
PAGOdA: Pay-as-you-go ABox Reasoning

Yujiao Zhou, Yavor Nenov, Bernardo Cuenca Grau, and Ian Horrocks

Department of Computer Science, University of Oxford, UK

1 Introduction

Ontologies are increasingly used to provide structure and enhance access to
large datasets. In such applications the ontology can be seen as a TBox, and the
dataset as an ABox, with the key reasoning problem being conjunctive query
(CQ) answering. Unfortunately, for OWL 2 this problem is known to be of high
worst case complexity, even when complexity is measured with respect to the
size of the data, and in realistic settings datasets may be very large.

One way to address this issue is to restrict the ontology to a fragment with
better computational properties, and this is the motivation behind the OWL
2 profiles. Another approach is to optimise reasoning for arbitrary OWL 2 on-
tologies. This latter approach has proved very successful for TBox reasoning,
with systems such as Konclude, HermiT, Pellet and Racer being widely used
to reason over large-scale ontologies. Up to now, however, reasoning with large
ABoxes has, in practice, largely been restricted to the OWL 2 profiles.

In this paper we describe PAGOdA: a highly optimised reasoning system that
supports CQ answering with respect to an arbitrary OWL 2 ontology and an
RDF dataset (roughly equivalent to a SROIQ TBox and ABox). It uses a novel
approach to query answering that combines a datalog (or OWL 2 RL) reasoner
(currently RDFox [11]) with a fully-fledged OWL 2 reasoner (currently HermiT
[5]) to provide scalable performance while still guaranteeing sound and complete
answers.1 PAGOdA delegates the bulk of the computational workload to the
datalog reasoner, with the extent to which the fully-fledged reasoner is needed
depending on interactions between the ontology, the dataset and the query. This
approach is ‘pay-as-you-go’ in the sense that query answering is fully delegated
to the datalog reasoner whenever the input ontology is expressed in any of the
OWL 2 profies; furthermore, even when using an out-of-profile ontology, queries
can often be fully answered using only the datalog reasoner; and even when the
fully-fledged reasoner is required, PAGOdA employs a range of optimisations,
including relevant subset extraction, summarisation and dependency analysis,
to reduce the number and size of the relevant reasoning problems.

This approach has proved to be very effective in practice: in our tests of
more than 4,000 queries over 8 ontologies, none of which is contained within
any of the OWL profiles, more than 99% of queries were fully answered without

1 In practice we are limited by the capabilities of OWL 2 reasoners, which typically
restrict the structure of the ontology and/or query in order to ensure decidability
(which is open for CQ answering over unrestricted OWL 2 ontologies).

resorting to the fully-fledged reasoner. Moreover, even when the fully-fledged
reasoner was used, the above mentioned optimisations were highly effective: the
size of the dataset was typically reduced by an order magnitude, and often by
several orders of magnitude, and it seldom required more than a single test to
resolve the status of all potential answer tuples. Taken together, our experiments
demonstrate that PAGOdA can provide an efficient conjunctive query answering
service in real-world scenarios requiring both expressive ontologies and datasets
containing hundreds of millions of facts.

The basic approach implemented in PAGOdA has been described in [13–15],
and full details about the algorithms currently implemented can be found in a
an accompanying technical report.2 Here, we provide an overview of the system
and summarise the results of an extensive evaluation.

2 The PAGOdA System

PAGOdA is written in Java and it is available under an academic license.3 As
well as RDFox and HermiT, PAGOdA also exploits the combined approach for
ELHOr

⊥ implemented in KARMA.4

PAGOdA accepts as input arbitrary OWL 2 DL ontologies, datasets in turtle
format and CQs in SPARQL. Queries can be interpreted under ground or certain
answer semantics. In the former case, PAGOdA is sound and complete. In the
latter case, however, PAGOdA is limited by the capabilities of HermiT, which
can only check entailment of ground or DL concept queries; hence, PAGOdA
can guarantee completeness only if the lower and upper bounds match, or if the
query can be transformed into a DL concept query via rolling-up.5 Otherwise,
PAGOdA returns a sound (but possibly incomplete) set of answers, along with
a bound on the incompleteness of the computed answer set.

