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Abstract. Recently, modular techniques have been employed for op-
timising Description Logic reasoning, specifically to enable incremental
reasoning and improve overall classification time. Classifying a module
of an ontology should be significantly easier than reasoning in the whole
ontology. However, we observed in previous work that neither it is gen-
erally true that modular reasoning techniques have a reliable positive
effect, nor even that the classification time of a module is less than or
equal to the classification time of the whole ontology. One possible ex-
planation for the latter could be that counter-productive optimisations
are triggered within the reasoner when dealing with the sub-module, and
thus individual subsumption tests get harder when parts of the ontology
are missing. The goal of this paper is to understand the contribution
of subsumption tests to the hardness of classification. The contribution
is twofold: (1) We analyse the impact of subsumption test hardness on
DL classification by analysing a well known corpus of ontologies, and (2)
we present a novel approach based on modularity to robustly detecting
subsumption tests that are too hard.
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1 Introduction

Reasoning in popular, very expressive Description Logics (DL) is very difficult
(e.g., SROIQ is N2Exptime-complete) [12]. Perhaps surprisingly, modern rea-
soning systems suitable for the entirety of OWL 2 DL (essentially a notational
variant of SROIQ) such as FaCT++ [20], Pellet [18], HermiT [5] and recently
Konclude [19] generally perform well against real ontologies. However, due to the
poor performance in some (often important) cases, the quest for optimisations
is ongoing. The need to empirically validate such optimisations stems from the
sheer complexity of reasoner architectures. Worst case complexity analysis and
its variants do not account for the high variability of classification times of real
ontologies. Modern reasoning systems have to accommodate multiple reasoning
services and also tend to implement a wide range of optimisation techniques that
might affect each other. Various sources of non-determinism, mainly traversal
(subsumption test order) and or-branch exploration of a tableau further com-
plicate the situation. Statistical methods such as linear regression [16] tend to
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be only precise for trivial cases, and are limited in their explanatory richness.
Currently, principled benchmarking provides the only way to creating detailed
characterisations of DL reasoning performance.

Using locality-based modules to optimise Description Logic classification ex-
perienced a resurgence in recent years [15, 21]. Intuitively, breaking the input
problem into smaller pieces, reasoning over those pieces separately, then recom-
bining the results is appealing. Furthermore, if there are especially difficult parts
of the ontology, perhaps they can be isolated to reduce their impact. In practice
however, modular reasoning techniques do not always improve the performance
of classification [6]. In fact, they can drastically impair performance, making it
a hit and miss game to chose between a modular reasoner (e.g. MORe-HermiT,
Chainsaw-JFact) and its monolithic counterpart (e.g. HermiT, JFact). These
cases can often be due to various kinds of overhead induced by modular reason-
ers (module extraction) or redundancy introduced by the mostly unavoidable
and often significant overlap between the various modules extracted. In a pre-
liminary set of experiments [13] we observed that not only are there cases where
there are individual subsumption tests that can be, often significantly, harder in
a module extracted by a modular reasoner than in the whole ontology, but also
that there are occasionally modules whose classification time exceeds that of the
entire ontology O it was extracted from.

The goal of this paper is to understanding the contribution of subsumption
tests (ST) to the hardness of classification. The contribution is twofold: (1)
We analyse the impact of ST hardness on DL classification by characterising
a well known corpus of ontologies, and (2) we present a novel approach based
on modularity to robustly detecting subsumption tests that are potentially too
hard. As a result, we re-confirm the almost 20 years old results by Horrocks [11]
that ST’s are generally rather easy. We also isolate counter-intuitive instances
that, however, are often likely to be the consequence of the surprising degree of
observed stochasticity in the classification process.

2 Background

Understanding the experimental design and methodology presented here does
not require more than a cursory understanding of the syntax, semantics, and
proof theories implemented. The most prominent families of reasoning algorithms
for description logics are tableau (incl. hyper-tableau) and consequence-based. In
our work, we are mainly concerned with tableau-based algorithms. The reason-
ers under investigations in this paper are designed to implement key reasoning
services for the Web Ontology Language (OWL), most importantly classification
and consistency checking. Given an ontology (a set of axioms) O, the signature

