Diego Calvanese
Boris Konev

28th International Workshop on

Description Logics

Athens, Greece
7—10 June 2015

Preface

The International Workshop on Description Logics is the main annual event of
the Description Logic research community. It is the forum at which those inter-
ested in description logics, from both academia and industry, meet to discuss
ideas, share information, and compare experiences. The workshop explicitly wel-
comes submissions from researchers that are new to the area and provides qual-
ity feedback via peer-reviewing, while at the same time being of an ”inclusive”
nature with a very high acceptance rate. There are only informal (electronic)
proceedings and inclusion of a paper there is not supposed to preclude its pub-
lication at conferences. Further information can be found on the DL Web pages
at http://dlL.kr.org/.

This volume of informal proceedings contains the papers presented at the
28th International Workshop on Description Logics (DL 2015) held on June 6-9,
2015 in Athens (Greece). This year there were 68 submissions, divided among
full papers presenting original research, and extended abstracts (of at most 3
pages). Submissions have been judged solely based upon their content and qual-
ity, and the type of submission had no bearing on the decision between long oral,
short oral and poster presentation. Each submission was reviewed by 3 program
committee members or additional reviewers recruited by the PC. In the spirit
of inclusiveness, the committee decided to accept 60 papers, among them 37 as
long and short oral presentations and 23 as poster presentations. We thank all
program committee members and additional reviewers for their invaluable effort.

The program also included 3 invited talks, which were given by Carsten Lutz,
Axel Polleres, and Maarten de Rijke. The abstracts of these talks are included
in this volume.

We also gratefully acknowledge the Artificial Intelligence Journal and the
Foundation for Principles of Knowledge Representation and Reasoning (KR Inc.)
for financial support and EasyChair for providing a convenient and efficient
platform for preparing the program. Last but not least we thank all authors and
participants of DL 2015.

June 2015 Diego Calvanese
Athens Boris Konev

Table of Contents

Invited Talks

Query Rewriting Beyond DL-Lite o i i,
Carsten Lutz

Integrating Open Data: (How) Can Description Logics Help me?
Azel Polleres

Entity-oriented Search Engine Result Pages
Maarten de Rijke

Oral Presentations

DL-Lite and Conjunctive Queries Extended by Optional Matching
Shqiponja Ahmetaj, Wolfgang Fischl, Reinhard Pichler, Mantas Simkus
and Sebastian Skritek

Dealing with Inconsistencies due to Class Disjointness in SPARQL Update
Albin Ahmeti, Diego Calvanese, Axel Polleres and Vadim Savenkov

Interval Temporal Description Logics i
Alessandro Artale, Roman Kontchakov, Viadislav Ryzhikov and Michael
Zakharyaschev

Dismatching and Local Disunification in EL (Extended Abstract)
Franz Baader, Stefan Borgwardt and Barbara Morawska

Extending Consequence-Based Reasoning to SHIQ
Andrew Bate, Boris Motik, Bernardo Cuenca Grau, Frantisek Simandcik
and Ian Horrocks

Explaining Query Answers under Inconsistency-Tolerant Semantics
over Description Logic Knowledge Bases (Extended Abstract)
Meghyn Bienvenu, Camille Bourgaux and Francgois Goasdoué

Combined Complexity of Answering Tree-like Queries in OWL 2 QL.
Meghyn Bienvenu, Stanislav Kikot and Vladimir Podolskii

Query-based comparison of OBDA specifications
Meghyn Bienvenu and Riccardo Rosati

Schema-Agnostic Query Rewriting for OWL QL
Stefan Bischof, Markus Krotzsch, Azel Polleres and Sebastian Rudolph

Singular Referring Expressions in Conjunctive Query Answers: the case
for a CFD DL Dialectvuinii e
Alex Borgida, David Toman and Grant Weddell

13

25

30

34

47

51

55

67

71

Temporal Query Answering in EL o it 83
Stefan Borgwardt and Veronika Thost

Efficient Query Answering in DL-Lite through FOL Reformulation
(Extended Abstract)oiiiiiiii 88
Damian Bursztyn, Frangois Goasdoué and Ioana Manolescu

Decidable Contextualized DLs with Rigid Roles................. 92
Stephan Béhme and Marcel Lippmann

Inconsistency Management in Generalized Knowledge and Action Bases.. 96
Diego Calvanese, Marco Montali and Ario Santoso

Tableau-based revision in SHIQ 101
Thinh Dong, Chan Le Duc, Philippe Bonnot and Myriam Lamolle

Extending the Combined Approach Beyond Lightweight Description Logics 105
Cristina Feier, David Carral, Giorgio Stefanoni, Bernardo Cuenca Grau
and Ian Horrocks

Adding Threshold Concepts to the Description Logic EL 117
Oliver Fernandez Gil, Franz Baader and Gerhard Brewka

Lower and Upper Bounds for SPARQL Queries over OWL Ontologies ... 121
Birte Glimm, Yevgeny Kazakov, Ilianna Kollia and Giorgos Stamou

Polynomial Combined Rewritings for Linear Existential Rules and
DL-Lite with n-ary Relations i 125
Georg Gottlob, Marco Manna and Andreas Pieris

The Complexity of Temporal Description Logics with Rigid Roles and
Restricted TBoxes: In Quest of Saving a Troublesome Marriage 129
Victor Gutiérrez Basulto, Jean Christoph Jung and Thomas Schneider

Schema.org as a Description Logic i, 141
Andre Hernich, Carsten Lutz, Ana Ozaki and Frank Wolter

Polynomial Horn Rewritings for Description Logics Ontologies 154
Mark Kaminski and Bernardo Cuenca Grau

Reasoning Efficiently with Ontologies and Rules in the Presence of
Inconsistencies (Extended Abstract), 166
Tobias Kaminski, Matthias Knorr and Joao Leite

Advancing ELK: Not Only Performance Matters 171
Yevgeny Kazakov and Pavel Klinov

Nonmonotonic Nominal Schemas Revisited 183
Matthias Knorr

iii

Conservative Rewritability of Description Logic TBoxes: First Results . ..
Boris Konev, Carsten Lutz, Frank Wolter and Michael Zakharyaschev

Exact Learning Description Logic Ontologies from Data Retrieval

Examples o
Boris Konev, Ana Ozaki and Frank Wolter

Semantics of SPARQL under OWL 2 Entailment Regimes..............
Egor V. Kostylev and Bernardo Cuenca Grau

Towards Expressive Metamodelling with Instantiation
Petra Kubincovd, Jan Kuka and Martin Homola

Mapping Analysis in Ontology-based Data Access: Algorithms and

Complexity (Extended Abstract)...........coooiiiiiiiiiiiii ..
Domenico Lembo, Jose Mora, Riccardo Rosati, Domenico Fabio Savo
and Evgenij Thorstensen

The Combined Complexity of Reasoning with Closed Predicates in
Description Logics
Nhung Ngo, Magdalena Ortiz and Mantas Simkus

Completion Graph Caching for Expressive Description Logics...........
Andreas Steigmiller, Birte Glimm and Thorsten Liebig

On the Utility of CFDZIo =
David Toman and Grant Weddell

Query Rewriting in Horn-SHIQ
Despoina Trivela, Giorgos Stoilos, Alexandros Chortaras and Giorgos
Stamou

Decidable Verification of Knowledge-Based Programs over Description
Logic Actions with Sensing,
Bengjamin ZarriefS and Jens Claflen

Concept Forgetting for ALCOI-Ontologies using an Ackermann Approach
Yizheng Zhao and Renate Schmidt

PAGOdA: Pay-as-you-go ABox Reasoning.
Yujiao Zhou, Bernardo Cuenca Grau, Yavor Nenov and Ian Horrocks

Poster Presentations

An Ontology-Based Archive for Historical Research
Giovanni Adorni, Marco Maratea, Laura Pandolfo and Luca Pulina

Reasoning in description logics with variables: preliminary results
regarding the EL logic i
Lakhdar Akroun, Nourine Lhouari and Farouk Toumani

iv

196

296

Integrating Ontologies and Planning for Cognitive Systems 338
Gregor Behnke, Pascal Bercher, Susanne Biundo, Birte Glimm, Denis
Ponomaryov and Marvin Schiller

Optimized Construction of Secure Knowledge-Base Views 351
Piero A. Bonatti, lliana Petrova and Luigi Sauro

Conjunctive Query Answering with Finitely Many Truth Degrees 364
Stefan Borqwardt, Theofilos Mailis, Rafael Penaloza and Anni-Yasmin
Turhan

Query Answering in Bayesian Description Logics 368

Ismail Ilkan Ceylan

Answering EL Queries in the Presence of Preferences 380
Ismail Ilkan Ceylan, Thomas Lukasiewicz and Rafael Penaloza

Dynamic Bayesian Description Logics............. 384
Ismail Ilkan Ceylan and Rafael Penaloza

Elastiq: Answering Similarity-threshold Instance Queries in EL 388
Andreas Ecke, Mazimilian Pensel and Anni-Yasmin Turhan

Polynomial encoding of ORM conceptual models in CFDZ,, 401
Pablo Fillottrani, C. Maria Keet and David Toman

Handling uncertainty: An extension of DL-Lite with Subjective Logic.... 415
Jhonatan Garcia, Jeff Pan and Achille Fokoue

DysToPic: a Multi-Engine Theorem Prover for Preferential Description

Logics « .o 427
Laura Giordano, Valentina Gliozzi, Nicola Olivetti, Gian Luca Pozzato
and Luca Violanti

Saturated-Based Forgetting in the Description Logic SIF 439
Patrick Koopmann and Renate A. Schmidt

Incremental Learning of TBoxes from Interpretation Sequences with
Methods of Formal Concept Analysisc.ooiiiniiinin... 452
Francesco Kriegel

A higher-order semantics for OWL 2 QL ontologies (Extended abstract) . 465
Maurizio Lenzerini, Lorenzo Lepore and Antonella Poggi

A pragmatic approach to answering CQs over fuzzy
DL-Lite-ontologies—introducing FLite 469
Theofilos Mailis, Anni- Yasmin Turhan and Erik Zenker

Empirical Investigation of Subsumption Test Hardness in Description

Logic Classification.« e

Nicolas Matentzoglu, Uli Sattler and Bijan Parsia

Heuristics for Applying Cached OBDA Rewritings

Andreas Nakkerud and Evgenij Thorstensen

Managing QoS Acceptability for Service Selection : A Probabilistic

Description Logics Based Approach

Mourad Ouziri, Salima Benbernou, Naouel Karam and Allel Hadjali

Abductive Reasoning with Description Logics: Use Case in Medical

DiIagnosis

Julia Pukancovd and Martin Homola

TBox Reasoning in the Probabilistic Description Logic SHIQp

Viachaslau Sazonau and Uli Sattler

Optimizations for Decision Making and Planning in Description Logic

Dynamic Knowledge Bases i

Michele Stawowy

On Implementing Temporal Query Answering in DL-Lite (extended

ADSETACE) .« o oottt

Veronika Thost, Jan Holste and Ozgiir Ozcep

vi

Conference Organisation

General Chairs

Giorgos Stamou
Giorgos Stoilos

Program Chairs

Diego Calvanese
Boris Konev

Program Committee

Alessandro Artale
Franz Baader
Meghyn Bienvenu
Alex Borgida

Stefan Borgwardt
Elena Botoeva
Bernardo Cuenca Grau
Giuseppe De Giacomo
Chiara Ghidini

Silvio Ghilardi

Laura Giordano
Victor Gutiérrez Basulto
Pascal Hitzler

Tan Horrocks

Mark Kaminski
Yevgeny Kazakov

C. Maria Keet

Pavel Klinov

Ilianna Kollia

Roman Kontchakov
Oliver Kutz

Maurizio Lenzerini
Michel Ludwig
Carsten Lutz

Thomas Meyer

Barbara Morawska

National Technical University of Athens, Greece
National Technical University of Athens, Greece

Free University of Bozen-Bolzano, Italy
University of Liverpool, UK

Free University of Bozen-Bolzano, Italy
TU Dresden, Germany

CNRS & Université Paris-Sud, France
Rutgers University, USA

TU Dresden, Germany

Free University of Bozen-Bolzano, Italy
University of Oxford, UK

Sapienza Universita di Roma, Italy
FBK-irst, Italy

Universita degli Studi di Milano, Italy
Universita del Piemonte Orientale, Italy
University of Bremen, Germany

Wright State University, USA
University of Oxford, UK

University of Oxford, UK

The University of Ulm, Germany
University of Cape Town, South Africa
University of Ulm, Germany

National Technical University of Athens, Greece
Birkbeck, University of London, UK
Free University of Bozen-Bolzano, Italy
University of Rome ”La Sapienza”, Italy
TU Dresden, Germany

Universitdt Bremen, Germany

Centre for Artificial Intelligence Research,
UKZN and CSIR Meraka, South Africa
TU Dresden, Germany

vii

Ralf Moller

Yavor Nenov

Magdalena Ortiz

Jeff Z. Pan

Peter Patel-Schneider
Riccardo Rosati

Sebastian Rudolph

Vladislav Ryzhikov

Uli Sattler

Viorica Sofronie-Stokkermans

David Toman
Dmitry Tsarkov
Anni-Yasmin Turhan
Grant Weddell
Frank Wolter
Guohui Xiao

Universitdt zu Liibeck, Germany
University of Oxford, UK

Vienna University of Technology, Austria
University of Aberdeen, UK

Nuance Communications

Sapienza Universita di Roma, Italy
Technische Universitdat Dresden, Germany
Free University of Bozen-Bolzano, Italy
University of Manchester, UK

University of Koblenz and MPII Saarbriicken,
Germany

University of Waterloo, Canada

The University of Manchester, UK
University of Oxford, UK

University of Waterloo, Canada
University of Liverpool, UK

Free University of Bozen-Bolzano, Italy

viii

Additional Reviewers

Armas Romero, Ana Lippmann, Marcel
Bate, Andrew Neuenstadt, Christian
Bibel, Wolfgang Oezcep, Oezguer Luetfue
Bozzato, Loris Ozaki, Ana

Britz, Arina Rens, Gavin

Carral, David Schiller, Marvin
Casini, Giovanni Sebastiani, Roberto
De Masellis, Riccardo Sengupta, Kunal
Ecke, Andreas Simkus, Mantas

Feier, Cristina Stepanova, Daria
Fiorentini, Camillo Thost, Veronika
Ibanez-Garcia, Yazmin Angelica Wang, Cong

Jung, Jean Christoph Zarrief}; Benjamin
Klarman, Szymon Zheleznyakov, Dmitriy

Krisnadhi, Adila A.

ix

Query Rewriting Beyond DL-Lite

Carsten Lutz

Fachbereich Informatik, Universitat Bremen, Germany

1 Abstract of Invited Talk

Query rewriting has become a very prominent tool for efficiently implementing
ontology-mediated querying in practice. The technique was originally introduced
in the context of DL-Lite [4], but is now increasingly being used also for more
expressive DLs. While rewritings are not guaranteed to exist beyond DL-Lite,
the simple structure of ontologies that emerge from practical applications gives
hope that non-existence of rewritings is a rare case.

The aim of the talk is to survey FO- and Datalog-rewriting of ontology-
mediated queries in description logics beyond DL-Lite. It is structured into three
parts. The first part is concerned with FO-rewritings in Horn-DLs such as L,
ELT, and Horn-SHZ, the second part considers FO-rewritings in non-Horn-DLs
such as ALC and ALCZ, and the third part is about Datalog-rewritings in non-
Horn DLs. In all three parts, I will try to emphasize useful characterizations of
FO-rewritability, practically efficient algorithms for constructing rewritings, and
relevant computational complexity results.

The presentation is based on joint work with Meghyn Bienvenu, Balder ten
Cate, Peter Hansen, Inanc Seylan, and Frank Wolter. The subsequent section
provides some supplementary material that is featured in the talk, but has not
yet been published elsewhere. It establishes a link between the first and the
second part of the talk.

2 Supplementary Material

In [3, 7], we have proposed an approach to deciding the FO-rewritability of OMQs
for the case where the ontology/TBox is formulated in a Horn DL such as EL,
ELT, and Horn-ALCZ. The approach has led to efficient (yet complete) practical
implementations, and it relies on a characterization of FO-rewritability in terms
of tree-shaped ABoxes. Intuitively, the characterization relies on a property of
TBoxes that is called ‘unraveling tolerance’ and which typically is enjoyed by
Horn DLs, but not by DLs that include forms of disjunction. In contrast, the only
known complete approach to deciding FO-rewritability of OMQs in which the
TBox is formulated in full (non-Horn) ALC and ALCT is via the CSP connection
in [9,2]. Since ALC- and ALCZ-TBoxes are typically not unraveling tolerant, it
might seems that these two world are largely unrelated. In the following, though,
we point out a characterization of FO-rewritability in full ALCZ that establishes
an interesting connection to tree-shaped ABoxes and thus to the Horn case. We

consider Boolean atomic queries (BAQs), that is, queries of the form 3z A(x)
with A a concept name.

An ontology-mediated query (OMQ) is a triple Q = (T, X, q) with T a TBox,
X an ABox signature (set of concept and role names), and ¢ a query. An OBDA
language is a set of OMQs. We use (ALCZ,BAQ) to denote the OBDA language
that consists of all OMQs (T, X, q) with T an ALCZ-TBox and ¢ a BAQ, and
likewise for other combinations of a DL and a query language. An OMQ Q =
(T,X,q) is FO-rewritable if there is an FO-sentence ¢ such that for every X-
ABox A that is consistent w.r.t. 7, we have A = Q iff A = ¢.

As usual in OBDA, an ABoz is a finite set of assertions of the form A(a)
or 7(a,b) with A a concept name and r a role name. We write r~(a,b) € A to
mean 7(b,a) € A and use Ind(A) to denote the set of individuals used in A. An
ABox A is tree-shaped if the undirected graph (Ind(A), {{a,b} | r(a,b) € A}) is
a tree and whenever r(a,b) € A, then (i) s(a,b) € A implies r = s and (ii) A
contains no assertion of the form s(b, a). Tree-shapedness of conjunctive queries
(CQs) is defined accordingly. Note that, in both cases, our trees allow upwards-
and downwards-directed edges, but no multi-edges.

We now introduce unravelings of ABoxes and the notion of unraveling toler-
ance [9]. Let A be an ABox and a € Ind(A). The unraveling AY of A at a is the
following (possibly infinite) ABox:

— Ind(AY) is the set of sequences boroby - - rp_1byn, n > 0, such that by = a,
bo,...,b, €Ind(A) and ro,...,r,—1 are (potentially inverse) roles;

— for each C(b) € Aand o = by - - - by, € Ind(AY) with b, = b: C(a) € AY;

— for each o = bgrg - -+ T—1by, € Ind(AY) withn > 0: 7,1 (bo -+ - bp—1, @) € AY.

Forall @ = bg - - - by, € Ind(A¥), we write tail(«) to denote b,,. Note that AY is tree-
shaped. An OMQ Q = (7, X, q) is unraveling tolerant if for every X-ABox A,
A = @Q implies AY = @ for some a € Ind(A). Note that this is essentially the

same notion of unraveling tolerance as introduced in [9].

It can be shown as in [9] that in OBDA languages where the TBoxes are
formulated in Horn DLs such as ££, ££Z, and Horn-ALC and where queries are
BAQs or atomic queries (AQs, queries of the form A(x) with A a concept name),
all OMQs are unraveling tolerant. This underlies the following characterization
from [3].

Theorem 1 ([3]). A BAQ Q = (T,X,q) from (Horn-ALCZ, AQ) is FO-re-
writable iff there exists a k > 0 such that for all tree-shaped 3'-ABoxes A which
are consistent with T, A = Q implies Al |E Q where Ay is A with all nodes on
level exceeding k remowved.

Using a pumping argument, it can be shown that if there is any bound k as
Theorem 1, then we can choose k = 22/71. Based on this, worst-case optimal
(ExPTIME) decision procedures for FO-rewritability in (Horn-ALCZ, AQ) can
be devised using automata methods. Efficiently computing rewritings in practice
requires further algorithm engineering [7].

We will now establish a characterization of FO-rewritability in the non-
Horn OBDA language (ALCZ,BAQ). It is shown in [2] that for every OMQ
Q= (T,%,q) from (ALCZ,BAQ), there is a CSP template (a finite relational
structure) Ty over signature X' such that for all X¥-ABoxes A, we have A, T = ¢
iff A 4 T, that is, iff there is no homomorphism from A to T (in the standard
sense of labeled directed graphs). We say that a CSP template T is FO-definable
if there is an FO-sentence ¢ such that for all finite X-structures S, we have
S — T iff S = ¢. The complement of T is definable in monadic Datalog if there
is a monadic Datalog program II such that for all finite X-structures S, we have
S 4 Tiff S |= II. Note that a CSP template is FO-definable iff its complement is
(just take the negation of the defining sentence), but this is not true for monadic
Datalog definability.

It is easy to see that an OMQ @ is FO-rewritable if and only if the comple-
ment of T is FO-definable, and likewise for rewritability into monadic Datalog.
In [2], this observation is used together with results on the FO-definability of
CSPs [8] to show the following.

Theorem 2 ([2]). FO-rewritability in (ALCZ, BAQ) and (ALCTI, AQ) is decid-
able and NEXPTIME-complete.

This approach is also capable of producing actual rewritings, but unfortunately it
is best-case exponential. This calls for a better understanding of FO-rewritability
in (ALCZ,BAQ) and related languages, as a basis for more practical (yet com-
plete) approaches.

As a preliminary, we show that unraveling tolerance is equivalent to rewritabil-
ity into monadic Datalog. This actually follows straightforwardly from known
results about CSPs.

Theorem 3. An OMQ from (ALCZ, BAQ) is unraveling tolerant iff it is re-
writable into monadic Datalog.

Proof. A CSP template T' over signature X has tree duality iff there is a set O
of tree-shaped X-structures (called obstructions and where tree-shapedness is
defined as for ABoxes and CQs above) such that for all finite X-structures S,
we have T «— S iff S ¢ O for all O € O. It was shown in [5] that T has tree
duality iff the complement of T is definable in monadic Datalog. It thus remains
to show that an OMQ from (ALCZ,BAQ) is unraveling tolerant iff T has tree
duality.

“if”. Assume that Q = (T, X, q) is unraveling tolerant. Let O be the set of all
tree-shaped X-ABoxes A with A |= Q. Then O witnesses tree duality: if T + A
for some Y-ABox A, then A }= Q; since B |= Q and B — A implies A = Q [2],
we thus have A ¢ B for all B € O as required. Conversely, assume that A is a
Y-ABox with A ¢ B for all B € O. Clearly, A? — A for all a € Ind(A). Thus, no
such A¥ is in O, implying that AY £ Q. Since @Q is unraveling tolerant, A }= Q
which implies T < A as required.

“only if”. Assume that T has tree duality with set of obstructions O. Let A
be a X-ABox with A }= Q. Then T # A and thus A <+ B for some B € O. Since

B is tree-shaped, A < B implies AY <+ B for some a € Ind(A). Consequently
To ¢ AY which yields AY = Q as required. O

We now establish the announced characterization.

Theorem 4. Let Q = (T,q,%) be an OMQ from (ALCZ, BAQ). Then Q is
FO-rewritable iff

1. Q is FO-rewritable on tree-shaped ABoxes and
2. Q is unraveling tolerant.

Proof. “if”. Assume that @ is unraveling tolerant and FO-rewritable on tree-
shaped ABoxes. By Theorem 3, the complement of the template T is definable
by a monadic Datalog program 1. Let I1j, be obtained from Il by identifying
the variables in rule bodies in all possible ways and then retaining only those
rules whose bodies are a tree-shaped CQ. It can be verified that I é is a rewriting
of Q: A = Q implies AY |= @ for some a € Ind(A) (since @ is unraveling tolerant)
implies Ay = Il (since g is a rewriting of Q) implies Ay = 11, (since Aj
is tree-shaped) implies A |= ITj, (since Aj — A). Conversely, A = 11, implies
A = Il (by construction of I1(,) implies A = Q. It is easy to further modify
Hé? so that in addition to being tree shaped, every role body contains at most
one EDB atom.

We now use the existence of I, to argue that) has an FO-rewriting ¢ on
tree-shaped ABoxes that takes the form of a union of tree-shaped CQs. Let v be
an FO-rewriting of @ on tree-shaped ABoxes. By Gaifman’s locality theorem,
there is a number d > 0 such that for every X-ABox A, we have A |= ¢ iff A = ¢
where A is obtained by taking the disjoint union of all d-neighborhoods in A;
here, the d-neighborhood in A around a € Ind(A) is the restriction of A to all
individuals that can be reached from a on a role path in A of length at most d.
Note that ¢ is a rewriting of @ and every OMQ from (ALCZ,BAQ) satisfies
the property that if a X-ABox A is the disjoint union of ABoxes Aj,..., Ak,
then A E Q iff A; = @ for at least one A;. We can thus strengthen the above
obervation as follows: for every X-ABox A, we have A |= ¢ iff there is some d-
neighborhood A in A such that N |= ¢. Since both 1 and II;, are rewritings of
the same query @, the same applies to the monadic Datalog program I7, b instead
of to 9. Moreover, we can find an ¢ > 0 such that for every >-ABox A with
A | I, there is an A" C A with A" |= 11, and in which every individual has
degree at most f—due to the special shape of IT é?, we can in fact simply choose
for ¢ the number of IDB relations in Hé;,. Combining these two observations,
we get the following: for every tree-shaped Y-ABox A with A | Q, there is a
tree-shaped ABox A’ C A of depth at most d and degree at most £ such that
A’ = Q. We can thus choose as the desired rewriting ¢ the UCQ that consists
of all tree-shaped ABoxes A (viewed as a CQ) that satisfy A = @ and are of
depth at most d and of degree at most /.

It remains to note that, due to its syntactic shape, ¢ is an FO-rewriting not
only on tree-shaped ABoxes, but also on unrestricted ones. First assume that
A is a Y-ABox with A | Q. Since @ is unraveling tolerant, there then is an

a € Ind(A) with A¥ | Q. Since ¢ is an FO-rewriting on tree-shaped ABoxes,
we get AY = ¢. Since ¢ is a UCQ and AY — A, we obtain A = ¢. Conversely,
assume A = ¢. Since ¢ is a union of tree-shaped CQs, this yields AY = ¢ for
some a € Ind(A), thus AY = Q and A = Q.

“only if”. Assume that @ is FO-rewritable. Then it is clearly also FO-
rewritable on tree-shaped ABoxes (the same rewriting works). It thus remains
to show that @ is unraveling tolerant.

It is proved in [1] that a CSP template T over signature X is FO-rewritable
iff it has finite duality, that is, iff there is a finite set of structures O such that for
all finite X-structures S, we have T « S iff S ¢ O for all O € O. It was shown
in [10] that finite duality implies tree duality. In fact, as observed in [8], we can
assume w.l.o.g. that the finitely many elements of O are finite and tree-shaped.
One could call this finite duality in terms of finite trees.

Now back to our OMQ Q. Since Q is FO-rewritable, so is Ty. By the above
result on finite duality in terms of finite trees, there is thus a finite set I" of
tree-shaped ABoxes such that for all X-ABoxes A, we have A E Q if B — A
for some B € I'. Consequently, the UCQ ¢ = /3. g5 is an FO-rewriting of
Q, where gg is B viewed as a Boolean CQ in the obvious way. Note that g is a
disjunction of tree-shaped CQs. It is thus straightforward to show that for all
X-ABoxes A, we have A |= 7 iff AY = @ for some a € Ind(A). The unraveling
tolerance of @ follows. O

The proof of Theorem 4 also yields the following corollary, which strengthens the
observation from [2] that in (ALCZ,BAQ), every FO-rewritable OMQ is UCQ-
rewritable (essentially a consequence of Rossmann’s homomorphism preservation
theorem).

Corollary 1. If an OMQ in (ALCZ, BAQ) is FO-rewritable, then it is rewritable
into a union of tree-shaped conjunctive queries.

We remark that, even when switching to the OBDA language (ALC,BAQ), it is
not possible to replace the undirected trees in Corollary 1 with directed trees.

We close with some discussion of Theorem 4. As future work, we plan to adapt
the result from (ALCZ,BAQ) to (ALCZ,AQ) and to use them as a basis for
developing practically feasible algorithms that construct FO-rewritings. Dealing
with (ALCZ, AQ) seems to require more liberal definitions of tree-shaped ABoxes
and of unraveling tolerance which allow for back-edges to the root as in the
tree-model property for DLs with nominals. To obtain a first impression of the
effect of answer variables, the reader might want to consider the following OMQ

Q = (T, X,q) from (ALCZ,BAQ):

and its variation @’ from (ALCZ,BAQ) obtained by replacing ¢ with the AQ
¢ = A(zx). @ is not unraveling tolerant as witnessed by the ABox A = {r(a,a)}
which satisfies A = @, but A* £ Q. The same is true for Q' if the notion of

unraveling tolerance is adapted in a naive way to non-Boolean OMQs. However,
while @ is not FO-rewritable (by Theorem 4), it is not too hard to prove that
the FO-formula r(z, z) is an FO-rewriting of Q.

Another interesting question concerns the complexity of deciding FO-re-
writability in (ALCZ,BAQ) (and of course also (ALCZ,AQ)) via Theorem 4.
It is shown in [5] that unraveling tolerance is decidable (in 3-EXPTIME) and
using techniques from [2], it is possible to prove NEXPTIME-hardness. We spec-
ulate that the problem might actually be NExpPTIME-complete. Regarding FO-
rewritability in (ALCZ,BAQ) on tree-shaped ABoxes, it seems likely that a
2-ExXPTIME lower bound can be established by combining reductions from [3]
and [6]—thus FO-rewritability on tree-shaped ABoxes would be harder than on
unrestricted ABoxes! However, if we already know that Q) is unraveling tolerant,
then FO-rewritability on trees is trivially in NEXPTIME, simply by Theorem [6].

Acknowledgements. I am grateful to Frank Wolter for, as always, very helpful
and stimulating discussions.

References

1. Atserias, A.: On digraph coloring problems and treewidth duality. Eur. J. Comb.
29(4), 796-820 (2008)

2. Bienvenu, M., ten Cate, B., Lutz, C., Wolter, F.: Ontology-based data access: A
study through disjunctive datalog, CSP, and MMSNP. ACM Trans. Database Syst.
39(4), 33:1-33:44 (2014)

3. Bienvenu, M., Lutz, C., Wolter, F.: First-order rewritability of atomic queries in
Horn description logics. In: Proc. of IJCAT (2013)

4. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. Autom. Reasoning 39(3), 385-429 (2007)

5. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP
and constraint satisfaction: A study through datalog and group theory. STAM J.
Comput. 28(1), 57-104 (1998)

6. Ghilardi, S., Lutz, C., Wolter, F.: Did I damage my ontology? A case for conser-
vative extensions in description logics. In: Proc. of KR (2006)

7. Hansen, P., Lutz, C., inang Seylan, Wolter, F.: Efficient query rewriting in the
description logic ££ and beyond. In: Proc. of IJCAI (2015)

8. Larose, B., Loten, C., Tardif, C.: A characterisation of first-order constraint satis-
faction problems. Logical Methods in Computer Science 3(4) (2007)

9. Lutz, C., Wolter, F.: Non-uniform data complexity of query answering in descrip-
tion logics. In: Proc. of KR (2012)

10. Nesetril, J., Tardif, C.: Duality theorems for finite structures (characterising gaps
and good characterisations). J. Comb. Theory, Ser. B 80(1), 80-97 (2000)

Integrating Open Data:
(How) Can Description Logics Help me?

Axel Polleres

Vienna University of Economics and Business, Vienna, Austria

At last year’s DL workshop Alon Halevy told us about Web tables and how
Google makes sense of tabular data on the Web together with Web knowledge
graphs [2]. Somewhat surprinsing, a still more unconquered area for Web data
extraction seems to be the realm of Open Data: rather than extracting struc-
tured data from the surface Web, another emerging source of data on the Web are
lots of structured data sets being published openly on various Open Data Por-
tals (e.g. http://www.publicdata.eu/, http://data.gov.gr/ http://data.gov.uk/,
http://www.data.gov/, http://data.gv.at/, http://open.wien.at/, just to name
a few). However, despite already offering structured data, these Open Data por-
tals often offer only limited search functionality, and intergrating and using Open
Data from these portals involves various challenges, such as data quality prob-
lems [3], heterogeneity within metadata descriptions, dynamics, or lack of se-
mantic descriptions of the data. Driven by a practical use case, the Open City
Data pipeline project [1], we will report on experiences and obstacles for collect-
ing and integrating Open Data across various data sets. We wil discuss how both
methods from knowledge representation and reasoning as well as from statistics
and data mining can be used to tackle some issues we encountered.

References

1. Bischof, S., Martin, C., Polleres, A., Schneider, P.: Open City Data Pipeline:
Collecting, Integrating, and Predicting Open City Data. In: 4th Workshop on
Knowledge Discovery and Data Mining Meets Linked Open Data (Know@LOD).
Portoroz, Slovenia (May 2015), http://www.polleres.net/publications/bisc-etal-
2015KnowLOD.pdf

2. Halevy, A.: Structured data on the web (or, a personal journey away from and
back to ontologies). In: Informal Proceedings of the 27th International Workshop
on Description Logics. CEUR Workshop Proceedings, vol. 1193 (2014)

3. Umbrich, J., Neumaier, S., Polleres, A.: Towards assessing the quality evolution
of open data portals. In: ODQ2015: Open Data Quality: from Theory to Practice
Workshop. Munich, Germany (Mar 2015), http://polleres.net/publications/umbr-
etal-20150DQ.pdf

Entity-oriented Search Engine Result Pages

Maarten de Rijke

University of Amsterdam, Amsterdam, The Netherlands
derijke@uva.nl

Modern search engine result pages often contain a mixture of results from
structured and unstructured sources. Where such mixtures of structured and
unstructured information are called for, the state-of-the-art is to organize com-
plex search engine result pages around entities. Generating such a mixture of
entity-oriented results in response to a traditional keyword query raises a num-
ber of interesting retrieval challenges. How do we link queries to entities? How
do we identify different aspects of entities in cases where we are unsure about
the user’s intent? How do we associate an entity with a topic that a user appears
to be interested in? And how do we explain the relation between entities that
are being presented as being similar or related?

In this area, a wide variety of complementary and competing proposed solu-
tions exist. This talk provides a snapshot of current approaches to entity-focused
search engine result pages, illustrates key developments using example, and out-
lines open questions and research opportunities.

The talk is based in part on joint work with Lars Buitinck, David Graus,
Xinyi Li, Edgar Meij, Daan Odijk, Ridho Reinanda, Isaac Sijaranamual, Manos
Tsagkias, Christophe Van Gysel, Nikos Voskarides, and Wouter Weerkamp.

DL-Lite and Conjunctive Queries Extended by
Optional Matching (Extended Abstract)*

Shqiponja Ahmetaj, Wolfgang Fischl, Reinhard Pichler, Mantas Simkus, and
Sebastian Skritek

Institute for Information Systems, TU Vienna

1 Introduction

Conjunctive Queries (CQs) constitute the core of most query languages and
have been studied intensively in several areas. For querying incomplete data,
CQs however suffer one major drawback: they require the complete query to be
matched into the data to return answers. One extension of CQs that tries to
overcome this problem are well-designed pattern trees (wdPTs) [9]. Developed
in the context of the Semantic Web, wdPTs are equivalent to a well-behaved
fragment of {AND, OPT }-queries of SPARQL [12], and allow a user to retrieve
partial answers to a query.

Because of this feature, however, wdPT's are nonmonotone. This is problematic
for query answering in the presence of implicit knowledge — expressed e.g. by
an ontology specified in some Description Logic (DL) — since the usual certain
answer semantics turns out to be unsatisfactory in this setting. We observe that
the recently released recommendation of the SPARQL entailment regimes [6]
provides a semantics exactly for this case. However, it is defined in a simpler and
less expressive way than the certain answers semantics, and does not utilize the
full potential of the implicit information.

The goal of this work is to introduce an intuitive certain answer semantics
for the class of well-designed pattern trees under DL-Liteg (which provides the
theoretical underpinning of the OWL 2 QL entailment regime). After introducing
wdPTs, we first discuss some of the problems with an adoption of a certain
answer semantics for them and propose a suitable modified definition. We then
briefly present results on the complexity of typical reasoning tasks.

Related Work to our findings includes the work our approaches are based
upon [3-6]. There is a huge body of results on CQ answering under different DLs
(cf. [4,5,11,13]). For SPARQL recent work [8] presents a stronger semantics,
where entire mappings are discarded, whose possible extensions to optional
subqueries would imply inconsistencies in the knowledge base. Further related
work includes [2,7,10] which is discussed in the long version of this paper.

* A longer version of this paper has been accepted for publication at WWW 2015 [1].

2 DL-Liteg and Well-designed Pattern Trees

We assume the reader to be familiar with DL-Liteg [4]. A DL-Liteg knowledge
base (KB) is a tuple K = (A, T), where A is an ABoz and T is a TBox. The
definition of an interpretation Z = (AZ,-T) is the usual one. In addition, we
make the standard name assumption (SNA), i.e. we assume that AZ contains all
individuals, and that a” = a for each individual a.

A well-designed pattern tree P is a tuple (T, A\, x) such that:

1. T is a rooted tree and A maps each node ¢ in T to a conjunctive query (CQ).
A CQ here is a set of atoms, where atoms are built as usual, i.e. from concept
and role names together with individuals and variables.

2. For every variable y occurring in 7', the set of nodes containing y is connected.

3. x is a tuple of variables from T, called the free variables of P.

Intuitively, the parent-child relationships in the tree express optional matching.
Le., the result of the “parent-CQ” shall be extended by the “child-CQ” if possible
— otherwise the child shall be ignored, and only the result of the parent is returned.
Finally « are the “output” variables.

A mapping p is any partial function whose domain dom(u) contains only
variables. We say a mapping pq is subsumbed by another mapping ps2, denoted
by p1 C po, if dom(pq) C dom(puz) and pq(x) = po(x) for all @ € dom(uy). Also,
for a mapping p and some property A, we shall say that p is C-mazimal w.r.t.
A if p satisfies A, and there is no p’ such that p C p/, ¢/ Z p, and p’ satisfies A.
For any mapping i and a tuple of variables @, we denote by p, the restriction of
1 to the variables in .

The notion of a mapping u that is a match for a CQ ¢ in an interpretation Z is
defined in the standard way. Assume a wdPT P = (T, A\, z) and an interpretation
Z. For an initial segment 7" of T, i.e. a connected subgraph containing the root
of T', we define g7 to be the CQ [J;cps A(t). Then a match for P in Z is any
mapping u such that p is a match for ¢+ in Z for some initial segment T" of
T. Let M be the set of all C-maximal matches from P to Z. Then the result of
evaluating P over Z, projected to x, is the set [P]z = {u= | # € M}. Note that
the order of child nodes in such tress does not affect the query answer (see [9,
12]).

In the following example, we illustrate wdPTs as well as the reason why the
usual certain answer semantics (i.e., a tuple is a certain answer if it is present in
every model) turns out to be unsatisfactory in our setting:

Ezample 1. Let P be the wdPT (T, A, x) where T consists of the root r with
the single child ¢, A(r) = {teaches(x,y)}, A(t) = {knows(y, 2)}, and = = {x, z}.
Consider the KB K consisting of an ABox A = {Prof(b)}, and a TBox T =
{(Prof C 3teaches)}. Let Z be as follows: Prof? = {(b)}. Clearly, Z = K. The
query yields in Z as only answer the mapping pu = {x — b}. Clearly, also the
interpretation I', where Prof? = {1}, teaches” = {(b,¢)} and knows” =
{(¢,d)} is a model of K. But in Z’, p is no longer an answer since p can be
extended to answer p/ = {x — b,z — d}. Hence, there is no mapping which is
an answer in every possible model of . g

10

Definition 1. Let K = (A, T) be a KB and P = (T, \,x) a wdPT. A mapping p
is a certain answer to P over K if it is a T-mazimal mapping s.t. (1) p C [P]z
for every model T of K, and (2) vars(qr/) Na = dom(u) for some initial segment
T of T. We denote by cert(P,K) the set of certain answers to P over K.

The reason for restricting the set of certain answers to C-maximal mappings is
that wdPTs in general may have “subsumed” answers, i.e. mappings s.t. also
some proper extension is an answer. But then — with set semantics — we cannot
recognize the reason why some subsumed answer is possibly not an answer in some
possible world. Therefore, in our first step towards extending CQs by optional
matching, we allow only “maximal” answers as certain answers.

Property (2) ensures that the domain of such an answer adheres to the tree
structure of the wdPT. However, we can show that this can be enforced in
a simple post-processing step. Likewise, also projection can be deferred to a
post-processing step. The task is thus to compute a set certp(P,K) of certain
pre-answers (i.e., mappings that satisfy Definition 1 except property (2), ignoring
projection), which can be done via the canonical model. For a given KB K, we
assume a canonical model of K, denoted as can(K), to be defined as in [4].

Theorem 1. Let K = (A, T) be a KB and P a wdPT. Then, certp(P,K) =
MAX([P]cancy4), where MAX(M) is the set of C-mazimal mappings in M,
Ml:={ull p € M} (ul is the restriction of y to those variables which are
mapped to the individual names that occur in A).

To cope with the potential infinite canonical model, query rewriting algorithms
have been developed in the literature. By introducing several adaptations and
extensions of the rewriting-based CQ evaluation for DL-Lite from [4], we develop
two different algorithms to answer wdPTs over DL-Liteg KBs. ! Based on these
rewriting algorithms, we analyze the complexity of query answering and of several
static query analysis tasks such as query containment and equivalence. We are
able to show that the additional power of our new semantics comes without
additional costs in terms of complexity.

For future work, we want to investigate further more expressive DLs under our
certain answer semantics. The implementation of the rewriting algorithms and the
development of suitable benchmarks, is a challenging task as well. Additionally,
we will extend our work to allow TBox queries and other fragments of SPARQL.

Acknowledgements

This work was supported by the Vienna Science and Technology Fund (WWTF),
project ICT12-15 and by the Austrian Science Fund (FWF): P25207-N23 and
W1255-N23.

! Note that, in the full version we consider a fragment of well-designed SPARQL under
OWL 2 QL entailment, which corresponds exactly to what we consider here.

11

References

1.

2.

10.

11.

12.

13.

S. Ahmetaj, W. Fischl, R. Pichler, M. Simkus, and S. Skritek. Towards reconciling
SPARQL and certain answers, 2014. Accepted for publication, WWW 2015.

M. Arenas, G. Gottlob, and A. Pieris. Expressive languages for querying the
semantic web. In Proc. of PODS 2014, pages 14-26. ACM, 2014.

M. Arenas and J. Pérez. Querying semantic web data with SPARQL. In Proc. of
PODS 2011, pages 305-316. ACM, 2011.

D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. Autom. Reasoning, 39(3):385-429, 2007.

T. Eiter, M. Ortiz, M. Simkus, T. Tran, and G. Xiao. Query rewriting for Horn-
SHZQ plus rules. In Proc. of AAAI 2012. AAAT Press, 2012.

B. Glimm and C. Ogbuji. SPARQL 1.1 Entailment Regimes. W3C Recommendation,
W3C, Mar. 2013. http://www.w3.org/TR/sparqlil-entailment.

R. Kontchakov, M. Rezk, M. Rodriguez-Muro, G. Xiao, and M. Zakharyaschev.
Answering SPARQL queries over databases under OWL 2 QL entailment regime.
In Proc. of ISWC 2014, pages 552-567. Springer, 2014.

E. V. Kostylev and B. C. Grau. On the semantics of SPARQL queries with optional
matching under entailment regimes. In Proc. of ISWC 201/, pages 374-389. Springer,
2014.

A. Letelier, J. Pérez, R. Pichler, and S. Skritek. Static analysis and optimization of
semantic web queries. ACM Trans. Database Syst., 38(4):25, 2013.

L. Libkin. Incomplete data: what went wrong, and how to fix it. In Proc. PODS
2014, pages 1-13. ACM, 2014.

M. Ortiz, D. Calvanese, and T. Eiter. Data complexity of query answering in
expressive description logics via tableaux. Journal of Automated Reasoning, 41(1):61—
98, 2008.

J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of SPARQL.
ACM Trans. Database Syst., 34(3), 2009.

R. Rosati. On conjunctive query answering in EL. In Proc. DL 2007. CEUR-WS.org,
2007.

12

Dealing with Inconsistencies due to Class Disjointness in
SPARQL Update

Albin Ahmeti3, Diego Calvanese?, Axel Polleres®, and Vadim Savenkov?®

! Vienna University of Technology, FavoritenstraBe 9, 1040 Vienna, Austria
2 Faculty of Computer Science, Free University of Bozen-Bolzano, Bolzano, Ttaly
3 Vienna University of Economics and Business, Welthandelsplatz 1, 1020 Vienna, Austria

Abstract. The problem of updating ontologies has received increased attention
in recent years. In the approaches proposed so far, either the update language is
restricted to (sets of) atomic updates, or, where the full SPARQL Update language
is allowed, the TBox language is restricted to RDFS where no inconsistencies can
arise. In this paper we discuss directions to overcome these limitations. Starting
from a DL-Lite fragment covering RDFS and concept/class disjointness axioms,
we define two semantics for SPARQL Update: under cautious semantics, incon-
sistencies are resolved by rejecting all updates potentially introducing conflicts;
under brave semantics, instead, conflicts are overridden in favor of new informa-
tion where possible. The latter approach builds upon existing work on the evolution
of DL-Lite knowledge bases, setting it in the context of generic SPARQL updates.

1 Introduction

This paper initiates the study of SPARQL updates in the context of potential inconsis-
tencies: as a minimalistic ontology language allowing for inconsistencies, we consider
RDFS_, an extension of RDFS [8] with class disjointness axioms of the form { P
disjointWith @} from OWL [10], sometimes referred to as negative inclusions or
NIs [4], as the corresponding description logic encoding of this statement is P T —Q).

As a running example, we assume a triple store G with an RDFS_, ontology (TBox)
T encoding an educational domain, asserting a range restriction plus mutual disjointness
of the concepts like professor and student (we use Turtle syntax [2], in which dw
abbreviates OWL’s disjointWith keyword, and dom and rng respectively stand for
the domain and range keywords of RDFS).

T ={:studentOf dom :Student. :studentOf rng :Professor.
:Professor dw :Student. }

Consider the following SPARQL update [6] request w in the context of the TBox 7T
INSERT {?X :studentOf ?Y} WHERE {?X :attendsClassOf ?Y}
Consider an ABox with data on student tutors that happen to attend each other’s classes:
A1 = {:jimmy :attendsClassOf :ann. :ann :attendsClassOf
: jimmy}. Here, u would create two assertions : jimmy :studentOf :ann and
:ann :studentOf :jimmy. Due to the range and domain constraints in 7, these
assertions result in clashes both for Jimmy and for Ann. Note that all inconsistencies

13

Table 1. DL-Lites_, assertions vs. RDF(S), where A, A’ denote concept (or, class) names, P, P’
denote role (or, property) names, I is the set of IRI constants (excl. the OWL/RDF(S) vocabulary)
and z,y € I'. For RDF(S), we use abbreviations (rsc, sp, dom, rng, a) as introduced in [11].

TBox RDFS- TBox RDFS-, TBox RDFS- ABox RDFS-
.LACAASscA 3. IPCAPdomA. 5 AC-AAdwA 6. Alz) zaA.
2PCPP spP. 43P CA PrgA. 7. P(z,y) zPy.

are in the new data, and thus we say that v is intrinsically inconsistent for the particular
ABox A;. Our solution for such updates will be to discard problematic assignments but
keep those that cause no clashes.

Now, let A; be the ABox {: jimmy :attendsClassOf :ann. :jimmy a
:Professor}. Itis clear that after the update u, the ABox will become inconsistent,
due to the property assertion : jimmy :studentOf :ann,implying that Jimmy is
both a professor and a student which contradicts the TBox disjointness axiom. In contrast
to the previous case, the clash now is between the prior knowledge and the new data. We
propose two update semantics, extending our previous work [1] for dealing with such
inconsistencies and provide rewriting algorithms for implementing them using the basic
constructs of the SPARQL language (e.g., making use of the UNION, MINUS, FILTER,
and OPTIONAL operators).

In the remainder of the paper, after some short preliminaries (Sec. 2) we discuss
checking of intrinsic inconsistencies in Sec. 3, and then in Sec. 4 we present two
semantics for dealing with general inconsistencies in the context of materialized triple
stores. An overview of related work and concluding remarks can be found in Sec. 5.

2 Preliminaries

We introduce basic notions about RDF graphs, RDFS_, ontologies, and SPARQL queries.
In this paper we use RDF and DL notation interchangeably, treating RDF graphs that do
not use non-standard RDFS_, vocabulary [12] as sets of TBox and ABox assertions.

Definition 1 (RDFS_, ABox, TBox, triple store). We call a set T of inclusion asser-
tions of the forms 1-5 in Table 1 an (RDFS_) TBox, a set A of assertions of the forms
6-7 in Table 1 an (RDF) ABox, and the union G =T U A an (RDFS.) triple store.

Definition 2 (Interpretation, satisfaction, model, consistency). An interpretation
(AT consists of a non-empty set AT and an interpretation function X, which maps
— each atomic concept A to a subset AT of AT,

?7C sc?D. 75 a?C. ?P dom ?7C. 7S 7P 70.
7S a?D. 7S a?C.

?Psp?7Q. 7S?7P?0. ?P g ?2C. 7S7?P70. 7S a?C?D. ?7C dW 7D.
757Q 70. 70 a 7C. 1

Fig. 1. Minimal RDFS rules from [11] plus class disjointness “clash” rule from OWL2 RL [10].

14

— each negation of atomic concept A to (—AT) = AT\ AZ,

— each atomic role P to a binary relation PT over AZ, and

— each element of I to an element of AL.
For expressions 3P and 3P, the interpretation function is defined as (AP)* = {x €
AT | Jy.(z,y) € PT} resp. (3P7)T = {y € AT | 3z.(z,y) € PT}. An interpretation
T satisfies an inclusion assertion E1 T FEs (of one of the forms 1-5 in Table 1), if
E C EZ. Analogously, T satisfies ABox assertions of the form A(x), if v € AZ, and
of the form P(x,y), if (T, y*) € PL. An interpretation T is called a model of a triple
store G (resp., a TBox T, an ABox A), denoted T = G (resp., T =T, T = A), if T
satisfies all assertions in G (resp., T, A). Finally, G is called consistent, if it does not
entail both C(z) and —=C(z) for any concept C and constant x© € I', where entailment
is defined as usual.

As in [1], we treat only restricted SPARQL queries corresponding to (unions of)
conjunctive queries without non-distinguished variables over DL ontologies:

Definition 3 (BGP, CQ, UCQ, query answer). A conjunctive query (CQ) g, or basic
graph pattern (BGP), is a set of atoms of the form 6—7 from Table 1, where now x,y €
I U V.* A union of conjunctive queries (UCQ) @, or UNION pattern, is a set of CQs.
We denote with V(q) (or V(Q)) the set of variables from V occurring in q (resp., Q). An
answer (under RDFS_, Entailment) to a CQ q over a triple store G is a substitution 0 of
the variables in V(q) with constants in I" such that every model of G satisfies all facts in
q0. We denote the set of all such answers with ans.y(q, G) (or simply ans(q, G)). The
set of answers to a UCQ Q is o ans(q, G).

We also recall from [1], that query answering in the presence of ontologies can be
done either by rule-based pre-materialization of the ABox or by query rewriting. Let
rewrite(q, T') be the UCQ resulting from applying PerfectRef [3] (or, equivalently, the
stripped-down version from [1, Alg.1]) to a query ¢ and let G = T U A be a triple
store. Furthermore, let mat(G) be the triple store obtained from exhaustive application
of the inference rules in Fig. 1 on a consistent triple store G, and—analogously—Ilet
chase(q, T) refer to “materialization” w.r.t. T applied to a CQ ¢. The next result transfers
from [1] to consistent RDFS_, stores.

Proposition 1. Let G = T U A be a consistent triple store, and q a CQ. Then,
ans(q, G) = ans(rewrite(q, T), A) = ans(q, mat(G)).

We have used this previously to define the semantics of SPARQL update operations.

Definition 4 (SPARQL update operation, simple update of a triple store). Let
P, and P; be BGPs, and P, a BGP or UNION pattern. Then an update operation
u(Py, P;, P,,) has the form

DELETE P; INSERT P, WHERE P,

Let G = T U A be a triple store. Then the simple update of G w.r.t. u(Py, P;, Py,)
is defined as Gy(p,,p,,p,) = (G \ Ag) U A, where Aq = Upe gns(p,,,c) 97(Faf),
Ai = Uscans(p,, c) 97(Fi8), and gr(P) denotes the set of ground triples in pattern P.

*V is a countably infinite set of variables (written as *2’-prefixed alphanumeric strings).

15

For the sake of readability of the algorithms, we assume that all update operations
u(Py, P;, P,,) in this paper contain no constants in the BGPs P; and P;, and that all
property assertions (?X p ?Y") in Py have distinct variables ?X and ?Y". Enhancing our
results to updates with constants and variable equalities in P; and P; is not difficult, but
requires distinguishing special cases: e.g., instead of replacing the variable y in a pattern
Q by z, the expression @ FILTER(y = z) can be used in the case when y is a constant;
instead of Q(y) MINUS P for a variable y, Q FILTER NOT EXISTS P should be used
for ground Q.

We call a triple store or (ABox) materialized if in each state it always guarantees
G\T = mat(G)\mat(T). In the present paper, we will always focus on “materialization
preserving” semantics for SPARQL update operations, which we dubbed Sem%*** in [1]
and which preserves a materialized triple store. We recall the intuition behind Sem}**!,
given an update v = (Py, P;, P,): (i) delete the instantiations of P, plus all their
causes; (ii) insert the instantiations of P; plus all their effects.

Definition 5 (Sem3'* [1]). Let u(Py, P;, P.,) be an update operation. Then

mat
Gotpr,pu) = Gutpsoss et (2, (P
Here, given a pattern P, P = flatten(rewrite(P,T)); Pt = chase(P,T) and
P = {79 a rdfs:Resource |?v € V(P“")\ V(P)}, where flatten(-) computes the
set of all triples occurring in the UCQ rewrite(P, T), which in our case allows us to
obtain all possible “causes” of each atom in Py, and “?v a rdfs:Resource” isa
shortcut for a pattern that binds v to any x € I occurring in G.

We refer to [1] for further details, but stress that as such, Semé’wt is not able to detect
or deal with inconsistencies arising from P; and G. In what follows, we will discuss how
this can be remedied.

3 Checking Consistency of a SPARQL Update

Within previous work on the evolution of DL-Lite knowledge bases [4], updates given in
the form of pairs of ABoxes .44, .A; have been studied. However, whereas such update
might be viewed to fit straightforwardly to the corresponding A, A; in Def. 4, in [4]
it is assumed that A; is consistent with the TBox, and thus one only needs to consider
how to deal with inconsistencies between the update and the old state of the knowledge
base. This a priori assumption may be insufficient for SPARQL updates though, where
concrete values for inserted triples are obtained from variable bindings in the WHERE
clause, and depending on the bindings, the update can be either consistent or not. This is
demonstrated by the update v from Sec. 1 which, when applied to the ABox A4, results
in an inconsistent set A; of insertions . We call this intrinsic inconsistency of an update
relative to a triple store G =T U A.

Definition 6. Let G be a triple store. The update u is said to be intrinsically consistent
w.r.t. G if the set of new assertions A; from Def. 4 generated by applying u to G, taken in
isolation from the ABox of G, does not contradict the TBox of G. Otherwise, the update
is said to be intrinsically inconsistent w.r.t. G.

16

Algorithm 1: constructing a SPARQL ASK query to check intrinsic inconsistency
(for the definition of Pfﬂ, cf. Def. 5)

Input: RDFS-, TBox 7, SPARQL update u(Pg, P;, Py)

Output: A SPARQL ASK query returning T'rue if w is intrinsically inconsistent

1 if L € P then

2 ‘ return ASK {} //u contains clashes in itself, i.e., is inconsistent for any triple store
3 else

4 W = {FILTER(False)}; //neutral element w.r.t. union

5 foreach pair of triple patterns (?X a P), (7Y a R) in P do
6
7
8

if PC —R € T then
| W :=W UNION{{P,6:[?X —?Z]} . {Pu02[?Y +—?Z]}} for a fresh ?Z
return ASK WHERE {W}

Intrinsic inconsistency of the update differs crucially from the inconsistency w.r.t. the
old state of the knowledge base, illustrated by the ABox A5 from Sec. 1. This latter case
can be addressed by adopting an update policy that prefers newer assertions in case of
conflicts, as studied in the context of DL-Lite KB evolutions [4], which we will discuss
in Sec. 4 below. Intrinsic inconsistencies however are harder to deal with, since there
is no cue which assertion should be discarded in order to avoid the inconsistency. Our
proposal here is thus to discard all mutually inconsistent pairs of insertions.

We first present an algorithm for checking intrinsic inconsistency by means of
SPARQL ASK queries and then a safe rewriting algorithm. This rewriting is based on an
observation that clashing triples can be introduced by a combination of two bindings of
variables in the WHERE clause, as the example in the Sec. 1 (the ABox .4;) illustrates.
To handle such cases, two copies of the WHERE clause P, are created by the rewriting
in Algorithms 1 and 2, for each pair of disjoint concepts according to the TBox of the
triple store. These algorithms use notation described in Rem. 1 below.

Remark 1. Our rewriting algorithms rely on producing fresh copies of the WHERE
clause. Assume 0, 61, 65, ... to be substitutions replacing each variable in a given
formula with a distinct fresh one. For a substitution o, we also define 6[o] resp. ;[c] to
be an extension of o, renaming each variable at positions not affected by o with a distinct
fresh one. For instance, let F' be a triple (?Z :studentOf ?7Y). Now, F'§ makes a
variable disjoint copy of F: ?7Z; :studentOf ?Y; for fresh 7Z,,?7Y;. F[?Z —7X] is
just a substitution of ?Z by ?X in F'. Finally, FO[?Z —?X] resultsin 7X : studentOf
?Y5 for fresh 7Y5. We assume that all occurrences of F'9[o] stand for syntactically the
same query, but that F'@[o1] and F'0[o5], for distinct o7 and o2, can only have variables
in range(o1) Nrange(oz) in common. That is, the choice of fresh variables is defined
by the parameterizing substitution o. []

Now, the possibility of unifying two variables ?.X and 7Y in P,, on a given triple store
can be tested with the query {P,,01[?X —?Z]|}{P,02[?Y —?Z]} where 0; and 6 are
variable renamings as in Rem. 1 and 77 is a fresh variable.

In order to check the intrinsic consistency of an update, this condition should be
evaluated for every pair of variables of P,, the unification of which leads to a clash. A
SPARQL ASK query based on this idea is produced by Alg. 1. Note that it suffices to

17

Algorithm 2: Safe rewriting safe(u)
Input: RDFS-, TBox 7, SPARQL update u(Pg, P;, Py)
Output: SPARQL update safe(u)
if L € P?™ then

| return u(Ps, P;, FILTER(False))
W := {FILTER(Fualse)}; //neutral element w.r.t. union
foreach pair of triple patterns (?X a P), (7Y a R) in P™ do
if PC —R € 7T then
//cf. Rem. 1 for notation 0. . .]
W := W UNION {P,01[?X +?Y]} UNION {P,,02[?Y —7X]}}
return u(Py, P;, P, MINUS {W})

check only triples of the form {?X a ?C?} at line 5 of Alg. 1, since disjointness conditions
can only be formulated for concepts, according to the syntax in Table 1. Furthermore,
since we are taking the facts in P extended by all facts implied by 7, at line 6 of
Alg. 1 it suffices to check the disjointness conditions explicitly mentioned in 7~ and not
all those which are implied by 7.

Example 1. Consider the update u from Sec. 1, in which the INSERT clause P; can
create clashing triples. To identify potential clashes, Alg. 1 first applies the infer-
ence rule for the range constraint, and computes Pff = {?X a :sStudent .?Y
a :Professor}. Now both variables ?X, 7Y occur in the triples of type (6) from
Table 1 with clashing concept names. The following ASK query is produced by Alg. 1.

ASK WHERE { ?X :attendsClassOf ?Y . ?Y :attendsClassOf ?X1 }
(In this and subsequent examples we omit the trivial FILTER(False) union branch used
in rewritings to initialize variables with disjunctive conditions, such as W in Alg. 1) =

Suppose that an insert is not intrinsically consistent for a given triple store. One solution
would be to discard it completely, should the above ASK query return True. Another
option which we consider here is to only discard those variable bindings from the
WHERE clause, which make the INSERT clause P; inconsistent. This is the task of
the safe rewriting safe(-) in Alg. 2, removing all variable bindings that participate in a
clash between different triples of P;. Let P, be a WHERE clause, in which the variables
?X and 7Y should not be unified to avoid clashes. With 01, 65 being “fresh” variable
renamings as in Rem. 1, Alg. 2 uses the union of P,,6,[?X —?Y] and P,,05[7Y —?X]
to eliminate unsafe bindings that send ?X and 7Y to a same value.

Example 2. Alg. 2 extends the WHERE clause of the update u from Sec. 1 as follows:

INSERT{?X :studentOf ?Y} WHERE{?X :attendsClassOf ?Y
MINUS{{?X1 :attendsClassOf ?X} UNION {?Y :attendsClassOf ?Y2}}}

Note that the safe rewriting can make the update void. For instance, safe(u) has
no effect on the ABox A; from Sec. 1, since there is no cue, which of : jimmy
:attendsClassOf :ann,:ann :attendsClassOf :Jjimmy needs to be dis-
missed to avoid the clash. However, if we extend this ABox with assertions both satisfy-
ing the WHERE clause of v and not causing undesirable variable unifications, safe(u)

18

would make insertions based on such bindings. For instance, adding the fact :bob
:attendsClassOf :alice to . A; would assert :bob :studentOf :alice
as a result of safe(u). |

A rationale for using MINUS rather than FILTER NOT EXISTS in Alg. 2 (and also
in a rewriting in forthcoming Sec. 4) can be illustrated by an update in which variables
in the INSERT and DELETE clauses are bound in different branches of a UNION:

DELETE {?V a :Professor} INSERT {?X :studentOf ?Y}
WHERE {{?X :attendsClassOf ?Y} UNION {?V :attendsClassOf ?W}}
A safe rewriting of this update (abbreviating : attendsClassOf as :aCo)is
DELETE {?V a :Professor} INSERT {?X :studentOf ?Y}
WHERE { {{?X :aCo ?Y} UNION {?V :aCo ?W}}
MINUS{ {{?X1 :aCo ?X} UNION {?V1 :aCo ?Wl1}}
UNION {{?Y :aCo ?Y2} UNION {?V2 :aCo ?W2}} } }
It can be verified that with FILTER NOT EXISTS in place of MINUS this update makes
no insertions on all triple stores: the branches {?V1 :aCo ?Wl1} and {?V2 :aCo
?W2} are satisfied whenever { ?X :aCo ?Y} is, making FILTER NOT EXISTS eval-
uate to False whenever {?X :aCo ?Y} holds.

We conclude this section by formalizing the intuition of update safety. For a triple
store G and an update u = (Py, P;, P,,), let [P,]% denote the set of variable bind-
ings computed by the query “SELECT 7X;,...,?X; WHERE P,” over G, where
?7X14,...,7X} are the variables occurring in P; or in Py.

Theorem 1. Ler T be a TBox, let u be a SPARQL update (P;, Py, P,,), and let query q,
and update safe(u) = (Py, P;, P),) result from applying Alg. 1 resp. Alg. 2 to v and T.
Then, the following properties hold for an arbitrary RDFS_, triple store G = T U A:
(1) qu(G) = Trueiff 3y, p’ € [Pule st p(P) Ap'(P) AT = L

(2) [Puli\ [PL1% = {1 € [Puls | 3’ € [Pulls st u(P) A ! (P) AT = L}

4 Materialization Preserving Update Semantics

In this section we discuss resolution of inconsistencies between triples already in the
triple store and newly inserted triples. Our baseline requirement for each update seman-
tics is formulated as the following property.

Definition 7 (Consistency-preserving). Let G be a triple store and u(Py, P;, P,,) an
update. A materialization preserving update semantics Sem is called consistency pre-
serving in RDFS_, if the evaluation of update u, i.e., Gf (el’;fi Py Py results in a consistent
triple store.

Our two consistency preserving semantics are respectively called brave and cautious.
The brave semantics always gives priority to newly inserted triples by discarding all
pre-existing information that contradicts the update. The cautious semantics is exactly
the opposite, discarding inserts that are inconsistent with facts already present in the
triple store; i.e., the cautious semantics never deletes facts unless explicitly required by
the DELETE clause of the SPARQL update.

19

Algorithm 3: Brave semantics Semgfjfe

Input: Materialized triple store G = 7 U A, SPARQL update u(Pg, P;, Py)
mat
Output: G

Sem,
brave

u(Pg, P, Puw)

1 Pj:= P5*us;

2 foreach triple pattern (?X a C) in Pf™ do

3 foreach C' s.t. CC =C' € T orC' C =C € T do
4 if(7X aC’) ¢ P then

s | Pji=P). {7X aCr}ems

6

return Gu (P}, PEf (P} Pgm)

Both semantics rely upon incremental update semantics Semj**!, introduced in
Sec. 2, which we aim to extend to take into account class disjointness. Note that for the
present section we assume updates to be intrinsically consistent, which can be checked or
enforced beforehand in a preprocessing step by the safe rewriting discussed in Sec. 3. In
this section, we lift our definition of update operation to include also updates (Py, P;, P,,)
with P, produced by the safe rewriting Alg. 2 from some update satisfying Def. 4. What
remains to be defined is the handling of clashes between newly inserted triples and triples
already present in the triple store.

The intuitions of our semantics for a SPARQL update u(P,, P;, P,,) in the context
of an RDFS_, TBox are as follows:

- brave semantics Sem["*.: (i) delete all instantiations of P, and their causes, plus
all the non-deleted triples in G clashing with instantiations of triples in P; to be
inserted, again also including the causes of these triples; (ii) insert the instantiations
of P; plus all their effects.

— cautious semantics Sem™%: (i) delete all instantiations of P, and their causes;
(ii) insert all instantiations of P; plus all their effects, unless they clash with some

non-deleted triples in G: in this latter case, perform neither deletions nor insertions.

For a SPARQL update u, we will define rewritings of u implementing the above seman-
tics, which can be shown to be materialization preserving and consistency preserving.

4.1 Brave Semantics

The rewriting in Alg. 3 implements the brave update semantics Sem;"%" : it can be viewed
as combining the idea of FastEvol [4] with Sem%*? to handle inconsistencies by giving
priority to triples that ought to be inserted, and deleting all those triples from the store
that clash with the new ones.

The DELETE clause P, of the rewritten update is initialized with the set Py of
triples from the input update u. Rewriting ensures that also all “causes” of deleted
facts are removed from the store, since otherwise deleted triples will be re-inserted by
materialization. To this end, line 1 of Alg. 3 adds to P all facts from which P, can be
derived. Then, for each triple implied by P; (that is, for each triple in PZ-CH) the algorithm
computes clashing patterns and adds them to the DELETE clause P, along with their
causes. Note that it suffices to only consider disjointness assertions that are syntactically

20

contained in 7 (and not all that are implied by 7), since we assume that the triple store
is materialized.

Finally, the WHERE clause of the rewritten update is extended to satisfy the syntactic
restriction that all variables in P; must have matches in the WHERE clause: bindings of
“fresh” variables introduced to P by eventual domain or range constraints are provided

by the part PZ;V 7% cf. Def. 5 and Ex. 3 below. The rewritten update is evaluated over the
triple store, computing its new materialized and consistent state.

Example 3. Ex. 2 in Sec. 3 provided a safe rewriting safe(u) of the update u from Sec. 1.
According to Alg. 3, this safe update is rewritten to:
DELETE {?X a :Professor . ?X1 :studentOf ?X
?Y a :Student . ?Y :studentOf ?Y1}

INSERT {?X :studentOf ?Y . ?X a :Student . ?Y a :Professor}
WHERE {{?X :attendsClassOf ?Y

MINUS{{?X2 :attendsClassOf ?X} UNION {?Y :attendsClassOf ?Y2}}}

OPTIONAL {?X1 :studentOf ?X} OPTIONAL {?Y :studentOf ?Y1} }
The DELETE clause removes potential clashes for the inserted triples. Note that also
property assertions implying clashes need to be deleted, and the respective triples in P
contain fresh variables ?.X 1 and 7Y 1. These variables have to be bound in the WHERE
clause, and therefore P}”* adds two optional clauses to P,, of safe(u), which is a
computationally reasonable implementation of the concept P** from Def. 5. |

Theorem 2. Alg. 3, given a SPARQL update u and a consistent materialized triple store
G =T U A, computes a new consistent and materialized state w.r.t. brave semantics.

4.2 Cautious Semantics

Unlike Sem["?! its cautious version Sem!"%" always gives priority to triples that are
already present in the triple store, and dismisses any inserts that are inconsistent with it.
We implement this semantics as follows: (i) the DELETE command does not generate
inconsistencies and thus is assumed to be always possible; (ii) the update is actually
executed only if the triples introduced by the INSERT clause do not clash with state of
the triple graph after all deletions have been applied.

Cautious semantics thus treats insertions and deletions asymmetrically: the former
depend on the latter but not the other way round. The rationale is that deletions never
cause inconsistencies and can remove clashes between the old and the new data.

As in the case of brave semantics, cautious semantics is implemented using rewriting,
presented in Alg. 4. First, the algorithm issues an ASK query to check that no clashes
will be generated by the INSERT clause, provided that the DELETE part of the update
is executed. If no clashes are expected, in which case the ASK query returns False, the
brave update from the previous section is applied.

For a safe update u = (Py, P;, P,,), the ASK query is generated as follows. For
each triple pattern {?X a C'} among the effects of P;, at line 3 Alg. 4 enumerates all
concepts C’ that are explicitly mentioned as disjoint with C'in 7. As in the case of
brave semantics, this syntactic check is sufficient due to the assumption that the update
is applied to a materialized store; by the same reason also no property assertions need to
be taken into account.

21

Algorithm 4: Cautious semantics Sem!"%

Input: Materialized triple store G = 7 U A, SPARQL update u(P4, P;, Py)
Semm“,z'
Output: G, (Pa Py Pu)
W = {FILTER(False)} // neutral element w.r.t. union
foreach (?X a C) € P do
foreach C' s.t. CC -C' € T orC'C -C € T do
O, = { FILTER(Fulse)}
foreach (?Y a C') € Py*" do
| ©5 =6, UNION{P,0[?Y —?X]}
7 W= UNION {{?X a C"} MINUS {6, }}
8 Q = ASK WHERE {{P,}.{W}};
9 if Q(G) then
10 | returnG
11 else

‘ mat

A T AW N -

Sem
brave
return G, "5 p,)

For each concept C’ disjoint from C, we need to check that a triple matching the
pattern {?X a C’} is in the store G and will not be deleted by w. Deletion happens if
there is a pattern {?Y a C'} € P$*"* such that the variable 7Y can be bound to the same
value as 7X in the WHERE clause P,,. Line 6 of Alg. 4 produces such a check, using
a copy of P, in which the variable 7Y is replaced by ?X and all other variables are
replaced with distinct fresh ones. Since there can be several such triple patterns in P3!S,
testing for clash elimination via the DELETE clause requires a disjunctive graph pattern
O constructed at line 6 and combined with {?X a C’} using MINUS at line 7.

Finally, the resulting pattern is appended to the list W of clash checks using UNION .
As aresult, { P, }.{W} queries for triples that are not deleted by « and clash with an
instantiation of some class membership assertion {?X a C'} € P¢f.

Theorem 3. Alg. 4, given a SPARQL update u and a consistent materialized triple store
G =T U A, computes a new consistent and materialized state w.r.t. cautious semantics.

Example 4. Alg. 4 rewrites the safe update safe(u) from Ex. 2 as follows:
ASK WHERE{{?X :attendsClassOf ?Y

MINUS{{?X1 :attendsClassOf ?X} UNION {?Y :attendsClassOf ?Y2}}}
{{?Y a :Student} UNION {?X a :Professor}}}

Now, consider an update v’ having both INSERT and DELETE clauses:

DELETE {?Y a :Professor} INSERT{?X a :Student}
WHERE {?X :attendsClassOf ?Y}

The update v’ inserts a single class membership fact and thus is always intrinsically
consistent. The ASK query in Alg. 4 takes the DELETE clause of « into account:

ASK WHERE {{?X :attendsClassOf ?2Y}
.{{?X a :Professor} MINUS {?Z :attendsClassOf ?X }}} n

22

5 Discussion and Conclusions

In this paper, we have taken a step further from our previous work, in combining SPARQL
Update and RDFS entailment by also adding class/concept disjointness as a first step
towards dealing with inconsistencies in the context of SPARQL Update. As discussed
throughout the paper, previous approaches to handle inconsistencies in DL KB evolution
(e.g., [4,5,9]) have assumed that the set of ABox assertions to be inserted is intrinsically
consistent w.r.t. the TBox, and thus inconsistencies are treated only w.r.t. the old state
of the knowledge base. As we have shown, this assumption is not trivially verifiable in
the context of SPARQL updates, where DELETE/INSERT atoms are instantiated by
a WHERE clause, and clashing triples could be instantiated within the same INSERT
operation. We have addressed this problem by providing means to check whether a
SPARQL update is intrinsically consistent and defining a safe rewriting that removes
intrinsic clashes during inserts on-the-fly.

Next, taken that the problem of intrinsic consistency is solved, we have demonstrated
how to extend the approach of [4] to SPARQL updates. We have defined a materialization
and consistency preserving rewriting for SPARQL updates that essentially combines the
ideas of [4] and our previous work on SPARQL updates under RDFS for materialized
triple stores [1], dealing with clashes due to class disjointness axioms in a brave manner.
That is, we overwrite inconsistent information in the triple store in favor of information
being inserted. Alternatively, we have also defined a dual consistency-preserving update
semantics that on the contrary discards insertions that would lead to inconsistencies.

Besides practical evaluation of the proposed algorithms, we plan to further extend
our work towards increasing coverage of more expressive logics and OWL profiles,
namely additional axioms from OWL 2 RL or OWL 2 QL [10]. Also, it could be useful
to investigate further semantics, allowing for compromises between fully discarding the
inconsistent old data and refusing the entire update due to clashes, and lift our methods
to work with stores that are not fully materialized.

The consideration of negative information is an important issue also in other related
works on knowledge base updates: for instance, the seminal work on database view
maintenance by Gupta et al. [7] is also used in the context of materialized views using
Datalog rules with stratified negation. Likewise, let us mention the work of Winslett [13]
on formula-based semantics to updates, where negation is also considered.

Acknowledgements. This work was supported by the Vienna Science and Technology
Fund (WWTF), project ICT12-SEE, and EU IP project Optique (Scalable End-user
Access to Big Data), grant agreement n. FP7-318338.

References

1. Ahmeti, A., Calvanese, D., Polleres, A.: Updating RDFS aboxes and tboxes in SPARQL. In:
Proc. of the 13th Int. Semantic Web Conf. (ISWC). Lecture Notes in Computer Science, vol.
8796, pp. 441-456. Springer (2014)

2. Beckett, D., Berners-Lee, T., Prud’hommeaux, E., Carothers, G.: RDF 1.1 Turtle — Terse RDF
Triple Language. W3C Recommendation, World Wide Web Consortium (Feb 2014), available
athttp://www.w3.0rg/TR/turtle/

23

10.

11.

12.

13.

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning 39(3), 385-429 (2007)

Calvanese, D., Kharlamov, E., Nutt, W., Zheleznyakov, D.: Evolution of DL-Lite knowledge
bases. In: Proc. of the 9th Int. Semantic Web Conf. (ISWC). Lecture Notes in Computer
Science, vol. 6496, pp. 112-128. Springer (2010)

De Giacomo, G., Lenzerini, M., Poggi, A., Rosati, R.: On instance-level update and erasure
in description logic ontologies. J. of Logic and Computation 19(5), 745-770 (2009)
Gearon, P., Passant, A., Polleres, A.: SPARQL 1.1 update. W3C Recommendation,
World Wide Web Consortium (Mar 2013), available at http://www.w3.org/TR/
sparglll-update/

Gupta, A., Mumick, L.S., Subrahmanian, V.S.: Maintaining views incrementally. In: Proc. of
the ACM SIGMOD Int. Conf. on Management of Data. pp. 157-166 (1993)

Hayes, P., Patel-Schneider, P.: RDF 1.1 semantics. W3C Recommendation, World Wide Web
Consortium (Feb 2014), available at http://www.w3.org/TR/rdfll-mt/

Liu, H., Lutz, C., Milicic, M., Wolter, F.: Updating description logic ABoxes. In: Doherty, P.,
Mylopoulos, J., Welty, C.A. (eds.) Proc. of the 10th Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR). pp. 46-56. AAAI Press (2006)

Motik, B., Grau, B.C., Horrocks, 1., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web Ontology
Language profiles (second edition). W3C Recommendation, World Wide Web Consortium
(Dec 2012), available at http://www.w3.0rg/TR/owl2-profiles/

Muiloz, S., Pérez, J., Gutiérrez, C.: Minimal deductive systems for RDF. In: Proc. of the 4th
European Semantic Web Conf. (ESWC). Lecture Notes in Computer Science, vol. 4519, pp.
53-67. Springer (2007)

Polleres, A., Hogan, A., Delbru, R., Umbrich, J.: RDFS & OWL reasoning for linked data.
In: Reasoning Web. Semantic Technologies for Intelligent Data Access — 9th Int. Summer
School Tutorial Lectures (RW), Lecture Notes in Computer Science, vol. 8067, pp. 91-149.
Springer (2013)

Winslett, M.: Updating Logical Databases. Cambridge University Press (2005)

24

Interval Temporal Description Logics*

A. Artale!, R. Kontchakov?, V. Ryzhikov!, and M. Zakharyaschev?

!Faculty of Computer Science, Free University of Bozen-Bolzano, Italy
2Department of Computer Science and Information Systems
Birkbeck, University of London, U.K.

1 Introduction

In this paper, we construct a combination HS-Lite] . of the Halpern-Shoham
interval temporal logic HS [15] with the description logic DL-Lite}t = [12,1],
which is a Horn extension of the standard language OWL 2 QL. The temporal
operators of HS are of the form (R) (‘diamond’) and [R] (‘box’), where R is one of
Allen’s interval relations After, Begins, Ends, During, Later, Overlaps and their
inverses (A, B, E, D, L, O). The propositional variables of HS are interpreted
by sets of closed intervals [z, j] of some flow of time (e.g., Z, R), and a formula
(R)¢ ([R]p) is regarded to be true in [¢, j] iff ¢ is true in some (respectively, all)
interval(s) [¢/, '] such that [i, j]R[i’, '] in Allen’s interval algebra.

In HS-Lite]!, .., we represent temporal data by means of assertions such
as SummerSchool(RW, t1,ts) and teaches(US, DL, s1, s2), which say that RW is
a summer school that takes place in the time interval [t;, ;] and US teaches
DL in the time interval [sy, s3]. Note that temporal databases store data in a
similar format [17]. Temporal concept and role inclusions are used to impose
constraints on the data and introduce new concepts and roles. For example,

AdvCoursen (D) MorningSession T L says that advanced courses are not given in
the morning sessions described by (B) LectureDay {A) Lunch & MorningSession;
teaches T [D]teaches claims that the role teaches is downward hereditary (or
stative) in the sense that if it holds in some interval then it also holds in all of its
sub-intervals; [D]((O)teaches Ll {D)teaches) M (B)teaches N (E)teaches C teaches,
on the contrary, states that teaches is coalesced (or upward hereditary). The
inclusions teaches T [D]teaches and [D]({O)teaches U (D)teaches) T teaches
ensure that teaches is both upward and downward hereditary. On the other hand,
‘rising stock market’ and ‘high average speed’ are typical examples of concepts
that are not downward hereditary; for a discussion of these notions see [6, 21, 18].

Although the complexity of full HS-Lite}:, . remains unknown, in this paper
we define two fragments, HS—the#O/ﬂat and HS —L1'te?{‘0[TG,J7 where satisfiability and
instance checking are P-complete for both combined and data complexity.

Our interest in tractable description logics with interval temporal operators
is motivated by possible applications in ontology-based data access (OBDA) [12]
to temporal databases. In this context, we naturally require reasonably expressive

yet tractable ontology and query languages with temporal constructs (although

* This extended abstract is an abridged version of [4] presented at AAAI 2015.

