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Abstract. Data in real world applications is often subject to some kind of uncer-
tainty, which can be due to incompleteness, unreliability or inconsistency. This
poses a great challenge for ontology-based data access (OBDA) applications,
which are expected to provide a meaningful answers to queries, even under uncer-
tain domains. Several extensions of classical OBDA systems has been proposed
to address this problem, with probabilistic, possibilistic, and fuzzy OBDA being
the most relevant ones. However, these extensions present some limitations with
respect to their applicability. Probabilistic OBDA deal only with categorical as-
sertions, possibilistic logic is better suited to make a ranking of axioms, and fuzzy
OBDA addresses the problem of modelling vagueness, rather than uncertainty. In
this paper we propose Subjective DL-Lite (SDL-Lite), an extension of DL-Lite
with Subjective Logic. Subjective DL-Lite allows us to model uncertainty in the
data through the application of opinions, which encapsulate our degrees of be-
lief, disbelief and uncertainty for each given assertion. We explore the semantics
of Subjective DL-Lite, clarify the main differences with respect to its classical
DL-Lite counterpart, and construct a canonical model of the ontology by means
of a chase that will serve as the foundation for a future construction of an OBDA
system supporting opinions.
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1 Introduction

Semantic applications that model real world scenarios often have to deal with uncer-
tainty in the data. This is usually the case when extracting data from web sources,
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where information might be incomplete or unreliable. Even the method used for ex-
tracting the data creates another point of uncertainty, as it is quite common to rely on
heuristic algorithms that are prone to errors.

In order for a semantic application to address all these issues, such an application
should be able to comply with the following list of requirements:

– Models uncertainty in the data
– Understands the meaning of the underlying data
– Provides answering services over custom user queries
– Determines the reliability of the answers given the available information

In this paper we explore some of the theoretical foundations required to develop a
logic capable of supporting ontology-based data access (OBDA) applications that can
fulfil these requirements.

Our contributions in this paper are twofold: A) We define the semantics for Sub-
jective DL-Lite in section 4, and B) We present a methodology to build a chase-based
canonical interpretation of subjective ontologies in section 5.

2 Related Work

Several relevant approaches to model Uncertainty have been proposed in different areas
of research. Probabilistic Logic [5] extends axioms in a knowledge base with a probabil-
ity value that models the degree of trust that we place on the validity of the proposition.
Possibilistic Logics [9] offers a similar approach, but its possibility values express the
necessity and the validity for a certain proposition, alongside with the plausibility of
said proposition to be true. Fuzzy Logic [11], on the other hand, relies on a membership
function to establish the degree of membership for a given proposition to a determined
value of truth.

These approaches have become popular for the results that they yielded, and many
implementations for specific solutions have been produced based on their premises [8,
12, 13]. However, it is our belief that each of these approaches have limitations in their
expressivity for modelling Uncertainty. For instance, Probabilistic Logic is by far the
most extended approach to handle uncertain information. Yet, every axiom stated in
Probabilistic Logic is categorical. That is, let A(x) : (p) be the axiom assigning a
probability of p to the truth of the statement: ”Object x belongs to concept A”. Then it
is implicitly implied that the probability of x not being a member of A is 1−p. In other
words, A(x) : (p) =⇒ ¬A(x) : (1− p).

The use of Probabilistic Logic does not naturally allow the user to assign some
amount of believe to the fact that we might be missing some information about a cer-
tain statement. We propose the use of Subjective Logic [7] to overcome this limitation.
Subjective Logic was proposed by A. Jøsang as a tool to express structured argument
models with an associated degree of truth. It is based on Dempster-Shafer theory of be-
lief, and uses frames of discernment to assign belief masses to given statements. Under
Subjective Logic, statements are extended with opinions. An opinion is a triple (b, d, u),
where b is a degree of belief on the truth of the statement, d is the degree of disbelief as-
sociated with the statement, and u is a degree of uncertainty. These three degrees must



sum up to 1 to comply with Kolmogorov’s probabilistic axioms. From an intuitive point
of view, b represents the amount of evidence that support the validity of the axiom, d
represents how much evidence has been collected against the statement, and u is the
amount of evidence that is not available at the moment, but could tilt our confidence
either for or against the validity of the axiom.