The architecture of PAGOdA is depicted in Figure 1. We could, in principle,
use any materialisation-based datalog reasoner that supports CQ evaluation and
the incremental addition of facts, and any fully-fledged OWL 2 DL reasoner that
supports fact entailment.

PAGOdA uses four instances of RDFox (one in each of the lower and upper
bound and subset extractor components) and two instances of HermiT (one in
each of the summary filter and dependency graph components).

The process of fully answering a query can be divided into several steps. Here,
we distinguish between query independent steps and query dependent ones. As
we can see in Figure 1, the ‘loading ontology’ and ‘materialisation’ steps are
query independent. Therefore, both of them are counted as pre-processing steps.
‘Computing query bounds’, ‘extracting subset’ and ‘full reasoning’ are query
dependent, and are called query processing steps.

We next describe each component, following the process flow of PAGOdA.

2 http://www.cs.ox.ac.uk/isg/tools/PAGOdA/pagoda-tr.pdf
3 http://www.cs.ox.ac.uk/isg/tools/PAGOdA/
4 http://www.cs.ox.ac.uk/isg/tools/KARMA/.
5 PAGOdA implements an extension of the well-known rollig-up technique.

normaliser

HermiT clausifier

KARMA

subset extractor

RDFox of D

RDFox

soundAnswers(q,Σ ∪ D)

O

Σ

certU2
(q,Σ ∪ D)

Kq

summary filter

HermiT

heuristic planner

HermiT

cert(q,O ∪D)

G′ ⊆ Gq

c-chase

RDFox

D

certU3
(q,Σ ∪ D)

c-chasef

RDFox

shift

Gq

Σ, q, Gq

Lq

Lq

Full reasoning

Extracting subsets

Computing query bounds

Materialisation

Loading ontology & data

tracking encoder

track(Σ, q, Gq)

*

D

F

q

q,Gqq,Gq

q
q

profile checker

lower store

endormophism
checker

ML
2 MU

3 MU
2

Fig. 1: The architecture of PAGOdA

Loading ontology and data. PAGOdA uses the OWL API to parse the input
ontology O. The dataset D is given separately in turtle format. The normaliser
then transforms the ontology into a set of rules corresponding to the axioms in
O. PAGOdA’s normaliser is an extension of HermiT’s clausification component
[5], which transforms axioms into so-called DL-clauses [12]. The dataset D is
loaded directly into (the four instances of) RDFox.

After normalisation, the ontology is checked to determine if it is inside OWL
2 RL (resp. ELHOr

⊥); if so, then RDFox (resp. KARMA) is already sound and
complete, and PAGOdA simply processes O, D and subsequent queries using the
relevant component. Otherwise, PAGOdA uses a variant of shifting—a polyno-
mial program transformation commonly used in Answer Set Programming [4]—
to enrich the deterministic part of the ontology with some additional information
from disjunctive rules, resulting in a rule set Σ.

Materialisation. There are three components involved in this step, namely
lower bound, c-chase and c-chasef . Each of these takes as input Σ and D, and
each computes a materialisation (shown in Figure 1 as ellipses). The lower bound
component first uses RDFox to compute a materialisation of D using the dat-
alog subset of Σ; it then uses the materialised dataset as input to KARMA,
which computes the materialisation ML

2 using the ELHOr
⊥ subset of Σ. The

c-chase and c-chasef components compute the MU
2 and MU

3 upper bound ma-

terialisations using chase-like procedures [1]. The former (MU
2) is computed by

over-approximating Σ into datalog; this involves, roughly speaking, transform-
ing disjunctions into conjunctions, and replacing existentially quantified vari-
ables with fresh constants [15]. However, PAGOdA optimises the treatment of
“Skolemised” existential rules by not applying them if the existential restriction
is already satisfied in the data. In MU

3 , PAGOdA further optimises the treat-
ment of disjunctions by selecting a single disjunct in the head of disjunctive
rules, using a heuristic choice function that tries to select disjuncts that will not
(eventually) lead to a contradiction.

If ⊥ is derived while computing ML
2 , then the input ontology and dataset is

unsatisfiable, and PAGOdA simply reports this and terminates. If ⊥ is derived
while computingMU

3 , then the computation is aborted andMU
3 is no longer used.

