to a variable:

match + edge(person, NamePersonl, observe, factory, NameFactory),
edge(person, NamePerson2, observe, factory, NameFactory),
edge(person, NamePersonl, reside, house, AddressHouse),
edge(person, NamePerson2, reside, house, AddressHouse)
edge(person, NamePersonl, rent, truck, KindOfTruck),

(

edge(person, NamePerson2, buy, chemicals, KindOfChemical) (0)

Y

The above pattern matching rule also matches situationseandr@dy one person
observes a factory and does both the renting of the truckltatuying of the chemi-
cals. If one wants to have explicitly two different persome,need to add the condition
NamePersonl # NamePerson2 to the rule.

Finally, we have to add rules for the edges that can evegthallidded to our ac-
tivity graph to obtain a subgraph isomorphic approximatibimese edges will directly
point out the region of interest in the activity graph as thaimization assures that
only edges are added where necessary, i.e. on those platesdntivity graph where
the pattern (almost) matches. While we introduced all idsstdges in the simula-
tion of Section 4, doing the same in the context of ARGs maybeothe best way to
go. Indeed, ARGs can have multiple edges between the sanes mod with differ-
ent attributes, which are not always useful to define betveegtain types of nodes.
E.g. edge(chemical, hel, buys, chemical, gasoline) <+ (0) is theoretically possible,
but useless in real life. Therefore, one should avoid thechiction of meaningless
edges in the program, possibly by adding extra semanticadtcaints, e.g. typing the

246 Davy Van Nieuwenborgh, Stijn Heymans, and Dirk Vermeir

attributes in ARGS. Some examples of choices of edges toradd a

edge(person, bill, observe, factory, acme_inc) <+ (0)
= edge(person, bill, observe, factory, acme_inc) < (v)
edge(person, bill, buy, chemical, hel) < (0)
- edge(person, bill, buy, chemical, hel) + (w)

edge(person, alice, conversation, phone, person, ted) < (0)
- edge(person, alice, conversation, phone, person, ted) < (z)

In the above rules for possible edges to add, the rules withs#iye occurrences of
the edgepredicate always have a weight@fas not adding an edge, i.e. defeating the
rule, can be done for free. On the other hand, the negativerewes have a weight
corresponding to the cost associated with adding the edgease we use cardinal
minimality, the costs (e.@., w andz) will all be 1, while in case of total cost minimality
we could definer = 4, w = 2 andz = 1 yielding that it is twice as hard to check if
someone observed a factory than checking if he bought soemaichl, which in turn
is twice as hard than checking if he made a phone call.

For simplicity, we only consider cardinal minimality (and sequences) in what
follows, i.e. we take all the weights of the rules with negatbccurrence of ardge
predicate to bé. If we consider the weighted program obtained in the way veedieed
above, we will have two weighted answer stand7'. Both will contain all the edges
from the original activity graph together with the fasutch. Additionally, S will con-
tain the factedge(person, bill, observe, factory, acme_inc) together with all negated
versions of the otheedgepredicates we added to the program Similafiywill con-
tain the factedge (person, ted, rent, truck, liquids) together with all negated versions,
except the one occurring positively. Clearly, b&thand T correspond with the only
cardinal minimal subgraph isomorphic approximations efphoblem.

As said before, we can add the conditi¥amePersonl # NamePerson?2 to the
pattern rule in our program if we explicitly want two differepersons. When we con-
sider the weighted program obtained in that wayyill be the single weighted answer
set of the program, corresponding to the single subgraphadsgehic approximation of
the problem.

Finally, one can imagine situations in which one has two oleskactivity graphs,
e.g. provided by two different agencies, and one is intetegt finding the largest
common observed activity in those ARGs. By using an adaptesian of Definition 5
in the context of ARGs, the corresponding modified versiohtidorem 4 demonstrates
that also these kind of problems in intelligence analysislimconveniently tackled by
the presented framework.