We will use this approach to model uncertainty in ontologies, extending ABox as-
sertions with subjective opinions. In this manner, we will be able to encapsulate how
much information is already known about the validity of a certain axiom, as well as
how much information is currently unknown. The application of opinions to axioms
will result in some constraints that must hold for the ontology to make sense. These
constraints will form the foundation for our reasoning, since they will let us propagate
our beliefs through the ontology.

3 Preliminaries

3.1 DL-Litecore

We will follow the standard syntax and semantics for classical (that is, without uncer-
tainty) description logics, and due to space constraints, will refer the reader to [2] for
further details. The subfamily DL-Litecore will be used through this paper for simplic-
ity sake, but the results presented in this paper could be extended to other families of
description logics.

As usual, A denotes atomic concept names, and r denotes atomic role names. B
denotes basic concepts, and R denotes roles or their inverses. All valid expressions for
DL-Litecore are built using the following production rules: P ::= r | r−, B ::= A | ∃P |
∃P−.

A TBox T is a finite set of concept inclusions (CIs) Bv B’, or Bv¬B’. An ABoxA
is a finite set of membership assertions of the form A(a), P(a,b). A DL-Litecore ontology
O is a pair (T , A), where T is a DL-Litecore TBox, and A is a DL-Litecore ABox.

Following the standard semantics of description logics [2], the semantics of DL-
Litecore is based on interpretations. An interpretation I is a pair (4I , ·I), where 4I
is a non-empty set of objects, and ·I is an interpretation function, which maps every
individual a ∈ A to an object aI ∈ ∆I , every class C into a subset CI ⊆ 4I , and
each role R to a subset RI ⊆4I x4I . An interpretation is a model of a TBox T (resp.
ABox A) if it satisfies all concept inclusions in T (resp. assertions in A). An ABox A
is consistent with respect to a TBox T if A and T have a common model. We write T
|= C v D if for all models I of T , CI ⊆ DI and say that C is subsumed by D relative
to T .

There are a number of common reasoning services that are usually provided when
developing an application that deals with ontologies. Among these services, we can
name:

– Instance checking: Given an individual x and an concept C, determine whether or
not x is a member of C.

– Instance retrieval: Given a conceptC, retrieve all the individuals that are members
of C.



– Consistency checking: Given a knowledge base KB, determine whether or not a
model for KB exists.

– Query answering: Given a knowledge base KB and a query q, determine all the
answers for q that satisfy every model of KB.

3.2 Subjective ABoxes

A subjective DL-Litecore ABox SA is an extension of a DL-Litecore ABoxA in which
every assertion in A is extended with an opinion. An opinion w over a statement x is a
triple of positive numbers (b, d, u) such that b + d + u = 1; and in which b represents
the degree of belief assigned to the truth of x, d represents the degree assigned to the
falsehood of x, and u measures the degree of uncertainty associated with x. If, during
the execution of any reasoning task, an opinion w is produced such that b + d + u >
1, we say that w is invalid. We denote with b(w), d(w), and u(w) the degrees of belief,
disbelief and uncertainty associated with an opinion w, respectively, and withW the set
of all possible opinions.
Definition 1. Let w1 = (b1, d1, u1) and w2 = (b2, d2, u2) be two opinions about the
same assertion α. We call w1 a specialisation of w2 (w1 � w2) iff b2 ≤ b1 and d2 ≤ d1
(implies u1 ≤ u2). Similarly, we call w1 a generalisation of w2 (w2 � w1) iff b1 ≤ b2
and d1 ≤ d2 (implies u2 ≤ u1).

3.3 Example Scenario

In order to help us illustrate the many properties of the different aspects of Subjective
DL-Lite, we present in this subsection a running example set in a medical domain.
More specifically, we will consider a medical clinic, in which patients come seeking
for a doctor to treat their illnesses. We can have the knowledge domain modelled by
an ontology, with relevant relations represented in the TBox, and data for patients and
clinical cases instantiated in the ABox. Table 1 illustrates the ontology that we are going
to use for our example.

