
Saturation-Based Forgetting in the
Description Logic SIF

Patrick Koopmann, Renate A. Schmidt

The University of Manchester, UK
{koopmanp, schmidt}@cs.man.ac.uk

Abstract. Forgetting, which has also been studied under the names
uniform interpolation, projection and variable elimination, deals with
the elimination of symbols from an input ontology in such a way that
all entailments in the remaining signature are preserved. The computed
result, the uniform interpolant, can be seen as a restricted view of the
original ontology, projected to a specified subset of the signature. For-
getting has applications in ontology reuse, ontology analysis and infor-
mation hiding, and has been studied for a variety of description logics in
the last years. However, forgetting in description logics with functional
role restrictions and inverse roles has been an open problem so far. In
this paper, we study the problem of forgetting concept symbols in the
description logic SIF , an expressive description logic supporting transi-
tive roles, inverse roles and functional role restrictions. Saturation-based
reasoning has been proven to be a well-suited technique for computing
uniform interpolants practically in recently introduced methods. Since
existing methods are usually optimised towards a specific aim such as
satisfiability checking or classification, they cannot always directly be
used for forgetting. In this paper we present a new saturation technique
that is complete for forgetting concept symbols, and show how it can be
used for computing uniform interpolants.

1 Introduction

We present a method for forgetting concept symbols from SIF-ontologies. Mod-
ern applications, especially in bio-informatics or medical domains, lead to the
development of ontologies that cover a large vocabulary. With rising complex-
ity, these ontologies become harder to maintain and modify. It can therefore be
advantageous to have tool-support for reducing the vocabulary used in an on-
tology. Forgetting restricts the vocabulary in an ontology in such a way that all
entailments over the restricted vocabulary are preserved. In contrast to modules,
uniform interpolants are completely in the desired signature and may contain
different axioms than the input ontology.

There are numerous applications of forgetting that make the problem worth
studying, of which we give a few examples. Ontology Summary. Comprehend-
ing a complex ontology can be hindered by a too large vocabulary used in the
ontology. If the central concepts and roles of the ontology are known, forgetting

2

all but the central concepts of an ontology can be used to compute a more fo-
cused high-level summary of the ontology. Ontology Analysis. With increasing
complexity of the ontology, understanding the relations between concepts and
roles involved becomes more difficult. By forgetting all but a few chosen sym-
bols, one can obtain a direct representation of the interactions between them.
Logical Difference. In order to maintain an evolving ontology, it is necessary
to be able to exhibit changes between different ontology versions. However, a
syntactical diff between text representations of the ontologies is rarely useful in
practice. In contrast, the logical difference between two ontologies is a semantic
notion, which is defined by the difference of logical entailments in the common
signature of these ontologies, or in a specified signature [8,7]. [16] show that the
logical difference can easily be computed using the uniform interpolants of the
ontologies. Information Hiding. As pointed out in [4], ontology-based systems
are increasingly used in a range of applications that deal with sensitive informa-
tion. Forgetting can be used as a means to eliminate confidential information if
an ontology is to be shared between users with differing privileges.

Methods for forgetting have been investigated for a range of description log-
ics, including DL-Lite [29], EL [9,17,20], ALC [28,16,12,11,14,15], ALCH [10]
and SHQ [13]. So far, forgetting for description logics with inverse roles and
functional role restrictions was an open problem.

As with most expressive description logics, SIF does not have uniform inter-
polation. This means that the result of forgetting may not always be finitely rep-
resentable in SIF . Take as an example the ontologyO = {A v ∃r.B, B v ∃r.B}.
If we only use the expressivity SIF provides, forgetting B from O would result
in an infinite ontology of the form {A v ∃r.∃r.∃r. . . .}. A solution to this prob-
lem is to use fixpoint operators in the resulting ontology [19,12]. Fixpoints are
not a common formalism for description logics, but can be simulated in classical
description logics using additional concept symbols, and can serve as a basis for
approximating of the result of forgetting [12].

