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Preface

The International Workshop on Description Logics is the main annual event of
the Description Logic research community. It is the forum at which those inter-
ested in description logics, from both academia and industry, meet to discuss
ideas, share information, and compare experiences. The workshop explicitly wel-
comes submissions from researchers that are new to the area and provides qual-
ity feedback via peer-reviewing, while at the same time being of an ”inclusive”
nature with a very high acceptance rate. There are only informal (electronic)
proceedings and inclusion of a paper there is not supposed to preclude its pub-
lication at conferences. Further information can be found on the DL Web pages
at http://dl.kr.org/.

This volume of informal proceedings contains the papers presented at the
28th International Workshop on Description Logics (DL 2015) held on June 6-9,
2015 in Athens (Greece). This year there were 68 submissions, divided among
full papers presenting original research, and extended abstracts (of at most 3
pages). Submissions have been judged solely based upon their content and qual-
ity, and the type of submission had no bearing on the decision between long oral,
short oral and poster presentation. Each submission was reviewed by 3 program
committee members or additional reviewers recruited by the PC. In the spirit
of inclusiveness, the committee decided to accept 60 papers, among them 37 as
long and short oral presentations and 23 as poster presentations. We thank all
program committee members and additional reviewers for their invaluable effort.

The program also included 3 invited talks, which were given by Carsten Lutz,
Axel Polleres, and Maarten de Rijke. The abstracts of these talks are included
in this volume.

We also gratefully acknowledge the Artificial Intelligence Journal and the
Foundation for Principles of Knowledge Representation and Reasoning (KR Inc.)
for financial support and EasyChair for providing a convenient and efficient
platform for preparing the program. Last but not least we thank all authors and
participants of DL 2015.
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Query Rewriting Beyond DL-Lite

Carsten Lutz

Fachbereich Informatik, Universität Bremen, Germany

1 Abstract of Invited Talk

Query rewriting has become a very prominent tool for efficiently implementing
ontology-mediated querying in practice. The technique was originally introduced
in the context of DL-Lite [4], but is now increasingly being used also for more
expressive DLs. While rewritings are not guaranteed to exist beyond DL-Lite,
the simple structure of ontologies that emerge from practical applications gives
hope that non-existence of rewritings is a rare case.

The aim of the talk is to survey FO- and Datalog-rewriting of ontology-
mediated queries in description logics beyond DL-Lite. It is structured into three
parts. The first part is concerned with FO-rewritings in Horn-DLs such as EL,
ELI, and Horn-SHI, the second part considers FO-rewritings in non-Horn-DLs
such as ALC and ALCI, and the third part is about Datalog-rewritings in non-
Horn DLs. In all three parts, I will try to emphasize useful characterizations of
FO-rewritability, practically efficient algorithms for constructing rewritings, and
relevant computational complexity results.

The presentation is based on joint work with Meghyn Bienvenu, Balder ten
Cate, Peter Hansen, İnanc Seylan, and Frank Wolter. The subsequent section
provides some supplementary material that is featured in the talk, but has not
yet been published elsewhere. It establishes a link between the first and the
second part of the talk.

2 Supplementary Material

In [3, 7], we have proposed an approach to deciding the FO-rewritability of OMQs
for the case where the ontology/TBox is formulated in a Horn DL such as EL,
ELI, and Horn-ALCI. The approach has led to efficient (yet complete) practical
implementations, and it relies on a characterization of FO-rewritability in terms
of tree-shaped ABoxes. Intuitively, the characterization relies on a property of
TBoxes that is called ‘unraveling tolerance’ and which typically is enjoyed by
Horn DLs, but not by DLs that include forms of disjunction. In contrast, the only
known complete approach to deciding FO-rewritability of OMQs in which the
TBox is formulated in full (non-Horn) ALC and ALCI is via the CSP connection
in [9, 2]. Since ALC- and ALCI-TBoxes are typically not unraveling tolerant, it
might seems that these two world are largely unrelated. In the following, though,
we point out a characterization of FO-rewritability in full ALCI that establishes
an interesting connection to tree-shaped ABoxes and thus to the Horn case. We
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consider Boolean atomic queries (BAQs), that is, queries of the form ∃xA(x)
with A a concept name.

An ontology-mediated query (OMQ) is a triple Q = (T , Σ, q) with T a TBox,
Σ an ABox signature (set of concept and role names), and q a query. An OBDA
language is a set of OMQs. We use (ALCI,BAQ) to denote the OBDA language
that consists of all OMQs (T , Σ, q) with T an ALCI-TBox and q a BAQ, and
likewise for other combinations of a DL and a query language. An OMQ Q =
(T , Σ, q) is FO-rewritable if there is an FO-sentence ϕ such that for every Σ-
ABox A that is consistent w.r.t. T , we have A |= Q iff A |= ϕ.

As usual in OBDA, an ABox is a finite set of assertions of the form A(a)
or r(a, b) with A a concept name and r a role name. We write r−(a, b) ∈ A to
mean r(b, a) ∈ A and use Ind(A) to denote the set of individuals used in A. An
ABox A is tree-shaped if the undirected graph (Ind(A), {{a, b} | r(a, b) ∈ A}) is
a tree and whenever r(a, b) ∈ A, then (i) s(a, b) ∈ A implies r = s and (ii) A
contains no assertion of the form s(b, a). Tree-shapedness of conjunctive queries
(CQs) is defined accordingly. Note that, in both cases, our trees allow upwards-
and downwards-directed edges, but no multi-edges.

We now introduce unravelings of ABoxes and the notion of unraveling toler-
ance [9]. Let A be an ABox and a ∈ Ind(A). The unraveling Aua of A at a is the
following (possibly infinite) ABox:

– Ind(Aua) is the set of sequences b0r0b1 · · · rn−1bn, n ≥ 0, such that b0 = a,
b0, . . . , bn ∈ Ind(A) and r0, . . . , rn−1 are (potentially inverse) roles;

– for each C(b) ∈ A and α = b0 · · · bn ∈ Ind(Aua) with bn = b: C(α) ∈ Aua ;
– for each α = b0r0 · · · rn−1bn ∈ Ind(Aua) with n > 0: rn−1(b0 · · · bn−1, α) ∈ Aua .

For all α = b0 · · · bn ∈ Ind(Aua), we write tail(α) to denote bn. Note thatAua is tree-
shaped. An OMQ Q = (T , Σ, q) is unraveling tolerant if for every Σ-ABox A,
A |= Q implies Aua |= Q for some a ∈ Ind(A). Note that this is essentially the
same notion of unraveling tolerance as introduced in [9].

It can be shown as in [9] that in OBDA languages where the TBoxes are
formulated in Horn DLs such as EL, ELI, and Horn-ALC and where queries are
BAQs or atomic queries (AQs, queries of the form A(x) with A a concept name),
all OMQs are unraveling tolerant. This underlies the following characterization
from [3].

Theorem 1 ([3]). A BAQ Q = (T , Σ, q) from (Horn-ALCI,AQ) is FO-re-
writable iff there exists a k ≥ 0 such that for all tree-shaped Σ-ABoxes A which
are consistent with T , A |= Q implies A|k |= Q where Ak is A with all nodes on
level exceeding k removed.

Using a pumping argument, it can be shown that if there is any bound k as
Theorem 1, then we can choose k = 22|T |. Based on this, worst-case optimal
(ExpTime) decision procedures for FO-rewritability in (Horn-ALCI,AQ) can
be devised using automata methods. Efficiently computing rewritings in practice
requires further algorithm engineering [7].
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We will now establish a characterization of FO-rewritability in the non-
Horn OBDA language (ALCI,BAQ). It is shown in [2] that for every OMQ
Q = (T , Σ, q) from (ALCI,BAQ), there is a CSP template (a finite relational
structure) TQ over signature Σ such that for all Σ-ABoxes A, we have A, T |= q
iff A 6→ TQ, that is, iff there is no homomorphism from A to TQ (in the standard
sense of labeled directed graphs). We say that a CSP template T is FO-definable
if there is an FO-sentence ϕ such that for all finite Σ-structures S, we have
S → T iff S |= ϕ. The complement of T is definable in monadic Datalog if there
is a monadic Datalog program Π such that for all finite Σ-structures S, we have
S 6→ T iff S |= Π. Note that a CSP template is FO-definable iff its complement is
(just take the negation of the defining sentence), but this is not true for monadic
Datalog definability.

It is easy to see that an OMQ Q is FO-rewritable if and only if the comple-
ment of TQ is FO-definable, and likewise for rewritability into monadic Datalog.
In [2], this observation is used together with results on the FO-definability of
CSPs [8] to show the following.

Theorem 2 ([2]). FO-rewritability in (ALCI,BAQ) and (ALCI,AQ) is decid-
able and NExpTime-complete.

This approach is also capable of producing actual rewritings, but unfortunately it
is best-case exponential. This calls for a better understanding of FO-rewritability
in (ALCI,BAQ) and related languages, as a basis for more practical (yet com-
plete) approaches.

As a preliminary, we show that unraveling tolerance is equivalent to rewritabil-
ity into monadic Datalog. This actually follows straightforwardly from known
results about CSPs.

Theorem 3. An OMQ from (ALCI,BAQ) is unraveling tolerant iff it is re-
writable into monadic Datalog.

Proof. A CSP template T over signature Σ has tree duality iff there is a set O
of tree-shaped Σ-structures (called obstructions and where tree-shapedness is
defined as for ABoxes and CQs above) such that for all finite Σ-structures S,
we have T ← S iff S 6← O for all O ∈ O. It was shown in [5] that T has tree
duality iff the complement of T is definable in monadic Datalog. It thus remains
to show that an OMQ from (ALCI,BAQ) is unraveling tolerant iff TQ has tree
duality.

“if”. Assume that Q = (T , Σ, q) is unraveling tolerant. Let O be the set of all
tree-shaped Σ-ABoxes A with A |= Q. Then O witnesses tree duality: if TQ ← A
for some Σ-ABox A, then A 6|= Q; since B |= Q and B → A implies A |= Q [2],
we thus have A 6← B for all B ∈ O as required. Conversely, assume that A is a
Σ-ABox with A 6← B for all B ∈ O. Clearly, Aua → A for all a ∈ Ind(A). Thus, no
such Aua is in O, implying that Aua 6|= Q. Since Q is unraveling tolerant, A 6|= Q
which implies TQ ← A as required.

“only if”. Assume that TQ has tree duality with set of obstructions O. Let A
be a Σ-ABox with A |= Q. Then TQ 6← A and thus A ← B for some B ∈ O. Since
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B is tree-shaped, A ← B implies Aua ← B for some a ∈ Ind(A). Consequently
TQ 6← Aua which yields Aua |= Q as required. ut

We now establish the announced characterization.

Theorem 4. Let Q = (T , q, Σ) be an OMQ from (ALCI,BAQ). Then Q is
FO-rewritable iff

1. Q is FO-rewritable on tree-shaped ABoxes and
2. Q is unraveling tolerant.

Proof. “if”. Assume that Q is unraveling tolerant and FO-rewritable on tree-
shaped ABoxes. By Theorem 3, the complement of the template TQ is definable
by a monadic Datalog program ΠQ. Let Π ′Q be obtained from ΠQ by identifying
the variables in rule bodies in all possible ways and then retaining only those
rules whose bodies are a tree-shaped CQ. It can be verified that Π ′Q is a rewriting
of Q:A |= Q impliesAua |= Q for some a ∈ Ind(A) (since Q is unraveling tolerant)
implies Aua |= ΠQ (since ΠQ is a rewriting of Q) implies Aua |= Π ′Q (since Aua
is tree-shaped) implies A |= Π ′Q (since AuA → A). Conversely, A |= Π ′Q implies
A |= ΠQ (by construction of Π ′Q) implies A |= Q. It is easy to further modify
Π ′Q so that in addition to being tree shaped, every role body contains at most
one EDB atom.

We now use the existence of Π ′Q to argue that Q has an FO-rewriting ϕ on
tree-shaped ABoxes that takes the form of a union of tree-shaped CQs. Let ψ be
an FO-rewriting of Q on tree-shaped ABoxes. By Gaifman’s locality theorem,
there is a number d ≥ 0 such that for everyΣ-ABoxA, we haveA |= ψ iffA∗d |= ψ
where A∗d is obtained by taking the disjoint union of all d-neighborhoods in A;
here, the d-neighborhood in A around a ∈ Ind(A) is the restriction of A to all
individuals that can be reached from a on a role path in A of length at most d.
Note that ψ is a rewriting of Q and every OMQ from (ALCI,BAQ) satisfies
the property that if a Σ-ABox A is the disjoint union of ABoxes A1, . . . ,Ak,
then A |= Q iff Ai |= Q for at least one Ai. We can thus strengthen the above
obervation as follows: for every Σ-ABox A, we have A |= ψ iff there is some d-
neighborhood N in A such that N |= ψ. Since both ψ and Π ′Q are rewritings of
the same query Q, the same applies to the monadic Datalog program Π ′Q instead
of to ψ. Moreover, we can find an ` ≥ 0 such that for every Σ-ABox A with
A |= Π ′Q, there is an A′ ⊆ A with A′ |= Π ′Q and in which every individual has
degree at most `—due to the special shape of Π ′Q, we can in fact simply choose
for ` the number of IDB relations in Π ′Q. Combining these two observations,
we get the following: for every tree-shaped Σ-ABox A with A |= Q, there is a
tree-shaped ABox A′ ⊆ A of depth at most d and degree at most ` such that
A′ |= Q. We can thus choose as the desired rewriting ϕ the UCQ that consists
of all tree-shaped ABoxes A (viewed as a CQ) that satisfy A |= Q and are of
depth at most d and of degree at most `.

It remains to note that, due to its syntactic shape, ϕ is an FO-rewriting not
only on tree-shaped ABoxes, but also on unrestricted ones. First assume that
A is a Σ-ABox with A |= Q. Since Q is unraveling tolerant, there then is an
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a ∈ Ind(A) with Aua |= Q. Since ϕ is an FO-rewriting on tree-shaped ABoxes,
we get Aua |= ϕ. Since ϕ is a UCQ and Aua → A, we obtain A |= ϕ. Conversely,
assume A |= ϕ. Since ϕ is a union of tree-shaped CQs, this yields Aua |= ϕ for
some a ∈ Ind(A), thus Aua |= Q and A |= Q.

“only if”. Assume that Q is FO-rewritable. Then it is clearly also FO-
rewritable on tree-shaped ABoxes (the same rewriting works). It thus remains
to show that Q is unraveling tolerant.

It is proved in [1] that a CSP template T over signature Σ is FO-rewritable
iff it has finite duality, that is, iff there is a finite set of structures O such that for
all finite Σ-structures S, we have T ← S iff S 6← O for all O ∈ O. It was shown
in [10] that finite duality implies tree duality. In fact, as observed in [8], we can
assume w.l.o.g. that the finitely many elements of O are finite and tree-shaped.
One could call this finite duality in terms of finite trees.

Now back to our OMQ Q. Since Q is FO-rewritable, so is TQ. By the above
result on finite duality in terms of finite trees, there is thus a finite set Γ of
tree-shaped ABoxes such that for all Σ-ABoxes A, we have A |= Q iff B → A
for some B ∈ Γ . Consequently, the UCQ q̂ =

∨
B∈Γ qB is an FO-rewriting of

Q, where qB is B viewed as a Boolean CQ in the obvious way. Note that q̂ is a
disjunction of tree-shaped CQs. It is thus straightforward to show that for all
Σ-ABoxes A, we have A |= q̂ iff Aua |= q̂ for some a ∈ Ind(A). The unraveling
tolerance of Q follows. ut

The proof of Theorem 4 also yields the following corollary, which strengthens the
observation from [2] that in (ALCI,BAQ), every FO-rewritable OMQ is UCQ-
rewritable (essentially a consequence of Rossmann’s homomorphism preservation
theorem).

Corollary 1. If an OMQ in (ALCI,BAQ) is FO-rewritable, then it is rewritable
into a union of tree-shaped conjunctive queries.

We remark that, even when switching to the OBDA language (ALC,BAQ), it is
not possible to replace the undirected trees in Corollary 1 with directed trees.

We close with some discussion of Theorem 4. As future work, we plan to adapt
the result from (ALCI,BAQ) to (ALCI,AQ) and to use them as a basis for
developing practically feasible algorithms that construct FO-rewritings. Dealing
with (ALCI,AQ) seems to require more liberal definitions of tree-shaped ABoxes
and of unraveling tolerance which allow for back-edges to the root as in the
tree-model property for DLs with nominals. To obtain a first impression of the
effect of answer variables, the reader might want to consider the following OMQ
Q = (T , Σ, q) from (ALCI,BAQ):

T = {P u ∃r.P v A,¬P u ∃r.¬P v A} Σ = {r} q = ∃xA(x)

and its variation Q′ from (ALCI,BAQ) obtained by replacing q with the AQ
q′ = A(x). Q is not unraveling tolerant as witnessed by the ABox A = {r(a, a)}
which satisfies A |= Q, but Aua 6|= Q. The same is true for Q′ if the notion of
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unraveling tolerance is adapted in a naive way to non-Boolean OMQs. However,
while Q is not FO-rewritable (by Theorem 4), it is not too hard to prove that
the FO-formula r(x, x) is an FO-rewriting of Q′.

Another interesting question concerns the complexity of deciding FO-re-
writability in (ALCI,BAQ) (and of course also (ALCI,AQ)) via Theorem 4.
It is shown in [5] that unraveling tolerance is decidable (in 3-ExpTime) and
using techniques from [2], it is possible to prove NExpTime-hardness. We spec-
ulate that the problem might actually be NExpTime-complete. Regarding FO-
rewritability in (ALCI,BAQ) on tree-shaped ABoxes, it seems likely that a
2-ExpTime lower bound can be established by combining reductions from [3]
and [6]—thus FO-rewritability on tree-shaped ABoxes would be harder than on
unrestricted ABoxes! However, if we already know that Q is unraveling tolerant,
then FO-rewritability on trees is trivially in NExpTime, simply by Theorem [6].

Acknowledgements. I am grateful to Frank Wolter for, as always, very helpful
and stimulating discussions.
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Integrating Open Data:
(How) Can Description Logics Help me?

Axel Polleres

Vienna University of Economics and Business, Vienna, Austria

At last year’s DL workshop Alon Halevy told us about Web tables and how
Google makes sense of tabular data on the Web together with Web knowledge
graphs [2]. Somewhat surprinsing, a still more unconquered area for Web data
extraction seems to be the realm of Open Data: rather than extracting struc-
tured data from the surface Web, another emerging source of data on the Web are
lots of structured data sets being published openly on various Open Data Por-
tals (e.g. http://www.publicdata.eu/, http://data.gov.gr/ http://data.gov.uk/,
http://www.data.gov/, http://data.gv.at/, http://open.wien.at/, just to name
a few). However, despite already offering structured data, these Open Data por-
tals often offer only limited search functionality, and intergrating and using Open
Data from these portals involves various challenges, such as data quality prob-
lems [3], heterogeneity within metadata descriptions, dynamics, or lack of se-
mantic descriptions of the data. Driven by a practical use case, the Open City
Data pipeline project [1], we will report on experiences and obstacles for collect-
ing and integrating Open Data across various data sets. We wil discuss how both
methods from knowledge representation and reasoning as well as from statistics
and data mining can be used to tackle some issues we encountered.
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Entity-oriented Search Engine Result Pages

Maarten de Rijke

University of Amsterdam, Amsterdam, The Netherlands
derijke@uva.nl

Modern search engine result pages often contain a mixture of results from
structured and unstructured sources. Where such mixtures of structured and
unstructured information are called for, the state-of-the-art is to organize com-
plex search engine result pages around entities. Generating such a mixture of
entity-oriented results in response to a traditional keyword query raises a num-
ber of interesting retrieval challenges. How do we link queries to entities? How
do we identify different aspects of entities in cases where we are unsure about
the user’s intent? How do we associate an entity with a topic that a user appears
to be interested in? And how do we explain the relation between entities that
are being presented as being similar or related?

