
Reducing Propositional Theories in Equilibrium Logic
to Logic Programs

Pedro Cabalar1, David Pearce2, and Agust́ın Valverde3?

1 Dept. of Computation, Univ. of Corunna, Spain.
cabalar@dc.fi.udc.es

2 Dept. of Informatics, Statistics and Telematics,
Univ. Rey Juan Carlos, (Ḿostoles, Madrid), Spain.

d.pearce@escet.urjc.es
3 Dept. of Applied Mathematics, Univ. of Ḿalaga, Spain.

a valverde@ctima.uma.es

Abstract. The paper studies reductions of propositional theories in equilibrium
logic to logic programs under answer set semantics. Specifically we are con-
cerned with the question of how to transform an arbitrary set of propositional for-
mulas into an equivalent logic program and what are the complexity constraints
on this process. We want the transformed program to be equivalent in a strong
sense so that theory parts can be transformed independent of the wider context in
which they might be embedded. It was only recently established [2] that proposi-
tional theories are indeed equivalent (in a strong sense) to logic programs. Here
this result is extended with the following contributions. (i) We show how to ef-
fectively obtain an equivalent program starting from an arbitrary theory. (ii) We
show that in general there is no polynomial transformation if we require the re-
sulting program to share precisely the vocabulary or signature of the initial theory.
(iii) Extending previous work we show how polynomial transformations can be
achieved if one allows the resulting program to contain new atoms. The program
obtained is still in a strong sense equivalent to the original theory, and the answer
sets of the theory can be retrieved from it.

1 Introduction

Answer set programming (ASP) is fast becoming a well-established environment for
declarative programming and AI problem solving, with several implemented systems [1]
and advanced prototypes and applications. Though existing answer set solvers differ
somewhat in their syntax and capabilities, the language of disjunctive logic programs
with two negations, as exemplified in theDLVsystem [12] under essentially the seman-
tics proposed in [8], provides a standard reference point. Many systems support differ-
ent extensions of the language, either through direct implementation or through reduc-
tions to the basic language. For example weight constraints are included insmodels [25],
while a system callednlp [23] for compiling nested logic programs is available as a
front-end toDLV. Though differently motivated, these two kinds of extensions are ac-
tually closely related, since as [7] shows, weight constraints can be represented equiva-
lently by nested programs of a special kind.
? Partially supported by CICyT project TIC-2003-9001-C02 and WASP (IST-2001-37004).

102 Cabalar, Pearce and Valverde

Answer set semantics was already generalised and extended to arbitrary proposi-
tional theories with two negations in the system ofequilibrium logic, defined in [18]
and further studied in [19–21]. Equilibrium logic is based on a simple, minimal model
construction in the nonclassical logic of here-and-there (with strong negation), and ad-
mits also a natural fixpoint characterisation in the style of nonmonotonic logics. In [21,
14] it was shown that answer set semantics for nested programs [13] is also captured by
equilibrium models.

While nested logic programs permit arbitrary boolean formulas to appear in the
bodies and heads of rules, they do not support embedded implications; so for example
one cannot write innlp a rule with a conditional body, such as

p← (q ← r).

In fact several authors have suggested the usefulness of embedded implications for
knowledge representation (see eg [4, 9, 24]) but proposals for an adequate semantics
have differed. Recently however Ferraris [6] has shown how, by modifying somewhat
the definition of answer sets for nested programs, a natural extension for arbitrary
propositional theories can be obtained. Though formulated using program reducts, in
the style of [8, 13], the new definition is also equivalent to that of equilibrium model.
Consequently, to understand propositional theories, hence also embedded implications,
in terms of answer sets one can apply equally well either equilibrium logic or the new
reduct notion of [6]. Furthermore, [6] shows how the important concept ofaggregatein
ASP, understood according to the semantics of [5], can be represented by rules with em-
bedded implications. This provides an important reason for handling arbitrary theories
in equilibrium logic and motivates the topic of the present paper.

We are concerned here with the question how to transform a propositional theory
in equilibrium logic into an equivalent logic program and what are the complexity con-
straints on this process. We want the transformed theory to be equivalent in a strong
sense so that theory parts can be translated independent of the wider context in which
they might be embedded. It was only recently established [2] that propositional theories
are indeed equivalent (in a strong sense) to logic programs. The present paper extends
this result with the following contributions. (i) We show how to effectively obtain an
equivalent program starting from an arbitrary theory. (ii) We show that in general there
is no polynomial transformation if we require the resulting program to share precisely
the vocabulary or signature of the initial theory. (iii) Extending the work of [16, 17] we
show how polynomial transformations can be achieved if one allows the resulting pro-
gram to contain new atoms. The program obtained is still in a strong sense equivalent
to the original theory, and the answer sets of the latter can be retrieved from the answer
sets of the former.

