
Traffic Management
using RTEC in OWL 2 RL

Bernard Gorman
IBM Research, Dublin

berngorm@ie.ibm.com

Jakub Marecek
IBM Research, Dublin

jakub.marecek@ie.ibm.com

Jia Yuan Yu
IBM Research, Dublin

jy@osore.ca

Introduction. In a number of domains, including traffic
management, event processing and situational reporting are
particularly demanding. This is due to the volumes and re-
aliability of streamed spatio-temporal data involved, ranging
from sensor readings, news-wire reports, police reports, to
social media, as well as the complexity of the reasoning re-
quired. Human, rather than artificial, intelligence is hence
still used to an overwhelming extent.

A number of specialised event-processing languages and rea-
soners have been proposed, extending RDF and SPARQL.
These include SPARQL-ST [11], Temporal RDF [14] and T-
SPARQL [7], Spatio-temporal RDF and stSPARQL [9]. For
even more elaborate extensions, see e.g. [12, 2, 10]. Often,
these extensions rely on custom parsers for the languages
and on custom Prolog-based implementations of reasoners.
Yet, none of these extensions has gained a wide adoption.

We argue that such specific languages and reasoners go against
the principle of a general-purpose description logics and general-
purpose reasoners [3]. We propose a rewriting of RTEC, the
event processing calculus [2], from Prolog to OWL 2 RL [8],
which is the only profile of the Web Ontology Language, for
which there exist very efficient reasoners.

RTEC. Artikis et al. [2] proposed Event Calculus for Run-
Time reasoning (RTEC) as a calculus for event process-
ing. Prolog-based implementations, where event processing
is triggered asynchronously and the derived events are pro-
duced in a streaming fashion, are readily available [1]. In
order to make this paper self-contained, we summarise its
principles beyond the very basics [6].

Time is assumed to be discretised and space is represented
by GPS coordinates. All predicates in RTEC are defined
by Horn clauses [6], which are the implications of a head
from a body, h1, . . . , hn ← b1, . . . , bm, where 0 ≤ n ≤ 1 and
m ≥ 0. All facts are predicates with m = 0 and n = 1,
such as move(B1, L1, O7, 400), which means that a par-

ticular bus B1 is running on a particular line L1 with a
delay of 400 seconds, as operated by operator O7. Similarly,
gps(B1, 53.31, -6.23, 0, 1) means that the bus B1 is at
the given, its direction is forwards (0) and there is conges-
tion (1). Based on such facts, one formulates rules, i.e. Horn
clauses with m > 0 and n = 1, for the processing of instan-
taneous events or non-instantaneous fluents.The occurrence
of an event E, which is an inferred Horn clause with m > 0
and n = 1, at a fixed time T , is given by rules using hap-

pensAt(E, T). The occurrence of a fluent F is at a finite
list I of intervals, is given using holdsFor(F=V, I). Simple
fluents, which hold in a single interval, are given by initi-

atedAt(E, T) and terminatedAt(E, T). For an overview of
the predicates, please see Table 1.

Notice that Horn clauses can be used to define complex
events, such as the sharp increase in the delay of a bus
parametrised by thresholds t, d for time and delay:

happensAt(delayIncrease(Bus, X, Y, Lon, Lat), T)

:- happensAt(move(Bus, _, _, Delay0), T0),

holdsAt(gps(Bus, X, Y, _, _)=true, T0),

happensAt(move(Bus, _, _, Delay), T),

holdsAt(gps(Bus, Lon, Lat, _, _)=true, T),

Delay - Delay0 > d,

0 < T - T0 < t

where comma denotes conjunction, _ is the anonymous vari-
able, and :- denotes implication.

The complex events can be processed in a custom Prolog-
based implementation [1], or as we show later, a OWL 2
RL reasoner [16]. In the Prolog-based implementation, one
rewrites the inputs as facts, and leaves the reasoning about
delayIncrease up to a Prolog interpreter. The resulting
interactions between the ontology tools, Prolog interpreter,
and rewriting among them are frail and challenging to de-
bug, though.

RTEC in OWL 2 RL. It has long been known that Horn
clauses can be rewritten into and queried in OWL 2. Re-
cently, it has been shown [15] that Horn clauses can be
rewritten in OWL 2 RL, a tractable profile of OWL. This
rewriting allows for sound and complete reasoning, c.f. The-
orem 1 of [16]. Moreover, the reasoning is very efficient,
empirically.

The rewriting of Zhou et al. [16] proceeds via Datalog±,∨



Table 1: Main predicates of RTEC. Cited loosely from [1].
Predicate Meaning
happensAt(E, T) Event E occur s at time T
holdsAt(F=V, T) The value of fluent F is V at time T
holdsFor(F=V, I) The list I of intervals for which F = V holds
initiatedAt(F=V, T) Fluent F = V is initiated at T
terminatedAt(F=V, T) Fluent F = V is terminated at T
relative_complement_all (I0, L, I) The list I of intervals is obtained by complementing i ∈ I0 within ground set L
union_all(L, I ) The list I of intervals is the union of those in L
intersect_all(L, I ) The list I of intervals is the intersection of those in L