In this area, a wide variety of complementary and competing proposed solu-
tions exist. This talk provides a snapshot of current approaches to entity-focused
search engine result pages, illustrates key developments using example, and out-
lines open questions and research opportunities.

The talk is based in part on joint work with Lars Buitinck, David Graus,
Xinyi Li, Edgar Meij, Daan Odijk, Ridho Reinanda, Isaac Sijaranamual, Manos
Tsagkias, Christophe Van Gysel, Nikos Voskarides, and Wouter Weerkamp.
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DL-Lite and Conjunctive Queries Extended by
Optional Matching (Extended Abstract)?

Shqiponja Ahmetaj, Wolfgang Fischl, Reinhard Pichler, Mantas Šimkus, and
Sebastian Skritek

Institute for Information Systems, TU Vienna

1 Introduction

Conjunctive Queries (CQs) constitute the core of most query languages and
have been studied intensively in several areas. For querying incomplete data,
CQs however suffer one major drawback: they require the complete query to be
matched into the data to return answers. One extension of CQs that tries to
overcome this problem are well-designed pattern trees (wdPTs) [9]. Developed
in the context of the Semantic Web, wdPTs are equivalent to a well-behaved
fragment of {AND,OPT}-queries of SPARQL [12], and allow a user to retrieve
partial answers to a query.

Because of this feature, however, wdPTs are nonmonotone. This is problematic
for query answering in the presence of implicit knowledge – expressed e.g. by
an ontology specified in some Description Logic (DL) – since the usual certain
answer semantics turns out to be unsatisfactory in this setting. We observe that
the recently released recommendation of the SPARQL entailment regimes [6]
provides a semantics exactly for this case. However, it is defined in a simpler and
less expressive way than the certain answers semantics, and does not utilize the
full potential of the implicit information.

The goal of this work is to introduce an intuitive certain answer semantics
for the class of well-designed pattern trees under DL-LiteR (which provides the
theoretical underpinning of the OWL 2 QL entailment regime). After introducing
wdPTs, we first discuss some of the problems with an adoption of a certain
answer semantics for them and propose a suitable modified definition. We then
briefly present results on the complexity of typical reasoning tasks.

Related Work to our findings includes the work our approaches are based
upon [3–6]. There is a huge body of results on CQ answering under different DLs
(cf. [4, 5, 11, 13]). For SPARQL recent work [8] presents a stronger semantics,
where entire mappings are discarded, whose possible extensions to optional
subqueries would imply inconsistencies in the knowledge base. Further related
work includes [2, 7, 10] which is discussed in the long version of this paper.

? A longer version of this paper has been accepted for publication at WWW 2015 [1].
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2 DL-LiteR and Well-designed Pattern Trees

We assume the reader to be familiar with DL-LiteR [4]. A DL-LiteR knowledge
base (KB) is a tuple K = 〈A, T 〉, where A is an ABox and T is a TBox. The
definition of an interpretation I = (∆I , ·I) is the usual one. In addition, we
make the standard name assumption (SNA), i.e. we assume that ∆I contains all
individuals, and that aI = a for each individual a.

A well-designed pattern tree P is a tuple (T, λ,x) such that:

1. T is a rooted tree and λ maps each node t in T to a conjunctive query (CQ).
A CQ here is a set of atoms, where atoms are built as usual, i.e. from concept
and role names together with individuals and variables.

2. For every variable y occurring in T , the set of nodes containing y is connected.
3. x is a tuple of variables from T , called the free variables of P.

Intuitively, the parent-child relationships in the tree express optional matching.
I.e., the result of the “parent-CQ” shall be extended by the “child-CQ” if possible

— otherwise the child shall be ignored, and only the result of the parent is returned.
Finally x are the “output” variables.

A mapping µ is any partial function whose domain dom(µ) contains only
variables. We say a mapping µ1 is subsumbed by another mapping µ2, denoted
by µ1 v µ2, if dom(µ1) ⊆ dom(µ2) and µ1(x) = µ2(x) for all x ∈ dom(µ1). Also,
for a mapping µ and some property A, we shall say that µ is v-maximal w.r.t.
A if µ satisfies A, and there is no µ′ such that µ v µ′, µ′ 6v µ, and µ′ satisfies A.
For any mapping µ and a tuple of variables x, we denote by µx the restriction of
µ to the variables in x.

The notion of a mapping µ that is a match for a CQ q in an interpretation I is
defined in the standard way. Assume a wdPT P = (T, λ,x) and an interpretation
I. For an initial segment T ′ of T , i.e. a connected subgraph containing the root
of T , we define qT ′ to be the CQ

⋃
t∈T ′ λ(t). Then a match for P in I is any

mapping µ such that µ is a match for qT ′ in I for some initial segment T ′ of
T . Let M be the set of all v-maximal matches from P to I. Then the result of
evaluating P over I, projected to x, is the set JPKI = {µx | µ ∈M}. Note that
the order of child nodes in such tress does not affect the query answer (see [9,
12]).

In the following example, we illustrate wdPTs as well as the reason why the
usual certain answer semantics (i.e., a tuple is a certain answer if it is present in
every model) turns out to be unsatisfactory in our setting:

Example 1. Let P be the wdPT (T, λ,x) where T consists of the root r with
the single child t, λ(r) = {teaches(x, y)}, λ(t) = {knows(y, z)}, and x = {x, z}.
Consider the KB K consisting of an ABox A = {Prof(b)}, and a TBox T =
{(Prof v ∃teaches)}. Let I be as follows: ProfI = {(b)}. Clearly, I |= K. The
query yields in I as only answer the mapping µ = {x → b}. Clearly, also the

interpretation I ′, where ProfI
′

= {(b)}, teachesI
′

= {(b, c)} and knowsI
′

=
{(c, d)} is a model of K. But in I ′, µ is no longer an answer since µ can be
extended to answer µ′ = {x→ b, z → d}. Hence, there is no mapping which is
an answer in every possible model of K. �
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Definition 1. Let K = (A, T ) be a KB and P = (T, λ,x) a wdPT. A mapping µ
is a certain answer to P over K if it is a v-maximal mapping s.t. (1) µ v JPKI
for every model I of K, and (2) vars(qT ′) ∩ x = dom(µ) for some initial segment
T ′ of T . We denote by cert(P,K) the set of certain answers to P over K.

The reason for restricting the set of certain answers to v-maximal mappings is
that wdPTs in general may have “subsumed” answers, i.e. mappings s.t. also
some proper extension is an answer. But then – with set semantics – we cannot
recognize the reason why some subsumed answer is possibly not an answer in some
possible world. Therefore, in our first step towards extending CQs by optional
matching, we allow only “maximal” answers as certain answers.

Property (2) ensures that the domain of such an answer adheres to the tree
structure of the wdPT. However, we can show that this can be enforced in
a simple post-processing step. Likewise, also projection can be deferred to a
post-processing step. The task is thus to compute a set certp(P,K) of certain
pre-answers (i.e., mappings that satisfy Definition 1 except property (2), ignoring
projection), which can be done via the canonical model. For a given KB K, we
assume a canonical model of K, denoted as can(K), to be defined as in [4].

Theorem 1. Let K = (A, T ) be a KB and P a wdPT. Then, certp(P,K) =
MAX(JPKcan(K) ↓), where MAX(M) is the set of v-maximal mappings in M ,
M ↓:= {µ ↓| µ ∈ M} (µ ↓ is the restriction of µ to those variables which are
mapped to the individual names that occur in A).

To cope with the potential infinite canonical model, query rewriting algorithms
have been developed in the literature. By introducing several adaptations and
extensions of the rewriting-based CQ evaluation for DL-Lite from [4], we develop
two different algorithms to answer wdPTs over DL-LiteR KBs. 1 Based on these
rewriting algorithms, we analyze the complexity of query answering and of several
static query analysis tasks such as query containment and equivalence. We are
able to show that the additional power of our new semantics comes without
additional costs in terms of complexity.

For future work, we want to investigate further more expressive DLs under our
certain answer semantics. The implementation of the rewriting algorithms and the
development of suitable benchmarks, is a challenging task as well. Additionally,
we will extend our work to allow TBox queries and other fragments of SPARQL.

Acknowledgements

This work was supported by the Vienna Science and Technology Fund (WWTF),
project ICT12-15 and by the Austrian Science Fund (FWF): P25207-N23 and
W1255-N23.

1 Note that, in the full version we consider a fragment of well-designed SPARQL under
OWL 2 QL entailment, which corresponds exactly to what we consider here.
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SPARQL Update
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Abstract. The problem of updating ontologies has received increased attention
in recent years. In the approaches proposed so far, either the update language is
restricted to (sets of) atomic updates, or, where the full SPARQL Update language
is allowed, the TBox language is restricted to RDFS where no inconsistencies can
arise. In this paper we discuss directions to overcome these limitations. Starting
from a DL-Lite fragment covering RDFS and concept/class disjointness axioms,
we define two semantics for SPARQL Update: under cautious semantics, incon-
sistencies are resolved by rejecting all updates potentially introducing conflicts;
under brave semantics, instead, conflicts are overridden in favor of new informa-
tion where possible. The latter approach builds upon existing work on the evolution
of DL-Lite knowledge bases, setting it in the context of generic SPARQL updates.

1 Introduction

This paper initiates the study of SPARQL updates in the context of potential inconsis-
tencies: as a minimalistic ontology language allowing for inconsistencies, we consider
RDFS¬, an extension of RDFS [8] with class disjointness axioms of the form {𝑃
disjointWith 𝑄} from OWL [10], sometimes referred to as negative inclusions or
NIs [4], as the corresponding description logic encoding of this statement is 𝑃 ⊑ ¬𝑄.

As a running example, we assume a triple store 𝐺 with an RDFS¬ ontology (TBox)
𝒯 encoding an educational domain, asserting a range restriction plus mutual disjointness
of the concepts like professor and student (we use Turtle syntax [2], in which dw
abbreviates OWL’s disjointWith keyword, and dom and rng respectively stand for
the domain and range keywords of RDFS).

𝒯 = {:studentOf dom :Student. :studentOf rng :Professor.
:Professor dw :Student. }

Consider the following SPARQL update [6] request 𝑢 in the context of the TBox 𝒯 :
INSERT {?X :studentOf ?Y} WHERE {?X :attendsClassOf ?Y}

Consider an ABox with data on student tutors that happen to attend each other’s classes:
𝒜1 = {:jimmy :attendsClassOf :ann. :ann :attendsClassOf
:jimmy}. Here, 𝑢 would create two assertions :jimmy :studentOf :ann and
:ann :studentOf :jimmy. Due to the range and domain constraints in 𝒯 , these
assertions result in clashes both for Jimmy and for Ann. Note that all inconsistencies
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Table 1. DL-LiteRDFS¬ assertions vs. RDF(S), where 𝐴, 𝐴′ denote concept (or, class) names, 𝑃 , 𝑃 ′

denote role (or, property) names, 𝛤 is the set of IRI constants (excl. the OWL/RDF(S) vocabulary)
and 𝑥, 𝑦 ∈ 𝛤 . For RDF(S), we use abbreviations (rsc, sp, dom, rng, a) as introduced in [11].

TBox RDFS¬

1. 𝐴′ ⊑ 𝐴 𝐴′ sc 𝐴.
2. 𝑃 ′ ⊑ 𝑃 𝑃 ′ sp 𝑃 .

TBox RDFS¬

3. ∃𝑃 ⊑ 𝐴 𝑃 dom 𝐴.
4. ∃𝑃 − ⊑ 𝐴 𝑃 rng 𝐴.

TBox RDFS¬

5. 𝐴′ ⊑ ¬𝐴 𝐴′ dw 𝐴.

ABox RDFS¬

6. 𝐴(𝑥) 𝑥 a 𝐴.
7. 𝑃 (𝑥, 𝑦) 𝑥 P 𝑦.

are in the new data, and thus we say that 𝑢 is intrinsically inconsistent for the particular
ABox 𝒜1. Our solution for such updates will be to discard problematic assignments but
keep those that cause no clashes.

Now, let 𝒜2 be the ABox {:jimmy :attendsClassOf :ann. :jimmy a
:Professor}. It is clear that after the update 𝑢, the ABox will become inconsistent,
due to the property assertion :jimmy :studentOf :ann, implying that Jimmy is
both a professor and a student which contradicts the TBox disjointness axiom. In contrast
to the previous case, the clash now is between the prior knowledge and the new data. We
propose two update semantics, extending our previous work [1] for dealing with such
inconsistencies and provide rewriting algorithms for implementing them using the basic
constructs of the SPARQL language (e.g., making use of the UNION, MINUS, FILTER,
and OPTIONAL operators).

In the remainder of the paper, after some short preliminaries (Sec. 2) we discuss
checking of intrinsic inconsistencies in Sec. 3, and then in Sec. 4 we present two
semantics for dealing with general inconsistencies in the context of materialized triple
stores. An overview of related work and concluding remarks can be found in Sec. 5.

2 Preliminaries

We introduce basic notions about RDF graphs, RDFS¬ ontologies, and SPARQL queries.
In this paper we use RDF and DL notation interchangeably, treating RDF graphs that do
not use non-standard RDFS¬ vocabulary [12] as sets of TBox and ABox assertions.

Definition 1 (RDFS¬ ABox, TBox, triple store). We call a set 𝒯 of inclusion asser-
tions of the forms 1–5 in Table 1 an (RDFS¬) TBox, a set 𝒜 of assertions of the forms
6–7 in Table 1 an (RDF) ABox, and the union 𝐺 = 𝒯 ∪ 𝒜 an (RDFS¬) triple store.

Definition 2 (Interpretation, satisfaction, model, consistency). An interpretation
⟨𝛥ℐ , ·ℐ⟩ consists of a non-empty set 𝛥ℐ and an interpretation function ·ℐ , which maps

– each atomic concept 𝐴 to a subset 𝐴ℐ of 𝛥ℐ ,

?𝐶 sc ?𝐷. ?𝑆 a ?𝐶.
?𝑆 a ?𝐷.

?𝑃 sp ?𝑄. ?𝑆 ?𝑃 ?𝑂.
?𝑆 ?𝑄 ?𝑂.

?𝑃 dom ?𝐶. ?𝑆 ?𝑃 ?𝑂.
?𝑆 a ?𝐶.

?𝑃 rng ?𝐶. ?𝑆 ?𝑃 ?𝑂.
?𝑂 a ?𝐶.

?𝑆 a ?𝐶,?𝐷. ?𝐶 dW ?𝐷.
⊥

Fig. 1. Minimal RDFS rules from [11] plus class disjointness “clash” rule from OWL2 RL [10].
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– each negation of atomic concept 𝐴 to (¬𝐴ℐ) = 𝛥ℐ ∖ 𝐴ℐ ,
– each atomic role 𝑃 to a binary relation 𝑃 ℐ over 𝛥ℐ , and
– each element of 𝛤 to an element of 𝛥ℐ .

For expressions ∃𝑃 and ∃𝑃 −, the interpretation function is defined as (∃𝑃 )ℐ = {𝑥 ∈
𝛥ℐ | ∃𝑦.(𝑥, 𝑦) ∈ 𝑃 ℐ} resp. (∃𝑃 −)ℐ = {𝑦 ∈ 𝛥ℐ | ∃𝑥.(𝑥, 𝑦) ∈ 𝑃 ℐ}. An interpretation
ℐ satisfies an inclusion assertion 𝐸1 ⊑ 𝐸2 (of one of the forms 1–5 in Table 1), if
𝐸ℐ

1 ⊆ 𝐸ℐ
2 . Analogously, ℐ satisfies ABox assertions of the form 𝐴(𝑥), if 𝑥ℐ ∈ 𝐴ℐ , and

of the form 𝑃 (𝑥, 𝑦), if (𝑥ℐ , 𝑦ℐ) ∈ 𝑃 ℐ . An interpretation ℐ is called a model of a triple
store 𝐺 (resp., a TBox 𝒯 , an ABox 𝒜), denoted ℐ |= 𝐺 (resp., ℐ |= 𝒯 , ℐ |= 𝒜), if ℐ
satisfies all assertions in 𝐺 (resp., 𝒯 , 𝒜). Finally, 𝐺 is called consistent, if it does not
entail both 𝐶(𝑥) and ¬𝐶(𝑥) for any concept 𝐶 and constant 𝑥 ∈ 𝛤 , where entailment
is defined as usual.

As in [1], we treat only restricted SPARQL queries corresponding to (unions of)
conjunctive queries without non-distinguished variables over DL ontologies:

Definition 3 (BGP, CQ, UCQ, query answer). A conjunctive query (CQ) 𝑞, or basic
graph pattern (BGP), is a set of atoms of the form 6–7 from Table 1, where now 𝑥, 𝑦 ∈
𝛤 ∪ 𝒱 .4 A union of conjunctive queries (UCQ) 𝑄, or UNION pattern, is a set of CQs.
We denote with 𝒱(𝑞) (or 𝒱(𝑄)) the set of variables from 𝒱 occurring in 𝑞 (resp., 𝑄). An
answer (under RDFS¬ Entailment) to a CQ 𝑞 over a triple store 𝐺 is a substitution 𝜃 of
the variables in 𝒱(𝑞) with constants in 𝛤 such that every model of 𝐺 satisfies all facts in
𝑞𝜃. We denote the set of all such answers with ansrdfs(𝑞, 𝐺) (or simply ans(𝑞, 𝐺)). The
set of answers to a UCQ 𝑄 is

⋃︀
𝑞∈𝑄 ans(𝑞, 𝐺).

We also recall from [1], that query answering in the presence of ontologies can be
done either by rule-based pre-materialization of the ABox or by query rewriting. Let
rewrite(𝑞, 𝒯 ) be the UCQ resulting from applying PerfectRef [3] (or, equivalently, the
stripped-down version from [1, Alg.1]) to a query 𝑞 and let 𝐺 = 𝒯 ∪ 𝒜 be a triple
store. Furthermore, let mat(𝐺) be the triple store obtained from exhaustive application
of the inference rules in Fig. 1 on a consistent triple store 𝐺, and—analogously—let
chase(𝑞, 𝒯 ) refer to “materialization” w.r.t. 𝒯 applied to a CQ 𝑞. The next result transfers
from [1] to consistent RDFS¬ stores.