25

some authors advocate the use of standard atemporal OWL 2 QL with temporal
queries [16,7]). Our choice of HS as the temporal component of HS-Lite}t, .,
is explained by the fact that modern temporal databases adopt the (downward
hereditary) interval-based model of time [17,13] and use coalescing to group time
points into intervals [6]. We show that, unfortunately, the logics HS-Lite]t/fat

and HS—Litero[gJ cannot guarantee first-order rewritability of even atomic queries,
though we conjecture that datalog rewritings are possible.

. s . o H
2 Description Logic ‘HS-Lite,, .

The language of HS-Lite]t . contains individual names ag, a1, . .., concept names
A, A1, ..., and role names Py, Py, Basic roles R, basic concepts B, temporal
roles S and temporal concepts C are given by the grammar

R == P, | P, B := Ay | 3R,

S == R | [RIS | (R)S, C == B | [RIC | (R)C,

where R is one of Allen’s interval relations or the universal relation G. Over the
closed intervals [i,j] = {n € Z | i < n < j}, for i < j, we set:

- [%]]A[Z/a]/} iff]: 7'./5 (After)
S BT i=imasz g, (Beginn
= [5B[4 if i <i'and j=j', (Ends)
= [i,4]D[', '] it i< and j' <, (During)
= [i,)L, 5" ff j <7, (Later)

[)

= [, 4100, 51 iff i <d <<y (Overlaps

and define their inverses in the standard way. Note that we allow single-point
intervals [¢,4] and use non-strict < instead of the more common < (in fact, one
can show that the use of < would make reasoning non-tractable). An HS-Lite}t
TBox is a finite set of concept and role inclusions and disjointness constraints of
the form

Cin---NC,cCt, SiM---MS,C 8T,
Cin---nNCLC L, SimM---NS,E 1,
where CT, Rt denote temporal concepts and roles without diamond operators
(R). An HS—Litezfom ABox is a finite set of atoms of the form Ag(a,i,j) and
Py(a,b,,j) in which temporal constants i < j are given in binary. An HS—Lite?fom
knowledge base (KB) is a pair K = (T, .A), where T is a TBox and A an ABox.
An HS—Lite?fom interpretation, Z, consists of a family of standard (atemporal)
DL interpretations Z[i, j] = (AZ,-Z%), for all 4,57 € Z with i < j, in which
AT # 0, aFl9] = af for some (fixed) af € AZ, A7l C AT and P C ATx AT,
The role and concept constructs are interpreted in Z as follows:
(P = {(@.9) | (g,0) € B}, AR = {a| (a,y) € R,
(Risyal = () 8710, (Rl = () ¢
[i,5]R[¢’,57] [¢,4]R[¢".57]

and dually for the ‘diamond’ operators (R).

26

The satisfaction relation = is defined by taking:
Tl Aa,i,j) iff of e AT,
T |= P(a,b,i,j) iff (a%,b) e P,
IEM.CrCC iff N, CHI C 6L for all intervals [i, j],
TEMSkCS iff N, SEHI C ST for all intervals [i, j],

and similarly for disjointness constraints. Note that concept and role inclusions
as well as disjointness constraints are interpreted globally. For a TBox inclusion
or an ABox assertion «, we write K = a if Z |= «, for all models Z of K.

3 Propositional HS},, is Tractable

Denote by HSpom the fragment of HS—Litezfom without role names and with
ABoxes that contain a single individual name. TBoxes in this restricted language
can be regarded as Horn formulas of the propositional interval temporal logic
HS, which is notorious for its nasty computational behaviour; for results on the
(un)decidability of various fragments of HS, see, e.g., [14,10,9,8,19,11,20]. The
designed logic HShorn appears to be the first tractable fragment of HS:
Theorem 1. HS}om s P-complete for both combined and data complexity.

Membership in P follows from the polynomial canonical model and P-hardness
for (data) complexity is by reduction of the monotone circuit value problem.

So far, we have managed to lift this result to two proper interval temporal
description logics, both of which are fragments of HS-Lite]t . .

4 Tractability of HS-Lite!//* and HS-Litel*]

The first fragment, denoted HS —Litcﬁo/,flat, only allows those #S-Lite} . TBoxes
that are flat in the sense that their concept inclusions do not contain 4R on
the right-hand side. Our second fragment, denoted HS—Liteﬁ[gJ, allows only the
operator [G] in the definition of temporal roles S (with no restrictions imposed
on temporal concepts). Thus, unlike HS-Lite]/f* the fragment HS-Lite]HS]

e
horn
contains full DL-Litey,,...

Theorem 2. (i) The satisfiability problem for HS-Lite]t/%* and HS-Lite}'|S)
KBs is P-complete for combined complexity.

(ii) Instance checking for HS-Lite]/f% and HS-Lite}'S) is P-complete for
data complexity.

This result contrasts with the lower data complexity (AC® and NC') of
instance checking with point-based temporal DL-Lite [5, 3, 2].

In view of Theorem 2 (ii), the temporal ontology languages HS-Litet/f% and
HS—Lite?fo[Sl] cannot guarantee first-order rewritability of even atomic queries,
though we believe that datalog rewritings are possible. We leave the query
rewritability issues, in particular, the design of DL-Lit;el'f)m-based fragments sup-

porting first-order rewritability as well as temporal extensions of the OWL 2 EL
and OWL 2 RL profiles of OWL 2 for future research.

27

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family

and relations. Journal of Artificial Intelligence Research (JAIR) 36, 1-69 (2009)

. Artale, A., Kontchakov, R., Kovtunova, A., Ryzhikov, V., Wolter, F., Zakharyaschev,

M.: First-order rewritability of temporal ontology-mediated queries. In: Proc.
IJCAI 2015. AAAT (2015)

. Artale, A., Kontchakov, R., Kovtunova, A., Ryzhikov, V., Wolter, F., Zakharyaschev,

M.: Temporal OBDA with LTL and DL-Lite. In: Proc. DL 2014. CEUR-WS,
vol. 1193, pp. 21-32. (2014)

. Artale, A., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: Tractable interval

temporal propositional and description logics. In: Proc. AAAT 2015. (2015)

. Artale, A., Kontchakov, R., Wolter, F., Zakharyaschev, M.: Temporal descrip-

tion logic for ontology-based data access. In: Proc. IJCAI 2013. pp. 711-717.
IJCAI/AAAT (2013)

. Bohlen, M.H., Snodgrass, R.T., Soo, M.D.: Coalescing in temporal databases. In:

Proc. VLDB’96. pp. 180-191. Morgan Kaufmann (1996)

. Borgwardt, S., Lippmann, M., Thost, V.: Temporal query answering in the descrip-

tion logic DL-Lite. In: Proc. FroCoS 2013. LNCS, vol. 8152, pp. 165-180. Springer
(2013)

. Bresolin, D., Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: The

dark side of interval temporal logic: marking the undecidability border. Annals of
Mathematics and Artificial Intelligence 71(1-3), 41-83 (2014)

. Bresolin, D., Della Monica, D., Montanari, A., Sala, P., Sciavicco, G.: Interval

temporal logics over finite linear orders: the complete picture. In: Proc. ECAI 2012.
pp. 199-204. 10S Press (2012)

Bresolin, D., Della Monica, D., Montanari, A., Sala, P., Sciavicco, G.: Interval
temporal logics over strongly discrete linear orders: the complete picture. In: Proc.
GandALF 2012. EPTCS, vol. 96, pp. 155-168 (2012)

Bresolin, D., Della Monica, D., Montanari, A., Sciavicco, G.: The light side of interval
temporal logic: the Bernays-Schonfinkel fragment of CDT. Annals of Mathematics
and Artificial Intelligence 71(1-3), 11-39 (2014)

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
Journal of Automated Reasoning 39(3), 385-429 (2007)

Date, C.J., Darwen, H., Lorentzos, N: Temporal data and the relational model.
Elsevier. (2002)

D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-dimensional modal
logics: theory and applications. Studies in Logic. Elsevier, 2003.

Halpern, J.Y., Shoham, Y.: A propositional modal logic of time intervals. Journal
of the ACM 38(4), 935-962 (1991)

Klarman, S.: Practical querying of temporal data via OWL 2 QL and SQL:2011.
In: Short Papers Proc. LPAR 2013. EPiC Series 26, pp. 52-61. Easychair (2014)
Kulkarni, K.G., Michels, J.E.: Temporal features in SQL:2011. SIGMOD Record
41(3), 34-43 (2012)

Leo, J., Parsia, B., Sattler, U.: Temporalising ££ concepts with time intervals. In:
Proc. DL. CEUR-WS, vol. 1193, pp. 620-632. (2014)

Marcinkowski, J., Michaliszyn, J.: The undecidability of the logic of subintervals.
Fundamenta Informaticae 131(2), 217-240 (2014)

28

20.

21.

Montanari, A., Puppis, G., Sala, P.: Decidability of the interval temporal logic
AABB over the rationals. In: Proc. MFCS 2014. LNCS, vol. 8634, pp. 451-463.
Springer (2014)

Terenziani, P., Snodgrass, R.T.: Reconciling point-based and interval-based seman-
tics in temporal relational databases: A treatment of the Telic/Atelic distinction.
IEEE Transactions on Knowledge and Data Engineering 16(5), 540-551 (2004)

29

Dismatching and Local Disunification in £C
(Extended Abstract)

Franz Baader, Stefan Borgwardt, and Barbara Morawska*

Theoretical Computer Science, TU Dresden, Germany
{baader,stefborg,morawska}@tcs.inf.tu-dresden.de

Motivation

Unification in Description Logics was introduced in [6] as a novel inference service
that can be used to detect redundancies in ontologies. For example, assume that
one developer of a medical ontology defines the concept of a patient with severe
head injury using the EL-concepts

Patient M 3finding.(Head _injury M 3severity.Severe), (1)
whereas another one represents it as
Patient M 3finding.(Severe finding M Injury M 3finding _site.Head). (2)

Formally, these expressions are not equivalent, but they are nevertheless meant to
represent the same concept. They can obviously be made equivalent by treating
the concept names Head _injury and Severe finding as variables, and substituting
them by InjuryM3finding _site.Head and Jseverity.Severe, respectively. In this case,
we say that the concepts are unifiable, and call the substitution that makes
them equivalent a unifier. In [5|, we were able to show that unification in EC
is NP-complete. The main idea underlying the proof of this result is to show
that any solvable EL-unification problem has a local unifier, i.e.; a unifier built
from a polynomial number of atoms (concept names or existential restrictions),
which are determined by the unification problem. This yields a brute-force NP-
algorithm for unification, which guesses a local substitution and then checks (in
polynomial time) whether it is a unifier.

Intuitively, a unifier of two EL concepts proposes definitions for the concept
names that are used as variables: in our example, we know that, if we define
Head injury as Injury3finding _site.Head and Severe finding as Jseverity.Severe,
then the two concepts (1) and (2) are equivalent w.r.t. these definitions. Of
course, this example was constructed such that the unifier (which is local) pro-
vides sensible definitions for the concept names used as variables. In general, the
existence of a unifier only says that there is a structural similarity between the
two concepts. The developer that uses unification needs to inspect the unifier(s)
to see whether the definitions it suggests really make sense. For example, the sub-
stitution that replaces Head injury by Patient I Injury M Ifinding _site.Head and
Severe finding by Patient M Jseverity.Severe is also a local unifier, which however
does not make sense. Unfortunately, even small unification problems like the one

* Supported by DFG under grant BA 1122/14-1

30

in our example can have too many local unifiers for manual inspection. We pro-
pose disunification to avoid local unifiers that do not make sense. In addition to
positive constraints (requiring equivalence or subsumption between concepts), a
disunification problem may also contain negative constraints (preventing equiva-
lence or subsumption between concepts). In our example, the nonsensical unifier
can be avoided by adding the dissubsumption constraint

Head injury Z° Patient (3)

to the equivalence constraint (1) =" (2).

Disunification in DLs is closely related to unification and admissibility in
modal logics [7,10-15], as well as (dis)unification modulo equational theories [5,
6,8,9]. In the following, we shortly describe the ideas behind our work. More
details can be found in [2,3].

Preliminaries

We designate certain concept names as variables, while all others are constants.
An EL-concept is ground if it contains no variables. We consider (basic) disuni-
fication problems, which are conjunctions of subsumptions C' C° D and dissub-
sumptions C Z° D between concepts C, D.' A substitution maps each variable
to a ground concept, and can be extended to concepts as usual. A substitution
o solves a disunification problem I' if the (dis)subsumptions of I" become valid
when applying ¢ on both sides. We restrict o to a finite signature of concept and
role names and do not allow variables to occur in a solution—it would not make
sense for the new definitions to extend the vocabulary of the ontologies under
consideration, nor to define variables in terms of themselves.

In the following, we consider a flat disunification problem T, i.e. one that
contains only (dis)subsumptions where both sides are conjunctions of flat atoms
of the form A or 3r.A, for a role name r and a concept name A. We denote
by At the set of all such atoms that occur in I', by Var the set of variables oc-
curring in T', and by At,, := At \ Var the set of non-variable atoms of T'. Let
S: Var — 27t be an assignment, i.e. a function that assigns to each variable
X € Var a set Sy C At,,. The relation >g on Var is defined as the transitive
closure of {(X,Y) € Var® | Y occurs in an atom of Sx}. If >g is irreflexive,
then S is called acyclic. In this case, we can define the substitution og induc-
tively along >g¢ as follows: if X is minimal, then o5(X) = [|pcg, D; other-
wise, assume that og(Y") is defined for all Y € Var with X > Y, and define
05(X) :==[1pesy 7s(D). All substitutions of this form are called local.

Results

Unification in &L is local: each problem T' can be transformed into an equivalent
flat problem that has a local solution iff I is solvable, and hence (general) solv-
ability of unification problems in EC is in NP [5]. However, disunification in £C

Y A wunification problem contains only subsumptions.

31

is not local in this sense: consider
''={XC'B, ANBNCC'X, IrXC'Y, TZ'Y, Y Z' Ir.B}

with variables X,Y and constants A, B,C. If we set o(X) := AN BMNC and
oY) :=3r.(ANC), then o is a solution of I' that is not local. This is because
Ir.(AN C) is not a substitution of any non-variable atom in I'. Assume now
that T" has a local solution 7. Since v must solve the first dissubsumption, y(Y)
cannot be T, and due to the third subsumption, none of the constants A, B, C
can be a conjunct of ¥(Y'). The remaining atoms Jr.y(X) and Ir.B are ruled
out by the last dissubsumption since both v(X) and B are subsumed by B. This
shows that I' cannot have a local solution, although it is solvable.

The decidability and complexity of general solvability of disunification prob-
lems is still open. However, we can show that each dismatching problem T,
which is a disunification problem where one side of each dissubsumption must
be ground, can be polynomially reduced to a flat problem that has a local solu-
tion iff I' is solvable. This shows that deciding solvability of dismatching problems
in &€ is in NP. The main idea is to introduce auxiliary variables and flat atoms
that allow us to solve the dissubsumptions using a local substitution. For exam-
ple, we replace the dissubsumption T Z° Y from above with Y C° 3r.Z. The
rule we applied here is the following:

Solving Left-Ground Dissubsumptions:

Condition: This rule applies to s = C; M ---MC, Z° X if X is a variable and
Ci,...,C, are ground atoms.
Action: Choose one of the following options:
— Choose a constant A € X, replace s by X C° A. If C1M---MC, C A, then fail.
— Choose a role r € Y| introduce a new variable Z, replace s by X C? Iz,
C\Z Iz, ..., CniZ" IrZ.

According to the rule, we can choose a constant or create a new existential
restriction with a fresh variable, and use it in the new subsumption and dissub-
sumptions. In our example the left hand side of the dissubsumption T Z° Y is
empty, hence only a subsumption is produced.

However, the brute-force NP-algorithm for checking local solvability of the
resulting flat disunification problem is hardly practical. For this reason, we have
extended the rule-based algorithm from [5] and the SAT reduction from [4] by
additional rules and propositional clauses, respectively, to deal with dissubsump-
tions. The reason we extend both algorithms is that, in the case of unification,
they have proved to complement each other well in first evaluations [1]: the
goal-oriented algorithm needs less memory and finds minimal solutions faster,
while the SAT reduction generates larger data structures, but outperforms the
goal-oriented algorithm on unsolvable problems. The SAT reduction has been
implemented in our prototype system UEL.2 First experiments show that dis-
matching is indeed helpful for reducing the number and the size of unifiers. The
runtime performance of the solver for dismatching problems is comparable to
the one for pure unification problems.

2 version 1.3.0, available at http://uel.sourceforge.net /

32

References

10.

11.

12.

13.

14.

15.

. Baader, F., Borgwardt, S., Mendez, J.A., Morawska, B.: UEL: Unification solver for

EL. In: Kazakov, Y., Lembo, D., Wolter, F. (eds.) Proc. of the 25th Int. Workshop
on Description Logics (DL’12). CEUR Workshop Proceedings, vol. 846, pp. 26-36
(2012)

Baader, F., Borgwardt, S., Morawska, B.: Dismatching and local disunfication
in £L. LTCS-Report 15-03, Chair for Automata Theory, TU Dresden, Germany
(2015), see http://lat.inf.tu-dresden.de/research /reports.html.

Baader, F., Borgwardt, S., Morawska, B.: Dismatching and local disunification in
EL. In: Fernandez, M. (ed.) Proc. of the 26th Int. Conf. on Rewriting Techniques
and Applications (RTA’15). LIPIcs, vol. 36. Dagstuhl Publishing (2015), to appear.
Baader, F., Morawska, B.: SAT encoding of unification in ££. In: Fermiiller, C.G.,
Voronkov, A. (eds.) Proc. of the 17th Int. Conf. on Logic for Programming, Arti-
ficial Intelligence, and Reasoning (LPAR’10). Lecture Notes in Computer Science,
vol. 6397, pp. 97-111. Springer-Verlag (2010)

Baader, F., Morawska, B.: Unification in the description logic ££. Logical Methods
in Computer Science 6(3) (2010)

Baader, F., Narendran, P.: Unification of concept terms in description logics. J. of
Symbolic Computation 31(3), 277-305 (2001)

Babenyshev, S., Rybakov, V.V.; Schmidt, R., Tishkovsky, D.: A tableau method
for checking rule admissibility in S4. In: Proc. of the 6th Workshop on Methods
for Modalities (M4M-6). Copenhagen (2009)

Buntine, W.L., Biirckert, H.J.: On solving equations and disequations. J. of the
ACM 41(4), 591-629 (1994)

Comon, H.: Disunification: A survey. In: Lassez, J.L., Plotkin, G. (eds.) Com-
putational Logic: Essays in Honor of Alan Robinson, pp. 322-359. MIT Press,
Cambridge, MA (1991)

Ghilardi, S.: Unification through projectivity. Journal of Logic and Computation
7(6), 733-752 (1997)

Ghilardi, S.: Unification in intuitionistic logic. Journal of Logic and Computation
64(2), 859-880 (1999)

Iemhoff, R., Metcalfe, G.: Proof theory for admissible rules. Annals of Pure and
Applied Logic 159(1-2), 171-186 (2009)

Rybakov, V.V.: Admissibility of logical inference rules, Studies in Logic and the
Foundations of Mathematics, vol. 136. North-Holland Publishing Co., Amsterdam
(1997)

Rybakov, V.V.: Multi-modal and temporal logics with universal formula - reduction
of admissibility to validity and unification. Journal of Logic and Computation
18(4), 509-519 (2008)

Wolter, F., Zakharyaschev, M.: Undecidability of the unification and admissibility
problems for modal and description logics. ACM Transactions on Computational
Logic 9(4), 25:1-25:20 (2008)

33

Extending Consequence-Based Reasoning to SHZ Q

Andrew Bate, Boris Motik, Bernardo Cuenca Grau,
FrantiSek Simancik, and Ian Horrocks

University of Oxford
Oxford, United Kingdom
first.last@cs.ox.ac.uk

1 Introduction

Description logics (DLs) [3] are a family of knowledge representation formalisms with
numerous practical applications. SHZQ is a particularly important DL as it provides
the formal underpinning for the Web Ontology Language (OWL). DLs model a domain
of interest using concepts (i.e., unary predicate symbols) and roles (i.e., binary pred-
icate symbols). DL applications often rely on subsumption—the problem of checking
logical entailment between concepts—and so the development of practical subsumption
procedures for DLs such as SHZ Q has received a lot of attention.

Most DLs are fragments of the guarded fragment [1] of first-order logic; however,
SHIQ provides a restricted form of counting that does not fall within the guarded frag-
ment. Moreover, most DLs, including SHZQ, can be captured using the two-variable
fragment of first-order logic with counting (C?) [11], but this provides us with neither
a practical nor a worst-case optimal reasoning procedure (C? and SHZQ are NEXP-
TIME- and EXPTIME-complete, respectively). Algorithms for more general logics thus
do not satisfy the requirements of DL applications, and so numerous alternatives spe-
cific to DLs have been explored. Many DLs can be decided in the framework of res-
olution [18, 13], including SHZQ [14]. These procedures are usually worst-case op-
timal and can be practical, but, as we discuss in Section 3, in even very simple cases
they can draw unnecessary inferences. Practically successful SHZQ reasoners, such as
FaCT++ [26], HermiT [9], Pellet [25], and Racer [12], use variants of highly-optimised
(hyper)tableau algorithms [6]—model-building algorithms that ensure termination by
a variant of blocking [7]. Although worst-case optimal tableau algorithms are known
[10], practical implementations are typically not worst-case optimal. While generally
very effective, tableau algorithms still cannot process certain ontologies; for example,
the GALEN ontology! has proved particularly challenging, mainly because tableau cal-
culi tend to construct very large models.

A breakthrough in practical ontology reasoning came in the form of consequence-
based calculi. Although not originally presented in the consequence-based framework,
the algorithm for the DL £L [2] can be seen as the first such calculus. This algorithm
was later reformulated and extended to Horn-SHZQ [15] and Horn-SROZQ [19]—
DLs that support functional roles, but not disjunctive reasoning. Recently, consequence-
based calculi were also developed for the DLs ALCH [24] and ALCZ [23], which sup-
port disjunctive reasoning, but not counting. Consequence-based calculi can be seen as

! http://www.opengalen.org

34

a combination of resolution and hypertableau (see Section 3 for details). As in resolu-
tion, they describe ontology models by systematically deriving certain ontology conse-
quences; and as in hypertableau, the ontology axioms can be used to guide the derivation
process, and to avoid drawing unnecessary inferences. Moreover, consequence-based
calculi are not just refutationally complete, but can classify an ontology in a single
pass, which greatly reduces the overall work. These advantages allowed the CB system
to be the first to classify all of GALEN [15].

Existing consequence-based algorithms can handle either disjunctions or counting,
but not both. As we discuss in detail in Section 4, it is challenging to extend these algo-
rithms to DLs such as SHZ Q that combine both kinds of construct: counting quantifiers
require equality reasoning, which together with disjunctions can impose complex con-
straints on ontology models. Unlike in existing consequence-based calculi, these con-
straints cannot be captured using DLs themselves; instead, a more expressive first-order
fragment is needed, which makes the reasoning process much more involved.

In Section 5 we present a consequence-based calculus for SHZ Q. Borrowing ideas
from resolution theorem proving, we encode the required consequences using a special
kind of first-order clause; and to handle equality effectively, we base our calculus on
ordered paramodulation [17]—a state of the art calculus for equational theorem proving
used in modern systems such as E [22] and Vampire [20]. To make the calculus efficient
on £L, we have carefully constrained the rules so that, on ££ ontologies, it mimics
existing £ L calculi. Thus, although a practical evaluation of our calculus is still pending,
we believe that it is likely to perform well in practice on ‘mostly-£ £’ ontologies due to
is close relationship with existing and well-proven calculi.

2 Preliminaries

First-Order Logic. To simplify matters technically, it is common practice in equational
theorem proving to encode atoms as terms. An atomic formula P(8) can be encoded as
P(3) = t, where t is a new special constant, and P is considered as a function symbol
rather than as a predicate symbol. Note however that, in order to avoid meaningless
expressions in which predicate symbols occur at proper subterms, a multi-sorted type
discipline on terms in the encoding is adopted. Thus, the set of symbols in the signature
is partitioned into a set P of predicate symbols (which includes t), and a set F of
function symbols.

A term is constructed as usual using variables and the signature symbols. Terms
containing predicate symbols as their outermost symbol are called P-terms, while all
other terms are JF-terms. For example, for P a predicate and f a function symbol, both
f(P(x)) and P(P(z)) are malformed; P(f(x)) is a well-formed P-term; and f(x)
is a well-formed F-term. An (in)equality is an expression of the form s ~ t (s % t)
where s and ¢ are both either F- or P-terms. We assume that ~ and % are implicitly
symmetric—that is, s < ¢ and ¢ <1 s are one and the same expression, for i € {=, #}.
A literal is an equality or an inequality. An atom is an equality of the form P(5) ~ t,
and we write it simply as P(&) whenever it is clear from the context whether P(S) is
intended to be a P-term or an atom. A clause is an expression of the form I — A where
I' is a conjunction of atoms called the body, and A is a disjunction of literals called the

35

Table 1. Translating Normalised SHZ Q Ontologies into DL-Clauses

z) = S(z, fi(x)) for1<i<n
x) = Ba(fi(x)) for1<i<n

Bi(x)

Bl E?TLSBQ ~ B1()
Bi(z) = fi(z) % fij(zx)for1 <i<j<mn

()

)

S(y,z) A Ba(x) = S, (y,x) for fresh Sp,

B1 C < B
1EsnSB WBl(ac)/\ A Sey(z,z) — V Zi R 25

1<i<n+1 1<i<j<n+1
B1 C VS.B, s Bi(z) A S(z,2z1) = Ba(z1)

1S|:|§" B 1S|J'_|Sm i 1S/i\S" B’(‘T) 7 1§>/§m Pi (x)
S1 C Se e Si(z,z1) = Sa(z, 21)
S1C Sy s S1(z, z1) — Sa2(z1,)

head. We often treat conjunctions and disjunctions as sets; and we write the empty
conjunction (disjunction) as T (). We use the standard notion of subterm positions;
then, s|, is the subterm of s at position p; moreover, s[t], is the term obtained from s
by replacing the subterm at position p with ¢; finally, position p is proper in t if ¢, # t.

Orders. A term order = is a strict order on the set of all terms. The multiset exten-
Sion > . of > compares multisets M and N on a universe U such that M >,,.,; N
if and only if M # N and, for each n € N\ M, some m € M \ N exists such that
m > n, where \ is the multiset difference. We extend - to literals by identifying each
s % t with the multiset {s, s,¢,t} and each s & ¢ with the multiset {s, ¢}, and by com-
paring the result using >,,,,;. Given an order >, element b € U, and subset S C U, the
notation S > b abbreviates da € S : a > b.

Description Logic SHZ Q. In this paper, a SHZQ ontology is represented as a
set of DL-clauses, which we define next. Let P; and P» be countable sets of unary and
binary predicate symbols, and let F be a countable set of unary function symbols. DL-
clauses are constructed using the central variable x and variables z;. A DL-F-term has
the form x, z;, or f(z) with f € F; a DL-P-term has the form B(z;), B(x), B(f(z)),
S(z, zi), S(zi,), S(z, f(x)), S(f(z),z) with B € Py and S € Pa; and a DL-term is
a DL-F- or a DL-P-term. A DL-literal has the form A ~ t with A a DL-P-term (called
a DL-atom), or f(x) < g(x), f(x) >z, or z; > z; with > € {~, #}. A DL-clause
contains only DL-atoms of the form B(x), S(z, z;), and S(z;, z) in the body and only
DL-literals in the head, and where each variable z; occurring in the head also occurs in
the body. An ontology O is a finite set of DL-clauses. A qguery clause is a DL-clause in
which all atoms are of the form B(x). Given an ontology O and a query clause I" — A,
the query clause entailment problem is to decide whether O |= Vx.(I" — A) holds; we
often leave out Va and write the latteras O = I" — A.

SHIQ ontologies are commonly written using a DL-style syntax, but we can al-
ways transform such ontologies into DL-clauses without affecting the entailment of
query clauses. Transitivity is encoded away as described in [21, 8], and the resulting
axioms are normalised to the forms shown on the left-hand side of Table 1 as described
in [15,23]. The normalised axioms are translated to DL-clauses as shown in Table 1.

36

01:{ 31§HS7BZ+1 for0§z<nand1§]§2 (@))]
B,CC, 2
Cit1 EVS,.C; for0<i<nandl <j<2 3}

Bo(z) Succl5): 381.B1 (6) Bi(z) By(z)
Co—Suedst: 35,8 @ BEm) e e)
Initialisation: T — By 4) Succ[5]: T— B [€) Succl...]: T — Bn (10)
Hyper[1+4]: T — 35;.B1 (5) Hyper[148]: T — 35;.B2 (9) Hyper[2+10]: T — C» (11
Pred[14]: T —=Co (15) Pred[...]: T—=C1 (13) Hyper[3+11]: T — VSJ’.C”H (12)

Hyper[3+13]: T — V57 .Co (14)

Fig. 1. Example Motivating Consequence-Based Calculi

3 Why Consequence-Based Calculi?

Consider the ontology O; (written using DL notation) shown in Figure 1. Axiom (3)
can be reformulated as 35;.C;11 & Cj, and so Oy is in £L. One can readily verify that
O = B; C C; holds for each 1 < i < n.

To prove, say, O = By C Cy, a (hyper)tableau calculus constructs in a forward-
chaining manner a tree-shaped model of depth n and of fanout two, where nodes at
depth i are labelled by B; and C;. Forward chaining ensures that reasoning is goal-
oriented and thus amenable to practical implementation. However, all nodes labelled
with B; are of the same type and behave in the same way, which reveals a weakness of
(hyper)tableau calculi: the constructed model can be large (exponential in our example)
and highly redundant. Techniques such as caching [10] or anywhere blocking [16] can
be used to constrain model construction, but their effectiveness often depends on the
order of rule applications. Thus, model size has proved to be a key limiting factor for
(hyper)tableau-based reasoners in practice [16].

In contrast, resolution describes models using universally quantified clauses that
‘summarise’ the model. This prevents redundancy and ensures worst-case optimality of
many resolution decision procedures. Nevertheless, resolution can still derive unneces-
sary clauses. In our example, axioms (1) and (3) are translated into clauses (16) and
(17), respectively, which can be used to derive all 2n? clauses of the form (18).

Bz(x) %Sj(l‘,f@j(l‘)) fori € {1,...,7}} and j € {1,2} (16)
Si(z1,2) A Cryi(z) = Cr(21) forke{l,...,n}andj € {1,2} (17)
B;i(z) A Cry1(fij(x)) — Cr(x) fori,k € {1,...,n}and j € {1,2}(18)

Of these 2n? clauses, only those where i = k are relevant to proving O |= By C Cp.
Moreover, if we extend @ with additional clauses that contain B; and C;, each of the
2n? clauses from (18) can participate in further inferences, which can give rise to many
more irrelevant conclusions. This problem is exacerbated in satisfiable cases since all
resolution consequences must then be computed in full.

Consequence-based calculi combine the goal-directed reasoning of (hyper)tableau
calculi with the ‘summarisation’ of resolution. In [23], we presented a very general
framework for ALCZ ontologies that captures the key elements of consequence-based
calculi such as [2,15,19,24]. We use this framework as basis for our extension to

37

SHIQ so, before presenting our extension, we explain the main concepts on 0. Due
to space restrictions we cannot reproduce in full the inference rules from [23]; however,
these are similar in spirit to our inference rules for SHZ Q presented in Table 2.

Our calculus constructs a context structure D = (V, €, S, core, =)—a graph whose
vertices V are called contexts and whose directed edges are labelled with concepts of
the form 3S5.B. Let I be a model of O. Instead of representing each element of
individually as in (hyper)tableau calculi, we ‘summarise’ all elements of a certain kind
using a single context v. Each context v € V is associated with a (possibly empty)
set core, of core concepts that hold in all domain elements that v represents; thus,
core, determines the kind of context v. We use a set S,, of clauses to capture additional
constraints that the elements represented by v must satisfy; in ALCZ, we can do so
using clauses over DL concepts of the form [|B; C | | B; U| |3S,.B, U | |VS,.By.
Thus, unlike in resolution where all consequences belong to a single set, we assign a
consequence a particular set in order to reduce the number of inferences. Clauses in S,
are ‘relative’ to core,: for each I' C A € S,,, we have O |= core, M I' T A—that is,
we choose not to include core, in clause bodies since core, always holds. Finally, >
provides each context v €)V with a concept order >, that restricts resolution inferences
in the presence of disjunctions.

Consequence-based calculi are not just refutation-complete: they actually derive
the required consequences. Figure 1 shows how this is achieved for Oy = By C Cy;
the core and the clauses are shown, respectively, above and below a context. To prove
By C Cy, we introduce context vp, with core, By = {By} and clause (4) stating that
By holds in this context. Next, using the Hyper rule, we derive (5) from (1) and (4); this
rule performs hyperresolution, but restricted to one context at a time.

Next, the Succ rule satisfies the existential quantifiers in (5). To this end, the rule
uses a parameter called an expansion strategy. A strategy is given two sets of constraints
that a successor of v g, must satisfy due to universal restrictions: K contains constraints
that must hold, and K> contains constraints that might hold. Given such K; and K>,
the strategy then decides whether to reuse an existing context or create a fresh one,
and in the latter case it also determines how to initialise the new context’s core. In our
example, there are no universal restrictions and all information in v, is deterministic,
so K1 = Ky = {B; }. For £L, a reasonable strategy is to associate with each concept
B; a context vp, with core,, = {B;}, and to always to satisfy existential quantifiers
of the form 3S.B; using v Bii thus, in our example we introduce vp, and initialise it
with (8). Note that (5) represents two existential quantifiers, both of which we satisfy
(in separate applications of the Succ rule) using vp, . Different strategies may be used
with more expressive DLs; please refer to [23, Section 3.4] for an in-depth discussion.

We construct contexts vp,,...,vp, in a similar way, finally deriving (11) by hy-
perresolving (2) and (10), and then (12) by hyperresolving (3) and (11). Clause (12)
imposes a constraint on the predecessor context, which we propagate backwards using
the Pred rule, obtaining (13) and (15). Since, however, clauses in S, 5, are ‘relative’ to
core,, , clause (15) actually represents our query clause By C Co.

Thus, like resolution, consequence-based calculi ‘summarise’ models to prevent re-
dundant computation, and, like (hyper)tableau calculi, they differentiate elements in a
model of O to prevent the derivation of consequences such as (18).

38

Oy ={ Bo(z) — S(fi(x),z) (19) Bi(z) — S(z, fi(x)) for2 <i <3 (22)
Bo(z) = Bi(fi(z)) (20) Bi(z) — Bi(fi(z)) for2<i<3 (23)
Ba(z) AN Bs(z) —» L (21) Bi(z) — Ba(x) for2<i<3 (24)
Bi(z) A /\13.§3 S(x,2;) — \/1§],<k53 zj & 2k 25) }
Pol) Succ[27+28]: S(y, x), B2(x)

fi @9 Suec32433437: fo (38)

Initialisation: T — Bo(x) (26) Succ[32+33+37]: T — S(y,z) (39)
Hyper[19+26]: T — S(f1(x),x) 27) Succ[32+33+37]: T — Ba(z) (40)
Hyper[20426]: T — B (fi(z)) (28) Succ[32+32+37]: Bs(x) — Bs(z) (41)
Pred[48]: T = Ba(x) V Bs(z) (49) Hyper[21+40+41]: Bs(z) — L 42)
Hyper[24+49]: T — Ba(z) V Ba(z) (50)
Hyper[24+50]: T — Ba(x) S Succ[324334371: f2 (38)
S(y,x), Bs(x)

Succ[27+28]: T = S(z,y) (30)

Succ[27+28]: T = Bi() 31)

Hyper[22+31]: T = S(z, f2(x 32)

Hyper[23+31]: T B(g(fg(a(c)))) 33 Succ[34+435]: T — S(y,z) (44)

Hyper(22+31]: T = S(z, fa(x)) (34) Succ[34+435]: T — Bs(z) (45)

Hyper[23+31]: T — Bs(f3(x)) 35)

Hyper[25+430+31+32434]: T — fa(z) ~yV fa(z) =y V fs(z) = f2(z) (36)

Eq[35+36]: T fa(z) my V fa(a) myV Bd(fz() (7

Pred[37+42]: T fa(z) =y V fa(@) ~ y (46)

Eq[35+46]: T = Bs(y) V fal2) ~ y 7

Eq[33+47]: T = Ba(y) V Bs(y) (8)

Fig. 2. Challenges in Extending the Consequence-Based Framework to SHZQ

4 Extending the Framework to SHZ Q

We now present an example before formalising the calculus. Due to an interaction
between counting quantifiers and inverse roles, a SHZQ ontology can impose more
complex constraints on model elements than ALCZ. Let Oy be the SHZQ ontology
shown in Figure 2; we argue that O = Bo(x) — By(x) holds. To see why, consider
an equality Herbrand interpretation I constructed from By(a). Then, (19) and (20) de-
rive S(f1(a),a) and B1(f1(a)); moreover, (22) and (23) derive S(fi(a), f2(f1(a)))
and Bz (f2(f1(a))), and S(f1(a), f3(f1(a))) and Bs(f3(f1(a))). Due to (24) we de-
rive B4(f2(f1(a))) and B4(f3(f1(a))). Finally, from (25) we derive (52).

f2(fi(a)) = aV f3(fi(a)) = aV f3(fi(a)) = f2(fi(a)) (52)

We must satisfy at least one disjunct in (52). Disjunct f3(f1(a)) = fo
be satisfied due to (21); but then, regardless of whether we satisfy f5(
fa(f1(a)) = a, we derive B4(a); hence, the inference holds.

To prove this in our consequence-based framework, we must capture constraint (52)
and its consequences. However, this cannot be done using standard description logic
notation because DL concepts cannot identify specific successors and predecessors of
f1(a)—that is, they cannot say ‘either the first or the second successor is equal to the
predecessor’. Thus, our main challenges are to devise a method for representing all the
relevant constraints that can be induced by SHZQ ontologies, and to ensure that such
constraints are correctly propagated between adjacent contexts.

f1(a)) cannot
f

1(a)) = a or

39

To address these challenges, we Skolemise existential quantifiers and transform ax-
ioms into DL-clauses. Skolemisation introduces function symbols that act as names for
successors. Our clauses thus contain terms of the form z, f;(z), and y which have a
special meaning in our setting: variable x represents the elements that a context stands
for; f;(x) represents a successor of x; and y represents the predecessor of x. This allows
us to represent constraint (52) as

fal@) =y V f3(x) =y V fs(z) = fa(z). (53)

Table 2 shows the inference rules of our calculus that are applicable to such a clausal
representation. In each clause, literals are ordered from the smallest to the largest, and
so the maximal literal is always on the right; moreover, clause numbers correspond
to the order of clause derivation. In the rest of this section, we discuss the rules on
our running example and show how they verify Oy = Bo(z) — By(x); for brevity, we
present only the inferences needed to produce the desired conclusion.

We first create context v and initialise it with (26); this ensures that each interpreta-
tion represented by the context structure contains an element for which By holds. Next,
we derive (27) and (28) using hyperresolution. At this point, we could hyperresolve
(22) and (28) to obtain T — S(f1(z), f2(f1(x))); however, such inferences could eas-
ily lead to nontermination of the calculus due to increased term nesting. Therefore, we
require hyperresolution to map variable x in the DL-clauses to variable x in the context
clauses; thus, in each context, hyperresolution derives only consequences about x.

Function symbol f; in clauses (27) and (28) is akin to an existential quantifier;
consequently, the Succ rule introduces a fresh context vo. Due to Skolemisation, edges
in our context structure are labelled with function symbols, rather than concepts of
the form 35.B as in [23]. The rule uses an expansion strategy analogous to the ££
strategy from Section 3. To determine which information to propagate to a successor,
Definition 2 given below introduces a set Su(Q) of successor triggers. In our example,
DL-clause (25) contains atoms By () and S(z, 2;) in its body, where z; can be mapped
to a predecessor or a successor of z, so a context in which hyperresolution is applied to
(25) will be interested in information about its predecessors; we reflect this by adding
Bj(z) and S(z,y) to Su(O). Thus, the Succ rule introduces context vq, sets its core to
B (z) and S(z,y), and initialises the context with (30) and (31).

We next introduce (32)—(35) using hyperresolution, at which point we have suffi-
cient information to apply hyperresolution to (25) to derive (36). Please note how the
presence of (30) is crucial for this inference. We use paramodulation to deal with equal-
ity in clause (36). As is common in resolution-based theorem proving, we order the
literals in a clause and apply inferences only to maximal literals; thus, we derive (37).

Clauses (32), (33), and (37) contain function symbol f5, so we again apply the Succ
rule and introduce context vs. Due to clause (33), we know that By(x) must always
hold in v, so we add Bz (x) to core,,. However, Bs(f2(x)) occurs in clause (37) in a
disjunction, so it holds only conditionally in vq; we reflect this by including B3(x) in
the body of clause (41). This allows us derive (42) using hyperresolution.

Clause (42) essentially says ‘Bs(f2(z)) should not hold in the predecessor’, so
the Pred rule propagates this information to vy. This produces clause (46); one can
intuitively understand this inference as hyperresolution of (37) and (42), where we take
into account that term f>(x) in context vy is represented as variable x in context vs.

40

After two paramodulation steps, we derive clause (48), which essentially says ‘the
predecessor must satisfy Bo(x) or Bs(z)’. The set Pr(O) of predecessor triggers from
Definition 2 identifies this information as relevant to v : the DL-clauses in (24) contain
Bs(x) and Bs(z) in their bodies, which are represented in vy as By (y) and Bs(y).
Hence Pr(O) contains Bz (y) and Bs(y), which allows the Pred rule to derive (49).

After two more hyperresolution steps, we finally derive our target clause (51). Please
note, however, that we cannot derive this if By(x) were maximal in (50); thus, for
completeness we require all atoms in the head of a query clause to be smallest. A similar
observation applies to Pr(Q): if B;(y) were maximal in (47), we would not derive (48)
and propagate it to vy; thus, we require all atoms in Pr(Q) to be smallest too.

5 Formalising the Consequence-Based Algorithm for SHZ O

Our calculus manipulates context clauses, which are constructed from context terms and
context literals as described in Definition 1. Unlike in general resolution, we restrict
context clauses to contain only variables x and y, which have a special meaning in our
setting: variable x represents a point (i.e., a term) in the model, and y represents the
predecessor of x; this naming convention is important for the rules of our calculus. This
is in contrast to the DL-clauses of an ontology: these can contain variables x and z;,
and the latter can refer to either the predecessor or a successor of x.

Definition 1. A context F-term is a term of the form x, y, or f(x) for f € F; a context
P-term is a term of the form B(y), B(x), B(f(x)), S(z,y), S(y,x), S(x, f(x)), or
S(f(x),x) for B,R € P and f € F; and a context term is an F-term or a P-term. A
context literal is a literal of the form A = t (called a context atom), f(z) < g(z), or
f(z) >y, for A a context P-term and <1 € {=, 3}. A context clause is a clause with
only function-free context atoms in the body, and only context literals in the head.

Definition 2 introduces sets Su(Q) and Pr(0O), that identify the information that
must be exchanged between adjacent contexts. Intuitively, Su(Q) contains atoms that
are of interest to a context’s successor, and it guides the Succ rule whereas Pr(Q) con-
tains atoms that are of interest to a context’s predecessor and it guides the Pred rule.

Definition 2. Let O be an ontology. The set Su(O) of successor triggers of O is the
smallest set of atoms such that, for each clause I' — A € O, we have (i) B(z) € I im-
plies B(x) € Su(0), (ii) S(x, z;) € I implies S(x,y) € Su(O), and (iii) S(z;,x) € I’
implies S(y,x) € Su(O). The set Pr(O) of predecessor triggers is defined as

Pr(O)={A{z — vy, y—a} | AeSu(O)} U{B(y) | BoccursinO}.

Similarly to resolution, our calculus uses a term order > to restrict its inferences.
Definition 3 specifies the conditions that the order must satisfy. Conditions 1 and 2
ensure that F-terms are compared uniformly across contexts; however, P-terms can
be compared in different ways in different contexts. Conditions 1 through 4 ensure that,
when grounded with x and y mapping to a term its predecessor, respectively, the order is
a simplification order [4]—a kind of term order commonly used in equational theorem
proving. Finally, condition 5 ensures that atoms that might be propagated to a context’s
predecessor via the Pred rule are smallest, which is important for completeness.

41

Definition 3. Let > be a total, well-founded order on function symbols. A context term
order > is an order on context terms satisfying the following conditions:

1. foreach f € F, we have f(x) = x > y;

2. forall f,g € F with f > g, we have f(x) > g(x);

3. for all terms s1, sa, and t and each position p in t, if s1 > S, then t[s1], = t[sa]p,
4. for each term s and each proper position p in s, we have s = s|,; and

5. for each atom A = t € Pr(O) and each context term s & {x,y}, we have A i s.

Order = is extended to literals, also written —, as described in Section 2.

A lexicographic path order (LPO) [4] over context F-terms and context P-terms, in
which z and y are treated as constants such that x > y, satisfies conditions 1 through 4.
Furthermore, Pr(O) contains only atoms of the form B(y), S(z,y), and S(y, =), which
can always be smallest in the order; thus, condition 5 does not contradict the other con-
ditions. Hence, an LPO that is relaxed for condition 5 satisfies Definition 3. In addition
to orders, redundancy elimination techniques have proven crucial to the practical effec-
tiveness of resolution calculi. We now define a criterion compatible with our setting.

Definition 4. A set of clauses U contains a clause I" — A up to redundancy, written
- AcUif

1. terms s and s exist suchthat s = s € Aor{s~s', s# s’} C A or
2. aclause I — A’ € U exist such that I'" C I and A" C A.

Proposition 1. For U a set of clauses and C' € U a clause such that C € U \ {C'}, for
each clause C' with C' € U, we have C' € U \ {C'}.

Proposition 1 shows that our calculus is compatible with backward subsumption
(which is captured in the Elim rule). Note that tautologies of the form A — A are not
necessarily redundant since they can be used to initialise contexts. However, if our cal-
culus were to derive both A — A and A — AV A’ then the latter is always redundant.

We now formalise the notion of a context structure, and define soundness for a
context structure. The latter captures the fact that core,, is not contained in the body of
any context clause in S,,.

Definition 5. A context structure for an ontology O is a tuple D = (V, £, S, core, >-),
where V is a finite set of contexts, € C V x V X F is a finite set of edges labelled with
function symbols, function core assigns to each context v a conjunction core, of atoms
over the P-terms from Su(O), function S assigns to each context v a finite set S, of
context clauses, and function > assigns to each context v a context term order >,. A
context structure D is sound for O if the following conditions both hold:

S1. O k= core, AT — A for each context v € V and each clause I' — A € S, and
S2. O k= core,, — core,{x — f(x),y — x} for each edge (u,v, f) € E.

Definition 6 introduces an expansion strategy—a parameter of our calculus that
determines when and how to reuse contexts in order to satisfy existential restrictions.
We have discussed the roles of expansion strategies in Section 3; moreover, in [23] we
presented several expansion strategies for the DLs contained in ALCZ, and adapting
these to SHZQ is straightforward.

42

Table 2. The rules of the consequence-based calculus for SHZ Q

o |If A € core,,
S and T — A ¢ S,
then [add T — Ato S,.
If /\;;1 A - A€,
5 o is a substitution such that o (z) = =,
& Fi%AiVAiUESUWithAiivAiO'fOI‘Z'E{l,...,n},
T and \7_, I, — Ao V /7, A & S,
then |add A?_, It — AoV V]_, A;jto S..
If It — A1 Vsy &=ty €8, with 81 >, t1 and Ay ¥y 51 = 1,
I — Ay Vso ity €S, withixt € {%755} and sg >, t2 and As Z‘v So X to,
LlOJ- 52|p = 81,
andF1 /\FQ —)Al\/AQ\/SQ[tﬂpNtQ é&,,
then |add I} /\Fg—)Al\/AQ\/SQ[tﬂpNtQ to Sy.
o I I' > AVitgteS, with A, t#t,
2 andI' - AE S,
" lthen |add ' — Ato S,.
51 [>AVsxtVsxt €eSywith AU{s~t} 7, s~t ands =, t/,
s and " > AVttt Vs~t &8,
L |then |add = AVit#t Vs~t toS,.
£ If I' - AeS, and
= = AESN\{I = A}
then |remove I' — A from S,,.
If (u,v, f) € &,
NiZi Ai = V?:;l:q Ai € Sy,
- Fi—>Ai\/Aia€SuwithAi{uAiaforlgiSm,
S_:' A; € Pr(O) foreachm +1<i<m+n,
and N2, I — V{2, A v \/?:;?H Aio & Su,
then |add A", I3 — VI Ay v VI Ao to Su;
where|o = {z — f(z),y — x}.
If I' - AV AeS, where A %, Aand A contains f(z), and
no edge (u,v, f) € £ exists such that A — A € S, foreach A € K3 \ core,,
then |let (v, core’, =) := strategy(K1, D);
o ifv € V, then let =, := =, N =, and
mg otherwise let V := V U {v}, core, :=core’, =, :=>', and S, :=0;
add the edge (u, v, f) to &; and
add A — Ato S, foreach A € K> \ corey;
where|lo = {z — f(z),y — z},

Ki={AeSu(O)| T— Ao €S, }, and
Ko={AeSu(0)|I" - A'VAceS,and A" #, Ao }.

43

Definition 6. An expansion strategy is a polynomial-time computable function strategy
that takes a set of atoms K and a context structure D = (V, &, S, core,). The result
of strategy (K, D) is a triple (v, core’, ") where core’ is a subset of K either v ¢ V is
a fresh context, or v € V is an existing context in D such that core,, = core’; and =’ is
a context term order.

We now present the main theorems. Full proofs of all technical results can be found
in [5]. Theorem 1 proves that all clauses derived by our calculus are indeed conclusions
of the input ontology, and Theorem 2 is our statement of completeness.

Theorem 1. For any strategy, applying a rule from Table 2 to an ontology O and a
context structure D that is sound for O produces a context structure that is sound for O.

Theorem 2. Let O be an ontology, and let D = (V £, S, core, =) be a context struc-
ture such that no inference rule from Table 2 is applicable to O and D. Then, for each
query clause I'g — Aq and each context ¢ € V that satisfy all of the following condi-
tions, we have I'og — Ag € S,.

Ccl. O): FQ — AQ.

C2. For each atom A =t € Ag and each context term s & {x,y} such that A >~ s,

we have s =t € Ag UPr(O).
C3. Foreach A € I'g, we have I'g — A € S,

Theorems 1 and 2 result in the following algorithm for deciding O |= I — Ag.

1. Create an empty context structure D, introduce a context ¢, and, for each A € I,
add I'g — Ato S, in order to satisfy condition C3.

2. Initialise >, in a way that satisfies condition C2, and select an expansion strategy.

3. Saturate D and O using the inference rules from Table 2.

4. I'y — Ag holds if and only if [, — Ag € S,.

Proposition 2. For each expansion strategy that introduces at most exponentially many
contexts, the consequence-based calculus for SHIQ is worst-case optimal.

Proof. The number g of different context clauses that can be generated using the sym-
bols in O is clearly at most exponential in the size of O, and the number m of clauses
participating in each inference is linear in the size of O. Hence, with k contexts, the
number of inferences is bounded by (k - p)™; if k is at most exponential in the size of
O, the number of inferences is exponential as well. Thus, if at most exponentially many
contexts are introduced, our algorithm runs in exponential time, which is worst-case
optimal for SHZQ [3]. O

6 Conclusion

We have presented the first consequence based calculus for SHZ Q, a DL that includes
both disjunction and counting quantifiers. Our calculus combines ideas from state of the
art resolution and (hyper)tableau calculi, including the use of ordered paramodulation
for efficient equality reasoning. In spite of its increased complexity, the calculus mimics
existing and well proven £L calculi on £L£ ontologies. Thus, although implementation
and evaluation remain as future work, we believe that the calculus is likely to work well
on ‘mostly-£ L’ ontologies—a type of ontology that occurs commonly in practice.

44

References

1.

2.

11.

12.

14.

15.

16.

17.

H. Andréka, J. van Benthem, and I. Németi. Modal Languages and Bounded Fragments of
Predicate Logic. Journal of Philosophical Logic, 27(3):217-274, 1998.

F. Baader, S. Brandt, and C. Lutz. Pushing the ££ Envelope. In L. Pack Kaelbling and
A. Saffiotti, editors, Proc. of the 19th Int. Joint Conference on Artificial Intelligence (IJCAI
2005), pages 364-369, Edinburgh, UK, July 30—August 5 2005. Morgan Kaufmann Publish-
ers.

F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. E. Patel-Schneider, editors. The
Description Logic Handbook: Theory, Implementation and Applications. Cambridge Uni-
versity Press, January 2003.

F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.
A. Bate, B. Motik, B. Cuenca Grau, F. Simancik, and I. Horrocks. Extending Consequence-
Based Reasoning to SHZ Q. Technical report, Department of Computer Science, University
of Oxford, May 2015.

P. Baumgartner, U. Furbach, and I. Niemeld. Hyper Tableaux. In Proc. of the European
Workshop on Logics in Artificial Intelligence (JELIA *96), number 1126 in LNAI, pages
1-17, Evora, Portugal, September 30—October 3 1996. Springer.

P. Baumgartner and R. A. Schmidt. Blocking and Other Enhancements for Bottom-Up Model
Generation Methods. In U. Furbach and N. Shankar, editors, Proc. of the 3rd Int. Joint Conf.
on Automated Reasoning (IJCAR 2006), volume 4130 of LNCS, pages 125-139, Seattle, WA,
USA, August 17-20 2006. Springer.

S. Demri and H. de Nivelle. Deciding Regular Grammar Logics with Converse Through
First-Order Logic. Journal of Logic, Language and Information, 14(3):289-329, 2005.
Birte Glimm, lan Horrocks, Boris Motik, Giorgos Stoilos, and Zhe Wang. HermiT: An OWL
2 Reasoner. Journal of Automated Reasoning, 53(3):245-269, 2014.

Rajeev Goré and Linh Anh Nguyen. EXPTIME Tableaux with Global Caching for Descrip-
tion Logics with Transitive Roles, Inverse Roles and Role Hierarchies. In Nicola Olivetti,
editor, Proc. of the 16th Int. Conf. on Automated Reasoning with Tableaux and Related Meth-
ods (TABLEAUX 2007), volume 4548 of LNCS, pages 133-148, Aix en Provence, France,
July 3-6 2007. Springer.

E. Gridel, M. Otto, and E. Rosen. Two-Variable Logic with Counting is Decidable. In Proc.
of the 12th IEEE Symposium on Logic in Computer Science (LICS ’97), pages 306-317,
Warsaw, Poland, June 29-July 2 1997. IEEE Computer Society.

V. Haarslev and R. Moller. RACER System Description. In R. Goré, A. Leitsch, and T. Nip-
kow, editors, Proc. of the 1st Int. Joint Conf. on Automated Reasoning (IJCAR 2001), volume
2083 of LNAI, pages 701-706, Siena, Italy, June 18-23 2001. Springer.

. U. Hustadt and R.A. Schmidt. On the Relation of Resolution and Tableaux Proof Systems for

Description Logics. In Thomas Dean, editor, Proc. of the 16th Int. Joint Conf. on Artificial
Intelligence (IJCAI 1999), pages 110-117, Stockholm, Sweden, July 31 — August 6 1999.
Morgan Kaufmann.

Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Deciding Expressive Description Logics in
the Framework of Resolution. Information & Computation, 206(5):579-601, 2008.

Y. Kazakov. Consequence-Driven Reasoning for Horn SHIQ Ontologies. In Craig Boutilier,
editor, Proc. of the 21st Int. Joint Conf. on Artificial Intelligence (IJCAI 2009), pages 2040—
2045, Pasadena, CA, USA, July 11-17 2009.

B. Motik, R. Shearer, and 1. Horrocks. Hypertableau Reasoning for Description Logics.
Journal of Artificial Intelligence Research, 36:165-228, 2009.

R. Nieuwenhuis and A. Rubio. Theorem Proving with Ordering and Equality Constrained
Clauses. Journal of Symbolic Computation, 19(4):312-351, 1995.

45

18

19.

20.

21.

22.
23.

24.

25.

26.

. H. De Nivelle, R. A. Schmidt, and U. Hustadt. Resolution-Based Methods for Modal Logics.
Logic Journal of the IGPL, 8(3):265-292, 2000.

M. Ortiz, S. Rudolph, and M. Simkus. Worst-Case Optimal Reasoning for the Horn-DL
Fragments of OWL 1 and 2. In F. Lin, U. Sattler, and M. Truszczynski, editors, Proc. of
the 12th Int. Conf. on Knowledge Representation and Reasoning (KR 2010), pages 269-279,
Toronto, ON, Canada, May 9—-13 2010. AAAI Press.

A. Riazanov and A. Voronkov. The design and implementation of VAMPIRE. Al Communi-
cations, 15(2-3):91-110, 2002.

R. A. Schmidt and U. Hustadt. A Principle for Incorporating Axioms into the First-Order
Translation of Modal Formulae. In F. Baader, editor, Proc. of the 19th Int. Conf. on Au-
tomated Deduction (CADE-19), volume 2741 of LNAI, pages 412-426, Miami Beach, FL,
USA, July 28—August 2 2003. Springer.

S. Schulz. E—A Brainiac Theorem Prover. Al Communications, 15(2-3):111-126, 2002.
FrantiSek Simancik, Boris Motik, and Ian Horrocks. Consequence-Based and Fixed-
Parameter Tractable Reasoning in Description Logics. Artificial Intelligence, 209:29-77,
2014.

F. Simancik, Y. Kazakov, and I. Horrocks. Consequence-Based Reasoning beyond Horn
Ontologies. In Toby Walsh, editor, Proc. of the 22nd Int. Joint Conf. on Artificial Intelligence
(IJCAI 2011), pages 1093-1098, Barcelona, Spain, July 16-22 2011.

E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical OWL-DL
reasoner. Journal of Web Semantics, 5(2):51-53, 2007.

D. Tsarkov and I. Horrocks. FaCT++ Description Logic Reasoner: System Description. In
Proc. of the 3rd Int. Joint Conf. on Automated Reasoning (IJCAR 2006), volume 4130 of
LNAI pages 292-297, Seattle, WA, USA, August 17-20 2006. Springer.

46

Explaining Query Answers under
Inconsistency-Tolerant Semantics
over Description Logic Knowledge Bases
(Extended Abstract)

Meghyn Bienvenu', Camille Bourgaux', and Francois Goasdoué?

LRI, CNRS & Université Paris-Sud, Orsay, France
2IRISA, Université de Rennes 1, Lannion, France

1 Explaining Query Results

The problem of querying description logic (DL) knowledge bases (KBs) using
database-style queries (in particular, conjunctive queries) has been a major focus
of recent DL research. Since scalability is a key concern, much of the work has
focused on lightweight DLs for which query answering can be performed in poly-
nomial time w.r.t. the size of the ABox. The DL-Lite family of lightweight DLs
[10] is especially popular due to the fact that query answering can be reduced,
via query rewriting, to the problem of standard database query evaluation.

Since the TBox is usually developed by experts and subject to extensive
debugging, it is often reasonable to assume that its contents are correct. By
contrast, the ABox is typically substantially larger and subject to frequent mod-
ifications, making errors almost inevitable. As such errors may render the KB
inconsistent, several inconsistency-tolerant semantics have been introduced in
order to provide meaningful answers to queries posed over inconsistent KBs.
Arguably the most well-known is the AR semantics [17], inspired by work on
consistent query answering in databases (cf. [4] for a survey). Query answer-
ing under AR semantics amounts to considering those answers (w.r.t. standard
semantics) that can be obtained from every repair, the latter being defined as
an inclusion-maximal subset of the ABox that is consistent with the TBox. A
more cautious semantics, called TAR semantics [17] queries the intersection of
the repairs and provides a lower bound on AR semantics. The brave semantics
[7], which considers the answers holding in some repair, provides a natural upper
bound. This extended abstract presents our work [6] on explaining why a tuple
is a (non-)answer to a query under AR, IAR, or brave semantics.

The need to equip reasoning systems with explanation services is widely ac-
knowledged by the DL community. Indeed, there have been numerous works on
aziom pinpointing, in which the objective is to identify (minimal) subsets of a
KB that entail a given TBox axiom (or ABox assertion) [18,9, 21,16, 22, 20, 14,
15]. With regards to conjunctive queries (CQs), a proof-theoretic approach to ex-
plaining positive answers to CQs over DL-Lite 4 KBs was introduced in [§8], and,
more recently, the problem of explaining negative query answers over DL-Lite 4

47

KBs has been studied in [11-13]. Explanation facilities are all the more essential
when using inconsistency-tolerant semantics, as recently argued in [1, 2]. Indeed,
the brave, AR, and TAR semantics allow query answers to be classified into three
categories of increasing reliability, and a user may naturally wonder why a given
tuple was assigned to, or excluded from, one of these categories. To help the user
understand this classification, we introduce the notion of explanation for positive
and negative query answers under brave, AR, and TAR semantics. Formally, the
explanations we consider take either the form of a set of ABox assertions (viewed
as a conjunction) or a set of sets of assertions (disjunction of conjunctions).
The simplest answers to explain are positive brave- and TAR-answers (i.e., an-
swers that hold under brave, resp. IAR, semantics). For the former, we can use
as explanations the query’s causes, which are the minimal consistent sets of as-
sertions that entail the answer together with the TBox, and for the latter, we
consider the causes that do not participate in any contradictions. To explain
why a tuple is an AR-answer, it is no longer sufficient to give a single cause
since different repairs may use different causes. We therefore define explanations
as (minimal) disjunctions of causes that ‘cover’ all repairs, i.e., minimal sets of
causes such that every repair contains at least one of them. To explain negative
AR-answers, the idea is to give a (minimal) subset of the ABox that is consistent
with the TBox and contradicts every cause of the query, since any such subset
can be extended to a repair that omits all causes. For negative IAR-answers, we
need only ensure that every cause is contradicted by some consistent subset.
When there are a large number of explanations for a given result, it may be
impractical to present them all to the user. In such cases, one may choose instead
to rank the explanations according to some preference criteria, and to present
one or a small number of most preferred explanations. In the present work, we
use cardinality to rank explanations for brave- and TAR-answers and negative
AR- and IAR~answers. For positive AR-answers, we consider two ways of ranking
explanations: the number of disjuncts, since fewer disjuncts requires less case-
based reasoning, and the total number of assertions, to favour disjunctions of
causes that share assertions. A complementary approach is to concisely summa-
rize the set of explanations in terms of the necessary assertions (that occur in
every explanation) and the relevant assertions (occurring in some explanation).

2 Complexity Results and Connections to SAT

In addition to the problem of computing explanations, we consider four natural
decision problems: decide whether a given assertion appears in some explanation
(REL) or in every explanation (NEC), decide whether a candidate is an explana-
tion (REC), resp. a best explanation according a given criteria (BEST REC). For
our study, we consider ontologies formulated in the lightweight logic DL-Liter
that underlies the OWL 2 QL profile [19].

The results of our complexity analysis are displayed in Figure 1. For the
explanation tasks that are shown to be intractable, we have exhibited tight con-
nections with variants of propositional satisfiability that enable us to exploit

48

brave, IAR AR neg. IAR neg. AR

REL in P X%-co in P NP-co

NEC in P NP-co in P coNP-co

REC in P BHs-co in P in P
BEST REC! in P T2 -cot coNP-co” coNP-co*

T upper bounds hold for ranking criteria that can be decided in P
¥ IIP-hard for smallest disjunction or fewest assertions
* coNP-hard for cardinality-minimal explanations

Fig. 1: Data complexity results for conjunctive queries.

facilities of modern SAT solvers. We use the encoding -4 A @eons introduced
in [5] which is unsatisfiable iff the corresponding answer is entailed under AR
semantics. Intuitively, ¢, gives the ways of contradicting every cause, and ¢cons
enforces consistency. We can show that the explanations for positive AR-answers
correspond to the minimal unsatisfiable subsets of ¢4 W.r.t. @cons, while the
smallest explanations for negative AR-answers (resp. negative IAR-answers) cor-
respond to the cardinality-minimal models of ¢4 A @eons (resp.).

3 System and Experiments

We extended the CQAPri system [5] to implement our framework, relying on
the SAT4J SAT solver to compute minimal unsatisfiable subsets and cardinality-
minimal models [3]. Our prototype runs in two modes: either it explains some
selected query answers, or all the answers as they are being computed. These
answers are divided into three classes: Possible (brave-answers not entailed under
the AR semantics), Likely (AR-answers not entailed under TAR semantics), and
Sure (IAR-answers). Concretely, explaining an answer a consists in providing,
for the relevant semantics S, S’ according to the class of a: (i) all explanations
of a being an S-answer, as well as necessary and relevant assertions, and (i7) one
smallest explanation of a not being an S’-answer, with necessary and relevant
assertions when S’ = TAR, and necessary assertions when S’ = AR together
with necessary and relevant assertions for explaining a not being an IAR-answer.
Positive explanations are ranked as explained in Section 1.

The experimental evaluation of our prototype system over the slightly mod-
ified CQAPri benchmark shows that explanations of query (non-)answers can be
generated very quickly (typically less than 1ms), although we did find some rare
difficult cases for which computing a smallest explanation for a negative answer
is long (more than 1h). Finally, we observed that the average number of expla-
nations per answer is often reasonably low, although some answers have a large
number of explanations (e.g., 654 for an IAR-answer, 243 for an AR-answer,
and 693 for a brave-answer), showing the practical interest of presenting such
explanations in a concise way.

Acknowledgements This work was supported contract ANR-12-JS02-007-01.

49

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Arioua, A., Tamani, N., Croitoru, M.: On conceptual graphs and explanation of
query answering under inconsistency. In: Proc. of ICCS (2014)

Arioua, A., Tamani, N., Croitoru, M., Buche, P.: Query failure explanation in
inconsistent knowledge bases using argumentation. In: Proc. of COMMA (2014)
Berre, D.L., Parrain, A.: The sat4j library, release 2.2. JSAT 7(2-3), 59-64 (2010)
Bertossi, L.E.: Database Repairing and Consistent Query Answering. Synthesis
Lectures on Data Management, Morgan & Claypool Publishers (2011)

Bienvenu, M., Bourgaux, C., Goasdoué, F.: Querying inconsistent description logic
knowledge bases under preferred repair semantics. In: Proc. of AAAT (2014)
Bienvenu, M., Bourgaux, C., Goasdoué, F.: Explaining query answers under
inconsistency-tolerant semantics over description logic knowledge bases (2015),
Technical Report 1580, LRI, Orsay, France. Available at https://www.lri.fr/
~bibli/Rapports-internes/2015/RR1580.pdf

Bienvenu, M., Rosati, R.: Tractable approximations of consistent query answering
for robust ontology-based data access. In: Proc. of IJCAI (2013)

Borgida, A., Calvanese, D., Rodriguez-Muro, M.: Explanation in the DL-Lite fam-
ily of description logics. In: Proc. of OTM (2008)

Borgida, A., Franconi, E., Horrocks, I.: Explaining ALC subsumption. In: Proc. of
ECAT (2000)

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. Autom. Reasoning (JAR) 39(3), 385-429 (2007)

Calvanese, D., Ortiz, M., Simkus, M., Stefanoni, G.: Reasoning about explanations
for negative query answers in DL-Lite. J. Artif. Intell. Res. (JAIR) 48, 635-669
(2013)

Du, J., Wang, K., Shen, Y.: A tractable approach to abox abduction over descrip-
tion logic ontologies. In: Proc. of AAAT (2014)

Du, J., Wang, K., Shen, Y.: Towards tractable and practical abox abduction over
inconsistent description logic ontologies. In: Proc. of AAAT (2015)

Horridge, M., Bail, S., Parsia, B., Sattler, U.: The cognitive complexity of OWL
justifications. In: Proc. of ISWC (2011)

Horridge, M., Parsia, B., Sattler, U.: Extracting justifications from bioportal on-
tologies. In: Proc. of ISWC (2012)

Kalyanpur, A., Parsia, B., Sirin, E., Hendler, J.A.: Debugging unsatisfiable classes
in OWL ontologies. J. Web Sem. 3(4), 268-293 (2005)

Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant
semantics for description logics. In: Proc. of RR (2010)

McGuinness, D.L., Borgida, A.: Explaining subsumption in description logics. In:
Proc. of IJCAI (1995)

Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL
2 Web Ontology Language profiles. W3C Recommendation (11 December 2012),
available at http://www.w3.org/TR/owl2-profiles/

Penaloza, R., Sertkaya, B.: Complexity of axiom pinpointing in the dl-lite family
of description logics. In: Proc. of ECAI (2010)

Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: Proc. of IJCAI (2003)

Sebastiani, R., Vescovi, M.: Axiom pinpointing in lightweight description logics via
horn-sat encoding and conflict analysis. In: Proc. of CADE (2009)

50

Combined Complexity of Answering
Tree-like Queries in OWL 2 QL

Meghyn Bienvenu!, Stanislav Kikot2, and Vladimir Podolskii®

1 LRI- CNRS & Université Paris Sud, Orsay, France
2 Institute for Information Transmission Problems & MIPT, Moscow, Russia
3 Steklov Mathematical Institute & Higher School of Economics, Moscow, Russia

Introduction The OWL 2 QL ontology language [11], based upon the description
logic DL-Litep, is considered particularly well suited for applications involving large
amounts of data. While the data complexity of querying OWL 2 QL knowledge bases
is well understood, far less is known about combined complexity of conjunctive query
(CQ) answering for restricted classes of conjunctive queries. By contrast, the combined
complexity of CQ answering in the relational setting has been thoroughly investigated.

In relational databases, it is well known that CQ answering is NP-complete in the
general case. A seminal result by Yannakakis established the tractability of answering
tree-shaped (aka acyclic) CQs [14], and this result was later extended to wider classes
of queries, most notably to bounded treewidth CQs [5]. Gottlob et al. [6] pinpointed the
precise complexity of answering tree-shaped and bounded treewidth CQs, showing both
problems to be complete for the class LOGCFL of all languages logspace-reducible to
context-free languages [13]. In the presence of arbitrary OWL 2 QL ontologies, the NP
upper bound for arbitrary CQs continues to hold [4], but answering tree-shaped queries
becomes NP-hard [8]. Interestingly, the latter problem was recently proven tractable in
[3] for DL-Liteoe (a slightly less expressive logic than OWL 2 QL), raising the hope
that other restrictions might also yield tractability.

This extended abstract summarizes our investigation [2] into the combined com-
plexity of conjunctive query answering in OWL 2 QL for tree-shaped queries, their re-
striction to linear and bounded leaf queries and their generalization to bounded treewidth
queries. Our complexity analysis reveals that all query-ontology combinations that have
not already been shown NP-hard are in fact tractable. Specifically, in the case of bounded
depth ontologies, we prove membership in LOGCFL for bounded treewidth queries
(generalizing the result in [6]) and membership in NL for bounded leaf queries. We also
show LOGCFL-completeness for linear and bounded leaf queries in the presence of ar-
bitrary OWL 2 QL ontologies. This last result is the most interesting technically, as the
upper and lower bounds rely on two different characterizations of the class LOGCFL.

Preliminaries We assume the reader familiar is OWL 2 QL (or DL-Liter) knowledge
bases (KBs), composed of a TBox 7 and ABox .A built from countably infinite, mutu-
ally disjoint sets N¢, Ng, and N, of concept names, role names, and individual names.
Roles R and basic concepts B are defined in a standard way, cf. [4]. We use Nﬁ to refer
to the set of all roles. We recall that every consistent OWL 2 QL KB (7, .A) possesses
a canonical model C1 4 with the property that 7, A = q(a) iff C+_4 = q(a) for every
CQ q and tuple a C inds(.A). Thus, CQ answering in OWL 2 QL corresponds to decid-
ing the existence of a homomorphism of the query into the canonical model. Informally,

o1

Cr 4 is obtained from A by repeatedly applying the axioms in 7, introducing fresh el-
ements as needed to serve as witnesses for the existential quantifiers. According to the
standard construction (cf. [10]), the domain AT .4 of Ct . consists of inds(.A) and all
words of the form aR1 Ry ... R,,_1R,, (n > 1) witha € N¢c and R; € Nﬁ. Intuitively,
the element aR1 R» . . . R,,—1 R,, is obtained by applying an axiom with right-hand side
3R, to the element aR1 Ry ... R_1 € A°T-A. A TBox T is of depth w if there is an
ABox A such that the domain of Cr_4 is infinite; T is of depth d, 0 < d < w, if d is the
greatest number such that some C1 4 contains an element of the form aR; ... Rg.

Contributions In what follows, we briefly formulate our combined complexity results
and provide some intuitions about the proof techniques. See [2] for details.

Theorem 1. CQ answering is in LOGCFL for bounded treewidth queries and bounded
depth ontologies.

Proof sketch. We exploit the fact that CQ answering over a KB (7, .A) corresponds
to evaluating the query over the canonical model Cr 4 viewed as a database. If T
has depth k (with k a fixed constant), then C7 4 can be computed by a determin-
istic logspace Turing machine (TM) with access to an NL oracle. Indeed, the depth
bound k implies the finiteness of C7 4 and that all domain elements can be described
using logarithmically many bits. To complete the argument, we use the fact that an-
swering bounded treewidth queries over databases is in LOGCFL [7] and that the class
LOGCFL is closed under L~°6CFL (and hence LNL) reductions [13]. O

Theorem 2. CQ answering is NL-complete for bounded leaf queries and bounded
depth ontologies.

Proof sketch. The lower bound is an immediate consequence of the NL-hardness of an-
swering atomic queries in OWL 2 QL. To prove the upper bound, we apply a straight-
forward non-deterministic procedure for deciding (7, .4) = ¢ :

1. Fix a directed tree T' compatible with q. Let vy be the root variable.
2. Guess ug € AS7TA. Return no if vy cannot be mapped to ug.
3. Initialize Frontier to {(vo,uo)}.
4. While Frontier # ()
(a) Remove (v1,u1) from Frontier.
(b) For every child vy of vy
i. Guess an element usy from ACT A,
ii. Return no if (v1,v2) cannot be mapped to (u1,us).
iii. Add (va,u2) to Frontier.
5. Return yes.

For lack of space, we have not specified how to check whether a variable (resp. pair
of variables) can be mapped to an element (resp. pair of elements), but this can be
done in NL using a small number of entailment checks. Also note that the bound on
the number of leaves yields the bound on size of Frontier, and the bound on the TBox
depth guarantees that we only need logarithmically many bits per pair in Frontier. 0O

Theorem 3. CQ answering is LOGCFL-complete for bounded leaf queries and arbi-
trary ontologies. The lower bound holds already for linear queries.

92

Proof sketch. Concerning the upper bound, it is easy to adapt the previous algorithm
to handle arbitrary TBoxes: we simply replace A°7-4 by {aw € ATA | |w| <
2|T| + |q|}. The modified algorithm gives the correct answers, but it does not have the
required complexity, because it might need more than logarithmically many bits to store
guessed elements aw. To show LOGCFL membership, we further modify the proce-
dure so that it can be implemented by a non-deterministic polytime logspace-bounded
Turing machine augmented with a stack (such TMs are known to capture LOGCFL
computation [12]). The stack is used to store the word part w of a domain element aw.
The modification is not at all obvious since we need to store several words at a time
while the specified machine has only a single stack; the trick is to employ a careful
‘synchronization’ of traversals of different branches of the query.

The lower bound is by reduction from the problem of deciding whether an input of
length [is accepted by the Ith circuit of a logspace-uniform family of SAC circuits
(proven LOGCFL-hard in [13]). This problem was used in [7] to show LOGCFL-
hardness of evaluating tree-shaped CQs over databases. We follow a broadly similar
approach, but with one crucial difference: the power of OWL 2 QL TBoxes allows us to
‘unravel’ the circuit into a tree and to use linear queries instead of tree-shaped ones. 0O

Discussion If we compare the new and existing results for OWL 2 QL with those from
relational databases, we observe that adding an OWL 2 QL TBox of bounded depth
does not change the combined complexity for query answering, while for TBoxes of un-
bounded depth, the complexity class shifts one ‘step” higher: from NL to LOGCFL for
bounded leaf queries and from LOGCFL to NP for tree-shaped and bounded treewidth
CQs. It is also interesting to compare the combined complexity landscape (below right)
with the succinctness landscape for query rewriting (below left) from [1].

T
NP /poly: no polysize PE or NDL
L [poly: no p yS[IQZ]e or] — arb - [NP-complete >:DBs <:[4]] —
91 =
| —— 2 | | L Vi
= =
SHE 2
T (11 SAC: no poly PE but poly NDL E 7 é [LOGCFL-complete Al B
E [1] Z &= >:[7] <:Thm. 1 [
E poly 1 27 z |
= PE,
E L Fod — trees — A
o an .
NDL Hzer B
153
o NL /poly: no poly PE but poly NDL % . NL-complete 3 ';
F® (1 Tg >:[4]/DBs <:Thm.2 5|
4 O Vi
L 451+ o - |
Z a Al
o) N
I I | I | I I | | |
1 2 3 e d arb 1 2 3 e d arb
ONTOLOGY DEPTH ONTOLOGY DEPTH

Observe that for our newly identified tractable classes, polynomial-size non-recursive
datalog (NDL) rewritings are guaranteed to exist, whereas this is not the case for the
positive existential (PE) rewritings more typically considered. In future work, we plan to
marry these positive succinctness and complexity results by developing concrete NDL-
rewriting algorithms for OWL 2 QL for which both the rewriting and evaluation phases
run in polynomial time (as was done in [3] for DL-Lite.qre).

Acknowledgments. Partial support was provided by ANR grant 12-JS02-007-01, Rus-
sian Foundation for Basic Research and the programme “Leading Scientific Schools”.

]

References

1.

10.

11.

12.

13.

14.

M. Bienvenu, S. Kikot, and V. V. Podolskii. Succinctness of query rewriting in OWL 2 QL:
the case of tree-like queries. In Informal Proceedings of the 27th International Workshop on
Description Logics, Vienna, Austria, July 17-20, 2014., pages 45-57, 2014.

. M. Bienvenu, S. Kikot, and V. V. Podolskii. Tree-like queries in OWL 2 QL: Succinctness

and complexity results. In Proc. of the 30th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS 2015). IEEE, 2015.

. M. Bienvenu, M. Ortiz, M. Simkus, and G. Xiao. Tractable queries for lightweight descrip-

tion logics. In Proc. of the 23rd Int. Joint Conf. on Artificial Intelligence (IJCAI 2013). AAAI
Press, 2013.

. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning

and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning, 39(3):385-429, 2007.

. C. Chekuri and A. Rajaraman. Conjunctive query containment revisited. Theoretical Com-

puter Science, 239(2):211-229, 2000.

. G. Gottlob, N. Leone, and F. Scarcello. Computing LOGCFL certificates. In ICALP-99,

pages 361-371, 1999.

. G. Gottlob, N. Leone, and F. Scarcello. The complexity of acyclic conjunctive queries. J.

ACM, 48(3):431-498, 2001.

. S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev. Exponential lower bounds

and separation for query rewriting. In Proc. of the 39th Int. Colloquium on Automata, Lan-
guages, and Programming (ICALP 2012), Part II, volume 7392 of LNCS, pages 263-274.
Springer, 2012.

. S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev. On the succinctness of

query rewriting over OWL 2 QL ontologies with shallow chases. In Proc. of the 29th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS 2014). ACM Press, 2014.

R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and M. Zakharyaschev. The combined ap-
proach to query answering in DL-Lite. In Proc. of the 10th Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR 2010). AAAI Press, 2010.

B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz. OWL 2 Web
Ontology Language profiles. W3C Recommendation, 11 December 2012. Available at
http://www.w3.org/TR/owl2-profiles/.

I. H. Sudborough. On the tape complexity of deterministic context-free languages. Journal
of the ACM, 25(3):405-414, 1978.

H. Venkateswaran. Properties that characterize LOGCFL. J. Computer and System Sciences,
43(2):380-404, 1991.

M. Yannakakis. Algorithms for acyclic database schemes. In Proc. of the 7th Int. Conf. on
Very Large Data Bases (VLDB’81), pages 82-94. IEEE Computer Society, 1981.

o4

Query-based comparison of OBDA specifications

Meghyn Bienvenu' and Riccardo Rosati?

! Laboratoire de Recherche en Informatique
CNRS & Université Paris-Sud, France

2 Dipartimento di Ingegneria informatica, automatica e gestionale
Sapienza Universita di Roma, Italy

Abstract. An ontology-based data access (OBDA) system is composed of one
or more data sources, an ontology that provides a conceptual view of the data, and
declarative mappings that relate the data and ontology schemas. In order to de-
bug and optimize such systems, it is important to be able to analyze and compare
OBDA specifications. Recent work in this direction compared specifications us-
ing classical notions of equivalence and entailment, but an interesting alternative
is to consider query-based notions, in which two specifications are deemed equiv-
alent if they give the same answers to the considered query or class of queries for
all possible data sources. In this paper, we define such query-based notions of en-
tailment and equivalence of OBDA specifications and investigate the complexity
of the resulting analysis tasks when the ontology is formulated in DL-Liteg.