As is shown in [18,20], if finite and if fixpoints are not used in the result,
already for the description logics EL and ALC, the result of forgetting can be of
size triple exponential in the size of the input. By using fixpoint operators, we ob-
tain a double-exponential upper-bound, which also holds for the description logic
SIF . Since this is still of high complexity, a goal-oriented approach is required
in order to be able to compute uniform interpolants practically. Practicality
has been achieved in [10,13,14,16] by using a saturation-based approach, which
eliminates concept symbols by resolving on these symbols. This approach is also
followed in this paper. Saturation-based reasoning has recently received increased
interest in the description logic community, due to the success of consequence-
based reasoning methods for classification [6,22,24,25,26]. However, these meth-
ods are optimised for specific reasoning tasks, and can not directly be used for
forgetting.

In this paper, we present a new sound and refutationally complete saturation-
procedure for SIF , and show that it can be used for forgetting concept sym-
bols in a goal-oriented manner. The method is based on the methods presented

3

in [12,10], which we extend to incorporate transitive roles, inverse roles and
functional role restrictions.

2 Definition of SIFν and Forgetting

We define the description logic SIFν, which is SIF extended with fixpoint
operators.

Let Nc, Nr, Ni and Nv be four pair-wise disjoint sets of respectively concept
symbols, role symbols, individuals and concept variables. A role is either of the
form r or r−, where r ∈ Nr. We define the inverse of a role Inv(R) as Inv(r) = r−

and Inv(r−) = r. An RBox R is a set of transitivity axioms trans(R), where R
is a role. A role R is transitive in R if trans(R) ∈ R or trans(Inv(R)) ∈ R.
SIFν-concepts have the following form:

⊥ | A | X | ¬C | C1 t C2 | ∃R.C | ≤1R.> | νX.C[X],

where A ∈ Nc, X ∈ Nv, C, C1 and C2 are arbitrary concepts and R is any
role, and C[X] is a concept expression in which X occurs under an even number
of negations. We define further concept expressions as abbreviations: > = ¬⊥,
C1 u C2 = ¬(¬C1 t ¬C2), ∀R.C = ¬(∃R.¬C), ≥2R.> = ¬≤1R.>. Concepts
of the form ≤1R.> are called functional role restrictions. Concepts of the form
νX.C[X] are called greatest fixpoint expressions. νX.C[X] denotes the greatest
fixpoint of C[X], and ν is the greatest fixpoint operator. A concept variable X is
bound if it occurs in the scope C[X] of a fixpoint expression νX.C[X]. Otherwise
it is free. A concept is closed if it does not contain any free variables, otherwise
it is open.

A TBox T is a set of concept axioms of the forms C v D (concept inclusion)
and C ≡ D (concept equivalence), where C and D are closed concepts. C ≡ D is
short-hand for the two concept axioms C v D and D v C. We further require
greatest fixpoint expressions to occur only positively in an axiom, that is, on
the right-hand side of a concept inclusion and only under an even number of
negations. An ontology O = 〈T ,R〉 consists of a TBox T and an RBox R with
the additional restriction that roles that are transitive in R do not occur under
functional role restrictions. This is a common restriction that has been used
to guarantee decidability of common reasoning tasks for description logics with
number restrictions [5] , and our forgetting method assumes that it is satisfied.

In the definition of the semantics of SIFν, an interpretation I is a pair
〈∆I , ·I〉 of the domain ∆I , a nonempty set, and the interpretation function ·I ,
which assigns to each concept symbol A ∈ Nc a subset of ∆I and to each role
symbol r ∈ Nr a subset of ∆I ×∆I . The interpretation function is extended to
SIFν-concepts as follows.

⊥I = ∅ (¬C)I = ∆I \ CI (C tD)I = CI ∪DI

(≥ nr.C)I = {x ∈ ∆I | #{(x, y) ∈ rI | y ∈ CI} ≥ n}

The semantics of fixpoint expressions is defined following [2]. Whereas concept
symbols are assigned fixed subsets of the domain, concept variables range over

4

arbitrary subsets, which is why only closed concepts have a fixed interpretation.
Open concepts are interpreted using valuations ρ that map concept variables to
subsets of ∆I . Given a valuation ρ and a set W ⊆ ∆I , ρ[X 7→W] denotes a val-
uation identical to ρ except that ρ[X 7→W](X) = W . Given an interpretation I
and a valuation ρ, the function ·Iρ is ·I extended with the cases XIρ = ρ(X) and

(νX.C)Iρ =
⋃
{W ⊆ ∆I |W ⊆ CIρ[X 7→W]}.