Proposition 1. Let 𝐺 = 𝒯 ∪ 𝒜 be a consistent triple store, and 𝑞 a CQ. Then,
ans(𝑞, 𝐺) = ans(rewrite(𝑞, 𝒯 ), 𝒜) = ans(𝑞, mat(𝐺)).

We have used this previously to define the semantics of SPARQL update operations.

Definition 4 (SPARQL update operation, simple update of a triple store). Let
𝑃𝑑 and 𝑃𝑖 be BGPs, and 𝑃𝑤 a BGP or UNION pattern. Then an update operation
𝑢(𝑃𝑑, 𝑃𝑖, 𝑃𝑤) has the form

DELETE 𝑃𝑑 INSERT 𝑃𝑖 WHERE 𝑃𝑤

Let 𝐺 = 𝒯 ∪ 𝒜 be a triple store. Then the simple update of 𝐺 w.r.t. 𝑢(𝑃𝑑, 𝑃𝑖, 𝑃𝑤)
is defined as 𝐺𝑢(𝑃𝑑,𝑃𝑖,𝑃𝑤) = (𝐺 ∖ 𝒜𝑑) ∪ 𝒜𝑖, where 𝒜𝑑 =

⋃︀
𝜃∈ans(𝑃𝑤,𝐺) gr(𝑃𝑑𝜃),

𝒜𝑖 =
⋃︀

𝜃∈ans(𝑃𝑤,𝐺) gr(𝑃𝑖𝜃), and gr(𝑃 ) denotes the set of ground triples in pattern 𝑃 .

4 𝒱 is a countably infinite set of variables (written as ’?’-prefixed alphanumeric strings).
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For the sake of readability of the algorithms, we assume that all update operations
𝑢(𝑃𝑑, 𝑃𝑖, 𝑃𝑤) in this paper contain no constants in the BGPs 𝑃𝑑 and 𝑃𝑖, and that all
property assertions (?𝑋 p ?𝑌 ) in 𝑃𝑑 have distinct variables ?𝑋 and ?𝑌 . Enhancing our
results to updates with constants and variable equalities in 𝑃𝑑 and 𝑃𝑖 is not difficult, but
requires distinguishing special cases: e.g., instead of replacing the variable 𝑦 in a pattern
𝑄 by 𝑧, the expression 𝑄 FILTER(𝑦 = 𝑧) can be used in the case when 𝑦 is a constant;
instead of 𝑄(𝑦) MINUS 𝑃 for a variable 𝑦, 𝑄 FILTER NOT EXISTS 𝑃 should be used
for ground 𝑄.

We call a triple store or (ABox) materialized if in each state it always guarantees
𝐺∖𝒯 = mat(𝐺)∖mat(𝒯 ). In the present paper, we will always focus on “materialization
preserving” semantics for SPARQL update operations, which we dubbed Semmat

2 in [1]
and which preserves a materialized triple store. We recall the intuition behind Semmat

2 ,
given an update 𝑢 = (𝑃𝑑, 𝑃𝑖, 𝑃𝑤): (i) delete the instantiations of 𝑃𝑑 plus all their
causes; (ii) insert the instantiations of 𝑃𝑖 plus all their effects.

Definition 5 (Semmat
2 [1]). Let 𝑢(𝑃𝑑, 𝑃𝑖, 𝑃𝑤) be an update operation. Then

𝐺
Semmat

2
𝑢(𝑃𝑑,𝑃𝑖,𝑃𝑤) = 𝐺𝑢(𝑃 caus

𝑑
,𝑃 eff

𝑖
,{𝑃𝑤}{𝑃 fvars

𝑑
})

Here, given a pattern 𝑃 , 𝑃 caus = flatten(rewrite(𝑃, 𝒯 )); 𝑃 eff = chase(𝑃, 𝒯 ) and
𝑃 fvars = {?𝑣 a rdfs:Resource |?𝑣 ∈ 𝒱(𝑃 caus) ∖ 𝒱(𝑃 )}, where flatten(·) computes the
set of all triples occurring in the UCQ 𝑟𝑒𝑤𝑟𝑖𝑡𝑒(𝑃, 𝒯 ), which in our case allows us to
obtain all possible “causes” of each atom in 𝑃𝑑, and “?v a rdfs:Resource” is a
shortcut for a pattern that binds ?𝑣 to any 𝑥 ∈ 𝛤 occurring in 𝐺.

We refer to [1] for further details, but stress that as such, Semmat
2 is not able to detect

or deal with inconsistencies arising from 𝑃𝑖 and 𝐺. In what follows, we will discuss how
this can be remedied.

3 Checking Consistency of a SPARQL Update

Within previous work on the evolution of DL-Lite knowledge bases [4], updates given in
the form of pairs of ABoxes 𝒜𝑑, 𝒜𝑖 have been studied. However, whereas such update
might be viewed to fit straightforwardly to the corresponding 𝒜𝑑, 𝒜𝑖 in Def. 4, in [4]
it is assumed that 𝒜𝑖 is consistent with the TBox, and thus one only needs to consider
how to deal with inconsistencies between the update and the old state of the knowledge
base. This a priori assumption may be insufficient for SPARQL updates though, where
concrete values for inserted triples are obtained from variable bindings in the WHERE
clause, and depending on the bindings, the update can be either consistent or not. This is
demonstrated by the update 𝑢 from Sec. 1 which, when applied to the ABox 𝒜4, results
in an inconsistent set 𝒜𝑖 of insertions . We call this intrinsic inconsistency of an update
relative to a triple store 𝐺 = 𝒯 ∪ 𝒜.

Definition 6. Let 𝐺 be a triple store. The update 𝑢 is said to be intrinsically consistent
w.r.t. 𝐺 if the set of new assertions 𝒜𝑖 from Def. 4 generated by applying 𝑢 to 𝐺, taken in
isolation from the ABox of 𝐺, does not contradict the TBox of 𝐺. Otherwise, the update
is said to be intrinsically inconsistent w.r.t. 𝐺.
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Algorithm 1: constructing a SPARQL ASK query to check intrinsic inconsistency
(for the definition of 𝑃 eff

𝑖 , cf. Def. 5)
Input: RDFS¬ TBox 𝒯 , SPARQL update 𝑢(𝑃𝑑, 𝑃𝑖, 𝑃𝑤)
Output: A SPARQL ASK query returning 𝑇 𝑟𝑢𝑒 if 𝑢 is intrinsically inconsistent

1 if ⊥ ∈ 𝑃 eff
𝑖 then

2 return ASK {} //𝑢 contains clashes in itself, i.e., is inconsistent for any triple store
3 else
4 𝑊 := { FILTER(False)}; //neutral element w.r.t. union
5 foreach pair of triple patterns (?𝑋 a 𝑃 ), (?𝑌 a 𝑅) in 𝑃 eff

𝑖 do
6 if 𝑃 ⊑ ¬𝑅 ∈ 𝒯 then
7 𝑊 := 𝑊 UNION {{𝑃𝑤𝜃1[?𝑋 ↦→?𝑍]} . {𝑃𝑤𝜃2[?𝑌 ↦→?𝑍]}} for a fresh ?𝑍

8 return ASK WHERE {𝑊 }

Intrinsic inconsistency of the update differs crucially from the inconsistency w.r.t. the
old state of the knowledge base, illustrated by the ABox 𝒜2 from Sec. 1. This latter case
can be addressed by adopting an update policy that prefers newer assertions in case of
conflicts, as studied in the context of DL-Lite KB evolutions [4], which we will discuss
in Sec. 4 below. Intrinsic inconsistencies however are harder to deal with, since there
is no cue which assertion should be discarded in order to avoid the inconsistency. Our
proposal here is thus to discard all mutually inconsistent pairs of insertions.

We first present an algorithm for checking intrinsic inconsistency by means of
SPARQL ASK queries and then a safe rewriting algorithm. This rewriting is based on an
observation that clashing triples can be introduced by a combination of two bindings of
variables in the WHERE clause, as the example in the Sec. 1 (the ABox 𝒜1) illustrates.
To handle such cases, two copies of the WHERE clause 𝑃𝑤 are created by the rewriting
in Algorithms 1 and 2, for each pair of disjoint concepts according to the TBox of the
triple store. These algorithms use notation described in Rem. 1 below.

Remark 1. Our rewriting algorithms rely on producing fresh copies of the WHERE
clause. Assume 𝜃, 𝜃1, 𝜃2, . . . to be substitutions replacing each variable in a given
formula with a distinct fresh one. For a substitution 𝜎, we also define 𝜃[𝜎] resp. 𝜃𝑖[𝜎] to
be an extension of 𝜎, renaming each variable at positions not affected by 𝜎 with a distinct
fresh one. For instance, let 𝐹 be a triple (?𝑍 :studentOf ?𝑌 ). Now, 𝐹𝜃 makes a
variable disjoint copy of 𝐹 : ?𝑍1 :studentOf ?𝑌1 for fresh ?𝑍1, ?𝑌1. 𝐹 [?𝑍 ↦→?𝑋] is
just a substitution of ?𝑍 by ?𝑋 in 𝐹 . Finally, 𝐹𝜃[?𝑍 ↦→?𝑋] results in ?𝑋 :studentOf
?𝑌2 for fresh ?𝑌2. We assume that all occurrences of 𝐹𝜃[𝜎] stand for syntactically the
same query, but that 𝐹𝜃[𝜎1] and 𝐹𝜃[𝜎2], for distinct 𝜎1 and 𝜎2, can only have variables
in 𝑟𝑎𝑛𝑔𝑒(𝜎1) ∩ 𝑟𝑎𝑛𝑔𝑒(𝜎2) in common. That is, the choice of fresh variables is defined
by the parameterizing substitution 𝜎.

Now, the possibility of unifying two variables ?𝑋 and ?𝑌 in 𝑃𝑤 on a given triple store
can be tested with the query {𝑃𝑤𝜃1[?𝑋 ↦→?𝑍]}{𝑃𝑤𝜃2[?𝑌 ↦→?𝑍]} where 𝜃1 and 𝜃2 are
variable renamings as in Rem. 1 and ?𝑍 is a fresh variable.

In order to check the intrinsic consistency of an update, this condition should be
evaluated for every pair of variables of 𝑃𝑤, the unification of which leads to a clash. A
SPARQL ASK query based on this idea is produced by Alg. 1. Note that it suffices to
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Algorithm 2: Safe rewriting safe(𝑢)
Input: RDFS¬ TBox 𝒯 , SPARQL update 𝑢(𝑃𝑑, 𝑃𝑖, 𝑃𝑤)
Output: SPARQL update safe(𝑢)

1 if ⊥ ∈ 𝑃 eff
𝑖 then

2 return 𝑢(𝑃𝑑, 𝑃𝑖, FILTER(False))
3 𝑊 := { FILTER(False)}; //neutral element w.r.t. union
4 foreach pair of triple patterns (?𝑋 a 𝑃 ), (?𝑌 a 𝑅) in 𝑃 eff

𝑖 do
5 if 𝑃 ⊑ ¬𝑅 ∈ 𝒯 then
6 //cf. Rem. 1 for notation 𝜃[. . .]
7 𝑊 := 𝑊 UNION {𝑃𝑤𝜃1[?𝑋 ↦→?𝑌 ]} UNION {𝑃𝑤𝜃2[?𝑌 ↦→?𝑋]}}
8 return 𝑢(𝑃𝑑, 𝑃𝑖, 𝑃𝑤 MINUS {𝑊 })

check only triples of the form {?𝑋 a ?𝐶} at line 5 of Alg. 1, since disjointness conditions
can only be formulated for concepts, according to the syntax in Table 1. Furthermore,
since we are taking the facts in 𝑃 eff

𝑖 extended by all facts implied by 𝒯 , at line 6 of
Alg. 1 it suffices to check the disjointness conditions explicitly mentioned in 𝒯 and not
all those which are implied by 𝒯 .

Example 1. Consider the update 𝑢 from Sec. 1, in which the INSERT clause 𝑃𝑖 can
create clashing triples. To identify potential clashes, Alg. 1 first applies the infer-
ence rule for the range constraint, and computes 𝑃 eff

𝑖 = {?𝑋 a :Student . ?𝑌
a :Professor}. Now both variables ?𝑋, ?𝑌 occur in the triples of type (6) from
Table 1 with clashing concept names. The following ASK query is produced by Alg. 1.

ASK WHERE { ?X :attendsClassOf ?Y . ?Y :attendsClassOf ?X1 }
(In this and subsequent examples we omit the trivial FILTER(False) union branch used
in rewritings to initialize variables with disjunctive conditions, such as 𝑊 in Alg. 1)

Suppose that an insert is not intrinsically consistent for a given triple store. One solution
would be to discard it completely, should the above ASK query return True. Another
option which we consider here is to only discard those variable bindings from the
WHERE clause, which make the INSERT clause 𝑃𝑖 inconsistent. This is the task of
the safe rewriting safe(·) in Alg. 2, removing all variable bindings that participate in a
clash between different triples of 𝑃𝑖. Let 𝑃𝑤 be a WHERE clause, in which the variables
?𝑋 and ?𝑌 should not be unified to avoid clashes. With 𝜃1, 𝜃2 being “fresh” variable
renamings as in Rem. 1, Alg. 2 uses the union of 𝑃𝑤𝜃1[?𝑋 ↦→?𝑌 ] and 𝑃𝑤𝜃2[?𝑌 ↦→?𝑋]
to eliminate unsafe bindings that send ?𝑋 and ?𝑌 to a same value.

Example 2. Alg. 2 extends the WHERE clause of the update 𝑢 from Sec. 1 as follows:
INSERT{?X :studentOf ?Y} WHERE{?X :attendsClassOf ?Y
MINUS{{?X1 :attendsClassOf ?X} UNION {?Y :attendsClassOf ?Y2}}}

Note that the safe rewriting can make the update void. For instance, safe(𝑢) has
no effect on the ABox 𝒜1 from Sec. 1, since there is no cue, which of :jimmy
:attendsClassOf :ann, :ann :attendsClassOf :jimmy needs to be dis-
missed to avoid the clash. However, if we extend this ABox with assertions both satisfy-
ing the WHERE clause of 𝑢 and not causing undesirable variable unifications, safe(𝑢)
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would make insertions based on such bindings. For instance, adding the fact :bob
:attendsClassOf :alice to 𝒜1 would assert :bob :studentOf :alice
as a result of safe(𝑢).

A rationale for using MINUS rather than FILTER NOT EXISTS in Alg. 2 (and also
in a rewriting in forthcoming Sec. 4) can be illustrated by an update in which variables
in the INSERT and DELETE clauses are bound in different branches of a UNION:
DELETE {?V a :Professor} INSERT {?X :studentOf ?Y}
WHERE {{?X :attendsClassOf ?Y} UNION {?V :attendsClassOf ?W}}

A safe rewriting of this update (abbreviating :attendsClassOf as :aCo) is
DELETE {?V a :Professor} INSERT {?X :studentOf ?Y}
WHERE { {{?X :aCo ?Y} UNION {?V :aCo ?W}}

MINUS{ {{?X1 :aCo ?X} UNION {?V1 :aCo ?W1}}
UNION {{?Y :aCo ?Y2} UNION {?V2 :aCo ?W2}} } }

It can be verified that with FILTER NOT EXISTS in place of MINUS this update makes
no insertions on all triple stores: the branches {?V1 :aCo ?W1} and {?V2 :aCo
?W2} are satisfied whenever {?X :aCo ?Y} is, making FILTER NOT EXISTS eval-
uate to False whenever {?X :aCo ?Y} holds.

We conclude this section by formalizing the intuition of update safety. For a triple
store 𝐺 and an update 𝑢 = (𝑃𝑑, 𝑃𝑖, 𝑃𝑤), let J𝑃𝑤K𝑢

𝐺 denote the set of variable bind-
ings computed by the query “ SELECT ?𝑋1, . . . , ?𝑋𝑘 WHERE 𝑃𝑤” over 𝐺, where
?𝑋1, . . . , ?𝑋𝑘 are the variables occurring in 𝑃𝑖 or in 𝑃𝑑.

Theorem 1. Let 𝒯 be a TBox, let 𝑢 be a SPARQL update (𝑃𝑖, 𝑃𝑑, 𝑃𝑤), and let query 𝑞𝑢

and update safe(𝑢) = (𝑃𝑑, 𝑃𝑖, 𝑃 ′
𝑤) result from applying Alg. 1 resp. Alg. 2 to 𝑢 and 𝒯 .

Then, the following properties hold for an arbitrary RDFS¬ triple store 𝐺 = 𝒯 ∪ 𝒜:
(1) 𝑞𝑢(𝐺) = True iff ∃𝜇, 𝜇′ ∈ J𝑃𝑤K𝑢

𝐺 s.t. 𝜇(𝑃𝑖) ∧ 𝜇′(𝑃𝑖) ∧ 𝒯 |= ⊥;

(2) J𝑃𝑤K𝑢
𝐺 ∖ J𝑃 ′

𝑤K𝑢
𝐺 = {𝜇 ∈ J𝑃𝑤K𝑢

𝐺 | ∃𝜇′ ∈ J𝑃𝑤K𝑢
𝐺 s.t. 𝜇(𝑃𝑖) ∧ 𝜇′(𝑃𝑖) ∧ 𝒯 |= ⊥}.

4 Materialization Preserving Update Semantics

In this section we discuss resolution of inconsistencies between triples already in the
triple store and newly inserted triples. Our baseline requirement for each update seman-
tics is formulated as the following property.

Definition 7 (Consistency-preserving). Let 𝐺 be a triple store and 𝑢(𝑃𝑑, 𝑃𝑖, 𝑃𝑤) an
update. A materialization preserving update semantics Sem is called consistency pre-
serving in RDFS¬ if the evaluation of update 𝑢, i.e., 𝐺Sem

𝑢(𝑃𝑑,𝑃𝑖,𝑃𝑤), results in a consistent
triple store.

Our two consistency preserving semantics are respectively called brave and cautious.
The brave semantics always gives priority to newly inserted triples by discarding all
pre-existing information that contradicts the update. The cautious semantics is exactly
the opposite, discarding inserts that are inconsistent with facts already present in the
triple store; i.e., the cautious semantics never deletes facts unless explicitly required by
the DELETE clause of the SPARQL update.
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Algorithm 3: Brave semantics Semmat
brave

Input: Materialized triple store 𝐺 = 𝒯 ∪ 𝒜, SPARQL update 𝑢(𝑃𝑑, 𝑃𝑖, 𝑃𝑤)
Output: 𝐺

Semmat
brave

𝑢(𝑃𝑑,𝑃𝑖,𝑃𝑤)
1 𝑃 ′

𝑑 := 𝑃 caus
𝑑 ;

2 foreach triple pattern (?𝑋 a 𝐶) in 𝑃 eff
𝑖 do

3 foreach 𝐶′ s.t. 𝐶 ⊑ ¬𝐶′ ∈ 𝒯 or 𝐶′ ⊑ ¬𝐶 ∈ 𝒯 do
4 if (?𝑋 a 𝐶′) /∈ 𝑃 ′

𝑑 then
5 𝑃 ′

𝑑 := 𝑃 ′
𝑑 . {?𝑋 a 𝐶′}caus

6 return 𝐺
𝑢(𝑃 ′

𝑑
,𝑃 eff

𝑖
,{𝑃𝑤}𝑃

fvars
𝑑

)

Both semantics rely upon incremental update semantics Semmat
2 , introduced in

Sec. 2, which we aim to extend to take into account class disjointness. Note that for the
present section we assume updates to be intrinsically consistent, which can be checked or
enforced beforehand in a preprocessing step by the safe rewriting discussed in Sec. 3. In
this section, we lift our definition of update operation to include also updates (𝑃𝑑, 𝑃𝑖, 𝑃𝑤)
with 𝑃𝑤 produced by the safe rewriting Alg. 2 from some update satisfying Def. 4. What
remains to be defined is the handling of clashes between newly inserted triples and triples
already present in the triple store.

