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Abstract. Ontologies have been increasingly used as a core representation for-
malism in medical information systems. Diagnosis is one of the highly relevant
reasoning problems in this domain. In recent years this problem has captured at-
tention also in the description logics community and various proposals on formal-
ising abductive reasoning problems and their computational support appeared. In
this paper, we focus on a practical diagnostic problem from a medical domain –
the diagnosis of diabetes mellitus – and we try to formalize it in DL in such a
way that the expected diagnoses are abductively derived. Our aim in this work is
to analyze abductive reasoning in DL from a practical perspective, considering
more complex cases than trivial examples typically considered by the theory- or
algorithm-centered literature, and to evaluate the expressivity as well as the par-
ticular formulation of the abductive reasoning problem needed to capture medical
diagnosis.
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1 Introduction

Abduction, originally introduced by Peirce [15], is a form of backward reasoning, typ-
ically with a diagnostic rationale. We have a knowledge base K that is supposed to
model some problem, and we have an observation O which is supposed to follow in
situations captured by K , but we are not able to explain O deductively, i.e., K 6|= O. In
abductive reasoning we ask the question – why is it that O does not follow fromK , and
we look for a hypothesis (or, explanation) H such that, if added toK , then O will follow
from the resulting knowledge base. Moreover, we most typically look for explanations
consisting of extensional rather than intensional knowledge, i.e., some set of ground
facts that will, together with K , explain O.

Abduction only recently captured the researchers’ interest also in the area of on-
tologies and DL [7], where it also has some interesting applications, including possible
explanations of incomplete modelling or incomplete matching [4], monitoring malfunc-
tions in complex systems [11], and multimedia interpretation [16], among others.

The problem of diagnosis, often shown as a classic example of abductive reasoning
[7,9], is highly relevant in the medical domain. Not only for primary diagnosis of a
certain disease (as the model example in this use case), but also in emerging applications
such as telemedical monitoring systems and ambient assisted living, where the patient’s
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condition is continually monitored and diagnosed for anomalies, therapy adherence,
etc. Most of these applications nowadays heavily rely on ontologies (i.e., DL-based
knowledge bases) that have been increasingly used as core representation formalism
for clinical knowledge. While abduction over DL has been studied especially from the
theoretical and from the algorithmic perspective, we are not aware of any case studies
focusing on the practical aspects of modelling problems for abductive reasoning.

In this paper, we focus on a practical diagnostic problem from a medical domain:
the diagnosis of diabetes mellitus. Based on information from clinical guidelines and
other relevant sources (e.g., [1,2]) we formalize it in DL in such a way that the ex-
pected diagnoses are abductively derived. While we simplify the problem for reasons
of conciseness, we do abstract a number of distinct, less or more problematic cases that
need to be addressed, including: (a) dealing with the hierarchy of symptoms and possi-
ble diagnoses, (b) differential and elimination diagnosis, (c) associated conditions with
similar symptoms, (d) distinguishing and reporting complications, and some more.

In the analysis that follows, we evaluate the modelled examples from the perspective
of which particular variant of abduction is being addressed, what DL expressivity is
needed, and we highlight the most important modelling issues that we run into.

In the end, we learned the following lessons: medical diagnosis especially requires
ABox abduction, as hypothesizing the intensional knowledge in this domain is typi-
cally not desired – that is the area of domain experts. We were mostly able to model our
simplified examples with the rather less expressive DL ALC for which abductive rea-
soning is available [9,12,13]. Though, examples requiring more complex constructs can
also be found. Finally, modelling diagnostic knowledge bases with DL is different from
modelling typical ontologies. In order to get the desired explanations the statements of-
ten need to be formulated more strongly, so that the desired observations follow. Also,
to compare the generated hypotheses, at least part of the knowledge is used also deduc-
tively. Combining abductive and deductive reasoning within one knowledge base poses
some difficulties, even on simplistic examples.

2 Abductive Reasoning with DL

The basic abductive framework for DL was introduced by Elsenbroich et al. [7] who
proposed formulations for a number of distinct abductive problems. The main three
types are summarized below. We will assume that the reader is already familiar with
DL, the split of the knowledge base into the TBox (intensional knowledge) and the
ABox (extensional knowledge), basic syntax, and semantics [3].