If C is closed, we define CI = CIρ for any valuation ρ. Since C does not contain

any free variables in this case, this defines CI uniquely.
A concept inclusion C v D is true in an interpretation I iff CI ⊆ DI and a

transitivity axiom trans(R) is true in I if for any domain elements x, y, z ∈ ∆I
we have (x, z) ∈ RI if (x, y) ∈ RI and (y, z) ∈ RI . I is a model of an ontology O
if all axioms in O are true in I. An ontology O is satisfiable if a model exists
for O, otherwise it is unsatisfiable. Two TBoxes T1 and T2 are equi-satisfiable if
every model of T1 can be extended to a model of T2, and vice versa. T |= C v D
holds iff in every model I of T we have CI ⊆ DI . If an axiom α is true in all
models of O, we write O |= α.

Let sig(E) denote the concept and role symbols occurring in E, where E can
denote a concept, an axiom, a TBox, an RBox or an ontology.

Definition 1 (Forgetting). Let A be a concept symbol and O and O−A be
ontologies. An ontology O−A is a result of forgetting A from O if the following
conditions hold:

1. A 6∈ sig(O−A), and
2. for all concept inclusions α with A 6∈ sig(α): O−A |= α iff O |= α.

Given an ontology O and a set of concept symbols S, a result of forgetting S
from O is a result of forgetting each symbol in S one by one. An ontology OS
is a uniform interpolant of O for S iff O is a result of forgetting every symbol
from O that is not in S.

3 Normalisation

The saturation method works on ontologies of a specific normal form, which is
defined as follows.

Definition 2. Let Nd ⊆ Nc be a set of designated concept symbols called definer
symbols or, simply, definers. A SIF literal is a concept of one of the following
forms:

A | ¬A | ∃R.D | ∀R.D | ≥2R.> | ≤1R.>,

where A ∈ Nc, D ∈ Nd, and R is of the form r or r−, with r ∈ Nr. A SIF
clause is a transitivity axiom or an axiom of the form > v L1 t . . . tLn, where
L1, . . . , Ln are SIF literals. We may omit the leading “> v” in clauses, and

5

Non-Cyclic Definer Elimination:

O ∪ {D v C}
O[D/C]

provided D 6∈ sig(C)

Definer Purification:
O

O[D/>]
provided D occurs only positively in O

Cyclic Definer Elimination:

O ∪ {D v C[D]}
O[D/νX.C[X]]

provided D ∈ sig(C[D])

Fig. 1. Rules for eliminating definer symbols

assume clauses are represented as sets, that is, they do not contain duplicate
elements and the order is not important.

An ontology N is in SIF normal form if every axiom in N is a SIF clause,
and if for every clause trans(R) ∈ N , there is also a clause trans(Inv(R)) ∈ N .

Note that the description logic SIF allows for number restrictions of the form
≥2R.>, since SIF concepts are closed under negation, and≥2R.> ≡ ¬(≤1R.>).

Any SIFν ontology can be transformed into an ontology in SIF normal form
using standard structural transformation and CNF transformation techniques.

Example 1. Consider the following ontology O1:

A1 uB1 v ⊥ A1 v ∃r−.B2 B2 v ≤1r.> B2 v ∃r.(B1 tA2)

The SIF normal form of O1 is the following set of clauses:

1. ¬A1 t ¬B1 4. ¬B2 t ≤1r.>
2. ¬A1 t ∃r−.D1 5. ¬B2 t ∃r.D2

3. ¬D1 tB2 6. ¬D2 tB1 tA2

Given a set N of SIF clauses such that every clause contains at most one
literal of the form ¬D, where D ∈ Nd, it is possible to eliminate all definer literals
in N using the rewrite rules shown in Figure 1. This is crucial for our method
for forgetting concept symbols, since the method described in the next section
operates on sets of SIF clauses. For the rules in Figure 1, it is assumed that for
every definer D occurring negatively in N , the set of clauses of the form ¬DtC1,
. . ., ¬D t Cn is replaced by a single axiom D v C1 u . . . u Cn. Note that the
last rule in Figure 1 introduces fixpoint operators to the ontology. The rules in
Figure 1 are applications of Ackermann’s Lemma [1] and its generalisation [21],
which have been used in the context of second-order quantifier elimination to
eliminate predicate symbols [3]. The result of applying these rules does not
contain any definers, but preserves all entailments of input that do not involve
definer symbols, which is a consequence of these lemmata.