of an ontology Õ is the set names appearing in the axioms in O. We use CT (O)
(classification time) and CT (M) respectively to denote the time of computing
the set of atomic subsumptions (i.e., statements of the form A v B where A and
B are properties or classes in the signature) or classification of O. For brevity,
we refer to overall classification time as OCT and subsumption test time as STT.
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While subsumption testing, and therefore classification, is in theory intractable,
highly optimised reasoners do fairly well in practice. The observed efficiency de-
spite the worst case complexity is in principle down to four factors. (1) Real
ontologies are bounded in size. That means that even an exponential algorithm
might fully classify an ontology, from a user perspective, in an acceptable amount
of time. (2) Many ontologies fall into tractable fragments of OWL, and can be
classified using efficient polynomial algorithms such as the ones from the family
of consequence-based algorithms. (3) The last 20 years brought a plethora of
different optimisations to make satisfiability checks easier [11, 3]. (4) Very effi-
cient algorithms were developed to avoid the vast majority of subsumption tests
altogether [1, 4, 17].

Current modular classification approaches use so-called syntactic locality-
based ⊥-modules [10] which have a number of desirable properties: (1) They are
relatively cheap to extract and are reasonably compact and exact, (2) If O |=
A v C then for any given ⊥-module M⊥, of O where A ∈ M̃⊥, M⊥ |= A v C
(were C is an arbitrary expression over the signature of O). Thus, ⊥-modules are
classification complete for their signature with respect to their parent ontology.
Hereafter, we will use M to refer to a syntactic locality based ⊥-module.

Very recently, reasoner developers have started to utilise modularity for
classification. They either are (1) using modules for incremental reasoning [9]
or (2) using modules to improve classification time [15, 21].

3 Related Work

Attempts to understand DL reasoning performance are, up until today, rarely
systematic or comprehensive. Recently, the ORE reasoner competition tries to
establish the methodological foundations for more reliable comparisons [6] be-
tween different reasoners and across a range of different reasoning services. OWL
Reasoner benchmarks have been conducted for varying purposes, for example
(and most prominently) guiding end-users for selecting appropriate reasoners
for their problem [2, 6] or understanding reasoning or the state of reasoning in
general [7]. Dentler et al. [2] conduct a principled investigation to identify suit-
able criteria for choosing an appropriate reasoner for EL ontologies. In our work,
we are interested in mapping out subsumption test hardness during full classi-
fication across reasoner-ontology pairs (phenomenological characterisation) and
the potential of modularity to pinpoint counter-intuitive cases (i.e. harder tests
in a sub-module). Most benchmarks conduct an only semi-principled dataset
selection: Even carefully executed benchmarks such as Dentler et al. [2] usually
cherry pick a set of somehow relevant ontologies. Few works sample from existing
corpora or the web, and only Gonçalves et al. [7], to the best of our knowledge,
deal with corpora larger than 500 ontologies. In practice, the current de facto
gold-standard corpus for ontology experimentation is BioPortal [14], which also
provides a well designed infrastructure to obtain an interesting range of biomedi-
cal ontologies programatically. We are using a snapshot of BioPortal in this work.
As far as we know, no benchmark to date has investigated subsumption testing
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during classification across reasoners in a principled manner. However, various
benchmarks have investigated the effect of certain optimisations on subsump-
tion test avoidance [4]. While the literature on classification optimisation and
reasoning is vast, little progress has been made in understanding classification
hardness of real ontologies, both empirically and formally.

4 Subsumption Test Hardness

The phenomenon under investigation is subsumption test hardness in the
context of classification. A subsumption test is a question asked by the
reasoner to determine whether A v B. The subsumption test hardness is
the time it takes to compute the answer, operationalised as wall-clock time. In
this work the answer to a test is either yes or no. Note however, that for any
implementation (1) more than just a binary answer will be provided (i.e., cached
models, derived subsumptions) and (2) no guarantee is given that the answer
is correct (bugs in the reasoner). “In the context of classification” means that
we are not exploring individual “cold” tests, i.e. letting the reasoner compute
whether A v B for any A,B from outside the classification process, because we
want to understand the contribution of subsumption testing to classification as
a whole, with all the optimisations involved.