If ⊥ is derived while computing MU
2 , then PAGOdA checks the satisfiability of

Σ∪D (using the optimised query answering procedure described below). If Σ∪D
is unsatisfiable, then PAGOdA reports this and terminates; otherwise the input
ontology and dataset is satisfiable, and PAGOdA is able to answer queries.

Computing query bounds. Given a query q, PAGOdA uses the ML
2 lower

bound materialisation to compute the lower bound answer Lq, exploiting the
filtration procedure in KARMA to eliminate spurious answer tuples (shown as
a circle with an “F” in it in Figure 1). If ⊥ was not derived when computing the
MU

3 materialisation, then the upper bound answer Uq is the intersection of the
query answers w.r.t. MU

3 and MU
2 ; otherwise Uq is computed using only MU

2 .

Extracting subsets. If Lq = Uq, then PAGOdA simply returns Lq; otherwise
it must determine the status of the tuples in the “gap” Gq = Uq \Lq. To do this,
PAGOdA extracts subsets of Σ and D that are sufficient to check the entailment
of each such tuple. First, the tracking encoder component is used to compute a
datalog program that tracks rule applications that led to the derivation of the
tuples in Gq. This program is then added to the rules and data in the c-chase
component, and RDFox is used to extend the c-chase materialisation accordingly.
The freshly derived facts (over the tracking predicates introduced by the tracking
encoder) are then passed to the subset extractor component, which identifies the
relevant facts and rules in Σ and D.

Full reasoning. PAGOdA uses HermiT to verify answers in Gq. As HermiT
only accepts queries given either as facts or DL concepts, we have implemented
the standard rolling-up technique to transform CQs into concepts [7]. In the sum-
mary filter component, PAGOdA uses summarisation techniques inspired by the
SHER system to quickly identify spurious gap tuples [2, 3]. The remaining gap
answers G′ ⊆ Gq are then passed to the endormorphism checker, which exploits
a greedy algorithm to compute a (incomplete) dependency graph between an-
swers in G′. An edge a→ b in such graph between gap answers a and b encodes
the following dependency: b is a spurious answer whenever a is, in which case it
makes sense to check a using the fully-fledged reasoner before checking b. This
information is used by the heuristic planner to optimise the order in which the
answers in G′ are checked using HermiT. Finally, verified answers from G′ are
combined with the lower bound Lq.

]axioms]rules]∃-rules]∨-rules]facts

LUBM(n) 93 133 15 0 n× 105

UOBM(n) 186 234 23 6 2.6n× 105

FLY 14,447 18,013 8396 0 8× 103

NPD 771 778 128 14 3.8× 106

DBPedia+ 1,716 1,744 11 5 2.9× 107

ChEMBL 2,593 2,960 426 73 2.9× 108

Reactome 559 575 13 23 1.2× 107

Uniprot 442 459 20 43 1.2× 108

Table 1: Statistics for test datasets

3 Evaluation

We have evaluated our PAGOdA on a range of realistic and benchmark ontolo-
gies, datasets and queries. Experiments were conducted on a 32 core 2.60GHz
Intel Xeon E5-2670 with 250GB of RAM, and running Fedora 20. All test on-
tologies, queries, and results are available online.6

3.1 Test Setting

Table 1 summarises our test data. Each column from left to right indicates the
number of DL axioms, the number of rules after normalisation, the number of
rules containing ∃, the number of rules containing ∨ in each ontology and the
number of facts in each dataset.

LUBM and UOBM are widely-used reasoning benchmarks [6, 10]. To make the
tests on LUBM more challenging, we extended the benchmark with 10 additional
queries for which datalog lower-bound answers are not guaranteed to be complete
(as is the case for the standard queries).

FLY is an ontology used in the Virtual Fly Brain tool.7 Although the dataset
is small, the ontology is rich in existentially quantified rules, which makes query
answering challenging. We tested 6 CQs provided by the ontology developers.

NPD FactPages is an ontology describing petroleum activities in the Norwe-
gian continental shelf. The ontology comes with a dataset containing 3.8 million
facts. We tested all atomic queries over the signature of the ontology.