1 Introduction

Ontology-based data access (OBDA) [13] is a recent paradigm that proposes the use
of an ontology as a conceptual, reconciled view of the information stored in a set of
existing data sources. The connection between the ontology and the data sources is
provided by declarative mappings, that relate the elements of the ontology with the
elements of the data sources. The ontology layer is the virtual interface used to access
data, through queries over the elements of the ontology.

Due to the recent availability of techniques and systems for query processing in this
setting [5, 14], the OBDA approach has recently started to be experimented in real ap-
plications (see e.g. [1,7, 10]). In these projects, the construction, debugging and main-
tenance of the OBDA specification, consisting of the ontology, the schemas of the data
sources, and the mapping, is a non-trivial task. Actually, the size and the complexity of
the ontology and, especially, the mappings makes the management of such specifica-
tions a practical issue in these projects. Providing formal tools for supporting the above
activities is therefore very important for the successful deployment of OBDA solutions.

In addition, the OBDA specification plays a major role in query answering, since
the form of the specification may affect the system performance in answering queries:
different, yet semantically equivalent specifications may give rise to very different ex-
ecution times for the same query. So, the study of notions of equivalence and formal
comparison of OBDA specifications is also important for optimizing query process-
ing in OBDA systems. Indeed, some systems already implement forms of optimization
based on transformations of the OBDA specification (an example is [14]).

99

So far, most of the work in OBDA has focused on query answering, often in a
simplified setting without any mappings. Very little attention has been devoted to the
formal analysis of OBDA specifications. The first approach that explicitly focuses on
the formal analysis of OBDA specifications is [12], whose aim is the identification
of semantic anomalies in mappings. Such an approach is based on a classical notion
of logical equivalence and entailment between OBDA specifications. While it is very
natural to resort to such classical notions, a significant alternative in many cases may
be the adoption of query-based notions of equivalence and comparison, in which two
specifications are compared with respect to a given query or a given class of queries,
and are deemed equivalent if they give the same answers to the considered queries for
all possible extensions of the data sources. This idea has been already explored in the
data exchange and schema mapping literature (see, e.g., [9]) and for description logics
for comparing TBoxes and knowledge bases [11,4]. To the best of our knowledge, it
has never been explicitly considered for OBDA specifications.

The majority of work on on OBDA has considered conjunctive queries (CQs) as the
query language. Therefore, a first natural choice would be to compare OBDA specifica-
tions with respect to the whole class of CQs. We thus define and study a notion of CQ-
entailment between OBDA specifications that formalizes this case. We also consider the
important subclass of instance queries (IQs), i.e., queries that ask for the instances of a
single concept or role, and analyze the notion of 1Q-entailment between specifications.
Moreover, in many application contexts only a (small) set of predefined conjunctive
queries are of interest for the OBDA user(s): in such cases, it may be more appropriate
to tailor the comparison of specifications to a specific set of queries. For this reason, we
also study in this paper the notions of single CQ-entailment and single 1Q-entailment,
which compare specifications with respect to a single CQ or IQ, respectively.

We present a first investigation of the computational complexity of deciding the
above forms of entailment for a pair of OBDA specifications. We study ontologies spec-
ified in DL-Liter and three different mapping languages (linear, GAV and GLAV). In
all cases, we provide exact complexity bounds for the entailment problem. Our results
are summarized in Figure 1. As shown in the table, the complexity of the entailment
check ranges from NL (non-deterministic logarithmic space) for linear mappings and
IQ-entailment to EXPTIME for CQ-entailment. To obtain these results, we show that
instead of considering all possible data instances, it is sufficient to consider a small num-
ber of databases of a particular form. We also exploit connections to query containment
in the presence of signature restrictions [3] and KB query inseparability [4].

2 Preliminaries

We start from four pairwise disjoint countably infinite set of names: the set of concept
names Nc, the set of role names Ng, the set of relation names N,, the set of constant
names N, (also called individuals).

To introduce OBDA specifications, we first recall the notion of knowledge base
(KB) in Description Logics (DLs). A DL KB is a pair (7,.4), where: T, called the
TBox, is the intensional component of the KB, and is constituted by a finite set of
axioms expressing intensional knowledge; and A, called the ABox, is a finite set of
atomic concept and role assertions (set of ground facts). We assume that the concept,

96

role and constant names occurring in every TBox and ABox belong to N¢, Ngr and
N, respectively. We denote by sig(7) and sig(.A) the set of concept and role names
occurring in 7 and A, respectively.

Although the definitions of Section 3 are general, in Section 4 we will focus on
the DL DL-Liter [6]. A DL-Liter TBox consists of a finite set of concept inclusions
B C C and role inclusions R C S, where B, C, R, and S are defined according to the
following syntax (where A is a concept name and P is a role name):

B— A|3R C—B|-B R—P|P™ S—R|-R

We now introduce OBDA specifications. As already explained, a mapping asser-
tion specifies the semantic relationship between elements of a DL ontology, specified
through a TBox, to elements of a database. Such a relationship is specified through
a pair of queries, one over the TBox signature, and the other one over the database
signature. In this paper, we focus on the case where both queries involved in the map-
ping assertion are conjunctive queries: such mapping assertions are called GLAV (for
‘global-as-view’) mappings in the literature [8].

Mappings are formally defined as follows. An atom is an expression r(t) where r
is a predicate and ¢ is a tuple of variables and constants. Then, a (GLAV) mapping as-
sertion m is an expression of the form gs(x) — ¢,(x), where ¢, () (called the body
of m, body(m)) is a conjunction of atoms over predicates from N,¢ and constants from
Ni, ¢o () (called the head of m, head(m)) is a conjunction of atoms using predicates
from N¢ U Ng and constants from Ny, and x, called the frontier variables of m, are the
variables that appear both in g, and in g,. The arity of m is the number of its frontier
variables. When ¢, () has the form p(x) (i.e., ¢,(x) is a single atom whose arguments
are x), we call m a GAV mapping assertion. A linear mapping assertion is a GAV asser-
tion whose body consists of a single atom. A (GLAV) mapping M is a set of mapping
assertions. A GAV mapping is a mapping constituted of GAV mapping assertions. A
linear mapping is a set of linear mapping assertions. Without loss of generality, we as-
sume that in every mapping M, every pair of distinct mapping assertions uses pairwise
disjoint sets of variables.

An OBDA specification is a pair I' = (T, M), where T is a TBox and M is a
mapping. Given a mapping assertion m of arity n and an n-tuple of constants a, we
denote by m(a) the assertion obtained from m by replacing the frontier variables with
the constants in a.

Given a set of atoms AT, gr(AT) is the function that returns the set of ground atoms
obtained from AT by replacing every variable symbol x with a fresh constant symbol
c,. We assume that such constant symbols do not occur elsewhere in the application
context of the function gr (i.e., in the TBoxes, mappings and databases involved).

In this paper, a database (instance) is a set of ground atoms using relation names
from N,¢ and constant names from N,. Given a mapping M and a database instance D,
we define the ABox for D and M, denoted as A p, as the following ABox:

{ B € gr(head(m(a))) | m € M and and D = Jy.body(m(a)) }

where we assume that y are the variables occurring in body(m(a)). Given an OBDA
specification I" = (7, M) and a database instance D, we define the models of I" and

o7

D, denoted as M ods(I', D) as the set of models of the KB (7, A, p). When such a set
is empty, we write (7, M, D) |= L (analogously, when a KB (7, .A) has no models,
we write (7, A) = L).

We are interested in the problem of answering instance queries and conjunctive
queries over a pair composed of an OBDA specification and a database. A Boolean
conjunctive query (CQ) is an expression of the form Ix(a; A ... A av,) where every «;
is an atom whose arguments are either constants or variables from x. For a non-Boolean
CQ g with answer variables v, . . ., U, a tuple of constants @ = (a1, . . ., ax) occurring
in A is said to be a certain answer for ¢ w.rt. K just in the case that £ = ¢(a),
where ¢(a) is the Boolean query obtained from ¢ by replacing each v; by a;. We call
instance query (IQ) a CQ consisting of a single atom of the form A(z) or R(x,y), with
A concept name, R role name, and z, y distinct free variables. We denote by sig(q) the
set of concept and role names occurring in a query q. We use CQ (resp. IQ) to refer the
set of all CQs (resp. IQs) over the DL signature N¢ U Ng.

Given an OBDA specification I" = (7, M), a database instance D, and a conjunc-
tive query ¢, we define the certain answers for ¢ w.r.t. (I', D) as the tuples of constants
from D that are certain answers for ¢ w.r.t. (7, Ay, p). In particular, for Boolean CQs,
we say that ¢ is entailed by (I, D), denoted by (I, D) = ¢ (or (T, M, D) E q),
if 7 |= g for every Z € Mods(I, D). Note that for non-Boolean queries, we only
consider tuples of constants from D, in order to avoid including those fresh constants
introducing in A, p by grounding existential variables in mapping heads.

3 Query-based Entailment for OBDA Specifications
We start by recalling the classical notion of entailment between OBDA specifications.

Definition 1 (Logical entailment). An OBDA specification (T1, M) logically entails
(T2, Ma), written (T, M1) FEiog (T2, Ma) if and only the first-order theory Ty U M1
logically entails the first-order theory To U M.

We now define the formal notions of query-based entailment between OBDA spec-
ifications considered in this paper. First, we introduce a notion of entailment that com-
pares specifications based upon the constraints they impose regarding consistency.

Definition 2 (L-entailment). Let ¢ be a query. An OBDA specification (T1, Mj) L-
entails (72, Ma), written (T, M1) =1 (T2, Ms), iff. for every database D,
<7-27M27D>|:J- = <7—17~/\/ll7-D>):L

Next, we define a notion of query entailment between OBDA specifications with
respect to a single query.

Definition 3 (Single query entailment). Letr ¢ be a query. An OBDA specifica-
tion (T1, My) g-entails (T3, Ms), written (T1,M1) =, (T2, Ma), if and only if
(T, M1) =1 (T2, M3) and for every database D,

<7-27M27D> ':q(a') = <7-1’M1’D>):q(a)

When ¢ is an 1Q, we call the entailment relation in the preceding definition single IQ-
entailment, while we call it single CQ-entailment if q is an arbitrary CQ.

We can generalize the previous definition to classes of queries as follows.

98

Definition 4 (Query entailment). Let L be a (possibly infinite) set of queries. An
OBDA specification (Ti, M) L-entails (Tz, M), written (Ti, M1) = (T2, M2)
iff (Ti, M1) =1 (T2, Ma) and (T1, M1) =4 (T2, M) for every query q € L.

When £ = 1Q, we call the preceding entailment relation IQ-entailment, and for £ =
CQ, we use the term CQ-entailment.

Note that, for each of the above notions of entailment, a notion of equivalence be-
tween OBDA specifications can be immediately derived, corresponding to entailment
in both directions (we omit the formal definitions due to space limitations).

The following property immediately follows from the above definitions.

Proposition 1. Ler (71, M), (T2, Ma) be two OBDA specifications, and let L be a
set of queries. Then, (T1, M1) |=iog (T2, Ma2) implies (T1, M1) =r, (T2, M2). More-
over, if Lo C Ly, then (T1, M1) Er, (T2, Ma) implies (T1, M1) =, (T2, M2).

As a consequence of the above property, we have that logical entailment implies
CQ-entailment, and CQ-entailment implies 1Q-entailment. The converse implications
do not hold, as the following examples demonstrate.

Example 1. We start by illustrating the difference between logical entailment
and CQ-entailment. Consider a database containing instances for the relation
EXAM (studentName,courseName, grade,date). Then, let I'7 = (71, M), where

T1 = {Student C Person, PhDStudent C Student}
My = {EXAM(z,y, z,w) — Student(x)}

and let Iy = (T3, Ms), where Ty = {Student T Person} and My = M. It is
immediate to verify that I b&bg I'y. However, we have that I |=cq I1. Indeed,
I's |=cq I can be intuitively explained by the fact that the mapping M does not
retrieve any instances of the concept PhDStudent (and there are no subclasses that can
indirectly populate it), so the presence of the inclusion PhDStudent T Student in T;
does not have any effect on query answering; in particular, every CQ that mentions
the concept PhDStudent cannot be entailed both under I and under I5. Notice also
that, if we modify the mapping M to map PhDStudent instead of Student (i.e., if M1
were { EXAM(z,y, z,w) — PhDStudent(z)}), then CQ-entailment between I'; and I}
would no longer hold.
Next, consider I's = (T3, M3), where T3 = () and

M3z = {EXAM(x,y, z, w) — Student(x), EXAM(x,y,z,w) — Person(x)}

Again, it it immediate to see that I's &g I, while we have that I's =cq I». Indeed,
I's E=cq I follows informally from the fact that the mapping M3 is able to “exten-
sionally” simulate the inclusion Student T Person of T, which is sufficient for I to
entail every CQ in the same way as I5.

Example 2. We slightly modify the previous example to show the difference between
CQ-entailment and IQ-entailment. Consider Iy = (77, M) and I's = (T2, M) where

T1 = {Student C Person, Student C JtakesCourse}
T> = {Student T Person}
M = {EXAM(z,y, 2z, w) — Student(z)}

99

Type of entailment ~ Type of mapping Complexity
logical GAV / GLAV NP-complete
linear NL-complete
1 GAV / GLAV NP-complete
linear NL-complete
CQ linear / GAV / GLAV EXPTIME-complete
1Q linear NL-complete
GAV / GLAV NP-complete
single CQ linear / GAV / GLAV I1¥-complete
single IQ linear NL-complete
GAV / GLAV NP-complete

Fig. 1. Complexity results for entailment between OBDA specifications in DL-Liter

Then, it can be easily verified that I Fcq I1. Indeed, consider the Boolean CQ
Jx, y takesCourse(x, y): for every database D, this query is not entailed by the pair
(I'z, D), while this is not the case when the specification is I'y. On the other hand, we
have that I'; =1 I7: in particular, for every database D and for every pair of individ-
uals a, b, neither (I'1, D) nor (I, D) entails the IQ takesCourse(a, b). Finally, let ¢ be
the non-Boolean CQ 3x takesCourse(z,y): then, it can be easily verified that the single
CQ-entailment I =, I holds; while for the CQ ¢’ of the form Jy takesCourse(x,y),
the single CQ-entailment I'; |=, I does not hold.

4 Complexity Results for DL-Litep

In this section, we investigate the computational properties of the different notions of
entailment between OBDA specifications defined in the previous section. For this first
study, we focus on the case in which the TBox is formulated in DL-Liter [6], as it is
the basis for the OWL 2 QL profile and one of the most commonly considered DLs for
OBDA. The results of our complexity analysis are displayed in Figure 1.

In what follows, we formally state the different complexity results and provide some
ideas about the proofs. We begin by considering the complexity of deciding classical
entailment between OBDA specifications.

Theorem 1. Classical logical entailment for OBDA specifications based upon
DL-Liter TBoxes is NP-complete for GAV or GLAV mappings, and NL-complete for
linear mappings.

Proof. Let It = (T1, M), I'» = (T2, Mby). First, it is easy to see that I} |=iog [iff
(i) T1 = T2; and (ii) It [=i0g M2. Property (i) can be decided in NL [2]. Property (ii)
can be decided by an algorithm that, for every assertion m € Mo, first builds a database
D corresponding to gr(body(m)) (i.e., obtained by “freezing” the body of m), and then
checks whether (I, D) entails the CQ corresponding to the head of m whose frontier
variables have been replaced by the corresponding constants. This algorithm runs in
NP in the case of GAV and GLAV mappings, and in NL in the case of linear mappings,

60

which implies the overall upper bounds in the theorem statement. The lower bound
for GAV mappings can be obtained through an easy reduction of conjunctive query
containment to logical entailment, while the one for linear mappings follows from a
reduction of the entailment of a concept inclusion axiom in a DL-Lite p TBox. O

We next consider | -entailment. Our upper bounds rely on the following result that
shows it is sufficient to consider a small number of small databases.

Theorem 2. Let q be a CQ, and let Iy = (T1,M1) and Iy = (T3, M) be OBDA
specifications such that Ty, T are formulated in DL-Liter, and M1, Ms are GLAV
mappings. Then Iy =1 Iy if and only if (T1, M1,D) &= L for every database D
satisfying the following condition:'

— Condition 1: D is obtained by (i) taking two mapping assertions mi, mo from
Mo, (ii) selecting atoms o and «s from head(my) and head(ms) respectively,
(iii) identifying in m1 and mo some variables from oy and oo in such a way that
(T, gr({a1,az2})) = L, (iv) setting D equal to gr(body(my) U body(msz)).

Proof. The one direction is immediate from the definitions. For the interesting direc-
tion, let us suppose that (71, M1, D) = L for every database D satisfying Condition
1. Let us further suppose that we have (73, Ma, Do) = L, where Dy may be any
database. We thus have (73, A, p,) = L. It is well known that every minimal in-
consistent subset of a DL-Liter KB contains at most two ABox assertions, so there
must exist a subset A’ C A, p with |A'| < 2 such that (73, A") = L. Let v be
the conjunction of atoms obtained by taking for each ABox assertion in .4’, a mapping
assertion that produced it, identifying those variables (and only those variables) needed
to produce the ABox assertion(s), and then taking the conjunction of the atoms in the
bodies. We observe that by construction D, = gr(vy) satisfies Condition 1 and is such
that (7;, M, D) = L. By construction, there is a homomorphism of +y into the origi-
nal database Dy. It follows that (77, M1, Do) = L. O

Using the preceding result, we can pinpoint the complexity of L -entailment.

Theorem 3. The 1 -entailment problem is NP-complete for OBDA specifications based
upon DL-Liter TBoxes and GAV / GLAV mappings, and NL-complete in the case of
linear mappings.

Proof. We know from Theorem 2 that I =, I iff (7, M1,D) E L for every
database D satisfying Condition 1. For the GAV / GLAV case, we guess one such
database D and a polynomial-size proof that (71, M1, D) |= L. For the linear case, we
note that the databases satisfying Condition 1 contain at most 2 tuples each and can be
enumerated in logarithmic space. For every such database, we can check using an NL
oracle whether (77, My, D) = L. Since LN* = NL, we obtain an NL procedure. O

Next we consider entailment with respect to a specific query. We again start by
showing it is sufficient to consider a finite number of databases of a particular form.

! Recall that distinct mapping assertions in a mapping have no common variables.

61

Theorem 4. Let g be a CQ, and let It = (T1, M1) and I's = (T3, Ms) be OBDA
specifications such that Ty, T2 are formulated in DL-Liter, and M1, Ms are GLAV
mappings. Then I'y |=4 Iy if and only if It =1 Iy and (T2, M2, D) |= q(a) implies
(T1, My, D) = q(a) for every database D satisfying the following condition:

— Condition 2: D is obtained by (i) taking k < |q| mapping assertions
mi, Mo, ..., myg from Mo, (ii) identifying some of the frontier variables in
mi, ma, ..., My, (i) letting D = gr(body(my) U body(ma) U . ..U body(my)).

If q is an IQ, then the latter condition can be replaced by:

— Condition 3: D is obtained by (i) taking a mapping assertion m from My and
choosing an atom o € head(m), (ii) possibly identifying in m the (at most two)
frontier variables appearing in «, and (iii) letting D = gr(body(m)).

Proof. Again the one direction is immediate. To show the non-trivial direction, let us
suppose that Iy =1 I5 and that (72, Mo, D) = ¢(c) implies (71, M1, D) = ¢(c)
for every tuple ¢ and database D satisfying Condition 2 (we return later to the case
of 1Qs). Let us further suppose that we have (73, Ms, Dg) = ¢(a). The first pos-
sibility is that (72, Mo, Do) = L, in which case we have (71, Mj,Dg) = L be-
cause of It =1 Ib. We thus obtain (71, M1, Do) = qo(a). The other possibility
is that <7-2,M2,D()>): q()(a) and <7—27M2,D(]> l# 1. If <7—1,M17D0> ': J_, we
immediately obtain (71, M1, Do) = qo(a). Otherwise, let Aaq, p, be the ABox for
My and Dy. Since (T2, Mo, D) E qo(a), we have (T3, Apm,.p,) = qo(a). It is
a well-known property of DL-Liter that there exists a subset A" C A, p, With
|A’] < |go| such that (73, A") = qo(a). Let |A'| = k, and let 31,..., 0k be the
ABox assertions in A’. For each 3;, we choose a mapping assertion m; € M and
a homomorphism h; of body(m;) into Dy such that gr(h;(head(m))) contains ;.
We also select an atom «; € head(m) such that gr(h(a)) = B. Let m} be ob-
tained from m; by identifying frontier variables y and z if h;(y) = h;(z), and set
D" = gr(body(m}) U ... U body(m},)). It is easy to see that D’ satisfies Condition 2.
Moreover, by construction, the ABox A, ps contains a subset ,A” that is isomorphic
to A’, and so (73, M2, D') = qo(a’) where a’ is tuple corresponding to a according to
this isomorphism. Applying our assumption, we obtain (71, M1, D"} = go(a’). Using
the fact that there is a homomorphism of body(m/)U. ..U body(mj,) into Dy that is an
isomorphism on the frontier variables, we obtain (77, M1, D) = qo(a).

Finally, for the case of instance queries, we simply note that we have £ = 1, and it
is only necessary to identify those variables in the head atom of the mapping that leads
to introducing the single ABox assertion of interest. This yields Condition 3. O

We pinpoint the complexity of single CQ-entailment, showing it to be I75-complete.

Theorem 5. The single CQ-entailment problem is II5-complete for OBDA specifica-
tions based upon DL-Litep TBoxes and GLAV mappings. The lower bound holds even
for linear mapping assertions and when both TBoxes are empty.

Proof. For the upper bound, consider two OBDA specifications I} = (77, M;) and
I'; = (T2, My3). From Theorems 2 and 4, we know that Iy [=, I if and only if one of
the following holds:

62

— there is a database D satisfying Condition 2 such that (77, M1, D) = L;
— there is a database D satisfying Condition 2 such that (73, M2, D) E q(a),
<7—2,M2,D> l;é 4, and <7—1,M1,D> }75 q(a).

The first item can be checked using an NP oracle (by Theorem 3). To check the sec-
ond item, we remark that the size of databases satisfying Condition 2 cannot exceed
max (2, |q|) - maxbody, where maxbody is the maximum number of atoms appearing
in the body of a mapping assertion in M. It follows that to show that the second item
above is violated, we can guess a database D of size at most maxz(2, |g|) - maxbody
together with a tuple of constants a and a polynomial-size proof that (73, Ma, D)
q(a), and then we can verify using an NP oracle that (77, M1, D) [~ q(a). We there-
fore obtain a X5 procedure for deciding the complement of our problem.

For the lower bound, we utilize a result from [3] on query containment
over signature-restricted ABoxes. In that paper, it is shown how, given a 2QBF
YuJvp(u,v), one can construct a TBox 7, Boolean CQs ¢; and ¢o, and a signature
X such that YuJvp(u,v) is valid iff T, A = ¢1 = T, A |= ¢ for all ABoxes A
with sig(A) C Y. We will not detail the construction but simply remark that the same
TBox 7 = {T C V,F C V} is used for all QBFs, the signature X is given by
(sig(T) Usig(q1) Usig(gz)) \ {V'}, and the query g5 is such that V' ¢ sig(g2).

In what follows, we will show how given T, q1, g2, and X' as above, we can reduce
the problem of testing whether 7, A = ¢; implies T, A = ¢o for all X-ABoxes to
the problem of single CQ entailment. We will use X' for our database instances, and we
create two copies X3 = {P! | P € Y} and Xy = {P? | P € X} of the signature
2’ to be used in the head of mapping assertions. Next, we define sets of mapping as-
sertions copy! (X)) and copy?(X) that simply copies all of the predicates in X into the
corresponding symbol in X} (resp. X5). Formally, for j € {1, 2},

copy? (X) = {A(z) — A¥(z) | A€ NN} U{R(z,y) = Ri(z,y) | R € ¥ NNg}
We further define, given a data signature A; and DL signature A,, a set

populate(Ay, As) of mapping assertions that populates the relations in A5 using all
possible combinations of the constants appearing in tuples over A;:

populate(Ay, Ag) ={Pi(x1,...,2x) = Pa(a},...,2}) | P1 € Ay, arity(P) = k,
Py € Ay arity(P) = ¢, {z},..., 2} C{x1,...,2x)}
Using copy'(X), copy?(X), populate(X, 1), and populate(X, X?), we construct the
following mappings:

M, = populate(X, ') U copy?(X)

My = copy! (X) U populate(¥, X?) U {T(z) — V(z), F(z) — V(x)}
Observe that both mappings are linear. For the query, we let ¢} (resp. ¢5) be obtained
from q; (resp. g2) by replacing every predicate P by P!(resp. P?). We also rename
variables so that ¢{ and ¢}, do not share any variables. We then let ¢ be the CQ obtained
by taking the conjunction of ¢} and ¢}, and existentially quantifying all variables. In the
appendix, we show that (0, M) =, (0, Ma) iff T, A = ¢1 = T,A |= ¢ for all

2’-ABoxes. By combining this with the reduction from [3], we obtain a reduction from
universal 2QBF to the g-entailment problem, establishing I75-hardness of the latter. O

63

If we consider IQs instead, the complexity drops to either NP- or NL-complete.

Theorem 6. The single 1Q-entailment problem is NP-complete for OBDA specifica-
tions based upon DL-Liter TBoxes and either GAV or GLAV mappings. It is NL-
complete if linear mappings are considered.

Proof. We give the arguments for GAV and GLAV mappings (for linear case, see the
appendix). For the NP upper bound, consider two OBDA specifications I'; = (77, M)
and I'; = (T2, M3), and let ¢ be an 1Q. By Theorem 4, I'y =, I if and only if I |=
I'; and (72, Mq, D) = « implies (71, M1, D) |= « for all databases D satisfying
Condition 3 and for all Boolean IQs « obtained by instantiating the variable(s) in ¢
with constant(s) from D.

We already know that it is in NP to test whether Iy = I'%. For the second property,
observe that there are only polynomially many databases satisfying Condition 2, since
each corresponds to choosing a mapping assertion m in Mo, an atom « € head(m),
and deciding whether or not to identify variables in «. For every such database D, we
compute (in polynomial time) the set of Boolean IQs 3 obtained by instantiating the IQ
g with constants from D for which (73, Ms, gr(head(m))) = /. For every such 3, we
guess a polynomial-size proof that (71, M1, D) |= (. If all of our polynomially many
guesses succeed, then the procedure returns yes, and otherwise no. By grouping all of
the guesses together, we obtain an NP decision procedure.

The NP lower bound is by reduction from the NP-complete CQ containment prob-
lem: given two CQs g1, g2 both having a single answer variable x, we have ¢ C
g iff (0, {2 = A(2)}) Faw) 0,{ex — A(x)}), where A is a concept name
that does not appear in either of ¢; and gs. O

Finally, we consider entailment with respect to entire classes of queries. Again, we
can show it is sufficient to consider a small number of databases of a particular form.

Theorem 7. Let [T = (71, M1) and I's = (T3, Ms) be as in Theorem 4. For L €
{CQIQ} I = Inifand only if I =1 I3 and (T2, M2, D) = q(a) implies
(T1, M1, D) = q(a) for every q € L and every database D that satisfies Condition 3.

We show that testing CQ-entailment is much more difficult than for single CQs.
Both the upper and lower bounds use recent results on KB query inseparability [4].

Theorem 8. CQ-entailment is EXPTIME-complete for OBDA specifications based
upon DL-Litep TBoxes and either GLAV, GAV, or linear mappings.

Proof. We start with the proof of membership in EXPTIME. Consider OBDA spec-
ifications I'1 = (71, M) and Iy = (73, Ms). By Theorem 7, I} |cq I% if and
only if Il =1 I% and (73, Mz, D) = g(a) implies (71, M1, D) = ¢(a) for ev-
ery choice of ¢(a) and every database D satisfying Condition 3. We know that testing
I =, I can be done in NP (Theorem 3). To decide whether the second property
holds, we consider each of the (polynomially many) databases satisfying Condition 3.
For every such database D, we generate the two ABoxes A x4, p and Axy, p and the
corresponding KBs K1 = (71, An, . p) and Ko = (T2, Aam,,p). We then test whether
it is the case that for every CQ g over sig(K2), K2 = g(a) implies K = ¢(a), and we

64

return no if this is not the case. The preceding check corresponds to the X'-query en-
tailment problem for DL-Lite , KBs, which has been recently studied in [4] and shown
to be EXPTIME-complete. We therefore obtain an EXPTIME procedure for deciding
CQ-entailment between OBDA specifications.

Our lower bound also makes use of the recent work on query inseparability of
DL-Litep knowledge bases. In [4], the following problem is shown to be EXPTIME-
complete: given DL-Lite rp TBoxes Ty and 7 that are consistent with the ABox {A(c)},
decide whether the certain answers for ¢ w.r.t. (72, {A(c)}) are contained in those for
(T1,{A(c)}) for every CQ ¢ with sig(q) C sig(72). To reduce this problem to the CQ-
entailment problem for OBDA specifications, we consider the following linear map-
ping that populates a fresh concept A’ with all constants of a X-instance (refer to the
proof of Theorem 5 for the definition of populate): M; = My = populate(X, {A'}).
To complete the proof, we show in the appendix that (71, M;) Ecq (T2, Ms) iff
(T2,{A(c)}) E q(a) implies (T1,{A(c)}) = g(a) for every CQ g, where 7{ and 75
are obtained from 77 and 73 by replacing A with A’. O

Our final result shows that IQ-entailment has the same complexity as single 1Q-
entailment. The proof proceeds similarly to the proof of Theorem 6.

Theorem 9. [Q-entailment is NP-complete for OBDA specifications based upon
DL-Liter TBoxes and either GAV or GLAV mappings. It is NL-complete if linear map-
pings are considered.

5 Conclusion and Future Work

In this paper, we have introduced notions of query-based entailment of OBDA spec-
ifications and have analyzed the complexity of checking query-based entailment for
different classes of queries and mappings and for TBoxes formulated in DL-Litep.
The present work constitutes only a first step towards a full analysis of query-based
forms of comparing OBDA specifications, and can be extended in several directions:

— First, it would be interesting to extend the computational analysis of query entail-
ment to other DLs beyond DL-Lite ;. For instance, one interesting question for DLs
with functional or cardinality restrictions concerns the impact of the Unique Name
Assumption on the complexity of (and the techniques for) query entailment.

— Second, other forms of mapping beyond GAV and GLAV could be analyzed. In par-
ticular, we would like to see whether decidability of query entailment is preserved
if we add some restricted form of inequality or negation to the mapping bodies.

— Third, we could introduce a query signature and only test entailment for queries
formulated in the given signature, as has been done for TBox and KB query insep-
arability [4]. In fact, all of the complexity upper bounds in this paper hold also if
we introduce a query signature, but this may not be the case for other DLs.

— Finally, to explore the impact of restricting the set of possible databases, we could
extend the computational analysis to database schemas with integrity constraints.

Acknowledgments. This research has been partially supported by the EU under FP7
project Optique (grant n. FP7-318338) and by the French National Research Agency
under ANR project PAGODA (grant n. ANR-12-JS02-007-01).

65

References

1.

10.

11.

12.

13.

N. Antonioli, F. Castano, C. Civili, S. Coletta, S. Grossi, D. Lembo, M. Lenzerini, A. Poggi,
D. FE Savo, and E. Virardi. Ontology-based data access: the experience at the Italian De-
partment of Treasury. In Proc. of the Industrial Track of the 25th Int. Conf. on Advanced
Information Systems Engineering (CAiSE), 2013.

. A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The DL-Lite family and

relations. J. of Artificial Intelligence Research, 36:1-69, 2009.

. M. Bienvenu, C. Lutz, and F. Wolter. Query containment in description logics reconsidered.

In Proc. of the 13th Int. Conf. on the Principles of Knowledge Representation and Reasoning
(KR), 2012.

. E. Botoeva, R. Kontchakov, V. Ryzhikov, F. Wolter, and M. Zakharyaschev. Query insepara-

bility for description logic knowledge bases. In Proc. of the 14th Int. Conf. on the Principles
of Knowledge Representation and Reasoning (KR), 2014.

. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-Muro,

R. Rosati, M. Ruzzi, and D. F. Savo. The Mastro system for ontology-based data access.
Semantic Web J., 2(1):43-53, 2011.

. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning

and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning, 39(3):385-429, 2007.

. D. Calvanese, M. Giese, P. Haase, 1. Horrocks, T. Hubauer, Y. Ioannidis, E. Jiménez-Ruiz,

E. Kharlamov, H. Kllapi, J. Kliiwer, M. Koubarakis, S. Lamparter, R. Moller, C. Neuenstadt,
T. Nordtveit, O. Ozcep, M. Rodriguez-Muro, M. Roshchin, F. Savo, M. Schmidt, A. Soylu,
A. Waaler, and D. Zheleznyakov. Optique: OBDA solution for big data. In Revised Selected
Papers of ESWC 2013 Satellite Events, volume 7955 of Lecture Notes in Computer Science,
pages 293-295, 2013.

. A.Doan, A. Y. Halevy, and Z. G. Ives. Principles of Data Integration. Morgan Kaufmann,

2012.

. G. Gottlob, R. Pichler, and V. Savenkov. Normalization and optimization of schema map-

pings. Very Large Database J., 20(2):277-302, 2011.

E. Kharlamov, M. Giese, E. Jiménez-Ruiz, M. G. Skjeveland, A. Soylu, D. Zheleznyakov,
T. Bagosi, M. Console, P. Haase, . Horrocks, S. Marciuska, C. Pinkel, M. Rodriguez-Muro,
M. Ruzzi, V. Santarelli, D. F. Savo, K. Sengupta, M. Schmidt, E. Thorstensen, J. Trame,
and A. Waaler. Optique 1.0: Semantic access to big data: The case of Norwegian Petroleum
Directorate’s FactPages. In Proc. of the ISWC Posters & Demos Track, pages 65-68, 2013.
B. Konev, R. Kontchakov, M. Ludwig, T. Schneider, F. Wolter, and M. Zakharyaschev. Con-
junctive query inseparability of OWL 2 QL TBoxes. In Proc. of the 25th AAAI Conf. on
Artificial Intelligence (AAAI), 2011.

D. Lembo, J. Mora, R. Rosati, D. F. Savo, and E. Thorstensen. Towards mapping analysis
in ontology-based data access. In Proc. of the 8th Int. Conf. on Web Reasoning and Rule
Systems (RR), pages 108-123, 2014.

A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Linking
data to ontologies. J. on Data Semantics, X:133-173, 2008.

. M. Rodriguez-Muro, R. Kontchakov, and M. Zakharyaschev. Ontology-based data access:

Ontop of databases. In Proc. of the 12th Int. Semantic Web Conf. (ISWC), 2013.

66

Schema-Agnostic Query Rewriting for OWL QL*

Stefan Bischof!, Markus Krotzsch?, Axel Polleres®, and Sebastian Rudolph?

! Vienna University of Technology, Austria and Siemens AG Osterreich, Austria
2 Technische Universitit Dresden, Germany
3 Vienna University of Economics and Business, Austria

Ontology-based query answering (OBQA) has long been an important topic in
applied and foundational research, and in particular in the area of description logics
(DLs). Query answering has been studied for every major DL, but the most prominent
use of DLs in query answering is based on the DLs of the DL-Lite family. In particular,
these have widely been used in ontology-based data access (OBDA), e.g., to integrate
disparate data sources or to provide views over legacy databases [3,14,4,9]. DL-Liteg is
also the basis of the W3C OWL 2 Web Ontology Language profile OWL QL, which was
specifically designed for OBDA applications [12].

On the other hand, research on query languages has led to a range of expressive
features beyond basic pattern matching, e.g., by supporting navigational constructs
or other forms of recursion. These developments have also affected practical query
languages. SPARQL 1.1, the recent revision of the W3C SPARQL standard, introduces
significant extensions to the capabilities of the popular RDF query language [7]. Even at
the very core of the query language, we can find many notable new features, including
property paths, value creation (BIND), inline data (VALUES), negation, and extended
filtering capabilities. In addition, SPARQL 1.1 now supports query answering over OWL
ontologies, taking full advantage of ontological information in the data [6,5]. Thus, with
the arrival of SPARQL 1.1, every aspect of OBQA is supported by W3C technologies.

In practice, however, SPARQL and OWL QL are rarely integrated. Most works on
OBDA address the problem of answering conjunctive queries (CQs), which correspond
to SELECT-PROJECT-JOIN queries in SQL, and (to some degree) to Basic Graph
Patterns in SPARQL. The most common approach for OBDA is query rewriting, where
a given CQ is rewritten into a (set of) CQs that fully incorporate the schema information
of the ontology. The answers to the rewritten queries (obtained without considering the
ontology) are guaranteed to agree with the answers of the original queries (over the
ontology). This approach separates the ontology (used for query rewriting) from the
rest of the data (used for query answering), and it is typical that the latter is stored in a
relational database. Correspondingly, the rewritten queries are often transformed into
SQL for query answering. SPARQL and RDF do not play a role in this.

In a recent paper [1], we took a fresh look on the problem of OBQA query rewriting
with SPARQL 1.1 as our target query language. The additional expressive power of
SPARQL 1.1 allows us to introduce a new paradigm of schema-agnostic query rewriting,
where the ontological schema is not needed for rewriting queries. Rather, the ontology
is stored together with the data in a single RDF database. This is how many ontologies
are managed today, and it corresponds to the W3C view on OWL and RDF, which does

* This extended abstract summarises the recent results of the authors’ paper Schema-Agnostic
Query Rewriting in SPARQL 1.1 [1].

67

not distinguish schema and data components.* The fact that today’s OBQA approaches
separate both parts testifies to their focus on relational databases. Our work, somewhat
ironically, widens the scope of OWL QL to RDF-based applications, which have hitherto
focused on OWL RL as their ontology language of choice.

Another practical advantage of schema-agnostic query rewriting is that it supports
frequent updates of both data and schema. The rewriting system does not need any
information on the content of the database under query, while the SPARQL processor that
executes the query does not need any support for OWL. This is particularly interesting if a
database can only be accessed through a restricted SPARQL query interface that does not
support reasoning. For example, we have used our approach to detect an inconsistency of
DBpedia under OWL semantics, using only the public Live DBpedia SPARQL endpoint
at http://live.dbpedia.org/sparql (the problem has since been corrected).

The main contributions of our work are:

We expressed standard reasoning tasks for OWL QL, including consistency checking,
classification, and instance retrieval, in single, fixed SPARQL 1.1 queries that are
independent of the ontology. It turned out that SPARQL 1.1 property paths are
powerful enough for OWL QL reasoning.

— We showed how to rewrite arbitrary SPARQL Basic Graph Patterns (BGPs) into
single SPARQL 1.1 queries of polynomial size. This task was simplified by the fact
that SPARQL does not support “non-distinguished” variables as used in CQs.

— We presented a schema-agnostic rewriting of general CQs in SPARQL 1.1, again
into single queries of polynomial size. This rewriting is more involved, and we used
two additional features: inline data (VALUES) and (in)equality checks in filters.

— We showed the limits of schema-agnostic rewriting in SPARQL 1.1 by proving that

many other OWL features cannot be supported in this way. This includes even the

most basic features of OWL EL and OWL RL, and mild extensions of OWL QL. It
also is not possible to rewrite regular path queries (and thus basic graph patterns of

SPARQL 1.1) into SPARQL 1.1, even for RDFS knowledge bases with assumption

of standard use. This would require a more expressive query language, such as

monadically defined queries [15].

Worst-case reasoning complexity remains the same in all cases, yet our approach
is certainly more practical in the case of standard reasoning and BGP rewriting. For
general CQs, the rewritten queries are usually too complex for today’s RDF databases
to handle. Nevertheless, we think that our “SPARQL 1.1 implementation” of OWL QL
query answering is a valuable contribution, since it reduces the problem of supporting
OWL QL in an RDF database to the task of optimizing a single (type of) query. Since
OWL QL subsumes RDFS, one can also apply our insights to implement query answering
under RDFS ontologies, which again leads to much simpler queries.

The full details of our rewritings are beyond this abstract, as the length of the rewritten
queries — polynomial or not — is too long to include full examples here. However, our
basic approach to reasoning with SPARQL 1.1 can be motivated by some very simple

4 Nevertheless, it is also true that some RDF stores treat terminological triples in special ways,
e.g., by keeping them in a dedicated named graph.

68

observations. Consider a situation where our TBox is guaranteed to contain only axioms
of the form A C B with A and B class names. Such axioms are encoded in RDF using
triples of the form A rdfs:subClassOf B. Clearly, one can now query for all (inferred)
instances of a class A using the graph pattern

{?X (rdf:type / rdfs:subClassOf*) A},

which looks for elements ?X that are connected to class A through property rdf:type
followed by zero or more uses of property rdfs:subClassOf. The queries used in our
work are significantly more involved, since they need to take into account a much larger
vocabulary used in OWL, including equivalent classes, subproperties and equivalent
properties, inverses, n-ary class intersections, and existential restrictions. Moreover, the
queries need to take into account the special semantics of T and the universal property,
as well as the potential inconsistency caused by L and the empty property.

An interesting observation here is that syntactic sugar can make schema-agnostic
query rewriting more difficult. Clearly, taking into account many possible syntactic en-
codings must lead to larger queries, which will usually affect execution times. However,
the OWL feature owl:SymmetricProperty even makes query rewriting impossible alto-
gether. This is surprising, since property symmetry can easily be expressed using inverses
and subproperties, which are fully supported by our approach. Such effects can occur
since SPARQL 1.1 is not a universal computing formalism (for its complexity class).
Note that these problems vanish if one allows even the most basic kinds of normalisation,
but this is not always practical (e.g., when querying the DBpedia SPARQL endpoint).

An interesting side effect of our work is that it provides a simple, worst-case optimal
method for terminological reasoning in OWL QL (and thus DL-Liteg). As we treat TBox
axioms as data, we can actually formulate queries over terminological knowledge, or
even answer conjunctive queries where some class or property names are replaced by
variables, with the intended meaning that these “meta-variables” range over vocabulary
symbols of the ontology.?

Future steps in this line of research include empirical evaluations, where the main
challenge is to identify OWL QL benchmarks with non-trivial TBoxes. It should not
be assumed that the good theoretical properties of the approach translate directly into
good performance, and further optimisations and adjustments might be needed. Imple-
mentation techniques such as partial materialisation would lead to a form of combined
rewriting (cf. [8] for a different approach to combined rewriting). Moreover, it is in-
teresting to extend our work towards more expressive ontology and query languages.
On the one hand, one can look towards more expressive DLs, such as &£, which have
also been considered in query rewriting [13]. A schema-agnostic approach in this case
would resemble Datalog-based reasoning calculi for these logics [10], and indeed one
could view Datalog as a query language here. On the other hand, one might consider
ontology languages that extend the expressiveness of DL-Lite by using existential rules,
e.g., linear TGDs [2]. Such cases might actually be somewhat simpler to handle, since
one is free to choose a (possibly normalised) database representation of rules, given that
there is not standard RDF encoding available.

3> The term higher-order query has been used in this context [11], although true higher-order
variables would rather represent arbitrary sets without any relationship to the vocabulary.

69

Acknowledgements This work has been funded by the Vienna Science and Technology
Fund (WWTF, project ICT12-015), and by the DFG in project DIAMOND (Emmy
Noether grant KR 4381/1-1).

References

1.

10.
11.

12.

13.

14.

15.

16.

Bischof, S., Krotzsch, M., Polleres, A., Rudolph, S.: Schema-agnostic query rewriting in
SPARQL 1.1. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C.A., Vrandeci¢,
D., Groth, P.T., Noy, N.F,, Janowicz, K., Goble, C.A. (eds.) Proc. 13th Int. Semantic Web
Conf. ISWC’14). LNCS, vol. 8796, pp. 584—600. Springer (2014)

. Cali, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework for tractable query

answering over ontologies. J. Web Semantics 14, 57-83 (2012)

. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and

efficient query answering in description logics: The DL-Lite family. J. Automated Reasoning
39(3), 385-429 (2007)

. Di Pinto, F., Lembo, D., Lenzerini, M., Mancini, R., Poggi, A., Rosati, R., Ruzzi, M., Savo,

D.F.: Optimizing query rewriting in ontology-based data access. In: Proceedings of the 16th
International Conference on Extending Database Technology. pp. 561-572. ACM (2013)

. Glimm, B., Krotzsch, M.: SPARQL beyond subgraph matching. In: Patel-Schneider, P.E., Pan,

Y., Glimm, B., Hitzler, P., Mika, P.,, Pan, J., Horrocks, I. (eds.) Proc. 9th Int. Semantic Web
Conf. ISWC’10). LNCS, vol. 6496, pp. 241-256. Springer (2010)

. Glimm, B., Ogbuji, C. (eds.): SPARQL 1.1 Entailment Regimes. W3C Recommendation (21

March 2013), available at http://www.w3.org/TR/sparql11-entailment/

. Harris, S., Seaborne, A. (eds.): SPARQL 1.1 Query Language. W3C Recommendation (21

March 2013), available at http://www.w3.org/TR/sparql11-query/

. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The combined approach

to ontology-based data access. In: Walsh [16], pp. 2656-2661

. Kontchakov, R., Rodriguez-Muro, M., Zakharyaschev, M.: Ontology-based data access with

databases: A short course. In: Rudolph, S., Gottlob, G., Horrocks, 1., van Harmelen, F. (eds.)
Reasoning Web, LNCS, vol. 8067, pp. 194-229. Springer, Mannheim, Germany (2013)
Krotzsch, M.: Efficient rule-based inferencing for OWL EL. In: Walsh [16], pp. 2668-2673
Lenzerini, M., Lepore, L., Poggi, A.: Practical query answering over Hi(DL-Liteg) knowledge
bases. In: Bienvenu, M., Ortiz, M., Rosati, R., Simkus, M. (eds.) Proc. 27th Int. Workshop
on Description Logics (DL’14). CEUR Workshop Proceedings, vol. 1193, pp. 608-619.
CEUR-WS.org (2014)

Motik, B., Cuenca Grau, B., Horrocks, 1., Wu, Z., Fokoue, A., Lutz, C. (eds.): OWL 2
Web Ontology Language: Profiles. W3C Recommendation (27 October 2009), available at
http://www.w3.org/TR/owl2-profiles/

Pérez-Urbina, H., Motik, B., Horrocks, I.: Tractable query answering and rewriting under
description logic constraints. J. Applied Logic 8(2), 186-209 (2010)

Rodriguez-Muro, M., Kontchakov, R., Zakharyaschev, M.: Ontology-based data access: Ontop
of databases. In: Alani, H., Kagal, L., Fokoue, A., Groth, P.T., Biemann, C., Parreira, J.X.,
Aroyo, L., Noy, N.F., Welty, C., Janowicz, K. (eds.) Proc. 12th Int. Semantic Web Conf.
(ISWC’13). LNCS, vol. 8218, pp. 558-573. Springer (2013)

Rudolph, S., Krétzsch, M.: Flag & check: Data access with monadically defined queries. In:
Hull, R., Fan, W. (eds.) Proc. 32nd Symposium on Principles of Database Systems (PODS’13).
pp- 151-162. ACM (2013)

Walsh, T. (ed.): Proc. 22nd Int. Joint Conf. on Artificial Intelligence (IJCAI'11). AAAI
Press/IJICAI (2011)

70

Singular Referring Expressions in Conjunctive
Query Answers: the case for a CFD DL Dialect

Alexander Borgida®, David Toman? and Grant Weddell!

tDepartment of Computer Science
Rutgers University, New Brunswick, USA
borgida@cs.rutgers.edu
fCheriton School of Computer Science
University of Waterloo, Canada
{david,gweddell}@uwaterloo.ca

Abstract. A referring expression in linguistics is any noun phrase iden-
tifying an object in a way that will be useful to interlocutors. In the
context of conjunctive queries over a description logic knowledge base
(DL KB), typically constant symbols (usually treated as rigid designa-
tors) are used as referring expressions in a certain answer to the query.
In this paper, we begin to explore how this can be usefully generalized by
allowing more general DL concept descriptions, called singular referring
expressions, to replace constants in this role. In particular, we lay the
foundation for singular referring expressions in conjunctive query answers
over a DL KB using a member of the CFD family of DL dialects. In the
process, we introduce a specific language for referring concept types, and
present initial results on how conjunctive queries with referring concept
types can be efficiently supported.

1 Introduction and Motivation

Query answering in logic-based approaches to data and knowledge bases has
traditionally been viewed as finding constant names, appearing in the knowledge-
base, which can be substituted for the variables of the query. More formally, a
query q(z1,...,xy,) is viewed as a formula with free variables x1,...,x, and, if
the knowledge-base K contains individual constant names IN, query answering
consists of computing the set { (a1,...,a,) | a; € IN,K = g(a1/z1, ..., ar/xx) }.
We believe that in a number of circumstances this is less than ideal.

(1) In object-based KBMSs (including Object-Relational, XML and Object-
Oriented DBMSs, as well as DLs with UNA), all known individual objects must
have unique (internal) distinguishing identifiers. However, these identifiers are
often insufficient to allow users to figure out what real-world object they refer
to, especially for large KBs. For example, system generated ref expressions in
object-oriented databases [10] and blank node identifiers in RDF are semantically
opaque to end-users. A specific example of this are identifiers that individual
authors or the system must invent in community-developed ontologies such as

71

Freebase [2]. There, for example, the id of the “Synchronicity” album by the
Police is "/guid/9202a8c04000641£8000000002f9¢349" (as of April, 2015.)

(2) In Relational DBMSs, the above problem is supposedly avoided by using
“external keys”: tuples of attributes whose values (strings, integers, ...) uniquely
identify rows of tables. Problem (1) above will then arise in OBDA access to
legacy relational systems, since the ontology will surely be object-based.!

We note that even in databases, universally unique keys are hard to find
(e.g., newly arrived foreign students do not have ssn#), though they may work
for subsets of individuals, such as those returned by queries.

(3) Additional problems for finding identifying attributes for classes of ob-
jects arise in conceptual modeling. For example, consider all cases where Ex-
tended Entity-Relationship modeling creates a new heterogeneous entity set by
“generalization” [5] from others. For example, we want to generalize Person
(whose key might be ssn#) and Company (whose key might be tickerSymbol) to
LegalEntity, which can own things. In EER modeling, such a situation forces the
introduction of a new, artificial attribute as a key, with the attendant problems.
Yet when we retrieve a set of legal entities, we can reference them in different,
more natural ways, depending on which subclass they belong to.

(4) The next example illustrates a subtler version of the above: consider the
following hierarchy of concepts relating to publications:

Journal € EditedCollection , EditedCollection = Publication

And suppose edited collections are identified by isbn#, while journals are iden-
tified by title and publisher. When we retrieve a set of objects in Publication,
we would like to describe them in different ways, depending on the subclass
they belong to; but in this case, there would be an additional preference for
textittitle, publisher) over isbn# for elements of Journal.

(5) Many kinds of KBMSs, including those based on DLs and FOL, allow
us to describe situations where objects can be inferred to exist, without having
an explicit (internal) identifier. For example, if Michelle is a person, then she has
a mother, and if she is married then she has a spouse. Normally, such objects
cannot be returned in the list of answers. This is all the more unpleasant if we
can capture information about this unknown person, such as the phone number
of Michelle’s mother: { Michelle} C 3hasMother.3hasPhone.{1234567}. Yet it is
common in human communication to identify objects by their relationship to
other known objects. For example, “Michelle’s mother” is a perfectly reasonable
intensional description of someone who has phone 1234567.

The standard response to some of the above problems would be to have the
user modify the query by finding the appropriate values for identifying attributes
(external keys). For example, instead of the query q1(x) :- Journal(x), the
programmer would be expected to write

q2(t,p) : —Journal(x),hasTitle(x,t), hasPublisher(x,p).
! OBDA systems such as MASTRO [4] and others try to deal with this issue by using

function symbols over database keys to generate “object terms” that act as object
identifiers. The name of the function symbols is however not semantically motivated.

72

This approach has several problems: (i) In the enumeration of answers to q2,
the relationship between the original object of interest, x, and its descriptors, t
and p, is lost; something akin to “objects x with title = t and publisher =
p” would be more desirable. (ii) The above reformulation cannot be done using
regular conjunctive queries in the case of item 4 above, because the answer for
edited collections that are not journals should be identified by isbn#, for which
the query is
q5(isb) : —EditedCollection(x), "Journal(x),hasIsbn(x,isbn)

which is not a conjunctive query, since it includes a negation. (iii) From the point
of view of software engineering, the task of choosing these identifying references
is mentally distinct from the task of selecting the objects of interest to begin
with. Both SQL’s select clause, and XQuery’s return clause are examples of
separating these two aspects in existing query languages.

This paper is then dedicated to the task of proposing a first solution to (some
of) the issues raised by providing “singular referring expressions” in the place of
individuals returned by conjunctive queries, in the context of DL KBs.

Our plan and contributions are as follows: We will start by proposing a lan-
guage for referring concept expressions and types. This language will generalize
the usual case of presenting answers to queries as individual names to situations
that: (i) allow object identification by key (paths), possibly within the limited
context of some concept instances; (ii) deal with heterogeneous answer sets, such
as LegalEntity; and (iii) allow preferential choice of referring expressions, as for
EditedCollection. We will use this language to define answers for conjunctive
queries over DL KBs. More generally, the proposed approach introduces a new
separation of concerns for knowledge bases (identification vs. qualification). In
our case, the query head will annotate each variable returned with an answer
concept type; this will be instantiated to an answer concept (a subset of our DL
concepts) for each answer; such concepts will eventually bottom out to individual
constants, rather than atomic concepts.

Because we wish to generalize the usual case of constant names in answers,
we desire referring concept types to be singular expressions — i.e., to identify
one individual.?2 Unfortunately, without knowing anything else, it is impossible,
for example, to tell whether an expression such as “object with p-value 3” will be
singular or not: if p is a key, then yes, but not otherwise. Therefore, we need to use
information from the ontology to verify the singularity of referring concept type.
This can be extended by examining the body of the query (and hence learning
more about what possible values variables may take). We will concentrate in
this paper on: (i) the (compile-time) analysis of conjunctive query bodies in the
context of the TBox to determine whether a referring concept type will return
a reference to at most one individual; (ii) the reformulation of the query to

2 Researchers interested in so-called co-operative query answering have considered re-
turning predicates/concepts describing sets of individuals (e.g., [1, 3,6, 8]), where an
answer to the query “Who can take the Data Structures course?” might include,
“Anyone who has passed the Intro to Computer Science course with at least a C
grade”. Please note that we are not considering that problem in this paper.

73

guarantee that the referring expression will indeed return exactly 1 value. Our
technical results will show that this can be done in polynomial time for the DL
CFD,,, which allows the capture of identification constraints such as keys.

2 Preliminaries: the Description Logic C.’F’D%C

The knowledge bases that we consider are based on the logic CFDy,., a re-
cent member of the CFD family of DL dialects. All members of this family are
fragments of FOL with underlying signatures based on disjoint sets of unary
predicate symbols called primitive concepts, constant symbols called individuals
and unary function symbols called attributes. Although attributes deviate from
the normal practice of using binary predicate symbols called roles, they make
it easier to incorporate concept constructors suited to the capture of relational
data sources that include various dependencies, e.g., by a straightforward reifi-
cation of arbitrary n-ary predicates, and also make it easier to explore varieties
of concepts that can serve as referring expressions.

Definition 1 (C}"DZC Concepts) Let F, PC and IN be disjoint sets of (names
of) attributes, primitive concepts and individuals, respectively. A path function
Pfis a word in F* with the usual convention that the empty word is denoted
by id and concatenation by “.”. The set of C]-'D%C concepts C is given by the
following grammar, where a € IN, A € PC, Pfand Pf, are path functions, k¥ > 0
and f; € F.

Cu={a} | A | VPLC | C1NCy | =A | Pfy=Pfy | (1)

A Pf,.Pf, Pfy,...,Pf, —» Pf, | A: Pf,.Pf,Pfy,...,Pf, > Pfi.f

Semantics is defined in the standard way with respect to an interpretation Z =
(A, (1)F), where A is a domain of “objects” and ()7 an interpretation function
that fixes the interpretation of attributes f to be total functions on A, primitive
concepts A to be subsets of /A, and individuals a, b to be elements of A. The

{ap)” = {7},

(VPLCYE = {ze A[(PH*(z) e (O)},
(CinC)t = (Ci)'n(C)F,
AT = AN,
(P =Ph)" = {ze|(Ph) (z)=(Ph) (z)} and
(A:Pf,....,Pf, = PHT = {zeA|Vyec(4)T:

N(PFY () = (Pf)*(y) = (PN () = (PH* (v)}

Fig. 1. Semantics of CFDy. Concepts.

interpretation function is extended to path expressions by interpreting id as the
identity function and concatenation as function composition. The semantics of
the remaining C}'DZC concepts are then defined in Figure 1. O

Concepts having the last two forms in (1) are called a (path) key and a path
functional dependency (PFD), respectively. Informally, such concepts each de-

74

note a set of objects, each of which, whenever agreeing with any A-object on all
left-hand-side path functions, also agrees with that object on the right-hand-side
path function. Thus, the axiom EditedCollection C EditedCollection : isbn# —
id, expresses that isbn# is a key for edited collections, while Person C Person :
home.phone# — home.address, says that if two persons have the same home
phone then they have the same home address.

Definition 2 (CFD,,. Knowledge Bases) Generic knowledge/metadata and
specific facts/data in a C}—D%c knowledge base IC are respectively defined by a
TBozx Tx and an ABox Ax.

A TBox Tx consists of a finite set of general concept inclusion azxioms, which
adhere to one of the following six forms, where A and A; are primitive concepts,
f is an attribute in F, B is a primitive concept or a negation of a primitive
concept, and where Pfand Pf; are path functions:

AC B; ACVf.B; Vf.AC B; AC (Pfy=Pfy); Ay C Ay: Pfy,..., P, = Pf.
Txc must also satisfy the following condition:

stratification of path function equalities: If A T (Pfy = Pfy) € T then A is a
primitive concept that does not occur on the right-hand-side of any inclusion
axiom in Ti.

An ABox A consists of a finite set of axioms that express facts, each of which
has one of the following two forms, respectively called individual membership
assertions and individual relationship assertions,
A(a) and Pfi(a) = Pfy(b),

for individuals a, b € IN, primitive concept A € PC, and path functions Pf; € F*.
Note that ({a})Z = {(a)?} and thus we can use nominal concepts as proxies
for individuals. An interpretation Z satisfies an inclusion axiom C; T C if
(C1)T C (C2)*. Tt satisfies ABox axioms A(a) and Pf,(a) = Pfy(b) if (a)? € (A)*
and (Pf,)((a)T) = (Pf,)T((b)T), respectively. Z satisfies a knowledge base K if
it satisfies each axiom in K. |

The need for the additional restriction on a TBox to avoid undecidability of
TBox reasoning due to equational constraints derives in a straightforward way
from the undecidability of the word problem for monoids [7,9].

Proposition 3 (Consistency and Logical Implication in C}"DZC [11,13])
Knowledge base consistency and logical implication for CF Dva are complete for
PTIME. m|

3 Conjunctive Queries and Certain Answers

In this section we re-evaluate the way answers to conjunctive queries are under-
stood and presented.

Definition 4 (Conjunctive Queries) A conjunctive query (CQ) @, with free
variables {z1, ..., zx}, has the form x4 1, ..., Iz, : BODY(Q) where BopY(Q),

()

the query body of @, is a first order formula over the signature CUF of the form

(/\C’(l‘z)) /\(/\f(a:j):xk)), (2)

where each z;,z; and xy, occurs in {z1,..., 2, }.3 a

Recall that our objective in this paper is to study how CF D%C concepts can help
serve the role of a singular referring expression in certain answers to conjunctive
queries. To review current practice, assume K is a knowledge base over some
DL dialect, and consider one of the purposes served by an ABox in defining
the certain answers over K to a CQ @: the finite collection of individual names

{ai,...,a,} in the ABox defines a space of n* potential answers to Q: k-tuples
¢; that map query variables z; to individual names a;,
{r1 = aiyy. ..,z — a }

Viewed as a substitution, recall that each 6; is a certain answer to @ over K
exactly when K |= Q0;. Note that the occurrence of an individual a;; in a certain
answer is a simple example of a referring expression, i.e., a syntactic artifact that
identifies elements of an underlying domain.

This notion of a potential answer is easily modified to accommodate a much
larger variety of referring expressions. To start, one can view a potential answer
0; as a set of size k that maps query variables to nominal concepts instead of
individuals, as in

{1~ {ai, },. .. zp = {ai }},

and then extend this idea by allowing arbitrary C]-"D;{C concepts in potential
answers to queries, i.e., potentially by allowing answers to have the form

{x1|—>01,...,a:k»—>0k}. (3)
In this alternative setting “certain answers” are defined as follows:

Definition 5 (Referring Concepts and Certain Answers)

Let K be a C]—'D%c knowledge base,) a conjunctive query with free variables
r1,...,2r and Cp,..., Cy C}"D%C concept, descriptions. We say that Cy,..., Cy
are referring concepts in a certain answer {x1 — Ci, ...,z — Ci} to Q if the
following two conditions hold:

1. CEVzy,...,zp.Ci(x1) A ... ACi(zg) = @, and
2. foe A I, [z = o] | Cizi) ATz, @im1, Tig, - 2. Q) = 1
for every Z =K and 0 < i < k.

where C(x) is the first-order formula derived from the concept description C. O

The first condition states that C; objects (as values of x;8) satisfy @) and the
second one that we are interested in singular referring expressions C;, as gen-
eralizations of simple individual names. In the rest of the paper we call {z; —
Cy, ...,z — Cr} a candidate answer to @ if condition (1) in the above definition

3 To improve readability in the rest of the paper we allow constants to appear in CQs.
However, conjuncts of the form x = a are just syntactic sugar for a conjunct {a}(z)
formed using a concept {a}. Similarly, f(z) = a is Jy(f(z) = y A {a}(y)), etc.

76

is satisfied,and call it a weakly identifying answer to @ if only an upper bound
(of one) is guaranteed to hold in condition (2) We call concepts C; that are used
in this way singular referring concepts since they replace the role of individual
names as referring expressions in certain answers to conjunctive queries.

To illustrate, assume K captures information about persons, and consider a
query with body Person(z). In the rest of the paper, we will use Pf = a as an
alternative syntax for VPf.{a } (to improve readability). Possibilities for certain
answers to the query now include one or more of the following:

{z — (ssn# = 1234)}

or

{z — Female N (hasSpouse.name = "Enya’) N (hasSpouse.phone# = 1234567)}.
Note that Definition 5(2) disallows answers of the form {x — Female} or more
generally, rules out any C for z in which |(C)%| # 1 when Z |= K. Thus, the
earlier examples of certain answers would be contingent on 7Tx ensuring that
persons have unique ssn#, as well as unique spouses, who can be identified by
a (name, phone#) pair.

4 Referring Concept Types in Conjunctive Queries

Allowing referring concepts beyond nominals in certain answers to a query Q may
lead to infinitely many syntactically distinct certain answers. In this section, we
develop a framework that ensures the set of certain answers to any conjunctive
query is finite by introducing a specific language for referring concept types,
which bottom out at individual nominals.

Important note: while Definition 5 allows general C]-'D%C concepts to serve
as referring concepts, in the rest of the paper we restrict our attention to the
subset of referring concepts adhering to the more limited grammar

C == {a} | A | VPIC | CNC
where {a} is a nominal, A is a primitive concept name, and Pf € F*. These C
are intuitively instances of the following referring types.

Definition 6 (Referring Concept Types)

A referring concept type Rt is given by the following grammar, where T' denotes
a finite conjunction of primitive concepts (or T standing for empty conjunction),
to be called henceforth a simple type.

Rt = {?} | Pf: {?} ‘ Rtl M Rtg | T — Rt ‘ Rtl;RtQ
The referring concept set RC(Rt, K) is the “extension” of a referring concept

type Rt with respect to KB K, and is defined inductively as follows, where S; is
short for RC(Rt;, K):

1. RC({?},K) = {{a} | a occurs in Ax};

2. RC(Pf={7},K) ={(Pf={a}) | a occurs in ABox Ax};
3. RC(Rt M Riy,K) = {C1 1 Co | C; € Sy}

4. RC(T — Rt,K)={T N C | C € S1}; and

(s

5. RC(RH; RtQJC) =S5 U {CQ €9, | -3C; € S; s.t. K ': C, = CQ}

A referring concept type is homogeneous if it is free of any occurrence of the
construct in 5. O

Examples of their use will follow immediately after the next definition. Note
that, as desired, the set of referring concepts associated with a single referring
concept type is finite if Ay is finite.

Definition 7 (Certain Answers and Singular Referring Concepts)

Let @ be a conjunctive query with free variables {z1,...,ax}. A query head H
for @ is a set of pairs {zy : Rty,...,x : Rt} that associates a referring concept
type Rt; with each ;.

The set of certain answers to with respect to a head H and a knowledge base
K, denoted ANS(Q, H, K), is the set of all certain answers {x; — C; | 0 < i < k}
to @ over K for which C; € RC(Rt;, K), for 0 < i < k. ad

After the examples below, the objective in this section is to show that computing
ANs(Q, H,K) can be achieved in PTIME for C}"D,\?w, provided that referring
concept types satisfy a “weak identification condition”.

The following examples illustrate the use of referring concepts with con-
junctive queries to extend the current situation with the more expressive cases
motivated in the Introduction (a conjunctive query @ with a head H will be
written in the following SQL-like style: select H where BoDY(Q)):

1. (expressing the current case) “Any journals published by Italians”
select z1 : {7}
where Journal(z1) A (publishedBy(z1) = x2) A Ttalian(xs)
2. (reference via single key) “The ssn# of any person with phone 12345567”
select x : ssn# = {7}
where Person(z) A (phone#(x) = 1234567)
3. (multiple attribute key) “The title and publisher of any journals”
select x : title = {7} M publishedBy = {7}
where Journal(z)
4. (choice of identification in heterogeneous set) “Any legal entity”
select = : Person — ssn# = {7} ; Company — tickerSymbol = {7}
where LegalEntity(x)
An example certain answer would be x — Person M (ssn# = 7654) while
another might be x — Company M (tickerSymbol = 'IBM).
5. (preferred identification) “Any publication, identified by its most specific
identifier, when available.”
select = : Journal — (title = {7} M publisher = {7}) ;
EditedCollection — isbn# = {7} ; {7}
where Publication(x)

We now make concrete our requirement that referring concepts occurring in
query answers do indeed satisfy the ability to identify objects.

8

Definition 8 (Weak Identification in Certain Answers) Let Q be a con-
junctive query, H a head for @, and T a C}"D%c TBox. @ is weakly identifying
for H with respect to T if |(C)%| < 1 for every ABox A, model Z of T U A, and
candidate answer 6 to Q with respect to H and 7 U A in which x — C € 6. O

Lemma 9 (Normal Form of Referring Concept Types) For every refer-
ring concept type Rt, there is an equivalent normal form

Rty;...; Ry,
denoted NORM(RY), consisting of tagged record types Rt; that are, in turn, ho-
mogeneous referring concept types of the form

E - ((sz,l = {?}) Mm...n (Pf:i,m,- = {?})) (4)
By equivalent, we mean that, for any KB K, C1 € RC(Rt, K) implies there exists
Cy € RC(NorM(Rt), K) for which {} = C1 = Cy, and vise versa. a

Proof (sketch): By application of the following equivalence preserving rewrites.
{a} {} = (id = {a})
(T — Rt1) M Rty or Rty I (T — Rtg) T — (Rtl I Rtg)
(Rp1] Rtg) 1 Rt3 (Rtl [l Rt3) ; (Rtg 1 Rtg)
Rtl M (RtQ;Rtg) (Rtl M Rtg) 5 (Rtl M Rtg)
T1 — (TQ — Rt) (Tl [l TQ) — Rt O

A A

We now present our first main result on deciding weak identification. Our theo-
rem refers to the following auxiliary function M(-) which abstracts query bodies
as DL concepts (note that the function assumes, without harm, that variables
are also elements of F):

Va.C if ¢ = “C(a)”;
o f=x if o= “f(x1) =7
M(@) = M(¥1) T M(3p2) if ¢ = “P1 Apo”; and
M) otherwise, when ¢ = “Jrpy1,..., 3wy, 1 Y.

Theorem 10 (Deciding Weak Identification) Let @) be a conjunctive query,
H ahead for @, and T a C]-'ch TBox. Q is weakly identifying for H with respect
to T if and only if

TU{Aq C ((Vo.T)MM(BopY(Q))) F Ag E Ag : x.Pf4,...,x.Pf;,, —x
for all (x: Rt) € H,and all T — (Pf, = {?})n...N(Pf, = {?}) € NorM(Rt).

Proof (sketch): The if direction is straightforward. For the only-if direction,
consider the earliest tagged record type Rt € NORM(RY) for some x : Rt € H
for which the check for the logical consequence of the key PFD fails. Then one
can construct an ABox A where there exists C € RC(Rt’, T U.A) that occurs in
some candidate answer 6 for () for which one can also construct an interpretation
T for T U A for which [(C)%| > 1. g

Definition 11 Let @ be a CQ with free variables {z1,...,z;}. We say that H
is a homogeneous head for @ if it is of the form

H={x;:T,— (Pf,={?) N ...0 (P, ={?}) |0 < i<k}

79

For every CQ @ and a homogeneous head H for) we define a conjunctive query
k

Qu = QAN N (Ti(x:) APy (i) = zin Ao A (Pfiy, = 2ig,)
i=1
with additional free variables {z; ; |0 <i <k,0 < j <{;}. O

To handle preferences, i.e., non-homogeneous heads H of queries of the form
{wi : Rp; 153 Rp; ,, | 0 < i < k} we first define a sequence of homogeneous
heads

Hj, e ={zi: Bp;;, | 0<i <k}
over all 0 < j; < n;. In addition, we define a normalized ABox A’ for an ABox A
to contain only individual relationship assertions of the form f(a) = b obtained

from A by introducing additional individuals for the intermediate individuals
participating in A’s individual relationship assertions.*

Theorem 12 Let £ = (7, .A) be a knowledge base, @ a CQ, and H a head for
Q, such that Q is weakly identifying for H in 7. Then

{zi > T 11 (Pfiy ={ain}) M ... 0 (P, = {aie})} € ANS(Q, H, K)
if and only if

{Ii — {bi},IEi,j — {CLZ'J'} | 0<i< k,O <5< Ez} S AANS(CQHj1 _____ jk,Ho,IC/)
and there is no
{xi — {bi},.ﬁi)j — {a;7j} | 0<i<k0 <5< fl} € ANS(QHA, y ,HQ,IC/)
.71 ------ J k

for Hy; ;. dominates Hj, j,, where Hy = {z; : {7} | 0 <@ < k}U{;; : {7} |
0<i<kO0<j<¢}, K =(T,A) where A’ is a normalized A, and a; ; and
a; ; are constants in A.

Proof (sketch): Consider first the case where H is homogeneous. Then we can
reconstruct an answer to @ and H from an answer to Qg and Hy (which consists
of nominal concepts only. Conversely, from answer to Q and H we can extract
nominal concepts that are an answer to 3z, ..., 25.Qm and Hy (restricted to free
variables of 3x1,...,2,.Qp). This answer is then extended to Qg and (full) Hy
by using individual names introduced in the normalized ABox A’, this extension
is unique since @ is weakly identifying for H in 7.

For the non-homogeneous case we simply consider all possible homogeneous sub-

cases and then filter the answers by the valuations of the variables z1, ...,z
(since those describe the possibly anonymous individuals in A using their system-
assigned names A’). a

Note that the queries @ Hy ., are answered in /U with respect to Hy, a triv-
1

k
tal and homogeneous head: this reduces the answering to standard CQ query
answering in CFD,,. knowledge base K as introduced in [12].

Corollary 13 Computing certain answers to conjunctive queries with respect
to referring concepts and C}'Dyw knowledge bases is complete for PTIME.

* Such a transformation is already part of the CQ answering algorithm [12]. Note that
in our setting, however, the new individuals cannot participate in Q)’s answers.

80

5 Conclusions

The paper’s contributions are as follows.

First and foremost, on the non-technical side, it recognized and motivated
the utility of “singular referring expressions” for query answers, which are more
complex than just nominals, and it argued for the need for a new separation of
concerns in query writing: qualification (what the query body does) vs. identifi-
cation (how results are presented).

On the specification side, the paper defined formally the notion of “query
answering using referring expressions” for certain answers in conjunctive queries
over DLs. In the context of CF D%C, it introduced a specific language for referring
expressions, which are a subset of C}"’D%C concepts, and which allows us to
handle all the motivating problems (except intensional descriptions in this paper.
This language generalizes the notion of nominal, currently used in OBDA, to
handle keys (as found in both the database and DL KB literature), and supports
heterogeneous sets (as in the case of Legal Entity), as well as preferential choice
of referring expressions (as in the EditedCollection example).

On the algorithmic and complexity side, it first considered, in the context of
C]:’D%C, the problem of determining (in polynomial time) whether a referring
concept type was “weakly” identifying in the context of a query and TBox, in
the sense that its instances necessarily referred to at most one object. It also
showed how one can transform a query and knowledge base so that the answers
had cardinality one. This led to the result that computing certain answers to
conjunctive queries with respect to referring concepts and C}'D;Vw KBs was
complete for PTIME.

There are many avenues left to explore in this work. We have already men-
tioned that lack of space prevented us from considering referring concepts types
for “Michelle’s mother”, which use inverse functions. Another direction to con-
sider are additional forms or desirable properties of referring expressions. For
example, the variety of references raises a problem: the same object may be re-
turned in an answer with different references to it, even if the knowledge base
works with the UNA. As a simplest example, a journal has multiple candidate
keys. We are currently investigating ways to reason about and avoid such dupli-
cation.

The reader may also have observed that so far it was up to the programmer
to select the referring expression(s) to consider for each variable. A form of
type inference on the query variables would be useful, as the basis of a tool
which would suggest to the user a (bounded) list of possible referring expressions
that are guaranteed to have the singular reference property with respect to a
particular TBox.

Of course, all the technical questions considered in this paper will have dif-
ferent answers for different DLs. Therefore, an orthogonal avenue of research is
to re-consider these issues in the context of other DLs, especially DL-Lite.

Acknowledgments: We wish to thank those reviewers who have made excellent
suggestions for improving the paper, and financial support from NSERC Canada.

81

References

10.

11.

12.

13.

Sonia Bergamaschi, Claudio Sartori, and Maurizio Vincini. DI techniques for in-
tensional query answering in oodbs. In Working Notes of the KI'95 Workshop:
KRDB-95 Reasoning about Structured Objects: Knowledge Representation Meets
Databases, page 3 pages, 1995.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
Freebase: a collaboratively created graph database for structuring human knowl-
edge. In ACM SIGMOD International Conference on Management of Data, pages
1247-1250. ACM, 2008.

Alexander Borgida. Description logics in data management. Knowledge and Data
Engineering, IEEE Transactions on, 7(5):671-682, 1995.

. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,

Antonella Poggi, Mariano Rodriguez-Muro, Riccardo Rosati, Marco Ruzzi, and
Domenico Fabio Savo. The MASTRO system for ontology-based data access. Se-
mantic Web, 2(1):43-53, 2011.

Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database Systems,
3rd Edition. Addison-Wesley-Longman, 2000.

Tomasz Imielinski. Intelligent query answering in rule based systems. The Journal
of Logic Programming, 4(3):229-257, 1987.

Andrey Andreyevich Markov, Jr. On the impossibility of certain algorithm in the
theory of associative systems. Dokl. Akad. Nauk SSSR, 55:587-590, 1947.

Amihai Motro. Intensional answers to database queries. Knowledge and Data
Engineering, IEEE Transactions on, 6(3):444-454, 1994.

Emil Post. Recursive unsolvability of a problem of Thue. The Journal of Symbolic
Logic, 12:1-11, 1947.

Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database System Con-
cepts, 4th Edition. McGraw-Hill Book Company, 2005.

David Toman and Grant E. Weddell. Conjunctive query answering in CFDnec : A
PTIME description logic with functional constraints and disjointness. In A 2013:
Advances in Artificial Intelligence - 26th Australasian Joint Conference, Dunedin,
New Zealand, December 1-6, 2013. Proceedings, pages 350-361, 2013.

David Toman and Grant E. Weddell. Answering Queries over CFDye Knowl-
edge Bases. Technical Report CS-2014-14, Cheriton School of Computer Science,
University of Waterloo, 2014.

David Toman and Grant E. Weddell. On adding inverse features to the description
logic CFD}e. In PRICAI 2014: Trends in Artificial Intelligence - 13th Pacific Rim
International Conference on Artificial Intelligence, Gold Coast, QLD, Australia,
December 1-5, 2014., pages 587-599, 2014.

82

Temporal Query Answering in EL*

Stefan Borgwardt and Veronika Thost

Theoretical Computer Science, TU Dresden, Germany
firstname.lastname@tu-dresden.de

Motivation Context-aware systems use data collected at runtime to recognize
predefined situations and trigger adaptations; e.g., an operating system may use
sensors to recognize that a video application is out of user focus, and then adapt
application parameters to optimize the energy consumption. Using ontology-
based data access [12,19], the situations can be encoded into queries that are
answered over an ABox containing the sensor data. In the TBox, we can encode
background knowledge about the domain. For example, if the user has been
working with another application on a second screen for a longer period, then
we may assume that he does not need the video to be displayed in the highest
resolution.

In this paper, we focus on the lightweight DL E£. We can state static knowl-
edge about applications (VideoApplication(appl)), dynamic knowledge about the
current context (NotWatchingVideo(userl)), as well as background knowledge like

VideoApplication M JhasUser.NotWatchingVideo C JhasState.OutOfFocus,

saying that a video application whose user is currently not watching the video
is out of user focus. Given such a knowledge base, we can use the conjunctive
query (CQ) ¥ (x) := Jy.hasState(z, y) A OutOfFocus(y) to identify applications x
that can potentially be assigned a lower priority. More complex situations typi-
cally depend also on the behavior of the environment in the past—the operating
system should not switch configurations every time the user is not watching for
one second, but only after this has been the case for a longer period.

For that reason, we investigate temporal conjunctive queries (TCQs), origi-
nally proposed in [3,4]. They combine conjunctive queries via the operators of
the propositional linear temporal logic LTL [14,18]. We can use the TCQ

(O %) A (0" O ¥(@) A (O O O %)) A
(—=(3y.GotPriority(y) A notEqual(z,y)) S GotPriority(z))

to obtain all applications that were out of user focus during the three previous
(O7) moments of observation, were prioritized by the operating system at some
point in time, and the priority has not (—) changed since (S) then. The semantics
of TCQs is based on temporal knowledge bases (TKBs), which, in addition to the
TBox (which is assumed to hold globally, i.e., at every point in time), contains
a sequence of ABoxes Ag, Ay, ..., Ay, representing the data collected at specific

* Partially supported by the DFG in CRC 912 (HAEC).

83

points in time. We designate with n the most recent time of observation (the
current time point), at which the situation recognition is performed. We also
investigate the related temporalized formalism EL-LTL, in which axioms, i.e.,
assertions or GCls, are combined using LTL-operators.

Related Work The axioms in a TKB do not explicitly refer to time, but are
written in a classical (atemporal) DL; only the query is temporalized. In contrast,
[1,2,13,17] extend classical DLs by temporal operators that occur within concepts
and axioms. However, most of these logics yield high reasoning complexities, even
if the underlying atemporal DL is tractable. Lower complexities are obtained by
considerably restricting either the temporal operators or the underlying DL.

Regarding temporal properties formulated over atemporal DLs, ALC-LTL,
a variant of EL-LTL over the more expressive DL ALC, was first considered
in [6]. This was the basis for introducing TCQs over ALC-TKBs in [3]|, which
was extended to SHQ in [4]. However, reasoning in ALC is not tractable, and
context-aware systems often need to deal with large quantities of data and adapt
fast. TCQs over several lightweight logics have been regarded in [7], but only
over a fragment of LTL without negation. In [1], the complexity of LTL over
axioms of several members of the DL-Lite family of DLs has been investigated.
However, nothing is known about TCQs over these logics.