Our model of subsumption test hardness with respect to sub-modules
is based on the following intuition: Given a positive ST ST , it should be the
case that for every two modules M1,M2 with M1 ⊂M2 ⊂ O in which the ST
is triggered, the hardness of ST always stays the same. The reason for that are
module properties: every justification for an entailment is part of every module
that entails it. Thus, every way that the entailment holds is contained in the
module, no “new” information about the entailment exists in the rest of the
ontology. Intuitively, additional “stuff” can make it harder to figure out the
entailment, but not make it easier. This makes this metric a possible indicator
of counter-productive optimisations: If we find that STM2

is harder than STM1
,

we might conclude that the reasoner is doing some unnecessary extra work in
M2 (case 1); if STM1

is harder than STM2
, there is a possibility that a counter-

productive optimisation may have been triggered (case 2). Only the second case
is truly pathological: A test should never get harder when irrelevant axioms
are removed from the ontology. The first case might simply occur because if M
grows, it gets harder to identify the irrelevant axioms. One possibility to explain
both cases may be the inherent stochasticity of classification as implemented by
current OWL Reasoners. For example, a random factor might (for example by
changing the test order) simply shift the load of ST in M1 to another ST ST 2

that consecutively makes ST easier. Another reason for a test becoming easier
in a sub-module might be the exploitation of partial results from negative tests
(e.g. caching).

Our empirical investigation of subsumption tests has two parts: (A) a broad
characterisation of the landscape of subsumption testing and (B) an in-depth
characterisation of non-easy subsumption tests. We treat a test as non-easy if it
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takes longer than 100 ms . The first part A will attempt to answer the following
questions: What is the impact of subsumption testing on reasoning performance
in general (RQ1)? How many tests are positive or negative and how do they
differ in hardness (RQ2)? How hard are real tests actually (RQ3)?

Part B serves as an in-depth characterisation that attempts to address ques-
tions related to the general stability of the measurements (intra-module) and
the effect of modularity (inter-module). Is ST hardness a stable phenomenon
(RQ4)? This is important in order to judge how reliably we can trace a single sub-
sumption test through different sub-modules of an ontology, and may also give a
warning sign for triggered non-determinism, for example in the case that a test
appears or disappears given a particular ontology-reasoner pair across runs. We
will address this problem mainly by looking at the coefficient of variation (COV)
of subsumption test hardness. The COV is a statistical, standardised measure
of dispersion of a distribution (for example the distribution of test hardness) de-
fined as the ratio of the standard deviation to the mean and is used to compare
the variation of one data series to another, even if they are on a different scale.
What are the reasons for instability (RQ5)? We will not conclusively try to an-
swer this problem, but we will collect some evidence for stochasicity by looking
at intra-module variation of test counts, a strong indicator of non-determinism.

Does modularity change the hardness of tests (RQ6)? In order to answer
this question, we will classify tests by analysing how modularity affects their
hardness. This happens as follows: We identify all super and submodule combi-
nations M1,M2 as described earlier. For each test triggered in both M1 and
M2, we determine: (1) was the effect positive on average (across runs), (2) what
was the magnitude of the effect and (3) was the effect stable? We define sta-
bility of an effect as follows: given a subsumption test ST that occurs in two
modules M1,M2 with M1 ⊂ M2, and two sets of measurements X(STM1

)
and X(STM2) (a) measurements ME ∈ X(STM1) are either all harder or all
easier than measurements ME ∈ X(STM2) (strong stability) or (b) the over-
lap of the ranges of X(STM1

) and X(STM2
) is less than 10% of the range of

X(STM1
) uX(STM1

).
We group ST hardness into the following bins: Very Hard (more than 100

seconds), Hard (>10 sec), Medium Hard (>1 sec), Medium (>100 ms), Medium
Easy (>10 ms), Easy (>1 ms), Very Easy (>100 µs.), Trivial (<100 µs). The
upper bound of each bin corresponds to the lower bound of the previous one.

5 Experimental Design

We conducted our study on a corpus of 339 OWL API (3.5.0)-parsable BioPor-
tal ontologies, obtained through the BioPortal REST Services1 (January 2015
snaphshot). All ontologies were serialised into OWL/XML, with merged imports
closure. A minimum amount of repair (injecting missing declarations, dropping
empty n-ary axioms, etc.) was applied to ensure that trivial violations do not
impair DLness.

1 http://data.bioontology.org/documentation
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For all our experiments, we use four OWL reasoners that implement the OWL
API interface: HermiT 1.3.8, Pellet 2.3.1, JFact 1.2.3 and FaCT++ 1.6.3. All four
are among the most heavily used reasoners for OWL 2 DL. The reasoners have
been modified for the benchmark: When a subsumption test is conducted, the
start and end timestamps, the sub and super class under consideration and the
result of the test are recorded. While we can use this approach to compare results
for each reasoner, interpretation of comparisons between reasoners might be
misleading due to implementational details. For example, methods that test for
subsumption and ultimately satisfiability may be nested. See companion website
for more information (Section 6). Because we are interested in real life behaviour,
we allowed the reasoner to fall into states like the deterministic part of HermiT
for Horn-SHIQ or Pellets internal EL-Reasoner. That said, we cannot claim to
measure all subsumption tests a reasoner does. We can, however, establish a
lower bound and are confident that we capture the vast majority of the hard
tests, because the sum of test times occasionally account for almost 100% of the
OCT for all reasoners.