Table 1. Scenario knowledge base

t1 : GraveDisease v Disease t2MinorDisease v Disease
t3 : GraveDisease v ¬MinorDisease t4 : ∃hasSymptom v SickPatient
t5 : CriticalPatient v Patient u ∃hasGraveDisease t6 : PandemicDisease v GraveDisease

a1 : presentsPainIn(patientA, abdomen) : (1, 0, 0)
a2 : hasSymptom(patientA, nausea) : (0.4, 0, 0.6)
a3 : hasSymptom(patientA,migraine) : (0.4, 0, 0.6)
a4 : hasFamilyCondition(patientA, IBS) : (0, 0, 1)
a5 : hasPositiveTest(patientA, bloodTest) : (0.9, 0.05, 0.05)

In our scenario, a patient sees the doctor due to an acute abdominal pain that he is
suffering. Being the main reason for the visit, and having no reason to doubt the patient,
the doctor proceeds to instantiate with total certainty the fact that the patient suffers an
abdominal pain. This is covered by axiom a1.

Next, our patient tells the doctor that he also suffers something that he cannot de-
scribe very well, midway between a nausea or a migraine. This uncertain claim, stem-
ming from the fact that the patient lacks the expertise to differentiate two distinct symp-
toms, can be easily modelled in a subjective ontology with axioms a2 and a3. The



rational for this approach is based on the doctor having some reasons to belief that the
patient suffers one of the symptoms, but not having enough information that could jus-
tify the choice of one over the other. It could be argued that, since either outcome is
equally probable, both axioms should be extended with the opinion (0.5,0,0.5) instead.
However, this is where the potential of Subjective Logic becomes clear, since such an
opinion would reject any other option as the cause of the discomfort. By choosing to
have a buffer of 0.1 degree in our uncertainty, we are leaving an door open for any other
possible symptom that could be responsible for the malady. Indeed, it could be easily
the case that the patient was suffering neither a nausea or a migraine, and instead had
an ear infection. This capability of modelling what is unknown to us at the moment is
what mainly differentiates Subjective Logic from similar approaches.

Continuing with our example, the doctor wants to know whether the Irritable Bowel
Syndrome is present in any member of his relatives. Not even knowing about the disease
itself, the patient finds himself unable to confirm, nor discard, any presence of it in his
family. This is modelled by axiom a4, in which there is no commitment towards the
truth nor the falsehood of the claim. The opinion (0,0,1), representing total uncertainty
about an axiom, is the most general opinion possible, since any other opinion must
necessarily be a specialisation of it. We will call (0,0,1) the default opinion, and assume
that any axioms that do not explicitly appear in our ABox are extended with it. With
this approach, we reflect the fact that anything not stated in our ontology is unknown,
rather than false.

Finally, the doctor decides to run a blood test on the patient, to discard possible
diseases that could be responsible for the symptoms. After a couple of days the results
arrive, and the test shows that all the values for the patient fall within standard nomi-
nal ranges. However, the doctor is aware that these tests have an error margin of five
percent, in which either a false positive or negative can be delivered instead of the real
result. Knowing this limitation of the tests, the doctor only commits 90% of his con-
fidence to axiom a5, reflecting the fact that the test itself is fallible by assigning 5%
of his confidence to the disbelief degree of the axiom, and covering for some possible
exceptional situations with the use of some uncertainty.

4 Semantics

4.1 Subjective DL-Lite Semantics

The semantics for a SDL-Litecore ABox is given in terms of subjective interpretations.
A subjective interpretation I is a pair (4I , ·I), where the domain 4I is a non-empty
set of objects, and ·I is a subjective function that maps:

– an individual a to an element aI ∈ 4I
– a named class A to a function AI : 4I →W
– a named property R to a function RI : 4I ×4I →W

Following the example set in [10], we summarise the semantics for various ax-
iomatic relations in SDL-Litecore through Table 2. Top (>) and bottom (⊥) are special