6 Conclusions and Directions for Further Research

We presented a simple and intuitive quantitative preféaks¢mantics based on the ex-
tended answer set semantics, characterized its expressvand illustrated its useful-
ness using an application in the area of intelligence aisl@dher areas of possible ap-
plications that are interesting for further exploratioolide molecular biology, where

e.g. largest common subgraphs are used to detect sineitabiétween large molecules

Intelligence Analysis Using Quantitative Preferences 247

[11,13,1]. Further research also encompasses the effiogiementation of the se-
mantics, e.g. using existing answer set solvers such asrfller[smodels [12]. Fur-
thermore, the relationships between the present propodalther weighted semantics
such as weak constraints [3] need to be investigated.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Tatsuya Akutsu and Magnis M. Halldorsson. On the appration of largest common
subtrees and largest common point s&tseoretical Comp. Scienc233(1-2):33-50, 2000.
Chitta BaralKnowledge Representation, Reasoning and Declarativel®moBolving Cam-
bridge Press, 2003.

. Francesco Buccafurri, Nicola Leone, and Pasquale Rbtfong and weak constraints in dis-

junctive datalog. IfProceedings of the 4th International Conference on LogmjPamming
(LPNMR '97) pages 2-17, 1997.

. Thayne Coffman, Seth Greenblatt, and Sherry Marcus. lGbaped technologies for intel-

ligence analysisCommunications of the ACM7(3):45-47, 2004.

. L. Console and P. Torasso. A spectrum of logical defingtioh model-based diagnosis.

Computational Intelligencer(3):133-141, 1991.

. Thomas Eiter, Wolfgang Faber, Nicola Leone, and Geradif&f The diagnosis frontend of

the dlv systemAl Communications12(1-2):99-111, 1999.

. Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerakdféf Declarative problem-

solving using the dlv systeniogic-Based Artificial Intelligencgpages 79-103, 2000.

. Michael Gelfond and Vladimir Lifschitz. The stable modemantics for logic programming.

In Logic Programming, Proceedings of the Fifth Internatio@dnference and Symposium
pages 1070-1080. MIT Press, 1988.

. R.J. Heuer. Psychology of intelligence analysis. Cefotethe Study of Intelligence, Central

Intelligence Agency, 2001.

Vladimir Lifschitz. Answer set programming and plan getion. Journal of Artificial
Intelligence 138(1-2):39-54, 2002.

R. E. Stobaugh. Chemical substructure searchifmmrnal of Chemical Information and
Computer Science®5:271-275, 1985.

Syrjanen T. and Niemela I. The smodels systemPrisceedings of the 6th International
Conference on Logic Programming and Nonmonotonic Reagpmatume 2173 oLecture
Notes in Computer Sciengeages 434-438, Vienna, Austria, September 2001. Springer
Y. Takahashi, Y. Satoh, H. Suzuki, and S. Sasaki. Retiogrof largest common structural
fragment among a variety of chemical structur@salytical Sciences3:23-28, 1987.

J.R. Ullman. An algorithm for subgraph isomorphisinof the ACM 23(1):31-42, 1976.
Davy Van Nieuwenborgh, Stijn Heymans, and Dirk Vermedn programs with linearly
ordered multiple preferences. Rmoc. of 20th Intl. Conference on Logic Programming (ICLP
2004) volume 3132 ot.ecture Notes in Computer Scienpages 180-194. Springer, 2004.
Davy Van Nieuwenborgh and Dirk Vermeir. Preferred anssets for ordered logic pro-
grams. InEuropean Conference on Logics in Artificial Intelligenc&LIA 2002 volume
2424 ofLecture Notes in Atrtificial Intelligencepages 432—443, 2002.

Davy Van Nieuwenborgh and Dirk Vermeir. Ordered diagom Proceedings of the 10th
International Conference on Logic for Programming, Aridildntelligence, and Reasoning
(LPAR2003)volume 2850 of_NAI, pages 244-258. Springer, 2003.

Marina De Vos and Dirk Vermeir. Logic programming ageuits/ing games. IiResearch
and Development in Intelligent Systems XIX (ES20B2)S Conference Series, pages 323—
336. Springer-Verlag, 2002.