The intuitions of our semantics for a SPARQL update 𝑢(𝑃𝑑, 𝑃𝑖, 𝑃𝑤) in the context
of an RDFS¬ TBox are as follows:

– brave semantics Semmat
brave: (i) delete all instantiations of 𝑃𝑑 and their causes, plus

all the non-deleted triples in 𝐺 clashing with instantiations of triples in 𝑃𝑖 to be
inserted, again also including the causes of these triples; (ii) insert the instantiations
of 𝑃𝑖 plus all their effects.

– cautious semantics Semmat
caut : (i) delete all instantiations of 𝑃𝑑 and their causes;

(ii) insert all instantiations of 𝑃𝑖 plus all their effects, unless they clash with some
non-deleted triples in 𝐺: in this latter case, perform neither deletions nor insertions.

For a SPARQL update 𝑢, we will define rewritings of 𝑢 implementing the above seman-
tics, which can be shown to be materialization preserving and consistency preserving.

4.1 Brave Semantics

The rewriting in Alg. 3 implements the brave update semantics Semmat
brave; it can be viewed

as combining the idea of FastEvol [4] with Semmat
2 to handle inconsistencies by giving

priority to triples that ought to be inserted, and deleting all those triples from the store
that clash with the new ones.

The DELETE clause 𝑃 ′
𝑑 of the rewritten update is initialized with the set 𝑃𝑑 of

triples from the input update 𝑢. Rewriting ensures that also all “causes” of deleted
facts are removed from the store, since otherwise deleted triples will be re-inserted by
materialization. To this end, line 1 of Alg. 3 adds to 𝑃 ′

𝑑 all facts from which 𝑃𝑑 can be
derived. Then, for each triple implied by 𝑃𝑖 (that is, for each triple in 𝑃 eff

𝑖 ) the algorithm
computes clashing patterns and adds them to the DELETE clause 𝑃 ′

𝑑, along with their
causes. Note that it suffices to only consider disjointness assertions that are syntactically
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contained in 𝒯 (and not all that are implied by 𝒯 ), since we assume that the triple store
is materialized.

Finally, the WHERE clause of the rewritten update is extended to satisfy the syntactic
restriction that all variables in 𝑃 ′

𝑑 must have matches in the WHERE clause: bindings of
“fresh” variables introduced to 𝑃 ′

𝑑 by eventual domain or range constraints are provided
by the part 𝑃 fvars

𝑑 , cf. Def. 5 and Ex. 3 below. The rewritten update is evaluated over the
triple store, computing its new materialized and consistent state.

Example 3. Ex. 2 in Sec. 3 provided a safe rewriting safe(𝑢) of the update 𝑢 from Sec. 1.
According to Alg. 3, this safe update is rewritten to:
DELETE {?X a :Professor . ?X1 :studentOf ?X .

?Y a :Student . ?Y :studentOf ?Y1}
INSERT {?X :studentOf ?Y . ?X a :Student . ?Y a :Professor}
WHERE {{?X :attendsClassOf ?Y
MINUS{{?X2 :attendsClassOf ?X} UNION {?Y :attendsClassOf ?Y2}}}
OPTIONAL {?X1 :studentOf ?X} OPTIONAL {?Y :studentOf ?Y1} }

The DELETE clause removes potential clashes for the inserted triples. Note that also
property assertions implying clashes need to be deleted, and the respective triples in 𝑃 ′

𝑑

contain fresh variables ?𝑋1 and ?𝑌 1. These variables have to be bound in the WHERE
clause, and therefore 𝑃 fvars

𝑑 adds two optional clauses to 𝑃𝑤 of safe(𝑢), which is a
computationally reasonable implementation of the concept 𝑃 fvars from Def. 5.

Theorem 2. Alg. 3, given a SPARQL update 𝑢 and a consistent materialized triple store
𝐺 = 𝒯 ∪ 𝒜, computes a new consistent and materialized state w.r.t. brave semantics.

4.2 Cautious Semantics

Unlike Semmat
brave, its cautious version Semmat

caut always gives priority to triples that are
already present in the triple store, and dismisses any inserts that are inconsistent with it.
We implement this semantics as follows: (i) the DELETE command does not generate
inconsistencies and thus is assumed to be always possible; (ii) the update is actually
executed only if the triples introduced by the INSERT clause do not clash with state of
the triple graph after all deletions have been applied.

Cautious semantics thus treats insertions and deletions asymmetrically: the former
depend on the latter but not the other way round. The rationale is that deletions never
cause inconsistencies and can remove clashes between the old and the new data.

As in the case of brave semantics, cautious semantics is implemented using rewriting,
presented in Alg. 4. First, the algorithm issues an ASK query to check that no clashes
will be generated by the INSERT clause, provided that the DELETE part of the update
is executed. If no clashes are expected, in which case the ASK query returns False, the
brave update from the previous section is applied.

For a safe update 𝑢 = (𝑃𝑑, 𝑃𝑖, 𝑃𝑤), the ASK query is generated as follows. For
each triple pattern {?𝑋 a 𝐶} among the effects of 𝑃𝑖, at line 3 Alg. 4 enumerates all
concepts 𝐶 ′ that are explicitly mentioned as disjoint with 𝐶 in 𝒯 . As in the case of
brave semantics, this syntactic check is sufficient due to the assumption that the update
is applied to a materialized store; by the same reason also no property assertions need to
be taken into account.
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Algorithm 4: Cautious semantics Semmat
caut

Input: Materialized triple store 𝐺 = 𝒯 ∪ 𝒜, SPARQL update 𝑢(𝑃𝑑, 𝑃𝑖, 𝑃𝑤)
Output: 𝐺

Semmat
caut

𝑢(𝑃𝑑,𝑃𝑖,𝑃𝑤)
1 𝑊 := { FILTER(False)} // neutral element w.r.t. union
2 foreach (?𝑋 a 𝐶) ∈ 𝑃 eff

𝑖 do
3 foreach 𝐶′ s.t. 𝐶 ⊑ ¬𝐶′ ∈ 𝒯 or 𝐶′ ⊑ ¬𝐶 ∈ 𝒯 do
4 𝛩−

𝐶′ := { FILTER(False)}
5 foreach (?𝑌 a 𝐶′) ∈ 𝑃 caus

𝑑 do
6 𝛩−

𝐶′ := 𝛩−
𝐶′ UNION {𝑃𝑤𝜃[?𝑌 ↦→?𝑋]}

7 𝑊 := 𝑊 UNION {{?𝑋 a 𝐶′} MINUS {𝛩−
𝐶′ }}

8 𝑄 := ASK WHERE {{𝑃𝑤}.{𝑊 }};
9 if 𝑄(𝐺) then

10 return 𝐺
11 else

12 return 𝐺
Semmat

brave
𝑢(𝑃𝑑,𝑃𝑖,𝑃𝑤)

For each concept 𝐶 ′ disjoint from 𝐶, we need to check that a triple matching the
pattern {?𝑋 a 𝐶 ′} is in the store 𝐺 and will not be deleted by 𝑢. Deletion happens if
there is a pattern {?𝑌 a 𝐶 ′} ∈ 𝑃 caus

𝑑 such that the variable ?𝑌 can be bound to the same
value as ?𝑋 in the WHERE clause 𝑃𝑤. Line 6 of Alg. 4 produces such a check, using
a copy of 𝑃𝑤, in which the variable ?𝑌 is replaced by ?𝑋 and all other variables are
replaced with distinct fresh ones. Since there can be several such triple patterns in 𝑃 caus

𝑑 ,
testing for clash elimination via the DELETE clause requires a disjunctive graph pattern
𝛩−

𝐶′ constructed at line 6 and combined with {?𝑋 a 𝐶 ′} using MINUS at line 7.
Finally, the resulting pattern is appended to the list 𝑊 of clash checks using UNION .

As a result, {𝑃𝑤}.{𝑊} queries for triples that are not deleted by 𝑢 and clash with an
instantiation of some class membership assertion {?𝑋 a 𝐶} ∈ 𝑃 eff

𝑖 .

Theorem 3. Alg. 4, given a SPARQL update 𝑢 and a consistent materialized triple store
𝐺 = 𝒯 ∪ 𝒜, computes a new consistent and materialized state w.r.t. cautious semantics.

Example 4. Alg. 4 rewrites the safe update safe(𝑢) from Ex. 2 as follows:
ASK WHERE{{?X :attendsClassOf ?Y
MINUS{{?X1 :attendsClassOf ?X} UNION {?Y :attendsClassOf ?Y2}}}
.{{?Y a :Student} UNION {?X a :Professor}}}

Now, consider an update 𝑢′ having both INSERT and DELETE clauses:
DELETE {?Y a :Professor} INSERT{?X a :Student}
WHERE {?X :attendsClassOf ?Y}

The update 𝑢′ inserts a single class membership fact and thus is always intrinsically
consistent. The ASK query in Alg. 4 takes the DELETE clause of 𝑢′ into account:
ASK WHERE {{?X :attendsClassOf ?Y}
.{{?X a :Professor} MINUS {?Z :attendsClassOf ?X }}}
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5 Discussion and Conclusions

In this paper, we have taken a step further from our previous work, in combining SPARQL
Update and RDFS entailment by also adding class/concept disjointness as a first step
towards dealing with inconsistencies in the context of SPARQL Update. As discussed
throughout the paper, previous approaches to handle inconsistencies in DL KB evolution
(e.g., [4, 5, 9]) have assumed that the set of ABox assertions to be inserted is intrinsically
consistent w.r.t. the TBox, and thus inconsistencies are treated only w.r.t. the old state
of the knowledge base. As we have shown, this assumption is not trivially verifiable in
the context of SPARQL updates, where DELETE/INSERT atoms are instantiated by
a WHERE clause, and clashing triples could be instantiated within the same INSERT
operation. We have addressed this problem by providing means to check whether a
SPARQL update is intrinsically consistent and defining a safe rewriting that removes
intrinsic clashes during inserts on-the-fly.

Next, taken that the problem of intrinsic consistency is solved, we have demonstrated
how to extend the approach of [4] to SPARQL updates. We have defined a materialization
and consistency preserving rewriting for SPARQL updates that essentially combines the
ideas of [4] and our previous work on SPARQL updates under RDFS for materialized
triple stores [1], dealing with clashes due to class disjointness axioms in a brave manner.
That is, we overwrite inconsistent information in the triple store in favor of information
being inserted. Alternatively, we have also defined a dual consistency-preserving update
semantics that on the contrary discards insertions that would lead to inconsistencies.

Besides practical evaluation of the proposed algorithms, we plan to further extend
our work towards increasing coverage of more expressive logics and OWL profiles,
namely additional axioms from OWL 2 RL or OWL 2 QL [10]. Also, it could be useful
to investigate further semantics, allowing for compromises between fully discarding the
inconsistent old data and refusing the entire update due to clashes, and lift our methods
to work with stores that are not fully materialized.

The consideration of negative information is an important issue also in other related
works on knowledge base updates: for instance, the seminal work on database view
maintenance by Gupta et al. [7] is also used in the context of materialized views using
Datalog rules with stratified negation. Likewise, let us mention the work of Winslett [13]
on formula-based semantics to updates, where negation is also considered.

Acknowledgements. This work was supported by the Vienna Science and Technology
Fund (WWTF), project ICT12-SEE, and EU IP project Optique (Scalable End-user
Access to Big Data), grant agreement n. FP7-318338.
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1 Introduction

In this paper, we construct a combination HS-LiteHhorn of the Halpern-Shoham
interval temporal logic HS [15] with the description logic DL-LiteHhorn [12, 1],
which is a Horn extension of the standard language OWL 2 QL. The temporal
operators of HS are of the form 〈R〉 (‘diamond’) and [R] (‘box’), where R is one of
Allen’s interval relations After, Begins, Ends, During, Later, Overlaps and their
inverses (Ā, B̄, Ē, D̄, L̄, Ō). The propositional variables of HS are interpreted
by sets of closed intervals [i, j] of some flow of time (e.g., Z, R), and a formula
〈R〉ϕ ([R]ϕ) is regarded to be true in [i, j] iff ϕ is true in some (respectively, all)
interval(s) [i′, j′] such that [i, j]R[i′, j′] in Allen’s interval algebra.

In HS-LiteHhorn, we represent temporal data by means of assertions such
as SummerSchool(RW, t1, t2) and teaches(US,DL, s1, s2), which say that RW is
a summer school that takes place in the time interval [t1, t2] and US teaches
DL in the time interval [s1, s2]. Note that temporal databases store data in a
similar format [17]. Temporal concept and role inclusions are used to impose
constraints on the data and introduce new concepts and roles. For example,
AdvCourseu〈D̄〉MorningSession v ⊥ says that advanced courses are not given in
the morning sessions described by 〈B̄〉LectureDayu〈A〉Lunch v MorningSession;
teaches v [D]teaches claims that the role teaches is downward hereditary (or
stative) in the sense that if it holds in some interval then it also holds in all of its
sub-intervals; [D](〈O〉teaches t 〈D̄〉teaches) u 〈B〉teaches u 〈E〉teaches v teaches,
on the contrary, states that teaches is coalesced (or upward hereditary). The
inclusions teaches v [D]teaches and [D](〈O〉teaches t 〈D̄〉teaches) v teaches
ensure that teaches is both upward and downward hereditary. On the other hand,
‘rising stock market’ and ‘high average speed’ are typical examples of concepts
that are not downward hereditary; for a discussion of these notions see [6, 21, 18].

Although the complexity of full HS-LiteHhorn remains unknown, in this paper

we define two fragments, HS-LiteH/flat
horn and HS-LiteH[G]

horn , where satisfiability and
instance checking are P-complete for both combined and data complexity.

Our interest in tractable description logics with interval temporal operators
is motivated by possible applications in ontology-based data access (OBDA) [12]
to temporal databases. In this context, we naturally require reasonably expressive
yet tractable ontology and query languages with temporal constructs (although

? This extended abstract is an abridged version of [4] presented at AAAI 2015.
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some authors advocate the use of standard atemporal OWL 2 QL with temporal
queries [16, 7]). Our choice of HS as the temporal component of HS-LiteHhorn

is explained by the fact that modern temporal databases adopt the (downward
hereditary) interval-based model of time [17, 13] and use coalescing to group time
points into intervals [6]. We show that, unfortunately, the logics HS-LiteH/flat

horn

and HS-LiteH[G]
horn cannot guarantee first-order rewritability of even atomic queries,

though we conjecture that datalog rewritings are possible.

2 Description Logic HS-LiteHhorn

The language of HS-LiteHhorn contains individual names a0, a1, . . . , concept names
A0, A1, . . . , and role names P0, P1, . . . . Basic roles R, basic concepts B, temporal
roles S and temporal concepts C are given by the grammar

R ::= Pk | P−k , B ::= Ak | ∃R,
S ::= R | [R]S | 〈R〉S, C ::= B | [R]C | 〈R〉C,

where R is one of Allen’s interval relations or the universal relation G. Over the
closed intervals [i, j] = {n ∈ Z | i ≤ n ≤ j}, for i ≤ j, we set:

– [i, j]A[i′, j′] iff j = i′, (After)
– [i, j]B[i′, j′] iff i = i′ and j ≥ j′, (Begins)
– [i, j]E[i′, j′] iff i ≤ i′ and j = j′, (Ends)
– [i, j]D[i′, j′] iff i ≤ i′ and j′ ≤ j, (During)
– [i, j]L[i′, j′] iff j ≤ i′, (Later)
– [i, j]O[i′, j′] iff i ≤ i′ ≤ j ≤ j′ (Overlaps)

and define their inverses in the standard way. Note that we allow single-point
intervals [i, i] and use non-strict ≤ instead of the more common < (in fact, one
can show that the use of < would make reasoning non-tractable). An HS-LiteHhorn

TBox is a finite set of concept and role inclusions and disjointness constraints of
the form

C1 u · · · u Ck v C+, S1 u · · · u Sk v S+,

C1 u · · · u Ck v ⊥, S1 u · · · u Sk v ⊥,
where C+, R+ denote temporal concepts and roles without diamond operators
〈R〉. An HS-LiteHhorn ABox is a finite set of atoms of the form Ak(a, i, j) and
Pk(a, b, i, j) in which temporal constants i ≤ j are given in binary. AnHS-LiteHhorn

knowledge base (KB) is a pair K = (T ,A), where T is a TBox and A an ABox.
An HS-LiteHhorn interpretation, I, consists of a family of standard (atemporal)

DL interpretations I[i, j] = (∆I , ·I[i,j]), for all i, j ∈ Z with i ≤ j, in which
∆I 6= ∅, aI[i,j]k = aIk for some (fixed) aIk ∈ ∆I ,AI[i,j]k ⊆ ∆I and P I[i,j]k ⊆ ∆I×∆I .
The role and concept constructs are interpreted in I as follows:

(P−k )I[i,j] =
{

(x, y) | (y, x) ∈ P I[i,j]k

}
, (∃R)I[i,j] =

{
x | (x, y) ∈ RI[i,j]

}
,

([R]S)I[i,j] =
⋂

[i,j]R[i′,j′]

SI[i
′,j′], ([R]C)I[i,j] =

⋂

[i,j]R[i′,j′]

CI[i
′,j′]

and dually for the ‘diamond’ operators 〈R〉.
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The satisfaction relation |= is defined by taking:

I |= A(a, i, j) iff aI ∈ AI[i,j],
I |= P (a, b, i, j) iff (aI , bI) ∈ P I[i,j],
I |= d

k Ck v C iff
⋂

k C
I[i,j]
k ⊆ CI[i,j], for all intervals [i, j],

I |= d
k Sk v S iff

⋂
k S
I[i,j]
k ⊆ SI[i,j], for all intervals [i, j],

and similarly for disjointness constraints. Note that concept and role inclusions
as well as disjointness constraints are interpreted globally. For a TBox inclusion
or an ABox assertion α, we write K |= α if I |= α, for all models I of K.

3 Propositional HShorn is Tractable

Denote by HShorn the fragment of HS-LiteHhorn without role names and with
ABoxes that contain a single individual name. TBoxes in this restricted language
can be regarded as Horn formulas of the propositional interval temporal logic
HS, which is notorious for its nasty computational behaviour; for results on the
(un)decidability of various fragments of HS, see, e.g., [14, 10, 9, 8, 19, 11, 20]. The
designed logic HShorn appears to be the first tractable fragment of HS:

Theorem 1. HShorn is P-complete for both combined and data complexity.