DBPedia contains information about Wikipedia entries. Although the dataset
is rather large, the ontology axioms are simple and can be captured by OWL 2
RL. To provide a more challenging test, we have used LogMap [8] to extend
DBPedia with a tourism ontology containing both existential and disjunctive
rules. We again focused on atomic queries.

ChEMBL, Reactome, and Uniprot are ontologies that are available from
the European Bioinformatics Institute (EBI) linked data platform.8 They are

6 http://www.cs.ox.ac.uk/isg/tools/PAGOdA/2015/jair/
7 http://www.virtualflybrain.org/site/vfb site/overview.htm
8 http://www.ebi.ac.uk/rdf/platform

0%#

10%#

20%#

30%#

40%#

50%#

60%#

70%#

80%#

90%#

100%#

LU
BM
1#

LU
BM
1_
rol
led
Up
#

UO
BM
1#

UO
BM
1_
rol
led
Up
#

FLY
_ro
lle
dU
p#

NP
D#F
ac
tPa
ge
s#

DB
Pe
dia
#

Ch
EM
BL
#1%

#

Re
ac
tom

e#1
0%
#

Un
iPr
ot#
1%
#

correct# incomplete# unsound# error# Kmeout# cannot#handle#

Tr Pe He Hy Tr Pe He Hy Tr Pe He Hy Tr Pe He Hy Tr Pe He Hy Tr Pe He Hy Tr Pe He Hy Tr Pe He Hy Tr Pe He Hy Tr Pe He Hy

Fig. 2: Quality of the answers computed by each system. The four bars for each
ontology represent Trowl, Pellet, HermiT and Hydrowl respectively.

rich in both existential and disjunctive rules, and the datasets are large. In
order to test scalability, we computed subsets of the data using a data sampling
algorithm based on random walks [9]. We tested example queries provided on
the EBI website as well as all atomic queries over the relevant signatures.

3.2 Experiments and Results

Comparison with Other Systems We compared PAGOdA with HermiT
(v.1.3.8), Pellet (v.2.3.1), TrOWL-BGP (v.1.2), and Hydrowl (v.0.2). Although
TrOWL is incomplete for OWL 2, it has been included in the evaluation because,
like PAGOdA, it exploits ontology approximation techniques.

In this test we used LUBM(1) and UOBM(1), 1% of the dataset for ChEMBL
and UniProt, and 10% for Reactome; these are already hard for some systems,
but can be processed by most. We rolled up all 6 queries into concepts wherever
possible to get LUBM rolledUp, UOBM rolledUp and FLY rolledUp. Since the
answers to the FLY queries under SPARQL semantics are all empty, we only
present results for FLY rolledUp. We set timeouts of 20min for each individual
query, and 5h for all the queries over a given ontology.

In Figure 2, each bar represents the performance of a particular reasoner
w.r.t. a given ontology and set of test queries. We use green to indicate the
percentage of queries for which the reasoner computed all the correct answers,
where correctness was determined by majority voting, and blue (resp. purple) to
indicate the percentage of queries for which the reasoner was incomplete (resp.
unsound). Red, orange and grey indicate, respectively, the percentage of queries
for which the reasoner reported an exception during execution, did not accept
the input query, or exceeded the timeout. PAGOdA is not represented in the
figure as it was able to correctly compute all answers for every query and test
ontology within the given timeouts.

Figure 3 summarises the performance of each system relative to PAGOdA,
but in this case we considered only those queries for which the relevant system

0"

1"

10"

100"

1000"

LU
BM
1"

LU
BM
1_
rol
led
Up
"

UO
BM
1"

UO
BM
1_
rol
led
Up
"

FLY
_ro
lle
dU
p"

NP
D"F
ac
tPa
ge
s"

DB
Pe
dia
"

Ch
EM
BL
"1%

"

Re
ac
tom

e"1
0%
"

Un
iPr
ot"
1%
"

TrOWL" Pellet" HermiT" Hydrowl"

Fig. 3: Performance comparison with other systems.

yields an answer (even if unsound and/or incomplete). This is not ideal, but
we chose to consider all such queries (rather than only the queries for which
the relevant system yields the correct answer) because (i) the resulting time
measurement is obviously closer to the time that would be required to correctly
answer all queries; and (ii) correctness is only relative as we do not have a
gold standard. For each ontology and reasoner, the corresponding bar shows
t2/t1 (on a logarithmic scale), where t1 (resp. t2) is the total time required by
PAGOdA (resp. the compared system) to compute the answers to the queries
under consideration; a missing bar indicates that the comparison system failed
to answer any queries within the given timeout. Please note that two different
bars for the same ontology are not comparable as they may refer to different sets
of queries, so each bar needs to be considered in isolation.