Results We investigate the combined and data complexity of the TCQ en-
tailment problem over TKBs formulated in ££. Moreover, we determine the
complexity of satisfiability of £L-LTL-formulae, and additionally consider the
special case where only global GClIs are allowed [6]. As usual, we consider rigid
concepts and roles, whose interpretation does not change over time. In this re-
gard, we distinguish three different settings, depending on whether concepts or
roles (or both) are allowed to be rigid. Since rigid concepts can be simulated by
rigid roles [6], only three cases need to be considered: (i) no symbols are allowed
to be rigid, (ii) only rigid concepts are allowed, and (iii) both concepts and roles
can be rigid. Tables 1 and 2 summarize our results and provide a comparison
to related work. The only previously known results that directly apply here are
P-hardness of CQ entailment in &£ w.r.t. data complexity [11] and PSPACE-
hardness of LTL [20]. Hence, we needed to prove three additional complexity
lower bounds.

With a single exception, the complexity of TCQ entailment in EL turns out to
be lower than that in ALC (and SHQ) [4]. Regarding satisfiability in EL-LTL,
Table 2 shows that rigid symbols lead to an increase in complexity that does
not affect DL-Litegrom-LTL [1], and even matches the complexity of ALC-LTL
and SHOQ-LTL in case (ii) [6,15]. Thus, we partially confirm and refute the
conjecture of [6] that E£-LTL is as hard as ALC-LTL. In the following, we shortly
describe some of the ideas behind them. More details can be found in [8-10].

The upper bounds are obtained by a combination of techniques that were
developed for ALC-LTL [6] and refined for TCQs over SHO-TKBs [4], methods
for checking LTL-satisfiability [4,20,21], and algorithms for atemporal reasoning

84

Table 1. The complexity of TCQ entailment. All results except the one for the data
complexity of case (iii) from [4] are tight.

Data Complexity Combined Complexity
(i) (ii) (iii) (i) (ii) (iii)
&L P co-NP co-NP PSpace PSpace co-NExpPTIME
ALC/SHQ [4] co-NP co-NP ExpTiME ExpTIME co-NEXpTIME 2-EXpPTIME

Table 2. The complexity of satisfiability in LTL over DL axioms.

Global GCIs
(i) (if) (i) Q) (if) (i)

DL-Litexrom |1] PSPACE PSPACE PSpACE PSpacE PSPACE PSpACE
&L PSpace NExpTIME NEXPTIME PSpPACE PSpACE PSPACE
ALC (6] ExpTiME NEXPTIME 2-EXpPTiME ExPTIME ExpTiME 2-ExpTIME

in &L [5,16]. However, considerable work was necessary to obtain tight complexity
bounds in all cases we considered. The main approach is to separate the temporal
operators from the CQs (or axioms), which leaves us to solve a variant of the
satisfiability problem for LTL (in P w.r.t. data complexity and in PSPACE w.r.t.
combined complexity), as well as the following problem for the DL part.

Definition 1. Let K = (T, (A;)o<i<n) be a TKB and as, . .., ay, be CQs.t A set
S={X1,..., X3} C2larwam} s ysatisfiable w.r.t. a mapping v: {0,...,n} —
{1,...,k} and K if there are interpretations Ji,...,Jx and Iy, ..., T, such that

— they share the same domain and interpret all rigid symbols in the same way;
— each J; is a model of T and x; == A\ Xi AN N\{~¢; | o ¢ X;}; and
— each Z; is a model of (T, Ai) and x,)-

Individually, the satisfiability of the conjunctions y; can be tested in P w.r.t. data
complexity and in PSPACE w.r.t. combined complexity. However, the problem is
to ensure the first condition, namely that all rigid names are interpreted in the
same way by all relevant interpretations.

In case (i), this restriction is obviously irrelevant. For case (iii), one can an-
swer an exponentially large UCQ over an exponentially large atemporal knowl-
edge base instead to obtain the upper bounds. The most difficult cases were
case (ii) for the combined complexity of TCQ entailment, and the case of global
GClIs in EL-LTL, where we needed to obtain PSPACE upper bounds in the pres-
ence of rigid names. For these cases, we proved that it suffices to guess additional
data of polynomial size that can be added to the knowledge bases in order to
separate the satisfiability tests in Definition 1. These tests can then be integrated
into a PSPACE-Turing machine for LTL-satisfiability [20] without increasing the
complexity.

Acknowledgements We want to thank Franz Baader, Marcel Lippmann, and
Carsten Lutz for fruitful discussions on the topic of this paper.

! In the case of EL-LTL, these are axioms.

85

References

10.

11.

12.

13.

14.

15.

16.

Artale, A., Kontchakov, R., Lutz, C., Wolter, F., Zakharyaschev, M.: Temporal-
ising tractable description logics. In: Proc. of the 14th Int. Symp. on Temporal
Representation and Reasoning (TIME’07), pp. 11-22. IEEE Press (2007)

. Artale, A., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: A cookbook for

temporal conceptual data modelling with description logics. ACM Transactions on
Computational Logic 15(3), 25:1-25:50 (2014)

Baader, F., Borgwardt, S., Lippmann, M.: Temporalizing ontology-based data ac-
cess. In: Proc. of the 24th Int. Conf. on Automated Deduction (CADE’13). pp.
330-344. Springer-Verlag (2013)

Baader, F., Borgwardt, S., Lippmann, M.: Temporal query entailment in the de-
scription logic SHQ. Journal of Web Semantics (2015), doi:10.1016/j.websen.
2014.11.008, in press.

Baader, F., Brandt, S., Lutz, C.: Pushing the £L envelope. In: Proc. of the 19th Int.
Joint Conf. on Artificial Intelligence (IJCAT’05). pp. 364-369. Professional Book
Center (2005)

Baader, F., Ghilardi, S., Lutz, C.: LTL over description logic axioms. ACM Trans-
actions on Computational Logic 13(3), 21:1-21:32 (2012)

Borgwardt, S., Lippmann, M., Thost, V.: Temporalizing rewritable query languages
over knowledge bases. Journal of Web Semantics (2015), doi:10.1016/j.websen.
2014.11.007, in press.

Borgwardt, S., Thost, V.: LTL over ££ axioms. LTCS-Report 15-07, Chair for
Automata Theory, TU Dresden (2015), see http://lat.inf.tu-dresden.de/
research/reports.html.

Borgwardt, S., Thost, V.: Temporal query answering in ££. LTCS-Report 15-
08, Chair for Automata Theory, TU Dresden (2015), see http://lat.inf.
tu-dresden.de/research/reports.html.

Borgwardt, S., Thost, V.: Temporal query answering in the description logic £L.
In: Yang, Q. (ed.) Proc. of the 24th Int. Joint Conf. on Artificial Intelligence
(IJCAT'15). AAAI Press (2015), to appear.

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data com-
plexity of query answering in description logics. In: Proc. of the 10th Int. Conf.
on Principles of Knowledge Representation and Reasoning (KR’06). pp. 260-270.
AAAI Press (2006)

Decker, S., Erdmann, M., Fensel, D., Studer, R.: Ontobroker: Ontology based access
to distributed and semi-structured information. In: Database Semantics: Semantic
Issues in Multimedia Systems. pp. 351-369. Kluwer Academic Publisher (1998)
Gutiérrez-Basulto, V., Jung, J.C., Schneider, T.: Lightweight description logics
and branching time: A troublesome marriage. In: Proc. of the 14th Int. Conf.
on Principles of Knowledge Representation and Reasoning (KR’14). AAAT Press
(2014)

Lichtenstein, O., Pnueli, A., Zuck, L.: The glory of the past. In: Proc. of the
Workshop on Logics of Programs. pp. 196-218. Springer-Verlag (1985)
Lippmann, M.: Temporalised Description Logics for Monitoring Partially Observ-
able Events. Ph.D. thesis, TU Dresden, Germany (2014), http://nbn-resolving.
de/urn:nbn:de:bsz:14-qucosa-147977

Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering in the description
logic £L£ using a relational database system. In: Proc. of the 21st Int. Joint Conf.
on Artificial Intelligence (IJCAT’09). pp. 2070-2075. AAAI Press (2009)

86

17.

18.

19.

20.

21.

Lutz, C., Wolter, F., Zakharyaschev, M.: Temporal description logics: A survey.
In: Proc. of the 15th Int. Symp. on Temporal Representation and Reasoning
(TIME’08). pp. 3-14. IEEE Press (2008)

Pnueli, A.: The temporal logic of programs. In: Proc. of the 18th Annual Symp.
on Foundations of Computer Science (SFCS’77). pp. 46-57. IEEE Press (1977)
Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.:
Linking data to ontologies. Journal of Data Semantics 10, 133-173 (2008)

Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics.
Journal of the ACM 32(3), 733-749 (1985)

Wolper, P., Vardi, M.Y., Sistla, A.P.: Reasoning about infinite computation
paths. In: Proc. of the 24th Annual Symp. on Foundations of Computer Science
(SFCS’83). pp. 185-194. IEEE Press (1983)

87

Efficient Query Answering in DL-Lite through
FOL Reformulation (Extended Abstract)

Damian Bursztyn', Francois Goasdoué? and Ioana Manolescu®
L INRIA & U. Paris-Sud, France 2 U. Rennes 1 & INRIA, France

Abstract. We propose a general query optimization framework for for-
malisms enjoying FOL reducibility of query answering, for which it reduces
to the evaluation of a FOL query against facts. This framework allows
searching within a set of alternative equivalent FOL queries, i.e., FOL re-
formulations, one with minimal evaluation cost when evaluated through
a relational database management system. We provide two algorithms,
an exhaustive and a greedy, for exploring the optimization space. This
framework is applied to the lightweight description logic DL-Liter un-
derpinning the W3C’s OWL2 QL profile, for which an experimental eval-
uation validates the interest and applicability of our technique.

1 Introduction

Query answering in the lightweight DL-Liteg description logic [1] has received
significant attention in the literature, as it provides the foundations of the W3C’s
OWL2 QL standard for Semantic Web applications. In particular, query answer-
ing techniques based on FOL reducibility, e.g., [1,2,5,6,7], which reduce query an-
swering against a knowledge base (KB) to FOL query evaluation against the KB’s
facts only (a.k.a. ABox) by compiling the KB’s domain knowledge (a.k.a. TBox)
into the query, hold great potential for performance. This is because FOL queries
can be evaluated by a highly optimized Relational Database Management Sys-
tem (RDBMS) storing the KB’s facts.

The goal of our study is to identify efficient techniques for query answering in
description logics enjoying FOL reducibility, with a focus on DL-Liter. Notably,
we reduce query answering to the evaluation of alternative FOL queries, a.k.a. FOL
reformulations, belonging to richer languages than those considered so far in the
literature; in particular, this may allow several (equivalent) FOL reformulations
for a given input query. This contrasts with related works, e.g., the aforemen-
tioned ones, which aim at a single FOL reformulation (modulo minimization).
Allowing a variety of reformulations is crucial for efficiency, as such alternatives,
while computing the same answers, may have very different performance (re-
sponse time) when evaluated through an RDBMS. Therefore, instead of having
a single fixed choice that may or may not be performant, we select the one with
lowest estimated evaluation cost among possible alternatives.

2 Cover-based query answering optimization

RDBMS query optimizers consider a set of evaluation alternatives (a.k.a. logical
and physical plans), and select the one minimizing a cost estimation function.

88

Since the number of alternatives is in O(2" x n!) for a conjunctive query (CQ)
of n atoms [4], modern optimizers rely on heuristics to explore only a few al-
ternatives; this works (very) well for small-to-moderate size CQs. However, FOL
reformulations go beyond CQs in general, and may be extremely large, leading the
RDBMS to perform poorly.

To work around this limitation, we introduce the cover-based query answer-
ing technique to define a space of equivalent FOL reformulations of a CQ. A cover
defines how the query is split into subqueries, that may overlap, called frag-
ment queries, such that substituting each subquery with its FOL reformulation
(obtained from any state-of-the-art technique) and joining the corresponding
(reformulated) subqueries, may yield a FOL reformulation for the query to an-
swer. Not every cover of a query leads to a FOL reformulation; but every cover
which does, yields an alternative cover-based FOL reformulation of the original
query. Crucially for our problem, a smart cover choice may lead to a cover-based
reformulation whose evaluation is more efficient. Thus, the cover-based tech-
nique amounts to circumuventing the difficulty of modern RDBMSs to efficiently
evaluate FOL reformulations in general.

Problem 1 (Optimization problem). Given a CQ ¢ and a description logic KB K,
the cost-driven cover-based query answering problem consists of finding a cover-
based reformulation of ¢ based on K with lowest (estimated) evaluation cost.

We solve this problem for DL-Liteg in two steps. First, we provide a sufficient
condition for a cover to be safe for query answering, i.e., to lead to a cover-based
FOL reformulation. The main idea for this condition is to have a cautious ap-
proximation of the query atoms which are interdependent w.r.t. reformulation,
i.e., which (directly or after specialization) unify through state-of-the-art refor-
mulation techniques, and keep them in the same cover fragment. The space of all
covers of a query ¢ satisfying this condition is denoted Lg; all £, covers turn out
to correspond to some fusion of fragments from a certain root cover we denote
Croot- We also refine our sufficient condition to identify an extended space of
covers &;, which includes £, and also leads to FOL reformulations of g.

Second, based on a function € estimating the evaluation cost of a given FOL
query through an RDBMS, we devise two cover search algorithms. The first
one, termed EC-DL (Exhaustive Covers), starts from Cyoor and explores all
&, covers in the case of DL-Liteg. The second one, named GC-DL (Greedy
Covers), also starts from Cloor but explores &, partially, in greedy fashion. It
uses an explored cover set initialized with {Cioot}, from which it picks a cover C
inducing a ¢ reformulation with minimum cost €(C), and attempts to build
from C a cover C’, by fusing two fragments, or adding (copying) an atom to a
fragment. GC-DL only adds C’ to the explored set if €(C’) < €(C'), thus it only
explores a small part of the search space. Both algorithms return a cover-based
reformulation with the minimum estimated cost w.r.t. the explored space. When
fusing two fragments into one, or adding an atom to a fragment, e(C') decreases
if the new fragment is more selective than the fragment(s) it replaces. Therefore,
the RDBMS may find a more efficient way to evaluate the query of this new
fragment, and/or its result may be smaller, making the evaluation of ¢*® based
on the new cover C faster.

89

FOL reformulations evaluation time through Postgres Cost-based cover selection algorithm running time
UCQ memmm 250 EC-DL mmmm

CRoot mmmm GC-DL mmm

EE-DL JUCQ 200

G§-DLIUCQ ——

14000
12000
10000
8000
6000
4000
2000

150

100

Time (ms)
Time (ms)

50

0
QL Q@2 @3 Q4 Q5 Q6 Q7 Q8 Q9 QL0QL1 QL2 QL3 QL @ Q3 Q4 Q5 Q6 Q7 Q8 QI QL0 Qll QL2 QI3

Fig. 1: (a) Evaluation time for FOL reformulations. (b) Cover search running time.

3 Experimental validation

We implemented our cover-based approach in Java 7, on top of PostgreSQL
v9.3.2. We used the LUBM3, DL-Liter TBox and associated EUDG data gen-
erator [3]: LUBM3, consists of 34 roles, 128 concepts and 212 constraints; the
generated ABox comprises 15 million facts. We chose RAPID [2] for CQ-to-UCQ
(unions of CQs) reformulation. For €, we used Postgres’ own estimation, obtained
using the explain directive. We devised a set of 13 CQs, ranging from 2 to 10
atoms (5.77 on average); their UCQ reformulations have 35 to 667 CQs (290.2 on
average).

Figure 1(a) depicts the evaluation time through Postgres, of four FOL refor-
mulations: (i) the UCQ produced by RAPID [2]; (i4) the JUCQ (joins of UCQs)
reformulation based on Coot; (#42) the JUCQ reformulation corresponding to the
best-performing cover found by our algorithm EC-DL, and (iv) the JUCQ refor-
mulation based on the best-performing cover found by GC-DL. First, the figure
shows that fixed FOL reformulations are not efficiently evaluated, e.g., UCQ for
@1, Q5 and Q9-Q11, and the one based on Ciyo; for Qg-Qs and (Q13. This poor
performance correlates with the large size of the UCQ reformulations: such very
large unions of CQs are very poorly handled by current RDBMS optimizers, which
are designed and tuned for small CQs. Second, the reformulation based on the
cover returned by EC-DL is always more efficient than UCQ reformulation (more
than one order of magnitude for Q5), respectively, Cyoot-based reformulation (up
to a factor of 230 for Qg). Third, in our experiments, the GC-DL-chosen cover
leads to a JUCQ reformulation as efficient as the EC-DL one, demonstrating that
even a partial, greedy cover search leads to good performance (this cannot be
guaranteed in general). For Q7 and Q9-Q13, the best cover we found is safe; for
all the others, this is not the case, confirming the interest of the larger space &,.

Figure 1(b) depicts the running time of the EC-DL and GC-DL algorithms,
which can be seen as the overhead of our cover-based technique. The time is very
small, between 2 ms (Q11-Q13, with just 2 atoms) and 221 ms (EC-DL on @19, of
10 atoms). The time is higher for more complex queries, but these are precisely
the cases where our techniques are most benefficial, e.g., for)19, EC-DL runs in
less than 2% of the time to evaluate the UCQ reformulation, while the cover we
recommend is more than 4 times faster than UCQ. As expected, GC-DL is faster
than EC-DL due to the exploration of less covers. Together, Figure 1(a) and
1(b) confirm the benefits and practical interest of our cost-based cover search.

90

Acknowledgements This work has been partially funded by the Programme
Investissement d’Avenir Datalyse project and the ANR PAGODA project.

References

1. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
JAR 39(3), 385-429 (2007)

2. Chortaras, A., Trivela, D., Stamou, G.B.: Optimized query rewriting for OWL 2
QL. In: CADE (2011)

3. Lutz, C., Seylan, I., Toman, D., Wolter, F.: The combined approach to OBDA:
taming role hierarchies using filters. In: ISWC. pp. 314-330 (2013)

4. Ono, K., Lohman, G.M.: Measuring the complexity of join enumeration in query
optimization. In: VLDB (1990)

5. Pérez-Urbina, H., Horrocks, 1., Motik, B.: Efficient query answering for OWL 2. In:
ISWC (2009)

6. Rosati, R., Almatelli, A.: Improving query answering over DL-Lite ontologies. In:
KR (2010)

7. Venetis, T., Stoilos, G., Stamou, G.B.: Incremental query rewriting for OWL 2 QL.
In: Description Logics (2012)

91

Decidable Contextualized DLs with Rigid Roles

Stephan Bohme** and Marcel Lippmann

Institute for Theoretical Computer Science, Technische Universitidt Dresden,
{stephan.boehme ,marcel.lippmann}@tu-dresden.de

Description logics (DLs) of context can be employed to represent and reason
about contextualized knowledge, which naturally occurs in practice [5,4,7,9,8].
Consider, for instance, the roles played by a person in different contexts. The
person Bob, who works for the company Siemens, plays the role of an employee
of Siemens in the work context, whereas he might play the role of a customer
of Siemens in the context of private life. Here, access restrictions to the data of
Siemens might critically depend on Bob’s role. Moreover, DLs capable of repre-
senting contexts are vital to integrate distributed knowledge as argued in [5,4].

DLs are well-suited to describe contexts as formal objects with formal prop-
erties that are organized in relational structures, which are fundamental require-
ments for modeling contexts [11,12]. However, classical DLs lack expressive power
to formalize that some individuals satisfy certain concepts and relate to other in-
dividuals depending on a specific context. Therefore, often two-dimensional DLs
are employed [7,9,8]: One DL L), (the meta or outer logic) is used to represent
the contexts and their relationships to each other. £, is combined with a DL Lo
(the object or inner logic) that captures the relational structure within each con-
text. Moreover, while some pieces of information depend on the context, other
pieces of information are shared throughout all contexts. For instance, a person’s
name is typically independent of the actual context. To be able to express that,
some concepts and roles a designated to be rigid, i.e. they are required to be
interpreted the same in all contexts. Unfortunately, if rigid roles are admitted,
reasoning in contextualized DLs is usually undecidable [7].

We propose and investigate a family of two-dimensional DLs £y/[Lo] that
meet the above requirements, but are a restricted form of the one defined in [7]
in the sense that we limit the interaction of £j; and L. More precisely, in our
family of contextualized DLs the outer DL can refer to the internal structure of
each context, but not vice versa. This represents contexts in a top-down perspec-
tive. Interestingly, reasoning in £;[Lo] stays decidable with such a restriction,
even in the presence of rigid roles. In some sense our family of contextualized
DLs are similar to temporalized DLs investigated in [2,3,10].

For providing better intuition on how our formalism works, we examine the
above mentioned example a bit further. Consider the following axioms:

T C [FworksFor.{Siemens} C 3 hasAccessRights.{ Siemens}] (1)
WORK C [worksFor(Bob, Siemens)] (2)
T C [JisCustomerOf. T C HasMoney] (3)

** Funded by DFG in the Research Training Group “RoSI” (GRK 1907).

92

WoRK PRIVATE

4 o hasSSN I 7 Bob, hasSSN I

re— > P —_— T

Person erson, @ o

SSN HasMoney SSN
related
hasAccessRights T isCustomerOf
worksFor

Siemens, .M. Siemens, °

Company

Personj \ Company Persoy

Fig. 1. Model of Axioms 1-7

[(3worksFor.T)(Bob)] T 3related.(PRIVATE M [HasMoney(Bob)]) (4)
PRIVATE C [isCustomerOf (Bob, Siemens)] (5)
PRIVATEMWORK C L (6)
~WORK LC [JworksFor.T C 1] (7)

Axiom 1 states that it holds true in all contexts that somebody who works for
Siemens also has access rights to certain data. Axiom 2 states that Bob is an
employee of Siemens in any work context. Axioms 3 and 4 say intuitively that if
Bob has a job, he will earn money, which he can spend as a customer. Axiom 5
formalizes that Bob is a customer of Siemens in any private context. Moreover,
Axiom 6 ensures that private and work contexts are disjoint. Finally, Axiom 7
states that the worksFor relation only exists in work contexts. A fundamental
reasoning task is to decide whether a set of axioms is consistent. For our example,
Figure 1 depicts a model. There, Bob’s social security number is linked to him
using a rigid role hasSSN since it does not change over the contexts.

Our family L£y/[Lo] consists of combinations of two DLs, where we focus on
the cases where £y, and Lo are L or DLs between ALC and SHOQ. Let Oc,
Og, and O; be respectively sets of concept, role, and individual names for the
object logic L. Analogously, we define the sets Mc, Mg, and M, for the meta
logic L. Let O = (O¢,O0r,0)) and M = (Mc, Mg, M)). Concepts, GCIs and
assertions are defined over the respective signatures O and M as usual [1].

Definition 1. Concepts of the object logic (o-concepts) are Lo-concepts over O;
o-axioms are Lo-axioms over O. Concepts of the meta logic (m-concepts) are de-
fined inductively: each L pr-concept over M is an m-concept, and [o] is an m-con-
cept for an o-aziom «; and m-axioms are defined analogously. Boolean Ly [Lo]-
knowledge bases (Lu[Lo]-BKBs) are Boolean combinations of m-azioms.

Note that the syntax of the object level is precisely the one of Lo, whereas
the syntax of the meta level also allows to put Lp-axioms in place of concept
names. The semantics of Ly/[Lo] is defined using nested interpretations, which
consist of O-interpretations (usual DL interpretations for the names in O) for the

93

Table 1. Complexity results for consistency in Ly[Lo]

Lo no rigid names only rigid concepts rigid roles
L EL ALC SHOQ| &€ ALC SHOQ| &L ALC SHOQ
EL const Exp Exp | const NExp NEXpP | const 2Exp 2Exp

ALC Exp Exp Exp |NExp NExp NExp | NExp 2Exp 2Exp
SHOQ | Exp Exp Exp |[NExp NExp NExp |NExp 2Exp 2Exp

specific contexts and the relational structure between them (M-interpretation),
where all contexts have the same domain. Also, let Ocig C Oc denote the set
of rigid concepts, and let Ogrrg € Or denote the set of rigid roles. Moreover, we
assume that individuals of Lo are always interpreted the same in all contexts.

Definition 2. We call a tuple J = (C,-7, A, (¥<).cc) a nested interpretation,
where C is a non-empty set (called contexts) and (C,-7) is an M-interpretation.
Moreover, I, := (4, -I¢) is an O-interpretation for every c € C, such that it holds
for all c,c’ € C that 2 = a2 for all x € O} U Ocyig U ORyig-

Definition 3. Let J = (C,-7, A, (-T¢).ec) be a nested interpretation. The map-
ping -7 is extended as follows: [a]7 := {c € C | Z. = a}. Moreover, J is a
model of the m-aziom f if (C,-7) is a model of 3. This is extended to Ly[Lo]-
BKBs inductively as usual. We write J = B if J is a model of the Ly [Lo]-
BKB B. We call B consistent if it has a model.

The complexity of consistency in L£/[Lo] is listed in Table 1. The lower bounds
are obtained using the ideas of [2,3] and hold already for the fragment EL[ALC],
even if only conjunctions of m-axioms are considered instead of BKBs. Without
rigid names, EXP-hardness follows from the complexity of L. If rigid concept
and role names are allowed, we reduce the word problem for exponentially space-
bounded alternating Turing machines to obtain 2EXP-hardness. If only rigid
concept names are allowed, a reduction of an exponentially bounded version of
the domino problem yields NExP-hardness. For the upper bounds, we proceed
similar to what was done for ALC-LTL in [2,3| and reduce the consistency prob-
lem to two separate decision problems. First, we abstract our £/[£o]-BKB B
by replacing the m-concepts that consist of o-axioms by fresh concept names and
test this abstraction B’ for consistency. With this abstraction, we loose, however,
the information on the o-axioms. In each model of B’, the fresh concept names
have some extensions, and are treated completely independently. The induced
o-axioms, however, may not be independent. It could be that some o-axioms are
inconsistent together. We check this in a separate step.

To conclude, we have proposed novel combinations of two DLs for represent-
ing contextual knowledge and analyzed their complexity. Interestingly, even in
the presence of rigid roles the consistency problem is still decidable. For more
details, see [6]. As future work apart from others, we envision that our deci-
sion procedures can be adapted to deal with temporalized context DLs such as

LTLJALC[ALC]].

94

References

10.

11.

12.

Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, 2nd edn. (2007)

Baader, F., Ghilardi, S., Lutz, C.: LTL over description logic axioms. In: Brewka,
G., Lang, J. (eds.) Proceedings of the 11th International Conference on Principles
of Knowledge Representation and Reasoning (KR 2008). pp. 684-694. AAAT Press,
Sydney, Australia (2008)

Baader, F., Ghilardi, S., Lutz, C.: LTL over description logic axioms. ACM Trans-
actions on Computational Logic 13(3) (2012)

Bao, J., Voutsadakis, G., Slutzki, G., Honavar, V.: Package-based description log-
ics. In: Stuckenschmidt, H., Parent, C., Spaccapietra, S. (eds.) Modular Ontologies:
Concepts, Theories and Techniques for Knowledge Modularization, Lecture Notes
in Computer Science, vol. 5445, pp. 349-371. Springer (2009)

Borgida, A., Serafini, L.: Distributed description logics: Assimilating information
from peer sources. Journal of Data Semantics 2800, 153-184 (2003)

Bohme, S., Lippmann, M.: Description logics of context with rigid roles revis-
ited. LTCS-Report 15-04, Chair for Automata Theory, Institute for Theoretical
Computer Science, Technische Universitat Dresden (2015), see http://lat.inf.
tu-dresden.de/research/reports.html.

Klarman, S., Gutiérrez-Basulto, V.: ALCarc: A context description logic. In: Jan-
hunen, T., Niemeld, I. (eds.) Proceedings of the 12th European Conference on
Logics in Artificial Intelligence (JELIA 2010). Lecture Notes in Computer Science,
vol. 6341, pp. 208-220. Springer (2010)

Klarman, S., Gutiérrez-Basulto, V.: Two-dimensional description logics for context-
based semantic interoperability. In: Burgard, W., Roth, D. (eds.) Proceedings of
the 25th AAAI Conference on Artificial Intelligence (AAATI 2011). AAAI Press
(2011)

. Klarman, S., Gutiérrez-Basulto, V.: Two-dimensional description logics of context.

In: Rosati, R., Rudolph, S., Zakharyaschev, M. (eds.) Proceedings of the 24th
International Workshop on Description Logics (DL 2011). vol. 745. CEUR-WS.org
(2011)

Lippmann, M.: Temporalised Description Logics for Monitoring Partially Observ-
able Events. Ph.D. thesis, TU Dresden, Germany (2014)

McCarthy, J.: Generality in artificial intelligence. Communications of the ACM
30(12), 1030-1035 (1987)

McCarthy, J.: Notes on formalizing context. In: Bajcsy, R. (ed.) Proceedings of the
13th International Joint Conference on Artificial Intelligence (IJCAI 1993). pp.
555-562. Morgan Kaufmann, Los Altos, Chambéry, France (1993)

95

Inconsistency Management in
Generalized Knowledge and Action Bases*.

Diego Calvanese, Marco Montali, and Ario Santoso

Free University of Bozen-Bolzano, Bolzano, Italy
lastname@inf.unibz.it

1 Introduction

The combination of static and dynamic aspects in modeling complex organizational
domains is a challenging task that has led to study the combination of formalisms
from knowledge representation, database theory, and process management [18,23,11].
Specifically, Knowledge and Action Bases (KABs) [3] have been put forward recently
to provide a semantically rich representation of a domain. In KABs, static aspects are
modeled using a Description Logic (DL) [1] knowledge base (KB), while actions are
used to evolve its extensional part over time, possibly introducing fresh individuals.
An important aspect that has received little attention so far in such systems is the
management of inconsistency with respect to domain knowledge that may arise when the
extensional information is evolved over time. In fact, inconsistency, both in KABs and
in related approaches, is typically handled naively by just rejecting updates in actions
when they would lead to inconsistency, see e.g., [16,4,9,2].

To overcome this limitation, KABs have been extended lately with mechanisms to
handle inconsistency [12]. However, this has been done by defining ad-hoc execution
semantics and corresponding ad-hoc verification techniques geared towards specific
semantics for inconsistency management. It has also been left open whether adding
inconsistency management to the rich setting of KABs, actually increases expressive
power. This work attacks these issues by: (i) Proposing (standard) GKABs, which enrich
KABs with a compact action language inspired by Golog [20] that can be conveniently
used to specify processes at a high-level of abstraction. As in KABs, standard GKABs
still manage inconsistency naively. (ii) Defining a parametric execution semantic for
GKABs that is able to elegantly accomodate a plethora of inconsistency-aware se-
mantics based on the well-known notion of repair [17,5,19,13]. (iii) Providing several
reductions showing that verification of sophisticated first-order temporal properties over
inconsistency-aware GKABs can be recast as a corresponding verification problem over
standard GKABs. (iv) Showing that verification of standard and inconsistency-aware
GKABsS can be addressed using known techniques, developed for standard KABs.

2 Setting

We use DL-Lite 4 [8,6] to express KBs, and consider queries such as EQL-Lite(UCQ)
(briefly ECQs) [7], to access KBs and extract individuals of interest. To handle inconsis-

* This paper is an abridged version of [14]. Full proofs can be found in [15]

96

tency in KBs, we follow the repair-based approaches in [12], and distinguish between
two kinds of approaches: (i) those that compute repairs agnostically from the updates
(the added/deleted facts) [19,12], among which we have b-repairs, which are defined
as the maximal (w.r.t. set containment) subsets of an ABox that are consistent with the
TBox, and c-repairs, which are defined as the intersection of all b-repairs; (ii) those that
take into account the updates by giving higher priority to the new facts during the repair,
as in bold semantics for instance-level KB evolution (c.f., [13]).

Here, we consider KABs that are obtained by combining the framework in [3,12]
with the action specification formalism in [22], which allows us to have actions that
only update an ABox (instead of creating a new ABox at each execution, as in [3,12]).
Formally, a KAB is composed by (i) a DL-Lite 4 TBox T'; (ii) an initial DL-Lite 4
ABox Ay; (iii) a finite set I" of parametric actions that evolve the ABox; (iv) a finite
set II of condition-action rules that describe when actions can be executed, and with
which parameters. The execution semantics of a KAB is given in terms of a possibly
infinite-state transition system, whose construction depends on the adopted semantics
of inconsistency [12]. As in [12], we call S-KAB a KAB under the standard execution
semantics, where inconsistency is naively managed by simply rejecting those updates
that lead to an inconsistent state.

To specify temporal properties over KABs, we use the uﬁiQL logic, the FO variant
of p-calculus defined in [3]. Given a transition system 1" and a closed ,LLLE‘QL formula &,
verification is the problem of checking whether @ holds in the initial state of 7.

3 Golog-KABs and Inconsistency Management

We enrich KABs with a high-level action language inspired by Golog [20]. This allows
modelers to represents the dynamics of systems much more compactly. On the other
hand, we introduce a parametric execution semantics, which elegantly accommodates
the different kinds of inconsistency-aware semantics based on the notion of repair.

A Golog-KAB (GKAB) is a tuple G = (T, Ay, I, 6), where T, Ag, and I are as
in standard KABs, and § is the Golog program characterizing the evolution of the
GKAB over time, using the atomic actions in I". For simplicity, we only consider a core
fragment of Golog based on the action language in [10], and define a Golog program as:

§ == e | pick Q(p).a(p) | 01|02 | d1;02 | if o then &, else | while ¢ do &
where: (i) € is the empty program; (ii) pick Q(p).a(p) is an atomic action invocation
guarded by an ECQ @, such that o € I" is applied by non-deterministically substituting
its parameters p with an answer of Q); (iii) d1|J2 is a non-deterministic choice between
programs; (iv) d1; 0 is sequencing; (v) if ¢ then §; else &5, and while ¢ do ¢ are
respectively conditional and loop constructs, using a boolean ECQ ¢ as condition.

We adopt the functional approach by [21] in defining the semantics of action exe-
cution over G, i.e., we assume G provides two operations: (i) ASK, to answer queries
over the current KB; (ii) TELL, to update the KB through an atomic action. Here the ASK
operator corresponds to certain answers computation. The TELL operation is parameter-
ized by filter relations f, which are used to refine the way in which an ABox is updated,
based on a set of facts to be added and deleted (specified by the action), and we require
that the result of the TELL operation is a T-consistent ABox. In this light, filter relations

97

provide an abstract mechanism to accommodate several inconsistency management
approaches in the execution semantics. For instance, we define GKABs with standard
execution semantics, briefly S-GKABs, by defining a filter relation fg that updates an
ABox based on the facts to be added and deleted, and does nothing w.r.t. inconsistency
(i.e., updates that lead to an inconsistent state are simply rejected). To obtain GKABs
with inconsistency-aware semantics, we introduce filter relations fp, fc, and fg, where
fB (resp., fc) returns a b-repair (resp., c-repair) [12] of the updated ABox, and fg
updates the ABox using the bold semantics of KB evolution [13]. Consecutively, we
call the GKABs adopting the execution semantics obtained by employing those filter
relations B-GKABs, C-GKABs, and E-GKABEs, respectively, and we group them under
the umbrella of inconsistency-aware GKABs (I-GKABs).

Verification Results. With respect to verification of uﬁiQL properties, we have proved
the results summarized below, where an arrow indicates that we can reduce verification
in (G)KABs in the source to verification in (G)KABs in the target:
B-GKABs C-GKABs E-GKABs
~ v
S-GKABs = S-KABs

To encode S-KABs into S-GKABs, we simulate the standard execution semantics
using a Golog program that continues forever to non-deterministically pick an executable
action with parameters, or stops if no action is executable. For the opposite direction, the
key idea is to inductively interpret a Golog program as a structure consisting of nested
processes, suitably composed through the Golog operators. We mark the starting and
ending point of each Golog subprogram, and use accessory facts in the ABox to track
states corresponding to subprograms. Each subprogram is then inductively translated
into a set of actions and condition-action rules encoding its entrance and termination
conditions. For all reductions from I-GKABs to S-GKABs, our general strategy is to show
that S-GKABs are sufficiently expressive to incorporate the repair-based approaches, so
that an action executed under a certain inconsistency semantics can be compiled into a
Golog program that applies the action with the standard semantics, and then explicitly
handles the inconsistency, if needed.

It is also interesting to observe that the semantic property of run-boundedness (which
guarantees the decidability of S-KAB verification) [2,3] is preserved by all our reductions.
It follows that verification of uﬁiQL properties over run-bounded GKABs and [-GKABs
is decidable, and reducible to standard p-calculus finite-state model checking.

4 Conclusion

We introduced GKABs, which extend KABs with Golog-inspired high-level programs,
and allow for an elegant treatment of inconsistency. We have also shown that verification
of rich temporal properties over (inconsistency-aware) GKABs can be recast as verifica-
tion over standard KABs. Our approach is very general, and can be easily extended to
account for other inconsistency handling mechanisms, and more in general data cleaning.

Acknowledgments. This research has been partially supported by the EU IP project Optique
(Scalable End-user Access to Big Data), grant agreement n. FP7-318338, and by the UNIBZ
internal project KENDO (Knowledge-driven ENterprise Distributed cOmputing).

98

References

1.

10.

11.

12.

13.

14.

15.

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The De-
scription Logic Handbook: Theory, Implementation and Applications. Cambridge University
Press (2003)

Bagheri Hariri, B., Calvanese, D., De Giacomo, G., Deutsch, A., Montali, M.: Verification of
relational data-centric dynamic systems with external services. In: Proc. of the 32nd ACM
SIGACT SIGMOD SIGAI Symp. on Principles of Database Systems (PODS). pp. 163-174
(2013)

Bagheri Hariri, B., Calvanese, D., Montali, M., De Giacomo, G., De Masellis, R., Felli, P.:
Description logic Knowledge and Action Bases. J. of Artificial Intelligence Research 46,
651-686 (2013)

Belardinelli, F., Lomuscio, A., Patrizi, F.: An abstraction technique for the verification of
artifact-centric systems. In: Proc. of the 13th Int. Conf. on the Principles of Knowledge
Representation and Reasoning (KR). pp. 319-328 (2012)

Bertossi, L.E.: Consistent query answering in databases. SIGMOD Record 35(2), 68-76
(2006)

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M.,
Rosati, R.: Ontologies and databases: The DL-Lite approach. In: Tessaris, S., Franconi, E.
(eds.) Reasoning Web. Semantic Technologies for Informations Systems — 5th Int. Summer
School Tutorial Lectures (RW), Lecture Notes in Computer Science, vol. 5689, pp. 255-356.
Springer (2009)

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: EQL-Lite: Effective
first-order query processing in description logics. In: Proc. of the 20th Int. Joint Conf. on
Artificial Intelligence (IJCAI). pp. 274-279 (2007)

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning 39(3), 385-429 (2007)

. Calvanese, D., De Giacomo, G., Lembo, D., Montali, M., Santoso, A.: Ontology-based

governance of data-aware processes. In: Proc. of the 6th Int. Conf. on Web Reasoning and
Rule Systems (RR). Lecture Notes in Computer Science, vol. 7497, pp. 25-41. Springer
(2012)

Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Actions and programs over
description logic knowledge bases: A functional approach. In: Lakemeyer, G., Mcllraith,
S.A. (eds.) Knowing, Reasoning, and Acting: Essays in Honour of Hector Levesque. College
Publications (2011)

Calvanese, D., De Giacomo, G., Montali, M.: Foundations of data aware process analysis: A
database theory perspective. In: Proc. of the 32nd ACM SIGACT SIGMOD SIGAI Symp. on
Principles of Database Systems (PODS) (2013)

Calvanese, D., Kharlamov, E., Montali, M., Santoso, A., Zheleznyakov, D.: Verification of
inconsistency-tolerant knowledge and action bases. In: Proc. of the 23rd Int. Joint Conf. on
Artificial Intelligence (IJCAI) (2013)

Calvanese, D., Kharlamov, E., Nutt, W., Zheleznyakov, D.: Evolution of DL-Lite knowledge
bases. In: Proc. of the 9th Int. Semantic Web Conf. (ISWC). Lecture Notes in Computer
Science, vol. 6496, pp. 112-128. Springer (2010)

Calvanese, D., Montali, M., Santoso, A.: Verification of generalized inconsistency-aware
knowledge and action bases. In: Proc. of the 24th Int. Joint Conf. on Atrtificial Intelligence
(IJCAJ) (2015)

Calvanese, D., Montali, M., Santoso, A.: Verification of generalized inconsistency-aware
knowledge and action bases (extended version). CoRR Technical Report arXiv:1504.08108,
arXiv.org e-Print archive (2015), available at http://arxiv.org/abs/1504.08108

99

16.

17.

18.

19.

20.

21.

22.

23.

Deutsch, A., Hull, R., Patrizi, F., Vianu, V.: Automatic verification of data-centric business
processes. In: Proc. of the 12th Int. Conf. on Database Theory (ICDT). pp. 252-267 (2009)
Eiter, T., Gottlob, G.: On the complexity of propositional knowledge base revision, updates
and counterfactuals. Artificial Intelligence 57, 227-270 (1992)

Hull, R.: Artifact-centric business process models: Brief survey of research results and chal-
lenges. In: Proc. of the 7th Int. Conf. on Ontologies, DataBases, and Applications of Semantics
(ODBASE). Lecture Notes in Computer Science, vol. 5332, pp. 1152-1163. Springer (2008)
Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.E.: Inconsistency-tolerant semantics
for description logics. In: Proc. of the 4th Int. Conf. on Web Reasoning and Rule Systems
(RR). pp. 103-117 (2010)

Levesque, H.J., Reiter, R., Lesperance, Y., Lin, F., Scherl, R.: GOLOG: A logic programming
language for dynamic domains. J. of Logic Programming 31, 59-84 (1997)

Levesque, H.J.: Foundations of a functional approach to knowledge representation. Artificial
Intelligence 23, 155-212 (1984)

Montali, M., Calvanese, D., De Giacomo, G.: Verification of data-aware commitment-based
multiagent systems. In: Proc. of the 13th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS). pp. 157-164 (2014)

Vianu, V.: Automatic verification of database-driven systems: a new frontier. In: Proc. of the
12th Int. Conf. on Database Theory (ICDT). pp. 1-13 (2009)

100

Tableau-based revision in SHZ Q

Thinh Dong, Chan Le Duc, Philippe Bonnot, Myriam Lamolle

LIASD - EA4383, IUT of Montreuil, University of Paris8, France
{dong, leduc, bonnot, lamolle}@iut.univ-paris8.fr

Introduction The problem of revising a description logic-based ontology (called DL
ontology) is closely related to the problem of belief revision which has been widely
discussed in the literature. Among early works on belief revision, the AGM theory
(Alchourrén et al., 1985) introduced intuitive and plausible constraints (namely AGM
postulates) which should be satisfied by any rational belief revision operator. However,
it is not trivial to adapt belief revision operators to DLs because DLs have their own
features (Flouris et al., 2005) (Qi and Yang, 2008). One main difficult for such revision
is that DL ontologies often incur infinitely many models. To address this issue, we
propose a finite set of finite structures, namely a set MT(Q) of completion trees, for
characterizing a possibly infinite set of models of an ontology O. Then, we define a
distance over a set of completion trees. This distance allows one to determine how far
an ontology is from another one. Another problem our approach has to address is that
there may not exist a revision ontology such that (i) it is expressible in the logic used for
expressing initial ontologies O, O, and (ii) it admits exactly a set of models MT (O, O’)
computed from MT(O) and MT(O’). For this reason, we borrow the notion of maximal
approximation (De Giacomo et al., 2007) which allows us to build a minimal revision
ontology admitting MT (O, O).

Construction of the revision ontology First, we define a novel tableau algorithm,
namely TA, for a SHZQ ontology without individuals by replacing expansion C-, -,
LI, ch-rules by a new rule, namely sat-rule which chooses a subset S from a set sub(O)
including all sub-concepts of a SHZQ ontology O. Note that all concepts in the form
of conjunctions or of disjunctions are removed from sub(Q) and replaced with their
conjuncts and disjuncts. This can be performed by a function Flat(C) that flattens con-
junctions and disjunctions of a concept C' into subsets of sub-concepts occurring in C'.
For example, Flat(AM (3R.BUC)) = {{A,3R.B},{A,C}}.

sat-rule. If sat-rule has never been applied to a node x then we choose a subset S C

sub(O) suchthat L(z) U |J f(C C D) C S where f(C C D) € Flat(-C' U D)
CCDeT

foreach C C D € T, and set L(x) := S U S where S = {=C | C € sub(0) \ S}

In this paper, a completion tree for O is a tree T = (V,E,L,Z) where V is a
set of nodes with the root node & € V. Each node = € V is labeled with a function
L(z) C sub(O). E is a set of edges and each edge (x,y) € E is labeled with a function
L({z,y)) containing a set of SHZQ roles.

The sat-rule that is applied to each node of a completion tree introduces a lot of non-
determinisms. We need this “bad” behavior of the new tableau algorithm to control the
generation process of completion trees in such a way that allows one to infer the ontol-
ogy when knowing completion trees and its signature. We use MT(O) to denote the set
of all completion trees which are generated by running the novel tableau algorithm TA
for an ontology O. Note that TA does not necessarily terminate when a complete and

101

clash-free completion tree is built. It should terminate when all non-determinisms are
considered. We can extend straightforwardly MT(O) to MT(O’,sub(Q)) as follows.
The set MT(O’, sub(Q)) is built by the tableau algorithm TA for O’ with an extra set
of concepts sub(O) that is taken into account when applying the sat-rule. In this case
one can import additional concepts into node labels of a completion tree for O’ while re-
specting the axioms of O’. Importing sub(Q) to MT(O’) ensures that MT (O’, sub(O))
captures semantic constraints from @ which are compatible with O’.

Next, we introduce a distance between two completion trees 7" and 7" which allows
one to talk about the similarity between two ontologies. This distance is defined for two
completion trees which are isomorphic, i.e., there is an isomorphism 7 that maintains
the successor relationship from two nodes of a completion tree to the two corresponding
nodes of the other one via 7. Note that we can always obtain such an isomorphism
between two completion trees by adding empty nodes and edges to completion trees
since node and edge labels are ignored in the definition of isomorphisms.

Definition 1 (Distance). Let T = (V,L,E,Z) and T' = (V', L', E', %) two com-
pletion trees. Let II(T,T') be the set of all isomorphisms between T and T'. The
distance between T and T', denoted T A T', is defined as follows: T A T' =

rein | {max(|L(z) & L’(W(w))l)+<l¥g§gE(lL(<x,y>) o L((m(@), ()}

We can check that A is a distance over a set of isomorphic trees with the operator A
defined over two node or edge labels a, o as follows: L(a) A L'(a/) = (L(a) U
L'(a/)) \ (L(a) N L' (a)). Based on this distance, we now define a set of completion
trees a revision ontology of an ontology O by another O’ should admit.

Definition 2 (Revision operation). Let O and O’ be two consistent SHZ Q ontologies.
A set of tree models MT (O, O) of the revision of O by O is defined as follows:
MT(O,0") ={T € MT(O’,sub(0)) | IT, € MT(O, sub(0")),
VT € MT(O,sub(0"), T € MT(O',sub(0)) : T ATy <T' AT"}

Intuitively, MT(O’,sub(©)) includes completion trees from MT(O’) each node of
which is consistently filled by an arbitrary set of concepts imported from sub(O) such
that each axiom of O’ remains satisfied. Among these completion trees, MT (O, O’)
retains only those which are closest to completion trees from MT (O, sub(O’)) thanks
to the operator T' A T” that characterizes the difference between T and T”. We consider
the following example. Let O = {T T AN 3R.(-B)MN -B}and O’ = {-A C
VR.B,—~B C AT VR.B}. By running the algorithm TA for O, we build the set
MT (O, sub(O’)) which contains a unique tree model 77 with nodes {a, b} and labels
L(a) ={A,3R.(-B),~B}, L(b) = {A,3R.(-B),~B}, E = {R(a,b)}. In the same
way, MT(O’,sub(0O)) has 4 tree models one of which is 7] with nodes {a’,b'} and
labels L(a’) = {A,3R.(-B), B}, L(b') = {-B, A,YR.B},{R(d’,V’)}. According
to Definition 2, we have 7] A Ty = 2 that is minimal. Thus, MT(O, Q') contains a
unique tree model 77.

We obtain a strong result which states that the all AGM postulates rephrased (Qi et
al., 2006) for DL ontologies in our setting hold. This result relies on a total pre-order
over a set of all completion trees that can be devised from the distance according to

102

Definition 1. The main difference between the postulates presented by Qi et al. and
those reformulated in our setting is that the set of models Mod(O) of an ontology O
is replaced with MT(QO). To illustrate this point, we consider a postulate by Qi et al.
(G2): If Mod(O) N Mod(Q’) # B then Mod(O,0’) = Mod(0O) N Mod(Q’); and
our corresponding postulate: (P2) If MT(O,sub(O0")) N MT(O',sub(O)) # 0 then
MT(O,0") = MT(O, sub(O’)) N MT(O’,sub(O)). A proof of (P2) can be obtained
straightforwardly from the definition of MT (O, sub(0’)) and MT(O, O").

By soundness and completeness of the tableau algorithm, we can show that Mod(O)
is semantically equivalent to MT(O), i.e., MT(O) = « iff Mod(O) [= « for some
axiom «. Moreover, it holds that Mod(O) N Mod(O0’) # 0 iff MT(O,sub(O0")) N
MT(O’,sub(0)) # (. Therefore, as (G2) our postulate (P2) captures the fact that
if O U @' is consistent, then the revision ontology of @ by O’ should admit exactly
shared models of O and O’. Such models are encapsulated in MT(O,sub(O’)) N
MT (O, sub(O)) by our setting.

Finally, our goal is to build from MT(O, ©') a revision ontology O that admits ex-
actly MT (O, @) as tree models. However, we can show that there may not exist such an
ontology O by reconsidering the example above with MT (O, 0’) = {T]}. Assume that
there exists an ontology O with sub(@) = {A,-A,B,~B,3R.(-B),VR.B} which
admits the unique 77 as tree model. Due to the specific behavior of the sat-rule with
sub(O), if we apply TA to O for building MT(O), we must obtain 7} and another tree
model T3 with one node {z}, L(xz) = {A,VR.B, B}, which is a contradiction.

For this reason, we use the notion of maximal approximation (De Giacomo et al.,
2007) to define an ontology O* which satisfies the following conditions: (i) O is ex-
pressible in SHZQ, (ii) it admits tree models in MT (O, ©’), and (iii) it is a “smallest”
ontology admitting MT (O, O'). Such an ontology O*, namely maximal approximation,
can be built from the node labels of all tree models in MT (O, O’).

Definition 3 (Revision ontology). Let O and O’ be two consistent SHZ Q ontologies
with revision operation MT(O,0") = {Ty,--- ,T,} where T; = (V,, L;, E;, ;) for
1 <@ < n. A revision ontology O* = (T, R) of O by O can be built from completion
trees in MT (O, O') as follows: R includes the role hierarchy of O and the one of O;
T contains all axioms of O' and the following axiom : T T |_| (|_| (|_| a)).
1<i<n z€V; CeL;(x)

Theorem 1. Let O and O’ be two consistent SHI Q ontologies. The revision ontology
O* of O by O’ is a maximal approximation from MT (O, O"). Additionally, the size of
O* is bounded by a doubly exponential function in the size of O and O'.

Conclusion The main limitation of our approach is to omit individuals in ontologies.
However, our approach can be extended in order to deal with individuals by extend-
ing the distance defined for completion trees to graphs. Another limitation is that the
obtained revision ontology is very large. This exponential blow-up in size arises from
doubly exponential size of completion trees. We believe that our procedure can be im-
proved by using a method for compressing completion trees generated from tableau
algorithms. Such a method has been proposed by Le Duc et al. (Le Duc et al., 2013).

Acknowledgements This work was partially supported by FUI project “Learning Café”.

103

References

[Alchourrén et al., 1985] Carlos Alchourrén, Peter Gardenfors, and David Makinson. On the
logic of theory change : Partial meet contraction and revision functions. Journal of symbolic
Logic, 50:510-530, 1985.

[De Giacomo et al., 2007] Giuseppe De Giacomo, Maurizio Lenzerini, Antonella Poggi, and
Riccardo Rosati. On the approximation of instance level update and erasure in description
logics. In Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, July
22-26, 2007, Vancouver, British Columbia, Canada, pages 403-408, 2007.

[Flouris et al., 2005] Giorgos Flouris, Dimitris Plexousakis, and Grigoris Antoniou. On applying
the agm theory to dls and owl. In In 4th International Semantic Web Conference (ISWC, pages
216-231, 2005.

[Le Duc et al., 2013] Chan Le Duc, Myriam Lamolle, and Olivier Curé. A decision procedure
for SHOIQ with transitive closure of roles. In The Semantic Web - ISWC 2013 - 12th Interna-
tional Semantic Web Conference, Sydney, NSW, Australia, October 21-25, 2013, Proceedings,
Part I, pages 264-279, 2013.

[Qi and Yang, 2008] Guilin Qi and Fangkai Yang. A survey of revision approaches in description
logics. In Diego Calvanese and Georg Lausen, editors, Web Reasoning and Rule Systems,
volume 5341 of Lecture Notes in Computer Science, pages 74—88. Springer Berlin Heidelberg,
2008.

[Qi et al., 2006] Guilin Qi, Weiru Liu, and David A. Bell. Knowledge base revision in descrip-
tion logics. In European Conference on Logics in Artificial Inteligence, pages 386-398, 2006.

104

Extending the Combined Approach Beyond Lightweight
Description Logics*

Cristina Feier!, David Carral?2, Giorgio Stefanonit, Bernardo Cuenca Grau!, Ian
Horrocks!

! Department of Computer Science, University of Oxford, Oxford UK
2 Department of Computer Science, Wright State University, Dayton US

Abstract. Combined approaches have become a successful technique for CQ an-
swering over ontologies. Existing algorithms, however, are restricted to the logics
underpinning the OWL 2 profiles. Our goal is to make combined approaches ap-
plicable to a wider range of ontologies. We focus on RSA: a class of Horn ontolo-
gies that extends the profiles while ensuring tractability of standard reasoning.
We show that CQ answering over RSA ontologies without role composition is
feasible in NP. Our reasoning procedure generalises the combined approach for
ELHO and DL-Liter using an encoding of CQ answering into fact entailment
w.r.t. a Logic Program with function symbols and stratified negation. Our results
are significant in practice since many out-of-profile Horn ontologies are RSA.

1 Introduction

Answering conjunctive queries (CQs) over ontology-enriched datasets is a core rea-
soning task for many applications. CQ answering is computationally expensive: for
expressive description logics it is at least doubly exponential in combined complexity
[10], and it remains single exponential even when restricted to Horn ontologies [15].
Recently, there has been a growing interest in ontology languages with favourable
computational properties, such as ££ [1], DL-Lite [2] or the rule language datalog,
which provide the foundation for the EL, QL and RL profiles of OWL 2, resp. [13].
Standard reasoning tasks (e.g., satisfiability checking) are tractable for all three profiles.
CQ answering is NP-complete (in combined complexity) for the QL and RL profiles,
and PSPACE-complete for OWL 2 EL [18]; PSPACE-hardness of CQ answering in EL
is due to role composition axioms and the complexity further drops to NP if these
are restricted to express role transitivity and reflexivity [16]. Furthermore, in all these
cases CQ answering is tractable in data complexity. Such complexity bounds are rather
benign, and this has spurred the development of a wide range of practical algorithms.
A technique that is receiving increasing attention is the combined approach [12,7,
8,11, 17]. Data is augmented in a query-independent way to build (in polynomial time)
a canonical interpretation that might not be a model, but that can be exploited for CQ an-
swering in two alternative ways: either the query is rewritten and then evaluated against

* Work supported by the Royal Society, the EPSRC grants Score!, DBOnto and MaSI®, the NSF
award 1017255 “III: Small: TROn: Tractable Reasoning with Ontologies” and “La Caixa”
Foundation.

105

the interpretation [7] or the query is first evaluated over the interpretation and unsound
answers are discarded by means of a filtration process [17, 11]. With the exception of
[5] and [19] who focus on decidable classes of existential rules, algorithms based on
the combined approach are restricted to (fragments of) the OWL 2 profiles.

Our goal is to push the boundaries of the logics underpinning the OWL 2 profiles
while retaining their nice complexity for CQ answering. Furthermore, we aim to devise
algorithms that seamlessly extend the combined approach and which can be applied to
a wide range of ontologies.

Recently, a class of Horn ontologies, called role safety acyclic (RSA), has been pro-
posed [3,4]. RSA extends the profiles while ensuring tractability of standard reasoning
tasks: it allows the use of all language constructs in the profiles, while establishing poly-
nomially checkable conditions that preclude their harmful interaction. Roles in an RSA
ontology are partitioned into safe and unsafe depending on the way they are used, where
the latter ones are involved in potentially harmful interactions which could increase
complexity; an acyclicity condition is imposed on unsafe roles to ensure tractability. A
recent evaluation revealed that over 60% of out-of-profile Horn ontologies are RSA [4].

In this paper, we investigate CQ answering over RSA ontologies and show its fea-
sibility in NP. This result has significant implications in practice as it shows that CQ
answering over a wide range of out-of-profile ontologies is no harder (in combined
complexity) than over a database. Our procedure generalises the combined approach
for ELHO [17] and DL-Liteg [11] in a seamless way by means of a declarative en-
coding of CQ answering into fact entailment w.r.t. a logic program (LP) with function
symbols and stratified negation. The least Herbrand model of this program can be com-
puted in time polynomial in the ontology size and exponential in query size. We have
implemented our encoding using the LP engine DLV [9] and tested its feasibility with
encouraging results. Proofs can be found in a TR (http://tinyurl.com/pgmxaSu).

2 Preliminaries

Logic Programs We use the standard notions of constants, terms and atoms in first-
order logic (FO). A literal is an atom q or its negation not a. A rule r is an expression
of the form (&, 2) — (&) with ¢(Z, Z) a conjunction of literals with variables Z U Z,
and 1 (Z) a non-empty conjunction of atoms over Z.> We denote with vars(r) the set
ZUZ. With head(r) we denote the set of atoms in v, body™ (r) is the set of atoms in ¢,
and body~ (r) is the set of atoms which occur negated in r. Rule r is safe iff vars(r) all
occur in body™ (r). We consider only safe rules. Rule r is definite if body ™ (r) is empty
and it is datalog if it is definite and function-free. A fact is a rule with empty body and
head consisting of a single function-free atom.

A program P is a finite set of rules. Let preds(X) denote the predicates in X, with
X a (set of) atoms or a program. A stratification of P is a function str : preds(P) —
{1,...,k}, where k < |preds(P)|, s.t. for every r € P and P € preds(head(r)) it
holds that: (i) for every Q € preds(body™(r)): str(Q) < str(P), and (ii) for every
Q € preds(body=(r)): str(Q) < str(P). The stratification partition of P induced

3 We assume rule heads non-empty, and allow multiple atoms.

106

by str is the sequence (P1,...,Px), with P; consisting of all rules » € P such that
MATqehead(r)(str(pred(a))) = i. The programs P; are the strata of P. A program is
stratified if it admits a stratification. All definite programs are stratified.

Stratified programs have a Least Herbrand Model (LHM), which is constructed us-
ing the immediate consequence operator T’p. Let U and B be the Herbrand Universe
and Base of P, and let S C B. Then, T’ (.S) consists of all facts in head(r)o with r € P
and o a substitution from vars(r) to U satisfying body™ (r)o C S and body ™ (r)o N
S = (. The powers of Tp are as follows: T%(S) = S, Tp"' (S) = Tp(TH(S)), and
T5(S) = U2y TR (S). Let str be a stratification of P, and let (P4, . . ., Py be its strat-
ification partition. Also, let Uy = T3 (P) and foreach1 < i < kletU; 11 = 5., (U;).
Then, the LHM of P is U}, and is denoted M [P]. A program P entails a positive exis-
tential sentence o (P |= «) if M[P] seen as a FO structure satisfies a.

We use LPs to encode FO theories. For this, we introduce rules axiomatising the
built-in semantics of the equality (=) and truth (T) predicates. For a finite signature /,
we denote with 7, the smallest set with a rule p(z1, T2, ..., 2,) — T(z1) A T(z2) A
...\ T(z,) for each n-ary predicate p in X, and with F%5 the usual axiomatisation of
~ as a congruence over Y. For an LP P, we denote with P~ T the extension of P to
P U Fy, UF5 with X the signature of P.

Ontologies and Queries We define Horn-ALCHOZQ and specify its semantics via
translation to definite programs. W.l.o.g. we consider a normal form close to that in [14].
Let Ng, Ng and N, be countable pairwise disjoint sets of concept names, role names
and individuals. We assume { T, L} C Ng. A role is an element of NgU{R~|R € Ny},
where the roles in the latter set are called inverse roles. The function Inv(-) is defined
as follows, where R € Ng: Inv(R) = R~ and Inv(R~) = R. An RBox R is a finite set
of axioms (R2) in Table 1, where R and S are roles and T} is the minimal reflexive-
transitive relation over roles s.t. Inv(R) Tk Inv(S) and R C% Sholdif RC S € R.
A TBox T is a finite set of axioms (T1)-(T5) where A, B € N¢ and R is a role.* An
ABox A is a finite set of axioms of the form (A1) and (A2), with A € N¢ and R € NR.
An ontology is a finite set of axioms O = RUT U A.

OWL 2 specifies the EL, QL, and RL profiles, which are all fragments of Horn-
ALCHOTIQ with the exception of property chain axioms and transitivity, which we do
not consider here. An ontology is: (i) EL if it does not contain inverse roles or axioms
(T4); (ii) RL if it does not contain axioms (T5); and (iii) QL if it does not contain axioms
(T2) or (T4), each axiom (T1) satisfies n = 1, and each axiom (T3) satisfies A = T.

A conjunctive query (CQ) @ is a formula 37.4(Z,) with ¢ (&, §) a conjunction
of function-free atoms over & U ¢/, where Z are the answer variables. We denote with
terms(Q) the set of terms in Q). Queries with no answer variables are Boolean (BCQs)
and for convenience are written as a set of atoms.

We define the semantics by a mapping 7 into definite rules as in Table 1: 7(O) =
{m(a) | @ € O} 5. An ontology O is satisfiable if 7(0)~" b Jy.L(y). A tuple of
constants € is an answer to Q if O is unsatisfiable, or (O)™ " |= 3§.1(C, 7). The set
of answers is written cert(Q, ©). This semantics is equivalent to the usual one.

* Axioms A C > n R.B can be simulated by (T1) and (T5).
> By abuse of notation we say that R~ € O whenever R~ occurs in O.

107

Axioms o Definite LP rules 7 ()
(R1) R- R(z,y) = R (y,2); R (y,2) = R(z,y)
(R2) RLCS R(z,y) = S(z,y)
(TH [T, A CB Nz, Ai(z) — B(z)
(T2) AC {a} Alx) > r~a
(T3) JR.ACB R(z,y) N A(y) — B(x)
(T4) AC<1R.B |A(z) ANR(z,y) NB(y) NR(z,2) ANB(z) 2y~ z
(T5) ALC3RB A(x) = R(z, [p(2)) A B(fiz 5(2))
(A1) A(a) — A(a)
(A2) R(a,b) — R(a,b)

Table 1: Translation from Horn ontologies into rules.

3 Reasoning over RSA Ontologies

CQ answering is EXPTIME-complete for Horn-ALCHOZQ ontologies [14], and the
EXPTIME lower bound holds already for satisfiability checking. Intractability is due to
and-branching: owing to the interaction between axioms in Table 1 of type (T5) with
either axioms (T3) and (R1), or axioms (T4) an ontology may only be satisfied by large
(possibly infinite) models which cannot be succinctly represented.

RSA is a class of ontologies where all axioms in Table 1 are allowed, but their
interaction is restricted s.t. model size can be polynomially bounded [4]. We recapitulate
RSA ontologies and their properties; let O be an arbitrary Horn- ALCHOZ Q ontology.

Roles in O are divided into safe and unsafe. The intuition is that unsafe roles may
participate in harmful interactions.

Definition 1. A role R is unsafe if it occurs in an axiom of the form A T 3R.B, and
there is a role S s. t. either: 1. R T Inv(S) and S occurs in an axiom of the form
IS AC Bwith A# T,0r2. R % Sor R Tk Inv(S) and S occurs in an axiom of
the form A CT< 15.B. A role R in O is safe, if it is not unsafe.

It follows from Definition 1 that RL, QL, and EL ontologies contain only safe roles.

Example 1. Let Ogx be the (out-of-profile) ontology with the following axioms:

Ala) (1) AC3S~.C 3 DLC3RB (5) RCT™ (1)
ACD (2 3SACD 4 BC3SD (6) SCT (8)

Roles R, S, T, and T~ are safe; however, S~ is unsafe as it occurs in an axiom
(TS) while .S occurs in an axiom (T3). We will Oy use as a running example.

The distinction between safe and unsafe roles makes it possible to strengthen the trans-
lation 7 in Table 1 while preserving satisfiability and entailment of unary facts. The
translation of axioms (T5) with R safe can be realised by replacing the functional term
f 37 p(x) with a Skolem constant vﬁ g unique to A, R and B. The modified transfor-
mation generally leads to a smaller LHM: if all roles are safe then O is mapped into a
Datalog program whose LHM is polynomial in the size of O.

108

Definition 2. Ler vﬁ, g be a fresh constant for each concept A, B, and each safe role R
in O. Then Trsate maps each o € O to (i) A(x) — R(x, U}é,B) A B(v}‘%,B) if o is of type
(T5) with R safe;(ii) 7(c), otherwise. Let P = {mgre() | a € O} and Po = P~

Example 2. Mapping 7s.fe differs from 7 on ax. (5) and (6). For instance, (5) yields
D(z) — R(x,v}%B) A B(vg,B).

Theorem 1. [4, Theorem 2] Ontology O is satisfiable iff Po ¥ Jy.L(y). If O is satis-
fiable, then O |= A(c) iff A(c) € M[Po] for each unary predicate A and individual ¢
in O.

If O has unsafe roles the model M[Po| might be infinite. We next define a Datalog
program Pgrsa by introducing Skolem constants for all axioms (T5) in O. Pgrsa intro-
duces also a predicate PE which ‘tracks’ all binary facts generated by the application
of Skolemised rules over unsafe roles. A unary predicate U is initialised with the con-
stants associated to unsafe roles and a rule U(x) A PE(z,y) A U(y) — E(z,y) stores
the PE-facts originating from unsafe roles using a predicate E. Then, M [Pp] is of poly-
nomial size when the graph induced by the extension of E is an oriented forest (i.e., a
DAG whose underlying undirected graph is a forest). When this condition is fulfilled
together with some additional conditions which preclude harmful interactions between
equality-generating axioms and inverse roles, we say that O is RSA.

Definition 3. Let PE and E be fresh binary predicates, U be a fresh unary predicate,
and ug g be a fresh constant for each concept A, B and each role R in O. Function
mrsa maps each (i) a € O to A(x) — R(x, ugB) A B(u‘§7B) APE(z,up p), if ais of
type (T5), and to (ii) w(c.), otherwise. The program Prsa consists of mrsa(c), for each
a € O, arule U(z) N PE(z,y) ANU(y) — E(z,y), and a fact U(ugB)for each ugB
with R unsafe.

Let Mrsa be the LHM of Prsa™ T, Then, Go is the digraph with an edge (c, d)
for each E(c,d) in Mgsa. Ontology O is equality-safe if: 1. for each pair of atoms
w =~ t (with w and t distinct) and R(t,ugB) in Mrsa and each role S s.t. R C
Inv(S), it holds that S does not occur in an axiom (T4); and 2. for each pair of atoms
R(a, ué,B), S(ué,B, a) in Mgsa, with a € Ny, there does not exist a role T such that
both R C%, T and S Tk Inv(T') hold.

We say that O is RSA if it is equality-safe and G o is an oriented forest.

The fact that G is a DAG ensures that the LHM M [P is finite, whereas the lack
of ‘diamond-shaped’ subgraphs in G guarantees polynomiality of M [Pg]. The safety
condition on ~ will ensure that RSA ontologies enjoy a special form of forest-model
property that we exploit for CQ answering. Every ontology in QL (which is equality-
free), RL (where Prsa has no Skolem constants) and EL (no inverse roles) is RSA.

Theorem 2. [4, Theorem 3] If O is RSA, then |M[Po)| is polynomial in |O|.

Tractability of standard reasoning for RSA ontologies follows from Theorems 1, 2.
It can be checked that Oy is RSA.

109

Fig. 1: Original (a) and annotated (b) model for Ogy

4 Answering Queries over RSA Ontologies

We next present our combined approach with filtration to CQ answering over RSA
ontologies, which generalises existing techniques for DL-Liter and ELHO.

In Section 4.1 we take the LHM for RSA ontologies given in Section 3 as a starting
point and extend it to a more convenient canonical model over an extended signature. In
order to deal with the presence of inverse roles in RSA ontologies, the extended model
captures the “directionality” of binary atoms; this will allow us to subsequently extend
the filtration approach from [17] in a seamless way. The canonical model is captured
declaratively as the LHM of an LP program over the extended signature.

As usual in combined approaches, this model is not universal and the evaluation of
CQs may lead to spurious, i.e. unsound answers. In Section 4.2, we specify our filtration
approach for RSA ontologies as the LHM of a stratified program. In the following, we
fix an arbitrary RSA ontology O = R U T U A and an input CQ (), which we use to
parameterise all our technical results.

4.1 Constructing the Canonical Model

The LHM M [Po] in Sec. 3 is a model of O that preserves entailment of unary facts.
It generalises the canonical model in [17], which is specified as the LHM of a datalog
program obtained by Skolemising all axioms (T5) into constants and hence coincides
with M [Po] when O is EL. However, RSA ontologies allow for unsafe roles and hence
M[Pp] may contain also functional terms.

A main source for spurious matches when evaluating () over the canonical model
of an EL ontology is the presence of ‘forks’ — confluent chains of binary atoms —
in the query which map to ‘forks’ in the model over Skolem constants. This is also
problematical in our setting since RSA ontologies have the forest-model property.

Example 3. Fig. 1 a) depicts the LHM M|[Po,,] of Ogx (the function fs ¢ is abbre-
viated with f). We see models as digraphs where the direction of edges reflects the
satisfaction of axioms (T5). Consider Q1 = {A(y1), R(y1,v2), R(ys,y=2)}. Substitu-
tion (y1 — a,ys — vgyB, Y3 — UgD) is a spurious match of (); as it relies on edges
(a,vg p) and (v§ p, vE p) in M[Po,], which form a fork over vg 5.

In EL, only queries which contain forks can be mapped to forks in the model. This
is no longer the case for RSA ontologies, where forks in the model can lead to spurious
answers even for linearly-shaped queries due to the presence of inverse roles.

110

Y~ Y~ Yy~
R(s,y) A S(t,y) R(s,y) A S(y,t) R(y,s) A S(y,t)
a) forward/forward b) forward/backward ¢) backward/backward

Fig. 2: Forks in the presence of inverse roles

Example 4. Let QQ == {A(yl)vR(y17y2)7T(y25y3)}' Then (yl = a,Yyz2 1}}%737
ys — f(a)) is a spurious match for Qs as it relies on the fork (a,vf p), (f(a), vg p).

Axiom R T T~ causes a linear match over R and 7" to become a fork over R and T~

To identify such situations, we compute a canonical model over an extended signa-
ture that contains fresh roles R and R? for each role R. Annotations f (forward) and
b (backwards) are intended to reflect the directionality of binary atoms in the model,
where binary atoms created to satisfy an axiom (T5) are annotated with f. To realise
this intuition declaratively, we modify the rules in Py for axioms (T5) as follows. If R
is safe, then we introduce the rule A(x) — R/ (x, vé)B) A B(v}%’B); if it is unsafe, we
introduce rule A(z) = Rf (z, ff 5(x)) A B(f# p) instead.

Superroles inherit the direction of the subrole, while roles and their inverses have
opposite directions. To reflect this we include the following rules where x € {f,b}:
(i) R*(z,y) — S*(x,y) for each axiom R C S in O; (ii) R (z,y) — Inv(R)"(y,)
and R®(z,y) — Inv(R)f(y,) for each role R; and (iii) R*(x,y) — R(z,y) for
each role R. Rules (ii) are included only if O has inverse roles, and rules (iii) ‘copy’
annotated atoms to atoms over the original predicate. Fig. 1 b) depicts the annotated
model for Pp,, : solid (resp. dotted) lines represent ‘forward’ (resp. ‘backward’) atoms.

Fig. 2 depicts the ways in which query matches may spuriously rely on a fork in
an annotated model. Nodes represent the images in the model of the query terms; solid
lines indicate the annotated atoms responsible for the match; and dashed lines depict
the underpinning fork. The images of s and ¢ must not be equal; additionally, y cannot
be mapped to (a term identified to) a constant in O. For instance, the match in Ex. 4 is
spurious as it corresponds to pattern (b) in Fig. 2. Unfortunately, the annotated model
can present ambiguity: it is possible for both atoms R/ (s, t) and R®(s, t) to hold.

Example 5. Consider 2 from Ex. 4. (y1 — a,y2 — vgyB,yg — ng) is also a

match, where both T/ (v§ ,v§) and T*(vE 5, vE ;) hold in the annotated model.
Such ambiguity is problematic for the subsequent filtration step. To disambiguate,

we use a technique similar to the one in [11] for DL-Lite, where the idea is to unfold

certain cycles of length one and two in the canonical model. We unfold self-loops to
cycles of length three while cycles of length two are unfolded to cycles of length four.

Example 6. Fig. 3 a) shows the model expansion for Ogs. Ambiguities are resolved.
Fig. 3 b) shows the unfolding of a generic self-loop over a safe role R for which T’
exists s.t. both R C% T and R C% Inv(T') hold.

We now specify a program that yields the required model.

111

a)

Fig. 3: Model expansion in the presence of loops/cycles

Definition 4. Let confl(R) be the set of roles S s.t. R Tk T and S T, Inv(T) for
some T. Let < be a strict total order on triples (A, R, B), with R safe and A and B
concept names B in O. For each (A, R, B), let:

A Al A2
- UR:%, VR.B and vy'g be fresh constants;

- self(A, R, B) be the smallest set containing vﬁ:% and vg’g if R € confl(R);

- cycle(A, R, B) be the smallest set containing, for each S € confl(R), vgg if
(A,R,B) = (D,S,C); vig if (D,S,C) < (A,R,B); fq(viy'%) and every
ff’E(vg’%) s. L. ugc R~ u%E is in Mgsp, if S is unsafe.

— unfold(4, R, B) = self(A, R, B)U cycle(A, R, B).

Let Rf and R® be fresh binary predicates for each role R in O, NI be a fresh unary
predicate, and notln be a built-in predicate which holds when the first argument is an
element of second argument. Let P be the smallest program with a rule — Nl(a) for
each constant a and all rules in Fig. 4 and Ep = P~ .

symbols/axioms in O Logic Programming Rules
ax. a not of type (T5) ()
RCS,xe{f b} R*(z,y) = S*(z,y)
R*(z,y) = R(z,y)
Rrole, x € {f,b} R (z,y) — Inv(R)"(y, z)
R’ (z,y) — Inv(R)! (y,)
ax. (T5), R unsafe A(z) — Rf(as, f}%B(:v)) A B(fﬁ’B()

x
A(z) Anotin(z, unfold(A, R, B)) — RY (z,vy'%) A B(vg'y)
if i € confl(R), forevery i = 0,1:
Alvp'p) = R (g vp s) A BRE ™)
for every = € cycle(A, R, B):
A(w) = R (w,v5'p) A B(vi'p)

ax. (T5), R safe

Fig. 4: Rules in the program Eo

The set confl(R) contains roles that may cause ambiguity in conjunction with R.
The ordering < determines how cycles are unfolded using auxiliary constants. Each

axiom A C JR.B with R safe is Skolemised by default using v}%”%, except when the

axiom applies to a term in unfold(A, R, B) where we use vgjg or vg’zB instead.

Theorem 3. The following holds: (i) M [Eo] is polynomial in |O)| (ii) O is satisfiable
iff Eo [~ 3y.L(y) (iii) if O is satisfiable, O |= A(c) iff A(c) € M[Eo] and (iv) there
are no terms s,t and role R s.t. Eo |= Rf (s,t) A R®(s,1).

112

W) (5 — QM(,7)

(2) — mamed(a) for each constant a in O

(3a) QM(Z, §), not Nl(y;) — id(Z, ¥, 1,1), foreach 1 < i < ||
@3b) id(Z, ¥, u,v) — id(Z, ¥, v, u)

3e) id(Z, ¥, u, v) AN id(Z, ¥, v, w) = id(Z, ¥, u, w)

for all R(s,y:), S(t,y;) in Q withy;,y; € ¥

(da) RY (s,y:) A ST (t,y;) Nid(Z,7,1,7) A not s =t — fk(Z,7)
for all R(s,v:), S(y;,t) in Q with y;,y; € ¥:

(@b) R (s,4:) A S®(yj,t) Nid(Z,7,4,§) A not s =t — fk(Z,7)
for all R(y;, s), S(y;,t) in Q with y;,y; € ¥

(4¢) Rb(y:,5) A S%(y;,t) Nid(Z,7,4,§) A not s = t — fk(Z,)
for all R(y:,y;), S(yk, y1) in Q with yi, y;, yr, y1 € ¥

(5a) R (yi,y;) A ST (ye, y1) Aid(Z,7,4,1) Ayi = y A not NI(y:) — id(Z, 4,4, k)
(5b) R (yi,y;) A S®(yw, yi) ANid(Z, 7, 5, k) Ayi = yi A not NI(y:) — id(Z, 9,4, 1)
(SC) Rb(yivyj) A Sb(ylvyk) A Id(f7 :’L’Lvl) A Yj = Yk A not Nl(yj) — ld(fv 177.7.7 k)

for each R(y;,y;) in Q with y;,y; € ¢, and * € {f, b}:

©) R (ys,y;) Nid(Z, 9, 1,v) Nid(Z, ¥, j,w) = AQ™(Z, ¥, v, w)

(7a) AQ™ (Z,7,u,v) = TQ*(Z, ¥, u,v), foreach x € {f, b}

(7b) AQ*(Z, ¥, u,v) NTQ™(Z, ¥, v, w) = TQ"(Z, ¥, u,w), for each x € {f, b}
(8a) QM(Z, §) A not named(z) — sp(Z, y), foreach z € &

(8b) fk(7,7) — sp(7,)

8¢) TQ* (Z,9,v,v) — sp(&,), foreach x € {f,b}

9) QM(Z, §) A not sp(Z,y) — Ans(Z)

Table 2: Rules in Pg. Variables u, v, w from U are distinct.

4.2 Filtering Unsound Answers

We now define a program P¢, that can be used to eliminate all spurious matches of ()
over the annotated model of O. The rules of the program are summarised in Table 2. We
will refer to all terms in the model that are not equal to a constant in O as anonymous.

Matches where an answer variable is not mapped to a constant in O are spurious.
We introduce a predicate named and populate it with such constants (rules (2)); then,
we flag answers as spurious using a rule with negation (rules (8a)).

To detect forks we introduce a predicate fk, whose definition in datalog encodes the
patterns in Fig. 2 (rules (4)). If terms s and ¢ in Fig. 2 are existential variables mapping
to the same anonymous term, further forks might be recursively induced.

Example 7. Let Q3 = {A(y1), R(y1,92), T (y2,y3), C(ya), R(ya,ys),5(ys,y3)} be
a BCQ over Ogy, with (y; — a,y2 — U§V7g7y3 — vg’g, ys — fla), ys — vg’g)
being its only match over the model in Fig. 3a). The identity of y, y5 induces a fork on
the match of R(y1,y2) and R(ya,ys).

We track identities in the model relative to a match using a fresh predicate id. It is ini-
tialised as the minimal congruence relation over the positions of the existential variables
in the query which are mapped to anonymous terms (rules (3)). Identity is recursively
propagated (rules (5)). Matches involving forks are marked as spurious by rule (8b).
Spurious matches can also be caused by cycles in the model and query satisfy-
ing certain requirements. First, the positions of existential variables of the query must

113

be cyclic when considering also the id relation. Second, the match must involve only
anonymous terms. Finally, all binary atoms must have the same directionality.

Example 8. Consider the following BCQs over Ogy: Q4 = {S(y1,¥2), R(y2,v3), S(ys,
y4)7 R(y4a yl)}7 Q5 = {T(yla y2)7 S(y27 93)7 R(y3a yl)}7 and Qﬁ = {S(yh yQ)a R(y27
y3)s S(y3,ya), R(ya, ys)}. Then, (y1 = vg'5,y2 = vg Dy Ys — VR'p, Ya = U5 p) is
a match of ()4 inducing a cycle: all binary atoms are mapped ‘forward’ and the cycle
involves only anonymous terms. In contrast, match (y; +— v,?;g, ya — f(a),ys — a)
over Q5 does not satisfy the requirements as it involves constant a. Note that ()4 and Q5
are cyclic. Qg is not cyclic; thus, although the match (y; — vg”g, Yo ug ’g, Y3 >

D,1 B,1 DO\ -
VR’ Y4 Fr Vg 'p, Ys Vg p) involves a cycle in the model, it is not spurious.