2 Equilibrium Logic

We assume the reader is familiar with answer set semantics for disjunctive logic pro-
grams [8]. As a logical foundation for answer set programming we use the nonclassical
logic of here-and-there, denoted here byN3, and its nonmonotonic extension,equilib-
rium logic [18], which generalises answer set semantics for logic programs to arbitrary

Reducing Propositional Theories in Equilibrium Logic to Logic Programs 103

propositional theories (see eg [14]). We give only a very brief overview here, for more
details the reader is referred to [18, 14, 20] and the logic texts cited below.4

Given a propositional signatureV we define the corresponding propositional lan-
guageLV as the set of formulas built from atoms inV with the usual connectives
>,⊥,¬,∧,∨,→. A literal is any atomp ∈ V or its negation¬p. Given a formula
ϕ ∈ LV , the functionsubf(ϕ) represents the set of all subformulas ofϕ (includingϕ
itself), whereasvars(ϕ) is defined assubf(ϕ) ∩ V , that is, the set of atoms occurring
in ϕ. By degree(ϕ) we understand the number of connectives¬, ∧, ∨,→ that occur in
the formulaϕ. Note that|subf(ϕ)| would be at most5 degree(ϕ) + |vars(ϕ)| plus the
number of occurrences of> and⊥ in ϕ. As usual, a set of formulasΠ ⊆ LV is called
a theory. We extend the use ofsubf andvars for theories as expected. The degree of a
theory,degree(Π), is defined as the degree of the conjunction of its formulas.

The axioms and rules of inference forN3 are those of intuitionistic logic (see eg [3])
together with the axiom schema:

(¬α→ β)→ (((β → α)→ β)→ β)

The model theory ofN3 is based on the usual Kripke semantics for intuitionistic logic
(see eg [3]), butN3 is complete for Kripke frames〈W,≤〉 (where as usualW is the
set of points or worlds and≤ is a partial-ordering onW) having exactly two worlds
sayh (‘here’) andt (‘there’) with h ≤ t. As usual amodelis a frame together with an
assignmenti that associates to each element ofW a set ofatoms, such that ifw ≤ w′

theni(w) ⊆ i(w′); an assignment is then extended inductively to all formulas via the
usual rules for conjunction, disjunction, implication and negation in intuitionistic logic.
It is convenient to represent anN3 model as an ordered pair〈H,T 〉 of sets of atoms,
whereH = i(h) andT = i(t) under a suitable assignmenti; by h ≤ t, it follows that
H ⊆ T .

A formulaϕ is true in anN3 modelM = 〈H,T 〉, in symbolsM |= ϕ, if it is true
at each world inM. A formulaϕ is said to bevalid in N3, in symbols|= ϕ, if it is true
in all N3 models. Logical consequence forN3 is understood as follows:ϕ is said to be
anN3 consequence of a theoryΠ, writtenΠ |= ϕ, iff for all modelsM and any world
w ∈M,M, w |= Π impliesM, w |= ϕ. Equivalently this can be expressed by saying
thatϕ is true in all models ofΠ.

ClearlyN3 is a 3-valued logic (usually known as Gödel’s 3-valued logic) and we
can also represent models via interpretationsI that assign to every atomp a value in
3 = {0, 1, 2}. The assignmentI corresponding to the model〈H,T 〉 is the function that
assigns values byI(p) = 2 iff p ∈ H; I(p) = 1 iff p ∈ T rH andI(p) = 0 iff p 6∈ T ,
for each atomp. An assignmentI is extended to all formulas using the interpretation
of the connectives as operators in3. If • ∈ {∧,∨,→,¬}, we denote these operators by
f•.

4 As in some ASP systems the standard version of equilibrium logic has two kinds of negation,
intuitionistic and strong negation. For simplicity we deal here with the restricted version con-
taining just the first negation and based on the logic of here-and-there. So we do not consider
here eg logic programs with strong or explicit negation.

5 It would be strictly lower if we have repeated subformulas.

104 Cabalar, Pearce and Valverde

Equilibrium models are special kinds of minimalN3-models. LetΠ be a theory
and〈H,T 〉 a model ofΠ. 〈H,T 〉 is said to betotal if H = T . 〈H,T 〉 is said to be an
equilibrium modelif it is total and there is no model〈H ′, T 〉 of Π with H ′ ⊂ H. The
expressionEq(V,Π) denotes the set of the equilibrium models of theoryΠ on signa-
tureV . Equilibrium logic is the logic determined by the equilibrium models of a theory.
It generalises answer set semantics in the following sense. For all the usual classes of
logic programs, including normal, disjunctive and nested programs, equilibrium models
correspond to answer sets. The ‘translation’ from the syntax of programs toN3 propo-
sitional formulas is the trivial one, eg. a ground rule of a disjunctive program of the
form

q1 ∨ . . . ∨ qk ← p1, . . . , pm, not pm+1, . . . , not pn

where thepi andqj are atoms, corresponds to theN3 sentence

p1 ∧ . . . ∧ pm ∧ ¬pm+1 ∧ . . . ∧ ¬pn → q1 ∨ . . . ∨ qk

Proposition 1 ([18, 14]).For any logic programΠ, anN3 model〈T, T 〉 is an equilib-
rium model ofΠ if and only ifT is an answer set ofΠ.

