
Combined Complexity of Answering
Tree-like Queries in OWL 2 QL

Meghyn Bienvenu1, Stanislav Kikot2, and Vladimir Podolskii3

1 LRI – CNRS & Université Paris Sud, Orsay, France
2 Institute for Information Transmission Problems & MIPT, Moscow, Russia

3 Steklov Mathematical Institute & Higher School of Economics, Moscow, Russia

Introduction The OWL 2 QL ontology language [11], based upon the description
logic DL-LiteR, is considered particularly well suited for applications involving large
amounts of data. While the data complexity of querying OWL 2 QL knowledge bases
is well understood, far less is known about combined complexity of conjunctive query
(CQ) answering for restricted classes of conjunctive queries. By contrast, the combined
complexity of CQ answering in the relational setting has been thoroughly investigated.

In relational databases, it is well known that CQ answering is NP-complete in the
general case. A seminal result by Yannakakis established the tractability of answering
tree-shaped (aka acyclic) CQs [14], and this result was later extended to wider classes
of queries, most notably to bounded treewidth CQs [5]. Gottlob et al. [6] pinpointed the
precise complexity of answering tree-shaped and bounded treewidth CQs, showing both
problems to be complete for the class LOGCFL of all languages logspace-reducible to
context-free languages [13]. In the presence of arbitrary OWL 2 QL ontologies, the NP
upper bound for arbitrary CQs continues to hold [4], but answering tree-shaped queries
becomes NP-hard [8]. Interestingly, the latter problem was recently proven tractable in
[3] for DL-Litecore (a slightly less expressive logic than OWL 2 QL), raising the hope
that other restrictions might also yield tractability.

This extended abstract summarizes our investigation [2] into the combined com-
plexity of conjunctive query answering in OWL 2 QL for tree-shaped queries, their re-
striction to linear and bounded leaf queries and their generalization to bounded treewidth
queries. Our complexity analysis reveals that all query-ontology combinations that have
not already been shown NP-hard are in fact tractable. Specifically, in the case of bounded
depth ontologies, we prove membership in LOGCFL for bounded treewidth queries
(generalizing the result in [6]) and membership in NL for bounded leaf queries. We also
show LOGCFL-completeness for linear and bounded leaf queries in the presence of ar-
bitrary OWL 2 QL ontologies. This last result is the most interesting technically, as the
upper and lower bounds rely on two different characterizations of the class LOGCFL.

Preliminaries We assume the reader familiar is OWL 2 QL (or DL-LiteR) knowledge
bases (KBs), composed of a TBox T and ABox A built from countably infinite, mutu-
ally disjoint sets NC, NR, and NI of concept names, role names, and individual names.
Roles R and basic concepts B are defined in a standard way, cf. [4]. We use N±R to refer
to the set of all roles. We recall that every consistent OWL 2 QL KB (T ,A) possesses
a canonical model CT ,A with the property that T ,A |= q(a) iff CT ,A |= q(a) for every
CQ q and tuple a ⊆ inds(A). Thus, CQ answering in OWL 2 QL corresponds to decid-
ing the existence of a homomorphism of the query into the canonical model. Informally,

CT ,A is obtained from A by repeatedly applying the axioms in T , introducing fresh el-
ements as needed to serve as witnesses for the existential quantifiers. According to the
standard construction (cf. [10]), the domain ∆CT ,A of CT ,A consists of inds(A) and all
words of the form aR1R2 . . . Rn−1Rn (n ≥ 1) with a ∈ NC and Ri ∈ N±R. Intuitively,
the element aR1R2 . . . Rn−1Rn is obtained by applying an axiom with right-hand side
∃Rn to the element aR1R2 . . . Rn−1 ∈ ∆CT ,A . A TBox T is of depth ω if there is an
ABoxA such that the domain of CT ,A is infinite; T is of depth d, 0 ≤ d < ω, if d is the
greatest number such that some CT ,A contains an element of the form aR1 . . . Rd.

Contributions In what follows, we briefly formulate our combined complexity results
and provide some intuitions about the proof techniques. See [2] for details.