6

Transitivity Rule:

C t ∀R.D trans(R)

C t ∀R.Dtrans ¬D′ tD ¬D′ t ∀R.Dtrans

Universalisation Rule:

C1 t ∃R.D C2 t ≤1R.>
C1 t C2 t ∀R.D

Fig. 2. Rules used in the first stage of reasoning.

4 The Calculus

In order to forget a concept symbol A, we infer all inferences on that symbol using
a saturation-based approach, and then eliminate occurrences of that symbol from
the resulting clause set. Using the transformation rules in Figure 1, we can then
eliminate all definer symbols introduced by the normalisation or throughout the
reasoning process.

Due to possible interactions between the rules of our calculus, we process the
clause set in several stages, where only certain rules are allowed in each stage.
This is a major difference between this method and the methods for ALC and
ALCH presented in [12,10], and is necessary to guarantee termination of the
method. In the first stage, we only apply rules that infer clauses with universal
restrictions. The function of this stage is to infer all clauses that can serve as
premise in the second stage of the calculus. In the second stage, we handle inverse
roles in universal restrictions using the role inversion rule. In the last stage,
we apply all remaining inferences of the calculus with the aim of computing
inferences on A. We describe the stages one by one, and illustrate them on the
example introduced in the last section.

Stage 1. The rules for the first stage are shown in Figure 2. The transi-
tivity rule is directly taken from [13], which presents a similar calculus for the
description logic SHQ. The rule works in a similar fashion as common rewriting
rules to reduce reasoning with transitivity roles to reasoning without (see for
example [27,23]).

The universalisation rule infers from a functional role restriction and an
existential role restriction a universal restriction. The soundness of this rule
can be explained as follows. If a domain element x in a model I has an R-
successor that satisfies D (x ∈ (∃R.D)I), and if x has maximally one R-successor
(x ∈ (≤1R.>)I), then every R-successor of x satisfies D, since there is only one
such successor (x ∈ (∀R.D)I). This means (∃R.Du≤1R.>) |= ∀R.D, and implies
that the universalisation rule is sound.

7

Role Inversion Rule:

C t ∀R.D

D t ∀Inv(R).DInv ¬DInv t C

Fig. 3. Role inversion rule used in the second stage of reasoning.

Resolution Rule:
C1 tA C2 t ¬A

C1 t C2

∀-Rule:
C1 t ∀R.D1 C2 t QR.D2

C1 t C2 t QR.D12

where Q ∈ {∀,∃} and D12 is a possibly new definer representing D1 uD2.

∃-Rule:
C1 t ∃R.D1 C2 t ∃R.D2

C1 t C2 t ∃R.D12 t ≥2R.>
where D12 is a possibly new definer representing D1 uD2.

Fig. 4. Rules used in the third stage of reasoning.

Example 2. Following the clause set constructed in the last example, in Stage 1,
we apply the universalisation rule on Clause 4 and 5 to infer the following clause.

7. ¬B2 t ∀r.D2 (Universalisation 4, 5)

Stage 2. In this stage, the inversion rule shown in Figure 3 is applied.

Example 3. Continuing the previous example, there is only one clause in the
current clause set that has a universal role restriction, which is Clause 7 that
was derived in Stage 1. By applying the role inversion rule, the following new
clauses are derived:

8. D2 t ∀r−.DInv (Role Inversion 7)

9. ¬DInv t ¬B2 (Role Inversion 7)

Stage 3. This is the main reasoning stage, where we compute all inferences on
the symbols we want to forget. The rules for this stage are shown in Figure 4. The
rules of this stage are an extension of the calculus used for forgetting presented in
[12,10]. The ∃-rule is influenced by the calculus for reasoning in SHQ presented
in [13].