Two theories,Π1 andΠ2 are said to belogically equivalent, in symbolsΠ1 ≡ Π2,
if they have the sameN3 models. They are said to bestrongly equivalent, in symbols
Π1 ≡s Π2, if and only if for anyΠ,Π1 ∪Π is equivalent to (has the same answer sets
as)Π2 ∪Π. The two notions are connected via:

Proposition 2 ([14]). Any two theories,Π1 andΠ2 are strongly equivalent iff they are
logically equivalent, ie.Π1 ≡s Π2 iff Π1 ≡ Π2.

Strong equivalence is important because it allows us to transform programs or theo-
ries to equivalent programs or theories independent of any larger context in which the
theories concerned might be embedded. Implicitly, strong equivalence assumes that the
theories involved share the same vocabulary, a restriction that has been removed in [22].
Here, in§4 below, we use a slight generalisation of strong equivalence, where we allow
one language to be a subset of the other.

3 Vocabulary-preserving transformations

The first transformation we present translates an arbitrary theory into a strongly equiv-
alent logic program under the same signature. Although something similar was made
in [2], the transformation used there was actually thought for getting a simple proof
of existence of a translation, but was not very concerned about the simplicity of the
obtained programs or the final number of involved steps. To put an example, using the
translation in [2], a simple program rule like¬a → b ∨ c would be first transformed
to remove negations and disjunctions and then converted into a (nested) logic program
with a bottom-up process (starting from subformulas) which eventually yields the pro-
gram:
¬a→ b ∨ c ∨ ¬b (b ∨ ¬c) ∧ ¬a→ b ¬a→ b ∨ c ∨ ¬c (c ∨ ¬b) ∧ ¬a→ c
The result would further require applying the unfolding rules introduced in [13] to get a

Reducing Propositional Theories in Equilibrium Logic to Logic Programs 105

non-nested program. Note that the original formula was already a non-nested program
rule that did not need any transformation at all.

The transformation we present here adopts the opposite orientation. It is a top-down
process that relies on the successive application of several rewriting rules that will op-
erate on sets (conjunctions) of implications. A rewriting will take place whenever one
of those implications has not the form of a (non-nested) program rule yet. Two sets of
transformations are described next. A formula is said to be innegation normal form
(NNF) when negation is only applied to literals. As a first step, we describe a set of
rules that move negations inwards, until a NNF is obtained:

¬>⇐⇒⊥ (1) ¬(ϕ ∧ ψ)⇐⇒¬ϕ ∨ ¬ψ (4)
¬⊥⇐⇒> (2) ¬(ϕ ∨ ψ)⇐⇒¬ϕ ∧ ¬ψ (5)

¬¬¬ϕ⇐⇒¬ϕ (3) ¬(ϕ→ ψ)⇐⇒¬¬ϕ ∧ ¬ψ (6)

Transformations (1)-(5) were already provided in [13] for obtaining the NNF of so-
called nested expressions(essentially, formulas without implications). Thus, we just
have to include the treatment of a negated implication (6) to obtain the NNF in the
general case.

The general method for transforming any propositional formulaϕ into a logic pro-
gram operates on sets (conjunctions) of implications. Each step replaces one of the im-
plications by new implications to be included in the set. The initial set of implications
is the singleton{> → ϕ}. Without loss of generality, we assume that any implication
α → β to be replaced has been previously transformed into NNF. Furthermore, we
always consider thatα is a conjunction andβ a disjunction (if not, we just takeα ∧ >
or β ∨⊥, respectively), and that we implicitly apply commutativity of conjunction and
disjunction as needed.

Left side rules:

> ∧ α→ β ⇐⇒ { α→ β } (L1)

⊥ ∧ α→ β ⇐⇒ ∅ (L2)

¬¬ϕ ∧ α→ β ⇐⇒ { α→ ¬ϕ ∨ β } (L3)

(ϕ ∨ ψ) ∧ α→ β ⇐⇒
{
ϕ ∧ α→ β
ψ ∧ α→ β

}
(L4)

(ϕ→ ψ) ∧ α→ β ⇐⇒

¬ϕ ∧ α→ β
ψ ∧ α→ β

α→ ϕ ∨ ¬ψ ∨ β

 (L5)

106 Cabalar, Pearce and Valverde

Right side rules

α→ ⊥∨ β ⇐⇒ { α→ β } (R1)

α→ >∨ β ⇐⇒ ∅ (R2)

α→ ¬¬ϕ ∨ β ⇐⇒ { ¬ϕ ∧ α→ β } (R3)

α→ (ϕ ∧ ψ) ∨ β ⇐⇒
{
α→ ϕ ∨ β
α→ ψ ∨ β

}
(R4)

α→ (ϕ→ ψ) ∨ β ⇐⇒
{

ϕ ∧ α→ ψ ∨ β
¬ψ ∧ α→ ¬ϕ ∨ β

}
(R5)

As with NNF transformations, the rules (L1)-(L4), (R1)-(R4) were already provided
in [13] for unfolding nested expressions into disjunctive program rules. The addition in
this case corresponds to transformations (L5) and (R5) that deal with an implication
respectively in the antecedent or the consequent of another implication. In fact, an in-
stance of rule (L5) where we takeα = > was used in [2] to provide a first transfor-
mation of propositional theories into logic programs. Note that rules (L5) and (R5) are
the only ones that introduce new negations and that they both require obtaining¬ϕ and
¬ψ for the inner implicationϕ→ ψ. Thus, if the original propositional formula was in
NNF, the computation of NNF in each intermediate step is only needed for these newly
generated¬ϕ and¬ψ.