A set of four equal-spec Mac Minis with Mac OS X Lion 10 (64 bit), 16 GB
RAM and 2.7 GHz Intel Core i764-bit was used for the benchmarking. Every
single classification was done in a separate isolated virtual machine (Java 7,
-Xms2G, -Xmx12G). In order to reduce potential bias induced by run order
(unaccounted for background processes kicking in, runtime optimisations), we
fully randomise the run order and evenly distribute the experiment run jobs
across the four machines.

Experimental Pipeline: For the first experiment we execute a single run of all
reasoners across the entire corpus, with a timeout of 60 minutes per run. Due
to technical details, the timeout is a lower bound and might not be triggered
until some minutes later. Note that we include every ontology in the corpus,
including the ones not strictly in OWL DL (53). The reason for that is that these
ontologies do form part of the landscape, and reasoners are used on them. The
main sources of violations are uses of reserved vocabulary (37% of all violations
across the corpus), illegal punning (32%) and uses of datatypes not on the OWL 2
datatype map (11%).

For the second experiment, we select a set of reasoner-ontology pairs for
which, according to the results of experiment 1, at least one test was measured
that was harder than 100 milliseconds. Because of the various claims we have
with respect to modules, we also excluded ontologies that do not fall under
OWL 2 DL. Runtime limitations forced us to exclude the NCIt from the sample,
due to the extreme number of measured subsumption tests (JFact 751,907 tests,
Pellet 461,831, FaCT++ 605,481). For this experiment, we first obtain random
cumulative subsets from the ontologies in our narrowed down sample, similar to
Gonçalves et al. [8], with 16 slices. In a nutshell, given the set of logical axioms the
ontologies are comprised of, we obtain a random 1

16 th of the axioms, serialise
this subset, add another randomly drawn 1

16 th from the remaining axioms to
the first, serialise them together, and then iteratively grow each consecutive
subset until the final set is the whole ontology. From the signature of each subset
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sampled, we obtain the ⊥-locality module using the OWL API module extractor.
Module properties ensure that, given subset S1 ⊂ S2,M

S̃1
⊂M

S̃2
. The module

of 16
16 th, MÕ, corresponds to the whole ontology. We call this nested set of

modules a path. Note that the modules are usually considerably larger than
their respective subsets, which will give us a good sample of relatively large
modules with hopefully hard subsumption tests. Each of the modules obtained
is classified three times (i.e., three independent runs) by each reasoner. Given a
path M1 ⊂M2... ⊂Mn, we call P the set of all pairs Mi,Mj with i<j.

6 Results

Supporting materials, datasets and scripts can be found online2. Percentages in
this section are subject to appropriate rounding.

6.1 Subsumption Test Landscape

Out of the 1356 attempted classification runs (4 reasoners and 339 ontologies),
1136 (85%) completed successfully. 322 ontologies were dealt with by at least one
reasoner (95%) within the 60 minute timeout. Reasons for failure include hitting
the timeout, unsupported datatypes (FaCT++), and lack of DLness (mainly
HermiT). From the 322 ontologies successfully processed, 186 did not have any
subsumption tests measured by any of the three reasoners. By reasoner, FaCT++
did not test in 177 cases, HermiT in 189, JFact in 191 and Pellet did not fire
a ST during 218 successful classifications. For the remaining 136, at least one
reasoner conducted a ST as described in Section 5. One interesting observation

0, Fact++[EXP] 0, HermiT[EXP] 0, JFact[EXP] 0, Pellet[EXP]

1, Fact++[EXP] 1, HermiT[EXP] 1, JFact[EXP] 1, Pellet[EXP]

10
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100000
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100000

T VE E MEMDMH H VH T VE E MEMDMH H VH T VE E MEMDMH H VH T VE E MEMDMH H VH

Fig. 1. Counts of ST’s for each hardness bin by reasoner (log scale), distinguished by
positive (1) and negative (0) tests.

is that most positive tests are of only trivial hardness, while negative tests are
generally harder. While subsumption testing dominates the OCT only in a few
cases, it occasionally accounts for more than 80%. Very rarely we can observe
a single test accounting for more than 10% of the OCT. The maximum impact
for a single test by Pellet is 11.3%, HermiT 23.1%, JFact 24.8% and FaCT++
9.2%. The distribution of subsumption test hardness across all runs according
to our hardness scale (Sec. 4) is shown in Figure 1.