A key for ensuring termination is the dynamic introduction of new symbols
through the rules of the calculus. This is necessary to preserve the normal form

8

and still be able to infer all clauses that are required for the forgetting result.
There are two rules in the first stage that introduce new definers: the transitivity
rule and the role inversion rule. In the third stage, the ∀-rule and the ∃-rule may
introduce new definers that represent conjunctions of existing definers. More
specifically, given two definers D1 and D2, we may introduce a new definer D12

representing D1 u D2 by adding the clauses ¬D12 t D1 and ¬D12 t D2. By
doing this in an optimised way, the number of definer symbols introduced can
be restricted to by 2n, where n is the number of definer symbols present in the
input clause set [12].

The resolution rule is standard in resolution-based reasoning. The ∀-rule are
directly taken from [12]. The ∀-rule propagates concepts below a universal role
restrictions into other role restrictions. If ∀R.D1 is satisfied by some element x
of the domain, we know that all R-successors of x have to satisfy D1. This
implies that, if x furthermore satisfies QR.D2 for some Q ∈ {∃,∀}, then it also
satisfies QR.(D1 uD2).

The ∃-rule is new and necessary in order to preserve entailments that use
a ≥2-restriction. Assume we have a model with a domain element x that has
at least one R-successor x1 satisfying D1 and at least one R-successor x2 that
satisfies D2. If x1 = x2, then x satisfies ∃R.(D1uD2). If x1 6= x2, then x satisfies
≥2R.>. Hence, we have (C1 t ∃R.D1) u (C2 t ∃R.D2) |= (C1 t C2 t ∃R.(D1 u
D2) t ≥2R.>), and the ∃-rule is sound.

In order to forget a concept symbol A, we compute all resolvents on A and on
definer literals that lead to clauses with maximally one negative definer literal.
Clauses with multiple negative definer literals are not needed for the computa-
tion, which can be argued in similar ways as in [12].

Note that even though only the resolution rule directly infers clauses on
a concept symbol, the ∀- and the ∃-rule may introduce new definers, which
subsequently makes new inferences on the symbol to be forgotten possible. For
the forgetting result, only inferences with maximally one negative definer literal
are required. The role inversion rule may derive clauses with more than one
negative definer literal, but these inferences are only required if they allow for
further inferences of clauses with maximally one negative definer.

In the resulting clause set, we omit all clauses containing A or more than
one negative definer literal. Then, we eliminate all definers using the technique
described in the last section. The ontology obtained is the result of forgetting A
from the original ontology.

Example 4. Assume we want to forget B1 and B2. We begin by computing in-
ferences on B1, for which only one inference step is needed.

10. ¬D2 t ¬A1 tA2 (Resolution 1, 6)

9

We continue by computing inferences on B2. This time, in order to make all
inferences possible, we have to use the ∀-rule first.

11. ¬D1 t ≤1r.> (Resolution 3, 4)

12. ¬D1 t ∃r.D2 (Resolution 3, 5)

13. ¬D1 t ∀r.D2 (Resolution 3, 7)

14. ¬A1 tD2 t ∃r−.D1Inv (∀-rule 2, 8)

15. ¬D1Inv tD1 (D1Inv v D1 uDInv)

16. ¬D1Inv tDInv (D1Inv v D1 uDInv)

17. ¬A1 tA2 t ∃r−.D1Inv (Resolution 10, 14)

18. ¬D1Inv tB2 (Resolution 3, 15)

19. ¬D1Inv t ¬B2 (Resolution 9, 16)

20. ¬D1Inv (Resolution 18, 19)

Even though we did not discuss redundancy elimination techniques here, one
can easily see that further inferences of clauses of the form ¬D1Inv t C are not
needed, since we already inferred the unary clause ¬D1Inv. For the same reason,
we do not have to include any other clause containing ¬D1Inv in the result. In
fact, no further inferences are necessary for the forgetting result. If we ignore
all clauses that do contain the symbols B1 and B2 we are forgetting, we are left
with Clauses 2, 7, 10–13, 17 and 20. Eliminating the definers in these clauses
results in the following ontology:

A1 v ∃r−.(≤1r.> u ∃r.(¬A1 tA2) u ∀r.(¬A1 tA2))

A1 v A2 t ∃r−.⊥

We can simplify the second axiom to A1 v A2, which allows us to further simplify
the first axiom, and obtain as result of forgetting B1 and B2 the following:

A1 v ∃r−.(≤1r.> u ∃r.>) A1 v A2

5 Correctness of the Method

In order to prove that the method is correct, we show that the resulting ontology
preserves all entailments of axioms that do not use the symbols to be forgotten.
More formally, if O−A denotes the output of our method for an ontology O
and a concept symbol A, we show that O−A |= α iff O |= α for all axioms α
with A 6∈ sig(α). If α = C1 v C2, we can prove O |= α by showing that
O ∪ {∃r∗.(C1 u ¬C2)} is unsatisfiable, where r∗ is a role not occurring in O.