Definition 1 (Abduction problems in DL [7]). An abduction problem is a pair P =

(K ,O) such that K is a knowledge base in DL, and O a TBox or ABox assertion. A
solution of P is any finite set H of TBox and ABox assertions such that K ∪ H is
consistent and K ∪ H |= O. In addition, P is called

– TBox abduction problem: if H is a set of TBox assertions and O is a TBox asser-
tion.

– ABox abduction problem: if H is a set of ABox assertions and O is an ABox asser-
tion.
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– Knowledge base abduction problem: the general problem, i.e., if there are no re-
strictions on H and O.

The definition gives a generic framework for abduction, but it is not very useful
without further constraining the possible hypotheses. The number of possible explana-
tions is very high, even infinite, therefore we need to be able to compare them and select
the most preferred ones. The commonly used restrictions include [7]:

Definition 2. Given an abduction problem P = (K ,O) and hypotheses H,H′, we say
that:

1. H is consistent if H ∪ K 6|= ⊥, i.e. H is consistent w.r.t. K
2. H is relevant if H 6|= O, i.e. H does not entail O
3. H is explanatory if K 6|= O, i.e. K does not entail O
4. H is stronger than H′ (H ≺K H′) if K ∪ H entails H′ (and vice-versa H is weaker

than H′ if K ∪ H′ entails H)
5. minimal if for every H′, H′ ≺K H, i.e., H is weaker than any other H′

In general, H is a preferred solution if it is consistent, relevant, explanatory and
there is no strictly weaker solution H′ (i.e., such that H ≺K H′ and H′ ⊀K H). If there is
single such solution, it is called the most preferred. Such hypotheses are (semantically)
minimal. Minimality is important, because if there is a (strictly) weaker hypothesis than
H it means that H hypothesizes too much. As abduction amounts to guessing, in a sense
we do not want to guess more than necessary in order to derive the observation.

Consistency is required, because from inconsistency (K ∪ H |= ⊥) one is able to
derive everything. Such hypotheses would explain every observation and so it is not
meaningful to find solutions not consistent with the knowledge baseK . The knowledge
base K represents the background theory from which we are interested to derive the
hypotheses. Therefore we should not be able to explain the observation without it. Such
hypotheses (i.e., when H |= O) are therefore irrelevant. Similarly, an abduction problem
only needs explaining the observation does not already follow from K .

The diagnostic problems in the medical domain, which is our interest in this paper,
will most often call for ABox abduction. This is because our aim is not to enrich the
knowledge base with new axioms; these are typically sufficiently described by domain
experts. Therefore our purpose is to build a knowledge base formalizing the available
expert’s knowledge (TBox) and use it to find explanations in form of facts (ABox as-
sertions) to any observation, which is typically also a fact (ABox assertion).

A number of researchers addressed the computational solution for abduction prob-
lems. We will focus on those who addressed ABox abduction. Klarman et al. [12] pro-
posed an algorithm for ABox abduction on top ofALC based on resolution. They show
that it is sound and complete. Halland and Britz [9] developed, also forALC, a method
based on the DL tableau algorithm. Ma et al. [13] also rely on th DL tableau algorithm,
but extend the approach towards ALCI. Completeness was not shown by Ma et al.,
while Halland and Britz explicitly note that their approach is incomplete.

Du et al. [5] solve abduction reasoning in DL via a reduction to logic programming,
where abduction has been extensively studied [6]. In logic programming, abductive
explanations are not arbitrary, but are typically drawn from a set of distinctive literals
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called abducibles. This is because the user is often able to charaterzie in which part
of the knowledge the hypothesis is expected, and thus to reduce the search space. To
transfer this notion to the area of DL, Du et al. introduced a new variant of the ABox
abduction problem, which we will call simple, in the form of P(K , A,O). Besides for
the knowledge base K and the observation O (set of concept assertions or atomic roles
assertions), it adds the abducibles A – a set of atomic concepts and atomic roles. An
abductive solution H for P = (K , A,O) is a minimal set of ABox axioms composed of
individuals of K and concepts or roles of A, such that K ∪ H |= O. The solution should
be relevant, and consistent. The simple ABox abduction problem may be solved by
reduction to logic programming, and consecutive evalaution by a readymade reasoning
engine for logic programming.