TrOWL is faster than PAGOdA on LUBM rolledUp, UOBM rolledUp and
FLY rolledUp, but it is incomplete for 7 out of 14 LUBM queries and 3 out of
4 UOBM queries. For ChEMBL, TrOWL exceeds the timeout while performing
the satisfiability check. For the remaining ontologies, PAGOdA is more efficient
in spite of the fact that TrOWL is incomplete for some queries, and even unsound
for several UniProt queries.

Pellet times out for the FLY ontology, but it succeeds in computing all answers
in the remaining cases. We can observe, however, that in all cases Pellet is signif-
icantly slower than PAGOdA, sometimes by more than two orders of magnitude.

HermiT can only answer queries with one distinguished variable, so we could
not evaluate binary queries. HermiT exceeds the timeout in many cases, and in
the tests where it succeeds, it is significantly slower than PAGOdA.

Hydrowl is based on a theoretically sound and complete algorithm, but it was
found to be incomplete in some of our tests. It also exceeded the timeout for
three of the ontologies, ran out of memory for another two of the ontologies,
and reported an exception for ChEMBL 1%. In the remaining cases, it was
significantly slower than PAGOdA.

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

1	 100	 200	 300	 400	 500	 600	 700	 800	

Th
ou

sa
nd

s	 s
ec
on

ds
	

(a) LUBM pre-processing

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

1	 100	 200	 300	 400	 500	 600	 700	 800	

Th
ou

sa
nd

s	 s
ec
on

ds
	

G1(18)	 Q32	 Q34	

(b) LUBM query processing

0	

2	

4	

6	

8	

10	

12	

14	

1	 100	 200	 300	 400	 500	

Th
ou

sa
nd

s	 s
ec
on

ds
	

(c) UOBM pre-processing

0	

0.5	

1	

1.5	

2	

2.5	

0	 100	 200	 300	 400	 500	

Th
ou

sa
nd

s	 s
ec
on

ds
	

G1(18)	 G2(1)	 Q18	

(d) UOBM query processing

Fig. 4: Scalability tests on benchmarks

Scalability Tests We tested the scalability of PAGOdA on LUBM, UOBM and
the ontologies from the EBI platform. For LUBM we used datasets of increasing
size with a step of n = 100. For UOBM we also used increasingly large datasets
with step n = 100 and we also considered a smaller step of n = 5 for hard
queries. Finally, in the case of EBI’s datasets, we computed subsets of the data
of increasing sizes from 1% of the original dataset up to 100% in steps of 10%.
In each case we used the test queries described in Section 3.1. For each test
ontology we measured pre-processing time and query processing time as described
in Section 2. We organise the test queries into three groups: G1: queries for which
the lower and upper bounds coincide; G2: queries with a non-empty gap, but for
which summarisation is able to filter out all remaining candidate answers; and
G3: queries where the fully-fledged reasoner is called over an ontology subset
on at least one of the test datasets. We set a timeout of 2.5h for each individual
query and 5h for all queries.

We also tested Pellet (the only other system found to be sound and complete
for our tests) on Reactome, the only case were Pellet managed to process at least
two datasets.

Our results are summarised in Figures 4 and 5. For each ontology, we plot
time against the size of the input dataset, and for query processing we distin-
guish different groups of queries as discussed above. PAGOdA behaves relatively
uniformly for queries in G1 and G2, so we plot only the average time per query
for these groups. In contrast, PAGOdA’s behaviour for queries in G3 is quite
variable, so we plot the time for each individual query.