In order to show that our forgetting method works correctly, we extend our
reasoning method to a refutational complete calculus, that, in order to prove the
satisfiability of a clause set, first infers inferences on a designated concept sym-
bol A using only the rules of the forgetting method. If this calculus is refutational
complete, we have that a contradiction can be derived from O∪{∃r∗.(C1u¬C2)}

10

∃-Elimination Rule:
C1 t ∃R.D ¬D

C1

≥2-Elimination Rule I:

C1 t ≥2R.> C2 t ≤1R.>
C1 t C2

≥2-Elimination Rule II:

C1 t ≥2R.> C2 t ∀R.D ¬D
C1 t C2

Fig. 5. Additional rules needed for refutational completeness.

exactly in the same cases as it can from O−A ∪ {∃r∗.(C1 u ¬C2)}. This implies
O−A |= C1 v C2 iff O |= C1 v C2 for all concept inclusions C1 v C2 with
A 6∈ sig(C1 v C2), as required.

In order to obtain a refutationally complete calculus, we additionally need
the rules shown in Figure 5. Whereas the rules for the forgetting procedure are
aimed at making inferences on concept symbols possible, they are not sufficient
for detecting whether a set of clauses is unsatisfiable. The rules in Figure 5 are
aimed at detecting inconsistencies between clauses and eliminating unsatisfiable
literals, and transform the set of rules into a decision procedure for SIF-ontology
satisfiability.

The ∃-elimination rule eliminates unsatisfiable literals of the form ∃R.D. The
≥2-elimination rule I resolves on literals of the form ≥2R.> and ≤1R.>. The
rule is sound since an individual can only satisfy ≥2R.> or ≤1R.> at the same
time. The ≥2-elimination rule II eliminates unsatisfiable literals, similarly to the
∃-elimination rule. If the definer D is unsatisfiable, any instance of ∀R.D cannot
have R-successors. Therefore, we can resolve between ∀R.D and ≥2R.>.

We obtain the reasoning procedure RefSIF by extending the forgetting pro-
cedure presented in the last section by the rules in Figure 5, which are applied
in the last reasoning stage. We further refine the calculus with an ordering. The
reasoning procedure RefASIF uses the same rules as RefSIF , but for clauses con-
taining the concept symbol A, it only performs inferences on literals of the form
A or ¬A.

We have the following theorem.

Theorem 1. Let A be any concept symbol, RefSIF and RefASIF are sound and
refutationally complete, that is, for any set N of clauses, one can infer the empty
clause iff N is inconsistent.

Proof (Sketch). In order to prove refutational completeness, we have to show that
we can build a model based on any saturated setN ∗ of clauses such that ⊥ 6∈ N ∗.

11

Such a model can be obtained by adapting the model construction presented
in [10]. This construction first constructs a model fragment for each definer,
and then connects these elements to a complete model, where each definer is
represented by a designated domain element. Different to ALCH, SIF does
not have the finite model property. By unravelling the possibly cyclic models
created in [10] to a possibly infinite tree, it is however possible to construct a
model for N ∗, which can be verified by a careful analysis of the cases used in
the proof in [10]. ut

This theorem allows us to establish that the forgetting procedure described
in the last section is correct.

Theorem 2. For any SIF-ontology O and any concept symbol A, the described
method always terminates and computes the result of forgetting A from O. A
uniform interpolant for any ontology O and signature S with Nr ⊆ S can be
computed by step-wise forgetting every symbol in sig(O) \ S.

6 Conclusion and Future Work

We described a method for forgetting concept symbols from ontologies formu-
lated in the description logic SIF , where results are represented in SIFν. For-
getting eliminates a specified set of symbols from an ontology in such a way,
that all entailments that do not use these symbols are preserved. The method
uses a resolution-based saturation procedure to compute inferences on the sym-
bols to be eliminated. By extending this saturation procedure to a refutationally
complete reasoning method, which performs inferences on the symbols to be for-
gotten first, we could prove that our method indeed preserves all entailments in
the desired signature.