Table 2. Semantics of Subjective DL-Litecore

Syntax Semantics

s1 : > >I(o) = (1, 0, 0)

s2 : ⊥ ⊥I(o) = (0, 1, 0)

s3 : ∃ R b ((∃ R)I(o1))≥max ∪
∀o2
{b(RI(o1,o2))} and

d((∃R)I(o1)) ≤ min ∪
∀o2
{d(RI(o1, o2))}

s4 : ¬B (¬B)I(o) = ¬BI(o)

s5 : R− (R−)I(o2, o1) = RI(o1, o2)

s6 : B1 v B2 ∀o ∈ ∆I , b(BI1 (o)) ≤ b(BI2 (o)) and
d(BI2 (o)) ≤ d(BI1 (o))

s7 : B1 v ¬B2 ∀o ∈ ∆I , b(BI1 (o)) ≤ d(BI2 (o)) and
b(BI2 (o)) ≤ d(BI1 (o))

s8 : B(a):w b(w) ≤ b(BI(aI)) and d(w) ≤ d(BI(aI))

s9 : R(a, b):w b(w) ≤ b(RI(aI , bI)) and d(w) ≤ d(RI(aI , bI))

concepts in our ontology. Every object in our domain is a member of top with total cer-
tainty. Likewise, we know with total certainty that no object in our domain is a member
of bottom. For the rest of the axiomatic rules, the constraints given in Table 2 must hold
for every object in the domain. To illustrate how the semantics might be applied, we
can have a look at the scenario presented in section 3.3. It is clear that the most trivial
interpretation possible is the one that links distinct object to each one of the individual
appearing in the ABox, and then assigns to each required axiom the same opinion that
it already has in the ABox. We could then proceed to infer new axioms by applying the
constraints given by the semantics. For instance, imagine that we agree that the flu is
usually a mild sickness, although at least 2% of the population experiment a virulent
outcome every year. We can then instantiate the flu for the year 2015 with the following
axiom: a6 : MinorDisease(flu2015) : (0.9, 0.02, 0.08). This opinion encapsulates
our perception that the flu is usually a mild sickness, that this is not the case for 2%
of the cases, and that there is a margin for which the actual statistical values of mild
cases versus severe cases will fall this year. Now, from table 1, and the semantic rule
s6 from table 2, we can infer the axiom a7 : Disease(flu2015) : (0.9, 0, 0.1). Notice
how only the belief is propagated from the subclass to the inferred superclass, since any
amount committed to the disbelief that flu2015 is a MinorDisease does not justify
stating that it is not a Disease. Certainly it could be the case that flu2015 is later de-
clared a PandemicDisease instead, thus making it a GraveDisease, but a Disease
nonetheless. Also notice that the semantics for rule s6 require a7 to have a belief degree
equal or greater than 0.9, but does not specify any exact value. One could argue that any
value falling in the range [0.9,1] could be chosen as the resulting belief for the inferred
axiom, since any of these values comply with the semantics. However, by selecting pre-
cisely the lowest possible value in the range, we are maximising the use of available
information in our ontology, at the same time that minimise the commitment for the
resulting axiom. In other words, this is precisely the value that yields the most general



opinion ω that complies with the semantics. Any other opinion of a7 that complies with
the semantics must be a specialisation of ω, and vice versa.

One interesting point to remark is that, in subjective environments, positive inclu-
sions can lead to inconsistencies. This is not the case for classical knowledge bases,
where inconsistencies were produced by violation of negative inclusions. We can illus-
trate this property going back to our example scenario. Imagine that the flu for 2015
gets declared a pandemic due to the high rate of spread in the population. Since we ap-
ply a series of guidelines and well-defined rules to check the criteria for the declaration
of pandemics, we can state that the flu falls within the category of pandemia with total
confidence using the following axiom a8 : PandemicDisease(flu2015) : (1, 0, 0). It
is clear that this axiom introduces an inconsistency in the ontology. Intuitively, it does
not make sense to declare flu2015 to be a minor disease with 90% of confidence at
the same time that we state with total certainty that flu2015 is also a grave disease (as
inferred through t6). A direct application of the semantic constraint s7 lets us spot the
inconsistency.