Such cycles are recognised by rules (6) and (7). Rule (6) defines potential individual
arcs in the cycle with their directionality using fresh predicates AQ* with x € {f,b}.
Rules (7) detect the cycles recursively using predicates T'QQ*. Matches involving cycles
are marked as spurious by rules (8c). All correct answers are collected by rule (9) using
predicate Ans. We next define program Pg and its extension Pp g with Ep in Def. 4,
which can be exploited to answer @) w.r.t. O.

Definition 5. Let Q = 5.4 (Z,y) be a CQ, let QM, sp, and fk be fresh predicates
of arity |Z| + |y, let id, AQ*, and TQ*, with x € {f,b}, be fresh predicates of arity
|Z] + |g| + 2, let Ans be a fresh predicate of arity |Z|, let named be a fresh unary
predicate, and let U be a set of fresh variables s.t. |U| > |ij|. Then, P is the smallest
program with all rules in Table 2, and Po ¢ is defined as Eo U Pg.

Note that, to distinguish between constants in O (recorded by named in Pg) and their
closure under equality (recorded by NI in Ep), we do not axiomatise equality w.r.t. Pq.

Theorem 4. (i) Po q is stratified; (ii) M[Po,q]| is polynomial in |O| and exponential
in |Q|; and (iii) if O is satisfiable, & € cert(Q, O) iff Po,g = Ans(Z).

Theorem 4 suggests a worst-case exponential algorithm that, given O and @), materi-
alises Pp, ¢ and returns the extension of predicate Ans. This procedure can be modified
to obtain a ‘guess and check’ algorithm applicable to BCQs. This algorithm first mate-
rialises E» in polynomial time; then, it guesses a match o to) over the materialisation;
finally, it materialises (Po)0, where variables # and 7 are grounded by o. The latter
step can also be shown to be tractable.

Theorem 5. Checking whether O |= Q) is NP-complete in combined complexity.

5 Proof of Concept

We implemented our approach using the DLVsystem,® which supports function sym-
bols and stratified negation. For testing, we used the LUBM ontology [6] (which con-
tains only safe roles) and the Horn fragments of the Reactome and Uniprot (which are
RSA, but contain also unsafe roles).” LUBM comes with a data generator; Reactome

8 http://www.dlvsystem.com/dlv/
7 http://www.ebi.ac.uk/rdf/platform

114

Ontology | Facts (M1) | Model M2/M3 q1(M4/M5/M6) | q2(M4/M5/M6) | q3(M4/M5/M6) | q4(M4/M5/M6)

Reactome | 54-10° | 8s/242-10° 6s/ 10/0% 55/ 11/0% 6s/50/48%
107-10% | 16s/485-10° 14s/ 11/0% 14s/ 17/0% | 12s/ 122/38%
159-10% | 21s/728-10° 425 /17 /0% 445/23/0% | 36s/216/35%
212-10% | 19s/970-10° 195 /21/0% 15s/24/0% | 14s/299 /34%

LUBM 37-10° 4s/213-10° 11s/2350/ 86% 4s / 650/ 96% 4s / 1580/ 0% 55/ 1743/ 0%
75-10% 6s/395-10° 45s/ 9340/ 85% 8s/1640/97% | 9s/7925/ 0% 8s/5969/ 0%
113-10% | 8s/550-10% | 108s/24901/83% | 13s/2352/98% | 13s/18661/ 0% | 13s / 10870/ 0%
150-10% | 11s/682-10% | 188s/52196/83% | 17s 12550/ 98% | 18s/32370/ 0% | 24s / 15076/ 0%
188-10% | 125/795-10% | 305s/91366/ 82% | 31s/2550/ 98% | 40s / 49555/ 0% | 38s / 18517/ 0%
226-10° | 14s/894-10% | 390s / 148340/ 80% | 39s / 2550/ 98% | 46s / 72438/ 0% | 40s / 20404/ 0%

Uniprot | 10-10° s / 51-10° 1s / 2/0% 1s /0/0% s /18/28%
49-10% | 4s /246-10° 3s/ 7/10% 3s/ 0/0% 3s /89/26%
98-10% | 9s / 487-10° 7s 19/0% 6s /1/0% | 6s /193/23%
146-10% | 11s / 726-10° 13s /14/0% 12s /1/0% | 10s /273 /22%

Table 3: Evaluation Results

and Uniprot come with large datasets, which we sampled. Test queries are given in the
appendix. We measured (M1) number of facts of the given data; (M2) materialisation
times for the canonical model; (M3) model size; (M4) materialisation times for Pg;
(MS5) number of candidate query answers; and (M6) percentage of spurious answers.
Experiments were performed on a MacBook Pro laptop with 8GB RAM and an Intel
Core 2.4 GHz processor.

Table 3 summarises our results. Computation times for the models scale linearly in
data size. Model size is at most 6 times larger than the original data, which is a reason-
able growth factor in practice. As usual in combined approaches (e.g. see [17]), query
processing times depend on the number of candidate answers; thus, the applicability
of the approach largely depends on the ratio between spurious and correct answers.
Queries q1-g2 in Reactome and Uniprot are realistic queries given as examples in the
EBI website. Neither of these queries lead to spurious answers, and processing times
scale linearly with data size. No query in the LUBM benchmark leads to spurious an-
swers (e.g., LUBM queries g3 and g4 in Table 3). We manually crafted one additional
query for Reactome and Uniprot (g3 in both cases) and two for LUBM (queries ¢; and
q2), which lead to a high percentage of spurious answers. Although these queries are
challenging, we can observe that the proportion of spurious answers remains constant
with increasing data size. Finally, note that query ¢; in LUBM retrieves the highest
number of candidate answers and is thus the most challenging query. Our prototype and
all test data, ontologies and queries are available at http://tinyurl.com/qcolx3w.

6 Conclusions and Future Work

We presented an extension to the combined approaches to CQ answering that can be
applied to a wide range of out-of-profile Horn ontologies. Our theoretical results unify
and extend existing techniques for ££LH O and DL-Lite in a seamless and elegant way.
Our preliminary experiments indicate the feasibility of our approach in practice.

We anticipate several directions for future work. First, we have not considered logics
with transitive roles. Recently, it was shown that CQ answering over EL ontologies with
transitive roles is feasible in NP [16]. We believe that our techniques can be extended
in a similar way. Finally, we would like to optimise our encoding into LP and conduct
a more extensive evaluation.

115

References

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

. Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the ££ envelope. In IJCAI,

pages 364-369, 2005.

Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Tractable reasoning and efficient query answering in description logics: The
DL-Lite family. J. Automated Reasoning (JAR), 39(3):385-429, 2007.

David Carral, Cristina Feier, Bernardo Cuenca Grau, Pascal Hitzler, and Ian Horrocks. £/£-
ifying ontologies. In IJCAR, 2014.

David Carral, Cristina Feier, Bernardo Cuenca Grau, Pascal Hitzler, and Ian Horrocks. Push-
ing the boundaries of tractable ontology reasoning. In ISWC, 2014.

Georg Gottlob, Marco Manna, and Andreas Pieris. Polynomial combined rewritings for
existential rules. In KR, 2014.

Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchmark for OWL knowledge
base systems. J. Web Semantics, 3(2-3):158-182, 2005.

Roman Kontchakov, Carsten Lutz, David Toman, Frank Wolter, and Michael Zakharyaschev.
The combined approach to query answering in DL-Lite. In KR, 2010.

Roman Kontchakov, Carsten Lutz, David Toman, Frank Wolter, and Michael Zakharyaschev.
The combined approach to ontology-based data access. In IJCAI, pages 26562661, 2011.
Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri,
and Francesco Scarcello. The DLV system for knowledge representation and reasoning.
ACM Trans. Comput. Log., 7(3):499-562, 2006.

Carsten Lutz. Inverse roles make conjunctive queries hard. In DL, 2007.

Carsten Lutz, Inang Seylan, David Toman, and Frank Wolter. The combined approach to
OBDA: Taming role hierarchies using filters. In ISWC, pages 314-330, 2013.

Carsten Lutz, David Toman, and Frank Wolter. Conjunctive query answering in the descrip-
tion logic £L using a relational database system. In IJCAI, pages 2070-2075, 2009.

Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue, and Carsten
Lutz, editors. OWL 2 Web Ontology Language: Profiles. W3C Recommendation, 20009.
Magdalena Ortiz, Sebastian Rudolph, and Mantas Simkus. Worst-case optimal reasoning for
the Horn-DL fragments of OWL 1 and 2. In KR, 2010.

Magdalena Ortiz, Sebastian Rudolph, and Mantas Simkus. Query answering in the Horn
fragments of the description logics SHOZQ and SROZQ. In IJCAI, pages 1039-1044,
2011.

Giorgio Stefanoni and Boris Motik. Answering conjunctive queries over ££ knowledge
bases with transitive and reflexive roles. In AAAI, 2015.

Giorgio Stefanoni, Boris Motik, and Ian Horrocks. Introducing nominals to the combined
query answering approaches for ££. In AAAI 2013.

Giorgio Stefanoni, Boris Motik, Markus Krotzsch, and Sebastian Rudolph. The complexity
of answering conjunctive and navigational queries over OWL 2 EL knowledge bases. J. Artif.
Intell. Res. (JAIR), 51:645-705, 2014.

Michaél Thomazo and Sebastian Rudolph. Mixing materialization and query rewriting for
existential rules. In ECAI, pages 897-902, 2014.

116

Adding Threshold Concepts to the Description
Logic ££

Franz Baader!, Gerhard Brewka?, and Oliver Fernandez Gil?*
baader@tcs.inf.tu-dresden.de
{brewka,fernandez}@informatik.uni-leipzig.de

1 Theoretical Computer Science, TU Dresden, Germany
2 Department of Computer Science, University of Leipzig, Germany

The description logic (DL) £L£, in which concepts can be built using concept
names as well as the concept constructors conjunction (1), existential restric-
tion (3r.C), and the top concept (T), has drawn considerable attention in the
last decade since, on the one hand, important inference problems such as the
subsumption problem are polynomial in ££, even with respect to expressive
terminological axioms [6]. On the other hand, though quite inexpressive, ££
can be used to define biomedical ontologies, such as the large medical ontology
SNOMED CT.? In £L we can, for example, define the concept of a happy man
as a male human that is healthy and handsome, has a rich and intelligent wife,
a son and a daughter, and a friend:

Human 1 Male M Healthy M Handsome I
Jspouse.(Rich M Intelligent 1 Female) M (1)
Jchild.Male M1 Jchild.Female M Jfriend. T

For an individual to belong to this concept, all the stated properties need to
be satisfied. However, maybe we would still want to call a man happy if most,
though not all, of the properties hold. It might be sufficient to have just a
daughter without a son, or a wife that is only intelligent but not rich, or maybe
an intelligent and rich spouse of a different gender. But still, not too many of
the properties should be violated.

In this paper, we introduce a DL extending £L£ that allows us to define con-
cepts in such an approximate way. The main idea is to use a graded membership
function, which instead of a Boolean membership value 0 or 1 yields a member-
ship degree from the interval [0, 1]. We can then require a happy man to belong
to the £L concept (1) with degree at least .8. More generally, if C' is an £
concept, then the threshold concept C, for t € [0, 1] collects all the individuals
that belong to C' with degree at least ¢. In addition to such upper threshold
concepts, we will also consider lower threshold concepts C<; and allow the use
of strict inequalities in both. For example, an unhappy man could be required
to belong to the £L concept (1) with a degree less than .2.

* Supported by DFG Graduiertenkolleg 1763 (QuantLA).
3 see http://www.ihtsdo.org /snomed-ct /

117

The use of membership degree functions with values in the interval [0, 1]
may remind the reader of fuzzy logics. However, there is no strong relationship
between this work and the work on fuzzy DLs [5] for two reasons. First, in fuzzy
DLs the semantics is extended to fuzzy interpretations where concept and role
names are interpreted as fuzzy sets and relations, respectively. The membership
degree of an individual to belong to a complex concept is then computed using
fuzzy interpretations of the concept constructors. In our setting, we consider
crisp interpretations of concept and role names, and directly define membership
degrees for complex concepts based on them. Second, we use membership degrees
to obtain new concept constructors, but the threshold concepts obtained by
applying these constructors are again crisp rather than fuzzy.

We name our new logic 7€L(m), where the membership degree function m
is a parameter in defining the logic. In [2], we propose one specific such function
deg, but we do not claim this is the only reasonable way to define such a function.
Nevertheless, membership functions are not arbitrary. There are two properties
we require such functions to satisfy:

Definition 1. A graded membership function m is a family of functions that
contains for every interpretation T a function m* : AT — [0,1] satisfying the
following conditions:

M1 :deCt e mfd,0)=1
M2 :C=D<% foraldec AT - m*(d,C) = m*(d, D).

Property M2 expresses the intuition that the membership value should not de-
pend on the syntactic form of a concept, but only on its semantics.

The set of 7EL(m) concept descriptions is defined inductively, starting from
finite sets of concept names N¢ and role names Ng, as follows:

C,D:=T | A|CND|3.C| E.,

where A € N¢, r € Ng, ~ € {<,<,>,>},¢€[0,1]NQ, E is an EL concept de-
scription, and C, D are 7EL(m) concept descriptions. For a given interpretation
T = (AZ,.7), the semantics of the new threshold concepts is defined as follows:

[E)F = {d € AT | m*(d, E) ~ ¢}.

The extension of .7 to more complex concepts is defined as for ££ by additionally
considering the semantics of the newly introduced threshold concepts.

To make things more concrete, we introduce in [2] a specific membership
function, denoted deg, which satisfies properties M1 and M2. Given an interpre-
tation Z, an element d € A%, and an £L concept description C, this function
measures to which degree d satisfies the conditions for membership expressed by
C'. To come up with such a function, we use the homomorphism characterization
of crisp membership in £L£. In £L£, concept descriptions and interpretations can
be translated into ££ description trees and £L description graphs, respectively
(see [4,1]). Then, homomorphisms between £L description trees can be used
to characterized subsumption in ££ [4]. The proof of this result can be easily
adapted to obtain the following characterization of element-hood in EL.

118

Theorem 1. Let T be an interpretation, d € AT and C an EL concept descrip-
tion. Then, d € CT iff there exists a homomorphism ¢ from Tg to G such that
w(vy) =d.

Using Theorem 1 as a starting point, we consider all partial mappings h from
Tc to Gz that map the root of Te to d and respect the edge structure of Te¢.
For each of these mappings we then calculate to which degree it satisfies the
homomorphism conditions, and take the degree of the best such mapping as the
membership degree degI (d, C). Intuitively, to compute the degree associated to
a partial mapping h, we define the weighted homomorphism induced by h as a
function h,, : dom(h) — [0, 1]. Basically, in the definition of this function, the
individual d is punished (in the sense that its membership degree is lowered)
for each missing property (i.e., required element-hood in a concept name or an
existential restriction) in a uniform way (see [2] for the precise definition).

In [2], we describe an algorithm that, given a finite interpretation Z, computes
deg® (d,C) in polynomial time. This polynomial time algorithm is inspired by
the polynomial time algorithm for checking the existence of a homomorphism
between £L description trees [3,4], and similar to the algorithm for computing
the similarity degree between £L concept descriptions introduced in [9].

The main technical contribution of this work is, however, the investigation
of the complexity of terminological (subsumption, satisfiability) and assertional
(consistency, instance) reasoning in 7€L(deg). To provide lower bounds, we show
NP-hardness of the satisfiability problem by a simple reduction from the well-
known NP-complete problem ALL-POS ONE-IN-THREE 3SAT [8]. The corre-
sponding NP upper bound for satisfiability is an immediate consequence of the
following polynomial bounded model property.

Lemma 1. Let C be a TEL(deg) concept description of size m. If C is satisfi-
able, then there exists an interpretation J such that C7 # 0 and |A7| < m.

A coNP-upper bound for subsumption cannot directly be obtained from the
fact that satisfiability is in NP. In fact, though we have C C D iff C 11D is
unsatisfiable, this equivalence cannot be used directly since =D need not be a
TEL(deg) concept description. Nevertheless, we can extend the ideas used in the
proof of Lemma 1 to obtain a polynomial bounded model property for satisfia-
bility of concepts of the form C' M —D. The same is true for ABox consistency.
Regarding instance checking, the bound on the size of counter models is expo-
nential w.r.t. combined complexity, but fortunately still polynomial w.r.t. data
complexity (in the sense of [7]).

Overall, we thus obtain the following complexity results for reasoning in

TEL(deg).

Theorem 2. In the DL 7EL(deg), satisfiability is NP-complete, subsumption
is coNP-complete, and ABozx consistency is NP-complete. Moreover, instance
checking is coNP-complete w.r.t. data complezity.

Due to the space constraints, we could not provide technical details and
proofs in this extended abstract. They can be found in the technical report [2].

119

References

1. Baader, F.: Terminological cycles in a description logic with existential restrictions.
In: Gottlob, G., Walsh, T. (eds.) IJCAL pp. 325-330. Morgan Kaufmann (2003)

2. Baader, F., Brewka, G., Fernandez Gil, O.: Adding threshold concepts to the de-
scription logic ££. LTCS-Report 15-09, Chair for Automata Theory, Institute for
Theoretical Computer Science, Technische Universitdt Dresden, Dresden, Germany
(2015), see http://lat.inf.tu-dresden.de/research /reports.html.

3. Baader, F., Kiisters, R., Molitor, R.: Computing least common subsumers in de-
scription logics with existential restrictions. LT CS-Report LT CS-98-09, LuFG The-
oretical Computer Science, RWTH Aachen, Germany (1998), see http://lat.inf.tu-
dresden.de/research/reports.html.

4. Baader, F., Kiisters, R., Molitor, R.: Computing least common subsumers in de-
scription logics with existential restrictions. In: Dean, T. (ed.) IJCAL pp. 96 103.
Morgan Kaufmann (1999)

5. Borgwardt, S., Distel, F., Pefialoza, R.: The limits of decidability in fuzzy description
logics with general concept inclusions. Artificial Intelligence 218, 23—-55 (2015)

6. Brandt, S.: Polynomial time reasoning in a description logic with existential re-
strictions, GCI axioms, and - what else? In: de Mantaras, R.L., Saitta, L. (eds.)
Proceedings of the 16th Eureopean Conference on Artificial Intelligence, ECAI’2004,
including Prestigious Applicants of Intelligent Systems, PAIS 2004, Valencia, Spain,
August 22-27, 2004. pp. 298-302. IOS Press (2004)

7. Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: Deduction in concept languages:
From subsumption to instance checking. J. Log. Comput. 4(4), 423-452 (1994),
http://dx.doi.org/10.1093/logcom/4.4.423

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (1979)

9. Suntisrivaraporn, B.: A similarity measure for the description logic EL with unfold-
able terminologies. In: 2013 5th International Conference on Intelligent Networking
and Collaborative Systems, Xi’an city, Shaanxi province, China, September 9-11,
2013. pp. 408-413. IEEE (2013), http://dx.doi.org/10.1109/INCoS.2013.77

120

Lower and Upper Bounds for SPARQL Queries over
OWL Ontologies

Birte Glimm' Yevgeny Kazakov' Ilianna Kollia> and Giorgos Stamou?

! Ulm University, Germany, <firstname.surname> @uni-ulm.de
2 National Technical University of Athens, Greece, ilianna2 @mail.ntua.gr, gstam @cs.ntua.gr

Introduction

The recent standardization of the SPARQL 1.1 Entailment Regimes [2], which extend
the SPARQL Query Language [3] with the capability of querying also for implicit
knowledge makes the need for an efficient evaluation of complex queries over OWL
ontologies urgent. We present an approach for optimizing the evaluation of SPARQL
queries over OWL ontologies using SPARQL’s OWL Direct Semantics entailment regi-
me. Such queries consist of axiom templates, i.e., Description Logic (DL) axioms with
variables in place of concept, role and individual names. Answers to such queries are
mappings of query (concept, role or individual) variables to corresponding (concept,
role or individual) names that instantiate the axiom templates to axioms entailed by the
queried knowledge base (KB).

Since computing query answers over an expressive KB is computationally very
costly, approximation techniques have been proposed that use a weakened version of
the KB to compute a lower bound (yields sound but potentially incomplete results) and
a strengthened version to compute an upper bound (yields complete but potentially un-
sound results) for the results [9, 7, 8]. Another well-known technique is to compute the
bounds from a complete and clash-free tableau generated by a DL reasoner [4, 5]. De-
terministically derived facts are used as lower bound, while also non-deterministically
derived ones are considered for the upper bound. Answers in the “gap”, i.e., potential
answers in the upper but not the lower bound, usually have to be checked individually
by performing a consistency check with a fully fledged OWL 2 DL reasoner.

While we also use bounds, we allow for much more expressive queries than related
approaches. To optimize the evaluation of possible query answers in the gap, we present
a query extension approach that uses the TBox of the queried KB to extend the query
with additional parts. We show that the resulting query is equivalent to the original one
and we use the additional parts that are simple to evaluate for restricting the bounds of
subqueries of the initial query. In an empirical evaluation we show that the proposed
query extension approach can lead to a significant decrease in the query execution time
of up to four orders of magnitude. More details about our method as well as more
evaluation results can be found in the extended version of our paper [1].

Improving Bounds via Query Extension

We will show the intuition of the proposed query extension method through an example.
Let K be a KB, A, B, C be concept names, r a role name, a, b, ¢, d individual names, x

121

an individual variable, Y a concept variable and

T ={BCAUC,drBC C} A={A(a), B(b), r(a,b), A(d)}
q = {A(x),Ar.Y(x),Y C B}

Note that the only answer for g over K is the mapping {u | u(x) = a, u(Y) = B}.

First we compute bounds for axiom templates of g over K. Since {A(a), A(d)} €K
we have K E A(a) and K E A(d). That is, we can find the lower bound L = {u |
u(x) € {a,d}} for the query {A(x)} over K without performing any tests. To find an
upper bound for {A(x)}, we can use a model 7 of K. It is easy to check that K has a
model 7 = (47, 1) with 47 = {d,dy,d3,ds}, a* = dy, b = dy, I = d3, d¥ = dy,
AT = {d),dy,ds}, BY = {d>}, C* = {d\} and ' = {{d|,d,)}. Note that T £ A(c).
Thus, from this model alone one can conclude that K [A(c) and hence that the set
U = {u | u(x) € {a,b,d}} provides an upper bound for the query {A(x)} over K.
Although the model J can be similarly used for finding an upper bound for complex
templates, such as {3r.Y(x)}, in general it can only be found by iterating over all possible
mappings for x and Y and checking which instances of this template are entailed by the
model. Therefore, in practice, one does not compute the bounds for complex templates.
The bounds for the query {Y £ B} can be computed by classifying the KB and retrieving
subsumption relationships for B. Since for classification one usually needs to consider
just the (relatively small) TBox 7~, the bounds for this query can be computed exactly,
i.e., in our example we have £ = U = {u | u(Y) € {L, B}}.

Our query extension method uses additionally the notion of a subquery bound,which
provides a range for those answers of a subquery (subset of templates) of ¢ that are
sufficient to evaluate g. The intuition of our method is that subquery bounds can be
improved using bounds of other subqueries of this query. Thus, if a query ¢ can be
extended to an equivalent query g U ¢q’, the number of reasoner calls performed for
evaluating g can be reduced using ¢’. The proposed algorithm can be summarized as
follows: First, we replace every (concept, role, individual) variable in g with a fresh
distinct (concept, role, individual) name. For our example, consider a mapping u such
that pu(x) = ay, w(Y) = Ay with a, an individual and Ay a concept name. Then we
materialize and classify K plus u(g), where p(q) denotes the result of replacing each
variable x in g with u(x), i.e., we compute all concept assertions A(a), role assertions
r(a, b), and subsumptions A E B with atomic concepts and roles entailed by K U u(q).
Afterwards, we replace names back with their corresponding variables in the extended
KB. In our example 7 U u(q) = {BC AU C,3r.B C C, A(a,),IrAy(a,),Ay C B} E
C(a,). Thus, for ¢’ = {C(x)}, we have K U u(qg) E C(a,) = u(q’), and it holds that the
query ¢ has the same answers for K as the extended query qU ¢’ = {A(x), Ar.Y(x), Y C
B, C(x)}. In the end, we compute query bounds for the templates in ¢’ and use them to
improve the subquery bounds for templates in g. Using again the model I for K, since
I E C(a), but I | C(b), I I C(c) and I [C(d), we can derive the upper bound
U = {u | u(x) = a} for the query {C(x)}. Using this upper bound, it is now possible to
reduce the upper bound for the subquery {A(x)} of g to U. Since U is a subset of the
lower bound for {A(x)} (computed in the beginning of the section), this subquery can
be evaluated without performing any further entailment tests. The new upper bound U
can also be used to further reduce the upper bound for the subquery {3r.Y(x)} of g to

122

Table 1. Query answering times in seconds (n/a indicates a timeout, > 30 min) and number of
performed entailment checks for UOBM with the first department using evalStatic and evalExt

evalStatic evalExt
UOBM time #entail| time #entail
q1 = {isAdvisedBy(x,y), GraduateStudent(x), Woman(y)}, 20.84 47(10.54 19
q, = {Professor(y)}
q> = {isTaughtBy(x, y), GraduateCourse(x), Woman(y)}, 21.63 51[12.06 26

g5 = {Faculty(y)}
q3 = {teachingAssistantOf(x, y), GraduateCourse(y), Woman(x)}, 12.78 32| 5.60 12
qy = {TeachingAssistant(x)}

q4 = {IworksFor.Organization(x), Woman(x)}, n/a 18.36 135
q, = {Employee(x)}

qs = {X € JisHeadOf.Department, disTaughtBy.X(y)}, n/a 1.99 4
q5 = {X T Chair, CourseTaughtByChair(y)}

q¢ = {X E JdisHeadOf.College, isAdvisedBy.X(y), n/a 0.21 0

g = {X E Dean, PersonAdvisedByDean(y)}

{u | u(x) = a, u(Y) € {L, B}}. After this reduction, this subquery can be evaluated using
just two entailment tests.

Evaluation

The proposed method has been implemented and evaluated over a set of well-known
benchmark ontologies and relevant datasets and for several forms of queries. Although
it can be used, in general, for improving the performance of most query answering
systems based on query bounds, here the evaluation is based on the system described in
Kollia et al. [5], which, to the best of our knowledge, is the only system that supports
the evaluation of complex queries over OWL 2 DL ontologies under the OWL Direct
Semantics entailment regime of SPARQL 1.1. In our implemented method (referred
to as evalExt) we improve the subquery bounds computed in evalStatic [5] using the
method described in the previous section. Afterwards, we perform the ordering and
evaluation methods of Kollia et al. using the improved subquery bounds.

In Table 1 we show the results of the evaluation on the University Ontology Bench-
mark (UOBM) [6] using a range of custom queries since the queries provided for
UOBM are only simple conjunctive instance queries. Column 1 shows the query g;
and extension templates ¢; (1 < i < 6), columns 2 and 3 show the query answering
times and the number of performed entailment checks for evalStatic, respectively, and
columns 4 and 5 show the respective numbers for evalExt. In all queries the time spent
for query extension is negligible compared to the time spent for query evaluation. We
observe that for all queries, additional extension templates were derived, which have
significantly better query bounds than the complex templates of the queries. This di-
rectly translates to a significantly lower number of entailment checks for evalExt and,
hence, a reduction in execution times. The reduction in query answering times is up to
four orders of magnitude.

123

References

1. Glimm, B., Kazakov, Y., Kollia, I., Stamou, G.: Lower and upper bounds for SPARQL
queries over OWL ontologies. In: Proceedings of the 29th Conference on Artificial Intelli-
gence (AAAI’15) (2015)

2. Glimm, B., Ogbuji, C. (eds.): SPARQL 1.1 Entailment Regimes. W3C Recommendation
(2013), available at http: //www.w3.0org/TR/sparqlll-entailment/

3. Harris, S., Seaborne, A. (eds.): SPARQL 1.1 Query Language. W3C Recommendation (2013),
available at http://www.w3.0org/TR/sparqlll-query/

4. Kollia, I., Glimm, B.: Cost based query ordering over OWL ontologies. In: Proceedings of
the 11th International Semantic Web Conference (ISWC 2012). Lecture Notes in Computer
Science, vol. 7649, pp. 231-246. Springer (2012)

5. Kollia, I., Glimm, B.: Optimizing SPARQL Query Answering over OWL Ontologies. Journal
of Artificial Intelligence Research 48, 253-303 (2013)

6. Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., Liu, S.: Towards a complete OWL ontology bench-
mark. In: The Semantic Web: Research and Applications, pp. 125-139. Lecture Notes in Com-
puter Science, Springer (2006)

7. Pan, J.Z., Thomas, E., Zhao, Y.: Completeness guaranteed approximation for OWL-DL
query answering. In: Proceedings of the 22nd International Workshop on Description Log-
ics (DL’09). CEUR Workshop Proceedings, vol. 477. CEUR-WS.org (2009), http://dblp.
uni-trier.de/db/conf/dlog/dlog2009.html#PanTZ09

8. Ren, Y., Pan, J.Z., Zhao, Y.: Soundness preserving approximation for TBox reasoning. In:
Proceedings of the 25th National Conference on Artificial Intelligence (AAAI’10). AAAI
Press (2010)

9. Zhou, Y., Nenov, Y., Grau, B.C., Horrocks, IL.: Pay-as-you-go OWL query answering using a
triple store. In: Proceedings of the 28th Conference on Artificial Intelligence (AAAI’14). pp.
1142-1148 (2014)

124

Polynomial Combined Rewritings for Linear Existential
Rules and DL-Lite with n-ary Relations

Georg Gottlob!, Marco Manna?, and Andreas Pieris?

! Department of Computer Science, University of Oxford, UK
georg.gottlobl@cs.ox.ac.uk
2 Department of Mathematics and Computer Science, University of Calabria, Italy
manna@mat.unical.it
3 TInstitute of Information Systems, Vienna University of Technology, Austria
pieris@dbai.tuwien.ac.at

1 Introduction

This paper considers the setting of ontology-based query answering (OBQA). In this
setting, Description Logics (DLs) and existential rules (a.k.a. tuple-generating depen-
dencies or Datalog™ rules) are popular ontology languages, while conjunctive queries
(CQs) is the main querying tool. Among KR researchers there is a clear consensus that
the required level of scalability in OBQA can only be achieved via query rewriting,
which attempts to reduce OBQA into the problem of evaluating a query over a rela-
tional database. Two query languages are usually considered: first-order queries (FO)
and non-recursive Datalog queries (NDL).

An interesting approach to query rewriting is the polynomial combined approach [7],
which can be described as follows: an ontology X' can be incorporated together with a
CQ ¢ into a database query ¢y in polynomial time, and also with a database D into
a database Dy in polynomial time, such that g5 over Dy yields the same result as ¢
evaluated over the knowledge base consisting of D and Y. The polynomial combined
approach has been applied to £ E?—[ji_r [7], an extension of the well-known DL £L, to
DL—LiteJ}YOm [5, 6], one of the most expressive logics of the DL-Lite family, and only
recently to the main guarded- and sticky-based classes of existential rules [3].

Research Challenges. The problem of applying the polynomial combined approach
to existing DLs and classes of existential rules is relatively understood. Nevertheless,
there are still basic open questions that deserve our attention. Regarding DLs, little is
known about formalisms with n-ary relations such as DLR-Liter, that is, the exten-
sion of DL-Liteg with n-ary roles. Regarding existential rules, it is open whether the
polynomial combined approach can be applied to the class of linear existential rules (or
simply linear rules), that is, assertions of the form VXVY (s(X,Y) — 3Zp(X,Z)),
where s(X,Y) and p(X, Z) are atomic formulas [1].

It is not difficult to show that, if linear rules are polynomially combined rewritable,
then also DLR-Liter is polynomially combined rewritable — this follows from the
fact that query answering under DLR-Lite can be easily reduced to query answering
under linear rules [1]. Thus, the key question that we need to answer, which has been
explicitly stated as an open problem in [3], is the following:

125

p(a,b,c) p(b,c,d)

@D Iy
Pl21,0,22) @bz 2 P2

Peosd) psed) ‘/\

z3 Z4
» 4
\ ! (b)

P(23,a,21)
.

3A3BICID (oA, B) A p(C.B5) A p(Dcsb)

(@)

Fig. 1. Illustration of a proof generator.

Given a (Boolean) CQ q, a database D, and a set X of linear rules, can we rewrite
in polynomial time: (i) q and X, independently of D, into a Q-query qs, where
Q € {FO,NDL}, and (ii) D and X, independently of q, into a database D, such
that (DU X)) = qiff Dy | qx?

The answer to the above question is affirmative under the assumption that the arity
of the underlying schema is bounded; implicit in [2]. However, little is known for arbi-
trary linear rules, without any assumption on the underlying schema. We give a positive
answer even for linear rules that use predicates of unbounded arity. For more details,
we refer the reader to [4].

2 Proof Generator

We assume the reader is familiar with the chase procedure. Recall that the chase for
a database D and a set X' of rules, denoted chase(D, X)), is a universal model of D
and X, and thus (D U X) | q iff chase(D, X)) |= g, for each CQ q. The instance
chase(D, X)) can be naturally seen as a directed labeled graph, called chase graph,
denoted CG(D, X). Itis also easy to verify that for linear rules, CG (D, X) is a directed
forest; for details on the chase, see, e.g., [1]. Our main technical tool is called proof
generator, and it formalizes the intuitive idea that (Boolean) CQ answering under linear
rules can be realized as a reachability problem on the chase graph. Let us illustrate the
key ideas underlying the proof generator via a simple example.

Example 1. Let D = {p(a,b,c),p(b,c,d)}, and let X' be the set of linear rules (for
brevity, the universal quantifiers are omitted):

p(X,Y,Z) - IWp(X,W,Y) p(X,Y,Z) = IWp(Z,W,Y)
p(X,Y,Z) = dWp(Y, X, W) p(X,Y,Z) = p(Y,Z,X).

Given the BCQ ¢ = 3A3IB3C3D (p(A, a, B) A p(C, B,b) A p(D,¢c,b)), as shown in
Figure 1(a), there exists a homomorphism £ (dashed arrows in the figure) that maps ¢ to
an initial segment of the chase graph of D and X, and thus (DU X)) = ¢. Itis interesting
to observe that the nulls occurring in h(g), i.e., 21, 23, 24 and z5, form a rooted forest

126

F, depicted in Figure 1(b), with the following properties; for brevity, let v(z) be the
atom in CG(D, X) where the null z is invented (see shaded atoms in Figure 1(a) for
v(z1), v(z3), ¥(2z4) and v(z5)): (i) for every root node z, v(z) is reachable from D; (ii)
for every edge (z,w), v(w) is reachable from v(z); and (iii) for every atom a € h(q),
there exists a unique path 7 in F' that contains all the nulls in a, and, assuming that
the leaf node of 7 is z, a is reachable from v(z). Indeed, it is easy to verify that v(z;)
and v(z5) are reachable from D, v(z3) and v(z4) are reachable from v(z1), and finally,
h(p(4,a,B)) = p(z3,a,z) is reachable from v(z3), h(p(C, B,b)) = p(z4, 21,b) is
reachable from v(zy), and h(p(D, ¢,b)) = p(zs, ¢, b) is reachable from v(z5). "

Roughly speaking, the triple consisting of: (1) the homomorphism A, that maps ¢ to
the chase; (2) the function v, that gives the atoms in the chase where the nulls occurring
in h(q) were invented; and (3) the forest F', that encodes how the nulls of ~(q) depend
on each other, as well as the order of their generation, is what we call a proof generator
for ¢ w.r.t. D and Y. The existence of such a triple, allows us to generate the part of
the chase due to which the query is entailed, i.e., the proof of the query (hence the
name “proof generator”). Therefore, for query answering purposes under linear rules,
we simply need to check if such a proof generator exists.

Lemma 1. (DU X)) = q iff there exists a proof generator for ¢ w.r.t. D and X.

3 The Combined Rewriting

We give a positive answer to our research question regarding linear rules and the poly-
nomial combined approach. More precisely, we show that:

Theorem 1. The class of linear rules is polynomially combined Q-rewritable, where

Q € {FO,NDL}.

To establish the above theorem, we heavily rely on the notion of the proof generator.
Fix a (Boolean) CQ ¢, a database D, and a set X' of linear rules. By Lemma 1, it
suffices to construct in polynomial time a query ¢ € Q (independently of D), and
a database Dy (independently of ¢), such that Dy, = ¢ iff a proof generator for ¢
w.r.t. D and X exists. Roughly, the query ¢ guesses a triple (h, v, F') (as described in
Example 1), and then verifies that the guessed triple is a proof generator for ¢ w.r.t. D
and Y. The interesting part of ¢ is the component that applies the crucial reachability
checks required by the definition of the proof generator. Although the path among two
atoms in the chase graph may be of exponential size, its existence can be checked via
Q-queries of polynomial size. An immediate consequence of Theorem 1 is that:

Corollary 1. The description logic DLR-Liter is polynomially combined Q-rewritable,
where Q € {FO,NDL}.

The results of this work are, for the moment, of theoretical nature and we do not
claim that they will directly lead to better practical algorithms. We believe that a smart
implementation of the proposed techniques can lead to more efficient rewriting proce-
dures; this will be the subject of future research. We are also planning to optimize the
proposed rewriting algorithm, with the aim of constructing queries of optimal size.

127

Acknowledgements. G. Gottlob was supported by the EPSRC Programme Grant
EP/M025268/ “VADA: Value Added Data Systems — Principles and Architecture”. M.
Manna was supported by the MIUR project “SI-LAB BA2KNOW - Business Anali-
tycs to Know”, and by Regione Calabria, programme POR Calabria FESR 2007-2013,
projects “ITravel PLUS” and “KnowRex: Un sistema per il riconoscimento e 1’estrazione
di conoscenza”. A. Pieris was supported by the Austrian Science Fund (FWF): P25207-
N23 and Y698.

References

1. Cali, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework for tractable query
answering over ontologies. J. Web Sem. 14, 57-83 (2012)

2. Gottlob, G., Kikot, S., Kontchakov, R., Podolskii, V.V., Schwentick, T., Zakharyaschev, M.:
The price of query rewriting in ontology-based data access. Artif. Intell. 213, 42-59 (2014)

3. Gottlob, G., Manna, M., Pieris, A.: Polynomial combined rewritings for existential rules. In:
KR (2014)

4. Gottlob, G., Manna, M., Pieris, A.: Polynomial rewritings for linear existential rules. In: IICAI
(2015)

5. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The combined approach
to query answering in DL-Lite. In: KR (2010)

6. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The combined approach
to ontology-based data access. In: I[JCAL pp. 2656-2661 (2011)

7. Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering in the description logic £L£
using a relational database system. In: IJCAL pp. 2070-2075 (2009)

128

The Complexity of Temporal Description Logics
with Rigid Roles and Restricted TBoxes:
In Quest of Saving a Troublesome Marriage

Victor Gutiérrez-Basulto, Jean Christoph Jung, and Thomas Schneider

Department of Computer Science, Universitit Bremen
{victor, jeanjung, ts}@cs.uni-bremen.de

1 Introduction

Temporal description logics (TDLs) extend classical DLs, providing built-in means to
represent and reason about temporal aspects of knowledge. The importance of TDLs
stems from the need of relevant applications to capture temporal and dynamic aspects
of knowledge, e.g., in medical and life science ontologies, which are very large but
still demand efficient reasoning, such as SNOMED CT and FMA [9], and the gene
ontology (GO) [20]. A natural task is to model dynamic knowledge about patient
histories against static medical knowledge (e.g., about diseases): e.g., the temporal
concept C' := E<TrequiresTransfusion. T describes a patient who may need a blood
transfusion in the future, and the axiom Anemic C C says that this applies to anemic
people. In contrast, Anemia C Disorder represents static knowledge.

A notable approach to designing TDLs is to combine DLs with temporal logics
commonly used in software/hardware verification such as LTL, CTL(*), and to provide a
two-dimensional product-like semantics [19, 11, 17]. The combination allows various
design choices, e.g., we can restrict the scope of temporal operators to certain types
of entities (such as concepts, roles, axioms), or declare some DL concepts or roles as
rigid, meaning that their interpretation will not change over time. The need for rigid
roles in TDL applications, e.g., in biomedical ontologies to accurately capture life-time
relations, has been identified [7]. For example, the role hasBlood Type should be rigid
since a human’s blood type does not change during their lifetime.

Alas, TDLs based on the Boolean-complete DL ALC with rigid roles cannot be
effectively used since they become undecidable when temporal operators are applied to
concepts and a general TBox is allowed [11, 15]. This is the case even if we severely
restrict the temporal operators available and use the sub-Boolean DL ££, whose standard
reasoning problems are tractable, instead of ALC [1, 15]. In the light of these results,
several efforts have been devoted to design decidable TDLs with rigid roles [3, 2]; e.g.,
decidability can be recovered by using a lightweight DL component based on DL-Lite.
Both the £L and DL-Lite families underlie prominent profiles of the OWL standard.

Interestingly, no research has been yet devoted to TDLs based on £L in the presence
of restricted TBoxes, such as classical TBoxes, which consist solely of definitions of the
form A = C with A atomic and unique, or acyclic TBoxes, which additionally forbid
syntactic cycles in definitions. This is surprising since in the presence of general TBoxes
TDLs based on £L tend to be as complex as the ALC variant [3, 13, 15].

129

These considerations lead us to investigating TDLs with rigid roles based on ££
and the (branching-time) CTL allowing for temporal concepts and acyclic TBoxes. We
are convinced that TDLs designed in this way are suitable for temporal extensions of
biomedical ontologies: large parts of SNOMED CT and GO are acyclic ££-TBoxes.

Our main contributions are algorithms for standard reasoning problems and (mostly
tight) complexity bounds. We begin by showing that the combination of CTL and ALC
with empty and acyclic TBoxes is decidable. Our nonelementary upper bound is optimal
even when the set of temporal operators is restricted to E< (“possibly eventually”) or
EO (“possibly next”). We then replace ALC with £L and maintain the restriction to
E<$, EO and empty TBoxes. We particularly show that the resulting TDLs are decidable
in PTIME with one of the two operators, and CONP-complete with both. To this aim, we
employ canonical models, together with expansion vectors [16] in the case with both
E<$, EO. Next, we lift the PTIME upper bound to the case of acyclic TBoxes, employing
a completion algorithm in the style of those for £L and extensions, [5]. Finally, we show
that the combination of E<X with AO (“always globally”) and acyclic TBoxes leads to
a PSPACE-complete TDL, again employing a completion algorithm. An overview of
existing and new results is given in Table 1, where CTLY denotes the combination of
the DL X with the fragment of CTL restricted to the temporal operators Y. In particular,
all the new results hold even if rigid concepts are also included.

Rigid roles? | no yes yes yes

TBoxes general general acyclic empty

CTL Arc =EXPTIME [13] undecidable [15] nonelementary, nonelem.,
decidable (1) decidable (1)

CTLES <PTIME [13] nonelementary [15] <PTIME (6) <PTIME (6)

CTLEP <PTIME[13] undecidable[15] <PTIME (6) <PTIME (6)

CTLESE® | —EXPTIME[13,15] undecidable[15] ~ >CONP, (2) =CONP (2)
<CONEXPTIME (5)

CTLZS ™" | =PSPACE[13] nonelementary [15] =PSPACE (9) <PSPACE (9)

Table 1. Previous and new complexity results. > hardness, < membership, = completeness.
(n) refers to our Theorem or Corollary n.

The relatively low complexity that we obtain for ££-based TDLs over restricted
TBoxes are in sharp contrast with the undecidability and nonelementary lower bounds
known for the same logics over general TBoxes [15]. With the restriction to acyclic
TBoxes, we will thus identify the first computationally well-behaved TDLs with rigid
roles based on £L and classical temporal logics.

Additional technical notions and proofs are in a report: http://tinyurl.com/ijcail5tdl

2 Preliminaries
We introduce CTL 4.¢, a TDL based on the classical DL ALC. Let N¢ and Ng be

countably infinite sets of concept names and role names, respectively. We assume that
Nc and N are partitioned into two countably infinite sets: N¢# and N'(‘:’C of rigid concept

130

3

names and local concept names, respectively; and, Ngg and N',§° of rigid role names and
local role names, respectively. CTL 4 o¢-concepts C' are defined by the grammar

C:=T|A|-C|CnD]|3r.C|EOCC|EDC|E(CUD)

where A ranges over N¢, r over Ng. We use standard DL abbreviations [6] and temporal
abbreviations ECC, AOC, ACC and A(CU D) [10].

The semantics of classical DLs, such as ALC, is given in terms of interpretations
of the form Z = (A, -T), where A is a non-empty set called the domain and -T is an
interpretation function that maps each A € N¢ to a subset AZ C A and each r € Ng to
a binary relation 7 C A x A. The semantics of CTL 4¢ is given in terms of temporal
interpretations based on infinite trees [15]: A temporal interpretation based on an infinite
tree T' = (W, E) is a structure J = (T, (Z,y)wew) such that, foreachw € W, Z, is a
DL interpretation with domain A; and, rZ» = rZw’ and AZw = AZw for all r € NI,
Ae Ngg and w,w’ € W. We usually write A”% instead of A%+ The stipulation that
all worlds share the same domain is called the constant domain assumption (CDA). For
Boolean-complete TDLs, CDA is the most general: increasing, decreasing and varying
domains can all be reduced to it [11, Prop. 3.32]. For the sub-Boolean logics studied
here, CDA is not w.l.o.g. Indeed, we identify a logic in which reasoning with increasing
domains cannot be reduced to the constant domain case.

We now define the semantics of CTL 4.¢-concepts. A pathin T' = (W, E) starting
at a node w is an infinite sequence m = wowyws - - - with wy = w and (w;, w;41) € E.
We write [i] for w;, and use Paths(w) to denote the set of all paths starting at the node
w. The mapping -7+* is extended from concept names to CTL 4¢-concepts as follows.

T =A (CnD)"=CnD""
(Ir.C)?" = {de A|Je.(de) €r?™W Nec OV}
(EOC)?" = {d | 3r € Paths(w) .d € C7~11}
(EOC)?* = {d | 37 € Paths(w) .¥j >0.d e C77lil}
(E(CUD))?* = {d| 3r € Paths(w).3;j >0.(de D¥"U A (Vk <j.de CVmk))}

An acyclic CTL grc-TBox T is a finite set of concept definitions (CDs) A = D with
A € Nc and D a CTL 4.¢ concept, such that (1) no two CDs have the same left-hand
side, and (2) there are no CDs A; = C1,..., Ay = C) in T such that A;; occurs in
C; for1 <i < k,where A1 = A;.

A temporal interpretation J is a model of a concept C' if C7>¢ # (; it is a model of an
acyclic TBox 7T, written J =T, if A% =C%% forall A=C € T and w € W itis a
model of a concept inclusion C'C D, written J = C C D, if Cow C D3 forallwe W.

The two main reasoning tasks we consider are concept satisfiability and subsumption.
A concept C is satisfiable relative to an acyclic TBox 7 if there is a common model of
C and T. A concept D subsumes a concept C' relative to an acyclic TBox 7, written
TECLCD,ifJ = CLC D forall models J of 7. If T is empty, we write = C' C D.

3 First Observations

We start by observing that the combination of CTL and ALC with rigid roles relative to
empty and acyclic TBoxes is decidable and inherently nonelementary. In a nutshell, we

131

show the upper bounds using a variant of the quasimodel technique [11, Thm. 13.6]; the
lower bound follows from the fact that satisfiability for the product modal logics S4 xK
and Kx K is inherently nonelementary [12]. Indeed, the fragment of CTL 4 ¢ allowing
E< (EO) as the only temporal operator is a notational variant of S4x K (KxK) [15].

Theorem 1. Concept satisfiability relative to acyclic and empty TBoxes for CTL 4.¢
with rigid roles is decidable and inherently nonelementary.

With Theorem 1 and the third column of Table 1 in mind, we particularly set as our
goal the identification of elementary (ideally tractable) TDLs. To this aim, we study
combinations of (fragments of) CTL with the lightweight DL ££. CTL¢ is the fragment
of CTL 4. that disallows the constructor — (and thus the abbreviations C U D, Vr.C,
A0, ...). The standard reasoning problem for CTL¢., as for £L, is concept subsumption
since each concept and TBox are trivially satisfiable. In what follows we consider various
fragments of CTL¢, obtained by restricting the available temporal operators. We denote
the fragments by putting the allowed operators as a superscript. In this context, we view
each of the operators EC, AO as primitive instead of as an abbreviation.

In order to keep the presentation of our main results accessible, in Sections 5-6, we
concentrate on the case where only rigid role names and local concept names are present.
Later on, in Section 7, we explain how to deal with the general case.

4 CTLE&3 B relative to the Empty TBox

We begin by investigating the complexity of subsumption relative to the empty TBox for
EO,E0

a TDL whose subsumption relative to general TBoxes is undecidable: CTL -
Theorem 2. Concept subsumption relative to the empty TBox is CONP-complete for
CTL?Co O ith rigid roles and in PTIME for CTL];co and CTL?L<> with rigid roles.

CONP-hardness is obtained by embedding EL plus transitive closure into CTL?Lo O,

the jump in complexity comes from the ability to express disjunctions, e.g., = EOC C
C U EOECC. We next explain CONP-membership; the PTIME results are a byproduct
and improved later.

We proceed in two steps: first we provide a characterization of = C' C D where C' is an
CTL?Lo -concept and D an CTL?Lo ’Eo—concept. Next we generalize this characterization
to CTLE."®-concepts C.

Given a CTL?Lo -concept C, the description tree tc = (Vo, Lo, Ec) for C'is a
labeled graph corresponding to C’s syntax tree; we denote its 700t by x . For example,
if C = EO(3r.AMJs.B), then t¢ is given in Figure 1, left.

For plain ££, we have = C'C D if and only if there is a homomorphism from ¢ p
to tc, which can be tested in polynomial time [8]. This criterion cannot directly be
transferred to CTL?Eo because t¢ does not explicitly represent all pairs of worlds and
domain elements whose existence is implied by ¢, e.g., for = EO3r.A C 3r. ECA
with 7 rigid, there is no homomorphism from ¢p to tc. We overcome this problem
by transforming ¢ into a canonical model I of C, i.e., (1) its distinguished root is
an instance of C' and (2) Jo homomorphically embeds into every model of C. The

132

I e S I R
R > P >
A B N \‘: k—~__~ = “/) \\7:~‘E““~§‘:\ ‘—_,‘
jroe S R
. ~ pre
120] . Je Jo

Fig. 1. Description tree ¢, canonical model J¢, finite representation J"C',e for C = EO(3r.AM3s.B)

construction of J¢ from t¢ is straightforward: for every node with an incoming O-edge
(r-edge, r being a role) create a fresh world (domain element); for the root x¢ create
both a world and domain element. The temporal relation and the interpretation of 7 and
concept names is read off E¢ and L¢. To transform (W, R) into an infinite tree, we add
an infinite path of fresh worlds to every world without R-successor. The canonical model
for the above concept C'is shown in Fig. 1, center; the infinite path of worlds is dashed.

From (1), (2), and the preservation properties of homomorphisms, we obtain:

Lemma 3. For all CTL?Eo -concepts C and all CTLIS;:D ’Eo-concepts D, we have |=
C C D ifand only if xc € D%,

Now z¢ € D?¢:%¢ can be verified by model-checking D in world ¢ and element ¢
of J%¢, which is the polynomial-sized modification of J where the lastly added infinite
path of worlds is replaced by a single loop, see Fig. 1, right. Since J¢ is the unraveling
of J%¢ into the temporal dimension, J¢ and J%° satisfy the same concepts in their roots.
Theorem 2 for CTLES thus follows. The CTLES part can be obtained by representing

every EC in C by a O-edge in ¢ and adapting the notion of a homomorphism.

For CTL?Lo E e use expansion vectors introduced in [16], applied to the temporal
dimension. Let C be a CTL?LO ’Eo—concept with n occurrences of E<. An expansion
vector for C'is an n-tuple U = (uq,...,u,) of integers u; > 0. Intuitively, U fixes
a specific number of temporal steps taken for each E<C in C' when constructing ¢¢
and J. More precisely, we denote with C[U] the CTL?,? -concept obtained from C'
by replacing the i-th occurrence of EO with (EO)Y:, i.e., i times EO. For example, if
C =EOIrEO(ANEOB) and U = (2,0), then C[U] = EOEO3r.(ANEOB).
Let U = {(u1,...,upn) | u; < m for all i}. We denote with tdepth(D) the nesting
depth of temporal operators in D. We use expansion vectors with entries bounded by
tdepth(D) to reduce [~ C' C D for CTL]&O "B 10 the case where C is from CTLE?.

Lemma 4. For all CTL?B ’Eo-concepts C,D, we have |=CLC D if and only if
= C[U] C D forall U € USSP

Together with Lemma 3, this yields the desired polynomial-time guess-and-check proce-
dure for deciding = C C D.

133

6

5 CTLZ? and CTLZ; relative to Acyclic TBoxes

The results of Theorem 2 transfer to acyclic TBoxes with an exponential blowup due to
unfolding [18], that is:

Corollary 5. Concept subsumption relative to acyclic CTL?LO BC_TBoxes with rigid

roles is in CONEXPTIME.

For the subfragments CTL?Lo and CTL‘];;ﬁ<> , we can even show polynomial complexity:

Theorem 6. Concept subsumption relative to acyclic CTLELO -and CTL?L<> -TBoxes with
rigid roles is in PTIME.

We first concentrate on the E< case and explain below how to deal with the EO one. We
focus w.l.o.g. on subsumption between concept names and assume that the input TBox
is in normal form (NF), i.e., each axiom is of the shape A = A; M Ay, A = ECA,, or
A = 3r.A;, where A; € Nc U{T} and r € Ng. As usual, a subsumption-equivalent
TBox in NF can be computed in polynomial time [4]. We use CN and ROL to denote the
sets of concept names and roles occurring in 7.

To prove a PTIME upper bound, we devise a completion algorithm in the style
of those known for ££ and (two-dimensional) extensions, cf. [5, 14], which build an
abstract representation of the ‘minimal’ model of the input TBox 7 (in the sense of
Horn logic). The main difficulty is that different occurrences of the same concept name
in the TBox cannot all be treated uniformly (as it is the case for, say, £L), due to the
two-dimensional semantics. Instead, we have to carefully choose witnesses for EG A and
Jr. A, respectively. Our algorithm constructs a graph G = (W, E, Q, R) based on a set
W, abinary relation F/, a mapping () that associates with each A € CN and eachw € W
a subset Q(A,w) C CN, and a mapping R that associates with each rigid role » € ROL
arelation R(r) € CN x W x CN x W. For brevity, we write (A4, w) — (B, w’) instead
of (A,w, B,w") € R(r) and denote with E* the reflexive, transitive closure of E.

The algorithm for deciding subsumption initializes G as follows. For all » € ROL, set
R(r)=10.SetW = CNxCNU{ECA | A € CN}.Set E = {(ECA, AA), (AB, AT) |
A,B € CN}.Forall A € CN, set Q(A,w) ={T,B}ifw= ABand Q(4,w) ={T}
otherwise.

Intuitively, the unraveling of (W, E) is the temporal tree underlying the minimal
model and the mappings () and R contain condensed information on how to interpret
concepts and roles, respectively. More specifically, the data stored in Q(A, -) describes
the temporal evolution of an instance of A. For example, Q(A, AA) collects all concept
names B such that 7 |= A C B; likewise, Q(A, EO A) captures everything that follows
from EO A. Finally, Q(A, AB) contains concept names that are implied by B given that
B appears in the temporal evolution of an instance of A4, i.e., B’ € Q(A, AB) implies
TEANECBLC EQ(BMB).

After initialization, the algorithm extends G by applying the completion rules de-
picted in Figure 2 in three phases. In the first phase — also called FORWARD-phase, since
definitions A = C € T are read as A C C' - rules F1-F3 are exhaustively applied in
order to generate a fusion-like representation by adding witness-worlds and witness-
existentials as demanded. Most notably, rule F2 introduces a pointer to the structure
representing the temporal evolution of an instance of B’.

134

F1 If Be Q(A, AA') & B = EOB' € T, then add (AA, AB) to E
F2 If B € Q(A,w) and B = 3r.B’ € T, then set (A, w) — (B’, B'B’)
F3 If BeQ(A,w) & B=A1MA; €T, thenadd A;,A; to Q(A, w)

Cl If (BB,w) € E and (A,w’) 5 (B, BB), then add (w',w) to E
C2 If (A,w) > (B, BB), then
a) (A,w') 5 (B,EOB) forall w’ # w with (w',w) € E*
b) (A, w') 5 (B,w) for all w’ with (w', w) ¢ E*
Bl If B € Q(A,w), (w',w) € E*,and A’ = ECB € T, then add A’ to Q(A, w")
B2 If A € Q(B,w), (A, w") 5 (B,w),and A” = 3r.A € T then add A” to Q(A’, w’")
B3 If A1, A2 € Q(B,w) & A= A1 M Az € T thenadd A to Q(B, w)

Fig. 2. Completion rules

Subsequently, G is extended to conform with the constant domain assumption and
reflect rigidity of roles by exhaustively applying rules C1, C2. Here read C2 as ‘if two
points are connected via r in some world, then they should be connected in all worlds.
Note that Q(B, ECB) is used as a representative for the entire “past” of B in part a).

In the final phase, BACKWARD-completion rules B1-B3 are exhaustively applied in
order to respect the ‘backwards’-direction of definitions, i.e., definitions A = C' € T are
read as A 1 C'. This separation into a FORWARD and BACKWARD phase is sanctioned
by acyclicity of the TBox. In fact, one run through each phase is enough; note that no
new tuples are added to E or R in the BACKWARD-phase.

The following lemma shows correctness of our algorithm.

Lemma 7. Let T be an acyclic CTLES -TBox in normal form. Then for all A, B € CN,
we have T = A T B iff, after exhaustive rule application, B € Q(A, AA).

To prove “<", we show that (a certain unraveling of) G “embeds” into every model of
A and 7. For this purpose, we need to adapt the notion of a homomorphism to temporal
interpretations and rigid roles. For “=", we construct from G a model J of 7 with
d € A7\ B%% for some d,w. The algorithm runs in polynomial time: the size of the
data structures W, F, and R is clearly polynomial and the mapping Q(-,) is extended
in every rule application, so the algorithm stops after polynomially many steps.

Finally, we sketch two modifications of the algorithm such that it works for EO
instead of E<. First, we have to use a non-transitive version of B1. Second, and a bit
more subtly, we have to replace ECA € W with EO* A, 1 < k < |T| to capture what
is implied by EO* A; more precisely, B’ € Q(A, EO*A) implies T = EOFA C B/,
where EO” denotes EO - - - EO k times.

We next show that there is a jump in the complexity if increasing domains are
considered instead of constant ones. Intuitively, this can be explained by the fact that
increasing domains allow rigid roles to mimic the behaviour of the A O-operator. In the
next section, we show that adding A0 to {E<} indeed leads to PSPACE-hardness.

Theorem 8. Concept subsumption relative to acyclic CTL?LO -and CTL?;:> -TBoxes with
rigid roles and increasing domains is PSPACE-hard.

135

6 CTLg. " relative to Acyclic TBoxes

We now add A0 and observe an increase in complexity over acyclic TBoxes.

Theorem 9. Concept subsumption relative to acyclic CTL?;:> AD_TBoxes with rigid

roles is PSPACE-complete.

The lower bound is obtained via a reduction from QBF validity. For the upper bound,
we again consider w.l.o.g. subsumption between concept names and assume that the
acyclic TBox is in normal form, i.e., axioms are of the shape A = A1 M Ay, A = ECA;,
A = AOA;,or A = 3r. Ay, where A4; € Nc U {T} and r € Ngr. We also restrict
ourselves again to only rigid roles. CN and ROL are used as before.

In contrast to the previous section, we cannot maintain the entire minimal model in
memory since the added operator A can be used to enforce models of exponential size.
Instead, we will compute all concepts implied by the input concept A (the left-hand side
of the subsumption to be checked) by iteratively visiting relevant parts of the minimal
model. Our main tool for doing so are traces.

Definition 10. A trace is a tuple (0, E, R) where o is a sequence (doy, wo) - - - (dp, wp)
such that for all 0 < i < n one of the following is true. (1) d; = d;+1 and (w;, w;41) €
E. (2) w; = wiy1 and (d;, d;1+1) € R(r) for some r € ROL.

Intuitively, traces represent paths
through temporal interpretations,
which in each step follow either
the temporal relation (Def. 10, 1)
or a DL relation r (2); so, in a pair
(d,w), d can be thought of as a
domain element and w as a world.

Our algorithm, whose basic
structure is given by Alg. 1, enu- 5 procedure expand (o, E, R) :

Algorithm 1: Subsumption in CTL?LQ -AD

Input: Acyclic TBox 7T, concept names A, B
Output: true if 7 = AC B, false otherwise
g = (dOa wO)a Q(d()a wo) = {A7 T}a

E :=0; R(r) := 0 forall » € ROL;

expand(o, E, R);

return true if B € Q(do,wo), false otherwise;

AW N =

merates on input 7, A, B,inasys- 6 complete (0, E, R, Q);

tematic tableau-like way, all traces 7 if (o, Q) is periodic at (i, j) then

that must appear in every model 8 add (w;—1,w:) to £

of A and 7. Note that in the con- * truncate;

text of Algorithm 1 a trace is used complete (0, E, R, Q);

as the basis for inducing a richer " return;

structure that conforms with the " (d, w) := last element of o7

constant domain assumption and 1 foreach 74 € Q(d,w) with A=3r.B /6 T do
captures rigidity; see Example 11 ™ Qd 7w)/: (B, T.} for a fresh d';
below. The algorithm also main- iz Zidp(adr;j 2;0_ @(,Tzl’)) B, R):

tains an additional mapping Q that — o

labels each point (d,w) of the 7 foreachdAe/Q_(d,;)_lvfn};AsziB /e 7 do
trace (and all the induced points) iz gi(d &ZUU’ 31)7) ;{O é; } fora fresh w's
with a set Q(d,w) C CN. The expand (o - (d,w'), E, R);

set Q(d,w) captures all concept =
names that are satisfied in the minimal model at points represented by (d, w).

136

R1IfA=AMA; €T and A € Q.(-), thenadd Ay, Az to Q. (+)
R2IfA=A1MAy € Tand A1, Az € Q.(-), then add A to Q.(+)

R3 If (d,d") € R(r), B € Q(d',w), A=3r.B € T, then add A to Q(d, w)
R4 If B € Q(d,w), (w',w) € E*, A= EOB € T, then add A to Q(d, w’)
RS If B € Q(d,w), (w,w’") € E*, B= AOA € T, then add B, A to Q(d, w")

R6 If (d,d) € R(r), B € Qeen(d'), A= 3r.B € T, then add A t0 Qcert(dl)
R7 If B € Qcert(d), A= AOB € T, then add A t0 Qcert(d)
R8 If B € Qcert(d), then add B to Q(d, w) for all w

R9 If B € Qan(d,w), A= ADB € T,add A to Q(d, w)
R10 If A € Q(d,w), A= AOB € T,add A, B to Qan(d,w)
R11 If (d,d) € R(r), B € Qan(d,w), A=3r.B € T, then add A to Qan(d, w)

R12 If A € Qao(d,w), A=EOB € T, w added due to
A € Q(d,w) in Line 18, B’ € Q(d,w’), A’ = EOB’ € T, then add A’ t0 Qan(d, w)

Fig. 3. Saturation rules. In R1, R2 the set Q. (-) ranges over all Q(d, w), Qcert(d), and Qac (d, w).

The basics of Algorithm 1 are the following. In Lines 1 and 2, it creates a trace
consisting of a single point representing A and initializes the necessary data structures.
In Line 3, the systematic expansion is set off. When that is finished, the algorithm just
returns whether or not B (the right-hand of the subsumption) has been added during the
expansion. As for the expand procedure:

— in Line 6 and 10, the algorithm updates the mapping @;

— Line 7 contains some termination condition; and finally,

— the loops in Lines 13 & 17 enumerate all 3r.B and ECB that appear in the set
Q(d, w) of the last trace element and expand the trace to witness these concepts.

This basic description of the algorithm leaves open several points: (i) the precise behavior
of the subroutine complete, (ii) when a trace is periodic, and (iii) what happens
inside the t runcate command in Line 9. Let us start with describing the subroutine
complete. It uses additional mappings Qcert(d) € CN and Qan(d, w) C CN, which
intuitively contain all the concept names that d satisfies certainly, i.e., in all worlds, and
starting from world w, respectively. It proceeds in two steps. (1) Initialize undefined
Q(d,w) and Qcert(d) with {T}, and undefined Qan(d, w) with Qeert(d). (2) Apply
rules R1-R12 in Figure 3 to Q(+), Qcert(-) and Qan (+).

The number of rules is indeed scarily high; however, they can be divided into four
digestible groups: R1 and R2 are used to ensure that all sets (), are closed under
conjunction; R3-R5 are used to complete Q(-). Note that R1-R4 are already known
from the algorithm of the previous section. Furthermore, R6-R8 are used to deal with
Qcert(+); and R9-R12 to update Qan(-). As an example of the interplay between the
different mappings take R9: If B is certain for d starting in world w and A = AOB,
then we also know that d satisfies A in w; and R11 for the interplay between temporal
operators and rigid roles: indeed, for r rigid, | Ir. AOB C AO3r.B.

137

10

Example 11. Let T = {A=ECA,, Ay =3r.B, B=ECA,} be the input TBox; and
T | A C A is to be checked. Figure 4 (left) shows the trace initiated at (do, wp)
with Q(do, wo) = {T, A}, and further expanded in Lines 13 and 17. The trace, as
mentioned above, induces a richer structure, reflecting rigid roles and the constant
domain assumption; see Fig. 4 (center). This richer structure is then completed to
properly enrich the types Q(d, w) of each element. In particular, during completion,
further concept names are added to the corresponding types (Fig. 4, right). One can now
easily see that 7 = A C A; indeed holds. Furthermore, note that 7 = A C Ay, if r
is local or increasing domains are assumed. This is the case since, in both cases, the
r-connection is not necessarily present in the ‘root world’.

For the termination condition in Line 7, we take the following definition of periodicity.

Definition 12. A trace (o, E, R) together with a mapping @ is called periodic at (i, j)
l.fU = (d07w0) T (d’rhwn)’ i<, d; = dj =dp, andQ(dz,wz) = Q(dja wJ)

This means that during the evolution of element d = d; = d;, we find two different
worlds w;, w; such that d has the same type in w; and w;. We can stop expanding
worlds appearing after w; since their behavior is already captured by the successors
of w;. If a trace periodic at (z, j) is found, we add an edge (w;_1,w;) to E reflect-
ing the periodic behavior, see Line 8. Then, in t runcate, the trace is shortened to
(do,wo) - -~ (dj—1,w;—1) and the relations E and R(r), r € ROL, and the mappings
Q, Qcert, QAo are restricted to those d and w that appear in the shortened trace.

Lemma 13. On every input T, A, B, Alg. 1 terminates and returns t rue iff T = ACB.

For termination, consider a trace with suffix (d,w;) - -- (d,w,) and let Ay, ..., A, be
the concept names such that EG A; lead to w;, see Line 17 of Alg. 1. It is not difficult
to show that if A; = A; for i < j, then Q(d,w;) C Q(d,w,) after application of
complete. Since Q(d, w) C CN, there are no infinite (strictly) increasing sequences.
Hence, the expansion in Lines 17ff. will not indefinitely be applied. Also, the expansion
in Lines 13ff. stops due to acyclicity of the TBox. Together, this guarantees termination.

Correctness is shown similar to Lemma 7. For “=-", we show that every trace together
with the labeling so far computed in () can be embedded into every model of A and T .
For “<”, we present a model of 7 witnessing 7 [~ A C B.

We finish the proof of Theorem 9 by noting that the termination argument indeed
yields a polynomial bound on the length of the traces encountered by Alg. 1.

(do,wo)
E
(d1,w1) (do,w1)
E
(d1,w2)

Fig. 4. An example trace and the induced structure

138

11

7 Local Roles and Rigid Concepts

One can easily extend the above algorithms so as to deal with local roles. In fact, e.g.,
in Section 5 only B4 below needs to be added to the BACKWARD-rules in Figure 3.
Note that F2 is only applied to rigid roles and C2 is therefore not applied to local ones.
Clearly, the algorithm in Section 6 can be extended with a similar rule.

B4 If A e QB,w), A=3r.A", B € Q(A', A'A’), B" = 3r.B' € T, add B to Q(B, w)
RC If B € Q(A,w), B € CNyg, then add B to Q(A, w'), Vw' € W
R13 If B € Q(d,w) or B € Qan(d,w) & B € CNyig, then add B to Qcert(d)

A rigid concept has a constant interpretation over time. In the first example of Section
1, the concept Disorder should be rigid because we regard medical knowledge as static.
PatientWithDisorder should be local because a disease history has begin and end.

In the presence of general TBoxes, rigid concepts can be simulated by rigid roles:
replace each rigid concept name A with 9r4.T, where 74 is a fresh rigid role. Alas, this
simulation does not work in the context of acyclic TBoxes: the result of replacing A with
dra.TinaCD A = D is no longer a CD. Still, our algorithms can be extended, without
increasing the complexity, to consider rigid concepts: e.g., the algorithm in Section 5
can be extended by adding RC above to the FORWARD and BACKWARD rules — CNyig
denotes the set of rigid concepts occurring in the input TBox. Note that the intermediate
phase remains the same, i.e., rules C1 and C2 are neither extended nor modified.

Rigid concepts can analogously be included in Section 6 by adding a new rule R13
above (recall: intuitively, Qcert(d) contains the concepts that hold for d in any world).

In the empty TBox case rigid roles can again simulate rigid concepts as above.

8 Conclusions and Future Work

We have initiated the investigation of TDLs based on £L allowing for rigid roles and
restricted TBoxes. We indeed achieved our main goal: we identified fragments of the
combination of CTL and £L that have elementary, some even polynomial, complexity.

One important conclusion is that the use of acyclic TBoxes, instead of general
ones, allows to design TDLs based on ££ with dramatically better complexity than
the ALC variant; e.g., for the fragment allowing only EO the complexity drops from
nonelementary to PTIME. As an important byproduct, the studied fragments of CTLg,
can be seen as positive fragments of product modal logics with elementary complexity,
e.g., implication for the positive fragment of KxK is in PTIME.

Next, we plan to look at more expressive fragments of CTL¢, or at classical (cyclic)
TBoxes, e.g., consider non-convex fragments, such as CTL?LO ’EO, with (a)cyclic TBoxes.
We plan to incorporate temporal roles, too. It is also worth exploring how restricting
TBoxes can help tame other TDLs with bad computational behavior over general TBoxes,
such as TDLs based on LTL or the u-calculus. We believe that the LTL case is technically
easier than ours since it does not have the extra ‘5-dimension’ introduced by branching.

Acknowledgements The first author was supported by the M8 PostDoc Initiative project
TS-OBDA and the second one by the DFG project LU1417/1-1. We thank the anonymous
reviewers for their detailed and constructive suggestions.

139

12

References

10.
11.

12.

14.

15.

16.

17.

18.

19.
20.

. Artale, A., Kontchakov, R., Lutz, C., Wolter, F., Zakharyaschev, M.: Temporalising tractable

description logics. In: Proc. TIME (2007)

Artale, A., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: A cookbook for temporal
conceptual data modelling with description logics. ACM Trans. Comput. Log. 15(3), 25
(2014)

Artale, A., Lutz, C., Toman, D.: A description logic of change. In: Proc. IJCAI (2007)
Baader, F.: Terminological cycles in a description logic with existential restrictions. In: Proc.
1IICAI (2003)

Baader, F,, Brandt, S., Lutz, C.: Pushing the ££ envelope. In: Proc. IJCAI (2005)

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The De-
scription Logic Handbook: Theory, Implementation, and Applications. Cambridge University
Press (2003)

Baader, F.,, Ghilardi, S., Lutz, C.: LTL over description logic axioms. In: Proc. KR (2008)
Baader, F., Kiisters, R., Molitor, R.: Computing least common subsumers in description logics
with existential restrictions. In: Proc. IICAI (1999)

Bodenreider, O., Zhang, S.: Comparing the representation of anatomy in the FMA and
SNOMED CT. In: Proc. AMIA (2006)

Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)

Gabbay, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-dimensional modal logics:
theory and applications, Studies in Logic, vol. 148. Elsevier (2003)

Goller, S., Jung, J.C., Lohrey, M.: The complexity of decomposing modal and first-order
theories. ACM Trans. Comput. Log. 16(1), 9:1-9:43 (2015)

. Gutiérrez-Basulto, V., Jung, J.C., Lutz, C.: Complexity of branching temporal description

logics. In: Proc. ECAI (2012)

Gutiérrez-Basulto, V., Jung, J.C., Lutz, C., Schroder, L.: A closer look at the probabilistic
description logic Prob-EL. In: Proc. AAAI (2011)

Gutiérrez-Basulto, V., Jung, J.C., Schneider, T.: Lightweight description logics and branching
time: a troublesome marriage. In: Proc. KR (2014)

Haase, C., Lutz, C.: Complexity of subsumption in the ££ family of description logics:
Acyclic and cyclic TBoxes. In: Proc. ECAI (2008)

Lutz, C., Wolter, F., Zakharyaschev, M.: Temporal description logics: A survey. In: Proc.
TIME (2008)

Nebel, B.: Terminological reasoning is inherently intractable. Artif. Intell. 43(2), 235-249
(1990)

Schild, K.: Combining terminological logics with tense logic. In: Proc. EPIA (1993)

The Gene Ontology Consortium: Gene ontology: Tool for the unification of biology. Nature
Genetics 25, 25-29 (2000)

140

Schema.org as a Description Logic

Andre Hernich!, Carsten Lutz2, Ana Ozaki' and Frank Wolter!

! University of Liverpool, UK
2 University of Bremen, Germany

Abstract. Schema.org is an initiative by the major search engine providers Bing,
Google, Yahoo!, and Yandex that provides a collection of ontologies which web-
masters can use to mark up their pages. Schema.org comes without a formal
language definition and without a clear semantics. We formalize the language of
Schema.org as a Description Logic (DL) and study the complexity of querying
data using (unions of) conjunctive queries in the presence of ontologies formulated
in this DL. In particular, we consider rewritability into FO queries and into datalog
programs and investigate the possibility of classifying the data complexity of
ontology-mediated queries.

1 Introduction

The Schema.org initiative was launched in 2011 and is supported today by Bing, Google,
Yahoo!, and Yandex. In the spirit of the Semantic Web, it provides a collection of
ontologies that establish a standard vocabulary to mark up website content with metadata
about itself (https://schema.org/). In particular, web content that is generated from
structured data as found in relational databases is often difficult to recover for search
engines and Schema.org markup elegantly solves this problem. The markup is used by
search engines to more precisely identify relevant pages, to provide richer search results,
and to enable new applications. Schema.org is experiencing very rapid adoption and is
used today by more than 15 million webpages including all major ones Guha [2013].

Schema.org does neither formally specify the language in which its ontologies are
formulated nor does it provide a formal semantics for the published ontologies. However,
the provided ontologies are extended and updated frequently and follow an underlying
language pattern. This pattern and its meaning is described informally in natural language.
Schema.org adopts a class-centric representation enriched with binary relations and
datatypes, similar in spirit to description logics (DLs) and to the OWL family of ontology
languages; the current version includes 622 classes and 891 binary relations. Partial
translations into RDF and into OWL are provided by the linked data community. Based
on the informal descriptions at https://schema.org/ and on the mentioned translations,
Patel-Schneider [2014] develops an ontology language for Schema.org with a formal
syntax and semantics that, apart from some details, can be regarded as a fragment of
OWL DL.

In this paper, we abstract slightly further and view the Schema.org ontology language
as a description logic, in line with the formalization by Patel-Schneider. Thus, what
Schema.org calls a fype becomes a concept name and a property becomes a role name.
The main characteristics of the resulting ‘Schema.org DL are that (i) the language is very

141

restricted, allowing only inclusions between concept and role names, domain and range
restrictions, nominals, and datatypes; (ii) ranges and domains of roles can be restricted to
disjunctions of concept names (possibly mixed with datatypes in range restrictions) and
nominals are used in ‘one-of enumerations’ whose semantics also involves disjunction.
While Point (i) suggests that the Schema.org DL is closely related to the tractable profiles
of OWL2, because of Point (ii) it does actually not fall into any of them. There is also a
close connection to the DL-Lite family of DLs Calvanese et al. [2007], and in particular
to the DL-Lite]{ , variant Artale ef al. [2009]. However, DL-Lite/! | admits existential
restriction, negation, conjunction, and free use of disjunction whereas the Schema.org
DL allows no existential quantification and includes nominals and datatypes. We use the
term schema.org-ontology to refer to ontologies formulated in the Schema.org language;
in contrast, ‘Schema.org 2015’ refers to the concrete collection of ontologies provided at
https://schema.org/ as of end of April, 2015.

Our main aim is to investigate the complexity of querying data in the presence
of schema.org-ontologies, where the data is the markup that was extracted from web-
pages. While answering queries over such data is the main reasoning task that arises in
Schema.org applications and the Schema.org initiative specifies a format for the data
in terms of so-called items, no information at all is given on how the data is queried
(or used otherwise). We consider conjunctive queries (CQs) and unions of conjunctive
queries (UCQ), a basic querying mechanism that is ubiquitous in relational database
systems and research, and that also can be viewed as a core of the Semantic Web query
language SPARQL. In particular, we also consider CQs and UCQs without quantified
variables since these are not allowed in the relevant SPARQL entailment regimes Glimm
and Krotzsch [2010]. We view a pair (O, ¢) that consists of a schema.org-ontology and
an actual query as a compound query called an ontology-mediated query (OMQ).

We start with the observation that evaluating OMQs is intractable in general, namely
IIY-complete in combined complexity and CONP-complete in data complexity. In the
main part of the paper, we therefore aim (i) to identify large and practically useful classes
of OMQs with lower computational complexity (both combined and data complexity),
and (ii) to explore the situation in much more detail to see whether we can obtain a full
classification of each schema.org ontology or each OMQ according to its data complexity.
While the utility of aim (i) is obvious, we note that aim (ii) is also most useful from a
user’s perspective as it clarifies the complexity of every concrete ontology or OMQ that
might be used in an actual application. Apart from classical tractability (that is, PTIME),
we are particularly interested in the rewritability of OMQs into first-order (FO) queries
(actually: UCQs) and into datalog programs. One reason is that this allows to implement
querying based on relational database systems and datalog engines, taking advantage
of those systems’ efficiency and maturity. Another reason is that there is significant
research on how to efficiently answer UCQs and datalog queries in cluster computing
models such as MapReduce Afrati and Ullman [2011, 2012], which is rather natural
when processing web-scale data.

For both aims (i) and (ii) above, we start with analyzing basic schema.org ontologies
in which enumeration definitions (‘one of” expressions) and datatypes are disallowed.
Regarding aim (i), we show that all OMQs which consist of a basic schema.org-ontology
and a CQ of qvar-size two (the connected components that consist exclusively of quanti-
fied variables have size at most two) are datalog-rewritable in polynomial time and can

142

be evaluated in PTime in combined complexity. This result complements results about
datalog-rewritability of OMQs for DLs with disjunction in Grau et al. [2013]; Kaminski
et al. [2014b,a]. We establish the same results for OMQs that consist of an unrestricted
schema.org-ontology and CQs without quantified variables.

Regarding aim (ii), we start with classifying each single schema.org-ontology O
according to the data complexity of all OMQs (O, ¢q) with ¢ a UCQ. We establish a
dichotomy between AC” and CONP in the sense that for each ontology O either all these
OMQs are in AC? or there is one OMQ that is CONP-hard. The dichotomy comes with
a transparent syntactic characterization and is decidable in PTIME. Though beautiful,
the dichotomy is of limited use in practice since most interesting ontologies are of the
intractable kind.

Therefore, we also consider an even more fine-grained classification on the level of
OMQs, establishing a useful connection to constraint satisfaction problems (CSPs) in the
spirit of Bienvenu e al. [2014b]. It turns out that even for basic schema.org-ontologies
and for ontologies that consist exclusively of enumeration definitions, a complexity
classification of OMQs implies a solution to the dichotomy conjecture for CSPs, which
is a famous open problem Feder and Vardi [1998]; Bulatov [2011]. However, the CSP
connection can also be used to obtain powerful positive results. In particular, we show
that it is decidable in NEXPTIME whether an OMQ based on a schema.org-ontology
and a restricted form of UCQ is FO-rewritable and, respectively, datalog-rewritable. We
also establish a PSpace lower bound for this problem.