Proposition 3. The set of transformation rules(1)-(6), (L1)-(L5), (R1)-(R5)is sound
with respect toN3, that is,|= ϕ↔ ψ for each transformation ruleϕ⇐⇒ ψ.

Of course, these transformations do not guarantee the absence of redundant formulas.
As an example, when we haveβ = ⊥ in (R5), we would obtain the pair of rules,
r1 = ϕ ∧ α → ψ, r2 = ¬ψ ∧ α → ¬ϕ, but it can be easily checked thatr2 follows
from r1.

Of course, we could always use a specialised version:

α→ (ϕ→ ψ) ⇐⇒
{
ϕ ∧ α→ ψ

}
(R5’)

Example 1.Let ϕ be the formula(¬p → q) → ¬(p → r). Figure 1 shows a possible
application of rules (L1)-(L5),(R1)-(R5). Each horizontal line represents a new step.
The reference on the right shows the transformation rule that will be applied next to the
corresponding formula in the left. From the final result we can remove6 trivial tautolo-
gies and subsumed rules to obtain:{q ∧ ¬p→ ⊥, q → ¬r,¬r ∨ ¬p} ut

3.1 Complexity

The following result in [2] shows how to build a strongly equivalent program given an
arbitrary theory, from its set of countermodels.

6 In fact, the ruleq → ¬r is redundant and could be further removed, although perhaps not in a
directly automated way.

Reducing Propositional Theories in Equilibrium Logic to Logic Programs 107

(¬p→ q) → ¬(p→ r) (NNF)

(¬p→ q) → ¬¬p ∧ ¬r (L5)

q → ¬¬p ∧ ¬r
¬¬p → ¬¬p ∧ ¬r (L3)

¬p ∨ ¬q ∨ ¬¬p ∧ ¬r
q → ¬¬p ∧ ¬r (R4)

¬¬p ∧ ¬r ∨ ¬p
¬p ∨ ¬q ∨ ¬¬p ∧ ¬r

q → ¬¬p (R3)
q → ¬r

¬¬p ∧ ¬r ∨ ¬p
¬p ∨ ¬q ∨ ¬¬p ∧ ¬r

q ∧ ¬p → ⊥
q → ¬r

¬¬p ∧ ¬r ∨ ¬p (R4)
¬p ∨ ¬q ∨ ¬¬p ∧ ¬r (R4)

q ∧ ¬p → ⊥
q → ¬r

¬¬p ∨ ¬p (R3)
¬r ∨ ¬p
¬p ∨ ¬q ∨ ¬¬p (R3)
¬p ∨ ¬q ∨ ¬r

q ∧ ¬p → ⊥
q → ¬r
¬p → ¬p

¬r ∨ ¬p
¬p → ¬p ∨ ¬q

¬p ∨ ¬q ∨ ¬r

Fig. 1.Application of transformation rules in example 1

Proposition 4 ([2]). If Π is a theory inLV , thenΠ ≡s {rH,T | 〈H,T 〉 6|= Π}, where
for each interpretation〈H,T 〉

rH,T =
(∧
a∈H

a
)
∧

(∧
b∈VrT

¬b
)
→

∨
c∈TrH

(c ∨ ¬c)

So the complexity of the process of obtaining a program depends on the complexity
of the process of generating the set of countermodels. It is well-known in classical
logic that in general this set can not be obtained with a polynomial process because the
validity problem is coNP-complete. The same is true in many finite-valued logics and
in particular theorem 5 in [10] establishes that validity is also coNP-complete for the
Gödel logics which includeN3. Thus we can conclude that it is not possible to generate
the set of countermodels of a theory with a polynomial algorithm.

Lemma 1. There is no polynomial process to generate the set of countermodels of any
propositional theory inN3.

Using this result we will show in this section that it is not possible convert a proposi-
tional theory to a logic program in the same vocabulary with a polynomial algorithm.

Theorem 1. There is no polynomial algorithm to convert general propositional theo-
ries in equilibrium logic into disjunctive logic programs.

Proof. We can regard any finite theory as the conjunction of all its formulas and there-
fore as anN3 formula. Suppose we were in possession of a polynomial algorithm to
convert propositional theories (or formulas) into logic programs. From this we could
check if the resulting program contains no countermodels (and consequently the initial
formula is valid) by examining each rule and applying the following steps.