0	

2	

4	

6	

8	

10	

12	

1%	 10%	 20%	 30%	 40%	 50%	 60%	 70%	 80%	 90%	 100%	

Th
ou

sa
nd

s	 	
se
co
nd

s	

(a) ChEMBL pre-processing

0.00	
0.05	
0.10	
0.15	
0.20	
0.25	
0.30	
0.35	
0.40	
0.45	
0.50	

1%	 10%	 20%	 30%	 40%	 50%	 60%	 70%	 80%	 90%	 100%	

Se
co
nd

s	

G1(1896)	

(b) ChEMBL query processing

0	

2	

4	

6	

8	

10	

12	

14	

10%	 20%	 30%	 40%	 50%	 60%	 70%	 80%	 90%	 100%	

Hu
nd

re
ds
	 se

co
nd

s	

PAGOdA	 Pellet	

(c) Reactome pre-processing

0	

200	

400	

600	

800	

1000	

10%	 20%	 30%	 40%	 50%	 60%	 70%	 80%	 90%	 100%	

Se
co
nd

s	

G1(128)	 G2(1)	 Q65	 Pellet_Q65	

(d) Reactome query processing

0.0	

0.5	

1.0	

1.5	

2.0	

1%	 10%	 20%	 30%	 40%	 50%	 60%	 70%	 80%	 90%	 100%	

Th
ou

sa
nd

s	 s
ec
on

ds
	

Satsifiable	 Unsa9sfiable	

(e) Uniprot pre-processing

0	

5	

10	

15	

20	

25	

1%	 10%	 20%	 30%	 40%	

Se
co
nd

s	

G1(236)	 G2(4)	

(f) Uniprot query processing

Fig. 5: Scalability tests on EBI linked data platform

LUBM(n) All LUBM queries belongs to either G1 or G3 with the latter group
containing two queries. The average query processing time for queries in G1
never exceeds 13s; for the two queries in G3 (Q32 and Q34), this reaches 8, 000s
for LUBM(800), most of which is accounted for by HermiT.

UOBM(n) As with LUBM, most test queries were contained in G1, and their
processing times never exceeded 8 seconds. We found one query in G2, and
PAGOdA took 569s to answer this query for UOBM(500). UOBM’s randomised
data generation led to the highly variable behaviour of Q18: it was in G3 for
UOBM(1) UOBM(10) and UOBM(50), causing PAGOdA to time out in the last
case; it was in G2 for UOBM(40); and it was in G1 in all other cases.

ChEMBL All test queries were contained in G1, and average processing time
was less than 0.5s in all cases.

LUBM UOBM FLY NPD DBPedia ChEMBL Reactome UniProt

Total 35 20 6 478 1247 1896 130 240
L1 + U1 26 4 0 442 1240 1883 82 204
L2 + U1 33 4 5 442 1241 1883 82 204
L2 + U2 33 12 5 442 1241 1883 98 204
L2 + U2|3 33 16 5 473 1246 1896 128 236

Table 2:]Queries answered by different bounds

Reactome Groups G2 and G3 each contained one query, with all the remaining
queries belonging to G1. Query processing time for queries in G1 never exceeded
10 seconds; for G2 processing time appeared to grow linearly in the size of
datasets, and average time never exceeded 10 seconds; the G3 query (Q65) is
much more challenging, but it could still be answered in less than 900 seconds,
even for the largest dataset.

On Reactome, Pellet is able to process the samples of size 10%, 20% and 30%,
with pre-processing times comparable to PAGOdA. Average query-processing
times for queries in G1 and G2 are slightly higher than those of PAGOdA,
but times for query Q65 were significantly higher. This was due to PAGOdA’s
subset extraction technique, which is able to keep the input to the fully-fledged
reasoner small, even for the largest datasets.

Uniprot In contrast to the other cases, Uniprot as a whole is unsatisfiable;
however, our sampling technique can produce a satisfiable subset up to 40%.
For larger subsets, pre-processing times drop abruptly as unsatisfiability can
be efficiently detected in the lower bound. Query processing times were only
considered for satisfiable samples. There were no queries in G3, and only four
in G2, all of which were efficiently handled.

Effectiveness of Different Techniques We have evaluated the effectiveness
of the various reasoning techniques implemented in PAGOdA by comparing the
numbers of test queries that can be fully answered using the relevant technique.