2 Preliminaries

Let N¢, Ng, and N, be countably infinite and mutually disjoint sets of concept names,
role names, and individual names. Throughout the paper, concepts names will be denoted
by A, B,C, ..., role names by r, s, t, . . ., and individual names by a, b, ¢,

A schema.org-ontology consists of concept inclusions of different forms, role inclu-
sions, and enumeration definitions. A concept inclusion takes the form A C B (atomic
concept inclusion), ran(r) C A;U- - -UA,, (range restriction), or dom(r) C A;U- - -LUA,
(domain restriction). A role inclusion takes the form r C s.

Example 1. The following are examples of concept inclusions and role inclusions (last
line) in Schema.org 2015:
Movie C CreativeWork
ran(musicBy) C Person LI MusicGroup
dom(musicBy) C Episode LI Movie LI RadioSeries L TVSeries
sibling C related To
We now define enumeration definitions. Fix a set N C N, of enumeration individuals

such that both Ng and N, \ Ng are infinite. An enumeration definition takes the form
A={a,...,a,} with A € Nc and ay,...,a, € Ng.

Example 2. An example of an enumeration definition in Schema.org 2015 is
Booktype = {ebook, hardcover, paperback}.

143

A datatype D = (D, AP) consists of a datatype name D and a non-empty set of
data values AP . Examples of datatypes in Schema.org 2015 are Boolean, Integer, and
Text. We assume that datatype names and data values are distinct from the symbols
in Nc U Ng U N, and that there is an arbitrary but fixed set DT of datatypes such that
AP AP2 = () for all D; # D, € DT.

To accommodate datatypes in ontologies, we generalize range restrictions to range
restrictions with datatypes, which are inclusions of the form ran(r) C A; LU --- U A,
with Ay, ..., A, concept names or datatype names from DT.

Example 3. An example of a range restriction with datatypes in Schema.org 2015 is
ran(acceptsReservation) C Boolean LJ Text

A schema.org-ontology O is a finite set of concept inclusions (including range
restrictions with datatypes), role inclusions, and enumeration definitions. We denote by
Nc(O) the set of concept names in O, by Nr(O) the set of role names in O, and by
Ne(O) the set of enumeration individuals in O.

A data instance A is a finite set of concept assertions A(a) where A € N¢ and
a € Ny; and role assertions r(a, b) where 7 € Ng, @ € Nyand b € N\UUpepr AP We
say that A is a data instance for the ontology O if A contains no enumeration individuals
except those in Ng(O). We use Ind(A) to denote the set of all individuals (including
datatype elements) in A.

Example 4. Examples for assertions are Movie(a), name(a, ‘avatar’), director(a, b),
name(b, ‘Cam’).

Let O be a schema.org-ontology and A a data instance for O. An interpretation T =
(AL, T) for O consists of a non-empty set A disjoint from (Jpcpr AP and with
AT N Ng = Ne(O), and a function T that maps

— every concept name A to a subset A% of AZ,

— every role name 7 to a subset rL of AT x ATPT where AT-PT = ATy UD€DT AP;

— every individual name a € (N; \ Ng) U Ng(O) to some aZ € AT such thata” = a

for all a € Ng(O).

Note that we make the standard name assumption (and, therefore, unique name assump-
tion) for individuals in Ng. Individual names from Ng that do not occur in O (and thus
not in A) are not interpreted by Z to avoid enforcing infinite domains.

For an interpretation Z, set dom(r)Z = {d | (d,d’) € 7%} and ran(r)% = {d’ |
(d,d’) € rT}. To achieve uniform notation, set D = AP for every datatype (D, AP) in
DT and dZ = d forevery d € AP, D € DT. For concept or datatype names A, ..., A,
set (A U---UA,)T = AT U---U AL An interpretation Z for an ontology O satisfies
a (concept or role) inclusion X; C X5 € O if X II cX QI , an enumeration definition
A={ay,...,a,}if AT = {af,... aZ}, aconcept assertion A(a) if aZ € AZ, and a
role assertion r(a, b) if (aZ,b%) € rZ. Satisfaction of any of these objects is denoted
with “E",asinZ = X; C Xy or Z = A(a).

An interpretation Z for O is a model of O if it satisfies all inclusions and definitions
in O and a model of a data instance A if it satisfies all assertions in .A. We say that
A is satisfiable w.r.t. O if O and A have a common model. Let o be a concept or
role inclusion, or an enumeration definition. We say that « follows from O, in symbols
O [a, if every model of O satisfies «.

144

We introduce the query languages considered in this paper. A ferm t is either a
member of Ny U Upcpr AP or an individual variable taken from an infinite set Ny
of such variables. A first-order query (FOQ) consist of a (domain-independent) first-
order formula ¢ () that uses unary predicates from Nc U {D | (D, D) € DT}, binary
predicates from Ng, and only terms as introduced above. The unary datatype predicates
are built-ins that identify the elements of the respective datatype. We call a the answer
variables of ¢(x), the remaining variables are called quantified. A query without answer
variables is Boolean. A conjunctive query (CQ) is a FOQ of the form Jy ¢(x, y) where
o(x,y) is a conjunction of atoms such that every answer variable z occurs in an atom
that uses a symbol from N¢ U N, that is, an answer variable x is not allowed to occur
exclusively in atoms of the form D(z) with D a datatype name (to ensure domain
independence). A union of conjunctive queries (UCQ) is a disjunction of CQs. A CQ
q can be regarded as a directed graph G? with vertices {t | ¢ term in ¢} and edges
{(t,t') | r(t,t') in q}. If GY is acyclic and r (1, t2), s(t1,t2) € ¢ implies r = s, then ¢
is an acyclic CQ. A UCQ is acyclic if all CQs in it are.

We are interested in querying data instances A using a UCQ ¢(x) taking into account
the knowledge provided by an ontology O. A certain answer to q(x) in A under O is a
tuple a of elements of Ind(.A) of the same length as a such that for every model Z of O
and A, we have Z |= ¢[a]. In this case, we write O, A = q(a).

Query evaluation is the problem to decide whether O, A = ¢(a). For the combined
complexity of this problem, all of O, A, g, and a are the input. For the data complexity,
only A and a are the input. It often makes sense to combine the ontology O and actual
query g(x) into an ontology-mediated query (OMQ) Q@ = (O, q(x)), which can be
thought of as a compound overall query. The following can be shown using techniques
similar to those in Eiter et al. [1997]; Bienvenu et al. [2014b].

Theorem 1. Query evaluation of CQs and UCQs under schema.org-ontologies is I15 -
complete in combined complexity. In data complexity, each OMQ (O, q) from this class
can be evaluated in CONP; moreover, there is such a OMQ (with q a CQ) that is
CONP-complete in data complexity.

An OMQ (O, q(x)) is FO-rewritable if there exists a FOQ Q(x) (called an FO-rewriting
of (O, g(x))) such that for every data instance A for O and all a € Ind(A), we have
O, A = q(a) iff T4 = Q(a) where T 4 is the interpretation that corresponds to A (in
the obvious way).

We also consider datalog-rewritability, defined in the same way as FO-rewritability,
but using datalog programs in place of FOQs. Using Rossman’s homomorphism preser-
vation theorem Rossman [2008], one can show that an OMQ (O, ¢(x)) with O a
schema.org-ontology and ¢(x) a UCQ is FO-rewritable iff it has a UCQ-rewriting
iff it has a non-recursive datalog rewriting, see Bienvenu et al. [2014b] for more details
(in a slightly different context). Since non-recursive datalog-rewritings can be more
succinct than UCQ-rewritings, we will generally prefer the former.

3 Basic schema.org-Ontologies

We start with considering basic schema.org-ontologies, which are not allowed to contain
enumeration definitions and datatypes. The results obtained here can be easily extended

145

A r T r r T

B
bo s—>— —b A A A A
s \s | s s g air r by r by T bp—1 T by T G2

a

(a) Data instance A.,,. (b) Data instance A’,,.

Fig. 1: ABoxes used in Example 5 and the paragraph below Theorem 10.

to basic schema.org-ontologies with datatypes but do not hold for ontologies with
enumeration definitions (as will be shown in the next section). In Schema.org 2015, 45
concept names from a total of 622 are defined using enumeration definitions, and hence
are not covered by the results presented in this section.

We start with noting that the entailment problem for basic schema.org-ontologies is
decidable in polynomial time. This problem is to check whether O |= « for a given basic
schema.org-ontology O and a given inclusion « of the form allowed in such ontologies.
In fact, the algorithm is straightforward. For example, O = ran(r) C Ay U---U A, if
there is a role name s and a range restriction ran(s) C By U - -- U B,;, € O such that
OrErCsandO¢c =B; C A U---UA, foralll < j < m, where Og and O¢
denote the set of role inclusions and atomic concept inclusions in O.

Theorem 2. The entailment problem for basic schema.org-ontologies is in PTIME.

The hardness results reported in Theorem 5 crucially rely on existential quantification
in the actual query. In fact, it follows from results in Grau et al. [2013]; Kaminski et al.
[2014b] that given an OMQ @ = (O, ¢(x)) with O a basic schema.org-ontology and
q(x) a CQ without quantified variables, it is possible to construct a non-recursive datalog
rewriting of @) in polynomial time, and that such OMQs can be evaluated in PTIME in
combined complexity. We aim to push this bound further by admitting restricted forms
of quantification.

A CQ g has gvar-size n if all connected components of quantified variables in the
undirected graph underlying G have size at most n. For example, quantifier-free CQs
have qvar-size 0 and the following query ¢(x, y) has qvar-size 1:

dz132 /\ (producedBy(z1,v) A musicBy(v, 2z2))
ve{z,y}

The above consequences of the work by Grau, Kaminski, et al. can easily be extended
to OMQs where queries have qvar-size one. In what follows, we consider qvar-size
two, which is more subtle and where, in contrast to qvar-size one, reasoning by case
distinction is required. The following example shows that there are CQs of qvar-size
two for which no non-recursive datalog rewriting exists.

Example 5. Let O = {ran(s) C AU B} and consider the following CQ of qvar-size
two: ¢(z) = FzpIxa(s(z,x1) A A(x1) A r(xy,x2) A B(x)). It is easy to see that
O, A, = q(a) for every data instance A,,, with m > 2 as defined in Figure la.

By applying locality arguments and using the data instances A,,,, one can in fact show

that (O, ¢(z)) is not FO-rewritable (note that removing one r(b;, b; 1) from A, results
in ¢(a) no longer being entailed).

146

Theorem 3. For every OMQ (O, q(x)) with O a basic schema.org-ontology and q(x)
a CQ of qvar-size at most two, one can construct a datalog-rewriting in polynomial time.
Moreover, evaluating OMQs from this class is in PTIME in combined complexity.

Applied to Example 5, the proof of Theorem 3 yields a datalog rewriting that consists of
the rules
P(x1,29,z) s(xz,21) A X1(21) Ar(xr, z2) A Xo(22)

where the X; range over A, B, and Jy r(y, -), plus

Ta(z1,2) + P(ay,z9,2) AN A(xq) Ip(xo,x) + P(x1,22,2) A B(x2)
Ta(xo,x) < P(x1,29,2) Aa(z1,2) Ig(z1,2) ¢ P21, 22, 2) A I5(29,2)

goal(x) < s(z,z1) A La(z1,2) Ar(z1,22) A Ip(22,).

The recursive rule for I 4 (the one for I is dual) says that if the only option to possibly
avoid a match for (z1, 22, x) is to color (z1, z) with 14, then the only way to possibly
avoid a match for (z1,x2,x) is to color (x2,z) with I4 (otherwise, since ran(s) C
ALl B € O, it would have to be colored with 5 which gives a match).

The rewriting presented in Theorem 3 can easily be extended to accommodate
datatypes. For schema.org-ontologies O that are not basic, the rewriting is sound but not
necessarily complete, and can thus be used to compute approximate query answers.

Interestingly, Theorem 3 cannot be generalized to UCQs. This follows from the
result in the full version that for basic schema.org-ontologies O and quantifier-free
UCQs ¢(z) (even without role atoms), the problem O, A |= ¢(a) is coNP-hard regarding
combined complexity for data instances .A with a single individual a. Since evaluating
datalog programs in such data instances is in PTIME, datalog rewritings of UCQ-based
OMQs can thus not be constructed in polynomial time (unless PTIME equals NP).
We note that it is not difficult to show (and follows from FO-rewritability of instance
queries in DL-Lite/t | Artale ef al. [2009]) that given an OMQ (O, g(z)) with O a basic
schema.org-ontology and ¢(x) a quantifier-free UCQ, one can construct an FO-rewriting
in exponential time, and thus query evaluation is in ACY in data complexity.

We now classify basic schema.org-ontologies O according to the data complexity of
evaluating OMQs (O, q) with ¢ a UCQ (or CQ). It is convenient to work with minimized
ontologies where for all inclusions FF C Ay LI---U A, € O and all i < n, there is a
model Z of O and a d € AZsuch that d satisfies F 11 A; 1N |;| —A; (defined in the usual

VE

way). Every schema.org-ontology can be rewritten in polynomial time into an equivalent
minimized one. We establish the following dichotomy theorem.

Theorem 4. Let O be a minimized basic schema.org-ontology. If there exists F' T
AU U A, € Owithn > 2, then there is a Boolean CQ q that uses only concept and
role names from O and such that (O, q) is CONP-hard in data complexity. Otherwise, a
given OMQ (O, q) with ¢ a UCQ can be rewritten into a non-recursive datalog-program
in polynomial time (and is thus in ACY in data complexity).

The proof of the second part of Theorem 4 is easy: if there areno F' C A;LI---LUA, € O
with n > 2, then O essentially is already a non-recursive datalog program and the
construction is straightforward. The proof of the hardness part is obtained by extending

147

the corresponding part of a dichotomy theorem for .ALC-ontologies of depth one Lutz
and Wolter [2012]. The main differences between the two theorems are that (i) for basic
schema.org-ontologies, the dichotomy is decidable in PTIME (whereas decidability is
open for ALC), (ii) the CQs in CONP-hard OMQs use only concept and role names
from O (this is not possible in ALC), and (iii) the dichotomy is between ACY and CONP
whereas for ALC OMQs can be complete for PTIME, NL, etc.

By Theorem 4, disjunctions in domain and range restrictions are the only reason that
query answering is non-tractable for basic schema.org-ontologies. In Schema.org 2015,
14% of all range restrictions and 20% of all domain restrictions contain disjunctions.

In Theorem 4, we have classified the data complexity of onfologies, quantifying over
the actual queries. In what follows, we aim to classify the data complexity of every OMQ.
This problem turns out to be much harder and, in fact, we show that a classification of
the data complexity of OMQs based on basic schema.org-ontologies and UCQs implies
a classification of constraint satisfaction problems according to their complexity (up
to FO-reductions), a famous open problem that is the subject of significant ongoing
research Feder and Vardi [1998]; Bulatov [2011].

A signature is a set of concept and role names (also called symbols). Let B be a finite
interpretation that interprets only the symbols from a finite signature Y. The constraint
satisfaction problem CSP(B) is to decide, given a data instance A over X, whether there
is a homomorphism from A to B. In this context, 5 is called the template of CSP(B).

Theorem 5. For every template BB, one can construct in polynomial time an OMQ (O, q)
where O is a basic schema.org-ontology and q a Boolean acyclic UCQ such that the
complement of CSP(B) and (O, q) are mutually FO-reducible.

Theorem 13 below establishes the converse direction of Theorem 5 for unrestricted
schema.org-ontologies and a large class of (acyclic) UCQs. From Theorem 13, we obtain
a NEXPTIME-upper bound for deciding FO-rewritability and datalog-rewritability of
a large class of OMQs. It remains open whether this bound is tight, but we can show
a PSPACE lower bound for FO-rewritable using a reduction of the word problem of
PSPACE Turing machines. The proof uses the ontology O and data instances A4,,
from Example 5 and is similar to a PSPACE lower bound proof for FO-rewritability
in consistent query answering Lutz and Wolter [2015] which is, in turn, based on a
construction from Cosmadakis ef al. [1988].

Theorem 6. It is PSPACE-hard to decide whether a given OMQ (O, q) with O a basic
schema.org-ontology and q a Boolean acyclic UCQ is FO-rewritable.

4 Incoherence and Unsatisfiability

In the subsequent section, we consider unrestricted schema.org ontologies instead of
basic ones, that is, we add back enumeration definitions and datatypes. The purpose of
this section is to deal with a complication that arises from this step, namely the potential
presence of inconsistencies. We start with inconsistencies that concern the ontology
alone and then consider inconsistencies that arise from combining an ontology with a
data instance.

An ontology O is incoherent if there exists X € Nc U Ng such that X7 = () for
all models Z of O. Incoherent ontologies can result from the UNA for enumeration

148

individuals such as in the ontology {A = {a}, B = {b}, A C B}, which has no model
if a # b; they can also arise from interactions between concept names and datatypes
such as in the ontology {ran(r) C Integer,ran(s) C A, r T s} with A € N¢ which has
no model Z with r # () since AT N A"eee" — (). Using Theorem 2, one can show:

Theorem 7. Incoherence of schema.org-ontologies can be decided in PTime.

We now turn to inconsistencies that arise from combining an ontology O with a data
instance A for O. As an example, consider O = {A = {a},B = {b}} and A =
{A(c), B(c)}. Although O is coherent, A is unsatisfiable w.r.t. O. Like incoherence,
unsatisfiability is decidable in polynomial time. In fact, we can even show the following
stronger result.

Theorem 8. Given a schema.org-ontology O, one can compute in polynomial time
a non-recursive datalog program II such that for any data instance A for O, A is
unsatisfiable w.r.t. O iff IT1(A) # (.

In typical schema.org applications, the data is collected from the web and it is usually
not acceptable to simply report back an inconsistency and stop processing the query.
Instead, one would like to take maximum advantage of the data despite the presence of
an inconsistency. There are many semantics for inconsistent query answering that can be
used for this purpose. As efficiency is paramount in schema.org applications, our choice
is the pragmatic intersection repair (IAR) semantics which avoids CONP-hardness in
data complexity Lembo et al. [2010]; Rosati [2011]; Bienvenu et al. [2014a]. A repair
of a data instance .4 w.r.t. an ontology O is a maximal subset A’ C A that is satisfiable
w.r.t. O. We use rep, (A) to denote the set of all repairs of A w.r.t. O. The idea of IAR
semantics is then to replace A with () 4, crepo (A) A’ In other words, we have to remove
from A all assertions that occur in some minimal subset .4’ C A that is unsatisfiable
w.r.t. O. We call such an assertion a conflict assertion.

Theorem 9. Given a schema.org-ontology O and concept name A (resp. role name),
one can compute a non-recursive datalog program II such that for any data instance A
for O, I1(A) is the set of all a € Ind(A) (resp. (a,b) € Ind(A)?) such that A(a) (resp.
r(a, b)) is a conflict assertion in A.

By Theorem 9, we can adopt the IAR semantics by simply removing all conflict assertions
from the data instance before processing the query. Programs from Theorem 9 become
exponential in the worst case, but can be expected to be very small in practical cases.
In the remainder of the paper, we assume that ontologies are coherent and that A is
satisfiable w.r.t. O if we query a data instance .4 using an ontology O.

5 Unrestricted schema.org-Ontologies

We aim to lift the results from Section 3 to unrestricted schema.org-ontologies. Regarding
Theorem 3, it turns out that quantified variables in CQs are computationally much
more problematic when there are enumeration definitions in the ontology. In fact, one
can expect positive results only for quantifier-free CQs, and even then the required
constructions are quite subtle.

149

Theorem 10. Given an OMQ Q = (O, q) with O a schema.org-ontology and q a
quantifier-free CQ, one can construct in polynomial time a datalog-rewriting of Q.
Moreover, evaluating OMQs from this class is in PTIME in combined complexity. The
rewriting is non-recursive if ¢ = A(x).

The following example illustrates the construction of the datalog program. Let O =
{A ={a1,a2}}and ¢() = (a1, as). Observe that O, A/ = ¢() for every data instance
A’ defined in Figure 1b. Similarly to Example 5, one can use the data instances A/, to
show that (O, ¢()) is not FO-rewritable.
A datalog-rewriting of (O, ¢()) is given by the program II,,, ,, which contains

goal() < r(a1,as2)

goal() < r(ay,) A path s (z,y) Ar(y, az)
path,(z,y) < r(z,y) A A(z) A A(y)

y)
pathA(xu y) « pathA(ma Z) A pathA(27 y)

It is also instructive to check that O, A] F~= ¢() with O’ = {A = {a1, a2, az}} because
in models of @, a3 can be identified with some b;, a; with by, ...,b;_1 and ao with
bi_;,_l,...,bm,l §z§m

We now modify the datalog program above to obtain a rewriting of the OMQ
(O,q (z,y)) with ¢(z,y) = r(z,y). First, we include in IT, the rules A(a;) + true
and A(az) < true. Then we add the following rules:

goal(z,y) < r(x,y), goal(z,y) < A@@)ANAW)A N\ Ra,a,(@,y).
1<i,j<2

We want to use the latter rule to check that z,y have to be mapped to {a;,as}, and
that for every possible assignment a;, a; to x,y that is consistent (i.e., we do not have
x € {a1,a2} and = # a;, and similarly for y), r(a;, a;) is true. To this end, we add the
rules:

Rai,a]‘ (ZL’, y) < neq(:n, ai) Raq‘,,aj (ZL’, y) < neq (yv a’j)

Ra, q;(z,y) + goal(a;,ay)

neq(ai,as) « true neq(as,a1) < true.

It remains to add rules 3 and 4 from II,, ,, and
goal(a;, a;j) < r(ai,x) A path 4 (z,y) Ar(y,a;)

forl <i,j <2andi # j.

Theorem 10 is tight in the sense that evaluating CQs with a single atom and a single
existentially quantified variable, as well as quantifier-free UCQs, is coNP-hard in data
complexity. For instance, let O = {dom(e) C A, ran(e) C A, A= {r,g,b}}. Then, an
undirected graph G = (V, E) is 3-colorable iff O, {e(v,w) | (v,w) € E} £ Jxe(z,).
Alternatively, one may replace the query by r(r,r) V r(g, g) V r(b,b). In fact, one can
prove the following variant of Theorem 5 which shows that classifying OMQs with
ontologies using only enumeration definitions and quantifier-free UCQs according to
their complexity is as hard as CSP.

150

Theorem 11. Given a template 3, one can construct in polynomial time an OMQ (O, q)
where O only contains enumeration definitions and q is a Boolean variable-free UCQ
such that the complement of CSP(B) and (O, q) are mutually FO-reducible.

We now turn to classifying the complexity of ontologies and of OMQs, starting with a
generalization of Theorem 4 to unrestricted schema.org-ontologies.

Theorem 12. Let O be a coherent and minimized schema.org-ontology. If O contains
an enumeration definition A = {ay,...,a,} with n > 2 or contains an inclusion
F C Ay U---UA, such that there are at least two concept names in { Ay, ..., A, } and

OFFCAU (D7A|B|)EDTDf0r any Awith A = {a} € O, then (O, q) is coNP-hard

for some Boolean CQ q. Otherwise every (O, q) with g a UCQ is FO-rewritable (and
thus in AC® in data complexity).

Note that, in contrast to Theorem 4, being in ACP does not mean that no ‘real disjunction’
is available. For example, for O = {ran(r) C AUB,AC C,BLC C,C = {c}} and
A = {r(a,b)} we have O, A |= A(b) vV B(b) and neither A(b) nor B(b) are entailed.
This type of choice does not affect FO-rewritability, however, since it is restricted to
individuals that must be identified with a unique individual in Ng(O). Note that, for
the hardness proof, we now need to use a role name that possibly does not occur in O.
For example, for O = {A = {a1, a2} } there exists a Boolean CQ ¢ such that (O, q) is
NP-hard, but constructing g requires a fresh role name.

We now consider the complexity of single OMQs and show a converse of Theorems 5
and 11 for schema.org-ontologies and UCQs that are gvar-acyclic, that is, when all atoms
r(t,t') with neither of ¢, ¢’ a quantified variable are dropped, then all CQs in it are acyclic.
We use generalized CSPs with marked elements in which instead of a single template B,
one considers a finite set I of templates whose signature contains, in addition to concept
and role names, a finite set of individual names. Homomorphisms have to respect also
the individual names and the problem is to decide whether there is a homomorphism
from the input interpretation to some 3 € I". Every such CSP is mutually FO-reducible
with some standard CSP and FO-definability and datalog definability of the complement
of generalized CSPs with marked elements are NP-complete Bienvenu ez al. [2014b].

Theorem 13. Given an OMQ (O, q) with O a schema.org-ontology and q a gvar-acyclic
UCQ, one can compute in exponential time a generalized CSP with marked elements I
such that (O, q) and the complement of CSP(I") are mutually FO-reducible.

The proof uses an encoding of gqvar-acyclic queries into concepts in the description
logic ALCTUQO that extends ALC by inverse roles, the universal role, and nominals. It
extends the the template constructions of Bienvenu et al. [2014b] to description logics
with nominals. As a particularly interesting consequence of Theorem 13, we obtain:

Theorem 14. FO-rewritability and datalog-rewritability of OMQs (O, q) with O a
schema.org-ontology and q a qvar-acyclic UCQ are decidable in NEXPTIME.

6 Conclusion

The work presented in this paper lays a solid foundation for attacking many interesting
and practically relevant questions that can be asked about querying in the presence of
schema.org-ontologies. Topics of interest include different forms of queries such as
SPARQL and regular path queries as well as uncertainty in the data that accounts for
varying levels of trust in different data sources.

151

Bibliography

Foto N. Afrati and Jeffrey D. Ullman. Optimizing multiway joins in a map-reduce
environment. IEEE Trans. Knowl. Data Eng., 23(9):1282-1298, 2011.

Foto N. Afrati and Jeffrey D. Ullman. Transitive closure and recursive datalog imple-
mented on clusters. In EDBT, pages 132-143, 2012.

Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Zakharyascheyv.
The DL-Lite family and relations. J. of Artifical Intelligence Research, 36:1-69, 2009.

Meghyn Bienvenu, Camille Bourgaux, and Frangois Goasdoué. Querying inconsistent
description logic knowledge bases under preferred repair semantics. In AAAIL pages
996-1002, 2014.

Meghyn Bienvenu, Balder ten Cate, Carsten Lutz, and Frank Wolter. Ontology-based
data access: A study through disjunctive datalog, CSP, and MMSNP. ACM Trans.
Database Syst., 39(4):33, 2014.

Andrei A. Bulatov. On the CSP dichotomy conjecture. In CSR, pages 331-344, 2011.

Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and
Riccardo Rosati. Tractable reasoning and efficient query answering in description
logics: The DL-Lite family. J. Autom. Reasoning, 39(3):385—429, 2007.

Stavros S. Cosmadakis, Haim Gaifman, Paris C. Kanellakis, and Moshe Y. Vardi. De-
cidable optimization problems for database logic programs (preliminary report). In
Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing
(STOC), pages 477-490, 1988.

Thomas Eiter, Georg Gottlob, and Heikki Mannila. Disjunctive datalog. ACM Trans.
Database Syst., 22(3):364-418, 1997.

Tomas Feder and Moshe Y. Vardi. The computational structure of monotone monadic
SNP and constraint satisfaction: A study through datalog and group theory. SIAM J.
Comput., 28(1):57-104, 1998.

Birte Glimm and Markus Krétzsch. SPARQL beyond subgraph matching. In ISWC,
volume 6496 of LNCS, pages 241-256. Springer, 2010.

Bernardo Cuenca Grau, Boris Motik, Giorgos Stoilos, and Ian Horrocks. Computing
datalog rewritings beyond horn ontologies. In IJCAI, 2013.

Ramanathan V. Guha. Light at the end of the tunnel? Invited Talk, ISWC,
https://www.youtube.com/watch?7v=0FY-0QoxBi8§, 2013.

Mark Kaminski, Yavor Nenov, and Bernardo Cuenca Grau. Computing datalog rewritings
for disjunctive datalog programs and description logic ontologies. In Web Reasoning
and Rule Systems, pages 76-91, 2014.

Mark Kaminski, Yavor Nenov, and Bernardo Cuenca Grau. Datalog rewritability of
disjunctive datalog programs and its applications to ontology reasoning. In AAAI,
pages 1077-1083, 2014.

Domenico Lembo, Maurizio Lenzerini, Riccardo Rosati, Marco Ruzzi, and
Domenico Fabio Savo. Inconsistency-tolerant semantics for description logics. In
Web Reasoning and Rule Systems, pages 103—117, 2010.

Carsten Lutz and Frank Wolter. Non-uniform data complexity of query answering in
description logics. In Proc. of KR, 2012.

152

Carsten Lutz and Frank Wolter. On the relationship between consistent query answering
and constraint satisfaction problems. In /CDT, 2015.

Peter F. Patel-Schneider. Analyzing schema.org. In ISWC, Part I, pages 261-276, 2014.

Riccardo Rosati. On the complexity of dealing with inconsistency in description logic
ontologies. In IJCAI, pages 1057-1062, 2011.

Benjamin Rossman. Homomorphism preservation theorems. J. ACM, 55(3), 2008.

153

Polynomial Horn Rewritings for
Description Logics Ontologies*

Mark Kaminski and Bernardo Cuenca Grau

Department of Computer Science, University of Oxford, UK

Abstract. We study the problem of rewriting an ontology O in a DL
L1 into an ontology O3 in a Horn DL £, such that O; and O; are equi-
satisfiable when extended with any dataset. After showing undecidability
whenever £ extends ALCF, we focus on devising efficiently checkable
conditions that ensure existence of a Horn rewriting. By lifting existing
Datalog rewriting techniques for Disjunctive Datalog programs to first-
order programs with function symbols, we identify a class of ontologies
that admit Horn rewritings of polynomial size. Our experiments indicate
that many real-world ontologies admit such polynomial Horn rewritings.

1 Introduction

Reasoning over ontology-enriched datasets is a key requirement in many appli-
cations. Standard reasoning tasks are, however, of high worst-case complexity.
Satisfiability checking is 2NExPTIME-complete for the DL SROZQ underpin-
ning OWL 2 and NEXPTIME-complete for SHOZAN, which underpins OWL
DL [13]. Reasoning is also co-NP-hard in data complexity—a key measure of
complexity for applications involving large amounts of instance data [9)].

Tractability in data complexity is typically associated with Horn DLs, where
ontologies correspond to first-order Horn clauses [18,9]. The more favourable
computational properties of Horn DLs make them a natural choice for data-
intensive applications, but they also come at the expense of a loss in expressive
power. In particular, Horn DLs cannot capture disjunctive axioms, i.e., state-
ments such as “every X is either a Y or a Z”. Disjunctive axioms are common
in real-world ontologies, like the NCI Thesaurus or the ontologies underpinning
the EBI linked data platform (see http://www.ebi.ac.uk/rdf/platform).

In this paper we are interested in Horn rewritability of description logic on-
tologies; that is, whether an ontology O; in a DL £; can be restated as an ontol-
ogy Os in a Horn DL L5 such that O; and Oy are equisatisfiable when extended
with an arbitrary dataset. Ontologies admitting such rewritings are amenable to
more efficient reasoning techniques that are tractable in data complexity.

Horn rewritability of DL ontologies is strongly related to the rewritability of
Disjunctive Datalog programs into Datalog, where both the source and target

* Work supported by the Royal Society, the EPSRC projects Score!, MaSI® and
DBOnto, and the FP7 project Optique.

154

languages for rewriting are function-free. Kaminski et al. [12] characterised Dat-
alog rewritability of Disjunctive Datalog programs in terms of linearity: a restric-
tion that requires each rule to contain at most one body atom that is IDB (i.e.,
whose predicate also occurs in head position in the program). It was shown that
every linear Disjunctive Datalog program can be rewritten into plain Datalog
(and vice versa) by means of program transposition—a polynomial transforma-
tion in which rules are “inverted” by shuffling all IDB atoms between head and
body while replacing their predicates by auxiliary ones. Subsequently, Kaminski
et al. [11] proposed the class of markable Disjunctive Datalog programs, where
the linearity requirement is relaxed so that it applies only to a subset of “marked”
atoms. Every markable program can be polynomially rewritten into Datalog by
exploiting a variant of transposition where only marked atoms are affected.

Our contributions in this paper are as follows. In Section 3, we show undecid-
ability of Horn rewritability for ontologies in ALCF. This is in consonance with
the related undecidability results by Bienvenu et al. [3] and Lutz and Wolter [17].
In Section 4, we lift the markability condition and the transposition transforma-
tion in [11] for Disjunctive Datalog to first-order programs with function symbols.
We then show that all markable programs admit Horn rewritings of polynomial
size. This result is rather general and has potential implications in areas such
as theorem proving [19] and knowledge compilation [5]. The notion of markabil-
ity for first-order programs easily transfers to ontologies via the standard FOL
translation of DLs [2]. This is, however, of limited practical value since Horn
programs obtained via transposition may not be expressible using standard DL
constructors. In Section 5, we introduce an alternative satisfiability-preserving
translation from ALCHZF ontologies to first-order programs and show in Sec-
tion 6 that the corresponding transposed programs can be translated back into
Horn-ALCHZIF ontologies. Finally, we focus on complexity and show that rea-
soning over markable £-ontologies is EXPTIME-complete in combined complexity
and PTIME-complete w.r.t. data for each DL £ between £LU and ALCHIF.
All our results immediately extend to DLs with transitive roles (e.g., SHZF) by
exploiting standard transitivity elimination techniques [2].

We have implemented markability checking and evaluated our techniques on
a large ontology repository. Our results indicate that many real-world ontologies
are markable and thus admit Horn rewritings of polynomial size.

All proofs are deferred to an extended version (see arXiv:1504.05150).

2 Preliminaries

We assume standard first-order syntax and semantics. We treat the universal
truth T and falsehood L symbols as well as equality (=) as ordinary predicates
of arity one (T and 1) and two (=), the meaning of which will be axiomatised.

Programs A (first-order) rule is a sentence VaVz.[p(x,z) — t(x)] where
variables and z are disjoint, p(x, z) is a conjunction of distinct atoms over
x Uy, and ¢(x) is a disjunction of distinct atoms over x. Formula ¢ is the body
of r, and 1 is the head. Quantifiers are omitted for brevity, and safety is assumed

155

T [T, AU G ALy Ai(e) = VL, Ci(@)

T2. JRACC at(R,z,y) N A(y) — C(z)

T3. ALC 3R.B A(z) — at(R, z, f(z)); A(z) = B(f(x))

T4. ALCVR.C A(z) Nat(R,z,y) — C(y)

T5. SCR S(xz,y) = at(R, z,y)

T6. AC<1R.B A(z) Nat(R, z,z1) Nat(R, z,z2) A B(x1) A B(z2) = 1 R 22

Table 1. Normalised DL axioms. A, B are named or T; C' named or L ; role S is named
and R is a (possibly inverse) role.

(all variables in the rule occur in the body). We define the following sets of rules
for a finite signature X: (i) Py, consists of a rule P(xy,...,7,) — T(x;) for
each predicate P € X and each 1 <i < n and a rule — T(a) for each constant
a € X; (ii) P3 consists of the rule with L () in the body and an empty head; and
(#11) P consists of the standard axiomatisation of ~ as a congruence over X. A
program is a finite set of rules P = Py U Py, U P UPYF with X the signature of
Py, where we assume w.l.o.g. that the body of each rule in Py does not mention
L or &, and the head is non-empty and does not mention T. We omit X' for the
components of P and write P, P+ and P=. A rule is Horn if its head consists
of at most one atom, and a program is Horn if so are all of its rules. Finally, a
fact is a ground, function-free atom, and a dataset is a finite set of facts.

Ontologies A signature X consists of disjoint countable sets of concept names
Y¢ and role names Y. A role is an element of X U{R™ | R € XYg}. The
function inv is defined over roles as follows, where R € Xg: inv(R) = R~ and
inv(R~™) = R. W.l.o.g., we consider normalised axioms as on the left-hand side
of Table 1. An ALCHZIF ontology O is a finite set of axioms of type T1-T6 in
Table 1. An ontology is Horn if it contains no axiom T1 where m > 2. Given O,
we write C* for the minimal reflexive and transitive relation over roles in O s.t.
Ry C* Ry and inv(R;) C* inv(R3) hold whenever Ry C Ry € O.

We refer to the DL where only axioms T1-T3 are available and inverse roles
are disallowed as ELU. The logic ALC extends ELU with axioms T4. We then
use standard naming conventions for DLs based on the presence of inverses (Z),
axioms T5 (H) and axioms T6 (F). An ontology is £L if it is £LU and Horn.

Table 1 also provides the standard translation 7 from normalised axioms into
rules, where at(R, x,y) stands for R(z,y) if R is named and S(y,z) if R=5".
We define 7(O) as the smallest program containing 7(«) for each axiom « in O.
Given a dataset D, we say that O U D is satisfiable iff so is 7(O) UD in FOL.

3 Horn Rewritability

Our focus is on satisfiability-preserving rewritings. Standard reasoning tasks
in DLs are reducible to unsatisfiability checking [2], which makes our results
practically relevant. We start by formulating our general notion of rewriting.

156

Definition 1. Let F, F’ be sets of rules. Then F' is a rewriting of F if it holds
that FUD is satisfiable iff so is F'UD for each dataset D over predicates from F.

We are especially interested in computing Horn rewritings of ontologies—
that is, rewritings where the given ontology O; is expressed in a DL £; and the
rewritten ontology Os is in a Horn DL Ly (where preferably £ C £1). This is not
possible in general: satisfiability checking is co-NP-complete in data complexity
even for the basic logic ELU [14], whereas data complexity is tractable even for
highly expressive Horn languages such as Horn-SROZQ [18]. Horn rewritability
for DLs can be formulated as a decision problem as follows:

Definition 2. The (L1, L3)-Horn rewritability problem for DLs L1 and Lo is to
decide whether a given Li-ontology admits a rewriting expressed in Horn-Ls.

Our first result establishes undecidability whenever the input ontology con-
tains at-most cardinality restrictions and thus equality. This result fits in with
the related undecidability results by Bienvenu et al. [3] and Lutz and Wolter [17]
for Datalog rewritability and non-uniform data complexity for ALCF ontologies.

Theorem 3. (L, Ly)-Horn rewritability is undecidable for L1 = ALCF and Lo
any DL between ELU and ALCHIF. This result holds if PTIME#ANP.

Intractability results in data complexity rely on the ability of non-Horn DLs
to encode co-NP-hard problems, such as non-3-colourability [14,9]. In practice,
however, it can be expected that ontologies do not encode such problems. Thus,
our focus from now onwards will be on identifying classes of ontologies that
admit (polynomial size) Horn rewritings.

4 Program Markability and Transposition

In this section, we introduce the class of markable programs and show that
every markable program can be rewritten into a Horn program by means of a
polynomial transformation, which we refer to as transposition. Roughly speaking,
transposition inverts the rules in a program P by moving certain atoms from head
to body and vice versa while replacing their corresponding predicates with fresh
ones. Markability of P ensures that we can pick a set of predicates (a marking)
such that, by shuffling only atoms with a marked predicate, we obtain a Horn
rewriting of P. Our results in this section generalise the results by Kaminski et
al. [11] for Disjunctive Datalog to first-order programs with function symbols.

To illustrate our definitions throughout this section, we use an example pro-
gram Pe, consisting of the following rules:

A(zx) — B(x) B(z) —» C(z) vV D(z)
Clx) = L(x) D(z) = C(f(=))

Markability. The notion of markability involves a partitioning of a program’s
predicates into Horn and disjunctive: the extension of Horn predicates for all

157

datasets depends only on the Horn rules in the program while the extension of
disjunctive predicates may depend on a disjunctive rule. This intuition can be for-
malised using the standard notion of a dependency graph in logic programming.

Definition 4. The dependency graph Gp = (V,E, u) of a program P is the
smallest edge-labeled digraph such that: (i) V contains all predicates in P; (ii) r €
w(P, Q) whenever r € P, P is in the body of v, and Q is in the head of r; and
(1) (P,Q) € E whenever u(P,Q) # (. A predicate Q depends on r € P if Gp
has a path ending in Q and involving an r-labeled edge. Predicate @) is Horn if
it depends only on Horn rules; otherwise, @) is disjunctive.

For instance, predicates C'; D, and L are disjunctive in our example program Pe,,
whereas A and B are Horn. We can now introduce the notion of a marking—a
subset of the disjunctive predicates in a program P ensuring that the transposi-
tion of P where only marked atoms are shuffled between head and body results
in a Horn program.

Definition 5. A marking of a program P is a set M of disjunctive predicates in
P satisfying the following properties, where we say that an atom is marked if its
predicate is in M : (i) each rule in P has at most one marked body atom; (i) each
rule in P has at most one unmarked head atom; and (i) if Q@ € M and P is
reachable from @Q in Gp, then P € M. A program is markable if it has a marking.

Condition (i) in Def. 5 ensures that at most one atom is moved from body to
head during transposition. Condition (i) ensures that all but possibly one head
atom are moved to the body. Finally, condition (i) requires that all predicates
depending on a marked predicate are also marked. We can observe that our
example program Pe, admits two markings: My = {C, L} and My = {C, D, 1}.

Markability can be efficiently checked via a 2-SAT reduction, where we assign
to each predicate @ in P a variable X and encode the constraints in Def. 5 as
2-clauses. For each rule o A A\, Pi(s;) — \/;ﬂ:1 Q;(t;), with ¢ the conjunction
of all Horn atoms in the head, we include clauses (i) - Xp, V =X p; forall 1 <
i < j < n, which enforce at most one body atom to be marked; (ii) Xq, V Xq,
for 1 <1 < j < m, which ensure that at most one head atom is unmarked; and
(iii) = Xp, V Xq, for 1 <i <nand 1 < j < m, which close markings under rule
dependencies. Each model of the resulting clauses yields a marking of P.

Transposition. Before defining transposition, we illustrate the main intuitions
using program Pey, and marking M;.

The first step to transpose Pey is to introduce fresh unary predicates C' and
L, which stand for the negation of the marked predicates C' and L. To capture
the intended meaning of these predicates, we introduce rules X (z) — L(x) for
X € {A,B,C,D} and a rule L(z) — L(f(x)) for the unique function symbol
f in Pey. The first rules mimick the usual axiomatisation of T and ensure that
an atom L (c) holds in a Herbrand model of the transposed program whenever
X (c) also holds. The last rule ensures that L holds for all terms in the Herbrand
universe of the transposed program—an additional requirement that is consistent
with the intended meaning of 1, and critical to the completeness of transposition

158

in the presence of function symbols. Finally, a rule 1(z) A C(x) A C(z) — 1(2)
ensures that the fresh predicate C behaves like the negation of C.

The key step of transposition is to invert the rules involving the marked
predicates by shuffling marked atoms between head and body while replacing
their predicate with the corresponding fresh one. In this way, rule B(z) — C(z)V
D(z) yields B(x) A C(z) — D(x), and C(x) — L(z) yields L(x) — C(z).
Additionally, rule D(x) — C(f(z)) is transposed as 1 (2) A D(x) A C(f(x)) —
1 (z) to ensure safety. Finally, transposition does not affect rules containing only
Horn predicates, e.g., rule A(z) — B(z) is included unchanged.

Definition 6. Let M be a marking of a program P. For each disjunctive pred-
icate P in P, let P be a fresh predicate of the same arity. The M -transposition
of P is the smallest program Zp(P) containing every rule in P involving only
Horn predicates and all rules given next, where @ is the conjunction of all Horn
atoms in a rule, o1 is the least conjunction of L-atoms making a rule safe:

1. o1 /\cp/\/\gn:1 Qi) AN Pi(s;) = Q(¢) for each rule in P of the form o A
Q(t) NN Qj(t;) — ViZ, Pi(si) where Q(t) is the only marked body atom;

2. L) N AN Qj(t5) ANy Pi(si) — L(x), where a fresh variable, for
each rule in P of the form ¢ A /\;n:1 Q;(t;) = Vi, Pi(s;), with no marked
body atoms and no unmarked head atoms;

3. A /\;n:1 Q;(t;) NN, Pi(s;) — P(s) for each rule in P of the form ¢ A

Nj=1 Q;(t;) — P(s)VVi, Pi(si) where P(s) is the only unmarked head atom;

1(2) A P(x) A P(z) — L(2) for marked predicate P;

P(x1,...,2,) = L(x;) for each P in P and 1 < i <mn;

L(z)A. AL(xy) = L(f(21,...,2p)) for each n-ary function symbol f in P.

Clearly, Pex is unsatisfiable when extended with fact A(a). To see that =y, (Pex)U
{A(a)} is also unsatisfiable, note that B(a) is derived by the unchanged rule
A(z) — B(z). Fact C(a) is derived using A(z) — L(z) and the transposed rule
1(x) = C(z). We derive D(a) using B(z) A C(z) — D(z). But then, to derive
a contradiction we need to apply rule L(z) A D(x) A C(f(x)) — L(z), which is
not possible unless we derive C(f(a)). For this, we first use L(z) — L(f(z)),
which ensures that | holds for f(a), and then L(z) — C(x).

S G

Theorem 7. Let M be a marking of a program P. Then =y (P) is a polynomial-
size Horn rewriting of P.

It follows that every markable set of non-Horn clauses A/ can be polynomially
transformed into a set of Horn clauses N’ such that N'U D and N’ U D are
equisatisfiable for every set of facts D. This result is rather general and has
potential applications in first-order theorem proving, as well as in knowledge
compilation, where Horn clauses are especially relevant [5, 6].

5 Markability of DL Ontologies

The notion of markability is applicable to first-order programs and hence can
be seamlessly adapted to ontologies via the standard translation 7 in Table 1.

159

Ontology Oex Rule translation £(Oe) Transposition Sz, (£(Oex)) Horn DL rewriting

ayr ACBUC A(z) — B(z) VvV C(x) A(z) A B(z) — C(x) ANBCC
as BC3R.D B(z) = D(fr,p(z)) D(fr,p(z)) — B(z) 3Rp.DC B
a3 3R.DC D R(z,y) AD(y) = D(z) R(z,y) A D(z) — D(y) D CVR.D
D(fr,p(2)) = D(z) D(z) = D(fr,p(x)) DEVRpD
D(fr,5(x)) = D(z) D(z) = D(fr,B(x)) DEVRD
ay CC3IR.B C(z) — B(fr,B(2)) 1(2) AC(z) N B(fr,B(x)) = L(2) CM3IRg.BC L
as DNEC L D(z)AE(z) —» L(z) E(z)AL(z) = D(x) ENLCD
X(z) = L(z), X€{A,B,C,D,E} XL L
R(xy,x2) = L(z;), 1<i<2 TLCVR.L, 3R TC L

1(z) = L(fry(z)), YE{B,D} LLC3Ry.L

Table 2. Rewriting the example £LU ontology O into a Horn-ALC ontology using
the marking Mex = {B, D, L}.

This, however, would be of limited value since the Horn programs resulting from
transposition may not be expressible in Horn-ALCHZF.

Consider any ontology with an axiom 3R.A C B and any marking M involv-
ing R. Rule R(x,y) A A(y) — B(x) stemming from 7 would be transposed as
B(z) A A(y) — R(z,y), which cannot be captured in ALCHZF.!

To address this limitation we introduce an alternative translation £ from
DL axioms into rules, which we illustrate using the example ontology O in
Table 2. The key idea is to encode existential restrictions in axioms T3 as unary
atoms over functional terms. For instance, axiom as in O would yield B(z) —
D(fr p(x)), where the “successor” relation between an instance b of B and some
instance of D in a Herbrand model is encoded as a term fr p(b), instead of a
binary atom of the form R(b, g(b)). This encoding has an immediate impact on
markings: by marking B we are only forced to also mark D (rather than both R
and D). In this way, we will ensure that markings consist of unary predicates only.

To compensate for the lack of binary atoms involving functional terms in
Herbrand models, we introduce new rules when translating axioms T2, T4, and
T6 using &. For instance, £(«3) yields the following rules in addition to 7(ag): a
rule D(fr.p(x)) — D(z) to ensure that all objects ¢ with an R-successor fr p(c)
generated by &(awe) are instances of D; a rule D(fg g(z)) — D(x), which makes
sure that an object whose R-successor generated by &(ay) is an instance of D
is also an instance of D. Finally, axioms a3 and a5, which involve no binary
predicates, are translated as usual.

Definition 8. Let O be an ontology. For each concept R.B in an aziom of type
T3, let fr.B be a unary function symbol, and P the set of all such symbols. We
define £(O) as the smallest program containing m(a) for each axiom « of type
T1-T2 and T4-T6, as well as the following rules:

— A(xz) = B(fr,B(z)) for each axiom T3;

! Capturing such a rule would require a DL that can express products of concepts [20].

160

— A(fry(x)) = C(x) for each aziom T2 and R\ Y s.t. frry € & and R' C* R;

= A(finvrr),y (x)) = C(x) for each azx. T4 and R',Y s.t. fin(r)y €, R C" R;

— A(z) NY (fivry,y () = Clfinv(rr),v () for each aziom T2 and R')Y s.t.
finv(rr),y € P and R' C* R;

— A()ANY (frv(x)) = C(fr.v(x)) for each aziom T4 and R'.Y s.t. frry €
and R' C* R;

— A(z) A B(fryv(2)) Nat(R, z,z) A B(z) = fry(2) = x for each az. T6 and

R/7Y s.1. fR/’y € P and R' C* R;

Ay (2)) A B() Aat(R, fim(ryy (2),5) A B(y) — x ~ y for each aziom

T6 and R/,Y s.1. .finv(R’),Y €® and R' C* R;

A(2) N B(fry i (2)) A B(fryv2(2)) = fryvi(2) & [Rry,v,(2) for each aziom

T6 and fry, € P s.t. R; C* R;

A(fiv(ry)v2 (@) AB(@)AB(fry, v, (fiv(ry) vi () = & = [ry v, (finv(ry) i (%))

for each axiom T6 and R},Y; s.t. { finv(r)),v1> fRy 2} € @ and R C* R.

The translation £(Oe) of our example ontology O is given in the second column
of Table 2. Clearly, O, is unsatisfiable when extended with A(a) and E(a). We
can check that £(Oe) U {A(a), E(a)} is also unsatisfiable.

Theorem 9. For every ontology O and dataset D over predicates in O we have
that O UD is satisfiable iff so is E(O) U D.

This translation has a clear benefit for markability checking: in contrast to
m(O), binary predicates in £(O) do not belong to any minimal marking. In
particular, Mgy = {B, D, 1} is the only minimal marking of £(Oe).

Proposition 10. (i) If ~ is Horn in £(O) then so are all binary predicates in
£(0). (ir) If £(O) is markable, it has a marking containing only unary predicates.

Thus, we define markability of ontologies in terms of £ rather than 7. We can
check that 7m(Oe) is not markable, whereas {(Oe) admits the marking Mey.

Definition 11. An ontology O is markable if so is £(O).

We conclude this section with the observation that markability of an ontology
O can be efficiently checked by first computing the program £(O) and then
exploiting the 2-SAT encoding sketched in Section 4.

6 Rewriting Markable Ontologies

It follows from the correctness of transposition in Theorem 7 and £ in Theorem
9 that every ALCHZIF ontology O admitting a marking M has a Horn rewriting
of polynomial size given as the program =j;(£(0)). In what follows, we show
that this rewriting can be expressed within Horn-ALCHIF.

Let us consider the transposition of £(Oey) via the marking Me, which is
given in the third column of Table 2. The transposition of a;; and a5 corresponds
directly to DL axioms via the standard translation in Table 1. In contrast, the
transposition of all other axioms leads to rules that have no direct correspondence
in DLs. The following lemma establishes that the latter rules are restricted to
the types T7-T20 specified on the left-hand side of Table 3.

161

T7. 1(2) A B(z) A R(z,y) A A(y) — L(2) BM3IRALC L

T8. 1(2) A A(fr,y(x)) A B(z) = L(2) BMN3Ry.AC L
T9. L(z) = L(fr,y(x)) 1 E3Ry.L
T10. B(z) — A(fr,v(x)) BCVRy.A ifA# 1LorB# 1
T11. B(fnyy(x)) — A(I) JdRy.B C A
T12. A(I) A B(vay(CE)) — C(fR’y(I)) AMN3IRy.BLCVRy.C
T13. 1(z) NA(z) A B(fr,y(z)) ANC(fr,y(z)) = L(2) AMN3Ry(BNC)LC L
T14. B(fR,y(a:)) A C(fR,y(a:)) — A(w) 3Ry (B M C) CA
T15. A(z) A B(fgr,y(2)) Aat(R,z,2) A B(x) RY, ES{R@,,RM RES{RQ,,RM
= fry(z) =z AESlS(R/}”R}.B
T16. A(fr (@) A B@) AR, fro @) ABG) Ry CSga myy RE Sga nys
—S TRy AESIS{R’Y,R}'BV R, =inv(RY)
T17. A(z)/\B(fRyy(Z))/\B(fR/’Z(Z)) Ry ES{RYvR/Z}’ R/Z ES{RYvR/Z}’
—)fRyy(z)sz/,Z(z) AESlS(RYyR/Z}'B
T18. A(fry (@) A B(@) A B(far 5(fr.y () Ry © S(ay gy R CSiay
— T fR/,Z(fR,Y(m)) A E SIS{RY:R/Z}'B7 Ry = inV(Ry)
T19. R(z,y) — L(z) JR.TLC L
T720. R(z,y) — L(y) TCVR.L

Table 3. Transformation ¥ from transposed rules to DLs. Role names R are fresh for
every R, and S{g g} for every {R, R'}.

Lemma 12. Let O be an ontology and M a minimal marking of £(O). Then
EMm(&(0)) contains only Horn rules of type T1-T2 and T4-T6 in Table 1 as well
as type T7-T20 in Table 3.

We can now specify a transformation ¥ that allows us to translate rules
T7-T20 in Table 3 back into DL axioms.

Definition 13. We define ¥ as the transformation mapping (i) each Horn rule
r of type T1-T2 and T4-T6 in Table 1 to the DL axiom w~'(r) (ii) each rule
T7-T20 on the left-hand side of Table 3 to the axzioms on the right-hand side.?

Intuitively, ¥ works as follows: (i) Function-free rules are “rolled up” as usual
into DL axioms (see e.g., T7). (ii) Unary atoms A(fry(x)) with A # 1 that
involve a functional term are translated as existentially or universally quantified
concepts depending on whether they occur in the body or in the head (e.g., T10,
T11); in contrast, atoms L(fgy(z)) in rules L(x) — L(fry(x)) are translated
as 3Ry .L instead of VRy.L (T9). (iii) Rules T15-T18, which involve ~ in the
head and roles R’ and R in the body, are rolled back into axioms of type T6 over
the “union” of R and R’, which is captured using fresh roles and role inclusions.

The ontology obtained by applying ¥ to our running example is given in the
last column of Table 2. Correctness of ¥ and its implications for the computation
of Horn rewritings are summarised in the following lemma.

2 For succinctness, axioms resulting from T7, T8, T12, T13, T14, T16 and T18 are
not given in normal form.

162

Lemma 14. Let O be a markable ACCHIF ontology and let M be a marking
of O. Then the ontology ¥(Er (£(O))) is a Horn rewriting of O.

A closer look at our transformations reveals that our rewritings do not in-
troduce constructs such as inverse roles and cardinality restrictions if these were
not already present in the input ontology. In contrast, fresh role inclusions may
originate from cardinality restrictions in the input ontology. As a result, our ap-
proach is language-preserving: if the input O; is in a DL £y between ALC and
ALCHZ, then its rewriting Oy stays in the Horn fragment of L;; furthermore,
if £1 is between ALCF and ALCZF, then O, may contain fresh role inclusions
(H). A notable exception is when O; is an ELU ontology, in which case axioms
T2 and T3 in O; may yield axioms of type T4 in Oy. The following theorem
follows from these observations and Lemma 14.

Theorem 15. Fvery markable L ontology is polynomially Horn-L rewritable
whenever L is between ALC and ALCHI. If L is between ALCF and ALCHIF,
every markable L ontology is polynomially rewritable into Horn-LH. Finally,
every markable ELU ontology is polynomially rewritable into Horn-ALC.

We conclude by establishing the complexity of satisfiability checking over
markable ontologies. We first show that the problem is ExpTiME-hard for mark-
able £LU ontologies, which implies that it is not possible to polynomially rewrite
every markable £LU ontology into £L. Thus, our rewriting approach is optimal
for £LU in the sense that introducing universal restrictions (or equivalently in-
verse roles) in the rewriting is unavoidable.

Lemma 16. Satisfiability checking over markable ELU is EXPTIME-hard.

All Horn DLs from ALC to ALCHIF are EXPTIME-complete in combined
complexity and PTIME-complete in data complexity [15]. By Theorem 15, the
same holds for markable ontologies in DLs from ALC to ALCHZIF. Finally,
Lemma 16 shows that these results extend to markable ££U ontologies.

Theorem 17. Let L be in-between ELU and ALCHIF. Satisfiability checking
over markable L-ontologies is EXPTIME-complete and P TIME-complete in data.

7 Related Work

Horn logics are common target languages for knowledge compilation [5]. Selman
and Kautz [21] proposed an algorithm for compiling a set of propositional clauses
into a set of Horn clauses s.t. their Horn consequences coincide. This approach
was generalised to FOL by Del Val [6], without termination guarantees.
Bienvenu et al. [3] showed undecidability of Datalog rewritability for ALCF
and decidability in NEXPTIME for SHZ. Cuenca Grau et al. [4] and Kamin-
ski et al. [11] proposed practical techniques for computing Datalog rewritings
of SHZ ontologies based on a two-step process. First, O is rewritten using a
resolution calculus {2 into a Disjunctive Datalog program 2(0O) of exponential

163

size [10]. Second, £2(O) is rewritten into a Datalog program P. For the second
step, Kaminski et al. [11] propose the notion of markability of a Disjunctive Dat-
alog program and show that P can be polynomially computed from 2(O) using
transposition whenever 2(0) is markable. In contrast to our work, Kaminski
et al. [11] focus on Datalog as target language for rewriting (rather than Horn
DLs). Furthermore, their Datalog rewritings may be exponential w.r.t. the input
ontology and cannot generally be represented in DLs.

Gottlob et al. [8] showed tractability in data complexity of fact entailment
for the class of first-order rules with single-atom bodies, which is sufficient to
capture most DLs in the DL-Litepo family [1].

Lutz and Wolter [17] investigated (non-uniform) data complexity of query
answering w.r.t. fized ontologies. They studied the boundary of PTIME and
co-NP-hardness and established a connection with constraint satisfaction prob-
lems. Finally, Lutz et al. [16] studied model-theoretic rewritability of ontologies
in a DL £; into a fragment £ of £1. These rewritings are equivalence-preserving;
this is in contrast to our approach, which requires only satisfiability preservation.

8 Proof of Concept

To assess the practical implications of our results, we have evaluated whether
real-world ontologies are markable (and hence polynomially Horn rewritable).
We analysed 120 non-Horn ontologies extracted from the Protege Ontology Li-
brary, BioPortal (http://bioportal.bioontology.org/), the corpus by Gardiner et
al. [7], and the EBI linked data platform (http://www.ebi.ac.uk/rdf/platform).
To check markability, we have implemented the 2-SAT reduction in Section 4
and a simple 2-SAT solver.

We found that a total of 32 ontologies were markable and thus rewritable into
a Horn ontology, including some ontologies commonly used in applications, such
as ChEMBL (see http://www.ebi.ac.uk/rdf/services/chembl/) and BioPAX Re-
actome (http://www.ebi.ac.uk/rdf/services/reactome/). When using 7 as first-
order logic translation, we obtained 30 markable ontologies—a strict subset of
the ontologies markable using . However, only 27 ontologies were rewritable to
a Horn DL since in three cases the marking contained a role.

9 Conclusion and Future Work

We have presented the first practical technique for rewriting non-Horn ontologies
into a Horn DL. Our rewritings are polynomial, and our experiments suggest that
they are applicable to widely-used ontologies. We anticipate several directions
for future work. First, we would like to conduct an extensive evaluation to assess
whether the use of our rewritings can significantly speed up satisfiability checking
in practice. Second, we will investigate relaxations of markability that would
allow us to capture a wider range of ontologies.

164

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family
and relations. J. Artif. Intell. Res. 36, 1-69 (2009)

Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The
Description Logic Handbook: Theory, Implementation, and Applications. Cam-
bridge University Press (2003)

. Bienvenu, M., ten Cate, B., Lutz, C., Wolter, F.: Ontology-based data access: A

study through disjunctive datalog, CSP, and MMSNP. ACM Tans. Database Syst.
39(4), 33 (2014)

Cuenca Grau, B., Motik, B., Stoilos, G., Horrocks, I.: Computing datalog rewritings
beyond Horn ontologies. In: IJCAI pp. 832-838 (2013)

Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif. Intell. Res. 17,
229-264 (2002)

Del Val, A.: First order LUB approximations: Characterization and algorithms.
Artif. Intell. 162(1-2), 7-48 (2005)

Gardiner, T., Tsarkov, D., Horrocks, I.: Framework for an automated comparison
of description logic reasoners. In: ISWC. pp. 654-667 (2006)

Gottlob, G., Manna, M., Morak, M., Pieris, A.: On the complexity of ontological
reasoning under disjunctive existential rules. In: MFCS. pp. 1-18 (2012)

Hustadt, U., Motik, B., Sattler, U.: Data complexity of reasoning in very expressive
description logics. In: IJCAL pp. 466-471 (2005)

Hustadt, U., Motik, B., Sattler, U.: Reasoning in description logics by a reduction
to disjunctive datalog. J. Autom. Reasoning 39(3), 351-384 (2007)

Kaminski, M., Nenov, Y., Cuenca Grau, B.: Computing datalog rewritings for
disjunctive datalog programs and description logic ontologies. In: RR. pp. 76-91
(2014)

Kaminski, M., Nenov, Y., Cuenca Grau, B.: Datalog rewritability of disjunctive
datalog programs and its applications to ontology reasoning. In: AAAIL pp. 1077
1083 (2014)

Kazakov, Y.: RIQ and SROIQ are harder than SHOIQ. In: KR. pp. 274-284 (2008)
Krisnadhi, A., Lutz, C.: Data complexity in the £L£ family of description logics.
In: LPAR. pp. 333-347 (2007)

Krotzsch, M., Rudolph, S., Hitzler, P.: Complexities of Horn description logics.
ACM Trans. Comput. Log. 14(1) (2013)

Lutz, C., Piro, R., Wolter, F.: Description logic TBoxes: Model-theoretic charac-
terizations and rewritability. In: IJCAIL pp. 983-988 (2011)

Lutz, C., Wolter, F.: Non-uniform data complexity of query answering in descrip-
tion logics. In: KR. pp. 297-307 (2012)

Ortiz, M., Rudolph, S., Simkus, M.: Query answering in the Horn fragments of the
description logics SHOZQ and SROZQ. In: IJCAL pp. 1039-1044 (2011)
Robinson, A., Voronkov, A. (eds.): Handbook of Automated Reasoning. Elsevier
(2001)

Rudolph, S., Krotzsch, M., Hitzler, P.: All elephants are bigger than all mice. In:
DL (2008)

Selman, B., Kautz, H.: Knowledge compilation and theory approximation. J. ACM
43(2), 193-224 (1996)

165

Reasoning Efficiently with Ontologies and Rules in the
Presence of Inconsistencies (Extended Abstract)*

Tobias Kaminski, Matthias Knorr, and Jodo Leite

NOVA LINCS, Departamento de Informatica, Faculdade de Ciéncias e Tecnologia,
Universidade Nova de Lisboa

In this paper, we address the problem of dealing with inconsistent knowledge bases
consisting of ontologies and non-monotonic rules, following a paraconsistent reasoning
approach with a focus on efficiency.

Description Logics (DLs) and Logic Programs (LPs) provide different strengths
when used for Knowledge Representation and Reasoning. While DLs employ the Open
World Assumption and are suited for defining ontologies, LPs adopt the Closed World
Assumption and are able to express non-monotonic rules with exceptions and prefer-
ence orders. Combining features of both formalisms has been actively pursued over the
last few years, resulting in different proposals with different levels of integration and
complexity: while some extend DLs with rules [18,25], others follow a hybrid com-
bination of ontologies with non-monotonic rules, either providing a modular approach
where rules and ontologies use their own semantics, and allowing limited interaction
between them [10], or defining a unifying framework for both components [29, 24].
Equipped with semantics that are faithful to their constitutive parts, these proposals al-
low for the specification of so-called hybrid knowledge bases (hybrid KBs) either from
scratch, benefiting from the added expressivity, or by combining existing ontologies
and rule bases.

The complex interactions between the ontology component and the rule component
of these hybrid KBs — even more so when they result from combining existing ontolo-
gies and rule bases developed independently — can easily lead to contradictions, which,
under classical semantics, trivialize standard reasoning and prevent us from drawing
any meaningful conclusions, ultimately rendering these hybrid KBs useless.

Example 1. Consider the following simplified (ground) hybrid KB K¢ for assessing
the risk of goods at a port.

HasCertifiedSender T —1sMonitored (1)
KIsMonitored(g) < Krisk(g). (2)
Krisk(g) < notisLabelled(g). 3)

KisLabelled(g) < notrisk(g). 4)
KresolvedRisk(g) + KI1sMonitored(g). ®)

K HasCertifiedSender(g) < (6)
Krisk(g) <+)

*This is an extended abstract of [22]. Partially supported by Funda¢do para a
Ciéncia e a Tecnologia under project PTDC/EIA-CCO/121823/2010 and strategic project
PEst/UID/CEC/04516/2013. M. Knorr was also supported by grant SFRH/BPD/86970/2012.

166

Rules (3) and (4) state that good g is either a risk (r) or it is labeled (:L). Any risk is
monitored (I M) (2), thus a resolved risk (rR) (5). As g has a certified sender (HC'S)
(6), it can be proven by means of axiom (1) that it is not monitored. Thus, g can be
derived to be monitored and not monitored at the same time if it is considered to be a
risk (7), i.e., the hybrid KB is inconsistent, which trivializes standard reasoning.

One way to deal with this problem is to employ some method based on belief re-
vision (e.g. [26, 30, 35,37, 9] for LPs, [14,7,23] for DLs, and [38, 36] for hybrid KBs)
to regain consistency so that standard reasoning services can be used, or some method
based on repairing (e.g. [5] for LPs, [17] for DLs, and [12, 11] for dl-programs [10])
where hypothetical belief revision is employed for consistent query answering, without
actually changing the KB. However, this is not always feasible e.g. because, we may not
have permission to change the KB — as for instance in [1] where the KB encodes laws
and norms — or because the usual high complexity of belief revision and repairing meth-
ods simply renders their application prohibitive. When these methods are not possible
or not feasible, paraconsistent reasoning services, typically based on some many-valued
logic, offer an alternative by being able to draw meaningful conclusions in the presence
of contradictions.

Paraconsistent reasoning has been extensively studied in both base formalisms of
hybrid KBs. For DLs, most work [31, 39,27, 41, 28] focuses on four-valued semantics
varying which classical rules of inferences they satisfy. Among them, [27, 28] is most
general as it covers SROZQ, the DL behind OWL 2, considers tractable subclasses
and truth value removals, and permits re-using classical reasoners. Three-valued seman-
tics for DLs [40] and measuring the degree of inconsistency in DL-Lite [42] have also
been considered. For LPs, the comprehensive survey [8] discusses e.g. a four-valued
semantics without default negation [6], a four-, six-, and nine-valued semantics [34] for
answer sets [16], and a seven- [33] and nine-valued [3] well-founded semantics [15].
More recently, a very general framework for arbitrary bilattices of truth values [2] and
paraconsistent Datalog [4] have been considered. At the same time, paraconsistent rea-
soning is still a rather unexplored field in the context of hybrid KBs. Notable exceptions
are [20, 19, 13], yet their computation is not tractable in general even if reasoning in the
DL component is.

In this paper, we investigate efficient paraconsistent semantics for hybrid KBs. We
adopt the base framework of [29] because of its generality and tight integration between
the ontology and the rules — cf. [29] for a thorough argument in its favor — under the
semantics of [24] because of its computational properties. We extend this semantics
with additional truth values to evaluate contradictory pieces of knowledge, following
two common views on how to deal with contradictory knowledge bases.

According to one view, contradictions are dealt with locally, in a minimally in-
trusive way, such that a new truth value is introduced to model inconsistencies, but
non-contradictory knowledge only derivable from the inconsistent part of a KB is still
considered to be true in the classical sense. This view is adopted in paraconsistent se-
mantics for DLs, e.g. [28], LPs, e.g. [33, 34], and hybrid KBs [20, 13]. Since two dif-
ferent kinds of inconsistencies are identified in the three-valued semantics of [24], two
further truth values are introduced when following this first approach in extending the
work of [24], resulting in a five-valued semantics. Namely, we extend the set of truth

167

values true (t), false (f), and undefined (u) used in [24] by the truth value b for both,
which is assigned whenever an atom is considered true and false at the same time,
and the truth value uf for undefined false, which is used whenever an atom would be
considered simultaneously undefined and false.

The alternative view is to distinguish truth which depends on the inconsistent part
of a KB from truth which is derivable without involving any contradictory knowledge.
This view, commonly referred to as Suspicious Reasoning, is adopted in paraconsistent
semantics for LPs, e.g. [3, 33, 34] and hybrid KBs [19]. In order to extend the approach
of [24] in a way that allows for paraconsistency in combination with Suspicious Reason-
ing, a sixth truth value suspiciously true (st) is introduced in addition to those already
occurring in the five-valued semantics. This truth value is assigned to atoms only deriv-
able by involving a contradiction in the program. At the same time, the truth value uf is
replaced by the slightly different truth value classically false (cf), with the aim to also
capture “propagation” on derived classical falsity.

As a result, we obtain solutions following both views through the definition of a
five-valued and a six-valued paraconsistent semantics for hybrid KBs, the latter imple-
menting Suspicious Reasoning. This requires the integration of quite different concepts
and assumptions w.r.t. paraconsistency developed independently for each of the two
base formalisms, e.g. Suspicious Reasoning has not been considered in DLs, while LP
semantics may sometimes be defined procedurally. In spite of these obstacles, we can
show that both of the resulting semantics enjoy a number of desirable properties.

— Firstly, both semantics are sound w.r.t. the three-valued semantics for consistent
hybrid KBs by [24]. In fact, the so-called 5- and 6-models corresponding to models
in [24] coincide in this case, so consistent hybrid KBs establish a link between our
two semantics.

— Secondly, the semantics assigned to a hybrid KB of which the program compo-
nent is empty is limited, in both cases, to only three truth values (t, f, and b),
which arguably leads to a stronger consequence relation than in common four-
valued paraconsistent DL semantics [32]. Still, we can show that, in this case, both
semantics coincide with the well-known paraconsistent DL semantics ALC4 by
[28] if we omit the truth value u (referred to as “removal of gaps”). Moreover, we
show that the six-valued semantics is faithful w.r.t. the paraconsistent semantics for
extended logic programs W F'SX,, [3] when classical negation is only applied to
unary atoms. Consequently, properties shown for these paraconsistent semantics for
the two base formalisms directly carry over to our approach, e.g. it implements the
Coherence Principle, which states that classical negation implies default negation.

— Thirdly, we present a sound and complete fixpoint algorithm, which extends the
alternating fixpoint construction defined for the three-valued approach in [24]. The
algorithm preserves the efficiency of the previous approach in that it is tractable
whenever consequences in the DL used for formalizing the ontology component
can be computed in polynomial time.

Finally, our approach and results can benefit existing implementations for hybrid
knowledge bases. In fact, the comparison between our two fixpoint computations and
that in [24] suggest an adaptation of the implementation of the latter, the Protégé plug-in
NoHR [21], to also consider paraconsistent reasoning based on our semantics.

168

References

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Alberti, M., Gomes, A.S., Gongalves, R., Leite, J., Slota, M.: Normative systems represented
as hybrid knowledge bases. In: Procs. of CLIMA XII. Springer (2011)

Alcantara, J., Damadsio, C.V., Pereira, L.M.: An encompassing framework for paraconsistent
logic programs. J. Applied Logic 3(1), 67-95 (2005)

Alferes, J.J., Damadsio, C.V., Pereira, L.M.: A logic programming system for nonmonotonic
reasoning. J. Autom. Reasoning 14(1), 93-147 (1995)

de Amo, S., Pais, M.S.: A paraconsistent logic programming approach for querying incon-
sistent databases. Int. J. Approx. Reasoning 46(2), 366-386 (2007)

Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent databases.
In: Procs of PODS. ACM Press (1999)

Blair, H.A., Subrahmanian, V.S.: Paraconsistent logic programming. Theor. Comput. Sci.
68(2), 135-154 (1989)

Calvanese, D., Kharlamov, E., Nutt, W., Zheleznyakov, D.: Evolution of DL-Lite knowledge
bases. In: Procs. of ISWC. Springer (2010)

Damasio, C.V., Pereira, L.M.: A survey of paraconsistent semantics for logic programs. In:
Reasoning with Actual and Potential Contradictions. Springer (1998)

Delgrande, J., Schaub, T., Tompits, H., Woltran, S.: A model-theoretic approach to belief
change in answer set programming. ACM TOCL 14(2), 14 (2013)

Eiter, T., lanni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set
programming with description logics for the semantic web. Artif. Intell. 172(12-13), 1495-
1539 (2008)

Eiter, T., Fink, M., Stepanova, D.: Computing repairs for inconsistent dl-programs over EL
ontologies. In: Procs. of JELIA. Springer (2014)

Eiter, T., Fink, M., Stepanova, D.: Towards practical deletion repair of inconsistent dl-
programs. In: Procs. of ECAI 10S Press (2014)

Fink, M.: Paraconsistent hybrid theories. In: Procs of KR. AAAI Press (2012)

Flouris, G., Manakanatas, D., Kondylakis, H., Plexousakis, D., Antoniou, G.: Ontology
change: classification and survey. Knowledge Eng. Review 23(2), 117-152 (2008)

Gelder, A.V., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic pro-
grams. J. ACM 38(3), 620-650 (1991)

Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Comput. 9(3/4), 365-386 (1991)

Haase, P., van Harmelen, F., Huang, Z., Stuckenschmidt, H., Sure, Y.: A framework for han-
dling inconsistency in changing ontologies. In: Procs. of ISWC. Springer (2005)

Horrocks, 1., Patel-Schneider, P.: A proposal for an OWL rules language. In: Procs of WWW.
ACM (2004)

Huang, S., Hao, J., Luo, D.: Incoherency problems in a combination of description logics
and rules. J. Applied Mathematics 2014 (2014)

Huang, S., Li, Q., Hitzler, P.: Paraconsistent semantics for hybrid MKNF knowledge bases.
In: Procs of RR. Springer (2011)

Ivanov, V., Knorr, M., Leite, J.: A query tool for ££ with non-monotonic rules. In: Procs. of
ISWC. Springer (2013)

Kaminski, T., Knorr, M., Leite, J.: Efficient paraconsistent reasoning with ontologies and
rules. In: Procs. of IICAL AAAI press (2015), to appear

Kharlamov, E., Zheleznyakov, D., Calvanese, D.: Capturing model-based ontology evolution
at the instance level: The case of dl-lite. Journal of Computer and System Sciences 79(6),
835-872 (2013)

169

24.

25.

26.
27.

28.

29.
30.

31.

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Knorr, M., Alferes, J.J., Hitzler, P.: Local closed world reasoning with description logics
under the well-founded semantics. Artif. Intell. 175(9-10), 1528-1554 (2011)

Krotzsch, M., Maier, F., Krisnadhi, A., Hitzler, P.: A better uncle for OWL: nominal schemas
for integrating rules and ontologies. In: Procs. of WWW. ACM (2011)

Leite, J.: Evolving Knowledge Bases. IOS Press (2003)

Ma, Y., Hitzler, P, Lin, Z.: Algorithms for paraconsistent reasoning with OWL. In: Procs. of
ESWC. Springer (2007)

Maier, F.,, Ma, Y., Hitzler, P.: Paraconsistent OWL and related logics. Semantic Web 4(4),
395-427 (2013)

Motik, B., Rosati, R.: Reconciling description logics and rules. J. ACM 57(5) (2010)
Osorio, M., Cuevas, V.: Updates in answer set programming: An approach based on basic
structural properties. TPLP 7(4), 451-479 (2007)

Patel-Schneider, P.: A four-valued semantics for terminological logics. Artif. Intell. 38(3),
319-351 (1989)

Priest, G.: The logic of paradox. Journal of Philosophical logic 8(1), 219-241 (1979)
Sakama, C.: Extended well-founded semantics for paraconsistent logic programs. In: Procs.
of FGCS. I0S Press (1992)

Sakama, C., Inoue, K.: Paraconsistent stable semantics for extended disjunctive programs. J.
Log. Comput. 5(3), 265-285 (1995)

Slota, M., Leite, J.: Robust equivalence models for semantic updates of answer-set programs.
In: Procs. of KR. AAAI Press (2012)

Slota, M., Leite, J.: A unifying perspective on knowledge updates. In: Procs. of JELIA.
Springer (2012)

Slota, M., Leite, J.: The rise and fall of semantic rule updates based on se-models. TPLP
14(6), 869-907 (2014)

Slota, M., Leite, J., Swift, T.: Splitting and updating hybrid knowledge bases. TPLP 11(4-5),
801-819 (2011)

Straccia, U.: A sequent calculus for reasoning in four-valued description logics. In: Procs. of
TABLEAUX. Springer (1997)

Zhang, X., Lin, Z., Wang, K.: Towards a paradoxical description logic for the semantic web.
In: Procs. of FoIKS. Springer (2010)

Zhang, X., Xiao, G., Lin, Z.: A tableau algorithm for handling inconsistency in OWL. In:
Procs. of ESWC. Springer (2009)

Zhou, L., Huang, H., Qi, G., Ma, Y., Huang, Z., Qu, Y.: Paraconsistent query answering over
DL-Lite ontologies. Web Intelligence and Agent Systems 10(1), 19-31 (2012)

170

Advancing ELK: Not Only Performance Matters

Yevgeny Kazakov and Pavel Klinov

The University of Ulm, Germany
{yevgeny.kazakov, pavel . klinov } @uni-ulm.de

Abstract. This paper reports on the recent development of ELK, a consequence-
based reasoner for £ ﬁi ontologies. It covers novel reasoning techniques which
aim at improving efficiency and providing foundation for new reasoning services.
On the former front we present a simple optimization for handling of role com-
position axioms, such as transitivity, which substantially reduces the number of
rule applications. For the latter, we describe a new rule application strategy that
takes advantage of concept definitions to avoid many redundant inferences with-
out making rules dependent on derived conclusions. This improvement is not vis-
ible to the end user but considerably simplifies implementation for incremental
reasoning and proof generation. We also present a rewriting of low-level infer-
ences used by ELK to higher-level proofs that can be defined in the standard DL
syntax, and thus be used for automatic verification of reasoning results or (vi-
sual) ontology debugging. We demonstrate the latter capability using a new ELK
Protégé plugin.

1 Introduction

ELK is an ontology reasoner designed for top classification performance on OWL EL
ontologies [1]. Its characteristic features are consequence-based calculus, highly par-
allelizable reasoning, and aggressive optimizations to reduce the number of derived
axioms sufficient for classification (deriving all subsumptions between concept names).

Sheer performance has been the sole goal for the first few versions of ELK and
it enabled it to become the reasoner of choice in biomedical circles where large £L£
ontologies are built to manage scientific terminologies [2-7]. After that ELK started
to evolve towards providing additional reasoning-related services, such as incremental
classification [8] and proof tracing [9]. It turned out that some traits of ELK’s classi-
fication procedure, in particular, the non-deterministic saturation, can complicate the
development or weaken the guarantees of such extra services. For example, the compo-
sition/decomposition optimization (cf. [1]) has to be off when incrementally retracting
inferences [8]. Also, the proof tracing method guarantees only that all proofs performed
by ELK will be generated, not all proofs supported by the calculus [9]. This, in partic-
ular, means that one cannot in general obtain all justifications [10] from proofs.

In this paper we describe the steps towards adapting the main reasoning procedure
to rectify this sort of issues without major performance setbacks. On the performance
front we show a technique to reduce the number of inferences on roles. We also present
arewriting of the low-level traced inferences into higher-level proof-based explanations
which could be shown to the user or verified using automated reasoning tools. Due to
the space constraints, some results are deferred to the technical report [11].

171

+ CC D1 CC Do
tr= v =

E"C;C E CC DN Dy
E- CC3RD DC L
E

cCT L CC L
ec S0 pcpeo p CC3RD DCE

S CEE 3 CC3RE

_ C C Dy Dy .
En _— Cz’—l E HRZCZ (1 S 1 S k, k Z O)

. C
CcCCDy CCD, Eo Co CIR.Cn Ry R.CRecO

Fig. 1. Basic inference rules for reasoning in ££7

2 Consequence-Based Reasoning in £ Eir

We first describe ELK’s consequence-based procedure for £ EI reasoning. Most the-
oretical results, such as completeness, redundancy elimination, and goal-directed rule
application, are minor variations of [1] but the rules for dealing with role chain axioms
without binarization and rules for reasoning with reflexive roles are new.