Let us consider a ruler of shape:

a1 ∧ · · · ∧ am ∧ ¬b1 ∧ · · · ∧ ¬bn → c1 ∨ · · · ∨ cs ∨ ¬d1 ∨ · · · ∨ ¬dt

108 Cabalar, Pearce and Valverde

withm,n, s, t ≥ 0. Without loss of generality, we may assume thatai 6= dj andbi 6= cj
for everyi, j, otherwise we can apply the simplificationsα∧a→ ¬a∨β ≡s α∧a→ β
andα ∧ ¬a→ a ∨ β ≡s α ∧ ¬a→ β.

– If we have repeated literals in the same group, in the sense thatai = cj or bi = dj
or ai = bj for somei, j, then the formula is valid and has no countermodels.

– Otherwise, the rule has countermodels. Moreover, we can describe the set of coun-
termodels as follows: ifT = {a1, . . . , am, d1, . . . , dt} then every interpretation
〈H,T 〉 is a countermodel ofr; and if T0 = {a1, . . . , am}, T1 ⊆ {c1, . . . , cs},
T2 = {d1, . . . , dt} andH2 ⊆ T2, then〈T0 ∪H2, T0 ∪ T1 ∪ T2〉 is a countermodel
of r.

In this manner the conversion to a logic program together with the verification of the
above properties for each rule would yield a polynomial algorithm for checking validity
in N3, contradicting Lemma 1. ut

4 Polynomial transformations

Let I be an interpretation for a signatureU and letV ⊂ U . The expressionI ∩ V
denotes the interpretationI restricted to signatureV , that is,(I ∩V)(p) = I(p) for any
atomp ∈ V . For any theoryΠ, subf(Π) denotes the set of all subformulas ofΠ.

Definition 1. We say that the translationσ(Π) ⊆ LU of some theoryΠ ⊆ LV with
V ⊆ U is strongly faithfulif, for any theoryΠ ′ ⊆ LV :

Eq(V,Π ∪Π ′) = {J ∩ V | J ∈ Eq(U, σ(Π) ∪Π ′)}

The translations we will consider use a signatureVL that contains an atom (a label) for
each non-constant formula in the original languageLV , that is:

VL = {Lϕ | ϕ ∈ LV r {⊥,>}}

For convenience, we useLϕ
def= ϕ whenϕ is>,⊥ or an atomp ∈ V . This allows us to

considerVL as a superset ofV . For any non-atomic formulaϕ • ψ built with a binary
connective•, we call itsdefinition, df(ϕ • ψ), the formula:

Lϕ•ψ↔ Lϕ • Lψ

Similarly df(¬ϕ) represents the formulaL¬ϕ↔¬Lϕ.

Definition 2. For any theoryΠ in LV , we define the translationσ(Π) as:

σ(Π) def= {Lϕ | ϕ ∈ Π} ∪
⋃

γ∈subf(Π)

df(γ)

That is,σ(Π) collects the labels for all the formulas inΠ plus the definitions for all the
subformulas inΠ.

Theorem 2. For any theoryΠ in LV : {I | I |= Π} = {J ∩ V | J |= σ(Π)}.

Reducing Propositional Theories in Equilibrium Logic to Logic Programs 109

Proof. Firstly note thatI |= ϕ iff I(ϕ) = 2 andI |= ϕ↔ ψ iff I(ϕ) = I(ψ).
‘⊆’ direction: LetI be a model ofΠ andJ the assignment defined asJ(Lϕ) = I(ϕ)
for any formulaϕ ∈ LV . Note that asJ(Lp) = J(p) = I(p) for any atomp ∈ V ,
J ∩ V = I. Furthermore,J |= Lϕ for each formulaϕ ∈ Π too, sinceI |= Π. Thus, it
remains to show thatJ |= df(γ) for anyγ ∈ subf(Π). For any connective• we have
J |= Lϕ•ψ↔ Lϕ • Lψ because:

J(Lϕ•ψ) = I(ϕ • ψ)f•(I(ϕ), I(ψ)) = f•(J(Lϕ), J(Lψ)) = J(Lϕ • Lψ)

This same reasoning can be applied to prove thatJ |= df(¬ϕ).
‘⊇’ direction: We must show thatJ |= σ(Π) impliesJ ∩ V |= Π, that is,J |= Π.
First, by structural induction we show that for any subformulaγ of Π, J(Lγ) = J(γ).
When the subformulaγ has the shape>,⊥ or an atomp this is trivial, sinceLγ = γ by
definition. Whenγ = ϕ • ψ for any connective• then:

J(Lϕ•ψ) ∗= J(Lϕ • Lψ)f•(J(Lϕ), J(Lψ)) ∗∗= f•(J(ϕ), J(ψ)) = J(ϕ • ψ)

In (∗) we have used thatJ |= df(ϕ •ψ) and in(∗∗) we apply the induction hypothesis.
The same reasoning holds for the unary connective¬. Finally, asJ is a model ofσ(Π),
in particular, we have thatJ |= Lϕ for eachϕ ∈ Π. But, as we have seen,J(Lϕ) =
J(ϕ) and soJ |= ϕ. ut

Clearly, including an arbitrary theoryΠ ′ ⊆ LV in Theorem 2 as follows:

{I | I |= Π ∪Π ′} = {J ∩ V | J |= σ(Π) ∪Π ′}

and then taking the minimal models on both sides trivially preserves the equality. There-
fore, the following is straightforward.