Query bounds Table 2 illustrates the effectiveness of different combinations
of upper and lower bounds in terms of the number of queries for which the
bounds coincided for each test ontology and its smallest test datasets. In the
table, we refer to the lower bound computed w.r.t. the datalog subset of the
input knowledge base as L1 and to the combined lower bound computed by
PAGOdA as L2. Similarly, we refer the naive upper bound computed using a
datalog over-approximation of Σ as U1; the upper bound computed w.r.t. MU

2

and MU
3 as U2 and U3; and the combined upper bound as U2|3.

It can be seen that L1 and U1 suffice to answer most of the queries in many
test ontologies. L2 was very effective in the case of FLY, where the basic bounds
did not match for any query, and also useful for LUBM, yielding matching bounds
for 7 more queries. U2, was especially effective for UOBM and Reactome, where
many existentially quantified rules were already satisfied by the lower bound
materialisation. Finally, the refined treatment of disjunctive rules in U2|3 was
instrumental in obtaining additional matching bounds for non-Horn ontologies.

LUBM UOBM Fly NPD DBPedia Reactome Uniprot

Facts 0.5% 10.4% 7.3% 16.5% 9× 10−5% 5.2% 4× 10−4%
Rules 3.7% 10.9% 0.9% 18.4% 2.4% 5.3% 1.1%

Table 3: Size of the largest subsets given as percentage over input rules and facts.

LUBM UOBM FLY DBPedia NPD Reactome UniProt

L2 + U2|3 26 14 264 112 1470 264 344 10 326 18 52 168
+ Sum 26 14 264 0 1444 264 344 0 0 0 52 0
+ Dep 1 1 1 0 1 1 7 0 0 0 37 0

Table 4: The number of hard calls to HermiT to fully answer each query

Subset extraction Table 3 shows, for each dataset, the maximum percentage
of facts and rules that are included in the relevant subset over all test queries
with non-matching bounds. We can observe that subset extraction is effective in
all cases in terms of both facts and rules.

Summarisation and Dependencies The effectiveness of these techniques was
measured by the number of ‘hard’ calls to HermiT that were required to fully
answer each query, where a call is considered hard if the knowledge base passed
to HermiT is not a summary. The first row of Table 4 shows the number of
gap answers for each query where the L2 and U2|3 bounds don’t match. Without
optimisation, we would have to call HermiT this number of times to fully answer
each query. Row 2 (resp. row 3) shows the number of hard calls to HermiT after
applying summarisation (resp. summarisation plus dependency analysis).

4 Discussion

The reasoning techniques we have proposed here are very general and are ap-
plicable to a wide range of knowledge representation languages. Our main goal
in practice, however, has been to realise our approach in a highly scalable and
robust query answering system for OWL 2 DL ontologies, which we have called
PAGOdA. Our extensive evaluation has not only confirmed the feasibility of our
approach in practice, but also that our system PAGOdA significantly ourper-
forms state-of-the art reasoning systems in terms of both robustness and scal-
ability. In particular, our experiments using the ontologies in the EBI linked
data platform have shown that PAGOdA is capable of fully answering queries
over highly complex and expressive ontologies and realistic datasets containing
hundreds of millions of facts.

Acknowledgements. This work has been supported by the Royal Society un-
der a Royal Society Research Fellowship, by the EPSRC projects MaSI3, Score!
and DBOnto, and by the EU FP7 project Optique.

References

1. Cal̀ı, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering under
expressive relational constraints. Journal of Artificial Intelligence Research 48, 115–
174 (2013), http://dx.doi.org/10.1613/jair.3873

2. Dolby, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Schonberg, E., Srinivas,
K., Ma, L.: Scalable semantic retrieval through summarization and refinement.
In: AAAI 2007, Proceedings of the Twenty-Second AAAI Conference on Artificial
Intelligence, July 22-26, 2007, Vancouver, British Columbia, Canada. pp. 299–304.
AAAI Press (2007), http://www.aaai.org/Library/AAAI/2007/aaai07-046.php

3. Dolby, J., Fokoue, A., Kalyanpur, A., Schonberg, E., Srinivas, K.: Scalable highly
expressive reasoner (SHER). Journal of Web Semantics 7(4), 357–361 (2009)