3 Diabetes Mellitus Use Case

of the assumed simplification
Diabetes mellitus (DM) is a group of metabolic diseases characterized by hyper-

glycemia resulting from defects in insulin secretion, insulin action, or both. The chronic
hyperglycemia of diabetes is associated with long-term damage, dysfunction, and fail-
ure of various organs, especially the eyes, kidneys, nerves, heart, and blood vessels
[2]. We chose DM for our use case, as its diagnosis is a complex problem, with need
to distinguish between particular subtypes and associated conditions, identification of
possible complications, etc.

Our aim is to conceptualize a KB in DL that can be used for diagnosis of DM
relying on abductive reasoning. As the problem is rather complex, we will concentrate
on selected specific subproblems, and we will also abstract from some details which
can be implemented analogously.

3.1 Hierarchy of Symptoms

Typical symptoms of diabetes mellitus include: frequent urination, excessive thirst, hy-
perglycemia, blurred vision, anorexia, weight loss, fatigue, and weakness. There are
some more, but they can be added into the formalization analogously. In the follow-
ing, diabetes mellitus is represented by the concept symbol DM, and the symptoms by
S1, . . . ,S8, respectively. In abductive reasoning, we observe some set of symptoms and
try to hypothesize the most relevant diagnosis. Therefore we record the relation between
the diagnosis and its symptoms by the axiom:

∃hasDiag.DM v ∃hasSymp.(S1 u · · · u S8) (1)

While literally (more precisely: deductively) this axiom means, that whoever has
DM must simultaneously manifest all eight symptoms S1, . . .S8, which is not always
true; it allows to generate relevant abductive hypotheses: if the patient p is observed
to have any subset of the symptoms S1, . . . ,S8 (e.g., we have an observation O1 =

p : (∃hasSymp.S2) u (∃hasSymp.S8)) then H1 = {p : ∃hasDiag.DM} is among the
generated diagnoses. Note that this kind of modelling is simplified, as it ignores uncer-
tainties, often present in medical knowledge. In this paper we take this simplification as
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we want to explore the possibilities of abduction with regular DL. Introducing uncer-
tainties is left for future work.

There are, possibly, some relations between symptoms, like one symptom may be
a more specific or a synonymous name for another, for instance, polydipsia (S9) is a
synonym for excessive thirst. This is modelled by adding:

S2 ≡ S9 (2)

Now, whenever we observe S9 instead of S2 among some other symptoms of DM we
derive equal hypotheses (e.g., if O2 = {p : (∃hasSymp.S9) u (∃hasSymp.S7)}, H1 is
still abductively derived).

A more complex relationship among symptoms may occur in cases when some
symptoms are conditions which may themselves be manifested by some other symp-
toms. For instance anorexia (S5) is a condition associated with weight loss, fatigue, and
weakness (S6, . . . ,S8). This may be modelled in two ways, adding either (3–4) or (5):

S5 v ∃hasSymp.(S6 u · · · u S8) (3)

hasSymp · hasSymp v hasSymp (4)
S5 v S6 u · · · u S8 (5)

This then allows us to keep the axioms that relate diagnoses to symptoms more concise,
e.g., we may now replace (1) by:

∃hasDiag.DM v ∃hasSymp.(S1 u · · · u S5) (6)

Using either (2–4), (6) or (2), (5–6) as the KB, we equally derive the hypothesis H1
for both observations O1 and O2, exactly as before.

As both of the above outlined solutions allow to derive the desired hypothesis, we
will favour the solution on the right hand side, as it requires a less expressive DL (i.e.,
role transitivity axioms of the form (4) are not needed).

3.2 Hierarchy of Diagnoses

Potential diagnoses of our interest are listed in Table 1. These concepts can be readily
taken from a number of medical ontologies. We chose to root them in SNOMED CT,
where they are present as disorders. As in many cases in the medical domain, the main
diagnosis (DM), has some subtypes which we want to distinguish. There are some al-
ternate diagnoses (e.g., diabetes insipidus) which need to be rooted out or confirmed
during the diagnostic process. And there are some related diagnoses (e.g., obesity, ke-
toacidosis) which may take part in the diagnosis of DM as relevant symptoms. The
diagnoses thus form a hierarchy.