In order to properly handle the interactions between functional role restric-
tions and inverse roles without losing termination, the method works in three
stages. In the first stage all clauses with a universal restriction are computed,
on which in the second stage inferences based on inverse roles are performed.
An interesting question is whether this approach can also be used in connection
with role hierarchies or with cardinality restrictions. A method for forgetting
in the description logic SHQ is presented in [13]. A simple combination of the
rules presented in this paper and presented in [13] is not sufficient to obtain a
refutational complete method already for SHIF . An open question is whether
this also affects the appropriateness of such a calculus for forgetting concept
symbols, and whether a sufficient calculus can be developed by adding addi-
tional rules and possibly further extending the underlying description logic, for
example with role conjunctions.

We are working on a prototypical implementation of the method, which we
aim to integrate into our forgetting tool Lethe.1 Experiments on similar meth-
ods for ALC, ALCH and SHQ had promising results [11,10,13,15], and we are
confident that similar results can be obtained for SIF .
1 www.cs.man.ac.uk/~koopmanp/lethe

www.cs.man.ac.uk/~koopmanp/lethe

12

References

1. Ackermann, W.: Untersuchungen über das Eliminationsproblem der mathematis-
chen Logik. Mathematische Annalen 110(1), 390–413 (1935)

2. Calvanese, D., De Giacomo, G., Lenzerini, M.: Reasoning in expressive description
logics with fixpoints based on automata on infinite trees. In: Proceedings of the
Sixteenth International Joint Conference on Artificial Intelligence, IJCAI 99. pp.
84–89. Morgan Kaufmann (1999)

3. Gabbay, D.M., Schmidt, R.A., Sza las, A.: Second Order Quantifier Elimination:
Foundations, Computational Aspects and Applications, Studies in Logic, vol. 12.
College Publications (2008)

4. Grau, B.C.: Privacy in ontology-based information systems: A pending matter.
Semantic Web 1(1-2), 137–141 (2010)

5. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for very expressive descrip-
tion logics. Logic Journal of the IGPL 8(3), 239—263 (2000)

6. Kazakov, Y.: Consequence-Driven Reasoning for Horn SHIQ Ontologies. In:
Boutilier, C. (ed.) Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI-09). pp. 2040–2045. AAAI Press (2009)

7. Konev, B., Ludwig, M., Walther, D., Wolter, F.: The logical difference for the
lightweight description logic EL. Journal of Artificial Intelligence Research 44(1),
633–708 (2012)

8. Konev, B., Walther, D., Wolter, F.: The logical difference problem for description
logic terminologies. In: Automated Reasoning, Lecture Notes of Computer Science,
vol. 5195, pp. 259–274. Springer (2008)

9. Konev, B., Walther, D., Wolter, F.: Forgetting and uniform interpolation in large-
scale description logic terminologies. In: Proceedings of the Internation Conference
on Artificial Intelligence (IJCAI-09). pp. 830–835. AAAI Press (2009)

10. Koopmann, P., Schmidt, R.A.: Forgetting concept and role symbols in ALCH-
ontologies. In: Logic for Programming, Artificial Intelligence and Reasoning. Lec-
ture Notes in Computer Science, vol. 8312, pp. 552–567. Springer (2013)

11. Koopmann, P., Schmidt, R.A.: Implementation and evaluation of forgetting in
ALC-ontologies. In: Proceedings of the 7th International Workshop on Modu-
lar Ontologies (WoMO’13). CEUR Workshop Proceedings, vol. 1081, pp. 37–48.
CEUR-WS.org (2013)

12. Koopmann, P., Schmidt, R.A.: Uniform interpolation of ALC-ontologies using fix-
points. In: Frontiers of Combining Systems. Lecture Notes in Computer Science,
vol. 8152, pp. 87–102. Springer (2013)

13. Koopmann, P., Schmidt, R.A.: Count and forget: Uniform interpolation of SHQ-
ontologies. In: Automated Reasoning. Lecture Notes in Computer Science, vol.
8562, pp. 434–448. Springer (2014)