2.1 The Description Logic £ Li

The syntax of £ EI is defined using a vocabulary consisting of countably infinite sets
of (atomic) roles and atomic concepts. EEI concepts are defined using the grammar
Ca=A|T]|L]|CinCy| 3R.C, where A is an atomic concept, R a role, and
Cu € C S,CI role chains are defined using the grammar P ::= € | R-p, where € is
the empty role chain, R arole and p € P. We usually write role chains as Ry- Ry - - R,
instead of Ry-(Ry - -+ (R,-€)). An ELT axiom is either a concept inclusion C; C Cy
for Cy, Cy € Cor a role inclusion p C R for p € P and a role R. We regard the
concept equivalence C; = C5 as an abbreviation for two concept inclusions Cy T Co
and Cy C C7. Wealso call e C R a role reflexivity axiom. An £ EI ontology O is a finite
set of EL£T axioms. Semantics of EL£7 is defined in the usual way (e is interpreted as
identity). A concept C is subsumed by D w.r.t. O if O = C C D. In this case, we call
C C D an entailed subsumption (w.r.t. O). The ontology classification task requires to
compute all entailed subsumptions between atomic concepts occurring in O.

2.2 Inference Rules

Classification of &CI ontologies is usually performed by applying rules that derive
logical consequences of axioms. Figure 1 lists the £ Lir-rules that are similar to those
usually considered in the literature [12, 13]. The premises of the rules are written above
the horizontal line, the conclusions below, and the axioms in the ontology (a.k.a. side
conditions) that trigger rule applications after the colon. Note that rule E, can be used
with & = 0, in which case it has no premises and uses the reflexivity axiome C R € O.

Example 1. Consider the é'ﬁj ontology O = {AC3R.B,BC 3S.C,R-SSHCV,
e C H}. Then it is possible to derive A C 3V.C using the rules in Figure 1 as follows:

172

AC A by Eo(), ey

AC3RB byEC(AC A): AC3R.BeO, 2)
BCB by EoQ), 3)
BC3S.C byEc(BCB): BC35.C €0,)
CC3HC byEs():eC HeO, 5)

AC3IV.C byEo(AC3R.B,BC3S.C,CC3IHC): RSHCVeO. (6

Formally, a derivation for €L ontology O (using the rules in Figure 1) is a sequence
of & Ei“ axioms d = {q; | ¢ > 1} such that each «; with ¢ > 0 is obtained from axioms
{a; | 1 < j < i} using one of the rules in Figure 1 and axioms in O as side conditions.
The size |d| of d is the number of axioms in d. For example, the sequence of axioms
(1)—(6) in Example 1 forms a derivation, in which every axiom is obtained from the
previous axioms by the rules in Figure 1 as indicated next to the axioms.

The rules in Figure 1 are simple to understand but not very efficient to implement.
The problem is caused by rule E,, which may produce many conclusions for ontologies
with deep role hierarchies. For example, consider O = {R;_1 C R; |1 < j<m} U
{C;-1 C3Ry.C;, 3R,.D; C D; 1 |1 <i<n}U{C, C D,}. Then one can only
derive Cy C Dy by the rules in Figure 1 by deriving quadratically-many intermediate
axioms C;_1 C HRJCl by Eo using Rj_l C Rj cO01l<i<nl1< 7 < m).
Therefore, ELK implements optimized rules listed in Figure 2 that help avoiding this
problem by deriving subsumptions on role (chains) separately [1]. To formulate these
rules, we have slightly extended the syntax of £ £i. First, we can derive role chains on
the right-hand side of role inclusions: p; = p2 (Z |= p1 C pao if p¥ C pd). Second, we
allow role chains to occur in existential restrictions: 3(R-p).C' is rewritten to AR.C' if
p = ¢, or to 3R.9p.C otherwise (whenever we write 3p.C we assume that p # €). The
extended € ,CI axioms can be used in derivations, but not in the ontology O.

Example 2. Below is the derivation for A C 3V.C for the ontology O in Example 1
using the rules in Figure 2:

ACA by Co0),)
AC3R.B byCc(ACA):ACIRBeO, ®)
RCR by Ro(), ©
BCB by Co0), (10)
BC35.C byCc(BLE B): BCL3S.C €O, (11)
SCS by Ro(), (12)
ccc by Co(), 13)
eCe by Ro(), (14)
eC H byRc(eEe): e EH €O, (15)
SCS-H by R (S C S,e C H), (16)

AC I(R-S-H).C byCo(ACIR.B,RC R,BC3S.C,SC S-H), (17)

173

eER pmEp

Ry —— Re
*pCop ' P CRop
p1 & p2 prER € po
R-2L=2. ,,CRcO Re FL="" =172
= P CR Pz = p1 E Rp2
c c, CE3pD DCL
‘cCcco - CC L
CCD eCR
C s == -~ ="="7"
TCoCT = CC3RD
cCcCD CC3p.D pCR DCE
:DCFE = = =
CcocpPEEEO Cs CC3RE
c- CC DM Dy C CCd;.D pprC R DC3p:.E p2Cp
"CCD CCDs ° CC3I(Rp).E
ct CED CC D,
o CcCDiND,

Fig. 2. Optimized inference rules for reasoning in £ EI implemented in ELK

R-S-HC RS-H by Ro0). (18)
RS-HCV by Re(R-S-H C R-S-H): RS-HCV €0, (19)
AC3Ive by C3(A C I(R-S-H).C,R-S-HCV,CCC). (20)

As can be seen from Examples 1 and 2, derivations using the rules in Figure 2 can
be more difficult to understand because they use relatively complex rules such as Ry
and C, and manipulate with extended ££™ axioms such as A C 3(R-S-H).C and
S C S-H, the last of which is not even expressible in ££7. Fortunately, it is always
possible to rewrite any derivation by the rules in Figure 2 into the one by the rules in
Figure 1 using a simple recursive procedure (with an unavoidable quadratic blowup):

Theorem 1. Let O be an £ EI ontology, d a derivation by the rules in Figure 2 for O,
and F C G € d an (ordinary) SEI axiom. Then one can construct a derivation e by
the rules in Figure I for O with F C G € e such that |e| = O(||d|?).

The proof of Theorem 1 can be found in the technical report [11], which also con-
tains an overview of the Protégé plug-in for displaying proofs based on this result.

2.3 Composed Conclusions, Redundancy and Completeness

From now on, we focus in the rules in Figure 2, so when we talk about axioms derived
by these rules, we mean extended EEI axioms. It is easy to see that the rules in Fig-
ure 2 are sound, that is, the conclusions of the rules are logical consequences of the
premises and the side conditions, if there are any. Therefore, every derivation contains
only axioms entailed by the ontology. It turns out that the converse property also holds:

Theorem 2. Let O be an £ Eir ontology and F C G an £ EI concept inclusion such
that O = F C G. Then there exists a derivation d using the rules in Figure 2 such that
either FC GedorFC 1 ed.

174

Similarly to existing results [12, 1], Theorem 2 is proved by constructing a canonical
model using the set of all derivable axioms. One can actually prove a stronger version
of this theorem, namely that every entailed subsumption is derivable by an optimized
derivation—a derivation which does not use a certain kind of redundant inferences [11].

Definition 1. We say that an axiom « in a derivation d is composed if can be obtained
by rules C%’, C§ or C3 from the previous axioms. An application of a rule in Figure 2
to premises in d is redundant if it is an application by rule C in which the premise is
composed, by rule C3 in which the first premise is composed, or by rule Cy in which
the first or the third premise is composed. The derivation d is optimized if every axiom
« in d is obtained from the previous axioms using a non-redundant rule application.

Example 3. Consider the ontology O = {A T 3R.B, BC C, C C D}. Then the fol-
lowing derivation using the rules in Figure 2 is possible:

ACA by Co0), (2D
AC3R.B byCc(AC A): AC3R.BeO, (22)
BLC B by Co0), (23)
BCC byCc(BEB): BEC €O, (24)
BCD byCc(BEC): CCDeO, (25)
RCR by R0, (26)
(+) AC3IRC byC3(AC3IR.B,RC R,BC (), 27
cCCC by Co(), (28)
CCD byCc(CCC):CEDEeO, (29)
(+) AC3R.D by C3(ACJR.C,RC R,C C D). (30)

In this derivation, axioms (27) and (30) (labeled with +) are composed because they
were obtained by rule C3. Hence the inference that has produced (30) is redundant
because it is made by an application of C3 to a composed first premise (27). Still,
the derivation (21)—(30) is optimized because (30) can be obtained from the previous
axioms by another (non-redundant) application of C3 to a non-composed premise (22):

(+) AC3RD by C3(AC 3R.B,RC R, BC D). 31)

In other words, since a derivation is a sequence of axioms and not a sequence of rule
applications, it matters by which inferences axioms can be obtained from the previous
axioms. Note that if (25) is removed from the derivation, then the inference (31) is no
longer possible and the derivation becomes non-optimized.

In practice, the optimization above means that when applying the rules in Figure 2
to check entailment of concept inclusion, it is not necessary to apply CH to premises
derived by CH or apply C3 and C, to premises derived by Cg [1].

2.4 The Subformula Property and Goal-Directed Rule Application

So far Theorem 2 cannot be used for effectively checking if a given subsumption C' C
D is entailed by the ontology O since there are infinitely many axioms that can be

175

derived by the rules in Figure 2—already Cy can produce infinitely many conclusions.
It turns out, it is sufficient to derive only axioms of the form p; T po, C; T Cs, and
C7 C dp2.C5 such that all concepts C; and role chains p; (¢ = 1, 2) occur (possibly as
sub-expressions) either in the ontology O or in the given subsumption F' C G tested for
entailment [1]. In other words, if O |= F C G'then F' = G or F' C | is derivable by the
rules in Figure 2 without creating new concepts or role chains. We refer to this property
as subformula property. The subformula property implies that checking entailment O =
F C G can be done in polynomial time since there are at most polynomially-many
different axioms of the above forms, and one can compute a derivation d containing all
such axioms by repeatedly applying the rules in Figure 2.

The rules, however, can be restricted even further. Specifically, an axiom C; T Cs
needs to be derived in d only if C; = F for the tested subsumption F' C G or if some
non-composed axiom of the form C C Jp.C is already derived in d. Indeed, it is easy
to observe from the rules in Figure 2 that an axiom C; T C5 can be used in a rule
application only if this rule derives a concept inclusion axiom with the same left-hand
side C'; or it uses another non-composed axiom of the form C' = Jp.C; (rules C3
and C,). Similarly, an axiom p; T ps needs to be derived only if p; = € or if some
other non-composed axiom of the form C' C dJp;.D is already derived. We call this
optimization goal-directed rule application.

Example 4. Consider the ontology O = {AC 3R.B, AC3R.C, BC C, C C B}.
Suppose we want to check whether O = A T B. Then the following goal-directed
non-redundant rule applications can be performed:

AC A by Co(), (32)
AC3RB by CC(AC A): ACIR.B€ O, (33)
BEB by Ro0), (34)
BCC byRc(BC B): BCC €O, (35)
RCR by Ro0), (36)
(+) AC3R.C by C3(AC3IR.B,RC R,BLC O), 37)
(+) AC3R.C by CC(AC A) : AC IR.C € O. (38)

Note that deriving axioms with the left-hand side C' (e.g., C T C by rule Cp) is not
necessary since the axiom A T JR.C is composed (and thus, e.g., cannot be used in
rule C3 like axiom A C 3R.B). Since no further rules need to be applied and the axiom
A C B is not derived, we can conclude that O }~= A C B. Note that if we swap (33)
with (38), then the axiom A = 3R.C would not be composed and we would need to
derive subsumptions C' = C' and C' C B by rules Cgy and Cr-. Thus the set of derived
axioms depends on the order in which the rules are applied.

Note that if a derivation d contains C = D or p; E ps then C C C or p; T p; must
be derived in d respectively by Cy and Ry before that. Therefore, to save space, from
now on we skip applications of the rules Cy and Rg (e.g., like (32), (34), and (36) in
Example 4). We will also skip application of the rules C— and R producing axioms in
the ontology from the conclusions of Cgy and Ry (e.g., like (33) and (35) in Example 4).

176

3 Avoiding Duplicate Role Compositions

In this section, we present an optimization, using which one can avoid some duplicate
conclusions of rule C,,. Intuitively, this optimization is designed to deal more efficiently
with specific role chain axioms such as transitivity 77" C T'. It is closely related to a
similar optimization for role chain axioms presented previously for a fragment of £ EI
[13]. To illustrate the problem addressed, consider the following example.

Example 5. Consider the ontology O = {AC 3L.B, BC 3P.C, C C3P.D, L-P C
L, P-P C P}. The roles L and P can be thought of as expressing the ‘located-in’ and
‘part-of” relations. So the last axiom of O, in particular, expresses that if « is located
in y and y is a part of z then x is located in z. Let us try to determine whether O =
A C B using goal-direct application of rules (skipping applications of Cg and Rg, and
applications of C-, R producing axioms in O as noted before):

AC3(L-P).C byCo(AC3IL.B,LC L, BC3IP.C,PLCP), (39)
AC3(L-P).D byCo(AC I(L-P).C,L-PCL,CC3IP.D,PCP), (40)
BC3(P-P).D byCu(BC3IP.C,PCP,CC3P.D,PCP), (41)
AC3(L-P).D byCo(AC3L.B,LC L, BC3(P-P).D,P-PCP). (42

Note that the axiom A C 3(L-P).D was derived two times by Cp in (40) and (42).
Intuitively, this is because the role chain inclusion L-P-P C L-P can be proved in two
ways: either as (L-P)-P C L-Pusing L-P C Loras L-(P-P) C L-Pusing P-P C P.

In general, suppose that we have a derivation where some axiom is derived by C,:
CC3(Rp)F byC(CCL3ISD,SCR,DCIT-u).F,(T-u)Cp. 43)

Let us try to determine when the same conclusion can be derived differently. Suppose
that & # e. Then D T 3(T-p).F can be only derived by Co:

DCH(T-u).F byCo(DC I7.E,7C T, EC In.F,nC p. (44)

Now suppose that we also have S © S, S‘T' C R and 7 C p in the derivation. Then
C C 3(R-p).F can be derived as follows:

CC3ST).E byCo(CC3IS.D,SCS,DCINE rCT), (45)
CC3(Rp).F byCo(CCI(ST).ESTCR ECINF,nCp). (46)

Note that when we replace the rule application (43) with the two rule applications
(45) and (46), the third premises D C 37.F and £ C Jn.F used in these applications
appear in the derivation before the third premise D T 3(T-u).F of (43) since the
latter was obtained from the former by (44). Therefore, if we apply this transformation
repeatedly to all inferences by C,, it will always terminate.

To summarize, we can always avoid applying C, with S C R and T-p C p as
the second and the last premises if ;1 # € and we can derive S-T" = R (S C S is
always derivable by Rg) and 7 C p for every derivable 7 C u. Due to the subformula

177

property, we can precompute all subsumptions on role chains occurring in the ontology
and compute all pairs (p1 C R, pa C p) of such role subsumptions with p1, p2 and R-p
occurring in the ontology, excluding the pairs (S C R,T-u C p) for which the above
condition holds. Only the remaining pairs of subsumptions should then be used in C,.

Example 6. Continuing Example 5, we can show that the above conditions hold for the
pair (SC R T-uCp) = (LCL,P-PC P). Indeed, ST C R = L-P C L can
be derived, and since 4 = p = P, 7 C p is derivable if 7 C p is. Thus, the pair
(LC L, P-P C P) should not be used in C,, and thus inference (42) is not necessary.
One can show that the pair (P C P, P-P C P) should not be used in C,, as well.

As mentioned, there is a close relation of the optimization above with a similar
optimization for rules in Figure 1 [13]. The main idea is to identify the role chain axioms
p C R for which rule E, can be applied in a left-linear way, that is, only if all premises
starting from the second one are derived by rules other than E, with k£ > 2. This is the
case, e.g., for both axioms L-P T L and P-P C P from ontology O in Example 5.
For example, rule E; using L-P T L € O would be applied for A C 3L.B and
B C 3P.C (derived by E-), but would not be applied for A C 3L.B and B C 3P.D
if B C dP.D is derived b}_/ E, from B C dP.C and C C 3P.D using P-P C P € O.
The reason is that the same conclusion A C JL.D can be derived in a left-linear way
from A C 3L.C (derived by E; using L-P = L € O)and C' C 3P.D (derived by E).
The main difference between the two optimizations, is that, due to the differences in the
rules in Figure 1 and Figure 2, instead of classifying which stated role chain axioms
can be used in a left-linear way, we determine which derived role chain axioms should
be ‘concatenated’ in rule C,. The latter is algorithmically easier to determine using the
condition formulated above.

4 Deterministic Saturation

Recall from Example 4 that the set of axioms obtained by applying the rules in a goal-
directed way may depend on the order in which the rules are applied. Although this
side effect has no impact on reasoning results, it introduces some difficulties when ex-
tending ELK reasoning services beyond checking of logical entailment. Specifically,
the procedures for incremental reasoning [8] and proof generation [9] implemented in
ELK, require repeating some rule applications performed in the derivation, and if the
rules are applied in a different order than originally, the procedures may result in incor-
rect results. In this section we describe a modification of our rule application procedure
for which the derived axioms do not depend on the order of rule application.

Recall from Section 2.3 that to determine whether a rule such as R3 should be
applied to some axioms in the derivation, i.e., it is not redundant, one has to check which
of these axioms are composed, i.e., can be derived by certain rules from the previous
axioms in the derivation. This property ensures that only necessary rules are applied, but
it can make rule application dependent on when (i.e, after which axioms) the premises
were derived. Instead, we may slightly relax this requirement and decide whether an
axiom is composed or not only based on the rules by which it was actually derived,
which would make rule applications not to depend on other axioms in the derivation.

178

CED'AEDEO

-CEA ,_ +
c A=DeoO ¢t GEa

=CcCD’

Fig. 3. The new inference rules for concept definitions

For example, axiom A C JR.C in Example 4 was derived by both rules C3 and Cr-.
We would then not apply C3 to the first conclusion of a ‘composition’ inference by Ca,
but apply it to the second conclusion of ‘non-composition’ inference by Cr-. Clearly,
the advantage here is that it does not matter which of the two inferences was made
first. It may seem that axioms are rarely derived by multiple rules, so the relaxed rule
application strategy might not result in too many unnecessary inferences. The following
example illustrates that this may not be really the case in practice.

Example 7. Consider the ontology O = {A T BM3R.A, C = 3R.B}. Recall, that
concept equivalence C' = 3R. B represents two axioms C C dR.Band 3R.B C C. To
test O = A C C, we apply the rules in Figure 2 in a goal-directed way:

ACB by C5(A C BM3R.A), 47)
AC3RA by C5(A C BM3R.A), (48)
(+) AC3R.B by C3(AC 3R.A,RC R, AC B), (49)
ACC byCc(AC3R.B): IRBCC €O, (50)
AC3R.B by CC(AC C) : C C3R.B. 51)

Note that axiom A = JR.B is derived by rules C3 and CE, so we would need to
consider the second conclusion (51) for applications of C3. Note that the second rule
application is a direct result of the equivalence axiom C' = 3R.B, which was used to
replace the subsumer 3R.B in (49) with C' and back with 3R.B. So it is actually not
possible to have application (51) before (49).

The scenario illustrated in Example 7 is rather common: whenever an axiom C' C D
is derived and D occurs in some concept equivalence in the ontology, the same axiom
C C D will be derived again. To avoid such duplicate inferences, we introduce new
rules in Figure 3 to deal specifically with concept definitions—concept equivalences
A = D where A is a (defined) atomic concept. Most concept equivalences in existing
ontologies are of this form. We assume that all concept equivalences in O are concept
definitions and each atomic concept A is defined in at most one of them; remaining con-
cept equivalences can be always replaced with concept inclusions. Finally, we extend
Definition 1 by allowing composed axioms to be obtained by rule C; and redundant
rule applications to include applications by rule CZ in which the premise is composed.
Note that if the premise of CZ is composed, then it can only be obtained by CE us-
ing the same concept definition A = D, and hence the conclusion of this rule must be
already derived.

Example 8. Continuing Example 7, with the new rules in Figure 3 we will have just rule
application (52) instead of (50)—(51); the application of rule CZ to (52) is redundant.

(+) ACC by CE(AC3R.B): C=3R.B€O. (52)

179

Table 1. Summary information for the test ontologies (numbers of the different kinds of axioms)

Ontology [CED[C=DIRCS[R-RCR[R-R:C S
EL-GALEN 25,563[9,968] 958 58 0
GALEN7 27.820| 15.270| 1000 0 385
GALENS 53.449/113,622| 1024 0 385
SNOMED CT (Jan 2014)(|229,330| 69,908 11 0 I
ANATOMY 17,551| 21,831 4 3 2

S Preliminary Experimental Evaluation

In this section we present the preliminary results of empirical evaluation of the two
new reasoning techniques described in Sections 3 and 4: the role composition opti-
mization and the deterministic saturation using new rules for concept definitions. For
both experiments we use a set of the well-known biomedical ontologies:! the July 2014
version of SNOMED CT,? three versions of OpenGALEN3 (EL-GALEN, GALEN?7,
and GALENS), and ANATOMY (an experimental version of SNOMED CT which uses
role chain axioms to model the body structure). These ontologies have been frequently
used in the past for evaluation of £L reasoners [14, 15, 1]. The summary information
about these ontologies is presented in Table 1.

For experiments we used a development version of ELK 0.5. The experimental setup
is the same for all experiments: each ontology is classified 20 times, 10 warm-up runs
to exclude the effects of JIT compilation and 10 measured runs, for which the results
are averaged. The combined loading + classification wall clock time (in ms.) is used as
the main performance metric. We used a PC with Intel Core 15-2520M 2.50GHz CPU,
Java 1.6 and 4GB RAM available to JVM.

The first experiment evaluates effectiveness of the role composition optimization
described in Section 3. All ontologies (except for SNOMED CT in which the only sub-
role chain axiom has no effect) are classified with the optimization being turned on and
off. The results are shown in Table 2. It can be seen that in most cases the optimization
considerably reduces the number of inferences as well the number of derived subsump-
tions (many subsumptions are derived by several inferences). The difference translates
into time savings. The ANATOMY ontology stands out as the case where the optimiza-
tion is critically important since it cuts down the number of inferences by rule C, by
nearly an order of magnitude.

The aim of the the second experiment is to evaluate the effectiveness of the deter-
ministic saturation optimization described in Section 4. We compare the classification
time and the number of derived axioms in three cases: a) with the ELK’ current non-
deterministic saturation [1], b) with deterministic saturation using the rules in Figure 2,
and c) with deterministic saturation using the additional rules for concept definitions
(see Figure 3). The results are shown in Table 3.

"Unless specified otherwise, the ontologies can be downloaded from the ELK project page
elk.semanticweb.org

http://www.ihtsdo.org/licensing/

Shttp://www.opengalen.org/sources/sources.html

180

Table 2. Evaluation of the role composition optimization from Section 3

Ontology Classification time Inferences Derived subsumptions
Optimization|| On | Off On | Off On | Off

EL-GALEN 964 1,039| 2,080,194 2,207,823| 1,485,247| 1,550,695
GALEN7 1,632 1,998 5,707,082 7,001,796| 2,787,261| 2,952,952
GALENS 15,587 16,981|40,239,327| 49,719,156(19,377,172|20,136,178
ANATOMY || 8,957 27,766|45,466,892(176,130,924| 7,105,923|10,223,484

Table 3. Evaluation of deterministic saturation (see Section 3). The shortcuts “non-det”, “det”,
and “det+defn” stand for non-deterministic saturation, unoptimized deterministic saturation, de-
terministic saturation with the new optimized rules for handling of concept definitions.

Ontology Classification time Inferences Derived subsumptions
non-det[det [det+defn non-det[det [det+defn non-det[det [det+defn
EL-GALEN 959| 1,513 1,032] 2.1M| 4.2M 23M| 1.5M| 2.7M 1.9M
GALEN7 1,984 3,408| 2,699 5.7M|11.6M 99M| 2.8M| 5.3M 4.7
GALENS 16,750|27,339| 19,866| 40.2M|93.7M| 65.3M| 19.4M|37.2M| 28.4M
SNOMED CT|| 14,441|21,791| 15,431| 25.5M|54.1M| 31.2M| 17.1M|30.3M| 23.6M
ANATOMY 9,183|15,546| 9,875| 45.5M|73.0M| 47.2M| 7.IM|12.1M 8.3M

One can see that deterministic saturation without further optimizations is signifi-
cantly slower and often makes nearly twice as many inferences as non-deterministic
saturation. This is largely because many axioms are derived by multiple inferences due
to equivalence axioms (as illustrated in Example 3). The special rules to deal with con-
cept definitions reduce such redundant derivations and improve performance so that it
is close to that of non-deterministic saturation. Still in some cases, e.g., for GALEN7
and GALENS, the difference between non-deterministic and optimized deterministic
strategies is visible and it remains our goal to investigate how it can be reduced even
further.

6 Summary

The paper presented several recent developments in ELK which range from novel rea-
soning optimizations, such as efficient handling of role chain axioms, to modifications
aimed at supporting additional reasoning services, such as proof-based explanations.
Our experiments show that the latter changes may result in minor performance setbacks,
and it remains our future goal to investigate how to avoid even such minor performance
compromises.

References

1. Kazakov, Y., Krotzsch, M., Simancik, F.: The incredible ELK: From polynomial procedures
to efficient reasoning with £ L ontologies. J. of Automated Reasoning 53(1) (2014) 1-61

2. Harris, M.A., Lock, A., Biihler, J., Oliver, S.G., Wood, V.: FYPO: the fission yeast phenotype
ontology. Bioinformatics 29(13) (2013) 1671-1678

181

10.

11.

12.

13.

15.

Hoehndorf, R., Dumontier, M., Gkoutos, G.V.: Identifying aberrant pathways through inte-
grated analysis of knowledge in pharmacogenomics. Bioinformatics 28(16) (2012) 2169-
2175

Hoehndorf, R., Harris, M.A., Herre, H., Rustici, G., Gkoutos, G.V.: Semantic integration of
physiology phenotypes with an application to the cellular phenotype ontology. Bioinformat-
ics 28(13) (2012) 1783-1789

Jupp, S., Stevens, R., Hoehndorf, R.: Logical gene ontology annotations (GOAL): exploring
gene ontology annotations with OWL. J. of Biomedical Semantics 3(Suppl 1)(S3) (2012)
1-16

Osumi-Sutherland, D., Reeve, S., Mungall, C.J., Neuhaus, F., Ruttenberg, A., Jefferis,
G.S.X.E., Armstrong, J.D.: A strategy for building neuroanatomy ontologies. Bioinformatics
28(9) (2012) 1262-1269

The Gene Ontology Consortium: Gene ontology annotations and resources. Nucleic Acids
Res (2012)

Kazakov, Y., Klinov, P.: Incremental reasoning in OWL EL without bookkeeping. In: The
Semantic Web - ISWC 2013 - 12th International Semantic Web Conference, Sydney, NSW,
Australia, October 21-25, 2013, Proceedings, Part I. (2013) 232-247

Kazakov, Y., Klinov, P.: Goal-directed tracing of inferences in ££ ontologies. In: The
Semantic Web - ISWC 2014 - 13th International Semantic Web Conference, Riva del Garda,
Italy, October 19-23, 2014. Proceedings, Part II. (2014) 196-211

Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL DL
entailments. In Aberer, K., Choi, K.S., Noy, N., Allemang, D., Lee, K.I., Nixon, L., Golbeck,
J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P., eds.: Proc. 6th
Int. Semantic Web Conf. ISWC’07). Volume 4825 of LNCS., Springer (2007) 267-280
Kazakov, Y., Klinov, P.: Advancing ELK: Not only perormance matters. Technical report,
University of Ulm (2015) available from http://http://elk.semanticweb.org/
publications/elk—-advancing-trdl-2015.pdf.

Baader, F., Brandt, S., Lutz, C.: Pushing the £L envelope. In Kaelbling, L., Saffiotti, A., eds.:
Proc. 19th Int. Joint Conf. on Artificial Intelligence (IICAI’05), Professional Book Center
(2005) 364-369

Kazakov, Y., Krotzsch, M., Simancik, F.: Unchain my €L reasoner. In Rosati, R., Rudolph,
S., Zakharyaschev, M., eds.: Proc. 24th Int. Workshop on Description Logics (DL’ 11). Vol-
ume 745 of CEUR Workshop Proceedings., CEUR-WS.org (2011) 202-212

Baader, F,, Lutz, C., Suntisrivaraporn, B.: Efficient reasoning in ££7. In Parsia, B., Sattler,
U., Toman, D., eds.: Proc. 19th Int. Workshop on Description Logics (DL’06). Volume 189
of CEUR Workshop Proceedings., CEUR-WS.org (2006)

Lawley, M.J., Bousquet, C.: Fast classification in Protégé: Snorocket as an OWL 2 EL
reasoner. In: Proc. 6th Australasian Ontology Workshop (IAOA’10). (2010) 45-49

182

Nonmonotonic Nominal Schemas Revisited

Matthias Knorr

NOVA LINCS, Departamento de Informatica, Faculdade de Ciéncias e Tecnologia,
Universidade Nova de Lisboa

Abstract. Recently, a very general description logic (DL) that extends SROZQ
(the DL underlying OWL 2 DL) at the same time with nominal schemas and epis-
temic modal operators has been proposed, which encompasses some of the most
prominent monotonic and non-monotonic rule languages, including Datalog un-
der the answer set semantics. A decidable fragment is also presented, but the
restricted language does not fully cover all formalisms encompassed by the com-
plete language. In this paper, we aim to remedy that by studying an alternative set
of restrictions to achieve decidability, and we show that the existing embeddings
of the formalisms covered by the full language can be adjusted accordingly.

1 Introduction

Extending Description Logics (DLs) with modeling features admitting non-monotonic
reasoning has been frequently requested in many application domains (see, e.g., [14]
for semantic matchmaking on annotations at electronic online marketplaces). In fact,
the vast amount of work dedicated to the topic may serve as a witness in its own right.
DLs have been extended, for example, with defaults [2], with notions of circumscription
[4,33], and epistemic reasoning provided by the inclusion of modal' operators within
the language [8] or only in queries [29]. In addition, a plethora of approaches combine
DLs with (often non-monotonic) rules (see, e.g., [9,30,19] and references in their sec-
tions on related work). As these approaches are commonly of different expressivity and
based on quite advanced different formal grounds, a uniform overarching formalism
allowing the integration of possibly all the various modeling features is an extremely
complicated problem.

In [20], a very general DL language is introduced that extends the expressive DL
underlying OWL 2, SROZQ, with nominal schemas [24] and epistemic operators as
defined in [8] with the aim of integrating the W3C standards OWL [15] and (non-
monotonic) RIF [18] and their underlying formalisms, DLs and rule languages respec-
tively, thus contributing towards the goal of a unifying logic for the Semantic Web (as
foreseen in the well-known Semantic Web stack). The full language is in fact very ex-
pressive, capturing a variety of different formalisms, among them two based on MKNF
logics [27] that had been considered of different expressivity so far - MKNF DLs [8],
i.e., the epistemic extension of DLs, and Hybrid MKNF, one very expressive combi-
nation of DLs and non-monotonic rules. Though not the full language of the latter is

! In the remainder of the paper, we use the terms modal and epistemic operator interchangeably
to refer to the same notion.

183

considered, coverage of Answer Set Programming [11] is ensured, arguably the most
widely used non-monotonic reasoning rule formalism.

A decidable fragment of the full language is also considered in [20], which is
strongly related to the one presented in [8]. In fact, the restrictions are such that the
tableau algorithm presented in [8] can in principle be re-used. As it turns out, how-
ever, the decidable language does not encompass all the formalisms for which coverage
within the full language is shown. While this does not invalidate the approach as such, in
particular, if one views such a unifying formalism mainly as a conceptual underpinning,
it is certainly undesired if one rather wants to use it for modeling and reasoning.

In this paper, we aim to solve this problem, i.e., we consider a different set of re-
strictions, for which we show that reasoning is decidable and that, at the same time,
encompasses all the formalisms discussed in [20] with only minor adjustments to the
previously presented embeddings. The principal idea builds on the usage of nominals
and nominal schemas, which are necessarily present in the language by design anyway,
to limit the applicability of concept inclusions containing modal operators. As an addi-
tional result, we believe that the new restrictions are more succinct and that the resulting
adaptation of the procedure for verifying the existence of models becomes less compli-
cated. To further simplify notation, here we do not consider the full language presented
in [20], which is based on SROZQ, but rather a language based on ALC with only the
minimally necessary extensions and we term this language e ACLCOV (see Sect. 2 for a
detailed explanation on the name). As we can show, such language is already expressive
enough to cover the desired non-monotonic modeling features.

The remainder of the paper proceeds as follows. In Sect. 2, we recall the syntax and
semantics of the DL e ALCOV we consider here. We then introduce the new alterna-
tive conditions of so-called safe e ACCOV KBs in Sect. 3 and we subsequently show
that these do ensure decidability of reasoning, i.e., checking (MKNF-)satisfiability. In
Sect. 4, we show that, with minor adaptations, the applied changes do now permit
coverage of the discussed formalisms in [20] within the decidable fragment (of safe
eALCOVY KBs), before we conclude and discuss future work in Sect. 5.

2 Epistemic DLs

In this section, we recall the syntax and semantics of epistemic description logics (DLs)
from [20]. Here, we focus on a subset of the language considered in [20] to make the
presentation more concise and to ease the reading. Namely, we consider the epistemic
DL ALCK nr# [8], which is ALC enhanced with epistemic operators, extended by nom-
inals, nominal schemas [24], and the universal role. Nominal schemas represent vari-
able nominals that can only be bound to known individuals, and the universal role can
be represented using role hierarchies and negation on roles [23], but as we want to keep
the presentation simple, we leave this implicit. Since the name of the resulting language
ALCOVE nr £ (or even ALCHOV(—)K 5 for the implicit encoding of the universal
role) following standard and historic patterns would be quite cumbersome, we propose
using the name e ALCOV instead, which stands for epistemic ALCOV (including the
universal role). The term epistemic originates from the two epistemic/modal operators
K and A, where K is interpreted in terms of minimal knowledge, while A is interpreted

184

Table 1. Syntax and semantics of e ACCOV

Name Syntax |[Semantics

concept name A |ATCA

role name V [VTCcAxA

individual name a |afeA

variable z |Z(z)eA

top T |A

bottom T

nominal (schema) {t} Ha|la)s ~ tEMN)2Y

concept complement| —C' |A\ CETMN)Z

concept conjunction |C' 1 D CEMN)LE A DETMN),Z

concept disjunction |C' U D CEMN)LZ j pTMN).Z

existential restriction| IR.C' |{§ € A | Je with (§,¢) € REMN)Z and ¢ € CEMAN)ZY
universal restriction | VR.C' |{6 € A | (6,¢) € REMAN)Z implies e € CTMAN)-ZY
knowledge concept | KC' | ;¢4 cMN)Z

assumption concept | AC | cp CTMN)Z

universal role U |Ax A

knowledge role KV mJeM V(TMN),Z
assumption role AV ﬂje/\/ Vv (IMN), 2
concept assertion C(a) |a* € CEMAN)Z

role assertion V(a,b) (aI, bI) c V(E@TMN),Z

TBox axiom C C D|CETMN)LE C DEMN),Z
Interpretation Z; MKNF structure (Z, M, N'); variable assignment Z; A € N¢; C, D € C;
VeEeNgr, ReER;a,b€ Ni;x € Ny,andt € Ny U Ny.

as autoepistemic assumption and corresponds to —not, i.e., the classical negation of the
negation as failure operator not used in [27] instead of A.

We consider a signature X' = (N, N¢o, Ng, Nv) where Nj, No, Ny, and Ny are
pairwise disjoint and finite sets of individual names, concept names, role names, and
variables. In the following, we assume that 3’ has been fixed. We define concepts and
roles in e ACCOYV by the following grammar.

Ru=V|U|KV |AV
Cu=T|L|A|{i}|{z}|-C|CNC|CUC|IR.C|VR.C|KC|AC
where V € Ni, A € N¢, i € Ny, and x € Ny . The names of the individual concepts

and roles can be found in Table 1. Epistemic concepts are knowledge and assumption
concepts, while epistemic roles are knowledge and assumption roles.

As usual, a TBox axiom (or general concept inclusion (GCI)) is an expression C' =
D where C, D € C. An ABox axiom is of the form C(a) or V(a,b) where C € C,

185

V € Ng, and a,b € N;. An e ALCOV axiom is any ABox or TBox axiom, and an
eALCOY knowledge base (KB) is a finite set of e ALCOV axioms.

The semantics of e ALCOV as recalled from [20] is an adaptation from [24] and
[8]. As common, an interpretation T = (AT, -T) consists of a domain AT # () and a
function -Z that maps elements in N7, N¢, and Ng to elements, sets, and relations of
AT respectively. Additionally, nominal schemas require a variable assignment Z for
an interpretation Z, which is a function Z : Ny — A7 such that, for each v € Ny,
Z(v) = a’ for some a € Nj.

As common in MKNF-related semantics used to combine DLs with non-monotonic
reasoning (see [8,17,19,30]), specific restrictions on interpretations are introduced to
ensure that certain unintended logical consequences can be avoided (see, e.g., [30]).
Here, we adopt the standard name assumption from [20]. An interpretation Z (over X'
to which =~ is added) employs the standard name assumption if
(1) Ny extends Ny with a countably infinite set of individuals that cannot be used in

variable assignments, and AT = NT;

(2) foreachiin N}, L = i; and
(3) equality = is interpreted in Z as a congruence relation — that is, ~ is reflexive,

symmetric, transitive, and allows for the replacement of equals by equals [10].
The first condition fixes the (infinite) universe, but limits the application of variable
assignments to a finite subset, the second condition defines Z as a bijective function,
while the third ensures that we still can identify elements of the domain. As an immedi-
ate side-effect, the variable assignment is no longer tied to a specific interpretation and
we can simplify notation by using A without reference to a concrete interpretation.

Now, the first-order semantics is lifted to satisfaction in MKNF structures that
treat the modal operators w.r.t. sets of interpretations. An MKNF structure is a triple
(Z, M,N') where T is an interpretation, M and N are sets of interpretations, and
7 and all interpretations in M and N are defined over A. For any such (Z, M,)
and assignment Z, the function -(Z-M-N).Z is defined for arbitrary e ACCOV expres-
sions as shown in Table 1. (Z, M, N) and Z satisfy an e ACCOV axiom «, written
(Z, M, N), Z = q, if the corresponding condition in Table 1 holds. (Z, M, N') satis-
fies a, written (Z, M, N) & o, if (Z, M, N), Z |= « for all variable assignments Z. A
(non-empty) set of interpretations M satisfies o, written M |= a, if (Z, M, M) = «
holds for all Z € M, and M satisfies an e ALCOV knowledge base K B, written
M = KB, if M | « for all axioms o € K B. Note the small deviation of the se-
mantics of {¢} in Table 1 compared to that in [24], which is necessary to ensure that the
semantics works as intended under standard name assumption.

It can be verified that the two sets of interpretations are each used to interpret
one of the modal operators, but in the monotonic semantics above, they simply coin-
cide. This changes with the non-monotonic MKNF model defined in the usual fashion
[8,17,19,30]: M is fixed to interpret A, and supersets M’ of M are used to test whether
the knowledge derived from M (via K) is indeed minimal.

Definition 1. Given an e ALCOYV knowledge base K B, a (non-empty) set of interpre-
tations M is an MKNF model of KB if (1) M = KB, and (2) for each M’ with
McC M, T M M) KB for some I € M'. KB is MKNF-satisfiable if an

186

MKNF model of K B exists. An axiom « is MKNF-entailed by K B, written KB Fxk «,
if all MKNF models M of K B satisfy .

As noted in [8], since M = K B is defined w.r.t. (Z, M, M), the operators K and
A are interpreted in the same way, and so we can restrict instance checking K B =k
C(a) and subsumption KB Ex C C D to C and D without occurrences of the
operator A. Also, in absence of modal operators in the e ALCOV KB, there is a unique
MKNF model which simply contains all standard (first-order) models of KB as usual.

3 Reasoning in e ACLCOVY

In [20], reasoning in eSROZQ? is discussed following [8] for reasoning in ALC/K xF.
The problem with this approach is that it is undecidable in general, so, as in [8], restric-
tions are applied in [20] to regain decidability, which in certain cases prevent coverage
of the formalisms encompassed by the unrestricted language. To circumvent this, we
still rely on the same idea in principle, but we revise the applied restrictions to achieve
decidability making use of the gained expressiveness in e ALCOV. In the following,
we spell out the restrictions with some motivation right away, before we show that this
indeed yields a decidable procedure for checking MKNF-satisfiability.

3.1 Safe eALCOYV KBs

Following [8], the overall idea is to reduce reasoning in e ALCOYV to a number of rea-
soning tasks in non-modal ALCOV (again including U), for which each model of an
eALCOV KB is represented by means of an ALCOV KB. Formally, a set of interpre-
tations M is ALCOYV representable if there exists an ALCOV KB K By, such that
M = {Z | T satisfies K B4 }. Then, undecidability can be caused by three sources.
First, certain partially quantified expressions are not ALCQOYV representable (Theorem
4.1 in [8]), which is why we recall the notion of subjectively quantified KBs. For that
purpose, we define that an ALCOV expression S is subjective if each ALCOV subex-
pression in S lies in the scope of at least one modal operator.

Definition 2. An e ACCOY KB K B is subjectively quantified if each expression of the
formAR.C, VY R.C occurring in K B satisfies one of the conditions: (1) R is an ALCOV
role and C'is an ALCOYV concept, or (2) R and C' are both subjective and C' is of the
form KD, =KD, AD or ~AD.

There exists a slightly relaxed condition on subjectively quantified KBs [17], but for
our purposes the original one suffices.

Second, even if subjectively quantified, certain nested expressions can be problem-
atic, so we introduce (modally) flat concepts, that can be seen as a further restriction of
simple concepts in [8], which prohibit such nesting altogether. Formally, an e ALCOV
concept is flat if it does not contain any modal operator in scope of another, and an

2 In [20], the term SROZ QV(B®, X)K a7 is used, but, for the sake of readability and with a
slight abuse of notation, we follow our introduced naming scheme here.

187

e ALCOV KB K B is flat if each concept in it is flat. Thus, quantifier expressions of the
form (2) in Def. 2 are flat as long as D does not contain further modal operators.

Third, intuitively, we have to make sure that GCIs involving modal operators cannot
be used to derive an infinite number of true assertions (see also Theorem 4.10 in [8]).
Rather than introducing simple KBs as in [8,20], we build on nominals and nominal
schemas to introduce safe concepts.

Definition 3. Given a subjectively quantified, flat e ACCOY KB KB, an e ALCOV
concept C in K B is called safe if C' is of the form DM{t} for some guardt € N;UNy.

The idea is to use the nominal (schema) as a guard that restricts “applicability” of con-
cepts involving modal operators to individuals occurring in K B. This all combines in
the definition of safe e ALCOV KBs, for which we from now on consider two disjoint
subsets of the e ALCOYV TBox T of K B: T, the set of all axioms that contain no modal
operators, and I, the set of all axioms that contain at least one modal operator.

Definition 4. Let K B be an e ACCOYV KB that is subjectively quantified and flat. Then,
K B is safe if the following conditions are satisfied:
1. Foreach C T D € I, C is subjective and safe, D is safe for the same guard as C,
and no operator K occurs in 3 and ¥ restrictions in D;
2. There is no concept assertion in K B containing a subconcept of the form FIKR.KC.

Notably, due to K B also being subjectively quantified and flat, any C C D € I"in a
safe K B can be rewritten into one such that all subjective subconcepts in it are safe.
For example, the safe KB containing just the axiom

(K(CU3R.D)MNIKRKG)U-AFE)N{z} CVAS.AF N {x}
can be straightforwardly rewritten into
(K(CU3R.D)N{z}) N(FKRKGMN{z})) U (-mAEMN{z}) CVAS.AF N {z}.

In the following, we assume that any C' = D € [in a safe e ACCOV KB is already
rewritten this way, i.e., all subjective subconcepts in " are assumed safe.

Comparing to simple KBs (Def. 8 in [20]), intuitively, K B being flat covers condi-
tion 3. while 1. of Def. 4 covers to 1. and 2. there. Condition 2. in Def. 4 is not strictly
required for decidability (as the case can be handled by finitely many models up to re-
naming of individuals [8]), but it will simplify the subsequent material without affecting
coverage of related formalisms. These new conditions for safe KBs certainly have quite
a different flavor compared to simple KBs in [8,20], but we believe that they are over-
all simpler and more easy to grasp, and at the same time not jeopardizing coverage of
related formalisms. Of course, we still need to show that there is a decidable procedure
for reasoning with safe e ALCOV KBs.

3.2 Determining MKNF Models

We start by grounding a given safe e ACCOYV KB, i.e., we replace all occurring nominal
schemas with nominals in all possible ways in the usual manner. This yields an e ALCO
KB (again including U), which is trivially safe and obtained in finite time, though, in
general, of exponential size in terms of the input KB.

188

From now on, we follow the principal argument from [8] as used in [20], but with
some variations and simplifications due to our different restrictions and to some extent
inspired by the reasoning algorithms for the related Hybrid MKNF [30].

First, we will collect a set of modal atoms based on the occurrence of epistemic
concepts and roles in a given KB. In difference to [8], we only consider atoms over
individuals occurring in the given KB. In the following, we use M to denote either K
or A, and N to denote either M or =M, we assume @) € {3,V}, and we remind that
we consider that all subjective concepts in I" are safe. Given a safe e ACCO KB K B,
the set of modal atoms M A(K B) is defined inductively as follows:

(1) if MD M {a} for some a € Ny occurs in K B, then KD(a) € MA(KB);
(2) if MLD occurs (non-safe) in concept assertion C'(a), then KD(a) € M A(K B);
(3) if QMR.ND M {a} for some a € N occurs in K B, then KR(a,i), KD(i) €

MA(KB) foralli € Ny;

4) if QMR.IN D occurs (non-safe) in concept assertion C'(a), then KR(a, i), KD(i) €

MA(KB) foralli € Ny;

(5) nothing else belongs to M A(K B).

A further difference to [8] is that we only collect modal atoms under K. This is justified
by the fact that for ensuring condition (1) of Def. 1, the same set of interpretations M
is considered for evaluating formulas under K and A. As an immediate benefit, when
introducing partitions of these modal atoms next and guessing model candidates, we do
not have to verify whether modal atoms under K and A are aligned.

We now introduce a partition of M A(K B), which is a pair (P, N) of positive modal
atoms P and negative modal atoms N such that PN N = (and PUN = M A(K B).
As already mentioned, such partition can be understood as a guess about which modal
atoms are supposed to be true (P) and false (N), and we can use it to simplify an
eALCO KB as follows. Given a safe e ACCO KB KB and a partition (P, N) of
MA(K B), K B[P] denotes the e ALCO KB obtained from K B and (P, N) by:

1. replacing each occurrence of the form MD M {a} in KB and each (non-safe)
occurrence of the form M.D in a concept assertion C(a) € KB with T if KD(a) €
P and with L otherwise;

2. replacing each occurrence of IMR.M 1D M {a} GMR.-M;D M {a}) in KB
and each (non-safe) occurrence of the form AMR.M; D (IMR.—M; D) in a con-
cept assertion C'(a) € KB with T if there exists y such that KR(a,y) € P and
KD(y) € P (KD(y) ¢ P) and with L otherwise;

3. replacing each occurrence of VM R.M; DM {a} (YMR.-M;DM{a}) in KB and
each (non-safe) occurrence of the form VMR.M; D (VM R.—M; D) in a concept
assertion C'(a) € K B with T if for each y such that KR(a,y) € P, KD(y) € P
(KD(y) ¢ P) and with L otherwise.

Note that we leave N implicit here, as it is completely specified by P and the definition
of a partition of M A(K B). We generalize the notion of K B[P], based on two partitions
(P,N),(P',N’") of MA(KB), to KB[P'][P] which is obtained from K B in exactly
the same way, only that if M or M; is K, then P’ is used in the evaluation of the
conditions, while for M or M; being A, P is used. In either case, it can readily be
verified that the resulting KB does not contain any modal operators, hence is an ALCO
KB (admitting U) for which satisfiability can be checked using standard DL reasoners.

189

With this in place, we can define an ALCO KB which takes the modal atoms
guessed to be true into account, and use the resulting KB to check whether a guess
is consistent with the original eALCO KB. Let K B be a safe e ALCO KB and (P, N),
(P’, N') partitions of M A(K B). Then, Obg g, p/ p denotes the following ALCO KB:

Obkp p.p = KB[P'|[PJU{C(z) | KC(z) € P’} U{R(z,y) | KR(z,y) € P'}

Then, partition (P, N) of M A(K B) is consistent with the (safe) e ALCO K B if the
following conditions hold:
(1) the ALCO KB Obg g, p,p is satisfiable;
(2) Obkp,pp I~ C(x) for each KC(z) € N;
(3) Obkp.pp £ R(z,y) for each KR(z,y) € N.
Basically, item (1) checks whether the guessed P does not yield contradictions w.r.t.
K B, while (2) and (3) verify that no modal atom occurs wrongfully in V.

A link between a set of interpretations and partitions is established next. Let M be
a set of interpretations over A. Then, M induces the partition (P, N') of M A(K B):

P ={KC(z) | KC(z) € MA(KB) and M = KC(x)}
U{KR(z,y) | KR(z,y) € MA(KB) and M = KR(x,y)}

N ={KC(z) | KC(z) € MA(KB) and M }= KC(x)}
U{KR(z,y) | KR(z,y) € MA(KB) and M [~ KR(x,y)}

We can show that the intended correspondence indeed holds.

Lemma 1. Let KB be a safe e ALCO KB, M a set of interpretations over A that
satisfies KB such that M = KR(iy,i2) only if iy =~ a € Ny and iy =~ b € Ny, and
(P, N) the partition of M A(K B) induced by M. Then (P, N) is consistent with K B.

Note that here, the particular restriction on M is necessary, otherwise the property
would not hold. Take (3AR.AC)(a). Then, M = {Z | T & R(a,i) A C(i) for
some ¢ € A and i % a} clearly satisfies the assertion, yet the induced partition with
P = (is not consistent with K B (because of (1) and the fact that that K B[P][P)]
only considers modal atoms in M A(K B)). The same restriction is no longer necessary
for MKNF models for which the following one-to-one correspondence between every
MKNF model M of K B and the partition induced by M can be shown.

Theorem 1. A set M of interpretations over A is an MKNF model for a safe e ALCO
KB K B iff the partition (P, N) of M A(K B) induced by M satisfies the following:
(1) (P, N) is consistent with K B;
(2) M= {I | 7 ': ObKBypvp},' and
(3) for each partition (P',N') of M A(K B) such that P' C P, at least one of the
following conditions does not hold:
(a) the ACCO KB Obk . pr p is satisfiable;
(b) Obkp p.p = C(z) for each KC(z) € N’;
(c) Obkp,pp = R(x,y) for each KR(x,y) € N'.

As an immediate consequence of this procedure, we can show that safe e ALCOV
KBs are ALCOV representable.

190

Corollary 1. Let K B be a safe e ALCOY KB, M an MKNF model of K B, and (P, N)
be the partition of M Ax(K B) induced by M. Then M = {T | T |= Obkp.pp}-

4 Coverage within the Decidable Fragment

The established result in the previous section is certainly interesting in its own right,
since, arguably, the imposed restrictions and the applied construction is considerably
less complicated in terms of notation than the one applied in [8,20]. Anyway, the main
outlined purpose of this revision is to ensure that the new decidable fragment encom-
passes all the formalisms for which coverage was shown in [20] only for the full lan-
guage. In this section, we revisit this material and discuss relevant changes.

4.1 Monotonic Approaches

Naturally, our decidable language fragment of safe e ACCOV KBs covers ALCOV
(with and without U) and all its sub-languages. This does not include SROZQ, i.e.,
OWL 2 DL and its tractable profiles, but a trivial adjustment following the ideas in [20]
where modal operators are limited to ALCOYV concepts is easily conceivable.

Coverage of RIF-CORE [3], i.e., n-ary Datalog, interpreted as DL-safe Rules [31]
carries over from [20] or alternatively from [25]. In fact, the latter does not even require
the usage of the universal role U which is just fine if we only want to embed a Datalog
program. However, if we want to cover an embedding of n-ary Datalog interacting with
DLs, then the former is required: consider the Datalog rule C(a) — D(a) and a concept
assertion C'(a). The rule can be translated to Jatom.(C M {a}) C Jatom.(D M {a})
(slightly adjusted from [25]), but there is Z such that atom® = 0, i.e., D(a) is no
longer derivable. Thus, based on the former Datalog embedding, coverage of DL-safe
SWRL [31], AL-log [7], and CARIN [26] carries over, i.e., without much surprise all
monotonic approaches as outlined in [20] are covered.

42 ALCKnx

In [8], it is shown how several non-monotonic reasoning features (defaults, integrity
constraints, and role and concept closure) can be modeled in the full language ALCK »r 7
and it is argued that the restriction to simple KBs applied to achieve decidability does
not impede coverage. The full e ACCOYV language obviously includes ALCK nrx by
design, but since we have changed the restrictions to achieve decidability, these results
do not carry over automatically, so we briefly discuss coverage of these features for safe
eALCOVY KBs (and refer the reader for the detailed discussion to [8]).
First, closed DL-defaults [2] of the form

a ﬁla ceey 5774
Y
are covered in [8], where «, (;, and v are DL concepts and n > 0. Closed defaults

are limited in their applicability to individuals explicitly mentioned in the knowledge
base. This is achieved in [8] by using a new atomic concept I in each translation of

d=

191

a default and adding the assertions I(a) for each a appearing in the knowledge base.
Conceptually, this matches the idea of nominal schemas, so the translation of closed
defaults can be presented as a safe e ALCOY axiom

Tpr(d) =Kan-A-5, M- M=A-8, M {z} C Kyn{z}

without the need to introduce new concepts or adding additional assertions, and it is
easy to see that Theorem 3.1 from [8] can be adapted accordingly.

Theorem 2. Let (¥, D) be an ALC KB with defaults, where X is an ALC KB and D is
a set of ALC-defaults. The e ACCOV KB (X, D) is such that, for every ALC-concept
C and every individual a € Ny, it holds (X, D) = C(a) iff Tpx (X, D) = C(a).

Secondly, integrity constraints (ICs) are considered, and it is argued that ICs com-
monly apply to individuals explicitly mentioned in the considered KB and impose re-
strictions without changing the content of the KB. This is in line with our restrictions
on safe e ACCOV KBs and it can be verified that all examples discussed in [8] can be
made safe explicitly by introducing guards {«} as for defaults. Finally, similar observa-
tions hold for the considerations on role and concept closure, i.e., all modeling features
presented in [8] can indeed be adjusted to safe e ALCOV KBs without much effort.

4.3 Hybrid MKNF

Hybrid MKNF as a combination of DLs with non-monotonic rules is based on MKNF
logics as well, but of different expressivity due to the different restrictions applied to
the full MKNF language in each of the two approaches [30]. In [20], an embedding of
hybrid MKNF into epistemic DLs is presented (we refer to that paper for the techni-
cal details). Though not the full language of hybrid MKNF is embedded, the presented
fragment suffices to cover Answer Set Programming [11], i.e., disjunctive Datalog with
classical negation and non-monotonic negation under the answer set semantics. Un-
fortunately, the presented embedding is in general not covered within the decidable
fragment in [20] as shown with the simple example T T 3U.({a} M C) and KD(a) <
KC'(a) as the latter would be embedded as K(3U.({a}NC) C K(3U.({a} M C) which
is not simple [20]. This can be remedied with safe e ACCOYV KB by changing the trans-
lation of MKNF rules di(KH; V KH; + KA;,...,KA,,notBy,...,notB,,) in
[20] to
Kdl(A;)n...NnKdl(A,) n-AdI(By) M ...M-Adl(B,,) N{i} C
Kdl(H,)U... UKdI(H;) M {i}

where i is a fresh individual and dl the translation function on (possibly classically
negated) atoms defined in [20]. Essentially, in the original embedding, such translated
concepts in GCIs would due to the universal role either be interpreted as A or (). Here,
we introduce a nominal as guard that acts as a surrogate for all elements in A, thus

reducing such interpretation to either ¢ or (). An adaptation of the results in [20] (Lemma
3 and Theorem 4) are then straightforward.

Theorem 3. Let K = (O, P) be a hybrid MKNF KB. M is an MKNF model of K iff
My ={TJ | T € fam(Z) with T € M} is a hybrid MKNF model of dI(K).

192

This ensures that safe e ACCOYV KBs in fact embed the restricted version hybrid MKNF
and therefore also ASP.

5 Conclusions

We have studied epistemic extensions of DLs focusing here on e ALCOV, i.e., ALC
extended with nominals, nominals schemas, the universal role, and two epistemic op-
erators for modeling non-monotonic reasoning. We have shown that this language en-
compasses all non-monotonic modeling features and approaches discussed in [20], and
that an extension to a few missing monotonic languages (e.g., SROZQ) is easily con-
ceivable. We have introduced a set of restrictions on the general language which is
different from that in [20], and we have shown that, under these restrictions, reasoning,
i.e., checking MKNF-satisfiability becomes decidable, and, unlike in previous work,
the restricted language still covers all the discussed modeling features.

An immediate matter for follow-up work is the computational complexity when
reasoning with epistemic DLs, a question that has only received limited attention so
far (in [8] a triple exponential space upper bound for reasoning with simple KBs has
been pointed out, while no results are mentioned in [20]). It is clear that the complexity
results established for reasoning with nominal schemas (without epistemic operators)
[25] can serve as first necessary lower bounds, i.e., for e ALCOYV in particular a minimal
lower bound is established by the fact that reasoning in ALCOV is 2ExpTiME-complete.
This does neither account for the universal role nor the epistemic operators. Since ALC
with arbitrary Boolean role constructors is NExpTiME-complete [28,36] (as the restric-
tion to safe Boolean role constructors in [36] does not suffice to cover U), and the
decision procedure for MKNF-satisfiability requires nondeterministically guessing the
right partition, by combining the different sources of complexity we conjecture a lower
bound of at least N2ExPTIME.

Another interesting topic for future work is to establish coverage for further re-
lated formalisms, for example by extending the expressiveness of rules permitted in
the embedding of Hybrid MKNF, which then allows us to include already established
embedding results for, e.g., [9,32] in [30] or by considering among others work on cir-
cumscription in DLs [4,33]. Building on the existing relation between epistemic exten-
sions of DLs and Hybrid MKNF, we can also investigate the relation to parameterized
logic programs [12,13], or multi-context systems [5] using the established connection
between these and Hybrid MKNF [21]. Finally, an implementation may be considered
given a) the more simple decision procedure proposed here and b) the recent work on
implementing nominal schemas [22,37,6,34] and Hybrid MKNF [1,16]. In particular
the encouraging results for Konclude [34,35] seem to indicate that this may in fact be
achievable in a feasible manner.

Acknowledgments This work was partially supported by Fundagéo para a Ciéncia e
a Tecnologia under project “ERRO — Efficient Reasoning with Rules and Ontologies”
(PTDC/EIA-CCO/121823/2010) and strategic project PEst/UID/CEC/04516/2013, and
by FCT grant SFRH/BPD/86970/2012.

193

References

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

. Alferes, J.J., Knorr, M., Swift, T.: Query-driven procedures for hybrid MKNF knowledge

bases. ACM Trans. Comput. Log. 14(2), 16 (2013)

Baader, F., Hollunder, B.: Embedding defaults into terminological representation systems.
Journal of Automated Reasoning 14, 149-180 (1995)

Boley, H., Hallmark, G., Kifer, M., Paschke, A., Polleres, A., Reynolds, D. (eds.):
RIF Core Dialect. W3C Recommendation 22 June 2010 (2010), available from
http://www.w3.org/TR/rif-core/

Bonatti, P.A., Lutz, C., Wolter, F.: The complexity of circumscription in dls. J. Artif. Intell.
Res. (JAIR) 35, 717-773 (2009)

Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context systems. In:
Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence. pp. 385—
390. AAAI Press (2007)

Carral, D., Wang, C., Hitzler, P.: Towards an efficient algorithm to reason over description
logics extended with nominal schemas. In: Faber, W., Lembo, D. (eds.) Web Reasoning and
Rule Systems - 7th International Conference, RR 2013. Proceedings. LNCS, vol. 7994, pp.
65-79. Springer (2013)

. Donini, EM., Lenzerini, M., Nardi, D., Schaerf, A.: AL-log: Integrating datalog and descrip-

tion logics. Journal of Intelligent Information Systems 10(3), 227-252 (1998)

Donini, FEM., Nardi, D., Rosati, R.: Description logics of minimal knowledge and negation
as failure. ACM Transactions on Computational Logic 3(2), 177-225 (2002)

Eiter, T., lanni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set
programming with description logics for the Semantic Web. Artificial Intelligence 172(12—
13), 1495-1539 (2008)

Fitting, M.: First-order logic and automated theorem proving. Springer, 2nd edn. (1996)
Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9, 365-385 (1991)

Gongalves, R., Alferes, J.J.: Parametrized logic programming. In: Janhunen, T., Niemel, 1.
(eds.) Logics in Artificial Intelligence - 12th European Conference, JELIA 2010. Proceed-
ings. LNCS, vol. 6341, pp. 182-194. Springer (2010)

Gongalves, R., Alferes, J.J.: Decidability and implementation of parametrized logic pro-
grams. In: Cabalar, P., Son, T.C. (eds.) Logic Programming and Nonmonotonic Reasoning,
12th International Conference, LPNMR 2013. Proceedings. LNCS, vol. 8148, pp. 361-373.
Springer (2013)

Grimm, S., Hitzler, P.: Semantic Matchmaking of Web Resources with Local Closed-World
Reasoning. International Journal of Electronic Commerce 12(2), 89-126 (2008)

Hitzler, P., Krotzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S. (eds.): OWL 2 Web
Ontology Language: Primer. W3C Recommendation 27 October 2009 (2009), available from
http://www.w3.org/TR/owl2-primer/

Ivanov, V., Knorr, M., Leite, J.: A query tool for £L£ with non-monotonic rules. In: Alani, H.,
Kagal, L., Fokoue, A., Groth, P.T., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N.F., Welty,
C., Janowicz, K. (eds.) The Semantic Web - ISWC 2013 - 12th International Semantic Web
Conference, Proceedings, Part I. LNCS, vol. 8218, pp. 216-231. Springer (2013)

Ke, P.: Nonmonotonic Reasoning with Description Logics. Ph.D. thesis, University of
Manchester (2011)

Kifer, M., Boley, H. (eds.): RIF Overview. W3C Working Group Note 22 June 2010 (2010),
available from http://www.w3.org/TR/rif-overview/

Knorr, M., Alferes, J.J., Hitzler, P.: Local closed world reasoning with description logics
under the well-founded semantics. Artificial Intelligence 175(9-10), 1528-1554 (2011)

194

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Knorr, M., Hitzler, P., Maier, F.: Reconciling OWL and non-monotonic rules for the semantic
web. In: Raedt, L.D., Bessiere, C., Dubois, D., Doherty, P., Frasconi, P., Heintz, F., Lucas,
PJ.F. (eds.) ECAI 2012 - 20th European Conference on Artificial Intelligence. Proceedings.
Frontiers in Artificial Intelligence and Applications, vol. 242, pp. 474—479. 10S Press (2012)
Knorr, M., Slota, M., Leite, J., Homola, M.: What if no hybrid reasoner is available? hybrid
MKNF in multi-context systems. J. Log. Comput. 24(6), 1279-1311 (2014)

Krisnadhi, A., Hitzler, P.: A tableau algorithm for description logics with nominal schema.
In: Web Reasoning and Rule Systems - 6th International Conference, RR 2012. Proceedings.
LNCS, vol. 7497, pp. 234-237. Springer (2012)

Krotzsch, M.: Description Logic Rules, Studies on the Semantic Web, vol. 008. 10S
Press/AKA (2010)

Krotzsch, M., Maier, F., Krisnadhi, A.A., Hitzler, P.: A better uncle for OWL: Nominal
schemas for integrating rules and ontologies. In: Srinivasan, S., Ramamritham, K., Kumar,
A., Ravindra, M.P,, Bertino, E., Kumar, R. (eds.) Proceedings of the 20th International World
Wide Web Conference, WWW2011. pp. 645-654. ACM (2011)

Krotzsch, M., Rudolph, S.: Nominal schemas in description logics: Complexities clarified.
In: Baral, C., Giacomo, G.D., Eiter, T. (eds.) Principles of Knowledge Representation and
Reasoning: Proceedings of the Fourteenth International Conference, KR 2014. AAAI Press
(2014)

Levy, A.Y., Rousset, M.C.: Combining Horn rules and description logics in CARIN. Artifi-
cial Intelligence 104, 165-209 (1998)

Lifschitz, V.: Nonmonotonic databases and epistemic queries. In: Mylopoulos, J., Reiter,
R. (eds.) Proceedings of the 12th International Joint Conferences on Artifical Intelligence,
IJCAT’91. pp. 381-386. Morgan Kaufmann (1991)

Lutz, C., Sattler, U.: The complexity of reasoning with Boolean modal logics. In: Wolter, F.,
Wansing, H., de Rijke, M., Zakharyaschev, M. (eds.) Proc. of the 3rd Int. Conf. on Advances
in Modal Logic (AiML 2000). pp. 329-348. World Scientific (2002)

Mehdi, A., Rudolph, S.: Revisiting semantics for epistemic extensions of description log-
ics. In: Burgard, W., Roth, D. (eds.) Proceedings of the Twenty-Fifth AAAI Conference on
Artificial Intelligence, AAAI 2011. AAAI Press (2011)

Motik, B., Rosati, R.: Reconciling Description Logics and Rules. Journal of the ACM 57(5),
93-154 (2010)

Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. Journal of Web
Semantics 3(1), 41-60 (2005)

Rosati, R.: DL+Log: A tight integration of description logics and disjunctive datalog. In:
Dobherty, P., Mylopoulos, J., Welty, C.A. (eds.) 10th International Conference on the Princi-
ples of Knowledge Representation and Reasoning, (KR’06), Proceedings. pp. 68-78. AAAI
Press (2006)

Sengupta, K., Krisnadhi, A.A., Hitzler, P.: Local closed world semantics: Grounded circum-
scription for OWL. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L.,
Noy, N.E,, Blomqvist, E. (eds.) The Semantic Web - ISWC 2011 - 10th International Seman-
tic Web Conference, Proceedings. LNCS, vol. 7031, pp. 617-632. Springer (2011)
Steigmiller, A., Glimm, B., Liebig, T.: Reasoning with nominal schemas through absorption.
J. Autom. Reasoning 53(4), 351-405 (2014)

Steigmiller, A., Liebig, T., Glimm, B.: Konclude: System description. J. Web Sem. 27, 78-85
(2014)

Tobies, S.: Complexity results and practical algorithms for logics in knowledge representa-
tion. Ph.D. thesis, LuFG Theoretical Computer Science, RWTH-Aachen, Germany (2001)
Wang, C., Hitzler, P.: A resolution procedure for description logics with nominal schemas.
In: Takeda, H., Qu, Y., Mizoguchi, R., Kitamura, Y. (eds.) Second Joint International Con-
ference, JIST 2012. Proceedings. LNCS, vol. 7774, pp. 1-16. Springer (2012)

195

Conservative Rewritability of Description Logic
TBoxes: First Results

Boris Konev!, Carsten Lutz?, Frank Wolter!, and Michael Zakharyaschev3

! Department of Computer Science, University of Liverpool, U.K.
2 Fachbereich Informatik, Universitit Bremen, Germany
3 Department of Computer Science and Information Systems, Birkbeck, University of
London, U.K.

Abstract. We want to understand when a given TBox 7 in a descrip-
tion logic £ can be rewritten into a TBox 7’ in a weaker description
logic £'. Two notions of rewritability are considered: model-conservative
rewritability (7" entails 7 and all models of 7 can be expanded to
models of 7') and L-conservative rewritability (7’ entails 7 and ev-
ery L-consequence of 7' in the signature of T is a consequence of T)
and investigate rewritability of TBoxes in ALCZ to ALC, ALCQ to
ALC, ALC to L, , and ALCZ to DL-Litepor,. We compare conservative
rewritability with equivalent rewritability, give model-theoretic charac-
terizations of conservative rewritability, prove complexity results for de-
ciding rewritability, and provide some rewriting algorithms.

Over the past 30 years, a multitude of different description logics (DLs) have
been designed, investigated, and used in practice as ontology languages. The
introduction of new DLs has been driven both by the need for additional ex-
pressive power (such as transitive roles in the 1990s) and by applications that
require efficient reasoning of a novel type (such as ontology-based data access in
the 2000s). While the resulting flexibility in choosing DLs has had the positive
effect of making DLs available for a large number of domains and applications,
it has also led to the development of ontologies with language constructors that
are not really required to axiomatize their knowledge. For a constructor to be
‘not required’ can mean different things here, ranging from the high-level ‘this
domain can be represented in an adequate way in a weaker DL’ to the very
concrete ‘this ontology is logically equivalent to an ontology in a weaker DL’ In
this paper, we take the latter understanding as our starting point. Equivalent
rewritability of a given DL ontology (TBox) to a weaker DL has been inves-
tigated in [17], where model-theoretic characterizations and the complexity of
deciding rewritability were investigated. For example, equivalent rewritability of
an ALC TBox to an ££; TBox has been characterized in terms of preservation
under products and global equisimilations, and a NEXPTIME upper bound for
deciding equivalent rewritability has been established. Equivalent rewritability
is a very strong notion, however, that appears to apply to a very small num-
ber of real-world TBoxes. A more practically relevant notion we propose in this
paper is conservative rewritability, which allows one to use new concept and

196

role names when rewriting a given ontology into a weaker DL. In this case, we
clearly cannot demand that the new TBox is logically equivalent to the original
one, but only that it entails the original TBox. To avoid uncontrolled additional
consequences of the new TBox, we can also require that (7) it does not entail any
new consequences in the language of the original TBox, or even that (i) every
model of the original TBox can be expanded a model of the new TBox. The lat-
ter type of conservative extension is known as model-conservative extension [16],
and we call a TBox T model-conservatively L-rewritable if a model-conservative
rewriting of 7 in the DL £ exists. The former type of conservative extension
is known as a language-conservative extension or deductive conservative exten-
sion [12] and, given a DL £ in which 7 is formulated and a weaker DL L', we
call T L-conservatively L'-rewritable if there is a TBox 7’ in £’ such that T~
has the same L-consequences as T in the signature of 7. Model-conservative
rewritability is the more robust notion as it is language-independent and does
not only leave unchanged the entailed concept inclusions of the original TBox
but also, for example, certain answers if the ontologies are used to access data.

The main result of this paper is that there are important DLs for which
model-conservative and L-conservative rewritability can be transparently char-
acterized, effectively decided, and for which rewriting algorithms can be de-
signed. This is in contrast to the undecidability of the problem whether one
TBox is a model-conservative extension of another one even for weak DLs such
as EL [18,16]. In particular, we show that, given an ALCZ TBox, one can com-
pute in polynomial time its model-conservative ALC-rewriting provided that
such a rewriting exists, which can be decided in EXPTIME. We characterize
model-conservative ALC-rewritability in terms of preservation under generated
subinterpretations and show that ALCZ-conservative ALC-rewritability coin-
cides with model-conservative one. For ALCQ TBoxes, we show that model-
conservative ALC-rewritability coincides with equivalent rewritability, but is
different from ALC Q-conservative rewritability. The latter can be characterized
using bounded morphisms, and all these notions of rewritability are decidable
in 2EXPTIME. Unlike the ALCZ case, we currently do not have polynomial
rewritings for ALCQ TBoxes. As to rewritability from ALCZ to DL-Liteyyp,
we observe that all our notions of rewritability coincide and are EXPTIME-
complete. In contrast, for rewritability from ALC to £L£, they are all distinct
and, in fact, rather intricate and difficult to analyse. We prove decidability of
model-conservative rewritability and give necessary semantic conditions for both
ALC-conservative and model-conservative €L | -rewritability.

Related work. Conservative rewritings of TBoxes are ubiquitous in the DL
research. For example, many rewritings of TBoxes into normal forms are model-
conservative [14, 4]. Regarding rewritability of TBoxes into weaker DLs, the fo-
cus has been on polynomial satisfability preserving rewritings as a pre-processing
step to reasoning [11, 9, 8] or to prove complexity results for reasoning [10]. Such
rewritings are mostly not conservative. There has been significant work on rewrit-
ings of ontology-mediated queries (pairs of ontologies and queries), which pre-
serve their certain answers, into datalog or ontology-mediated queries based on

197

weaker DLs [13,5]. It seems, however, that this problem is different from TBox
conservative rewritability. In [2], the expressive power of DLs and corresponding
notions of rewritability are introduced based on a variant of model-conservative
extension, and the relationship to L£-conservative extensions is discussed.

For omitted proofs, see http://cgi.csc.liv.ac.uk/~frank /publ/publ.html.

1 Conservative Rewritability

We consider the standard description logics ALC, ALCZ, ALCQ, EL,, and
DL-Liteporn [3,4,7,1], where £, is EL extended with the concept L, and
DL-Litep o, is DL-Lite . extended with conjunctions of basic concepts on the
left-hand side of concept inclusions. As usual, the alphabet of DLs consists of
countably infinite sets N¢ of concept names and Nr of role names. By a signa-
ture, X, we mean any set of concept and role names. The signature sig(T) of a
TBox T is the set of concept and role names occurring in 7.

Before introducing our notions of conservative rewritability, we remind the
reader of a simpler notion of TBox rewritability. Suppose £ and £’ are DLs; we
typically assume that £ is more expressive than £'.

Definition 1 (equivalent L-to-L£' rewritability). An £’ TBox 7 is called
an equivalent L'-rewriting of an £ TBox T if T = T’ and 7' = T (in other
words, if 7 and 7’ have the same models). An £ TBox is called equivalently
L'-rewritable if it has an equivalent £’-rewriting.

Equivalent L-to-£’ rewritability has been studied in [17], where semantic
characterizations are given and complexity results for deciding equivalent re-
writability are obtained for various DLs £ and £’. For example, if £ is ALCZ or
ALCQ and L' is ALC, then an £ TBox T is equivalently £'-rewritable just in
case its class of models is preserved under global bisimulations, which are defined
as follows. Given interpretations Z; = (A%:, %), for i = 1,2, and a signature X,
we call a relation S C ATt x AZ2 g, X-bisimulation between T, and Ty if

— for any A € X, whenever (dy,ds) € S then d; € ATt iff dy € AZ2;

— for any r € X and (dy,d2) € S,
if (di,e1) € 77t then there is ey such that (e1,ez) € S and (do, es) € 772,
if (dg,e2) € 772 then there is e; such that (e1,ez) € S and (dy,e;) € 771,

S is a global X-bisimulation between Z; and I if A%t is the domain of S and AZ>
its range. Z; and Zy are globally X'-bisimilar if there is a global X-bisimulation
between them, in which case we write Z; wac T,. For di € ATt and dy € A%z,
we say that (Zy,dy) is X-bisimilar to (Zs,ds) if there is a X-bisimulation S
between Z; and Zy such that (di,ds) € S. If ¥ = N¢ U Ng, we omit X, write
T ~arc Iy and say simply ‘(global) bisimulation’

Ezample 1. The ALCT TBox {Ir~.B C A} can be equivalently rewritten to the
ALC TBox {B C Vr.A}. However, the ALCZ TBox T ={3r~.B N 3s~.BC A}
is not equivalently ALC-rewritable. Indeed, the interpretation on the right-hand

198

side in the picture below is a model of T and globally bisimilar to the interpre-
tation on the left-hand side, which is not a model of T.

We now introduce two subtler notions of TBox rewritability, which allow the
use of fresh concept and role names in rewritings. For an interpretation Z and
signature X, the X'-reduct of T is the interpretation Z 5 coinciding with Z on the
names in ¥ and having XZ1® = () for all X ¢ X. We say that interpretations T
and J coincide on X and write Z =5 J if the Y-reducts of Z and J coincide. A
TBox T’ is a model-conservative extension of T if an interpretation Z is a model
of T just in case there is a model Z" of 7" such that 7 =gg1) Z'.

Definition 2 (model-conservative £-to-L'-rewritability). An £’ TBox 7’
is called a model-conservative L'-rewriting of an £ TBox T if T’ is a model-
conservative extension of 7. An £ TBox T is model-conservatively L' -rewritable
if a model-conservative £'-rewriting of 7 exists.

Clearly, any equivalent £’-rewriting of a TBox T is also a model-conservative
L'-rewriting of 7. The next example shows that the converse does not hold.

Ezample 2. The ALCZ TBox T = {3r—.BM3s~.B C A} from Example 1 is
model-conservatively ALC-rewritable to

T/ = {B E VT'BET_.Ba B E vS'-BES_.B7 BElr_.B M BEls—.B E A}v

where B3,.— g, B3,- p are fresh concept names.

A TBox 7" is called an L-conservative extension of T T' =T and T’ = C E D
implies 7 = C C D, for every L-concept inclusion C' C D formulated in sig(7).

Definition 3 (L-conservative £'-rewritability). An £’ TBox 7" is called an
L-conservative L' -rewriting of an £ TBox T if 7" is an L-conservative extension
of T. An £ TBox T is L-conservatively L'-rewritable if an L-conservative L£'-
rewriting of 7 exists.

It should be clear that every model-conservative £'-rewriting of an £ TBox T
is also an L-conservative L£'-rewriting of 7. The next example shows that the
converse implication does not hold.

Ezample 3. The ALCQ TBox T = {A C > 2r.B} is ALC Q-conservatively ALC-
rewritable to 7' = {AC 3r.C, AC Ir.D, CC -D, CU D C B}, where C and
D are fresh concept names. However, 7' is not a model-conservative rewriting
of T because the model of 7 shown below is not the sig(7)-reduct of any model

199

of T7. Note that T is not equivalently ALC-rewritable.

B B B
T r
A A A

In our examples so far, we have used fresh concept names but no fresh role names.
This is no accident: it turns out that, for the DLs considered in this paper, fresh
role names in conservative rewritings are not required. More precisely, we call a
model-conservative or L£-conservative £'-rewriting 7’ of 7 a model-conservative
or, respectively, L-conservative L'-concept rewriting of T if sigp(T) = sigr(T’),
where sigp(7) is the set of role names in 7.

Say that a DL L reflects disjoint unions if, for any £ TBox T, whenever the
disjoint union | J,.; Z; of interpretations Z; is a model of 7, then each Z;, i € I,
is also a model of 7. All the DLs considered in this paper reflect disjoint unions.

Theorem 1. Let L be a DL reflecting disjoint unions, T an L TBox, and let
L' e {ALC, EL,, DL-Liteporn }- Then T is model-conservatively (or L-conserva-
tively) L'-rewritable if and only if it is model-conservatively (or, respectively,
L-conservatively) L'-concept rewritable.

2 ALCZI-to-ALC Rewritability

Equivalent ALCZ-to-ALC rewritability was studied in [17], where the characteri-
zation in terms of global bisimulations was used to design a 2EXPTIME algorithm
for checking this property. Here, we give a characterization of model-conservative
ALC rewritability of ALCZ TBoxes in terms of generated subinterpretations
and use it to show that (i) model-conservative ALCZ-to-ALC rewritings are of
polynomial size and can be constructed in polynomial time (if they exist), and
that (i7) deciding model-conservative ALCZ-to-ALC rewritability is EXPTIME-
complete. We also observe that ALCZ-conservative ALC-rewritability coincides
with model-conservative rewritability.

We remind the reader that an interpretation Z is a subinterpretation of an
interpretation J if AT C AT, AT = A7 N AT for all concept names A, and
rT = r7 N (AT x AT) for all role names r. Z is a generated subinterpretation of J
if, in addition, whenever d € AZ and (d,d’) € 7, r a role name, then d’ € AL.
We say that a TBox T is preserved under generated subinterpretations if every
generated subinterpretation of a model of T is also a model of 7. As well known,
every ALC TBox is preserved under generated subinterpretations.