We will narrow down our focus on the diagnoses listed in Table 1. The respective
part of the hierarchy is formalized using the following DL axioms:

DM1 t DM2 t GD v DM (7)

LADA v DM1 (8)

The hierarchy of diagnoses has significant influence on the generated hypotheses.
For instance, considering the axioms (5–6) formalizing the symptoms of DM, together
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Table 1. Relevant diagnoses in the use case

Disorder (SNOMED) DL
Diabetes mellitus DM
Diabetes insipidus DI
Diabetes mellitus type 1 DM1
Diabetes mellitus type 2 DM2
Latent autoimmune diabetes mellitus in adult LADA
Gestational diabetes GD
Obesity Ob
Ketoacidosis KA

with (7–8), if some of the symptoms of DM are observed (e.g., O1 or O2), the ab-
ductive reasoner will generate a number of diagnoses: H1 = {p : ∃hasDiag.DM} as
before, but in addition also H2 = {p : ∃hasDiag.DM1}, H3 = {p : ∃hasDiag.DM2},
H4 = {p : (∃hasDiag.DM1) u (∃hasDiag.DM2)}, and similar hypotheses for all (as-
serted or derived) subconcepts of DM. This is because they now all allow to derive the
given observations. On the other hand, if we compare these hypotheses semantically,
we see that Hi ≺K H1 for i > 1 in the hypotheses above, asK ∪Hi |= H1, and never vice
versa. Hence only H1 will be preferred.

3.3 Distinguishing Between Two Diagnoses

A typical task in medical diagnostics is to distinguish one diagnosis from another, often
similar one. This is called differential diagnosis. The two diagnoses may be distin-
guished by considering some symptoms relevant to one of them, but not the other.

We will consider DM1 and DM2; as differentiating between them is a relevant medi-
cal problem. DM1 and DM2 have some symptoms in common, but they also have some
different symptoms. In this case, the common symptoms are those of DM. When the
patient has some of these symptoms we say that she has DM – this case is covered by
axioms (5–6).

Specific symptoms of DM1 include: belly pain, vomiting, fruity breath odor, drowsi-
ness, and coma (S10, . . . ,S14). This is formalized as follows:

∃hasDiag.DM1 v ∃hasSymp.(S10 u . . . u S14) (9)

Analogously, the symptoms of DM2 include: skin problems, slow healing, tingling,
numbness, and high BMI. We will name these as S15, . . . ,S19, which gives us the axiom:

∃hasDiag.DM2 v ∃hasSymp.(S15 u . . . u S19) (10)

Together the three diagnoses are now covered with (5–7) and (9–10). Let us consider
some observations and the respective hypotheses:

– If we observe some set of symptoms that are common to both DM1 and DM2, e.g.,
having again the observation O1 = p : (∃hasSymp.S2)u (∃hasSymp.S8), then the
most preferred diagnosis will be H1 = {p : ∃hasDiag.DM}. However, also H2 =

{p : ∃hasDiag.DM1}, H3 = {p : ∃hasDiag.DM2}, H4 = {p : (∃hasDiag.DM1) u
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(∃hasDiag.DM2)}, will be valid abductive explanations (among others), but as we
already discussed in Sect. 3.2 they are all stronger than H1 and hence H1 will be the
most preferred.

– If we observe at least one symptom specific to DM1, e.g., having the observa-
tion O3 = p : (∃hasSymp.S2) u (∃hasSymp.S10), this is no longer abductively
explained by H1, nor H3. The most preferred hypothesis will be H2. H4 is an ab-
ductive explanation as well, but it is stronger than H2, and hence H2 is preferred.

– The case when we observe some specific symptoms of DM2 (but none of DM1) is
exactly analogous.

– Finally, if we observe specific symptoms of both DM1 and DM2, e.g., we have
O4 = p : (∃hasSymp.S10) u (∃hasSymp.S15), the most preferred hypothesis that
abductively explains this observation is H4. This is because in case of H1–H3 there
is always some symptom which is not explained. There are other explanations (e.g.,
H5 = {p : ∃hasDiag.(DM1 u DM2)}), but they are all stronger than H4.

3.4 Case of Secondary Explanation of the Observation

During differential diagnosis it is also important to recognize cases when the given set of
observed symptoms may have other possible explanations than the disease in question.
For instance, one of the major symptoms of DM (hyperglycemia named as S3) may be
caused as a side effect of some medication.

As the axiom (6) includes S3 as one of the DM symptoms, we are already able
to answer on the observation of having S3. Another possible explanation is taking the
medications (name them M1). So we add a new axiom:

∃hasMedication.M1 v ∃hasSymp.S3 (11)

As this is a very simple conceptualization, there is only one observation by which this
axiom play role. This observation is O5 = p : ∃hasSymp.S3. As well we have exactly
two hypotheses H6 = {p : ∃hasMedication.M1} and H7 = {p : ∃hasDiag.DM}. Neither
H6 nor H7 is stronger then the other one so both are preferred.