14. Koopmann, P., Schmidt, R.A.: Forgetting and uniform interpolation for ALC-
ontologies with ABoxes. In: Proceedings of the 27th International Workshop of
Description Logics (DL 2014). CEUR Workshop Proceedings, vol. 1193, pp. 245–
257. CEUR-WS.org (2014)

15. Koopmann, P., Schmidt, R.A.: Uniform interpolation and forgetting for ALC on-
tologies with ABoxes. In: Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence (AAAI-15). vol. 1, pp. 175–181. AAAI-Press (2015)

16. Ludwig, M., Konev, B.: Practical uniform interpolation and forgetting for ALC
TBoxes with applications to logical difference. In: Proc. KR’14. AAAI Press (2014)

13

17. Lutz, C., Seylan, I., Wolter, F.: An automata-theoretic approach to uniform inter-
polation and approximation in the description logic EL. In: Principles of Knowl-
edge Representation and Reasoning: Proceedings of the Thirteenth International
Conference (KR-12). pp. 286–296. AAAI Press (2012)

18. Lutz, C., Wolter, F.: Foundations for uniform interpolation and forgetting in ex-
pressive description logics. In: Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI-11). pp. 989–995. AAAI Press (2011)

19. Nikitina, N.: Forgetting in general EL terminologies. In: Proceedings of the 2011
International Workhop on Description Logics (DL2011). CEUR Workshop Pro-
ceedings, vol. 745, pp. 345–355. CEUR-WS.org (2011)

20. Nikitina, N., Rudolph, S.: (Non-) Succinctness of uniform interpolants of general
terminologies in the description logic EL. Artificial Intelligence 215, 120–140 (2014)

21. Nonnengart, A., Sza las, A.: A fixpoint approach to second-order quantifier elimi-
nation with applications to correspondence theory. In: Orlowska, E. (ed.) Logic at
Work: Essays Dedicated to the Memory of Helena Rasiowa, Studies in Fuzziness
and Soft Computing, vol. 24, pp. 307–328. Springer (1999)

22. Ortiz, M., Rudolph, S., Simkus, M.: Worst-case optimal reasoning for the Horn-
DL fragments of OWL 1 and 2. In: Principles of Knowledge Representation and
Reasoning: Proceedings of the Twelfth International Conference (KR-10) (2010)

23. Schmidt, R.A., Hustadt, U.: A principle for incorporating axioms into the first-
order translation of modal formulae. In: Automated Deduction–CADE-19, pp. 412–
426. Springer (2003)

24. Simanćık, F., Kazakov, Y., Horrocks, I.: Consequence-based reasoning beyond Horn
ontologies. In: Proceedings of the Twenty-Second International Joint Conference
on Artificial Intelligence (IJCAI-11). vol. 22, pp. 1093–1098. AAAI Press (2011)

25. Simanćık, F., Motik, B., Krötzsch, M.: Fixed parameter tractable reasoning in
DLs via decomposition. In: Proceedings of the 24th International Workshop on
Description Logics (DL 2011). CEUR Workshop Proceedings, vol. 745, pp. 400–
410. CEUR-WS.org (2011)

26. Steigmiller, A., Glimm, B., Liebig, T.: Coupling tableau algorithms for expressive
description logics with completion-based saturation procedures. In: Automated
Reasoning, Lecture Notes of Computer Science, vol. 8562, pp. 449–463. Springer
(2014)

27. Tobies, S.: Complexity results and practical algorithms for logics in knowledge
representation. Ph.D. thesis, LuFG Theoretical Computer Science, RWTH-Aachen,
Germany (2001)

28. Wang, K., Wang, Z., Topor, R.W., Pan, J.Z., Antoniou, G.: Eliminating concepts
and roles from ontologies in expressive descriptive logics. Computational Intelli-
gence 30(2), 205–232 (2014)

29. Wang, Z., Wang, K., Topor, R.W., Pan, J.Z.: Forgetting for knowledge bases in
DL-Lite. Annals of Mathematics and Artificial Intelligence 58(1–2), 117–151 (2010)

	Saturation-Based Forgetting in the Description Logic SIF
	Introduction
	Definition of SIF and Forgetting
	Normalisation
	The Calculus
	Correctness of the Method
	Conclusion and Future Work