Theorem 1. CQ answering is in LOGCFL for bounded treewidth queries and bounded
depth ontologies.

Proof sketch. We exploit the fact that CQ answering over a KB (T ,A) corresponds
to evaluating the query over the canonical model CT ,A viewed as a database. If T
has depth k (with k a fixed constant), then CT ,A can be computed by a determin-
istic logspace Turing machine (TM) with access to an NL oracle. Indeed, the depth
bound k implies the finiteness of CT ,A and that all domain elements can be described
using logarithmically many bits. To complete the argument, we use the fact that an-
swering bounded treewidth queries over databases is in LOGCFL [7] and that the class
LOGCFL is closed under LLOGCFL (and hence LNL) reductions [13]. ut

Theorem 2. CQ answering is NL-complete for bounded leaf queries and bounded
depth ontologies.

Proof sketch. The lower bound is an immediate consequence of the NL-hardness of an-
swering atomic queries in OWL 2 QL. To prove the upper bound, we apply a straight-
forward non-deterministic procedure for deciding (T ,A) |= q :

1. Fix a directed tree T compatible with q. Let v0 be the root variable.
2. Guess u0 ∈ ∆CT ,A . Return no if v0 cannot be mapped to u0.
3. Initialize Frontier to {(v0, u0)}.
4. While Frontier 6= ∅

(a) Remove (v1, u1) from Frontier.
(b) For every child v2 of v1

i. Guess an element u2 from ∆CT ,A .
ii. Return no if (v1, v2) cannot be mapped to (u1, u2).

iii. Add (v2, u2) to Frontier.
5. Return yes.

For lack of space, we have not specified how to check whether a variable (resp. pair
of variables) can be mapped to an element (resp. pair of elements), but this can be
done in NL using a small number of entailment checks. Also note that the bound on
the number of leaves yields the bound on size of Frontier, and the bound on the TBox
depth guarantees that we only need logarithmically many bits per pair in Frontier. ut

Theorem 3. CQ answering is LOGCFL-complete for bounded leaf queries and arbi-
trary ontologies. The lower bound holds already for linear queries.

Proof sketch. Concerning the upper bound, it is easy to adapt the previous algorithm
to handle arbitrary TBoxes: we simply replace ∆CT ,A by {aw ∈ ∆CT ,A | |w| ≤
2|T |+ |q|}. The modified algorithm gives the correct answers, but it does not have the
required complexity, because it might need more than logarithmically many bits to store
guessed elements aw. To show LOGCFL membership, we further modify the proce-
dure so that it can be implemented by a non-deterministic polytime logspace-bounded
Turing machine augmented with a stack (such TMs are known to capture LOGCFL
computation [12]). The stack is used to store the word part w of a domain element aw.
The modification is not at all obvious since we need to store several words at a time
while the specified machine has only a single stack; the trick is to employ a careful
‘synchronization’ of traversals of different branches of the query.

The lower bound is by reduction from the problem of deciding whether an input of
length l is accepted by the lth circuit of a logspace-uniform family of SAC1 circuits
(proven LOGCFL-hard in [13]). This problem was used in [7] to show LOGCFL-
hardness of evaluating tree-shaped CQs over databases. We follow a broadly similar
approach, but with one crucial difference: the power of OWL 2 QL TBoxes allows us to
‘unravel’ the circuit into a tree and to use linear queries instead of tree-shaped ones. ut
Discussion If we compare the new and existing results for OWL 2 QL with those from
relational databases, we observe that adding an OWL 2 QL TBox of bounded depth
does not change the combined complexity for query answering, while for TBoxes of un-
bounded depth, the complexity class shifts one ‘step’ higher: from NL to LOGCFL for
bounded leaf queries and from LOGCFL to NP for tree-shaped and bounded treewidth
CQs. It is also interesting to compare the combined complexity landscape (below right)
with the succinctness landscape for query rewriting (below left) from [1].

