
Applying Semantic Web technologies in Product
Information Management at NXP Semiconductors

Parvathy Meenakshy (parvathy.meenakshy@nxp.com),
John Walker (john.walker@semaku.com)
2014-09-21

Abstract
In the electronics industry, the ability to get accurate, timely
product data in front of the customer is a key factor in the overall
business process. In this paper we describe how NXP is making
use of Semantic Web technology such as RDF and SPARQL to
manage a product taxonomy for marketing purposes that forms
the key navigation of the NXP website (http://www.nxp.com) and
the next steps to extend this to create a domain model covering
applications, technologies and other key entities that can be used
to create rich user journeys through the content.

Introduction
The ease of finding the right product is paramount for the customer and crucial for sales, but at
the same time a complex problem in an eCommerce scenario. Enabling the customer to easily
find, compare and select the right product can reduce the overall time and therefore costs
involved in the purchasing process. In the B2B electronic component industry this can involve
the choice between literally thousands of candidates. We believe opening up access to the
product data is a key enabler for this process. Whether to free the data from existing silos for
use within the organization or to make the data available to third parties such as distributors and
search engines.

In this paper we focus on the development and management of taxonomies and describe how
NXP has deployed a solution based on SKOS for the management of the product taxonomy and
a currently-under-development approach to provide an alternate view of the product catalog.

Product taxonomy
The NXP product taxonomy [1] provides a marketing-oriented categorization for the product
catalog. The taxonomy consists of categories organized into a hierarchical structure used for
navigation on the NXP website. The taxonomy is primarily function-oriented, but also
incorporates market, application and technology based categorization of products. It is permitted
for a category to have more than one parent, forming a polyhierarchy. The taxonomy is used to
manually position products into one or more categories as required for marketing purposes.
Additional content and documents can be linked to a category.

Legacy approach
The product taxonomy is managed in the enterprise Product Information Management (PIM)
system where each category is assigned a numeric identifier. Placement of products in the
taxonomy is also done in the PIM system. The taxonomy and product assignments are exported
from the PIM system in a proprietary XML format and loaded into an XML database. The
document management system is able to query the XML database using XQuery to lookup
categories to which a document can be linked using the numeric identifier. The XML is also
imported to the web content management system and used to generate the website. Due to end
of life of the PIM system, it was necessary to find an alternative approach for the management
of the taxonomy.

Linked data approach
Previously we had created a process to convert the existing XML to RDF/XML and load the
result into a graph store where it can be merged and queried along with data from other
sources. For this we had created a mapping to SKOS where each category has the type
skos:Concept and the hierarchical relations are mapped to the skos:narrower and
skos:broader properties.

A logical next step was to make the RDF as the source and manipulate the data directly in the
graph store using SPARQL 1.1 Update. After considering various open-source and commercial
tools we opted to use SKOSjs [2] with some minor NXP-specific customizations and
configuration.

For placing products into the tree we developed a simple application using the Play Framework
that allows a user to manage the links. The application makes use of stored queries in the graph
store that can be exposed as an HTTP API. Initial bindings for variables in the query can be
passed as parameters in the request URI.

To support existing applications the legacy XML format is generated by transforming an
RDF/XML dump of the data in the store using XSLT.

The benefits of this approach are multiple. First and foremost we have minted URIs as globally
unique identifiers for each product category that can be used to unambiguously refer to the
resource. The flexibility of the RDF data model has allowed us to add additional information
such as alternate and translated labels for categories without disrupting existing applications.
Additionally being able to use the power of SPARQL to flexibly query the data as a graph has
opened up new ways to analyze the data and do quality and consistency checks. Users have
also responded positively to having several simpler and more focused editing tools as opposed
to the complex, yet generic user interface of the previous PIM system. In future we expect to
gain further benefits from this approach.

Solution selling
For NXP the customer is typically an electronics design engineer. A common user story is a
user who searches online for solutions to their design challenges rather than for a specific
named component. Therefore NXP desires to serve the customer better by developing a
solution-oriented view of the portfolio orthogonal to the existing function-oriented product
taxonomy.