One last note before continuing to the formal definition of inconsistencies for sub-
jective ontologies. In our example, the inconsistency arose due to some dynamic be-
haviour present in our ontology. That is, there was some initial statement that was
refined at a later stage. Although extremely interesting, the task of introducing some
dynamic aspect to our ontologies will be left for a future work. We will consider our
ABoxes to be static in nature, and the only inconsistencies will arise due to the implicit
relations given by axioms at the TBox level.

Let K = (T ,A) be a SDL-Litecoreknowledge base, α be an axiom of K, and I and
interpretation of K. The following will provide a formal definition of consistency for
subjective ontologies:

Definition 2. I is a model of α, denoted I |= α, if αI satisfies all the constraints
presented in table 2.

Definition 3. I is a model of K, denoted I |= K, if I |= α for each α ∈ K

Definition 4. K is consistent if it has at least one model

Definition 5. K models α, denoted K |= α, if I |= α for every model I of K.

Definition 6. σ is an answer for a query q over K, denoted K |=q σ, if σ is an answer
of q for every possible model of K.

Finally we need to redefine the meaning of some common reasoning tasks for a
subjective ontology K:

– Instance checking: Given an individual x and an concept C, determine the most
general opinion ω such that K |= C(x) : ω.

– Instance retrieval: Given a concept C, return the set {C(x) : ω | ω is the most
general opinion such that K |= C(x) : ω}.

– Query answering: Given a query q, return the set { σ : ω | ω is the most general
opinion such that K |=q σ : ω}.



5 Canonical Interpretation

Following the example presented in [3], we now will provide a methodology to build a
canonical interpretation of a subjective knowledge base SK. To achieve this goal, we
will follow the notion of chase [1]. In particular, we will adapt the notion of restricted
chase adopted by Johnson and Klug in [6]. This restricted chase will be constructed in
an iterative manner by applying a series of rules based on TBox axioms. For easiness
of exposition, we assume that every assertion α that does not explicitly appear in the
subjective ABox A has the vacuous opinion (0,0,1) associated to it. In a more formal
way, our assumption states that we work with the extended subjective ABox A′ given
by A′ = A ∪ {α : (0, 0, 1)}, if α : w /∈ A for any opinion w. We will also make
use of the function ga, that takes as input a basic role and two constants, and returns a
membership assertion as specified below:

ga(R, a, b) =

{
P (a, b), ifR = P

P (b, a), ifR = P−
(1)

Definition 7. Let S be a set of DL-Litecore membership assertions, and let Tα be a set
of DL-Litecore TBox axioms. Then, an axiom α ∈ Tα is applicable in S to a membership
assertion f ∈ S if

– (cr1) α = A1 v A2, f = A1(a) : w, and A2(a) : w
′ ∈ S, with b(w) > b(w′)

– (cr2) α = A1 v A2, f = A2(a) : w, and A1(a) : w
′ ∈ S, with d(w) > d(w′)

– (cr3) α = A v ∃R, f = A(a) : w, and there does not exist any constant b such
that ga(R,a,b) : w’ ∈ S, with b(w′) > b(w)

– (cr4) α = ∃R v A, f = ga(R,a,b) : w, and A(a) : w’ ∈ S, with b(w) > b(w′)
– (cr5) α = ∃R v A, f = ga(R,a,b) : w, and A(a) : w’ ∈ S, with d(w′) > d(w)
– (cr6) α = A1 v ¬A2, f = A1(a) : w, and A2(a) : w

′ ∈ S, with b(w′) > d(w)
– (cr7) α = A2 v ¬A1, f = A1(a) : w, and A2(a) : w

′ ∈ S, with b(w′) > d(w)
– (cr8) α = A v ¬∃R, f = ga(R, a, b) : w, and A(a) : w′ ∈ S, with b(w′) > d(w)
– (cr9) α = A v ¬∃R, f = A(a) : w, and ga(R, a, b) : w′ ∈ S, with b(w′) > d(w)
– (cr10) α = ∃R v ¬A, f = ga(R, a, b) : w, and A(a) : w′ ∈ S, with b(w) >
d(w′)