Corollary 1. Translationσ(Π) is strongly faithful.

Modularity ofσ(Π) is quite obvious, and the polynomial complexity of its computation
can also be easily deduced. However,σ(Π) does not have the shape of a logic program:
it contains double implications where the implication symbol may occur nested. For-
tunately, we can unfold these double implications in linear time without changing the
signatureVL (in fact, we can use transformations in Section 3 for this purpose). For
each definitiondf(γ), we define the strongly equivalent set (understood as the conjunc-
tion) of logic program rulesπ(γ) as shown in Figure 2. The factdf(γ) ≡s π(γ) can be
easily checked in here-and-there. The main difference with respect to [17] is of course
the treatment of the implication. In fact, the set of rulesπ(ϕ → ψ) was already used
in [16] to unfold nested implications in an arbitrary theory, with the exception that, in
that work, labelling was exclusively limited to implications. The explanation for this
set of rules can be easily outlined using transformations in Section 3. For the left to
right direction indf(ϕ → ψ), that is, the implicationLϕ→ψ → (Lϕ → Lψ), we can
apply (R5’) to obtain the first rule shown in Figure 2 forπ(ϕ → ψ). The remaining
three rules are the direct application of (L5) (beingα = >) for the right to left direction
(Lϕ → Lψ)→ Lϕ→ψ.

The programπ(Π) is obtained by replacing inσ(Π) each subformula definition
df(ϕ) by the corresponding set of rulesπ(ϕ). As π(Π) is strongly equivalent toσ(Π)

110 Cabalar, Pearce and Valverde

γ df(γ) π(γ) γ df(γ) π(γ)

ϕ∧ψ Lϕ∧ψ↔ Lϕ∧Lψ Lϕ∧ψ → Lϕ ¬ϕ L¬ϕ↔¬Lϕ ¬Lϕ → L¬ϕ

Lϕ∧ψ → Lψ L¬ϕ → ¬Lϕ

Lϕ∧Lψ → Lϕ∧ψ

ϕ∨ψ Lϕ∨ψ↔ Lϕ∨Lψ Lϕ → Lϕ∨ψ ϕ→ψ Lϕ→ψ↔ (Lϕ→Lψ) Lϕ→ψ∧Lϕ → Lψ

Lψ → Lϕ∨ψ ¬Lϕ → Lϕ→ψ

Lϕ∨ψ → Lϕ∨Lψ Lψ → Lϕ→ψ

Lϕ∨¬Lψ∨Lϕ→ψ

Fig. 2.Transformationπ(γ) generating a generalised disjunctive logic program.

df(¬ϕ) π′(¬ϕ) df(ϕ→ ψ) π′(ϕ→ ψ)

L¬ϕ↔¬Lϕ ¬Lϕ → L¬ϕ Lϕ→ψ↔ (Lϕ → Lψ) Lϕ→ψ ∧ Lϕ → Lψ

L¬ϕ ∧ Lϕ → ⊥ ¬Lϕ → Lϕ→ψ

Lψ → Lϕ→ψ

Lϕ ∨ L¬ψ ∨ Lϕ→ψ

¬Lψ → L¬ψ

L¬ψ ∧ Lψ → ⊥

Fig. 3.Transformationπ′(γ) generating a disjunctive logic program.

(under the same vocabulary) it preserves strong faithfulness with respect toΠ. Further-
more, if we consider the complexity of the direct translation fromΠ toπ(Π) we obtain
the following result.

Theorem 3. Translationπ(Π) is linear and its size can be bounded as follows:

|vars(π(Π)| ≤ |vars(Π)|+ degree(Π)
degree(π(Π)) ≤ |Π|+ 12 degree(Π)

Proof. As we explained before, we use a label inπ(Π) per each non-constant subfor-
mula inΠ (including atoms). We can count the subformulas as the number of connec-
tives7,≤ degree(Π), plus the number of atoms inΠ, |vars(Π)|.

As for the second bound, note thatπ(Π) consists of two subtheories. The first one
contains a labelLϕ per each formulaϕ in Π. The amount|Π| counts implicit con-
junction used to connect each label to the rest of the theory. The second part ofπ(Π)
collects a set of rulesπ(γ) per each subformulaγ of Π. The worst case, corresponding
to the translation of implication, uses eight connectives plus four implicit conjunctions
to connect the four rules to the rest of the theory. ut

A possible objection toπ(Π) is that it makes use of negation in the rule heads,
something not usual in the current tools for answer sets programming. Although there
exists a general translation [11] for removing negation in the head, it is possible to

7 Note thatdegree(Π) also counts the implicit conjunction of all formulas inT

Reducing Propositional Theories in Equilibrium Logic to Logic Programs 111

Π = { (¬p→ q) → ¬(p→ r) } (theory from Example 1)