The specification of a product usually includes an textual applications chapter that lists the end-
equipments, market segment and solution area in which the component can be used. This
content can be indexed by site search and only gives the users a basic keyword search
functionality. It does not provide an option for customers to explore the content under different
perspectives or filter the data under search facets. Lack of a unique identifier for these named
entities restricts reuse and aids ambiguity in referring to this information in different document
assets.

A revamp of this static list of information would enable more effective and efficient discovery and
selection of components which fit to a particular application/solution area and open up new
opportunities for cross-selling related products and telling compelling stories about a particular
focus area by aggregating relevant content. It should be noted that the application information of
products does not always fit into a strict hierarchical structure. Moreover this information is
subjected to change due to constant flux in technology trends and introduction of new products
which fit into latest applications. A technology which is flexible enough to cope with the changes
in schema is of prominence in our case. Semantic Web and Linked Data technologies enable an
incremental development of domain model contrary to the conventional relational database
schema. By applying these to describe the knowledge domain we can resolve ambiguities and
empower machines to access the information more easily.

As described above we have already built experience with converting the NXP product
taxonomy to RDF using the SKOS vocabulary where it is now stored and managed natively as
RDF in a graph store. Additionally we have developed a simple web application that allows
products to be linked to the taxonomy. Based on this success we are extending our use of
semantic technologies by developing a domain model for applications/solutions that will drive a
rich user-focused experience. This was based on the lessons learned from using SKOS where
the terms like broader and narrower are very generic, whereas we need to have more domain-
specific terminology to better capture the exact meaning. The approach taken was to first
analyze the existing application content to extract common terms followed by domain modeling
undertaken with the relevant subject-matter experts. Based on this model we have made
wireframe designs for the various pages about the ‘things’ in the model which are due to be
implemented in the coming months. During development of the model we encountered
difficulties to explain the benefits of domain-driven design over a “UX first” approach which can
often deliver tangible results faster, but can give a brittle and inflexible design. Areas we wish to
investigate further are automated tagging of products and content assets (documents, images,
video) with the concepts from the model and the possibility for a curatorial/personalization layer.

The approach
The approach used is domain driven design rather than presentation and interaction of UX
design. One of the challenges was to identify an entity as a concept, story about a concept or a
web page about a concept. Another was the difficulty in defining the concept in a data element
fashion. This exercise is not so intuitive as we are not dealing with concrete or tangible things.
We tried to map instances of data to the model and came up with potential user journey to
agree on the relations between concepts. While trying to describe the semantic relation of
application information to products, the priority was to conform to existing standards. SKOS and
Dublin Core standards are used to express the basic metadata. But the semantics of SKOS is
not rich enough to capture the application information of our products. Even though Schema.org
is a light weight standard, defining all the concepts in our model with ‘Product’ class was not
desirable.

Based on the model, instances were added with unique identifier or URI and are persisted to a
named graph in a graph store (http://dydra.com/). A browsable interface of this data is created
using the Linked Data API specification, implemented by open source project
(https://code.google.com/p/puelia-php/). The API layer is configured to support REST API calls
to the graph store. This provides the results in the HTML page without writing complex SPARQL
queries and in different output format like RDF/XML, JSON etc. The ability to browse the data
as HTML enables us to validate the model with the relevant subject matter experts. Later we
expect that the same API layer can be used during generation of the pages on the NXP website.

Possible future work

One of the areas where we need to research further is on the auto tagging methods. This is of
interest as automating the linking of content assets to concepts would reduce the manual work
involved.

Similarly we would like to automate the categorization of products into the taxonomy by
somehow expressing rules or constraints for the ‘type’ of products that should appear in the
category and use this to automatically populate the product lists. As large amounts of the
product specification are already available as structured data this is certainly possible, the real
challenge is to make the management of these rules usable for the target audience.

References
[1] NXP product taxonomy http://www.nxp.com/products/
[2] SKOSjs https://github.com/tkurz/skosjs