This result means, that we cannot be sure, which explanation is correct and we have
to continue in diagnosting. We are satisfied with this answer because also in medical
domain information about hyperglycemia presence is insufficient condition to decide
between taking medications and having diagnosis DM.

3.5 Associated Conditions

In the medical domain, relations between diagnoses may come into play. Some associ-
ated conditions may have similar symptoms, or subset of symptoms as other diagnoses.
Thus, in fact, in Axiom (9) the symptoms S10, . . . ,S14 are symptoms of an associated
diagnosis called ketoacidosis. Similarly the symptom S19 is a symptom of obesity, an
associated diagnosis of DM2.

To take this into the account, we may add to (9) a new axiom, Axiom (12), and
analogously to (10) a new axiom, Axiom (13), as follows:

∃hasDiag.KA v ∃hasSymp.(S10 u . . . u S14) (12)

∃hasDiag.Ob v ∃hasSymp.S19 (13)
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When we take the observations O1 and O3 and try to explain them using axioms (5–7)
and (9–13), we see some changes:

– The case of observation O1 = p : (∃hasSymp.S2)u (∃hasSymp.S8) is not affected
by the newly added axioms, as the symptom S2 is not explained by any of them.
So, the most preferred hypothesis is again H1.

– If we observe at least one symptom specific to ketoacidosis together with some
symptoms of DM (which are all symptoms of DM1 as we already know), e.g.,
having the observation O3 = p : (∃hasSymp.S2) u (∃hasSymp.S10), then be-
sides for H2 = {p : ∃hasDiag.DM1} we have to consider also hypothesis H6 =
{p : (∃hasDiag.DM)u(∃hasDiag.KA)}: they both explain O3 and both are preferred
to any other but they are mutually incomparable. But H6 is certainly unexpected as
so far we modelled the axioms in such a way that abductively the symptoms DM
and ketoacidosis explain the diagnosis of DM1. To solve this we have to add yet
another axiom:

∃hasDiag.DM u ∃hasDiag.KA v ∃hasDiag.DM1 (14)

The axiom enables to compare the two hypotheses also deductively, i.e., any patient
with both diagnoses DM and ketoacidosis is inferred to have also DM1. Hence H6
is now stronger than H2, and so H2 is the single most preferred hypothesis.

– The case when we observe some specific symptoms of obesity together with symp-
toms of DM is analogous. We get the expected hypothesis H3 = {p : ∃hasDiag.
DM2}, but to suppress H7 = {p : (∃hasDiag.DM) u (∃hasDiag.Ob)} as less pre-
ferred, we need to add:

∃hasDiag.DM u ∃hasDiag.Ob v ∃hasDiag.DM2 (15)

– If we observe only the symptoms shared by obesity and DM2, in our simplified ex-
ample, only O5 = p : (∃hasSymp.S18), two preferred and incomparable hypotheses
are H8 = {p : (∃hasDiag.Ob)} and H3 = {p : (∃hasDiag.DM2)}. In this case, this is
in accord with the medical knowledge: this symptom can either be caused by one
condition or by the other.

3.6 Case of Complications

However, in certain circumstances, one may wish to model the associated diagnoses
differently, to capture a closer relation between them. This is, for instance, the case of
DM1 and ketoacidosis. When we consider O3 = p : (∃hasSymp.S2)u(∃hasSymp.S10)
the modelling from the previous section gives the single most preferred diagnosis H2 =

{p : ∃hasDiag.DM1}. While ketoacidosis is also indicated by symptom S10, the hypoth-
esis H9 = {p : ∃hasDiag.KA} is not an abductive explanation as it does not explain S10.

This solution does not correctly capture the importance of ketoacidosis presence in
diabetic patients. Ketoacidosis does not merely share symptoms with DM1, but it is an
acute complication thereof which rarely occurs in non-diabetic individuals.