[4] and Datalog [6] proper into OWL 2 RL. Instead of goals
in Prolog, which are Horn clauses with m > 0 and n =
0, one uses conjunctive queries in OWL 2 RL. Formally,
Datalog±,∨ has first-order sentences of the form ∀x∃y s.t.
C1 ∧ · · · ∧ Cm ← B, where B is an atom with variables
in x, which is neither ⊥ nor an inequality. Conjunctive
query (CQ) with distinguished predicate Q(y) is ∃yφ(x, y)
and φ(x, y) a conjunction of atoms without inequalities. In
the example above, the Datalog±,∨ rule is:
∃ T’, D, D’ { ∃ a, b (happensAt(move(Bus, a, b, D’), T’)) ∧

∃ c, d (holdsAt(gps(Bus, X, Y, c, d)=true, T’)) ∧
∃ e, f (happensAt(move(Bus, e, f, D), T)) ∧
∃ g, h (holdsAt(gps(Bus, Lon, Lat, g, h)=true, T)) ∧
D - D’ > d ∧
0 < T - T’ < t }

← happensAt(delayIncrease(Bus, X, Y, Lon, Lat), T),
where all free variables (Bus, X, Y, Lon, Lat, T) are univer-
sally quantified. Following this line of work [15], we rewrite
RTEC into OWL 2 RL.

This is the first ever translation of RTEC or any similar
spatio-temporal event-processing logic to OWL 2 RL, as far
as we know. In a companion paper co-authored with the
staff at Dublin City Council [1], we describe an extensive
traffic management system, where we employ RTEC in traf-
fic management.

Conclusions. The value and scalability of spatio-temporal
event processing over streaming data has been demonstrated
a number of times [13, 5, 1]. Notice, however, that there
remains a considerable gap between first prototypes specific
to a particular city and a general-purpose methodology or
tools. General-purpose reasoners using RTEC in OWL 2
RL may lack the performance of custom-tailored reasoners,
capable of dealing with gigabytes of data at each time-step,
but offer a handy tool for customising, prototyping, and
debugging systems based on RTEC. The translation of Horn
clauses to OWL 2 RL is clearly applicable to a number of
other event-processing calculi based on Prolog [11, 14, 7,
9]. This approach may hence weill set the agenda in event
processing more broadly.

1. REFERENCES
[1] A. Artikis et al. Heterogeneous stream processing and

crowdsourcing for urban traffic management. In EDBT,
pages 712–723, 2014.

[2] A. Artikis, M. Sergot, and G. Paliouras. Run-time
composite event recognition. In Proceedings of the 6th
ACM International Conference on Distributed Event-Based
Systems, pages 69–80. ACM, 2012.

[3] F. Baader, I. Horrocks, and U. Sattler. Description logics as

ontology languages for the semantic web. In Mechanizing
Mathematical Reasoning, pages 228–248. Springer, 2005.

[4] A. Cal̀ı, G. Gottlob, T. Lukasiewicz, B. Marnette, and
A. Pieris. Datalog+/-: A family of logical knowledge
representation and query languages for new applications.
Logic in Computer Science, Symposium on, 0:228–242,
2010.

[5] A. Del Bimbo, A. Ferracani, D. Pezzatini, F. D’Amato, and
M. Sereni. Livecities: Revealing the pulse of cities by
location-based social networks venues and users analysis.

[6] D. M. Gabbay, C. J. Hogger, and J. A. Robinson. Handbook
of Logic in Artificial Intelligence and Logic Programming:
Volume 5: Logic Programming Volume 5: Logic
Programming. Oxford University Press, 1998.

[7] F. Grandi. T-sparql: A tsql2-like temporal query language
for rdf. In ADBIS (Local Proceedings), 2010.

[8] B. C. Grau, I. Horrocks, B. Motik, B. Parsia,
P. Patel-Schneider, and U. Sattler. Owl 2: The next step
for owl. Web Semantics: Science, Services and Agents on
the World Wide Web, 6(4):309–322, 2008.

[9] M. Koubarakis and K. Kyzirakos. Modeling and querying
metadata in the semantic sensor web: The model strdf and
the query language stsparql. In The semantic web: research
and applications, pages 425–439. Springer, 2010.

[10] G. Meditskos, S. Dasiopoulou, V. Efstathiou, and
I. Kompatsiaris. Ontology patterns for complex activity
modelling. In Theory, Practice, and Applications of Rules
on the Web, pages 144–157. Springer, 2013.

[11] M. Perry, P. Jain, and A. P. Sheth. Sparql-st: Extending
sparql to support spatiotemporal queries. In Geospatial
semantics and the semantic web, pages 61–86. Springer,
2011.

[12] M. Rinne. Sparql update for complex event processing. In
The Semantic Web–ISWC 2012, pages 453–456. Springer,
2012.

[13] S. Tallevi-Diotallevi, S. Kotoulas, L. Foschini, F. Lécué,
and A. Corradi. Real-time urban monitoring in dublin
using semantic and stream technologies. In The Semantic
Web – ISWC 2013, pages 178–194. Springer Berlin
Heidelberg, 2013.

[14] J. Tappolet and A. Bernstein. Applied temporal rdf:
Efficient temporal querying of rdf data with sparql. In The
Semantic Web: Research and Applications, pages 308–322.
Springer, 2009.

[15] Y. Zhou, B. Cuenca Grau, I. Horrocks, Z. Wu, and
J. Banerjee. Making the most of your triple store: Query
answering in owl 2 using an rl reasoner. In Proceedings of
the 22nd International Conference on World Wide Web,
WWW ’13, pages 1569–1580, 2013.

[16] Y. Zhou, Y. Nenov, B. C. Grau, and I. Horrocks. Complete
query answering over horn ontologies using a triple store. In
International Semantic Web Conference (1), pages
720–736, 2013.