– (cr11) α = ∃R v ¬A, f = A(a) : w, and ga(R, a, b) : w′ ∈ S, with b(w) >
d(w′)

Applicable axioms can be used, i.e., applied, in oder to construct the chase of a
knowledge base. The chase of a SDL-LitecoreKB is a (possibly infinite) set of mem-
bership assertions, constructed step-by-step starting from the ABox A. At each step of
the process, an axiom α ∈ T is applied to a membership assertion f ∈ S. Applying an
axiom means refining our opinion about a certain f ′, that might not appear explicitly in
S. The outcome of the application is a new set S′ in which α is no longer applicable to
f .

This construction process heavily depends on the order in which we select both the
TBox axiom and the membership assertion in each iteration, as well as what constants
we introduce when required. Therefore, we can produce a number of syntactically dis-
tinct sets of membership assertions following this process. However, it is possible to



show that the result is unique up to renaming of constants occurring in each such set.
In order to achieve this, we select TBox axioms, membership assertions and constant
symbols in lexicographic order. We denote with ΓA the set of all constant symbols oc-
curring in A. We assume to have an infinite set ΓN of constant symbols not occurring
in A. Finally, the set ΓC = ΓA ∪ ΓN is ordered in lexicographic order.

Definition 8. Let K = 〈T ,A〉 be a SDL-LitecoreKB, let Tα be the set of assertions in
T , let n be the number of membership assertions inA, and let ΓN be the set of constants
defined above. Assume that the membership assertions in A are numbered from 1 to n
following their lexicographic order, and consider the following definition

– S0 = A
– Sj+1 = {Sj \ fold} ∪ {fnew}

Then, we call chase of K, denoted chase(K), the set of membership assertions
obtained as the (possibly infinite) union of all Sj , i.e.,

chase(K) =
⋃
j∈N
Sj (2)

The element fold, presented in definition 8, is the axiom whose opinion is being
refined by fnew. The membership assertion fnew, numbered with n+ j + 1 in Sj+1, is
obtained as follows:

Definition 9. Let f be the first membership assertion in Sj such that there exists a α ∈
Tα applicable in Sj to f , let α be the lexicographically first TBox axiom applicable in
Sj to f , and let anew be the constant of ΓN that follows lexicographically all constants
occurring in Sj

case α, f of
(cr1) α = A1 v A2, f = A1(a) : w,A2(a) : w

′ ∈ S
then fnew = A2(a) : (b(w), d(w

′), 1− b(w)− d(w′))
(cr2) α = A1 v A2, f = A2(a) : w,A1(a) : w

′ ∈ S
then fnew = A1(a) : (b(w

′), d(w), 1− b(w′)− d(w))
(cr3) α = A v ∃R, f = A(a) : w,∃R(a) : w′ ∈ S

then fnew = ga(R, a, anew) : (b(w), d(w
′), 1− b(w)− d(w′))

(cr4) α = ∃R v A, f = ga(R, a, b) : w,A(a) : w′ ∈ S
then fnew = A(a) : (b(w), d(w′), 1− b(w)− d(w′))

(cr5) α = ∃R v A, f = ga(R,a,b) : w, and A(a) : w’ ∈ S
then fnew = ga(R, a, b) : (b(w), d(w′), 1− b(w)− d(w′))

(cr6) α = A1 v ¬A2, f = A1(a) : w, and A2(a) : w
′ ∈ S

then fnew = A1(a) : (b(w), b(w
′), 1− b(w)− b(w′))

(cr7) α = A2 v ¬A1, f = A1(a) : w, and A2(a) : w
′ ∈ S

then fnew = A1(a) : (b(w), b(w
′), 1− d(w)− b(w′))

(cr8) α = A v ¬∃R, f = ga(R, a, b) : w, and A(a) : w′ ∈ S
then fnew = ga(R, a, b) : (b(w), b(w′), 1− b(w)− b(w′))

(cr10) α = ∃R v ¬A , f = ga(R,a,b) : w, and A(a) : w’ ∈ S
then fnew = ga(R, a, b) : (b(w), b(w′), 1− b(w)− b(w′))

(cr11) α = ∃R v ¬A, f = A(a) : w, and ga(R, a, b) : w′ ∈ S
then fnew = A(a) : (b(w), b(w′), 1− b(w)− b(w′))



It is worth noting that the application of chase rules can be a source of inconsis-
tencies in the ontology. By increasing the belief degree of an opinion (resp. disbelief),
we may put it in conflict with its disbelief degree (resp. belief), rendering the opinion
invalid. Having an invalid opinion in our KB means that no interpretation will be able
to satisfy it.