Membership in P follows from the polynomial canonical model and P-hardness
for (data) complexity is by reduction of the monotone circuit value problem.

So far, we have managed to lift this result to two proper interval temporal
description logics, both of which are fragments of HS-LiteHhorn.

4 Tractability of HS-LiteH/flat
horn and HS-LiteH[G]

horn

The first fragment, denoted HS-LiteH/flat
horn , only allows those HS-LiteHhorn TBoxes

that are flat in the sense that their concept inclusions do not contain ∃R on
the right-hand side. Our second fragment, denoted HS-LiteH[G]

horn , allows only the
operator [G] in the definition of temporal roles S (with no restrictions imposed
on temporal concepts). Thus, unlike HS-LiteH/flat

horn , the fragment HS-LiteH[G]
horn

contains full DL-LiteHhorn.

Theorem 2. (i) The satisfiability problem for HS-LiteH/flat
horn and HS-LiteH[G]

horn

KBs is P-complete for combined complexity.
(ii) Instance checking for HS-LiteH/flat

horn and HS-LiteH[G]
horn is P-complete for

data complexity.

This result contrasts with the lower data complexity (AC0 and NC1) of
instance checking with point-based temporal DL-Lite [5, 3, 2].

In view of Theorem 2 (ii), the temporal ontology languages HS-LiteH/flat
horn and

HS-LiteH[G]
horn cannot guarantee first-order rewritability of even atomic queries,

though we believe that datalog rewritings are possible. We leave the query
rewritability issues, in particular, the design of DL-LiteHcore-based fragments sup-
porting first-order rewritability as well as temporal extensions of the OWL 2 EL
and OWL 2 RL profiles of OWL 2 for future research.
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6. Böhlen, M.H., Snodgrass, R.T., Soo, M.D.: Coalescing in temporal databases. In:
Proc. VLDB’96. pp. 180–191. Morgan Kaufmann (1996)

7. Borgwardt, S., Lippmann, M., Thost, V.: Temporal query answering in the descrip-
tion logic DL-Lite. In: Proc. FroCoS 2013. LNCS, vol. 8152, pp. 165–180. Springer
(2013)

8. Bresolin, D., Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: The
dark side of interval temporal logic: marking the undecidability border. Annals of
Mathematics and Artificial Intelligence 71(1–3), 41–83 (2014)

9. Bresolin, D., Della Monica, D., Montanari, A., Sala, P., Sciavicco, G.: Interval
temporal logics over finite linear orders: the complete picture. In: Proc. ECAI 2012.
pp. 199–204. IOS Press (2012)

10. Bresolin, D., Della Monica, D., Montanari, A., Sala, P., Sciavicco, G.: Interval
temporal logics over strongly discrete linear orders: the complete picture. In: Proc.
GandALF 2012. EPTCS, vol. 96, pp. 155–168 (2012)

11. Bresolin, D., Della Monica, D., Montanari, A., Sciavicco, G.: The light side of interval
temporal logic: the Bernays-Schönfinkel fragment of CDT. Annals of Mathematics
and Artificial Intelligence 71(1–3), 11–39 (2014)

12. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
Journal of Automated Reasoning 39(3), 385–429 (2007)

13. Date, C.J., Darwen, H., Lorentzos, N: Temporal data and the relational model.
Elsevier. (2002)

14. D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-dimensional modal
logics: theory and applications. Studies in Logic. Elsevier, 2003.

15. Halpern, J.Y., Shoham, Y.: A propositional modal logic of time intervals. Journal
of the ACM 38(4), 935–962 (1991)

16. Klarman, S.: Practical querying of temporal data via OWL 2 QL and SQL:2011.
In: Short Papers Proc. LPAR 2013. EPiC Series 26, pp. 52–61. Easychair (2014)

17. Kulkarni, K.G., Michels, J.E.: Temporal features in SQL:2011. SIGMOD Record
41(3), 34–43 (2012)

18. Leo, J., Parsia, B., Sattler, U.: Temporalising EL concepts with time intervals. In:
Proc. DL. CEUR-WS, vol. 1193, pp. 620–632. (2014)

19. Marcinkowski, J., Michaliszyn, J.: The undecidability of the logic of subintervals.
Fundamenta Informaticae 131(2), 217–240 (2014)

28



20. Montanari, A., Puppis, G., Sala, P.: Decidability of the interval temporal logic
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Motivation

Unification in Description Logics was introduced in [6] as a novel inference service
that can be used to detect redundancies in ontologies. For example, assume that
one developer of a medical ontology defines the concept of a patient with severe
head injury using the EL-concepts

Patient u ∃finding.(Head_injury u ∃severity.Severe), (1)

whereas another one represents it as

Patient u ∃finding.(Severe_finding u Injury u ∃finding_site.Head). (2)

Formally, these expressions are not equivalent, but they are nevertheless meant to
represent the same concept. They can obviously be made equivalent by treating
the concept names Head_injury and Severe_finding as variables, and substituting
them by Injuryu∃finding_site.Head and ∃severity.Severe, respectively. In this case,
we say that the concepts are unifiable, and call the substitution that makes
them equivalent a unifier. In [5], we were able to show that unification in EL
is NP-complete. The main idea underlying the proof of this result is to show
that any solvable EL-unification problem has a local unifier, i.e., a unifier built
from a polynomial number of atoms (concept names or existential restrictions),
which are determined by the unification problem. This yields a brute-force NP-
algorithm for unification, which guesses a local substitution and then checks (in
polynomial time) whether it is a unifier.

Intuitively, a unifier of two EL concepts proposes definitions for the concept
names that are used as variables: in our example, we know that, if we define
Head_injury as Injuryu∃finding_site.Head and Severe_finding as ∃severity.Severe,
then the two concepts (1) and (2) are equivalent w.r.t. these definitions. Of
course, this example was constructed such that the unifier (which is local) pro-
vides sensible definitions for the concept names used as variables. In general, the
existence of a unifier only says that there is a structural similarity between the
two concepts. The developer that uses unification needs to inspect the unifier(s)
to see whether the definitions it suggests really make sense. For example, the sub-
stitution that replaces Head_injury by Patient u Injury u ∃finding_site.Head and
Severe_finding by Patientu∃severity.Severe is also a local unifier, which however
does not make sense. Unfortunately, even small unification problems like the one
? Supported by DFG under grant BA 1122/14-1
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in our example can have too many local unifiers for manual inspection. We pro-
pose disunification to avoid local unifiers that do not make sense. In addition to
positive constraints (requiring equivalence or subsumption between concepts), a
disunification problem may also contain negative constraints (preventing equiva-
lence or subsumption between concepts). In our example, the nonsensical unifier
can be avoided by adding the dissubsumption constraint

Head_injury 6v? Patient (3)

to the equivalence constraint (1) ≡? (2).
Disunification in DLs is closely related to unification and admissibility in

modal logics [7,10–15], as well as (dis)unification modulo equational theories [5,
6, 8, 9]. In the following, we shortly describe the ideas behind our work. More
details can be found in [2, 3].

Preliminaries

We designate certain concept names as variables, while all others are constants.
An EL-concept is ground if it contains no variables. We consider (basic) disuni-
fication problems, which are conjunctions of subsumptions C v? D and dissub-
sumptions C 6v? D between concepts C,D.1 A substitution maps each variable
to a ground concept, and can be extended to concepts as usual. A substitution
σ solves a disunification problem Γ if the (dis)subsumptions of Γ become valid
when applying σ on both sides. We restrict σ to a finite signature of concept and
role names and do not allow variables to occur in a solution—it would not make
sense for the new definitions to extend the vocabulary of the ontologies under
consideration, nor to define variables in terms of themselves.

In the following, we consider a flat disunification problem Γ, i.e. one that
contains only (dis)subsumptions where both sides are conjunctions of flat atoms
of the form A or ∃r.A, for a role name r and a concept name A. We denote
by At the set of all such atoms that occur in Γ, by Var the set of variables oc-
curring in Γ, and by Atnv := At \ Var the set of non-variable atoms of Γ. Let
S : Var → 2Atnv be an assignment, i.e. a function that assigns to each variable
X ∈ Var a set SX ⊆ Atnv. The relation >S on Var is defined as the transitive
closure of {(X,Y ) ∈ Var2 | Y occurs in an atom of SX}. If >S is irreflexive,
then S is called acyclic. In this case, we can define the substitution σS induc-
tively along >S as follows: if X is minimal, then σS(X) :=

d
D∈SX

D; other-
wise, assume that σS(Y ) is defined for all Y ∈ Var with X > Y , and define
σS(X) :=

d
D∈SX

σS(D). All substitutions of this form are called local.

Results

Unification in EL is local : each problem Γ can be transformed into an equivalent
flat problem that has a local solution iff Γ is solvable, and hence (general) solv-
ability of unification problems in EL is in NP [5]. However, disunification in EL
1 A unification problem contains only subsumptions.
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is not local in this sense: consider
Γ := {X v? B, A uB u C v? X, ∃r.X v? Y, > 6v? Y, Y 6v? ∃r.B}

with variables X,Y and constants A,B,C. If we set σ(X) := A u B u C and
σ(Y ) := ∃r.(A u C), then σ is a solution of Γ that is not local. This is because
∃r.(A u C) is not a substitution of any non-variable atom in Γ. Assume now
that Γ has a local solution γ. Since γ must solve the first dissubsumption, γ(Y )
cannot be >, and due to the third subsumption, none of the constants A,B,C
can be a conjunct of γ(Y ). The remaining atoms ∃r.γ(X) and ∃r.B are ruled
out by the last dissubsumption since both γ(X) and B are subsumed by B. This
shows that Γ cannot have a local solution, although it is solvable.

The decidability and complexity of general solvability of disunification prob-
lems is still open. However, we can show that each dismatching problem Γ,
which is a disunification problem where one side of each dissubsumption must
be ground, can be polynomially reduced to a flat problem that has a local solu-
tion iff Γ is solvable. This shows that deciding solvability of dismatching problems
in EL is in NP. The main idea is to introduce auxiliary variables and flat atoms
that allow us to solve the dissubsumptions using a local substitution. For exam-
ple, we replace the dissubsumption > 6v? Y from above with Y v? ∃r.Z. The
rule we applied here is the following:
Solving Left-Ground Dissubsumptions:

Condition: This rule applies to s = C1 u · · · u Cn 6v? X if X is a variable and
C1, . . . , Cn are ground atoms.
Action: Choose one of the following options:
– Choose a constant A ∈ Σ, replace s by X v? A. If C1 u · · · uCn v A, then fail.
– Choose a role r ∈ Σ, introduce a new variable Z, replace s by X v? ∃r.Z,
C1 6v? ∃r.Z, . . . , Cn 6v? ∃r.Z.

According to the rule, we can choose a constant or create a new existential
restriction with a fresh variable, and use it in the new subsumption and dissub-
sumptions. In our example the left hand side of the dissubsumption > 6v? Y is
empty, hence only a subsumption is produced.

However, the brute-force NP-algorithm for checking local solvability of the
resulting flat disunification problem is hardly practical. For this reason, we have
extended the rule-based algorithm from [5] and the SAT reduction from [4] by
additional rules and propositional clauses, respectively, to deal with dissubsump-
tions. The reason we extend both algorithms is that, in the case of unification,
they have proved to complement each other well in first evaluations [1]: the
goal-oriented algorithm needs less memory and finds minimal solutions faster,
while the SAT reduction generates larger data structures, but outperforms the
goal-oriented algorithm on unsolvable problems. The SAT reduction has been
implemented in our prototype system UEL.2 First experiments show that dis-
matching is indeed helpful for reducing the number and the size of unifiers. The
runtime performance of the solver for dismatching problems is comparable to
the one for pure unification problems.
2 version 1.3.0, available at http://uel.sourceforge.net/
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1 Introduction

Description logics (DLs) [3] are a family of knowledge representation formalisms with
numerous practical applications. SHIQ is a particularly important DL as it provides
the formal underpinning for the Web Ontology Language (OWL). DLs model a domain
of interest using concepts (i.e., unary predicate symbols) and roles (i.e., binary pred-
icate symbols). DL applications often rely on subsumption—the problem of checking
logical entailment between concepts—and so the development of practical subsumption
procedures for DLs such as SHIQ has received a lot of attention.

Most DLs are fragments of the guarded fragment [1] of first-order logic; however,
SHIQ provides a restricted form of counting that does not fall within the guarded frag-
ment. Moreover, most DLs, including SHIQ, can be captured using the two-variable
fragment of first-order logic with counting (C2) [11], but this provides us with neither
a practical nor a worst-case optimal reasoning procedure (C2 and SHIQ are NEXP-
TIME- and EXPTIME-complete, respectively). Algorithms for more general logics thus
do not satisfy the requirements of DL applications, and so numerous alternatives spe-
cific to DLs have been explored. Many DLs can be decided in the framework of res-
olution [18, 13], including SHIQ [14]. These procedures are usually worst-case op-
timal and can be practical, but, as we discuss in Section 3, in even very simple cases
they can draw unnecessary inferences. Practically successful SHIQ reasoners, such as
FaCT++ [26], HermiT [9], Pellet [25], and Racer [12], use variants of highly-optimised
(hyper)tableau algorithms [6]—model-building algorithms that ensure termination by
a variant of blocking [7]. Although worst-case optimal tableau algorithms are known
[10], practical implementations are typically not worst-case optimal. While generally
very effective, tableau algorithms still cannot process certain ontologies; for example,
the GALEN ontology1 has proved particularly challenging, mainly because tableau cal-
culi tend to construct very large models.

A breakthrough in practical ontology reasoning came in the form of consequence-
based calculi. Although not originally presented in the consequence-based framework,
the algorithm for the DL EL [2] can be seen as the first such calculus. This algorithm
was later reformulated and extended to Horn-SHIQ [15] and Horn-SROIQ [19]—
DLs that support functional roles, but not disjunctive reasoning. Recently, consequence-
based calculi were also developed for the DLsALCH [24] andALCI [23], which sup-
port disjunctive reasoning, but not counting. Consequence-based calculi can be seen as

1 http://www.opengalen.org
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a combination of resolution and hypertableau (see Section 3 for details). As in resolu-
tion, they describe ontology models by systematically deriving certain ontology conse-
quences; and as in hypertableau, the ontology axioms can be used to guide the derivation
process, and to avoid drawing unnecessary inferences. Moreover, consequence-based
calculi are not just refutationally complete, but can classify an ontology in a single
pass, which greatly reduces the overall work. These advantages allowed the CB system
to be the first to classify all of GALEN [15].

Existing consequence-based algorithms can handle either disjunctions or counting,
but not both. As we discuss in detail in Section 4, it is challenging to extend these algo-
rithms to DLs such as SHIQ that combine both kinds of construct: counting quantifiers
require equality reasoning, which together with disjunctions can impose complex con-
straints on ontology models. Unlike in existing consequence-based calculi, these con-
straints cannot be captured using DLs themselves; instead, a more expressive first-order
fragment is needed, which makes the reasoning process much more involved.

In Section 5 we present a consequence-based calculus for SHIQ. Borrowing ideas
from resolution theorem proving, we encode the required consequences using a special
kind of first-order clause; and to handle equality effectively, we base our calculus on
ordered paramodulation [17]—a state of the art calculus for equational theorem proving
used in modern systems such as E [22] and Vampire [20]. To make the calculus efficient
on EL, we have carefully constrained the rules so that, on EL ontologies, it mimics
existing EL calculi. Thus, although a practical evaluation of our calculus is still pending,
we believe that it is likely to perform well in practice on ‘mostly-EL’ ontologies due to
is close relationship with existing and well-proven calculi.

2 Preliminaries

First-Order Logic. To simplify matters technically, it is common practice in equational
theorem proving to encode atoms as terms. An atomic formula P (~s) can be encoded as
P (~s) ≈ t, where t is a new special constant, and P is considered as a function symbol
rather than as a predicate symbol. Note however that, in order to avoid meaningless
expressions in which predicate symbols occur at proper subterms, a multi-sorted type
discipline on terms in the encoding is adopted. Thus, the set of symbols in the signature
is partitioned into a set P of predicate symbols (which includes t), and a set F of
function symbols.

A term is constructed as usual using variables and the signature symbols. Terms
containing predicate symbols as their outermost symbol are called P-terms, while all
other terms are F-terms. For example, for P a predicate and f a function symbol, both
f(P (x)) and P (P (x)) are malformed; P (f(x)) is a well-formed P-term; and f(x)
is a well-formed F-term. An (in)equality is an expression of the form s ≈ t (s 6≈ t)
where s and t are both either F- or P-terms. We assume that ≈ and 6≈ are implicitly
symmetric—that is, s ./ t and t ./ s are one and the same expression, for ./ ∈ {≈, 6≈}.
A literal is an equality or an inequality. An atom is an equality of the form P (~s) ≈ t,
and we write it simply as P (~s) whenever it is clear from the context whether P (~s) is
intended to be aP-term or an atom. A clause is an expression of the form Γ → ∆where
Γ is a conjunction of atoms called the body, and ∆ is a disjunction of literals called the
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Table 1. Translating Normalised SHIQ Ontologies into DL-Clauses

B1 v >nS.B2  
B1(x)→ S(x, fi(x)) for 1 ≤ i ≤ n
B1(x)→ B2(fi(x)) for 1 ≤ i ≤ n
B1(x)→ fi(x) 6≈ fj(x) for 1 ≤ i < j ≤ n

B1 v 6nS.B2  S(y, x) ∧B2(x)→ SB2(y, x) for fresh SB2

B1(x) ∧ ∧
1≤i≤n+1

SB2(x, zi)→
∨

1≤i<j≤n+1

zi ≈ zj

B1 v ∀S.B2  B1(x) ∧ S(x, z1)→ B2(z1)
d

1≤i≤n

Bi v
⊔

1≤j≤m

Bj  
∧

1≤i≤n

Bi(x)→ ∨
1≤i≤m

Bj(x)

S1 v S2  S1(x, z1)→ S2(x, z1)

S1 v S−2  S1(x, z1)→ S2(z1, x)

head. We often treat conjunctions and disjunctions as sets; and we write the empty
conjunction (disjunction) as > (⊥). We use the standard notion of subterm positions;
then, s|p is the subterm of s at position p; moreover, s[t]p is the term obtained from s
by replacing the subterm at position p with t; finally, position p is proper in t if t|p 6= t.

Orders. A term order � is a strict order on the set of all terms. The multiset exten-
sion �mul of � compares multisets M and N on a universe U such that M �mul N
if and only if M 6= N and, for each n ∈ N \M , some m ∈M \N exists such that
m � n, where \ is the multiset difference. We extend � to literals by identifying each
s 6≈ t with the multiset {s, s, t, t} and each s ≈ t with the multiset {s, t}, and by com-
paring the result using �mul . Given an order �, element b ∈ U , and subset S ⊂ U , the
notation S � b abbreviates ∃a ∈ S : a � b.