2 http://bit.ly/1bIqdNX
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6.2 In-depth Characterisation

From the previous experiment, according to the process detailed in Section 5, 3
ontologies were selected for FaCT++, 13 for HermiT, 5 for JFact and 4 for Pellet.
The full ontologies have OCT’s ranging from 7.31 seconds to 1211.00 seconds
(median: 103.20, mean: 210.70). Out of the 1200 (16 modules per ontology, 3 runs
per module, 25 ontology reasoner pairs) attempted classifications (timeout 60
minutes), 1093 (91%) successfully terminated. Out of the possible 400 modules
(16 modules, 25 ontology-reasoner pairs) across the entire set, we obtain 371
records from the intra-module analysis, 358 out of which were obtained from
three distinct measurements, 6 are comprised of two distinct measurements and 7
by only one. Since we are interested in observing variability, we discard the latter
7 and stick with 364 partially or fully complete records. Variability is determined
using the coefficient of variation (COV). From the module perspective, we look
at three distinct sources of variation: overall classification time (OCT), sum of
all subsumption test times (SUMST) and the total number of tests conducted
(CTT). Across modules, only 3 module OCT varies by more than 30%, 12 by
more than 20% and 19 by more than 10%. The module with the worst variation
corresponds to a module taken from a 2

16 th of the Biotop ontology, classified by
JFact (min=38.49 sec, max=194.22 sec). A more detailed picture of the overall
variation can be taken from Figure 2. In terms of test count, the variation is
surprisingly large. 246 out of 364 cases (68%) show differences in the number of
test measured across runs. Only 118 (32%) do not vary at all. 20 modules vary
by more than 10% in the number of subsumption tests.

Across all 371 modules, we measured the hardness of 2,536,339 distinct ST’s.
Only 89% of the tests are measured more than once and we discard the rest. As
can be seen in Figure 2, the coefficient of variation is generally log10-normally
distributed (here reported in percent rather than in proportions of 1), but varies
considerably across reasoners. On average, measurements deviate as much as
13.22% and 13.96% for Pellet and HermiT respectively, while measurements for
and JFact deviate by 3.5%, and FaCT++ only 2.83%. The maximum varia-
tion for any test measurement for Pellet is 172.65%, for HermiT 172.50%, for
FaCT++ 167.87% and for JFact 169.07%.

For the inter-module analysis, we sampled 30 sub-module super-module
pairs from P from the 120 possible combinations as described in Section 5. Tak-
ing into account the successful classification we obtained data from 703 out of
750 possible comparisons. For result stability, we excluded a further 14 pairs
that had only a single measurement for either the sub or the super-module, and
continued with 689. Figure 3 shows the overall changes in measurement times
across pairs by reasoner. Bin membership is determined as follows. Given a pair
<M1,M2>∈ P we look at the change from either the CT (M1) to CT (M2)
or the change from a subsumption test STM1

to STM2
. Every pair of mea-

surements has a tendency, a magnitude and a degree of stability. The tendency
easier (mean hardness change less than -5%) denotes that a test is easier in the
super-module (potentially pathological), harder (mean hardness change more
than 5%) the reverse, and neutral means the mean measurement difference does
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Fig. 2. Top 2 rows: Histogram of variation (COV) by reasoner. Top: OCT, bottom:
SUMST. Bottom: Histogram of variation (COV) of ST measurements by reasoner.
Mind the log scale.

not change by more than 5%. High magnitudes are changes above 50%, medium
magnitudes are changes between 5% and 50% and low changes are below 5%.
An effect can be of three degrees of stability: clear cut, high or low, see Section 4.
Neutral cases have high stability if both sets of measurements have a variation
coefficient less than 5%. From the module perspective, the main observation to
be made here is that there are 39 cases in the set where the sub-module is harder
than the super-module and 173 where there is no significant change in hardness
(less than 5% change). Test time stability varies a lot across reasoners. While
FaCT++ measurements are mostly stable, Pellet and JFact measurements vary
a lot across almost all potential categories. The pathological cases as described
in Section 4, EHC and EHH, occur rarely. Out of the 1,507,654 tests that got
easier overall, only 399,644 (26%) are of a high magnitude. Out of those, 376,078
are clear cut, and 8,850 of high stability. From the clear cut cases, 59,656 are
potentially unaffected by non-determinism, out of which 204 are harder than
100 ms. Out of the highly stable cases, only 302 are potentially unaffected by
non-determinism, out of which only 10 are harder than 100ms. None of the tests
in both groups are harder than a second.