Therefore, we would intuitively want the explanation H10 = {p : ∃hasDiag.DM1)u
(∃hasDiag.KA)} in this case. In fact, H10 also explains O3 in this case but is is stronger
than H2 and hence also less preferred.
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To achieve this, we have to remodel the knowledge, so that, given some symptoms
that are shared by both DM1 and ketoacidosis, only the conjunction of these diagnoses
explains them: we exchange (9) together with (12) with a new axiom:

(∃hasDiag.DM1) u (∃hasDiag.KA) v ∃hasSymptom.(S10 u . . . u S14) (16)

This however still does not force H10 as single most preferred, as due to the presence
(7) and (14) we now have H10 ≺K H6 and H6 ≺K H10, hence both H10 and H6 are
equally preferred. However, recall that we have asserted (14) only to support a slightly
different relation between DM1 and ketoacedosis in the previous section, so when we
drop this axiom then the single, most preferred diagnosis remains to be H10.

This last move reflects the fact that in order to model different relationships between
preferred explanations we need to manipulate also the deductive part of the KB (used
during deductive comparisons of hypotheses) and, what is more, these manipulation is
not just additive, it is selective, which may cause problems in more complex cases with
higher number of variously interrelated diagnoses.

3.7 Case of Further Examination Needed

Consider again the case of one hypothesis being a more specific case of another. Typ-
ically, we have two diagnoses which have some common symptoms, while the more
specific one likely has some additional symptoms (like with DM1 and DM, or DM2 and
DM above). If we observe only some of the common symptoms, our previous modelling
derives the less specific hypothesis. The more specific hypothesis also explains the ob-
servations, but there is no additional evidence for it, so we prefer the less specific one.

Most of the time this is expected, but not all the time. It may be necessary to dif-
ferentiate between such hypotheses by all means, and so, if perhaps some evidence is
lacking it should be obtained by additional examination if possible, by a laboratory test
for instance. Hence the outcome from the diagnosis procedure should not be just the less
specific hypothesis, but instead it should indicate also that additional tests are needed.

From a medical perspective this might be illustrated on the following problem: some
patients who fit a certain profile (they are older, and not obese) and typically show
symptoms common to DM1, may in fact have a specific type of DM1 called LADA (cf.
Table 1 and axiom (8)). To differentiate between these two diagnoses, medical practi-
tioners are advised to test antibodies (e.g., GADA) in a blood sample.

As this case leads to some complex modelling, we will explain it on simplified
examples. Assume that LADA is a specific form of DM1, and that DM1 has some
symptom (S′1) and LADA has an additional specific one (S′2). That is, we start from:

LADA v DM1 (17)

∃hasDiag.DM1 v ∃hasSymp.S′1 (18)

∃hasDiag.LADA v ∃hasSymp.S′2 (19)

Now we end up exactly in the situation described above. If only DM1 symptoms
are observed (i.e., in our simplified case O6 = p : ∃hasSymp.S′1) then the preferred
hypothesis is H2 = {p : ∃hasDiag.DM1}. In order to resolve this we may try to use (20)
instead of (18):

(∃hasDiag.DM1) u (∃needS.LT) v ∃hasSymp.S′1 (20)
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We now get the expected most preferred hypothesis H11 = {p : (∃hasDiag.DM1) u
(∃needS.LT)} for O6 and so much for O7 = p : ∃hasSymp.S′2 we will get H12 =
{p : ∃hasDiag.LADA} as most preferred , however for O8 = p : (∃hasSymp.S′1) u
(∃hasSymp.S′2) we now get H12 = {p : (∃hasDiag.LADA) u (∃needS.LT)} as most
preferred, as the need of the lab test is now necessary to explain S′1. This is unintuitive
as indeed once we observe S′2 we know that the patient has LADA, no more tests are
needed. It is easy to verify that it does not help to alter (19) to (21):

∃hasDiag.LADA v ∃hasSymp.(S ′1 u S ′2) (21)

This is due to (17), (20), and (21) now for O6 give both H11 and H12 as preferred, and
they are incomparable. But clearly H12 is exactly the wrong hypothesis here. We are
getting into some vicious circle.

The only solution we were able to come up with is to start treating the symptoms
as completely specified. That is, either S′1 or ¬S′1 is always part of the observation, and
same for S′2 or other symptoms possibly involved in this part of the derivation. Using
(17), (22), and (23), we always get the expected results:

(∃hasDiag.DM1) u (∃needS.LT) v ∃hasSymp.(S′1 u ¬S′2) (22)

∃hasDiag.LADA v ∃hasSymp.(S′1 u S′2) u ∃hasSymp.(¬S′1 u S′2) (23)

However, we now have to ask queries differently. For O′6 = p : ∃hasSymp.(S′1 u ¬S′2)
the most preferred hypothesis is H11, and for both for O′7 = p : ∃hasSymp.(¬S1 u S′2)
and for O8 (no need to change here) we will get H12.