Description Logic SHIQ. In this paper, a SHIQ ontology is represented as a
set of DL-clauses, which we define next. Let P1 and P2 be countable sets of unary and
binary predicate symbols, and let F be a countable set of unary function symbols. DL-
clauses are constructed using the central variable x and variables zi. A DL-F-term has
the form x, zi, or f(x) with f ∈ F ; a DL-P-term has the form B(zi), B(x), B(f(x)),
S(x, zi), S(zi, x), S(x, f(x)), S(f(x), x) with B ∈ P1 and S ∈ P2; and a DL-term is
a DL-F- or a DL-P-term. A DL-literal has the formA ≈ t withA a DL-P-term (called
a DL-atom), or f(x) ./ g(x), f(x) ./ zi, or zi ./ zj with ./ ∈ {≈, 6≈}. A DL-clause
contains only DL-atoms of the form B(x), S(x, zi), and S(zi, x) in the body and only
DL-literals in the head, and where each variable zi occurring in the head also occurs in
the body. An ontology O is a finite set of DL-clauses. A query clause is a DL-clause in
which all atoms are of the formB(x). Given an ontologyO and a query clause Γ → ∆,
the query clause entailment problem is to decide whetherO |= ∀x.(Γ → ∆) holds; we
often leave out ∀x and write the latter as O |= Γ → ∆.
SHIQ ontologies are commonly written using a DL-style syntax, but we can al-

ways transform such ontologies into DL-clauses without affecting the entailment of
query clauses. Transitivity is encoded away as described in [21, 8], and the resulting
axioms are normalised to the forms shown on the left-hand side of Table 1 as described
in [15, 23]. The normalised axioms are translated to DL-clauses as shown in Table 1.
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O1 = { Bi v ∃Sj .Bi+1 for 0 ≤ i < n and 1 ≤ j ≤ 2 (1)
Bn v Cn (2)

Ci+1 v ∀S−j .Ci for 0 ≤ i < n and 1 ≤ j ≤ 2 (3) }

vB0

B0(x)

Initialisation: > → B0 (4)
Hyper[1+4]: > → ∃Sj .B1 (5)
Pred[14]: > → C0 (15)

vB1

B1(x)

Succ[5]: > → B1 (8)
Hyper[1+8]: > → ∃Sj .B2 (9)
Pred[. . . ]: > → C1 (13)
Hyper[3+13]: > → ∀S−j .C0 (14)

· · · vBn

Bn(x)

Succ[. . . ]: > → Bn (10)
Hyper[2+10]: > → Cn (11)
Hyper[3+11]: > → ∀S−j .Cn−1 (12)

Succ[5]: ∃S1.B1 (6)

Succ[5]: ∃S2.B1 (7)

Fig. 1. Example Motivating Consequence-Based Calculi

3 Why Consequence-Based Calculi?

Consider the ontology O1 (written using DL notation) shown in Figure 1. Axiom (3)
can be reformulated as ∃Sj .Ci+1 v Ci, and soO1 is in EL. One can readily verify that
O |= Bi v Ci holds for each 1 ≤ i ≤ n.

To prove, say, O |= B0 v C0, a (hyper)tableau calculus constructs in a forward-
chaining manner a tree-shaped model of depth n and of fanout two, where nodes at
depth i are labelled by Bi and Ci. Forward chaining ensures that reasoning is goal-
oriented and thus amenable to practical implementation. However, all nodes labelled
with Bi are of the same type and behave in the same way, which reveals a weakness of
(hyper)tableau calculi: the constructed model can be large (exponential in our example)
and highly redundant. Techniques such as caching [10] or anywhere blocking [16] can
be used to constrain model construction, but their effectiveness often depends on the
order of rule applications. Thus, model size has proved to be a key limiting factor for
(hyper)tableau-based reasoners in practice [16].

In contrast, resolution describes models using universally quantified clauses that
‘summarise’ the model. This prevents redundancy and ensures worst-case optimality of
many resolution decision procedures. Nevertheless, resolution can still derive unneces-
sary clauses. In our example, axioms (1) and (3) are translated into clauses (16) and
(17), respectively, which can be used to derive all 2n2 clauses of the form (18).

Bi(x)→ Sj(x, fi,j(x)) for i ∈ {1, . . . , n} and j ∈ {1, 2} (16)
Sj(z1, x) ∧ Ck+1(x)→ Ck(z1) for k ∈ {1, . . . , n} and j ∈ {1, 2} (17)

Bi(x) ∧ Ck+1(fi,j(x))→ Ck(x) for i, k ∈ {1, . . . , n} and j ∈ {1, 2} (18)

Of these 2n2 clauses, only those where i = k are relevant to proving O |= B0 v C0.
Moreover, if we extend O with additional clauses that contain Bi and Ci, each of the
2n2 clauses from (18) can participate in further inferences, which can give rise to many
more irrelevant conclusions. This problem is exacerbated in satisfiable cases since all
resolution consequences must then be computed in full.

Consequence-based calculi combine the goal-directed reasoning of (hyper)tableau
calculi with the ‘summarisation’ of resolution. In [23], we presented a very general
framework for ALCI ontologies that captures the key elements of consequence-based
calculi such as [2, 15, 19, 24]. We use this framework as basis for our extension to
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SHIQ so, before presenting our extension, we explain the main concepts on O1. Due
to space restrictions we cannot reproduce in full the inference rules from [23]; however,
these are similar in spirit to our inference rules for SHIQ presented in Table 2.

Our calculus constructs a context structure D = 〈V, E ,S, core,�〉—a graph whose
vertices V are called contexts and whose directed edges are labelled with concepts of
the form ∃S.B. Let I be a model of O. Instead of representing each element of I
individually as in (hyper)tableau calculi, we ‘summarise’ all elements of a certain kind
using a single context v. Each context v ∈ V is associated with a (possibly empty)
set corev of core concepts that hold in all domain elements that v represents; thus,
corev determines the kind of context v. We use a set Sv of clauses to capture additional
constraints that the elements represented by v must satisfy; in ALCI, we can do so
using clauses over DL concepts of the form

d
Bi v

⊔
Bj t

⊔∃Sk.Bk t
⊔ ∀S`.B`.

Thus, unlike in resolution where all consequences belong to a single set, we assign a
consequence a particular set in order to reduce the number of inferences. Clauses in Sv
are ‘relative’ to corev: for each Γ v ∆ ∈ Sv , we have O |= corev u Γ v ∆—that is,
we choose not to include corev in clause bodies since corev always holds. Finally, �
provides each context v ∈ V with a concept order�v that restricts resolution inferences
in the presence of disjunctions.

Consequence-based calculi are not just refutation-complete: they actually derive
the required consequences. Figure 1 shows how this is achieved for O1 |= B0 v C0;
the core and the clauses are shown, respectively, above and below a context. To prove
B0 v C0, we introduce context vB0

with corevB0
= {B0} and clause (4) stating that

B0 holds in this context. Next, using the Hyper rule, we derive (5) from (1) and (4); this
rule performs hyperresolution, but restricted to one context at a time.

Next, the Succ rule satisfies the existential quantifiers in (5). To this end, the rule
uses a parameter called an expansion strategy. A strategy is given two sets of constraints
that a successor of vB0 must satisfy due to universal restrictions:K1 contains constraints
that must hold, and K2 contains constraints that might hold. Given such K1 and K2,
the strategy then decides whether to reuse an existing context or create a fresh one,
and in the latter case it also determines how to initialise the new context’s core. In our
example, there are no universal restrictions and all information in vB0

is deterministic,
so K1 = K2 = {B1}. For EL, a reasonable strategy is to associate with each concept
Bi a context vBi with corevBi

= {Bi}, and to always to satisfy existential quantifiers
of the form ∃S.Bi using vBi

; thus, in our example we introduce vB1
and initialise it

with (8). Note that (5) represents two existential quantifiers, both of which we satisfy
(in separate applications of the Succ rule) using vB1

. Different strategies may be used
with more expressive DLs; please refer to [23, Section 3.4] for an in-depth discussion.

We construct contexts vB2
, . . . , vBn

in a similar way, finally deriving (11) by hy-
perresolving (2) and (10), and then (12) by hyperresolving (3) and (11). Clause (12)
imposes a constraint on the predecessor context, which we propagate backwards using
the Pred rule, obtaining (13) and (15). Since, however, clauses in SvB0

are ‘relative’ to
corevB0

, clause (15) actually represents our query clause B0 v C0.
Thus, like resolution, consequence-based calculi ‘summarise’ models to prevent re-

dundant computation, and, like (hyper)tableau calculi, they differentiate elements in a
model of O to prevent the derivation of consequences such as (18).
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O2 = { B0(x) → S(f1(x), x) (19) B1(x) → S(x, fi(x)) for 2 ≤ i ≤ 3 (22)
B0(x) → B1(f1(x)) (20) B1(x) → Bi(fi(x)) for 2 ≤ i ≤ 3 (23)

B2(x) ∧B3(x) → ⊥ (21) Bi(x) → B4(x) for 2 ≤ i ≤ 3 (24)
B1(x) ∧∧

1≤j≤3 S(x, zi)→
∨

1≤j<k≤3 zj ≈ zk (25) }

v1

B0(x)

Initialisation: > → B0(x) (26)
Hyper[19+26]: > → S(f1(x), x) (27)
Hyper[20+26]: > → B1(f1(x)) (28)
Pred[48]: > → B2(x) ∨B3(x) (49)
Hyper[24+49]: > → B4(x) ∨B2(x) (50)
Hyper[24+50]: > → B4(x) (51)

v2
S(x, y), B1(x)

Succ[27+28]: > → S(x, y) (30)
Succ[27+28]: > → B1(x) (31)
Hyper[22+31]: > → S(x, f2(x)) (32)
Hyper[23+31]: > → B2(f2(x)) (33)
Hyper[22+31]: > → S(x, f3(x)) (34)
Hyper[23+31]: > → B3(f3(x)) (35)
Hyper[25+30+31+32+34]: > → f2(x) ≈ y ∨ f3(x) ≈ y ∨ f3(x) ≈ f2(x) (36)
Eq[35+36]: > → f2(x) ≈ y ∨ f3(x) ≈ y ∨B3(f2(x)) (37)
Pred[37+42]: > → f2(x) ≈ y ∨ f3(x) ≈ y (46)
Eq[35+46]: > → B3(y) ∨ f2(x) ≈ y (47)
Eq[33+47]: > → B2(y) ∨B3(y) (48)

v3

S(y, x), B2(x)

Succ[32+33+37]: > → S(y, x) (39)
Succ[32+33+37]: > → B2(x) (40)
Succ[32+32+37]: B3(x)→ B3(x) (41)
Hyper[21+40+41]: B3(x)→ ⊥ (42)

v4

S(y, x), B3(x)

Succ[34+35]: > → S(y, x) (44)
Succ[34+35]: > → B3(x) (45)

Succ[27+28]: f1 (29) Succ[32+33+37]: f2 (38)

Succ[32+33+37]: f2 (38)

Fig. 2. Challenges in Extending the Consequence-Based Framework to SHIQ

4 Extending the Framework to SHIQ
We now present an example before formalising the calculus. Due to an interaction
between counting quantifiers and inverse roles, a SHIQ ontology can impose more
complex constraints on model elements than ALCI. Let O2 be the SHIQ ontology
shown in Figure 2; we argue that O2 |= B0(x)→ B4(x) holds. To see why, consider
an equality Herbrand interpretation I constructed from B0(a). Then, (19) and (20) de-
rive S(f1(a), a) and B1(f1(a)); moreover, (22) and (23) derive S(f1(a), f2(f1(a)))
and B2(f2(f1(a))), and S(f1(a), f3(f1(a))) and B3(f3(f1(a))). Due to (24) we de-
rive B4(f2(f1(a))) and B4(f3(f1(a))). Finally, from (25) we derive (52).

f2(f1(a)) ≈ a ∨ f3(f1(a)) ≈ a ∨ f3(f1(a)) ≈ f2(f1(a)) (52)

We must satisfy at least one disjunct in (52). Disjunct f3(f1(a)) ≈ f2(f1(a)) cannot
be satisfied due to (21); but then, regardless of whether we satisfy f3(f1(a)) ≈ a or
f2(f1(a)) ≈ a, we derive B4(a); hence, the inference holds.

To prove this in our consequence-based framework, we must capture constraint (52)
and its consequences. However, this cannot be done using standard description logic
notation because DL concepts cannot identify specific successors and predecessors of
f1(a)—that is, they cannot say ‘either the first or the second successor is equal to the
predecessor’. Thus, our main challenges are to devise a method for representing all the
relevant constraints that can be induced by SHIQ ontologies, and to ensure that such
constraints are correctly propagated between adjacent contexts.
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To address these challenges, we Skolemise existential quantifiers and transform ax-
ioms into DL-clauses. Skolemisation introduces function symbols that act as names for
successors. Our clauses thus contain terms of the form x, fi(x), and y which have a
special meaning in our setting: variable x represents the elements that a context stands
for; fi(x) represents a successor of x; and y represents the predecessor of x. This allows
us to represent constraint (52) as

f2(x) ≈ y ∨ f3(x) ≈ y ∨ f3(x) ≈ f2(x). (53)

Table 2 shows the inference rules of our calculus that are applicable to such a clausal
representation. In each clause, literals are ordered from the smallest to the largest, and
so the maximal literal is always on the right; moreover, clause numbers correspond
to the order of clause derivation. In the rest of this section, we discuss the rules on
our running example and show how they verify O2 |= B0(x)→ B4(x); for brevity, we
present only the inferences needed to produce the desired conclusion.

We first create context v1 and initialise it with (26); this ensures that each interpreta-
tion represented by the context structure contains an element for which B0 holds. Next,
we derive (27) and (28) using hyperresolution. At this point, we could hyperresolve
(22) and (28) to obtain > → S(f1(x), f2(f1(x))); however, such inferences could eas-
ily lead to nontermination of the calculus due to increased term nesting. Therefore, we
require hyperresolution to map variable x in the DL-clauses to variable x in the context
clauses; thus, in each context, hyperresolution derives only consequences about x.

Function symbol f1 in clauses (27) and (28) is akin to an existential quantifier;
consequently, the Succ rule introduces a fresh context v2. Due to Skolemisation, edges
in our context structure are labelled with function symbols, rather than concepts of
the form ∃S.B as in [23]. The rule uses an expansion strategy analogous to the EL
strategy from Section 3. To determine which information to propagate to a successor,
Definition 2 given below introduces a set Su(O) of successor triggers. In our example,
DL-clause (25) contains atoms B1(x) and S(x, zi) in its body, where zi can be mapped
to a predecessor or a successor of x, so a context in which hyperresolution is applied to
(25) will be interested in information about its predecessors; we reflect this by adding
B1(x) and S(x, y) to Su(O). Thus, the Succ rule introduces context v2, sets its core to
B1(x) and S(x, y), and initialises the context with (30) and (31).

We next introduce (32)–(35) using hyperresolution, at which point we have suffi-
cient information to apply hyperresolution to (25) to derive (36). Please note how the
presence of (30) is crucial for this inference. We use paramodulation to deal with equal-
ity in clause (36). As is common in resolution-based theorem proving, we order the
literals in a clause and apply inferences only to maximal literals; thus, we derive (37).

Clauses (32), (33), and (37) contain function symbol f2, so we again apply the Succ
rule and introduce context v3. Due to clause (33), we know that B2(x) must always
hold in v2, so we add B2(x) to corev2 . However, B3(f2(x)) occurs in clause (37) in a
disjunction, so it holds only conditionally in v2; we reflect this by including B3(x) in
the body of clause (41). This allows us derive (42) using hyperresolution.

Clause (42) essentially says ‘B3(f2(x)) should not hold in the predecessor’, so
the Pred rule propagates this information to v2. This produces clause (46); one can
intuitively understand this inference as hyperresolution of (37) and (42), where we take
into account that term f2(x) in context v2 is represented as variable x in context v3.
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After two paramodulation steps, we derive clause (48), which essentially says ‘the
predecessor must satisfy B2(x) or B3(x)’. The set Pr(O) of predecessor triggers from
Definition 2 identifies this information as relevant to v1: the DL-clauses in (24) contain
B2(x) and B3(x) in their bodies, which are represented in v2 as B2(y) and B3(y).
Hence Pr(O) contains B2(y) and B3(y), which allows the Pred rule to derive (49).

After two more hyperresolution steps, we finally derive our target clause (51). Please
note, however, that we cannot derive this if B4(x) were maximal in (50); thus, for
completeness we require all atoms in the head of a query clause to be smallest. A similar
observation applies to Pr(O): if B3(y) were maximal in (47), we would not derive (48)
and propagate it to v1; thus, we require all atoms in Pr(O) to be smallest too.

5 Formalising the Consequence-Based Algorithm for SHIQ
Our calculus manipulates context clauses, which are constructed from context terms and
context literals as described in Definition 1. Unlike in general resolution, we restrict
context clauses to contain only variables x and y, which have a special meaning in our
setting: variable x represents a point (i.e., a term) in the model, and y represents the
predecessor of x; this naming convention is important for the rules of our calculus. This
is in contrast to the DL-clauses of an ontology: these can contain variables x and zi,
and the latter can refer to either the predecessor or a successor of x.

Definition 1. A context F-term is a term of the form x, y, or f(x) for f ∈ F; a context
P-term is a term of the form B(y), B(x), B(f(x)), S(x, y), S(y, x), S(x, f(x)), or
S(f(x), x) for B,R ∈ P and f ∈ F; and a context term is an F-term or a P-term. A
context literal is a literal of the form A ≈ t (called a context atom), f(x) ./ g(x), or
f(x) ./ y, for A a context P-term and ./ ∈ {≈, 6≈}. A context clause is a clause with
only function-free context atoms in the body, and only context literals in the head.

Definition 2 introduces sets Su(O) and Pr(O), that identify the information that
must be exchanged between adjacent contexts. Intuitively, Su(O) contains atoms that
are of interest to a context’s successor, and it guides the Succ rule whereas Pr(O) con-
tains atoms that are of interest to a context’s predecessor and it guides the Pred rule.

Definition 2. Let O be an ontology. The set Su(O) of successor triggers of O is the
smallest set of atoms such that, for each clause Γ → ∆ ∈ O, we have (i)B(x) ∈ Γ im-
pliesB(x) ∈ Su(O), (ii) S(x, zi) ∈ Γ implies S(x, y) ∈ Su(O), and (iii) S(zi, x) ∈ Γ
implies S(y, x) ∈ Su(O). The set Pr(O) of predecessor triggers is defined as

Pr(O) = {A{x 7→ y, y 7→ x} | A ∈ Su(O) } ∪ {B(y) | B occurs in O}.
Similarly to resolution, our calculus uses a term order � to restrict its inferences.

Definition 3 specifies the conditions that the order must satisfy. Conditions 1 and 2
ensure that F-terms are compared uniformly across contexts; however, P-terms can
be compared in different ways in different contexts. Conditions 1 through 4 ensure that,
when grounded with x and y mapping to a term its predecessor, respectively, the order is
a simplification order [4]—a kind of term order commonly used in equational theorem
proving. Finally, condition 5 ensures that atoms that might be propagated to a context’s
predecessor via the Pred rule are smallest, which is important for completeness.
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Definition 3. Let m be a total, well-founded order on function symbols. A context term
order � is an order on context terms satisfying the following conditions:

1. for each f ∈ F , we have f(x) � x � y;
2. for all f, g ∈ F with f m g, we have f(x) � g(x);
3. for all terms s1, s2, and t and each position p in t, if s1 � s2, then t[s1]p � t[s2]p;
4. for each term s and each proper position p in s, we have s � s|p; and
5. for each atom A ≈ t ∈ Pr(O) and each context term s 6∈ {x, y}, we have A 6� s.