σ(Π) π(Π)

L1 ↔¬p L1 → ¬p
¬p → L1

L2 ↔ (L1 → q)

L2 ∧ L1 → q
¬L1 → L2

q → L2

L1 ∨ ¬q ∨ L2

L3 ↔ (p→ r)

L3 ∧ p → r
¬p → L3

r → L3

p ∨ ¬r ∨ L3

L4 ↔¬L3
L4 → ¬L3

¬L3 → L4

L5 ↔ (L2 → L4)

L5 ∧ L2 → L4

¬L2 → L5

L4 → L5

L2 ∨ ¬L4 ∨ L5

L5 L5

Fig. 4.Application of transformationsσ andπ to Example 1.

use a slight modification ofπ(Π) to yield a disjunctive program in a direct way. To
this aim, we define a newπ′(γ) for each subformulaγ of T , that coincides withπ(γ)
except for implication and negation, which are treated as shown in Figure 3. As we
can see, the use of negation in the head forπ(¬ϕ) can be easily removed by just using
a constraintL¬ϕ ∧ Lϕ → ⊥. In the case of implication, we have replaced negated
labels by labeled negations. The only problem with this technique is that the formulas
¬ϕ and¬ψ need not occur as subformulas in the original theoryΠ. Therefore, we
must include the definitions for the newly introduced labelsL¬ϕ andL¬ψ, that lead to
the last four additional rules, and we need a larger signature,VL = {Lϕ,L¬ϕ | ϕ ∈
LV r {⊥,>}}. If we consider now the translationπ′(Π) it is not difficult to see that
modularity and strong faithfulness are still preserved, while its computation can be
shown to be polynomial, although using slightly greater bounds:

|vars(π(Π))| ≤ 2 |vars(Π)|+ 2 degree(Π)
degree(π(Π)) ≤ |Π|+ 22 degree(Π)

5 Concluding remarks

Equilibrium logic provides a natural generalisation of answer set semantics to propo-
sitional logic. It allows one to handle embedded implications, in particular to write
programs containing rules with conditional heads or bodies. As [6] has recently shown,
such rules can be used to represent aggregates in ASP under the semantics of [5].

112 Cabalar, Pearce and Valverde

In this paper we have explored different ways in which arbitrary propositional theo-
ries in equilibrium logic can be reduced to logic programs and thus implemented in an
ASP solver. First, we presented rules for transforming any theory into a strongly equiv-
alent program in the same vocabulary. Second, we showed that there is no polynomial
algorithm for such a transformation. Third, we showed that if we allow new atoms or
‘labels’ to be added to the language of a theory, it can be reduced to a logic program
in polynomial time. The program is still in a strong sense equivalent to the original
theory and the theory’s equilibrium models or answer sets can be be retrieved from the
program.

We have extended several previous works in the following way. In [13] several of
the reduction rules of§3 were already proposed in order to show that nested programs
can be reduced to generalised disjunctive programs. In [2] it is shown for the first time
that arbitrary propositional theories have equivalent programs in the same vocabulary;
but complexity issues are not discussed. In [17] a reduction is proposed for nested pro-
grams into disjunctive programs containing new atoms. The reduction is shown to be
polynomial and has been implemented as a front-end toDLV callednlp . Following
the tradition of structure-preserving normal form translations for nonclassical logics,
as illustrated in [15], the reduction procedure of [17] uses the idea of adding labels
as described here. Our main contribution has been to simplify the translation and the
proof of faithfulness as well as extend it to the full propositional language including
embedded implications. The formulas we have added for eliminating implications were
previously mentioned in [16]. However that work does not provide any details on the
complexity bounds of the resulting translation, nor does it describe the labelling method
in full detail.

Many issues remain open for future study. Concerning the transformation described
in §3, for example, several questions of efficiency remain open. In particular the logic
program obtained by this method is not necessarily ‘optimal’ for computational pur-
poses. In the future we hope to study additional transformations that lead to a minimal
set of program rules. Concerning the reduction procedure of§4, since, as mentioned, it
extends a systemnlp [23] already available for nested programs, it should be relatively
straightforward to implement and test. One area for investigation here is to see if such
a system might provide a prototype for implementing aggregates in ASP, an issue that
is currently under study elsewhere.

Another area of ongoing research concerns the language of equilibrium logic with
an additional, strong negation operator for expressing explicit falsity. The relation be-
tween intermediate logics and their least strong negation extensions has been well stud-
ied in the literature. From this body of work one can deduce that most of the results of
this paper carry over intact to the case of strong negation. However, the reductions are
not as simple as the methods currently used for eliminating strong negation in ASP. We
intend to consider this case in detail in an extended version of this paper.

References

1. The Answer Set Programming Satisfiability Library (ASPLIB): ASP solvers.
http://dit.unitn.it/˜wasp/Solvers/index.html .