1 2 3
. . .

d arb
ONTOLOGY DEPTH

Q
U

E
R

Y
S

H
A

P
E

NL/poly: no poly PE but poly NDL
[1]

SAC1: no poly PE but poly NDL
[1] N

P/
po

ly
[8

]

NP/poly: no polysize PE or NDL
[9]

[1]

poly
PE,
FO
and

NDL

[9]

NL/poly
[9]

1 2 3
. . .

d arb

1

...

`

trees

2

...

n

arb

ONTOLOGY DEPTH

N
um

be
ro

fl
ea

ve
s

Tr
ee

w
id

th

NL-complete

≥: [4] / DBs ≤: Thm. 2

LOGCFL-complete

≥: [7] ≤: Thm. 1

N
P-

c
≥

:
[8

]
≤

:
[4

]NP-complete ≥: DBs ≤: [4]

L
O

G
C

F
L

-c

≥
,
≤

:
T

hm
.

3

Observe that for our newly identified tractable classes, polynomial-size non-recursive
datalog (NDL) rewritings are guaranteed to exist, whereas this is not the case for the
positive existential (PE) rewritings more typically considered. In future work, we plan to
marry these positive succinctness and complexity results by developing concrete NDL-
rewriting algorithms for OWL 2 QL for which both the rewriting and evaluation phases
run in polynomial time (as was done in [3] for DL-Litecore).
Acknowledgments. Partial support was provided by ANR grant 12-JS02-007-01, Rus-
sian Foundation for Basic Research and the programme “Leading Scientific Schools”.

References
1. M. Bienvenu, S. Kikot, and V. V. Podolskii. Succinctness of query rewriting in OWL 2 QL:

the case of tree-like queries. In Informal Proceedings of the 27th International Workshop on
Description Logics, Vienna, Austria, July 17-20, 2014., pages 45–57, 2014.

2. M. Bienvenu, S. Kikot, and V. V. Podolskii. Tree-like queries in OWL 2 QL: Succinctness
and complexity results. In Proc. of the 30th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS 2015). IEEE, 2015.

3. M. Bienvenu, M. Ortiz, M. Simkus, and G. Xiao. Tractable queries for lightweight descrip-
tion logics. In Proc. of the 23rd Int. Joint Conf. on Artificial Intelligence (IJCAI 2013). AAAI
Press, 2013.

4. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning, 39(3):385–429, 2007.

5. C. Chekuri and A. Rajaraman. Conjunctive query containment revisited. Theoretical Com-
puter Science, 239(2):211–229, 2000.

6. G. Gottlob, N. Leone, and F. Scarcello. Computing LOGCFL certificates. In ICALP-99,
pages 361–371, 1999.

7. G. Gottlob, N. Leone, and F. Scarcello. The complexity of acyclic conjunctive queries. J.
ACM, 48(3):431–498, 2001.

8. S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev. Exponential lower bounds
and separation for query rewriting. In Proc. of the 39th Int. Colloquium on Automata, Lan-
guages, and Programming (ICALP 2012), Part II, volume 7392 of LNCS, pages 263–274.
Springer, 2012.

9. S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev. On the succinctness of
query rewriting over OWL 2 QL ontologies with shallow chases. In Proc. of the 29th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS 2014). ACM Press, 2014.

10. R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and M. Zakharyaschev. The combined ap-
proach to query answering in DL-Lite. In Proc. of the 10th Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR 2010). AAAI Press, 2010.

11. B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz. OWL 2 Web
Ontology Language profiles. W3C Recommendation, 11 December 2012. Available at
http://www.w3.org/TR/owl2-profiles/.

12. I. H. Sudborough. On the tape complexity of deterministic context-free languages. Journal
of the ACM, 25(3):405–414, 1978.

13. H. Venkateswaran. Properties that characterize LOGCFL. J. Computer and System Sciences,
43(2):380–404, 1991.

14. M. Yannakakis. Algorithms for acyclic database schemes. In Proc. of the 7th Int. Conf. on
Very Large Data Bases (VLDB’81), pages 82–94. IEEE Computer Society, 1981.