Order � is extended to literals, also written �, as described in Section 2.

A lexicographic path order (LPO) [4] over context F-terms and context P-terms, in
which x and y are treated as constants such that x � y, satisfies conditions 1 through 4.
Furthermore, Pr(O) contains only atoms of the formB(y), S(x, y), and S(y, x), which
can always be smallest in the order; thus, condition 5 does not contradict the other con-
ditions. Hence, an LPO that is relaxed for condition 5 satisfies Definition 3. In addition
to orders, redundancy elimination techniques have proven crucial to the practical effec-
tiveness of resolution calculi. We now define a criterion compatible with our setting.

Definition 4. A set of clauses U contains a clause Γ → ∆ up to redundancy, written
Γ → ∆ ∈̂ U , if

1. terms s and s′ exist such that s ≈ s ∈ ∆ or {s ≈ s′, s 6≈ s′} ⊆ ∆, or
2. a clause Γ ′ → ∆′ ∈ U exist such that Γ ′ ⊆ Γ and ∆′ ⊆ ∆.

Proposition 1. For U a set of clauses and C ∈ U a clause such that C ∈̂ U \ {C}, for
each clause C ′ with C ′ ∈̂ U , we have C ′ ∈̂ U \ {C}.

Proposition 1 shows that our calculus is compatible with backward subsumption
(which is captured in the Elim rule). Note that tautologies of the form A→ A are not
necessarily redundant since they can be used to initialise contexts. However, if our cal-
culus were to derive both A→ A and A→ A ∨A′ then the latter is always redundant.

We now formalise the notion of a context structure, and define soundness for a
context structure. The latter captures the fact that corev is not contained in the body of
any context clause in Sv .

Definition 5. A context structure for an ontology O is a tuple D = 〈V, E ,S, core,�〉,
where V is a finite set of contexts, E ⊆ V × V × F is a finite set of edges labelled with
function symbols, function core assigns to each context v a conjunction corev of atoms
over the P-terms from Su(O), function S assigns to each context v a finite set Sv of
context clauses, and function � assigns to each context v a context term order �v . A
context structure D is sound for O if the following conditions both hold:

S1. O |= corev ∧ Γ → ∆ for each context v ∈ V and each clause Γ → ∆ ∈ Sv , and
S2. O |= coreu → corev{x 7→ f(x), y 7→ x} for each edge 〈u, v, f〉 ∈ E .

Definition 6 introduces an expansion strategy—a parameter of our calculus that
determines when and how to reuse contexts in order to satisfy existential restrictions.
We have discussed the roles of expansion strategies in Section 3; moreover, in [23] we
presented several expansion strategies for the DLs contained in ALCI, and adapting
these to SHIQ is straightforward.
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Table 2. The rules of the consequence-based calculus for SHIQ

C
or
e If A ∈ corev ,

and > → A /∈ Sv ,
then add > → A to Sv .

H
yp

er

If
∧n

i=1Ai → ∆ ∈ O,
σ is a substitution such that σ(x) = x,
Γi → ∆i ∨Aiσ ∈ Sv with ∆i 6�v Aiσ for i ∈ {1, . . . , n},
and

∧n
i=1 Γi → ∆σ ∨∨n

i=1∆i 6∈̂ Sv ,
then add

∧n
i=1 Γi → ∆σ ∨∨n

i=1∆i to Sv .

E
q

If Γ1 → ∆1 ∨ s1 ≈ t1 ∈ Sv with s1 �v t1 and ∆1 6�v s1 ≈ t1,
Γ2 → ∆2 ∨ s2 ./ t2 ∈ Sv with ./ ∈ {≈, 6≈} and s2 �v t2 and ∆2 6�v s2 ./ t2,
s2|p = s1,
and Γ1 ∧ Γ2 → ∆1 ∨∆2 ∨ s2[t1]p ./ t2 6∈̂ Sv ,

then add Γ1 ∧ Γ2 → ∆1 ∨∆2 ∨ s2[t1]p ./ t2 to Sv .

In
eq

If Γ → ∆ ∨ t 6≈ t ∈ Sv with ∆ 6�v t 6≈ t,
and Γ → ∆ 6∈̂ Sv ,

then add Γ → ∆ to Sv .

F
ac
to
r If Γ → ∆ ∨ s ≈ t ∨ s ≈ t′ ∈ Sv with ∆ ∪ {s ≈ t} 6�v s ≈ t′ and s �v t

′,
and Γ → ∆ ∨ t 6≈ t′ ∨ s ≈ t′ 6∈̂ Sv ,

then add Γ → ∆ ∨ t 6≈ t′ ∨ s ≈ t′ to Sv .

E
lim

If Γ → ∆ ∈ Sv and
Γ → ∆ ∈̂ Sv \ {Γ → ∆}

then remove Γ → ∆ from Sv .

P
re
d

If 〈u, v, f〉 ∈ E ,∧m
i=1Ai →

∨m+n
i=m+1Ai ∈ Sv ,

Γi → ∆i ∨Aiσ ∈ Su with ∆i 6�u Aiσ for 1 ≤ i ≤ m,
Ai ∈ Pr(O) for each m+ 1 ≤ i ≤ m+ n,
and

∧m
i=1 Γi →

∨m
i=1∆i ∨

∨m+n
i=m+1Aiσ 6∈̂ Su,

then add
∧m

i=1 Γi →
∨m

i=1∆i ∨
∨m+n

i=m+1Aiσ to Su;
where σ = {x 7→ f(x), y 7→ x}.

S
u
cc

If Γ → ∆ ∨A ∈ Su where ∆ 6�u A and A contains f(x), and
no edge 〈u, v, f〉 ∈ E exists such that A→ A ∈̂ Sv for each A ∈ K2 \ corev ,

then let 〈v, core′,�′〉 := strategy(K1,D);
if v ∈ V , then let �v := �v ∩ �′, and
otherwise let V := V ∪ {v}, corev := core′, �v := �′, and Sv := ∅;
add the edge 〈u, v, f〉 to E ; and
add A→ A to Sv for each A ∈ K2 \ corev;

where σ = {x 7→ f(x), y 7→ x},
K1 = {A ∈ Su(O) | > → Aσ ∈ Su }, and
K2 = {A ∈ Su(O) | Γ ′ → ∆′ ∨Aσ ∈ Su and ∆′ 6�u Aσ }.
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Definition 6. An expansion strategy is a polynomial-time computable function strategy
that takes a set of atoms K and a context structure D = 〈V, E ,S, core,�〉. The result
of strategy(K,D) is a triple 〈v, core′,�′〉 where core′ is a subset of K; either v /∈ V is
a fresh context, or v ∈ V is an existing context in D such that corev = core′; and �′ is
a context term order.

We now present the main theorems. Full proofs of all technical results can be found
in [5]. Theorem 1 proves that all clauses derived by our calculus are indeed conclusions
of the input ontology, and Theorem 2 is our statement of completeness.

Theorem 1. For any strategy, applying a rule from Table 2 to an ontology O and a
context structureD that is sound forO produces a context structure that is sound forO.

Theorem 2. Let O be an ontology, and let D = 〈V, E ,S, core,�〉 be a context struc-
ture such that no inference rule from Table 2 is applicable to O and D. Then, for each
query clause ΓQ → ∆Q and each context q ∈ V that satisfy all of the following condi-
tions, we have ΓQ → ∆Q ∈̂ Sq .

C1. O |= ΓQ → ∆Q.
C2. For each atom A ≈ t ∈ ∆Q and each context term s 6∈ {x, y} such that A �q s,

we have s ≈ t ∈ ∆Q ∪ Pr(O).
C3. For each A ∈ ΓQ, we have ΓQ → A ∈̂ Sq .

Theorems 1 and 2 result in the following algorithm for deciding O |= ΓQ → ∆Q.

1. Create an empty context structure D, introduce a context q, and, for each A ∈ ΓQ,
add ΓQ → A to Sq in order to satisfy condition C3.

2. Initialise �q in a way that satisfies condition C2, and select an expansion strategy.
3. Saturate D and O using the inference rules from Table 2.
4. ΓQ → ∆Q holds if and only if ΓQ → ∆Q ∈̂ Sv .

Proposition 2. For each expansion strategy that introduces at most exponentially many
contexts, the consequence-based calculus for SHIQ is worst-case optimal.

Proof. The number ℘ of different context clauses that can be generated using the sym-
bols in O is clearly at most exponential in the size of O, and the number m of clauses
participating in each inference is linear in the size of O. Hence, with k contexts, the
number of inferences is bounded by (k · ℘)m; if k is at most exponential in the size of
O, the number of inferences is exponential as well. Thus, if at most exponentially many
contexts are introduced, our algorithm runs in exponential time, which is worst-case
optimal for SHIQ [3]. ut

6 Conclusion

We have presented the first consequence based calculus for SHIQ, a DL that includes
both disjunction and counting quantifiers. Our calculus combines ideas from state of the
art resolution and (hyper)tableau calculi, including the use of ordered paramodulation
for efficient equality reasoning. In spite of its increased complexity, the calculus mimics
existing and well proven EL calculi on EL ontologies. Thus, although implementation
and evaluation remain as future work, we believe that the calculus is likely to work well
on ‘mostly-EL’ ontologies—a type of ontology that occurs commonly in practice.
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1 Explaining Query Results

The problem of querying description logic (DL) knowledge bases (KBs) using
database-style queries (in particular, conjunctive queries) has been a major focus
of recent DL research. Since scalability is a key concern, much of the work has
focused on lightweight DLs for which query answering can be performed in poly-
nomial time w.r.t. the size of the ABox. The DL-Lite family of lightweight DLs
[10] is especially popular due to the fact that query answering can be reduced,
via query rewriting, to the problem of standard database query evaluation.

Since the TBox is usually developed by experts and subject to extensive
debugging, it is often reasonable to assume that its contents are correct. By
contrast, the ABox is typically substantially larger and subject to frequent mod-
ifications, making errors almost inevitable. As such errors may render the KB
inconsistent, several inconsistency-tolerant semantics have been introduced in
order to provide meaningful answers to queries posed over inconsistent KBs.
Arguably the most well-known is the AR semantics [17], inspired by work on
consistent query answering in databases (cf. [4] for a survey). Query answer-
ing under AR semantics amounts to considering those answers (w.r.t. standard
semantics) that can be obtained from every repair, the latter being defined as
an inclusion-maximal subset of the ABox that is consistent with the TBox. A
more cautious semantics, called IAR semantics [17] queries the intersection of
the repairs and provides a lower bound on AR semantics. The brave semantics
[7], which considers the answers holding in some repair, provides a natural upper
bound. This extended abstract presents our work [6] on explaining why a tuple
is a (non-)answer to a query under AR, IAR, or brave semantics.

The need to equip reasoning systems with explanation services is widely ac-
knowledged by the DL community. Indeed, there have been numerous works on
axiom pinpointing, in which the objective is to identify (minimal) subsets of a
KB that entail a given TBox axiom (or ABox assertion) [18, 9, 21, 16, 22, 20, 14,
15]. With regards to conjunctive queries (CQs), a proof-theoretic approach to ex-
plaining positive answers to CQs over DL-LiteA KBs was introduced in [8], and,
more recently, the problem of explaining negative query answers over DL-LiteA
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KBs has been studied in [11–13]. Explanation facilities are all the more essential
when using inconsistency-tolerant semantics, as recently argued in [1, 2]. Indeed,
the brave, AR, and IAR semantics allow query answers to be classified into three
categories of increasing reliability, and a user may naturally wonder why a given
tuple was assigned to, or excluded from, one of these categories. To help the user
understand this classification, we introduce the notion of explanation for positive
and negative query answers under brave, AR, and IAR semantics. Formally, the
explanations we consider take either the form of a set of ABox assertions (viewed
as a conjunction) or a set of sets of assertions (disjunction of conjunctions).

The simplest answers to explain are positive brave- and IAR-answers (i.e., an-
swers that hold under brave, resp. IAR, semantics). For the former, we can use
as explanations the query’s causes, which are the minimal consistent sets of as-
sertions that entail the answer together with the TBox, and for the latter, we
consider the causes that do not participate in any contradictions. To explain
why a tuple is an AR-answer, it is no longer sufficient to give a single cause
since different repairs may use different causes. We therefore define explanations
as (minimal) disjunctions of causes that ‘cover’ all repairs, i.e., minimal sets of
causes such that every repair contains at least one of them. To explain negative
AR-answers, the idea is to give a (minimal) subset of the ABox that is consistent
with the TBox and contradicts every cause of the query, since any such subset
can be extended to a repair that omits all causes. For negative IAR-answers, we
need only ensure that every cause is contradicted by some consistent subset.

When there are a large number of explanations for a given result, it may be
impractical to present them all to the user. In such cases, one may choose instead
to rank the explanations according to some preference criteria, and to present
one or a small number of most preferred explanations. In the present work, we
use cardinality to rank explanations for brave- and IAR-answers and negative
AR- and IAR-answers. For positive AR-answers, we consider two ways of ranking
explanations: the number of disjuncts, since fewer disjuncts requires less case-
based reasoning, and the total number of assertions, to favour disjunctions of
causes that share assertions. A complementary approach is to concisely summa-
rize the set of explanations in terms of the necessary assertions (that occur in
every explanation) and the relevant assertions (occurring in some explanation).

2 Complexity Results and Connections to SAT

In addition to the problem of computing explanations, we consider four natural
decision problems: decide whether a given assertion appears in some explanation
(rel) or in every explanation (nec), decide whether a candidate is an explana-
tion (rec), resp. a best explanation according a given criteria (best rec). For
our study, we consider ontologies formulated in the lightweight logic DL-LiteR
that underlies the OWL 2 QL profile [19].

The results of our complexity analysis are displayed in Figure 1. For the
explanation tasks that are shown to be intractable, we have exhibited tight con-
nections with variants of propositional satisfiability that enable us to exploit
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brave, IAR AR neg. IAR neg. AR

rel in P Σp
2 -co in P NP-co

nec in P NP-co in P coNP-co

rec in P BH2-co in P in P

best rec† in P Πp
2 -co‡ coNP-co∗ coNP-co∗

† upper bounds hold for ranking criteria that can be decided in P
‡ Πp

2 -hard for smallest disjunction or fewest assertions
∗ coNP-hard for cardinality-minimal explanations

Fig. 1: Data complexity results for conjunctive queries.

facilities of modern SAT solvers. We use the encoding ϕ¬q ∧ ϕcons introduced
in [5] which is unsatisfiable iff the corresponding answer is entailed under AR
semantics. Intuitively, ϕ¬q gives the ways of contradicting every cause, and ϕcons

enforces consistency. We can show that the explanations for positive AR-answers
correspond to the minimal unsatisfiable subsets of ϕ¬q w.r.t. ϕcons, while the
smallest explanations for negative AR-answers (resp. negative IAR-answers) cor-
respond to the cardinality-minimal models of ϕ¬q ∧ ϕcons (resp. ϕ¬q).

3 System and Experiments

We extended the CQAPri system [5] to implement our framework, relying on
the SAT4J SAT solver to compute minimal unsatisfiable subsets and cardinality-
minimal models [3]. Our prototype runs in two modes: either it explains some
selected query answers, or all the answers as they are being computed. These
answers are divided into three classes: Possible (brave-answers not entailed under
the AR semantics), Likely (AR-answers not entailed under IAR semantics), and
Sure (IAR-answers). Concretely, explaining an answer a consists in providing,
for the relevant semantics S, S′ according to the class of a: (i) all explanations
of a being an S-answer, as well as necessary and relevant assertions, and (ii) one
smallest explanation of a not being an S′-answer, with necessary and relevant
assertions when S′ = IAR, and necessary assertions when S′ = AR together
with necessary and relevant assertions for explaining a not being an IAR-answer.
Positive explanations are ranked as explained in Section 1.

The experimental evaluation of our prototype system over the slightly mod-
ified CQAPri benchmark shows that explanations of query (non-)answers can be
generated very quickly (typically less than 1ms), although we did find some rare
difficult cases for which computing a smallest explanation for a negative answer
is long (more than 1h). Finally, we observed that the average number of expla-
nations per answer is often reasonably low, although some answers have a large
number of explanations (e.g., 654 for an IAR-answer, 243 for an AR-answer,
and 693 for a brave-answer), showing the practical interest of presenting such
explanations in a concise way.

Acknowledgements This work was supported contract ANR-12-JS02-007-01.
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Introduction The OWL 2 QL ontology language [11], based upon the description
logic DL-LiteR, is considered particularly well suited for applications involving large
amounts of data. While the data complexity of querying OWL 2 QL knowledge bases
is well understood, far less is known about combined complexity of conjunctive query
(CQ) answering for restricted classes of conjunctive queries. By contrast, the combined
complexity of CQ answering in the relational setting has been thoroughly investigated.

In relational databases, it is well known that CQ answering is NP-complete in the
general case. A seminal result by Yannakakis established the tractability of answering
tree-shaped (aka acyclic) CQs [14], and this result was later extended to wider classes
of queries, most notably to bounded treewidth CQs [5]. Gottlob et al. [6] pinpointed the
precise complexity of answering tree-shaped and bounded treewidth CQs, showing both
problems to be complete for the class LOGCFL of all languages logspace-reducible to
context-free languages [13]. In the presence of arbitrary OWL 2 QL ontologies, the NP
upper bound for arbitrary CQs continues to hold [4], but answering tree-shaped queries
becomes NP-hard [8]. Interestingly, the latter problem was recently proven tractable in
[3] for DL-Litecore (a slightly less expressive logic than OWL 2 QL), raising the hope
that other restrictions might also yield tractability.

This extended abstract summarizes our investigation [2] into the combined com-
plexity of conjunctive query answering in OWL 2 QL for tree-shaped queries, their re-
striction to linear and bounded leaf queries and their generalization to bounded treewidth
queries. Our complexity analysis reveals that all query-ontology combinations that have
not already been shown NP-hard are in fact tractable. Specifically, in the case of bounded
depth ontologies, we prove membership in LOGCFL for bounded treewidth queries
(generalizing the result in [6]) and membership in NL for bounded leaf queries. We also
show LOGCFL-completeness for linear and bounded leaf queries in the presence of ar-
bitrary OWL 2 QL ontologies. This last result is the most interesting technically, as the
upper and lower bounds rely on two different characterizations of the class LOGCFL.