So, we were able to get the expected results, but for a considerable price. Treating
symptoms as completely specified is not in line with the usual intuitions behind ab-
duction, where it is normal to assume that the observations are incomplete, and we are
tasked to give the most appropriate explanation for any such given observation. In addi-
tion, it leads to a considerable blow up in the axioms, where all possible combinations
of positive and negative symptoms need to be enumerated.

4 Discussion

All formalizations in our use case are instances of the ABox abduction problem as
defined in Definition 1, based on Elsenbroich et al. [7]. The explanations that we seek
are typically of a specific form of a single assertion:

p : (∃R1.C1) u · · · u (∃Rn.Cn) (24)

involving single patient p, where R1, . . . , Rn most typically will come from some a pri-
ori known set of roles which are relevant based on the domain knowledge. A similar
assumption may often hold also for the concepts C1, . . . , Cn (e.g., most often these will
be atomic concepts for various diagnoses and conditions relevant to the patients state).

While exceptions to these constraints may certainly be found (e.g., a second person
involved from which the patient contracted the disease), in many cases the form of
expected explanations will be reducible into atomic diagnoses by adding “interface”
axioms of the form:

Diag1 ≡ (∃R1.C1) u · · · u (∃Rn.Cn) (25)
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The hypothesis of the complex form (24) now reduces into the atomic form p : Diag1
which makes it possible to postulate the problem as simple ABox abduction. This is an
important observation, as Du et al. [5] showed that the simple abduction problem can
be effectively solved even for DLs up to SHIQ.

Most of the examples we have shown rely in a fairly basic DL ALC, abduction
support for which is known [12,13,5,9]. We used complex role inclusions to capture
dependencies between symptoms, but we also showed a simpler modelling which does
not require it. Different complex DL constructs that might possibly be needed in more
realistic situations certainly include number restrictions, and also restriction over con-
crete domains (known, e.g., in OWL [14]), that would enable to support some more
elaborate statements about symptoms (the patient has at least some number of symp-
toms, or has a numeric value of some symptom from a specific range). Extensions of
abductive reasoning for more expressive DLs that include such constructs are therefore
desirable.

From a modelling perspective, an interesting lesson learned from the use case is that
modelling a knowledge base to be used in a classical, deductive way, and modelling it to
support abductive reasoning pose different, and sometimes conflicting requirements. As
we noted in Sect. 3.1, it is often the case that certain explanation is expected to be valid
for a number of symptoms, including any subsets thereof. Hence the typical approach
that we relied upon is to formulate the axioms in a stronger fashion – the explanation
implies all the symptoms, hence any subset follows. This kind of modelling is also
demonstrated in the literature [7,5].

Firstly, we note that this requires the knowledge to be used in abductive application
to be modelled differently than it is typically usual for ontologies, which normally are
subject to deductive reasoning. Secondly, as we have repeatedly observed in this paper,
even the process of abduction has an important subtask when hypotheses are compared
and strictly deductive reasoning is used for this. This results in complex inter-relations
between the “abductive” and the “deductive” part of the knowledge base and may lead
to rather complicated modelling. A possible way how to deal with this is to treat the
abductive and the deductive knowledge separately [16], or to used a more refined for-
mulation of the abduction problem [10]. We plan to try this in the future.

Finally, we note that abduction has also a number of advantages, e.g., when com-
pared to deductive diagnostic reasoning. In number of works [8,17,18] relying upon the
latter, where deductive rules of the form S 1, · · · , S n → D are used, where S i are symp-
toms and D is the diagnosis, the authors point out the problem occurring in case of two
diagnoses D1, D2 with the former having a subset of symptoms of the latter. Using de-
ductive inference, and observing all symptoms of D2, both D1 and D2 are derived. This
is counterintuitive as specific symptoms of D2 were observed which are not symptoms
of D1. This problem has to be addressed by some suitable workarounds. In comparison,
as we have demonstrated in the use case, abductive reasoning naturally eliminates the
hypotheses which do not explain all of the observed symptoms.
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