4. Eiter, T., Fink, M., Tompits, H., Woltran, S.: Simplifying logic programs under uni-
form and strong equivalence. In: LPNMR 2004, Proceedings of Logic Programming
and Nonmonotonic Reasoning - 7th International Conference, Fort Lauderdale, FL,
USA, January 6-8, 2004, Proceedings. pp. 87–99 (2004)

5. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: HermiT: An OWL 2
reasoner. Journal of Automated Reasoning 53(3), 245–269 (2014)

6. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base sys-
tems. Journal of Web Semantics 3(2-3), 158–182 (2005)

7. Horrocks, I., Tessaris, S.: A conjunctive query language for description logic
aboxes. In: Kautz, H.A., Porter, B.W. (eds.) AAAI/IAAI 2000, Proceedings of
the Seventeenth National Conference on Artificial Intelligence and Twelfth Con-
ference on on Innovative Applications of Artificial Intelligence, July 30 - August
3, 2000, Austin, Texas, USA. pp. 399–404. AAAI Press / The MIT Press (2000),
http://www.aaai.org/Library/AAAI/2000/aaai00-061.php

8. Jiménez-Ruiz, E., Cuenca Grau, B.: LogMap: Logic-based and scalable ontology
matching. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L.,
Noy, N.F., Blomqvist, E. (eds.) ISWC 2011, The Semantic Web - 10th International
Semantic Web Conference, Bonn, Germany, October 23-27, 2011, Proceedings, Part
I. Lecture Notes in Computer Science, vol. 7031, pp. 273–288. Springer (2011),
http://dx.doi.org/10.1007/978-3-642-25073-6_18

9. Leskovec, J., Faloutsos, C.: Sampling from large graphs. In: KDD 2006, Proceedings
of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, Philadelphia, PA, USA, August 20-23, 2006. pp. 631–636 (2006)

10. Ma, L., Yang, Y., Qiu, Z., Xie, G.T., Pan, Y., Liu, S.: Towards a complete OWL
ontology benchmark. In: Sure, Y., Domingue, J. (eds.) ESWC 2006, The Semantic
Web: Research and Applications, 3rd European Semantic Web Conference, Budva,
Montenegro, June 11-14, 2006, Proceedings. Lecture Notes in Computer Science,
vol. 4011, pp. 125–139. Springer (2006), http://dx.doi.org/10.1007/11762256_
12

11. Motik, B., Nenov, Y., Piro, R., Horrocks, I., Olteanu, D.: Parallel materialisa-
tion of datalog programs in centralised, main-memory RDF systems. In: Brodley,
C.E., Stone, P. (eds.) AAAI 2014, Proceedings of the Twenty-Eighth AAAI Con-
ference on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada.
pp. 129–137. AAAI Press (2014), http://www.aaai.org/ocs/index.php/AAAI/

AAAI14/paper/view/8505

12. Motik, B., Shearer, R., Horrocks, I.: Hypertableau reasoning for description logics.
Journal of Artificial Intelligence Research 36, 165–228 (2009), http://dx.doi.org/
10.1613/jair.2811

13. Zhou, Y., Nenov, Y., Cuenca Grau, B., Horrocks, I.: Complete query answering
over horn ontologies using a triple store. In: The Semantic Web - ISWC 2013 -
12th International Semantic Web Conference, Sydney, NSW, Australia, October
21-25, 2013, Proceedings, Part I. Lecture Notes in Computer Science, vol. 8218,
pp. 720–736. Springer (2013)

14. Zhou, Y., Nenov, Y., Cuenca Grau, B., Horrocks, I.: Pay-as-you-go ontology query
answering using a datalog reasoner. In: Informal Proceedings of the 27th Interna-
tional Workshop on Description Logics, Vienna, Austria, July 17-20, 2014. CEUR
Workshop Proceedings, vol. 1193, pp. 352–364. CEUR-WS.org (2014)

15. Zhou, Y., Nenov, Y., Cuenca Grau, B., Horrocks, I.: Pay-as-you-go OWL query
answering using a triple store. In: Proceedings of the Twenty-Eighth AAAI Con-
ference on Artificial Intelligence (2014), http://www.aaai.org/ocs/index.php/

AAAI/AAAI14/paper/view/8232