With the notion of chase in place we can introduce the notion of canonical interpre-
tation. We define can(K) as the interpretation 〈4can(K), ·can(K)〉, where:

– 4can(K)= ΓC
– acan(K) = a, for each constant a occurring in chase(K)
– Acan(K) : ΓC →W, such that A(a) : w ∈ chase(K) =⇒ Acan(K)(a) = w
– P can(K) : ΓC × ΓC →W, P (a1, a2) : w ∈ chase(K) =⇒ P can(K)(a, b) = w

We can also define cani(K) = 〈4can(K), ·cani(K)〉 as the interpretation relative to
chasei(K) instead of chase(K) .

Lemma 1. LetK = 〈T ,A〉 be a SDL-Litecoreknowledge base, then can(K) is a model
of K iff every opinion w that appears in can(K) is valid. ut

Proof.(Sketch)
⇐ If any of the opinions w that appear in the canonical interpretation is invalid, i.e.,

b(w) + d(w) > 1, then it is obvious that the canonical interpretation is not a model of
K.
⇒ The fact that can(K) satisfies all membership assertions in A follows from the

fact that A ⊆ chase(K). ut

Lemma 2. Let K = 〈T ,A〉 be a SDL-Litecore knowledge base, then if can(K) is a
model of K, every other model of K is a specialisation of can(K). ut

Proof.(Sketch)
Let m be a model of K, and m(α) = ω the opinion assigned by m to the assertion

α ∈ K. Let can(α) = ωc be the opinion assigned by the canonical model to α, with
ωc � ω. This means that, according tom, ω is a perfectly valid opinion for α. However,
since ωc is a specialisation of ω, we can infer that, while building the chase, there was
a semantic constraint applicable to α that it is not satisfied by m. Given that there is at
least one semantic constraint applicable to α that is not covered by m, it is clear that m
is not a model of K. We conclude for these reasons that every model of K must be at
most as general as can.

ut
The implications from lemma 2 are profound and very relevant. Knowing that every

model ofK is a specialisation of the canonical interpretation, we can focus on answering
queries over this canonical interpretation. Any answer that is valid for the canonical
interpretation will be valid for any other possible interpretation.

Of course, from a practical point of view, we will never construct the chase nor use
directly the canonical model, since it might not be feasible to construct the chase for
huge collections of data in a reasonable amount of time. Instead, we will apply the chase
rules during the rewriting of the query, in such a way that we simulate the propagation



of the beliefs performed during the chase into the final query. Following this approach,
we can be sure to obtain a valid answer for our original query, since this will be an
answer for the canonical model and, through virtue of lema 2, an answer for any other
interpretation of K.

6 Conclusions

It is expected that the capability to handle uncertainty in query answering solutions will
be a critical requirement for future applications. Precisely to address this problem we
propose a subjective extension of DL-Lite, to combine the efficient query answering
properties of DL-Lite with the uncertainty modelling of Subjective Logic. Our main
contributions come in the form of the theoretical foundation for the justification of
the semantics used in Subjective DL-Lite, and the construction of a canonical model
through a chase. We have shown that the theory behind this approach is sound, and
could be used to develop a query answering application with support for uncertainty.
For our future works we still need to demonstrate that every possible interpretation is a
specialisation of the canonical model. Thus, any answer given for the canonical model
will be an answer for the rest of the interpretation. Finally, in order to develop our
query answering application, we need to define the algorithms that will perform infer-
ence over the set of axioms of the ontology and collect the answers to the queries. The
initial results are promising, and encourages us to continue in this interesting, though
challenging, line of research.
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