Suppose we want to find a model-conservative ALC-rewriting of an ALCZ
TBox T. Without loss of generality, we assume that 7 = {T C Cy} and Cr
is built using —, M and 3 only. Let sub(7) be the closure under single negation
of the set of (subconcepts) of concepts in 7. For every role name r in T, we
take a fresh role name 7 and, for every 3r.C' in sub(7) (where r is a role name
or its inverse), we take a fresh concept name Bs,.c. Denote by D! the ALC-
concept obtained from any D € sub(7T) by replacing every top-most occurrence

200

of a subconcept of the form 3r.C in it with Bs,.c. Now, let 7T be an ALC TBox
comprised of the following concept inclusions, for r € Ng: T E Cg—,

C* C V#.Ba,.c, Ba,.c = 3r.CF, for every Ir.C' € sub(T),
Cc*CVr.Bg,- ¢, Bg.— ¢ =3r.CF for every 3r~.C € sub(T).

Clearly, 71 can be constructed in polynomial time in the size of 7.

Theorem 2. An ALCZ TBox T is model-conservatively ALC-rewritable iff T
1s preserved generated subinterpretations. Moreover, if T is model-conservatively
ALC-rewritable, then TT is its model-conservative ALC-rewriting.

It is now easy to show that model-conservative ALCZ-to-ALC rewritability is
decidable in EXPTiME. By Theorem 2, this amounts to deciding whether 77 is
a model-conservative extension of 7. In general, this is an undecidable problem.
It is, however, easy to see that, for every model Z of T, there is a model Z’ of T
such that Z =gg(7) Z'. It thus remains to decide whether every interpretation Z
with Z =gg(7) Z', for some model I’ of Tt, is a model of 7. In other words, this
means to decide whether 71 = 7T, which can be done in EXPTIME. A matching
lower bound is easily obtained by reducing satisfiability in ALC.

Corollary 1. The problem of deciding model-conservative ALCZ-to-ALC rewri-
tability is EXPTIME-complete.

ALCI-conservative ALC-rewritability of ALCZ TBoxes coincides with model-
conservative ALC-rewritability. This can be proved using the characterization
via subinterpretations and robustness under replacement of ALCZ TBoxes, an
important property in the context of modular ontology design [15, Theorem 4].

Theorem 3. An ALCZ TBoz T is ALCZ-conservatively ALC-rewritable iff T
is model-conservatively ALC-rewritable.

3 ALCQO-to-ALC Rewritability

Equivalent ALCQO-to-ALC rewritability was characterized in [17] in terms of
preservation under global bisimulations. Below, we use this characterization to
give a 2EXPTIME algorithm for checking equivalent ALC-rewritability.

We first prove a characterization of ALCQ-conservative ALC-rewritability
in terms of preservation under inverse bounded morphisms and use it to show
that one can (i) decide ALCQ-conservative ALC-rewritability in 2EXPTIME
and (i) construct effectively an ALCQ-conservative rewriting if it exists. We
also show that, unlike ALCZ-to-ALC-rewritability, model-conservative ALC-
rewritability of ALCQ TBoxes coincides with equivalent rewritability.

A bounded X -morphism from an interpretation Z; to an interpretation Z, is
a global XY-bisimulation S between Z; and Z, such that S is a function from
AT to AT2. A class K of interpretations is preserved under inverse bounded X-
morphisms if whenever there is a bounded X-morphism from an interpretation
7, to some Z, € K, then Z; € K. The following lemma provides the fundamental
property of bounded morphisms:

201

Lemma 1. Suppose f: I1 — Iy is a bounded X -morphism, where Iy is a model
of an ALC TBox T andsigr(T) C X. Then there is J1 = T such that Jh =5 I4.

Proof. We define J; in the same way as Z; except that Bt := f~1(BZ2) for
all concept names B € sig(71) \ X. Then f is a bounded sig(7)-morphism from
J1 to Zy. Thus, J; is a model of T since Z; is a model of 7. Qa

An interpretation 7 is a directed tree interpretation if v N s = (), for r # s, and
the directed graph with nodes A% and edges E defined by setting (d, d') € E iff
(d,d") € U,en, " is a directed tree. We start our investigation with the obser-
vation that ALC Q-conservative ALC Q-to-ALC rewritability can be regarded as
a principled approximation of model-conservative rewritability:

Lemma 2. An ALC TBox T’ is an ALCQ-conservative rewriting of an ALCQ
TBox T iff T' is a model-conservative rewriting of T over the class of directed
tree interpretations of finite outdegree.

Suppose we want to find an ALCQ-conservative ALC-rewriting of an ALCQO
TBox 7. Without loss of generality, we assume that T is of the form {T C Cy}
and that C is built using =, M, (= n r C) only. Construct a TBox 7 as follows.
Take fresh concept names Bp, BY ... BY for every D = (> nr C) € sub(T).
We use X to denote sig(T) extended with all fresh concept names of the form
BP. For each C € sub(T), C* denotes the ALC-concept that results from C by
replacing all top-most occurrences of any D = (= n r C) in T with Bp. Now,
define 77T to be the infinite TBox that consists of the following inclusions:

- TCCE,

— Bp CIn(C*nBP)n---n3r.(C*n BY),

- BPLC ﬂBjD7 for i # j, and

— for all ALC-concepts C1,...,Cy, in X and all D = (= nr C) € sub(T),
M @Er(ctnein !;Iacf)) C Bp.

JF

1<i<n
The next theorem characterizes ALC Q-conservative ALC-rewritability.

Theorem 4. An ALCQ TBox T is ALCQ-conservatively ALC-rewritable iff T
is preserved under inverse bounded sig(T)-morphisms. Moreover, if T is ALCQ-
conservatively ALC-rewritable, then T is an (infinite) rewriting.

The semantic characterization of Theorem 4 can be employed to prove the fol-
lowing complexity result using a type elimination argument. We assume that
numbers in number restrictions are given in unary.

Theorem 5. For ALCQ TBozxes, ALCQ-conservative ALC-rewritability is de-
cidable in 2EXPTIME.

It follows that, given an ALCQ TBox T, one can first decide ALC Q-conservative
ALC-rewritability and then, in case of a positive answer, effectively construct a
rewriting by going through the finite subsets of 77 in a systematic way until a
finite 7/ C 7T with 77 |= T is reached. By compactness, such a set 7" exists.

We finally show that every model-conservatively ALC-rewritable ALC Q TBox
is equivalently ALC-rewritable.

202

Theorem 6. An ALCQ TBox is model-conservatively ALC-rewritable iff it is
equivalently ALC-rewritable, which is decidable in 2EXPTIME.

4 ALCZI-to-DL-Litey,,, and ALC-to-EL, Rewritability

We first observe that all notions of rewritability introduced in this paper coin-
cide in the case of ALCZ-to-DL-Litey,, rewritability. Deciding rewritability is
ExpPTIME-complete in all cases since deciding equivalent ALCZ-to-DL-Litey,ormn
rewritability is EXpTIME-complete [17]:

Theorem 7. For ALCZ TBozes, equivalent DL-Litepor,-rewritability, model-
conservative DL-Litey, o, -rewritability, and ALCL-conservative DL-Litep oy, -rew-
ritability coincide and are EXPTIME-complete.

We now provide separating examples for all three notions of ALC-to-EL) re-
writability and then prove decidability of model-conservative €L | -rewritability.
While we have not yet been able to find purely model-theoretic characteriza-
tions of model- and ALC-conservative £L | -rewritability, we then give necessary
model-theoretic conditions for these two notions of rewritability.

Equivalent ALC-to-EL) rewritability has been characterized in [17] in terms
of preservation under products and global equisimulations. A simulation between
interpretations Z and 7 is a relation S C AT x A7 such that, for any 4 € N,
r € Ng and (dl,dg) €S, ifdy € AT then doy € AIQ, and if (dl,el) € rZ then
there exists ex with (e1,e2) € S and (do,e2) € 7. (Z,d) is simulated by (T, e)
if there is a simulation S between Z and J such that (d, e) € S. Interpretations
T and J are globally equisimilar if, for any d € AT, there exists e € A7 such
that (Z,d) is simulated by (J,e) and (J,e) is simulated by (Z,d). According
to [17, Theorem 17], an ALC TBox is equivalently €L -rewritable if its models
are preserved under products and global equisimulations.

Ezample 4. The TBox T = {3Ir.AN3Ir.BNVr.(AUB)C EUF, ANBC l}is
not equivalently £L-rewritable because its models are not preserved under
global equisimulations. Indeed, the interpretation Z shown below is clearly a
model of 7. However, by removing the rightmost r-arrow from Z, we obtain an
interpretation which is globally equisimilar to Z but not a model of 7.

A B
W
On the other hand, the ££, TBox

{IrAN3FIr.BCI.G, I (GNA)CE, I(GNB)CF, ANBC 1}

is easily seen to be an ALC-conservative £L | rewriting of 7. We now show that T
is not model-conservatively €L | -rewritable. For suppose T has such a rewriting
T’ given in standard normal form (with inclusions of the form A, M...MA, C B,
Ir.BC A, or AC Ir.B where Ay,...,A,, A, B € NcU{L}). Consider the model

203

T of T depicted below, and let Z’ be a model of 7" such that T =gg(1) Z'.

a b
A B
TMT
T
F F
x Y

Let J be the same as I’ except that 2,y € MY iff both 2 € MZ and y € MT,
for every M € N¢. Since x ¢ EY and y ¢ F7, J is not a model of 7". Since the
restriction of Z’ to {a, b} is a model of 77, and the restrictions of Z’ to {a,b, 2}
and {a, b,y} coincide, there is (C C D) € T’ such that x,y € C¥ but z,y & D7 .
As T’ is a model of 7', which is in standard normal form, and by the definition
of J, D must be a concept name. Since clearly =,y € CT', we must also have
z,y € DT, and so z,y € DY, which is a contradiction.
The following modified version of T

Tm = {IrANnIr.BOVr(AUB)CIr(ANE)UIr.(BNF), ANBLC 1}

is not equivalently £L | -rewritable, but has a model-conservative €L | -rewriting

T, = {3rANFIr.BCIr. M, Ir(MNA)CIr(MNE),
I (MNB)CI(MNF), ANBLC L}.

The difference from the previous example is that if d is an instance of Ir.AM3r. B,
then we can place the ‘marker’ M onto an r-successor of d which is either in
AME orin BM F, whereas in the previous example the decision on where to
put the ‘marker’ G was not determined by the r-successors of d but by d itself.

We now prove that if there exists an L -rewriting of an ALC TBox T, then
there is one without any ‘recursion’ for the newly introduced symbols. Let X =
sig(T). We say that an ££; TBox T’ is in X-layered form of depth n if there
are mutually disjoint sets Iy,..., I} of concept names such that I; N Y = ()
(0 <i < n) and the inclusions of 7' take the following form, where r € X

level i atom inclusions: Ay M---MA, C B, for Ay,...,A,,Be XU, U{Ll},
level i right-atom inclusions: IrAC Bfor Ae YU, Be YUT; U{Ll},
level i left-atom inclusions: AC Ir.B, for Ae YUTI;, Be YUTI;11 U{Ll}

The depth of a concept C is the maximal number of nestings of existential
restrictions in C. The depth of a TBox is the maximal depth of its concepts.

Lemma 3. If an ALC TBox T of depth n is model- (or ALC-) conservatively
EL | -rewritable, then there exists a model- (respectively, ALC-) conservative
EL | -rewriting T' of T in sig(T)-layered form of depth n.

We use Lemma 3 to prove decidability of model-conservative £L£ -rewritability.
An ALC ABox A is a finite set of assertions of the form C(a) and r(a,b), where
C is an ALC concept and a, b are individual names. The set of individual names

204

that occur in an ABox A is denoted by ind(A). When interpreting ABoxes, we
adopt the standard name assumption: a* = a, for all a € ind(A).

Let T be an ALC TBox of depth n > 0 (the case n = 0 is trivial). By
sub™ ! (T) we denote the closure under single negation of the set of subconcepts
of concepts in T of depth at most n — 1. By ©"~1(T) we denote the set of
maximal subsets ¢ of sub”~*(7") that are satisfiable in a model of 7. A T-ABoz
is an ABox such that t4(a) = {D | D(a) € A} € O""Y(T) for all a € ind(A).
Let A be a directed tree ABox of depth at most n (that is, all nodes in it are
at distance < n from the root). We say that A is n-strongly satisfiable w.r.t. T
if there is a model Z of A and T such that the rZ-successors of aZ, for every
a € ind(A) of depth < n in A, coincide with the r-successors of a in A.

We now define inductively (7,1)-bisimilarity relations ~; 7 between pairs
(A1,a1) and (Az, az), where the A; are T-ABoxes and a; € ind(A;):

= (A1, a1) ~o,7 (Az,a2) if t4, (a1) = ta,(a2);

— (A1,a1) ~ig1,7 (A2, a2) if (A1,a1) ~o,7 (A2, a2) and, for every r € sig(T),
if r(dy,e1) € Ay then there is r(dg, e2) € Ay such that (A1, e1) ~i 7 (A2, e2),
and vice versa.

For every ¢ > 0, one can determine a finite set AT; of finite directed tree T-
ABoxes A with root p4 and of depth < 4 such that:
— for every Z |= T and every d € AZ, (Z,d) is (T ,i)-bisimilar to exactly one
(A, pa) € AT
— every A € AT, is strongly i-satisfiable w.r.t. T.

We assume that all ABoxes in ATy, ...,AT,, have mutually distinct roots. We
define the canonical ABox A with individuals {p4 | A € AT;,i < n} as follows:
— for A; € AT;, A;jp1 € ATy and r € sig(T), we have r(pa,,,,pa,) € At if
there exists 7(pa,,,,b) € Aiy1 such that the subtree of A;; rooted at b is
(z, T)-bisimilar to A;;
— for A; € AT, and A € sig(T), we have A(pa,) € Ay iff A(pa,) € A;.

Note that A7 is acyclic (but not a directed tree ABox).

Lemma 4. Let T be an ALC TBoz of depth n. An EL£, TBox T’ in sig(T)-
layered form of depth n is a model-conservative EL | -rewriting of T iff
- T ET and
— there exists A" =gg(7) AT such that, for alli =0,...,n, A" satisfies all level
i inclusions in T’ at all pa, with A; € AT, _;.
Theorem 8. Model-conservative EL | -rewritability of ALC TBoxes is decidable.

Proof. Given an ALC TBox T, we first construct the canonical ABox A7. If an
EL| TBox 7' in X-layered form of depth n satisfies the conditions of Lemma 4,
then there exists such a TBox with at most 27| distinct fresh concept names.
As the number of such ££, TBoxes is finite, one can check for each of them
whether the conditions of Lemma 4 are satisfied. a

* Here we identify Z with the ABox with assertions r(a, b), for (a,b) € r*, and D(a),
for D € sub™ '(T) and a € D®.

205

We now give necessary conditions for ALC-conservative £L] -rewritability of
ALC TBoxes. First, we still have the preservation under products:

Theorem 9. FEvery ALC-conservatively EL | -rewritable ALC TBoz is preserved
under products.

Theorem 9 can be used to show that TBoxes such as {A C B U E} are not
ALC-conservatively £L) -rewritable. To separate equivalently rewritable TBoxes
from ALC-conservatively rewritable TBoxes, we generalize the construction of
Example 4. In that case, we removed an r-arrow (dp, d) from a tree-shaped model
Z of T and obtained a model that is globally equisimilar to the original model
but not a model of 7. It turns out that ALC-conservatively €L -rewritable ALC
TBoxes of depth 1 are preserved under the inverse of this operation. We say that
(Z,d) is Cy-simulated by (J,e) if (i) d € AT iff e € A7, for all A € N¢; (i)
for all 7 € Ng, if (e,e’) € 77 then there exists d’ with (d,d’) € r% and, for all
A € N, if ¢ € A7 then d' € AT; (iii) for all r € Ng, if (d,d’) € T then there
exists ¢/ with (e,e’) € 77 and, for all A € N¢, we have d’ € AT iff ¢/ € A7. Say
that Z is globally C,-simulated by J if, for every e € A7, there exists d € AT
such that (Z,d) is Cy-simulated by (J,e). An ALC TBox is preserved under
Cq-stmulations if every interpretation that globally C;-simulates a model of T
is a model of T

Theorem 10. FEvery ALC-conservatively EL) -rewritable ALC TBozx of depth 1
1s preserved under global Cq-simulations.

This result can be used to show, for example, that 7 = {A C Vr.B} is not
ALC-conservatively £L | -rewritable. For the interpretation below is not a model

B
\/
A

of T, but by removing from it the rightmost r-arrow, we obtain an interpretation
which is globally C;-simulated by J and is a model of 7. It remains open whether
preservation under products and global Ci-simulations is sufficient for an ALC
TBox of depth 1 to be ALC-conservatively £L | -rewritable.

5 Conclusion

Conservative rewritings of ontologies provide more flexibility than equivalent
rewritings and are more natural in practice. However, they are also techni-
cally much more challenging to analyse. For future work, we are particularly
interested in better understanding conservative rewritings to ££ and related
logics. For example, can we find transparent model-theoretic characterizations
and explicit axiomatizations of the rewritten TBoxes? The results in Section 4
should provide a good starting point. Another challenging problem could be to
investigate rewritability to OWL 2 QL—essentially DL-Lite.,,. extended with
role inclusions—which preserves answers to conjunctive queries over all possible
ABoxes. (Recall [6] that conjunctive query inseparability for OWL 2 QL TBoxes
is ExpTIME-complete.)

206

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family
and relations. Journal of Artificial Intelligence Research 36, 1-69 (2009)

Baader, F.: A formal definition for the expressive power of terminological knowl-
edge representation languages. Journal of Logic and Computation 6(1), 33-54
(1996)

. Baader, F.: The description logic handbook: Theory, implementation, and appli-

cations. Cambridge University Press, Cambridge (2007)

Baader, F., Brandt, S., Lutz, C.: Pushing the ££ Envelope. In: Proceedings of
IJCAL pp. 364-369 (2005)

Bienvenu, M., ten Cate, B., Lutz, C., Wolter, F.: Ontology-based data access:
A study through disjunctive datalog, CSP, and MMSNP. ACM Transactions of
Database Systems 39(4), 33 (2014)

Botoeva, E., Kontchakov, R., Ryzhikov, V., Wolter, F., Zakharyaschev, M.: Query
inseparability for description logic knowledge bases. In: Proceedings of KR (2014)
Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
Journal of Automated Reasoning 39(3), 385-429 (2007)

Carral, D., Feier, C., Grau, B.C., Hitzler, P., Horrocks, I.: EL-ifying ontologies. In:
Proceedings of IJCAR. pp. 464-479 (2014)

Carral, D., Feier, C., Romero, A.A., Grau, B.C., Hitzler, P., Horrocks, I.: Is your
ontology as hard as you think? Rewriting ontologies into simpler DLs. In: Proceed-
ings of DL. pp. 128-140 (2014)

De Giacomo, G.: Decidability of Class-Based Knowledge Representation For-
malisms. Ph.D. thesis, Universitd di Roma (1995)

Ding, Y., Haarslev, V., Wu, J.: A new mapping from ALCI to ALC. In: Proceedings
of DL (2007)

Ghilardi, S., Lutz, C., Wolter, F.: Did I damage my ontology? A case for conser-
vative extensions in description logics. In: Proceedings of KR. pp. 187-197 (2006)
Kaminski, M., Grau, B.C.: Sufficient conditions for first-order and datalog
rewritability in ELU. In: Proceedings of DL. pp. 271-293 (2013)

Kazakov, Y.: Consequence-driven reasoning for horn SHIQ ontologies. In: Proceed-
ings of IJCAL pp. 20402045 (2009)

Konev, B., Lutz, C., Walther, D., Wolter, F.: Formal properties of modularisa-
tion. In: Modular Ontologies: Concepts, Theories and Techniques for Knowledge
Modularization, pp. 25-66 (2009)

Konev, B., Lutz, C., Walther, D., Wolter, F.: Model-theoretic inseparability and
modularity of description logic ontologies. Artificial Intelligence 203, 66-103 (2013)
Lutz, C., Piro, R., Wolter, F.: Description logic TBoxes: Model-theoretic charac-
terizations and rewritability. In: Proceedings of IJCAI (2011)

Lutz, C., Wolter, F.: Deciding inseparability and conservative extensions in the
description logic ££. Journal of Symbolic Computation pp. 194-228 (2010)

Lutz, C., Wolter, F.: Foundations for uniform interpolation and forgetting in ex-
pressive description logics. In: Proceedings of IJCAIL pp. 989-995 (2011)

207

Exact Learning Description Logic Ontologies from Data
Retrieval Examples

Boris Konev, Ana Ozaki, and Frank Wolter

Department of Computer Science, University of Liverpool, UK

Abstract. We investigate the complexity of learning description logic ontologies
in Angluin et al.’s framework of exact learning via queries posed to an oracle. We
consider membership queries of the form “is individual @ a certain answer to a data
retrieval query ¢ in a given ABox and the unkown target TBox?”” and equivalence
queries of the form “is a given TBox equivalent to the unknown target TBox?”. We
show that (i) DL-Lite TBoxes with role inclusions and ££Z concept expressions
on the right-hand side of inclusions and (ii) ££ TBoxes without complex concept
expressions on the right-hand side of inclusions can be learned in polynomial time.
Both results are proved by a non-trivial reduction to learning from subsumption
examples. We also show that arbitrary £ £ TBoxes cannot be learned in polynomial
time.

1 Introduction

Building an ontology is prone to errors, time consuming, and costly. The research com-
munities has addressed this problem in many different ways, for example, by supplying
tool support for editing ontologies [15, 4, 9], developing reasoning support for debug-
ging ontologies [18], supporting modular ontology design [17], and by investigating
automated ontology generation from data or text [8, 6, 5, 14]. One major problem when
building an ontology is the fact that domain experts are rarely ontology engineering ex-
perts and that, conversely, ontology engineers are typically not familiar with the domain
of the ontology. An ontology building project therefore often relies on the successful
communication between an ontology engineer (familiar with the semantics of ontology
languages) and a domain expert (familiar with the domain of interest). In this paper, we
consider a simple model of this communication process and analyse, within this model,
the computational complexity of reaching a correct domain ontology. We assume that

— the domain expert knows the domain ontology and its vocabulary without being able
to formalize or communicate this ontology;

— the domain expert is able to communicate the vocabulary of the ontology and shares
it with the the ontology engineer. Thus, the domain expert and ontology engineer
have a common understanding of the vocabulary of the ontology. The ontology
engineer knows nothing else about the domain.

— the ontology engineer can pose queries to the domain expert which the domain
expert answers truthfully. Assuming that the domain expert can interpret data in
her area of expertise, the main queries posed by the ontology engineer are based on
instance retrieval examples:

208

e assume a data instance .4 and a query ¢(z) are given. Is the individual a a
certain answer to query ¢(z) in A and the ontology O?
In addition, we require a way for the ontology engineer to find out whether she
has reconstructed the target ontology already and, if this is not the case, to request
an example illustrating the incompleteness of the reconstruction. We abstract from
defining a communication protocol for this, but assume for simplicity that the
following query can be posed by the ontology engineer:
e Is this ontology H complete? If not, return a data instance A, a query ¢(z), and
an individual a such that a is a certain answer to ¢(z) in .4 and the ontology O
and it is not a certain answer to ¢(x) in A and the ontology H.

Given this model, our question is whether the ontology engineer can learn the target
ontology O and which computational resources are required for this depending on the
ontology language in which the ontology O and the hypothesis ontologies H are formu-
lated. Our model obviously abstracts from a number of fundamental problems in building
ontologies and communicating about them. In particular, it makes the assumption that
the domain expert knows the domain ontology and its vocabulary (without being able
to formalize it) despite the fact that finding an appropriate vocabulary for a domain of
interest is a major problem in ontology design [8]. We make this assumption here in
order to isolate the problem of communication about the logical relationships between
known vocabulary items and its dependence on the ontology language within which the
relationships can be formulated.

The model described above is an instance of Angluin et al.’s framework of exact
learning via queries to an oracle [1]. The queries using instance retrieval examples can
be regarded as membership queries posed by a learner to an oracle and the completeness
query based on a hypothesis H can be regarded as an equivalence query by the learner to
the oracle. Formulated in Angluin’s terms we are thus interested in whether there exists
a deterministic learning algorithm that poses membership and equivalence queries of
the above form to an oracle and that learns an arbitrary ontology over a given ontology
language in polynomial time. We consider polynomial learnability in three distinct DLs:
we show that DL-Lite ontologies with role inclusions and arbitrary ££Z concepts on
the right-hand side of concept inclusions can be learned in polynomial time if database
queries in instance retrieval examples are £LZ instance queries (or, equivalently, acyclic
conjunctive queries). We call this DL DL—Lite% and note that it is the core of the web
ontology language profile OWL2 QL. We also note that without complex £LZ concepts
on the right-hand side of concept inclusions, polynomial learnability would be trivial as
only finitely many non-equivalent such TBoxes exist over a given vocabulary of concept
and role names. The second DL we consider is ££ which is the logic underpinning the
web ontology language profile OWL?2 EL. We show that ££ TBoxes cannot be learned
in polynomial time using the protocol above if the database queries in instance retrieval
examples are £ L instance queries. We then consider the fragment £L,s of ££ without
complex concepts on the right-hand side of concept inclusions and prove that it can be
learned in polynomial time using the above protocol with instance retrieval examples.
The proofs of the positive learning results are by reduction to polynomial time learnability
results for DL-Lite% and £Ls for the case in which concept subsumptions rather than
instance retrieval examples are used in the communication between the learner and the

209

oracle [12]. Our move from concept subsumptions to data retrieval examples is motivated
by the observation that domain experts are often more familiar with querying data in their
domain than with the logical notion of subsumption between complex concepts. Detailed
proofs are provided at http://csc.liv.ac.uk/~frank/publ/publ.html.

2 Preliminaries

Let N¢ and Nr be countably infinite sets of concept and role names, respectively. The
dialect DL—Lite% of DL-Lite is defined as follows [7]. A role is a role name or an inverse
role r~ with » € Ng. A role inclusion (RI) is of the form r C s, where r and s are
roles. A basic concept is either a concept name or of the form 3r. T, with r a role. A
DL-Lite% concept inclusion (CI) is of the form B C C, where B is a basic concept
expression and C'is an £LZ concept expression, that is, C' is formed according to the
rule C,D :=A| T | CND|3r.C | 3Ir .C where A ranges over Nc and r ranges
over Ng. A DL—Lite?2 TBox is a finite set of DL—Lite?2 ClIs and RIs. As usual, an ££
concept expression is an ELT concept expression that does not use inverse roles, an EL
concept inclusion has the form C C D with C and D £L concept expressions, and a
(general) EL TBox is a finite set of £L concept inclusions [2]. We also consider the
restriction £ Ljs of general £L£ TBoxes where only concept names are allowed on the
right-hand side of concept inclusions. The size of a concept expression C', denoted with
|C|, is the length of the string that represents it, where concept names and role names are
considered to be of length one. A TBox signature is the set of concept and role names
occurring in the TBox. The size of a TBox T, denoted with |7, is > pes |C| + | D].

Let N; be a countably infinite set of individual names. An ABox A is a finite non-
empty set containing concept name assertions A(a) and role assertions r(a,b), where
a, b are individuals in Nj, A is a concept name and r is a role. Ind(.A) denotes the set of
individuals that occur in A. A is a singleton ABox if it contains only one ABox assertion.
Assertions of the form C'(a) and r(a, b), where a,b € Ny, C an £LT concept expression,
and r € N, are called instance assertions. Note that instance assertions of the form
C'(a) with C not a concept name nor C' = T do not occur in ABoxes. The semantics
of description logic is defined as usual [3]. We write Z = « to say that an inclusion or
assertion « is true in Z. An interpretation Z is a model of a KB (T, A) if Z |= « for all
aeTUA (T, A) = ameans that Z |= « for all models Z of (T, .A).

A learning framework § is a triple (X, £, 1), where X is a set of examples (also
called domain or instance space), £ is a set of learning concepts' and y is a mapping
from £ to 2X. The subsumption learning framework §s, studied in [12], is defined as
(Xs, L, us), where L is the set of all TBoxes that are formulated in a given DL; X5 is
the set of subsumption examples of the form C T D, where C, D are concept expressions
of the DL under consideration; and ps(7) is definedas {C C D € Xs | T = C C D},
for every T € L. It should be clear that us(7) = pus(7”) if, and only if, the TBoxes T
and 7 entail the same set of inclusions, that is, they are logically equivalent.

"' In the learning literature (e.g., [1]), the term ‘learning concept’ is often defined as a set of
examples. We do not distinguish between learning concepts and their representations and only
consider representable learning concepts to emphasize on the task of identifying a TBox that is
logically equivalent to the target TBox.

210

We study the data retrieval learning framework §p defined as (Xp, £, up), where
L is same as in Fs; X is the set of data retrieval examples of the form (A, D(a)),
where A is an ABox, D(a) is a concept assertion of the DL under consideration, and
a € Ind(A); and u(7) = {(A,D(a)) € Xp | (T, A) E D(a)}. As in the case of
learning from subsumptions, ps(7) = pus(7") if, and only if, the TBoxes T and 7 are
logically equivalent.

Given a learning framework § = (X, £, i), we are interested in the exact identi-
fication of a farget learning concept [€ L by posing queries to oracles. Let MEM; x
be the oracle that takes as input some z € X and returns ‘yes’ if € u(l) and ‘no’
otherwise. We say that x is a positive example for | if x € u(l) and a negative example
for I if x ¢ p(l). Then a membership query is a call to the oracle MEM; x. Similarly,
for every [€ L, we denote by EQ; x the oracle that takes as input a hypothesis learning
concept h € L and returns ‘yes’, if u(h) = u(l), or a counterexample x € pu(h) & p(l)
otherwise, where & denotes the symmetric set difference. An equivalence query is a call
to the oracle EQ; x.

We say that a learning framework (X, £, u) is exact learnable if there is an algorithm
A such that for any target [€ £ the algorithm A always halts and outputs I’ € £ such
that p(1) = p(l’) using membership and equivalence queries answered by the oracles
MEM; x and EQ; x, respectively. A learning framework (X, L, i) is polynomially
exact learnable if it is exact learnable by an algorithm A such that at every step® of
computation the time used by A up to that step is bounded by a polynomial p(||, |z|),
where [is the target and € X is the largest counterexample seen so far>. As argued in
the introduction, for learning subsumption and data retrieval learning frameworks we
additionally assume that the signature of the target TBox is always known to the learner.

An important class of learning algorithms—in particular, all algorithms presented
in [12, 10, 16] fit in this class—always make equivalence queries with hypotheses h
which are polynomial in the size of [and such that (h) C (1), so that counterexamples
returned by the EQ; x oracles are always positive. We say that such algorithms use
positive bounded equivalence queries.

3 Polynomial Time Learnability

In this section we prove polynomial time exact learnability of the DL—Lite%'2 and ELps
data retrieval learning frameworks. These frameworks are instances of the general
definition given above, where the concept expression D in a data retrieval example
(A, D(a)) is an ELT concept expression in the DL-Lite% framework and an ££ concept
expression in the €L framework, respectively.

The proof is by reduction to learning from subsumptions. We illustrate its idea for
& Ljps. To learn a TBox from data retrieval examples we run a learning from subsumptions
algorithm as a ‘black box’. Every time the learning from subsumptions algorithm makes
a membership or an equivalence query we rewrite the query into the data setting and pass
it on to the data retrieval oracle. The oracle’s answer, rewritten back to the subsumption

% We count each call to an oracle as one step of computation.
3 We assume some natural notion of a length of an example and a learning concept I, denoted
|| and ||, respectively.

211

A A A A A A A A
r\:/s r\:/s r\:/s r\:/s
N5 NI
A A

(,f
A <T‘\A/S

Fig. 1: An ABox A = {r(a,a), s(a,a), A(a)} and its unravelling up to level n.

setting, is given to the learning from subsumptions algorithm. When the learning from
subsumptions algorithm terminates we return the learnt TBox. This reduction is made
possible by the close relationship between data retrieval and subsumption examples. For
every TBox 7 and inclusions C' © D, one can interpret a concept expression C' as a
labelled tree and encode this tree as an ABox A with root po such that 7 = C T D
iff (7, Ac) = D(pc).

Then, membership queries in the subsumption setting can be answered with the
help of a data retrieval oracle due to the relation between subsumptions and instance
queries described above. An inclusion C' C D is a (positive) subsumption example
for some target TBox 7 if, and only if, (A¢, D(pc)) is a (positive) data retrieval
example for the same target 7. To handle equivalence queries, we need to be able to
rewrite data retrieval counterexamples returned by the data retrieval oracle into the
subsumption setting. For every TBox 7T and data retrieval query (A, D(a)) one can
construct a concept expression C4 such that (7, A) = D(a) iff T = C4 C D. Such
a concept expression C4 can be obtained by unravelling A into a tree-shaped ABox
and representing it as a concept expression. This unravelling, however, can increase the
ABox size exponentially. Thus, to obtain a polynomial bound on the running time of the
learning process, Cy T D cannot be simply returned as an answer to a subsumption
equivalence query. For example, for a target TBox 7 = {3r"™.A C B} and a hypothesis
H = (the data retrieval query (A, B(a)), where A = {r(a,a),s(a,a), A(a)}, is
a positive counterexample. The tree-shaped unravelling of A up to level n is a full
binary tree of depth n, as shown in Fig. 1. On the other hand, the non-equivalence of
T and H can already be witnessed by (A’, B(a)), where A" = {r(a,a), A(a)}. The
unravelling of A" up to level n produces a linear size ABox {r(a, az),r(az,as),...,
r(an—1,an),A(a), A(az), ..., A(a,)}, corresponding to the left-most path in Fig. 1,
which, in turn, is linear-size w.r.t. the target inclusion 3r".A C B. Notice that A’
is obtained from A by removing the s(a,a) edge and checking, using membership
queries, whether (7, A") |= g still holds. In other words, one might need to ask further
membership queries in order to rewrite answers to data retrieval equivalence queries
given by the data retrieval oracle into the subsumption setting.

We address the need of rewriting counterexamples by introducing an abstract notion
of reduction between different exact learning frameworks. To simplify notation, we
assume that both learning frameworks use the same set of learning concepts £ and only
consider positive bounded equivalence queries. This definition of reduction can be easily
extended to arbitrary learning frameworks and arbitrary queries.

212

We say that a learning framework § = (X, £, u) polynomially reduces to §' =
(X', L, p') if for some polynomials p;(+), p2(-) and p3(-,-) there exist a function f :
X' — X and a partial function g : £ x £ x X — X', defined for every (I, h, z) such
that |h| = p1(|{]), u(h) C p(l) and 2 € X, for which the following conditions hold.

- Forall 2’ € X’ we have 2’ € /(1) if, and only if, f(a’) € u(l);
For all z € X we have z € u(l) \ p(h) if, and only if, g(I, h, z) € u'(1) \ 1/ (h);

f(z) is computable in time py(|2’|);

g(l, h, x) is computable in time p3(|!|, ||) and ! can only be accessed by calls to the

membership oracle MEM; x.

As in the case of learning algorithms, we consider every call to the oracle as one step
of computation. Notice also that even though g takes h as input, the polynomial time
bound on computing g(I, h, z) does not depend on the size of & as g is only defined for
h polynomial in the size of .

Theorem 1. Let (X, L,) and (X', L, ') be learning frameworks. If there exists a
polynomial reduction from (X, L, p) to (X', L, i) and a polynomial learning algorithm
Jor (X', L, 1) that uses membership queries and positive bounded equivalence queries
then (X, L, i) is polynomially exact learnable.

We use Theorem 1 to prove that DL-Lite?2 and £L,s TBoxes can be learned in
polynomial time from data retrieval examples. We employ the following result:

Theorem 2 ([12]). The DL-Lite% and ELws subsumption learning frameworks are
polynomial time exact learnable with membership and positive bounded equivalence
queries.

As the existence of f is guaranteed by the following lemma, in what follows we prove
the existence of g and establish the corresponding time bounds.

Lemmal. Let L € {DL—Lite%7 ELins} and let C T D be an L concept inclusion. Then
(T, Ac) = D(pc) if, and only if, T |= C = D.

Polynomial Reduction for DL-Lite,f'z TBoxes We show for any target 7 and hy-
pothesis # polynomial in the size of 7 that Algorithm 1 transforms every positive
counterexample in polynomial time to a positive counterexample with a singleton ABox
(i.e., of the form {A(a)} or {r(a,b)}). Using the equivalences (7, {A(a)}) E C(a) iff
TEALCCand(T,{r(a,b)}) E C(a)iff T = 3Ir.T C C, we then obtain a positive
subsumption counterexample, so g(l, h,) is computable in polynomial time.

Given a positive data retrieval counterexample (A, C(a)), Algorithm 1 exhaustively
applies the role saturation and parent-child merging rules introduced in [12]. We say that
an instance assertion C'(a) is role saturated for (T, A) if (T, A) [~ C’'(a) whenever
(" is the result of replacing a role r by some role s € Ng N X'y with 7 £ r C s and
T E s C r, where X7 is the signature of the target TBox 7 known to the learner.
To define parent/child merging, we identify each ££Z concept C' with a finite tree T
whose nodes are labeled with concept names and edges are labeled with roles in the
standard way. For example, if C' = 3t.(AM3r.3r~.3r.B)MIs.T then Fig. 2a illustrates

213

Algorithm 1 Reducing the positive counterexample
1: Let C'(a) be an instance assertion such that (#, A) = C(a) and (7, .A) |= C(a)
2: function REDUCECOUNTEREXAMPLE(A, C(a))
3: Find a role saturated and parent/child merged C'(a) (membership queries)

4: ifC =Com..MC, then

5: Find C;, 0 < i < n, such that (H,.A) [~ C;(a)

6: C = CZ

7. if C = 3r.C’' and there is r(a, b) € A such that (T,.A) = C’(b) then
8: REDUCECOUNTEREXAMPLE(A, C’ (b))

9: else

10 Find a singleton A" C A such that (7, A") = C(a) but

11: (H, A") £ C(a) (membership queries)

12: return (A',C(a))

Tc. Now, we say that an instance assertion C'(a) is parent/child merged for T and A
if for nodes n1,ng9, ng in T such that ny is an r-successor of n1, ng is an s-successor
of ng and T = r~ = s we have (T, A) [~ C'(a) if C' is the concept that results from
identifying nq and n3. For instance, the concept in Fig. 2c is the result of identifying the
leaf labeled with B in Fig. 2b with the parent of its parent.

We present a run of Algorithm 1 for 7 = {AC 3s.B,s Cr}and H = {s C r}. As-
sume the oracle gives as counterexample (A, C(a)), where A = {¢(a, b), A(b), s(a,c)}
and C(a) = 3t.(AMN Ir.Ir~.Fr.B) M Is.T(a) (Fig. 2a). Role saturation produces
C(a) = 3t.(AN3s.3s~.3s.B) M 3s.T (a) (Fig. 2b). Then, applying parent/child merg-
ing twice we obtain C'(a) = 3t.(AM3s.B) MIs.T(a) (Fig. 2c and 2d).

(© (@

S

/s .
S S

S\ /t S\ /t

Fig. 2: Concept C being role saturated and parent/child merged.

Since (H,A) = 3t.(A 1 3s.B)(a), after Lines 4-6, Algorithm 1 updates C' by
choosing the conjunct 3¢t.(A M 3s.B). As C'is of the form 3¢.C” and there is t(a, b) € A
such that (7,.A) = C’(b), the algorithm recursively calls the function “ReduceCoun-
terExample” with A M 3s.B(b). Now, since (H,.A) & Is.B(b), after Lines 4-6, C
is updated to 3s.B. Finally, C is of the form 3t.C" and there is no ¢(b,c) € A such
that (7,.4) E C’(c). So the algorithm proceeds to Lines 11-12, where it chooses
A(b) € A. Since (T,{A(b)}) = Js.B(b) and (H,{A(b)}) ¥~ Js.B(b) we have that
TEALCIs.BandH [~ AC 3s.B.

Lemma 2. Let (A, C(a)) be a positive counterexample. Then the following holds:

1. if C'is a basic concept then there is a singleton A" C A such that (T, A") = C(a);

214

Algorithm 2 Minimizing an ABox .4
: Let A be an ABox such that (7, A) = A(a) but (H,.A) = A(a), for A € N¢, a € Ind(A).
: function MINIMIZEABOX(A)
Concept saturate A with H
for every A € Nc N X7 and a € Ind(A) such that
(T, A) = A(a) and (H, A) = A(a) do
Domain Minimize .4 with A(a)
Role Minimize 4 with A(a)

return (A)

i AN A

A

. if C is of the form Ir.C’ (or Ir~.C") and C is role saturated and parent/child
merged then either there is r(a,b) € A (orr(b,a) € A) such that (T, A) = C'(b)
or there is a singleton A’ C A such that (T, A") = C(a).

Lemma 3. For any target DL-Lite% TBox T and hypothesis DL-Lite% TBox H given
a positive data retrieval counterexample (A, C(a)), Algorithm 1 computes in time
polynomial in |T), A| and |C| a counterexample C'(b) such that (T, A") = C'(b),
where A’ C A is a singleton ABox.

’

Proof. (Sketch) Let (A, C(a)) be the input of “ReduceCounterExample”. The number
of membership queries in Line 3 is polynomial in |C| and |T|. If C' has more than
one conjunct then it is updated in Lines 4-6, so C' becomes either (1) a basic concept
or (2) of the form 3r.C" (or Ir~.C"). By Lemma 2 in case (1) there is a singleton
A" C A such that (7, A") = C(a), computed by Line 11 of Algorithm 1. In case (2)
either there is a singleton A’ C A such that (7,.A") = C(a), computed by Line 11 of
Algorithm 1, or we obtain a counterexample with a refined C'. Since the size of the refined
counterexample is strictly smaller after every recursive call of “ReduceCounterExample”,
the total number of calls is bounded by |C. a

Using Theorem 2 and Theorem 1 we obtain:

Theorem 3. The DL-Lite% data retrieval framework is polynomially exact learnable.

Polynomial Reduction for £ L,s TBoxes In this section we give a polynomial algo-
rithm computing g for £Lxs. First we note that the concept assertion in data retrieval
counterexamples (A, D(a)) can always be made atomic. Let X1 be the signature of the
target TBox 7.

Lemma 4. If (A, D(a)) is a positive counterexample then by posing polynomially many
membership queries one can find a concept name A € X1 and an individual b € Ind(A)
such that (A, A(b)) is also a counterexample.

Thus it suffices to show that given a positive counterexample (A, D(a)) with D €
Nc, one can compute an £L concept expression C' bounded in size by | 7| such that
(T,{C(b)}) &= A(b) and (H,{C(b)}) = A(b), where A € Nc. As (T,{C(b)}) E
A(b) if and only if T |= C C A, we obtain a positive subsumption counterexample.
Our algorithm for computing g is based on two operations: minimization, computed by

215

Algorithm 3 Computing a tree shaped ABox
1: function FINDTREE(A)
2 MINIMIZEABOX(A)
3 while there is a cycle ¢ in A do
4: Unfold a € Ind(A) in cycle ¢
5.
6
7

MINIMIZEABOX(.A)

Let C be the concept expression corresponding to .4 with counterexample A(a).
return (C(a),A(a))

Algorithm 2, and unfolding. Algorithm 2 minimizes a given ABox with the following
rules.

(Concept saturate A with H) If A(a) ¢ A and (H,A) = A(a) then replace A by
AU{A(a)}, where A € Nc N X7 and a € Ind(A).

(Domain Minimize .A with A(a)) If A(a) is a counterexample and (7, A=) = A(a)
then replace A by A~%, where A~ is the result of removing from A all ABox assertions
in which b occurs.

(Role Minimize A with A(a)) If A(a) is a counterexample and (7, A~"(¢)) =
A(a) then replace A by A~"(¢) where A~"("¢) be obtained by removing a role
assertion 7(b, ¢) from A.

Lemma 5. Given a positive counterexample (A, D(a)) with D € Nc¢, Algorithm 2
computes in polynomially many steps with respect to | A|, |H|, and |T| an ABox A’ such
that |Ind(A")| < |T| and (A’, A(b)) is a positive counterexample, for some A € Nc and
b€ Ind(A).

It remains to show that A can be made tree-shaped. We say that .4 has an (undirected)
cycle if there is a finite sequence ag 71 - a1 - ... - Tk - ag such that (i) ag = ay and (ii) there
are mutually distinct assertions of the form r;41(a;, a;+1) or r;41(a;41,a;) in A, for
0 < i < k. The unfolding of acycle ¢ = ag-r1-ay-...-T;-ay in a given ABox A is obtained
by replacing c by the cycle ¢ = ag-71-a1-...- T Ap_1 Tk Ao T1 *** Ap_1 Tk - Gg, Where
a; are fresh individual names, 0 < ¢ < k—1, in such a way that (i) if r(a;, d) € A, for an
individual d not in the cycle, then r(a;, d) € A; and (ii) if A(a;) € Athen A(a;) € A.

We prove in the full version that after every unfolding-minimisation step in Algo-
rithm 3 the ABox A on the one hand becomes strictly larger and on the other does not
exceed the size of the target TBox 7. Thus Algorithm 3 terminates after a polynomial
number of steps yielding a tree-shaped counterexample.

Lemma 6. Algorithm 3 computes a minimal tree shaped ABox A with size polynomial
in | T| and runs in polynomially many steps in |T| and | A|.

Using Theorem 2 and Theorem 1 we obtain:

Theorem 4. The £ Ls data retrieval framework is polynomially exact learnable.

4 Limits of Polynomial Time Learnability

Our proof of non-polynomial learnability of general ££ TBoxes from data retrieval
examples extends previous results on non-polynomial learnability of ££ TBoxes from

216

subsumptions [12]. We start by giving a brief overview of the construction in [12], show
that it fails in the data retrieval setting and then demonstrate how it can be modified.

The non-learnability proof in [12] proceeds as follows. A learner tries to exactly
identify one of the possible target TBoxes {7 | L € £,,}, for a superpolynomial in
n set £, defined below. At every stage of computation the oracle maintains a set of
TBoxes .S, which the learner is unable to distinguish based on the answers given so far.
Initially S = {71 | L € £,}. It has been proved that for any €L inclusion C C D either
T E C C D for every L € £, or the number of L € £, such that 7, = C C D
does not exceed |C|. When a polynomial learner asks a membership query C' C D the
oracle answers ‘yes’ if T, = C C D for every L € £,, and ‘no’ otherwise. In the
latter case the oracle removes polynomially many 77, such that 7;, = C' C D from S.
Similarly, for any equivalence query with hypothesis H asked by a polynomial learning
algorithm there exists a polynomial size inclusion C' C D, which can be returned as a
counterexample and that excludes only polynomially many TBoxes from S. Thus, every
query to the oracle reduces the size of S at most polynomially in n, but then the learner
cannot distinguish between the remaining TBoxes of our initial superpolynomial set S.

The set of indices £,, and the target TBoxes 7, are defined as follows. Fix two
role names r and s. An n-tuple L is a sequence of role sequences (o1, ..., 0y,), where
every o; is a sequence of role names r and s, thatis o; = o} 0?...0" with o] € {r, s}.
Then £, is a set of n-tuples such that for every L, L’ € £, with L = (o4,...,04,),
L'=(o1,...,0,),ifo; = o) then L = L' and i = j. There are N = [2" /n| different
tuples in £,,. For every n > 0 and every n-tuple L = (o4, . .., 0,) we define an acyclic
EL TBox Ty, as the union of 7o = {X; C Ir.X;11 M3s.X;11 | 0 < i < n} and the
following inclusions:

Al E 30’1.M|_|X0 An E HUn.MﬂXO
Bl E 30'1.M|_|X0 Bn E E'O’TL.MHXO

A=XoN3do. MM ---M3o,,.M.

where the expression 3o .C stands for 3o'.302...30™.C, M is a concept name that
‘marks’ a designated path given by o and 7 generates a full binary tree whose edges are
labelled with the role names r and s and with X at the root, X; at level 1 and so on.

In contrast to the subsumption framework, every 77, can be exactly identified using
data retrieval queries. For example, as Xo M Jdoy. M M ---MN3do, M T A € Tp,a
learning from data retrieval queries algorithm can learn all the sequences in the n-
tuple L = (o1, ...,0,), by defining an ABox A = {Xy(a1), (a1, a2), s(a1,as),. ..,
r(an—1,an), $(@n-1,an), M(a,)} and then proceeding with unfolding and minimizing
A via membership queries of the form (77, A) | A(ay).

To show the non-tractability for data retrieval queries, we first modify S in such a
way that the concept expression which ‘marks’ the sequences in L = (o1, ...,0,) is
now given by the set 98,, of all conjunctions F I1--- 1 F,, where F; € {E;, E;}, for
1 <4 < n. Intuitively, every member of 8, encodes a binary string of length n with F;
encoding 1 and E; encoding 0. For every L € £, and every B € B,, we define 7.2 as
the union of 7y and the concept inclusions defined above with B replacing M.

Then for any sequence o of length n there exists at most one L € £, at most
one 1 < ¢ < n and at most one B € B,, such that 7'LB E A, C Jo.B and ’TLB =

217

B; C Jo0.B. Notice that the size of each 72 is polynomial in n and so £,, contains
superpolynomially many n-tuples in the size of each 72, with L € £,, and B € B,,.
Every TLB entails, among other inclusions, |_|?:1 C; C A, where every C} is either A; or
B;. Let X, be the signature of the TBoxes TLB and consider a TBox 7* defined as the
following set of concept inclusions:

E'?".(El I E:'1) E (E1 [Ejl), (E1 I Ejl) E E'T.(El I El)’
38.(E1 I El) E (E1 M El), (El I El) E E'S.(El I El),

(E;NE;)C A foreveryl <i<mnandevery A€ ¥, NNc

The basic idea of extending our TBoxes with 7* is that if a € (E; N E;)%4, for
an ABox A and individual a € Ind(A), then for all L € £, and B € %B,,, we have
(TB, A) | D(b), where D is any EL concept expression over X, and b € Ind(A) is
any successor or predecessor of a (or a itself). This means that for each individual in
A at most one B of the 2™ binary strings in ®B,, can be distinguished by data retrieval
queries. The following lemma enables us to respond to membership queries without
eliminating too many L € £,, and B € B,, used to encode 7,2 in the set of TBoxes that
the learner cannot distinguish.

Lemma 7. For any ABox A, any EL concept assertion D(a) over X, and any a €
Ind(A), if there is L € £, and B € B,, such that (TB U T*, A) = D(a) then:

— either (TBUT*, A) | D(a), for every L € £, and B € B, or
- (TIE UT*, A) = D(a) for at most |D| elements L € £, or
- (T2 UT*, A) = D(a) for at most | A| elements B € B,,.

The next lemma is immediate from Lemma 15 presented in [12]. It shows how the
oracle can answer equivalence queries eliminating at most one L € £,, used to encode
T2 in the set S of TBoxes that the learner cannot distinguish.

Lemma 8. For any n > 1 and any EL TBox H in X, with |H| < 2", there exists an
ABox A, an individual a € Ind(A) and an EL concept expression D over X, such that
(i) the size of A plus the size of D does not exceed 6n and (ii) if (H, A) E D(a) then
(TB, A) = D(a) for at most one L € £,, and if (H,A) = D(a) then for every L € £,
we have (TB UT*, A) = D(a).

Then, by Lemmas 7 and §, we have that: (i) any polynomial size membership query
can distinguish at most polynomially many TBoxes from .S; and (ii) if the learner’s
hypothesis is polynomial size then there exists a polynomial size counterexample that
the oracle can give which distinguishes at most polynomially many TBoxes from S.

Theorem 5. The EL data retrieval framework is not polynomially exact learnable.

5 Future Work

We plan to consider an extension of the learning protocol in which arbitrary conjunctive
queries are admitted in queries to the domain expert/oracle. We then still have polynomial
time learnability for £ L5 but conjecture non-polynomial time learnability for DL-Lite%.
Another extension is exact learnability for the Horn-extension of DL-Lite3, for which
we conjecture that polynomial time learnability still holds.

218

Bibliography

[1] D. Angluin. Queries and concept learning. Machine Learning, 2(4):319-342, 1987.

[2] F. Baader, S. Brandt, and C. Lutz. Pushing the ££ envelope. In IJCAI, pages
364-369. Professional Book Center, 2005.

[3] F. Baader, D. Calvanese, D. McGuiness, D. Nardi, and P. Patel-Schneider. The De-
scription Logic Handbook: Theory, implementation and applications. Cambridge
University Press, 2003.

[4] S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. Oiled: a reason-able ontology
editor for the semantic web. In KI 2001: Advances in Artificial Intelligence, pages
396-408. Springer, 2001.

[5] D. Borchmann and F. Distel. Mining of ££-GCls. In The 11th IEEE International
Conference on Data Mining Workshops, Vancouver, Canada, 11 December 2011.
IEEE Computer Society.

[6] P. Buitelaar, P. Cimiano, and B. Magnini, editors. Ontology Learning from Text:
Methods, Evaluation and Applications. 10S Press, 2005.

[7] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
Journal of Automated reasoning, 39(3):385-429, 2007.

[8] P. Cimiano, A. Hotho, and S. Staab. Learning concept hierarchies from text corpora
using formal concept analysis. J. Artif. Intell. Res. (JAIR), 24:305-339, 2005.

[9] J. Day-Richter, M. A. Harris, M. Haendel, S. Lewis, et al. Obo-edit an ontology
editor for biologists. Bioinformatics, 23(16):2198-2200, 2007.

[10] M. Frazier and L. Pitt. Learning From Entailment: An Application to Propositional
Horn Sentences. In ICML, pages 120-127, 1993.

[11] B. Konev, M. Ludwig, D. Walther, and F. Wolter. The logical difference for the
lightweight description logic EL. J. Artif. Intell. Res. (JAIR), 44:633-708, 2012.

[12] B. Koneyv, C. Lutz, A. Ozaki, and F. Wolter. Exact learning of lightweight descrip-
tion logic ontologies. In Principles of Knowledge Representation and Reasoning:
Proceedings of the Fourteenth International Conference, KR 2014, Vienna, Austria,
July 20-24, 2014, 2014.

[13] C. Lutz, R. Piro, and F. Wolter. Description logic TBoxes: Model-theoretic charac-
terizations and rewritability. In IJCAI pages 983-988, 2011.

[14] Y. Ma and F. Distel. Learning formal definitions for snomed CT from text. In
Artificial Intelligence in Medicine - 14th Conference on Artificial Intelligence in
Medicine, AIME 2013, Murcia, Spain, May 29 - June 1, 2013. Proceedings, pages
73-77,2013.

[15] M. A. Musen. Protégé ontology editor. Encyclopedia of Systems Biology, pages
1763-1765, 2013.

[16] C. Reddy and P. Tadepalli. Learning First-Order Acyclic Horn Programs from
Entailment. In in Proceedings of the 15th International Conference on Machine
Learning; (and Proceedings of the 8th International Conference on Inductive Logic
Programming, pages 23-37. Morgan Kaufmann, 1998.

219

[17] H. Stuckenschmidt, C. Parent, and S. Spaccapietra, editors. Modular Ontologies:
Concepts, Theories and Techniques for Knowledge Modularization, volume 5445
of Lecture Notes in Computer Science. Springer, 2009.

[18] H. Wang, M. Horridge, A. Rector, N. Drummond, and J. Seidenberg. Debugging

OWL-DL ontologies: A heuristic approach. In The Semantic Web—ISWC 2005,
pages 745-757. Springer, 2005.

220

Semantics of SPARQL
under OWL 2 Entailment Regimes

Egor V. Kostylev and Bernardo Cuenca Grau

Department of Computer Science, University of Oxford

Abstract. We study the semantics of SPARQL queries with optional
matching features under entailment regimes. We argue that the normative
semantics may lead to answers that are in conflict with the intuitive mean-
ing of optional matching, where unbound variables naturally represent
unknown information. We propose an extension of the SPARQL algebra
that addresses these issues and is compatible with any entailment regime
satisfying the minimal requirements given in the normative specification.
We then study the complexity of query evaluation and show that our
extension comes at no cost for regimes with an entailment relation of
reasonable complexity. Finally, we show that our semantics preserves the
known properties of optional matching that are commonly exploited for
static analysis and optimisation.

1 Introduction

SPARQL became the standard language for querying RDF in 2008 [1]. Since
then, the theoretical properties of SPARQL have been the subject of intensive
research efforts and are by now relatively well-understood [2-7]. At the same
time, SPARQL has become a core technology in practice, and most RDF-based
applications rely on SPARQL endpoints for query formulation and processing.

The functionality of many such applications is enhanced by OWL 2 ontolo-
gies [8], which are used to provide background knowledge about the application
domain, and to enrich query answers with implicit information. A new version of
SPARQL, called SPARQL 1.1, was released in 2013 [9]. This new version captures
the capabilities of OWL 2 by means of the so-called entailment regimes [10]: a
flexible mechanism for extending SPARQL query answering to the W3C stan-
dards layered on top of RDF. A regime specifies which RDF graphs and SPARQL
queries are legal (i.e., admissible) for the regime, as well as an entailment relation
that unambiguously defines query answers for all legal queries and graphs.

The semantics of SPARQL under entailment regimes is specified for the
conjunctive fragment, where queries are represented as basic graph patterns (i.e.,
sets of RDF triples with variables) and query answers are directly provided by
the entailment relation of the regime. Roughly speaking, to check whether a
mapping from variables of the query to nodes in the RDF graph is an answer to
the query, one first transforms the query itself into an RDF graph by substituting
each variable with the corresponding value, and then checks whether this graph
is entailed in the regime by the original data graph [10-12].

221

When one goes beyond the basic fragment of SPARQL the language becomes
considerably more complicated, but the effect of entailment regimes on the query
semantics remains circumscribed to basic graph patterns [13,14]. To evaluate a
query one must first evaluate its component basic patterns using the relevant
regime and then compose the results by means of the SPARQL algebra operations.

Of particular interest from both a theoretical and a practical perspective
is the extension of the basic fragment of SPARQL with the optional matching
feature, which is realised in the language by means of the OPTIONAL operator
(abbreviated by OPT in this paper). This feature allows the optional information
to be added to query answers only when the information is available in the RDF
data graph: if the optional part of the query does not match the data, then the
relevant variables are left unbounded in query answers.

One of the main motivations behind optional matching in SPARQL is to deal
with the “lack of regular, complete structures in RDF graphs” (see [9] Section 6)
and hence with the inherent incompleteness of information in RDF data sources
where only partial information about the relevant Web resources is typically
available. In this setting, an unbound variable in an answer mapping is naturally
interpreted as a “null” value, meaning that there might exist a binding for this
variable if we consider other information elsewhere on the Web, but none is
currently available in the RDF graph at hand. Another (and slightly different)
motivation for optional matching was to introduce a mechanism for “not rejecting
solutions because some part of the query pattern does not match” [1]; in this
sense, one would naturally expect optional matching to either extend solutions
with the optional information, or to leave solutions unchanged. Both readings
of optional matching coincide if we focus just on RDF, and they are faithfully
captured by the normative semantics. In this paper we argue that they naturally
diverge once we consider more sophisticated entailment regimes. Furthermore,
the differences that arise can have a major impact on expected answers.

To make this discussion concrete, let us briefly discuss a simple example of
an RDF graph representing the direct train lines between UK cities as well as
ferry boat transfers from UK cities to international destinations. Let this graph
be exhaustive in its description of rail connections, but much less so in what
concerns ferry transfers. We may exploit optional matching to retrieve all direct
train connections between cities X and Y, extended with ferry transfers from Y
to other cities Z whenever possible. Under the normative semantics of SPARQL
we may obtain answers (London, Ozford, —) and (London, Holyhead, —) provided
the graph has information about direct train lines from London to both Ozford
and Holyhead, but no matching can be found in the graph for ferry connections
starting from Ozxford or Holyhead to other cities. Suppose next that the data
graph is extended to a graph corresponding to an OWL 2 ontology in which
it is stated that inland cities do not have ferry connections, and that Ozford
is an inland city. The ontology establishes a clear distinction between Ozford
and Holyhead: whereas the former is inland and cannot have ferry connections,
the latter may still well be (and indeed is) a coastal city offering a number of
transfers to international destinations. The normative OWL 2 direct semantics

222

entailment regime, however, does not distinguish between the case of Holyhead
(where the information about ferry connections is still unknown) and Ozford
(where the information is certain), and both answers would be returned. In this
way, the normative semantics adopts the reading of optional matching where the
optional information is used to complete (but never discard) query answers. In
contrast, under the reading of unbounded variables as placeholders for unknown
information, one would naturally expect the answer on Ozford to be ruled out.
Indeed, if our goal were to find rail to ferry transfers starting from London and
terminating in Dublin by first querying this graph and then looking for the
missing information elsewhere on the Web, discarding cities like Ozford on the
first stage would significantly facilitate our task.

In this paper, we propose an alternative semantics for the OPT operator which
adopts the aforementioned reading of optional matching as an incomplete “null”.
We call our semantics strict, which reflects the fact that it rules out those answers
in which unbound variables in the optional part cannot be matched to any
consistent extension of the input graph. Our semantics is given as an extension of
the SPARQL algebra and hence satisfies the expected compositionality properties
of algebraic query languages. Furthermore, it is backwards-compatible with the
normative semantics for regimes in which all legal graphs are consistent, such
as the RDF regime [10]. We also study the complexity of query evaluation and
show that our extension comes at no cost for regimes in which entailment is not
harder than query evaluation under normative semantics for the RDF regime.
Finally, we show that our semantics preserves the known properties of optional
matching that are commonly exploited for static analysis and optimisation.

This paper is an updated version of the work [15].

2 SPARQL 1.1 under Entailment Regimes

In this section, we formalise the syntax and normative semantics of a core
fragment of SPARQL 1.1 with optional matching under entailment regimes. Our
formalisation is based on the normative specification documents [9-11] and builds
on the well-known foundational works on SPARQL [2,3,6].

2.1 Syntax

Let I, L, and B be infinite sets of IRIs, literals, and blank nodes, respectively.
The set of RDF terms T is IULUB. An RDF triple is a triple (s p o) from
T x I x T, with s called subject, p predicate, and o object. An (RDF') graph is
a finite set of RDF triples. Assume additionally the existence of a countably
infinite set V of variables disjoint from T. A triple pattern is a tuple from
(TUV) x (IUV)x (TUV). A basic graph pattern (BGP) is a finite set of triple
patterns. Built-in conditions are conditions of the form bound(?X), ?7X = ¢, and
?X =7Y for 7X,7Y € V and ¢ € T, and their Boolean combinations.

Complex graph patterns are constructed from BGPs using a range of available
operators that are applicable to graph patterns and built-in conditions. We

223

focus on the AND-OPT-FILTER fragment (i.e., we consider neither union nor
projection), which is widely accepted to be the fundamental core of SPARQL [2].
In this setting, graph patterns are inductively defined as follows (e.g., see [11]):

1. every BGP is a graph pattern;
2. if P; and P, are graph patterns that share no blank nodes then (P; AND P)
and (P; OPT P,) are graph patterns (called AND and OPT patterns); and
3. if P is a graph pattern and R is a built-in condition, then (P FILTER R) is a
graph pattern (called FILTER pattern).
In what follows vars(P) (respectively triples(P)) denotes all the variables from V
(respectively all triple patterns) that appear in a graph pattern P.

We conclude with the definition of a special class of graph patterns with
intuitive behaviour [2]. A graph pattern is well-designed if and only if for each
of its OPT subpatterns (P; OPT P,) the pattern P; mentions all the variables
of P, which appear outside this subpattern. Note that all graph patterns in the
examples of this paper are well-designed.

2.2 Semantics of BGPs under Entailment Regimes

The semantics of graph patterns is defined in terms of mappings; that is, partial
functions from variables V to terms T. The domain dom(u) of a mapping p is
the set of variables on which y is defined. The set of triples obtained from a BGP
P by replacing each ?X from dom(u) by ©(?X) is denoted by p(P).
Two mappings p1 and ps are compatible (written as pq ~ o) if p1(?7X) =
u2(?X) for all variables ?7X which are in both dom(u) and dom(us). If g1 ~ ug,
then we write p; U puo for the mapping obtained by extending g1 with ps on
variables undefined in p1. A mapping p; is subsumed by a mapping ps (written
1 C o) iff pug ~ po and dom(uq) € dom(usg). Finally, a set of mappings (2 is
subsumed by a set of mappings (2o (written 2; C (25) iff for each puy € 21 there
exists pg € (25 such that py C po.
Based on [10], an (entailment) regime R is a tuple (R, G, P,C,[]), where

. R is a set of reserved IRIs from I;

. G is the set of legal graphs;

. P is the set of legal BGPs;

. C is the set of consistent graphs, such that C C G; and

. [-] is the query answering function, that takes a graph G from G and a
BGP P from P and returns either a set [P]e of mappings u such that
dom(u) = vars(P), if P € C; or Err, otherwise.

As in most theoretical works on SPARQL [2,3,6,16], we assume that the query

answering function returns a set of mappings, rather than a multiset.

The definitions of query answering and consistency in a regime are based on
an entailment relation [10], which is also specified as part of the regime. We do not
model the entailment relation explicitly, but assume two conditions that capture
the effects of any reasonable entailment relation on legality and consistency. All
regimes mentioned in the normative specification satisfy these properties and in
this paper we consider only regimes that do so.

U W N —

224

(C1) If graphs G, G; and G are legal, and there is h : T — T, preserving R,
such that h(G; U G3) C G then G U G is legal; if, in addition, G is in C
then G; UGy is also in C.
(C2) If a BGP P is in P then pu(P) is in G for any (total) u: V — (T \ R), such
that p(P) is a graph; if also p(P) is in C then p € [P],p).
Condition (C1) formalises (a weak form of) the monotonicity of legality and
consistency: an illegal graph that is a union of legal ones cannot be made legal by
identifying and renaming of non-reserved terms or adding triples to it; moreover, a
similar property holds for consistency. Condition (C2) guarantees, that “freezing”
variables of a legal BGP to non-reserved terms gives us a legal graph, and,
moreover, if such a graph is consistent, then the answer of the BGP on this graph
contains the mapping corresponding to the “freezing”.
The notions introduced in the remainder of this paper are parameterised with
a regime R, which is not mentioned explicitly for brevity.

2.3 Normative Semantics under Entailment Regimes

Following [2], now we show how the query answering function [-] extends to
complex graph patterns (we refer to [2] for details). A mapping p satisfies a
built-in condition R, denoted p = R, if one of the following holds:

1. Ris bound(?X) and ?7X € dom(u); or

2. Ris?X =¢, X € dom(p), and p(?X) = ¢; or

3. Ris 7X =Y, ?X € dom(p), ?Y € dom(pu), and p(?X) = p(?Y); or

4. R is an evaluating to true Boolean combination of other built-in conditions.
The join, difference, and left outer join of sets of mappings {21, {25 are as follows:

0) 29 ={p1 Upg | p1 € 21 and po € 25 such that py ~ po},
2\ 2y ={p1 | p1 € 21, there is no po € 25 such that py ~ po},
91}4 .QQ = (91 X .QQ) U (.Ql \ QQ)

A graph pattern is legal for a regime R if all the BGPs it contains are legal. The
normative query answering function [-]™ is inductively defined for all legal graph
patterns P on the base of [-] as follows. For graphs G from C we have:

1. if P is a BGP then [P]% = [P]e;

2. if P is (P, AND Py) then [P]% = [P]% x [Pa]%:

3. if P is (P, OPT P,) then [P = [P1]% > [P2]%; and

4. if P is (P’ FILTER R) then [P = {p | p € [P']¢ and p = R}.
If G ¢ C then [P]% = Err for any graph pattern P (which again coincides with
[P]c when P is a BGP). Note, that by these definitions p € [P]g implies that
dom(u) C vars(P), but this inclusion may be strict if P contains OPT operator.

Two legal patterns P; and P are equivalent (under normative semantics),

denoted by Py =" Py, if [P1]3 = [P2]% for every RDF graph G € G.

3 On Optional Matching Under the Normative Semantics

One of the main motivations for optional matching in SPARQL was to deal with
the “lack of regular, complete structures in RDF graphs” [9]. Indeed, RDF data

225

is loosely structured, and in many applications it is not satisfactory to reject an
answer if some relevant information is missing. For example, if we are interested
in retrieving the names, emails, and websites of employees, we may not want to
discard a partial answer involving the name and email address of an employee
merely because the information on the employee’s website is not available in the
graph. The normative semantics was designed to deal with such situations: the
optional information is included in query answers only when the information
is available; otherwise, the relevant variables are left unbounded. An unbound
variable in an answer is thus a manifestation of inherent incompleteness of RDF
data sources, and the missing information is interpreted as unknown.

This natural interpretation of query results, however, no longer holds if the
query is evaluated under certain entailment regimes, as we illustrate next by
means of examples. In these and all other examples given later on, we focus on
the OWL 2 direct semantics regime. In order for an RDF graph to be legal for
this regime, it must correspond to an OWL 2 ontology; similarly, legal BGPs
must correspond to an extended ontology in which variables are allowed [10].
Thus, in the examples we express RDF graphs and BGPs in (extended) OWL 2
functional syntax, and use words “ontology” and “graph” interchangeably (we
also omit declaration axioms in ontologies and BGPs to avoid clatter).

Example 1. Consider the OWL 2 ontology O; consisting of the axioms

ClassAssertion(InlandCity Ozford), PropertyAssertion(train London Ozford),
ClassAssertion(CoastalCity Holyhead), PropertyAssertion(train London Holyhead),
PropertyDomain(ferry CoastalCity), DisjointClasses(CoastalCity InlandCity).

Consider also the following graph pattern Pj, which we wish to evaluate over Oy:

PropertyAssertion(train ?X ?Y) OPT PropertyAssertion(ferry Y ?7Z).

Intuitively, solutions to P; provide direct train lines from city X to city Y as well
as, optionally, the ferry transfers from Y to other cities Z. Under the normative
semantics, the BGPs in P, are evaluated separately. In particular, the optional
BGP is evaluated to the empty set, and [P1]¢, = {41, p2}, where

w1 = {?X — London, 7Y — Ozford} and ps = {? X+~ London, 7Y — Holyhead}.

In both answers, variable 77 is unbounded and hence we conclude that O,
contains no relevant information about ferry connections starting from Ozford or
Holyhead. However, the nature of the lack of such information is fundamentally
different. On the one hand, the connections from Holyhead (e.g., to Dublin) are
missing from O just by the incompleteness of the information in the graph,
which is usual in (and also a feature of) Semantic Web applications. On the other
hand, Ozford cannot have a ferry connection because it is a landlocked city, and
hence the information about its (lack of) ferry connections is certain. Thus, the
normative semantics cannot distinguish between unknown and non-existent ferry
connections. However, if we adhere to the reading of unbounded variables as
incomplete information or “nulls”, then p; should not be returned as an answer.

226

The issues described in this example become even more apparent in cases
where the optional part alone cannot be satisfied, as in the following example.

Ezxample 2. Consider the ontology O with the axioms
ClassAssertion(Person Peter), DisjointProperties(hasFather hasMother).

Furthermore, consider the following pattern Ps:

ClassAssertion(Person ?7X) OPT ({
PropertyAssertion(hasFather X 7Y), PropertyAssertion(hasMother 7X ?7Y)}).

The optional BGP does not match to anything, so [P]@, consists of {7X
Peter}. However, this BGP is in contradiction with the disjointness axiom: under
the OWL 2 regime, no solution to P exists for any ontology with this axiom.

As these examples suggest, if we interpret unbound variables in answers to
queries with optional parts as an indication of unknown information in the data
graph, then the normative semantics may yield counter-intuitive answers. At
the core of this issue is the inability of the normative semantics to distinguish
between answers in which it is possible to assign values to the missing optional
part (a natural reflection of incompleteness in the data), and those where this is
impossible (a reflection that the missing information is incompatible with the
answer). This distinction is immaterial for regimes without inconsistencies, but it
becomes apparent in more sophisticated regimes, such as those based on OWL 2.

4 Semantics of Strict Optional Matching

In this section, we propose our novel semantics for optional matching under
regimes. In a nutshell, our semantics addresses the issues described in Section 3
by ruling out those answer mappings where unbound variables in the optional
part cannot be matched to any consistent extension of the input graph. Our
semantics is therefore strict, in the sense that only answers in which unbound
variables are genuine manifestations of incompleteness in the data are returned.

4.1 Definition of Strict Semantics

We start by introducing the notion of a frozen RDF graph for a pattern P and
a mapping p. Roughly speaking, this graph is obtained by taking all the triple
patterns in P and transforming them into RDF triples by applying the extension
of p where unbounded variables are “frozen” to arbitrary fresh constants.

Definition 1. Let R = (R, G, P,C, [-]) be an entailment regime. Let P be a legal
graph pattern, and let p be a mapping from variables V to RDF terms T. Then,
the freezing Gf of P under u is the RDF graph p(triples(P)), where [i is the
mapping that extends p by assigning each variable in vars(P), which is not in
dom(u), to a globally fresh IRI from I not belonging to R.

227

The freezing Gf depends only on the candidate mapping p and the triple
patterns occurring in P; thus, it does not depend either on the specific operators
used in P, or on the RDF graph over which the query pattern is to be evaluated.

Ezample 3. For pattern P; and mappings p1, pe from Example 1 the freezings
Gfi and fo; have the following form, for fresh IRIs k and ¢:

{PropertyAssertion(train London Ozford), PropertyAssertion(ferry Ozford k)},
{PropertyAssertion(train London Holyhead),PropertyAssertion(ferry Holyhead £)}.

Intuitively, the freezing represents the simplest and most general RDF graph
over which all the undefined variables in a given solution mapping could be
bounded to concrete values. Thus, if fo together with the input graph G is not
a consistent graph for the relevant regime, we can conclude, using condition (C1)
of the regime, that the undefined variables in p will never be matched to concrete
values in any consistent extension of G and hence p should be ruled out as an
answer. On the other hand, if GU Gf is consistent, then such an extension exists
and, by condition (C2), the undefined variables can be mapped in this extension.

Definition 2. Let R = (R, G, P,C,[-]) be an entailment regime. A mapping p
is R-admissible for a graph G € C and legal graph pattern P if GU Gﬁ is a graph
belonging to C. The set of all R-admissible mappings for a consistent graph G
and a legal graph pattern P is denoted as Adm(G, P).

Example 4. Clearly, Oq UGE is inconsistent since ferries only depart from coastal

cities, but Oxford is an inland city. In contrast, O; U fo; is consistent. Thus, we
have p11 ¢ Adm(O1, P), but pg € Adm(O4, P).

We are now ready to formalise our semantics.

Definition 3. Given an entailment regime R = (R, G, P,C,[]), the strict query
answering function [-]° is defined for legal graph patterns P and G € C as follows:

1. if P is a BGP then [P] = [Pla;

2. if P is Py AND Py then [P]% = ([P1]E x [P2]E) N Adm(G, P);

3. if P is Py OPT Py then [PE = ([P ™ [P:]E) N Adm(G, P); and

4. if P is P' FILTER R then [P]% = {p | p € [P']E and p = R},
where N denotes the standard set-theoretic intersection. If G & C then [P]§, = Err
for any graph pattern P. Finally, legal patterns Py and Py are equivalent (under
strict semantics), written Py =° P, if [P1]E = [P]§ for any legal G.

Ezxample 5. The strict semantics behaves as expected for our examples: [[Pl]]fgl =
{u1} holds for Oy and Py from Example 1, while [P]3, = @ holds for Example 2.

The strict and normative semantics coincide in two limit cases. First, if the
entailment regime does not allow for inconsistent graphs (i.e., if C = G) as is
the case for the RDF regime [10], then [P]¢, = [P]% for every legal pattern P
and graph G. Second, if the relevant pattern P is OPT-free then the freezing for

228

every candidate answer mapping contains no fresh IRIs and is fR-entailed by G;
thus, we again have [P], = [P]¢ for every legal graph G.

Thus, the difference between the normative semantics [-]™ and strict semantics
[-]? manifests only for regimes that admit inconsistency, and is circumscribed
to the presence of OPT in graph patterns, where non-admissible mappings are
excluded in the case of the strict semantics. Note, however, that even if a mapping
11 (respectively po) is admissible for a subpattern Py (respectively Ps) containing
OPT, it is possible for p; U us not to be admissible for the joined pattern
P = P; AND P,. Thus, the admissibility restriction is also explicitly reflected in
the semantics of AND given in Definition 3. This is illustrated in the example
given next.

Ezxample 6. Consider ontology O3, consisting of the axioms

SubClassOf(
IntersectionOf(SomeValuesFrom(husband Thing) SomeValuesFrom(wife Thing))
Nothing),

ClassAssertion(Person Mary).

The first axiom establishes that a person cannot have both a husband and a wife.
Consider also the following well-designed graph pattern Ps:

(ClassAssertion(Person ?X) OPT (PropertyAssertion(husband ?7X ?7Y))) AND
(ClassAssertion(Person ?X) OPT (PropertyAssertion(wife ?X ?2))).

Clearly, p = {?X — Mary} belongs to the strict answer to each of the OPT
subpatterns of Pj3 since each of them independently can match to a consistent
extension of Os. However, p is not admissible for P; since Mary has both a
husband and a wife in GES, and hence O3 U fo?' is inconsistent. Thus, [Ps]3, = 0.

4.2 Comparing the Normative and Strict Semantics

Our previous examples support the expected behaviour of our semantics, namely
that its effect is circumscribed to filtering out problematic answers returned under
the normative semantics. We next formally show that our semantics behaves as
expected in general, provided that we restrict ourselves to well-designed patterns
and negation-free FILTER expressions (which are rather mild restrictions).

It is known that patterns which are not well-designed easily lead to unexpected
answers, even under the normative semantics (we refer to [2] for a detailed
discussion). Therefore, it comes at no surprise that the intuitive behaviour of our
semantics is only guaranteed under this assumption.

Theorem 1. Let R = (R,G,P,C,[-]) be an entailment regime. The inclusion
[Pl C [P]& holds for any graph G from C and any legal well-designed graph
pattern P which does not use negation in FILTER expressions.

Note that Theorem 1 is formulated in terms of subsumption, instead of
set-theoretic containment. The rationale behind this formulation is clarified next.

229

Ezample 7. Consider the ontology O}, which is obtained from O in Example 1
by removing all axioms involving Holyhead, and adding the axiom

PropertyAssertion(bus Canterbury London).

Consider also the following graph pattern Pj:

PropertyAssertion(bus U 7X) OPT
(PropertyAssertion(train ?7X ?Y) OPT PropertyAssertion(ferry 7Y ?Z)).

The mapping p = {?U — Canterbury,?X — London,?Y — Oxford} is returned
by the normative semantics. As already discussed, Oxford is an inland city and
hence cannot have ferry connections; thus, p is not returned under strict semantics.
However, it may be possible to reach a ferry connection from London (although
none is given), and hence the answer p' = {?U — Canterbury,?X — London}
is returned instead of p under strict semantics. Clearly, 1/ is not a normative
answer and [[Pl’ﬂfy1 Z [[Pl’]]’(’%; however, ' C p and [[Pl’]]fy1 C [[Pl’]]&

5 Computational Properties and Static Optimisation

In this section we first study the computational properties of our semantics. We
show that the complexity of graph pattern evaluation under strict and normative
semantics coincide, provided that consistency checking is feasible in PSPACE for
the regime at hand. Then we focus on static query analysis, and in particular on
pattern equivalence. We show that the key equivalence-preserving transformation
rules that have been proposed for static optimisation of SPARQL queries continue
to hold if we consider equivalence under strict semantics.

5.1 Complexity of Strict Graph Pattern Evaluation

Recall that the graph pattern evaluation is the key problem in SPARQL. In the
context of entailment regimes, it is defined as follows, where x is either n or s.

GRAPH PATTERN EVALUATION

Input: Regime fR, legal graph G, legal graph pattern P, and mapping pu.
Question: Is p € [P]E under the regime PR?

Here, when we say that regime R is a part of the input, we mean that it includes
two oracle functions checking consistency of legal graphs and evaluating legal
BGPs over legal graphs, respectively. In what follows, we refer to the problem as
NORMATIVE if x = n, and as STRICT if x = s.

It is known that the normative graph pattern evaluation problem is in
PSPACE for the RDF regime [2]. We next argue that membership in PSPACE
holds in general for any regime satisfying the basic properties discussed in Sec-
tion 2 and for both normative and strict versions of the problem, provided that
the complexity of both oracles of the regime is in PSPACE.

230

Theorem 2. NORMATIVE and STRICT GRAPH PATTERN EVALUATION problems
are in PSPACE, provided the oracles associated to input regimes are in PSPACE.

Consequently, the use of our strict semantics does not increase the computa-
tional complexity for reasonable regimes. In particular, it follows directly from
Theorem 2 that the evaluation problem is in PSPACE under both semantics for
the tractable entailment regimes associated to the OWL 2 profiles [17].

It is also known that graph pattern evaluation under normative semantics is
PSPACE-hard for the RDF regime [2]. To formulate a general hardness result
that holds for any regime we would need to require additional properties for
a regime to qualify as “reasonable”. In order not to unnecessarily co