7 Discussion

We quantify the impact of subsumption test hardness (RQ1) on classification
time in two ways: (1) Contribution of test times measured to OCT and (2)
ratio of number of ontologies with tests to those without. Only few of the 136
ontologies with tests were dominated by test hardness: Only 1 ontology had more
than a 50% contribution of total SST for Hermit, 7 for Pellet, 19 for FaCT++
and 23 for JFact. However, there are cases where the contribution is very high.
The ratio of ontologies entirely without tests is very high: FaCT++: 52%-71%,
HermiT 55%-80%, JFact in 56%-76% and Pellet 64%-84%. We have established
only the lower bound. The upper bound covers the very unlikely possibility
that the failed classifications might be all without tests. Additionally, 36 of the
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Fig. 3. Hardness classes by reasoner. Top row: OCT, bottom 4: SST. Bin labels x-axis:
1st letter: tendency (easier, neutral, harder), 2nd: magnitude (low, medium, high), 3rd:
stability: (clearcut, high, low). Y-axis: number of comparisons.

ontologies entirely without tests have less than 100 TBox axioms (12 less than
10).

RQ2 is quantified by ratio of positive to negative tests. Positive tests account
to between 0.12% (Pellet) and 2.61% (FaCT++) of the overall number of tests
(JFact 2.49%, HermiT 2.12%). This low ratio is not surprising, given that the
worst case N2 is dominated by far by non-subsumptions. As a side observation,
current traversal algorithms appear highly efficient. Only 3 ontology-reasoner
pairs (two distinct ontologies, small TBoxes) trigger more than 10% of the worst
case N2 number of subsumption tests, and 50 pairs (30 unique ontologies) trigger
more than 1% of the worst case. This result however is only indicative of the
efficiency, as we do not guarantee to measure all tests.

The distribution of test hardness as shown in Figures 1 tends towards easy
tests (RQ3). Figure 1 show that the number of really hard tests are in the
minority: only 346 out of 2,671,896 tests measured overall are harder than a
second. This result may emphasise the importance of test avoidance over further
optimising individual subsumption tests. However, as there are individual tests
that can make up to 25% of the overall reasoning time, it cannot be disregarded.

The variation of the measurements, both for individual tests and overall
times, is, at least in its magnitude, surprising (RQ4). While the variation of test
times could be so high merely due to the low number of measurements that are
very vulnerable to experimental error (for example an unaccounted for system
background kicking in, stochasticity in the garbage collection, room tempera-
ture), we cannot claim the same for the variation in the numbers of triggered
tests. That 68% of the modules in the sample vary in the number of tests is a
very strong indicator for the stochasticity of the classification process (at least
in this particular sample), be it due to random effects in the programming lan-
guage or deliberate randomness induced by the implementation. This poses a
serious threat for single-run benchmarking, as it is still general practice in the
DL community. A small indication of the potential impact of a particular pro-
gramming environment is the very low average variation in test times collected
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for FaCT++, which is the only reasoner in the set implemented in C++. In the
inter-module comparison we learned that our pathological cases rarely happen
and if so, the effect they might have on overall classification time is negligible,
due to the potential degree of the effect and the rarity in which they occur. Fur-
thermore, the strong evidence of stochasticity of the classification process makes
it unclear whether the effect might not simply be due to non-determinism. De-
spite having detected some cases that are clearly counter-intuitive (in the sense
of getting easier when irrelevant stuff is added in), we cannot be sure whether
modularity is the cause, due of the small effect size (RQ6). On top of that, eas-
ier and harder tests almost balance each other out. Given our sample bias, our
results are not conclusive.

8 Conclusions and Future Work

In this paper we have presented a procedure for reliable and reproducible isola-
tion of counter-intuitive reasoning behaviour on subsumption tests during clas-
sification and presented some such isolated cases. Future work includes com-
pleting the full characterisation of the corpus with respect to the pathological
cases and then investigating the causal basis of those cases. The most likely ex-
planation is that the additional axioms trigger a cheaper choice in the complex
non-determinism algorithms. The big challenge is whether any progress can be
made in a fairly reasoner independent way. One idea is to extract the justifica-
tions for a given entailment and see whether they are disproportionally difficult
individually. This would suggest that the additional information is directing the
algorithm toward “easier” reasoners.
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