Reducing Propositional Theories in Equilibrium Logic to Logic Programs 113

2. P. Cabalar & P. Ferraris. Propositional Theories are Strongly Equivalent to Logic Programs.
Unpublished draft, 2005, available at
http://www.dc.fi.udc.es/˜cabalar/pt2lp.pdf .

3. D. van Dalen. Intuitionistic logic. InHandbook of Philosophical Logic, Volume III: Alter-
natives in Classical Logic, Kluwer, Dordrecht, 1986.

4. P. M. Dung. Declarative Semantics of Hypothetical Logic Programing with Negation as
Failure. inProceedings ELP 92, 1992, 99. 45-58.

5. W. Faber, N. Leone & G. Pfeifer. Recursive Aggregates in Disjunctive Logic Programs:
semantics and Complexity. in J.J. Alferes & J. Leite (eds),Logics In Artificial Intelligence.
Proceedings JELIA’04, Springer LNAI 3229, 2004, pp. 200-212.

6. P. Ferraris. Answer Sets for Propositional Theories. InEighth Intl. Conf. on Logic Program-
ming and Nonmonotonic Reasoning(LPNMR’05), 2005 (to appear).

7. P. Ferraris & V. Lifschitz. Weight Constraints as Nested Expressions. Theory and Practice
of Logic Programming (to appear).

8. M. Gelfond & V. Lifschitz. Classical negation in logic programs and disjunctive databases.
New Generation Computing, 9:365–385, 1991.

9. L. Giordano & N. Olivetti. Combining Negation-as-Failure and Embedded Implications in
Logic Programs.Journal of Logic Programming36 (1998), 91-147.

10. R. Hähnle. Complexity of many-valued logics. In Proc. 31st International Symposium on
Multiple-Valued Logics, IEEE CS Press, Los Alamitos (2001) 137–146.

11. T. Janhunen, I. Niemelä, P. Simons & J.-H. You. Unfolding Partiality and Disjunctions
in Stable Model Semantics. In A. G. Cohn, F. Giunchiglia & B. Selman (eds),Principles
of Knowledge Representation and Reasoning (KR-00), pages 411424. Morgan Kaufmann,
2000.

12. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri & F. Scarcello. Thedlv system
for knowledge representation and reasoning. CoRR: cs.AI/0211004, September 2003.

13. V. Lifschitz, L. R. Tang & H. Turner. Nested expressions in logic programs.Annals of
Mathematics and Artificial Intelligence, 25 (1999), 369–389.

14. V. Lifschitz, D. Pearce & A. Valverde. Strongly equivalent logic programs.ACM Transac-
tions on Computational Logic, 2(4):526–541, 2001.

15. G. Mints. Resolution Strategies for the Intuitionistic Logic. In B. Mayoh, E. Tyugu &
J. Penjaam (eds),Constraint ProgrammingNATO ASI Series, Springer, 1994, pp.282-304.

16. M. Osorio, J. A. Navarro Ṕerez & J. Arrazola Safe Beliefs for Propositional TheoriesAnn.
Pure & Applied Logic(in press).

17. D. Pearce, V. Sarsakov, T. Schaub, H. Tompits & S. Woltran. Polynomial Translations of
Nested Logic Programs into Disjunctive Logic Programs. In Proc. of the 19th Int. Conf. on
Logic Programming (ICLP’02), 405–420, 2002.

18. D. Pearce. A new logical characterization of stable models and answer sets. InNon-
Monotonic Extensions of Logic Programming, NMELP 96, LNCS 1216, pages 57–70.
Springer, 1997.

19. D. Pearce. From here to there: Stable negation in logic programming. In D. Gabbay &
H. Wansing, eds.,What is Negation?, pp. 161–181. Kluwer Academic Pub., 1999.

20. D. Pearce, I. P. de Guzḿan & A. Valverde. A tableau calculus for equilibrium entailment.
In Automated Reasoning with Analytic Tableaux and Related Methods, TABLEAUX 2000,
LNAI 1847, pages 352–367. Springer, 2000.

21. D. Pearce, I.P. de Guzḿan & A. Valverde. Computing equilibrium models using signed
formulas. InProc. of CL2000, LNCS 1861, pp. 688–703. Springer, 2000.

22. D. Pearce & A. Valverde. Synonymous Theories in Answer Set Programming and Equilib-
rium Logic. in R. Ĺopez de Ḿantaras & L. Saitta (eds),Proceedings ECAI 04, IOS Press,
2004, pp. 388-392.

114 Cabalar, Pearce and Valverde

23. V. Sarsakov, T. Schaub, H. Tompits & S. Woltran. nlp: A Compiler for Nested Logic Pro-
gramming. inProceedings of LPNMR 2004, pp. 361-364. Springer LNAI 2923, 2004.

24. D. Sepiel. Using Clausal Deductive Databases for Defining Semantics in Disjunctive Deduc-
tive Databases.Annals of Mathematics and Artificial Intelligence33 (2001), pp. 347-378.

25. P. Simons, I. Niemelä & T. Soininen. Extending and implementing the stable model seman-
tics. Artificial Intelligence, 138(1–2):181–234, 2002.