Preliminaries We assume the reader familiar is OWL 2 QL (or DL-LiteR) knowledge
bases (KBs), composed of a TBox T and ABox A built from countably infinite, mutu-
ally disjoint sets NC, NR, and NI of concept names, role names, and individual names.
Roles R and basic concepts B are defined in a standard way, cf. [4]. We use N±R to refer
to the set of all roles. We recall that every consistent OWL 2 QL KB (T ,A) possesses
a canonical model CT ,A with the property that T ,A |= q(a) iff CT ,A |= q(a) for every
CQ q and tuple a ⊆ inds(A). Thus, CQ answering in OWL 2 QL corresponds to decid-
ing the existence of a homomorphism of the query into the canonical model. Informally,
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CT ,A is obtained from A by repeatedly applying the axioms in T , introducing fresh el-
ements as needed to serve as witnesses for the existential quantifiers. According to the
standard construction (cf. [10]), the domain ∆CT ,A of CT ,A consists of inds(A) and all
words of the form aR1R2 . . . Rn−1Rn (n ≥ 1) with a ∈ NC and Ri ∈ N±R. Intuitively,
the element aR1R2 . . . Rn−1Rn is obtained by applying an axiom with right-hand side
∃Rn to the element aR1R2 . . . Rn−1 ∈ ∆CT ,A . A TBox T is of depth ω if there is an
ABoxA such that the domain of CT ,A is infinite; T is of depth d, 0 ≤ d < ω, if d is the
greatest number such that some CT ,A contains an element of the form aR1 . . . Rd.

Contributions In what follows, we briefly formulate our combined complexity results
and provide some intuitions about the proof techniques. See [2] for details.

Theorem 1. CQ answering is in LOGCFL for bounded treewidth queries and bounded
depth ontologies.

Proof sketch. We exploit the fact that CQ answering over a KB (T ,A) corresponds
to evaluating the query over the canonical model CT ,A viewed as a database. If T
has depth k (with k a fixed constant), then CT ,A can be computed by a determin-
istic logspace Turing machine (TM) with access to an NL oracle. Indeed, the depth
bound k implies the finiteness of CT ,A and that all domain elements can be described
using logarithmically many bits. To complete the argument, we use the fact that an-
swering bounded treewidth queries over databases is in LOGCFL [7] and that the class
LOGCFL is closed under LLOGCFL (and hence LNL) reductions [13]. ut

Theorem 2. CQ answering is NL-complete for bounded leaf queries and bounded
depth ontologies.

Proof sketch. The lower bound is an immediate consequence of the NL-hardness of an-
swering atomic queries in OWL 2 QL. To prove the upper bound, we apply a straight-
forward non-deterministic procedure for deciding (T ,A) |= q :

1. Fix a directed tree T compatible with q. Let v0 be the root variable.
2. Guess u0 ∈ ∆CT ,A . Return no if v0 cannot be mapped to u0.
3. Initialize Frontier to {(v0, u0)}.
4. While Frontier 6= ∅

(a) Remove (v1, u1) from Frontier.
(b) For every child v2 of v1

i. Guess an element u2 from ∆CT ,A .
ii. Return no if (v1, v2) cannot be mapped to (u1, u2).

iii. Add (v2, u2) to Frontier.
5. Return yes.

For lack of space, we have not specified how to check whether a variable (resp. pair
of variables) can be mapped to an element (resp. pair of elements), but this can be
done in NL using a small number of entailment checks. Also note that the bound on
the number of leaves yields the bound on size of Frontier, and the bound on the TBox
depth guarantees that we only need logarithmically many bits per pair in Frontier. ut

Theorem 3. CQ answering is LOGCFL-complete for bounded leaf queries and arbi-
trary ontologies. The lower bound holds already for linear queries.
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Proof sketch. Concerning the upper bound, it is easy to adapt the previous algorithm
to handle arbitrary TBoxes: we simply replace ∆CT ,A by {aw ∈ ∆CT ,A | |w| ≤
2|T |+ |q|}. The modified algorithm gives the correct answers, but it does not have the
required complexity, because it might need more than logarithmically many bits to store
guessed elements aw. To show LOGCFL membership, we further modify the proce-
dure so that it can be implemented by a non-deterministic polytime logspace-bounded
Turing machine augmented with a stack (such TMs are known to capture LOGCFL
computation [12]). The stack is used to store the word part w of a domain element aw.
The modification is not at all obvious since we need to store several words at a time
while the specified machine has only a single stack; the trick is to employ a careful
‘synchronization’ of traversals of different branches of the query.

The lower bound is by reduction from the problem of deciding whether an input of
length l is accepted by the lth circuit of a logspace-uniform family of SAC1 circuits
(proven LOGCFL-hard in [13]). This problem was used in [7] to show LOGCFL-
hardness of evaluating tree-shaped CQs over databases. We follow a broadly similar
approach, but with one crucial difference: the power of OWL 2 QL TBoxes allows us to
‘unravel’ the circuit into a tree and to use linear queries instead of tree-shaped ones. ut
Discussion If we compare the new and existing results for OWL 2 QL with those from
relational databases, we observe that adding an OWL 2 QL TBox of bounded depth
does not change the combined complexity for query answering, while for TBoxes of un-
bounded depth, the complexity class shifts one ‘step’ higher: from NL to LOGCFL for
bounded leaf queries and from LOGCFL to NP for tree-shaped and bounded treewidth
CQs. It is also interesting to compare the combined complexity landscape (below right)
with the succinctness landscape for query rewriting (below left) from [1].
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Observe that for our newly identified tractable classes, polynomial-size non-recursive
datalog (NDL) rewritings are guaranteed to exist, whereas this is not the case for the
positive existential (PE) rewritings more typically considered. In future work, we plan to
marry these positive succinctness and complexity results by developing concrete NDL-
rewriting algorithms for OWL 2 QL for which both the rewriting and evaluation phases
run in polynomial time (as was done in [3] for DL-Litecore).
Acknowledgments. Partial support was provided by ANR grant 12-JS02-007-01, Rus-
sian Foundation for Basic Research and the programme “Leading Scientific Schools”.

53



References
1. M. Bienvenu, S. Kikot, and V. V. Podolskii. Succinctness of query rewriting in OWL 2 QL:

the case of tree-like queries. In Informal Proceedings of the 27th International Workshop on
Description Logics, Vienna, Austria, July 17-20, 2014., pages 45–57, 2014.

2. M. Bienvenu, S. Kikot, and V. V. Podolskii. Tree-like queries in OWL 2 QL: Succinctness
and complexity results. In Proc. of the 30th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS 2015). IEEE, 2015.

3. M. Bienvenu, M. Ortiz, M. Simkus, and G. Xiao. Tractable queries for lightweight descrip-
tion logics. In Proc. of the 23rd Int. Joint Conf. on Artificial Intelligence (IJCAI 2013). AAAI
Press, 2013.

4. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning, 39(3):385–429, 2007.

5. C. Chekuri and A. Rajaraman. Conjunctive query containment revisited. Theoretical Com-
puter Science, 239(2):211–229, 2000.

6. G. Gottlob, N. Leone, and F. Scarcello. Computing LOGCFL certificates. In ICALP-99,
pages 361–371, 1999.

7. G. Gottlob, N. Leone, and F. Scarcello. The complexity of acyclic conjunctive queries. J.
ACM, 48(3):431–498, 2001.

8. S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev. Exponential lower bounds
and separation for query rewriting. In Proc. of the 39th Int. Colloquium on Automata, Lan-
guages, and Programming (ICALP 2012), Part II, volume 7392 of LNCS, pages 263–274.
Springer, 2012.

9. S. Kikot, R. Kontchakov, V. V. Podolskii, and M. Zakharyaschev. On the succinctness of
query rewriting over OWL 2 QL ontologies with shallow chases. In Proc. of the 29th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS 2014). ACM Press, 2014.

10. R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and M. Zakharyaschev. The combined ap-
proach to query answering in DL-Lite. In Proc. of the 10th Int. Conf. on the Principles of
Knowledge Representation and Reasoning (KR 2010). AAAI Press, 2010.

11. B. Motik, B. Cuenca Grau, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz. OWL 2 Web
Ontology Language profiles. W3C Recommendation, 11 December 2012. Available at
http://www.w3.org/TR/owl2-profiles/.

12. I. H. Sudborough. On the tape complexity of deterministic context-free languages. Journal
of the ACM, 25(3):405–414, 1978.

13. H. Venkateswaran. Properties that characterize LOGCFL. J. Computer and System Sciences,
43(2):380–404, 1991.

14. M. Yannakakis. Algorithms for acyclic database schemes. In Proc. of the 7th Int. Conf. on
Very Large Data Bases (VLDB’81), pages 82–94. IEEE Computer Society, 1981.

54



Query-based comparison of OBDA specifications

Meghyn Bienvenu1 and Riccardo Rosati2

1 Laboratoire de Recherche en Informatique
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Abstract. An ontology-based data access (OBDA) system is composed of one
or more data sources, an ontology that provides a conceptual view of the data, and
declarative mappings that relate the data and ontology schemas. In order to de-
bug and optimize such systems, it is important to be able to analyze and compare
OBDA specifications. Recent work in this direction compared specifications us-
ing classical notions of equivalence and entailment, but an interesting alternative
is to consider query-based notions, in which two specifications are deemed equiv-
alent if they give the same answers to the considered query or class of queries for
all possible data sources. In this paper, we define such query-based notions of en-
tailment and equivalence of OBDA specifications and investigate the complexity
of the resulting analysis tasks when the ontology is formulated in DL-LiteR.

1 Introduction
Ontology-based data access (OBDA) [13] is a recent paradigm that proposes the use
of an ontology as a conceptual, reconciled view of the information stored in a set of
existing data sources. The connection between the ontology and the data sources is
provided by declarative mappings, that relate the elements of the ontology with the
elements of the data sources. The ontology layer is the virtual interface used to access
data, through queries over the elements of the ontology.

Due to the recent availability of techniques and systems for query processing in this
setting [5, 14], the OBDA approach has recently started to be experimented in real ap-
plications (see e.g. [1, 7, 10]). In these projects, the construction, debugging and main-
tenance of the OBDA specification, consisting of the ontology, the schemas of the data
sources, and the mapping, is a non-trivial task. Actually, the size and the complexity of
the ontology and, especially, the mappings makes the management of such specifica-
tions a practical issue in these projects. Providing formal tools for supporting the above
activities is therefore very important for the successful deployment of OBDA solutions.

In addition, the OBDA specification plays a major role in query answering, since
the form of the specification may affect the system performance in answering queries:
different, yet semantically equivalent specifications may give rise to very different ex-
ecution times for the same query. So, the study of notions of equivalence and formal
comparison of OBDA specifications is also important for optimizing query process-
ing in OBDA systems. Indeed, some systems already implement forms of optimization
based on transformations of the OBDA specification (an example is [14]).
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So far, most of the work in OBDA has focused on query answering, often in a
simplified setting without any mappings. Very little attention has been devoted to the
formal analysis of OBDA specifications. The first approach that explicitly focuses on
the formal analysis of OBDA specifications is [12], whose aim is the identification
of semantic anomalies in mappings. Such an approach is based on a classical notion
of logical equivalence and entailment between OBDA specifications. While it is very
natural to resort to such classical notions, a significant alternative in many cases may
be the adoption of query-based notions of equivalence and comparison, in which two
specifications are compared with respect to a given query or a given class of queries,
and are deemed equivalent if they give the same answers to the considered queries for
all possible extensions of the data sources. This idea has been already explored in the
data exchange and schema mapping literature (see, e.g., [9]) and for description logics
for comparing TBoxes and knowledge bases [11, 4]. To the best of our knowledge, it
has never been explicitly considered for OBDA specifications.

The majority of work on on OBDA has considered conjunctive queries (CQs) as the
query language. Therefore, a first natural choice would be to compare OBDA specifica-
tions with respect to the whole class of CQs. We thus define and study a notion of CQ-
entailment between OBDA specifications that formalizes this case. We also consider the
important subclass of instance queries (IQs), i.e., queries that ask for the instances of a
single concept or role, and analyze the notion of IQ-entailment between specifications.
Moreover, in many application contexts only a (small) set of predefined conjunctive
queries are of interest for the OBDA user(s): in such cases, it may be more appropriate
to tailor the comparison of specifications to a specific set of queries. For this reason, we
also study in this paper the notions of single CQ-entailment and single IQ-entailment,
which compare specifications with respect to a single CQ or IQ, respectively.

We present a first investigation of the computational complexity of deciding the
above forms of entailment for a pair of OBDA specifications. We study ontologies spec-
ified in DL-LiteR and three different mapping languages (linear, GAV and GLAV). In
all cases, we provide exact complexity bounds for the entailment problem. Our results
are summarized in Figure 1. As shown in the table, the complexity of the entailment
check ranges from NL (non-deterministic logarithmic space) for linear mappings and
IQ-entailment to EXPTIME for CQ-entailment. To obtain these results, we show that
instead of considering all possible data instances, it is sufficient to consider a small num-
ber of databases of a particular form. We also exploit connections to query containment
in the presence of signature restrictions [3] and KB query inseparability [4].

2 Preliminaries
We start from four pairwise disjoint countably infinite set of names: the set of concept
names NC, the set of role names NR, the set of relation names Nrel, the set of constant
names NI (also called individuals).

To introduce OBDA specifications, we first recall the notion of knowledge base
(KB) in Description Logics (DLs). A DL KB is a pair 〈T ,A〉, where: T , called the
TBox, is the intensional component of the KB, and is constituted by a finite set of
axioms expressing intensional knowledge; and A, called the ABox, is a finite set of
atomic concept and role assertions (set of ground facts). We assume that the concept,
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role and constant names occurring in every TBox and ABox belong to NC, NR and
NI, respectively. We denote by sig(T ) and sig(A) the set of concept and role names
occurring in T and A, respectively.

Although the definitions of Section 3 are general, in Section 4 we will focus on
the DL DL-LiteR [6]. A DL-LiteR TBox consists of a finite set of concept inclusions
B v C and role inclusions R v S, where B, C, R, and S are defined according to the
following syntax (where A is a concept name and P is a role name):

B → A | ∃R C → B | ¬B R→ P | P− S → R | ¬R

We now introduce OBDA specifications. As already explained, a mapping asser-
tion specifies the semantic relationship between elements of a DL ontology, specified
through a TBox, to elements of a database. Such a relationship is specified through
a pair of queries, one over the TBox signature, and the other one over the database
signature. In this paper, we focus on the case where both queries involved in the map-
ping assertion are conjunctive queries: such mapping assertions are called GLAV (for
‘global-as-view’) mappings in the literature [8].

Mappings are formally defined as follows. An atom is an expression r(t) where r
is a predicate and t is a tuple of variables and constants. Then, a (GLAV) mapping as-
sertion m is an expression of the form qs(x) → qo(x), where qs(x) (called the body
of m, body(m)) is a conjunction of atoms over predicates from Nrel and constants from
NI, qo(x) (called the head of m, head(m)) is a conjunction of atoms using predicates
from NC ∪ NR and constants from NI, and x, called the frontier variables of m, are the
variables that appear both in qo and in qs. The arity of m is the number of its frontier
variables. When qo(x) has the form p(x) (i.e., qo(x) is a single atom whose arguments
are x), we callm a GAV mapping assertion. A linear mapping assertion is a GAV asser-
tion whose body consists of a single atom. A (GLAV) mappingM is a set of mapping
assertions. A GAV mapping is a mapping constituted of GAV mapping assertions. A
linear mapping is a set of linear mapping assertions. Without loss of generality, we as-
sume that in every mappingM, every pair of distinct mapping assertions uses pairwise
disjoint sets of variables.

An OBDA specification is a pair Γ = 〈T ,M〉, where T is a TBox and M is a
mapping. Given a mapping assertion m of arity n and an n-tuple of constants a, we
denote by m(a) the assertion obtained from m by replacing the frontier variables with
the constants in a.

Given a set of atoms AT , gr(AT ) is the function that returns the set of ground atoms
obtained from AT by replacing every variable symbol x with a fresh constant symbol
cx. We assume that such constant symbols do not occur elsewhere in the application
context of the function gr (i.e., in the TBoxes, mappings and databases involved).

In this paper, a database (instance) is a set of ground atoms using relation names
from Nrel and constant names from NI. Given a mappingM and a database instance D,
we define the ABox for D andM, denoted as AM,D, as the following ABox:

{ β ∈ gr(head(m(a))) | m ∈M and and D |= ∃y.body(m(a)) }

where we assume that y are the variables occurring in body(m(a)). Given an OBDA
specification Γ = 〈T ,M〉 and a database instance D, we define the models of Γ and
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D, denoted asMods(Γ,D) as the set of models of the KB 〈T ,AM,D〉. When such a set
is empty, we write 〈T ,M, D〉 |= ⊥ (analogously, when a KB 〈T ,A〉 has no models,
we write 〈T ,A〉 |= ⊥).

We are interested in the problem of answering instance queries and conjunctive
queries over a pair composed of an OBDA specification and a database. A Boolean
conjunctive query (CQ) is an expression of the form ∃x(α1 ∧ . . .∧αn) where every αi
is an atom whose arguments are either constants or variables from x. For a non-Boolean
CQ q with answer variables v1, . . . , vk, a tuple of constants a = 〈a1, . . . , ak〉 occurring
in A is said to be a certain answer for q w.r.t. K just in the case that K |= q(a),
where q(a) is the Boolean query obtained from q by replacing each vi by ai. We call
instance query (IQ) a CQ consisting of a single atom of the form A(x) or R(x, y), with
A concept name, R role name, and x, y distinct free variables. We denote by sig(q) the
set of concept and role names occurring in a query q. We use CQ (resp. IQ ) to refer the
set of all CQs (resp. IQs) over the DL signature NC ∪ NR.

Given an OBDA specification Γ = 〈T ,M〉, a database instance D, and a conjunc-
tive query q, we define the certain answers for q w.r.t. (Γ,D) as the tuples of constants
from D that are certain answers for q w.r.t. 〈T ,AM,D〉. In particular, for Boolean CQs,
we say that q is entailed by (Γ,D), denoted by (Γ,D) |= q (or 〈T ,M, D〉 |= q),
if I |= q for every I ∈ Mods(Γ,D). Note that for non-Boolean queries, we only
consider tuples of constants from D, in order to avoid including those fresh constants
introducing in AM,D by grounding existential variables in mapping heads.

3 Query-based Entailment for OBDA Specifications
We start by recalling the classical notion of entailment between OBDA specifications.

Definition 1 (Logical entailment). An OBDA specification 〈T1,M1〉 logically entails
〈T2,M2〉, written 〈T1,M1〉 |=log 〈T2,M2〉 if and only the first-order theory T1 ∪M1

logically entails the first-order theory T2 ∪M2.

We now define the formal notions of query-based entailment between OBDA spec-
ifications considered in this paper. First, we introduce a notion of entailment that com-
pares specifications based upon the constraints they impose regarding consistency.
Definition 2 (⊥-entailment). Let q be a query. An OBDA specification 〈T1,M1〉 ⊥-
entails 〈T2,M2〉, written 〈T1,M1〉 |=⊥ 〈T2,M2〉, iff, for every database D,

〈T2,M2, D〉 |= ⊥ ⇒ 〈T1,M1, D〉 |= ⊥
Next, we define a notion of query entailment between OBDA specifications with

respect to a single query.

Definition 3 (Single query entailment). Let q be a query. An OBDA specifica-
tion 〈T1,M1〉 q-entails 〈T2,M2〉, written 〈T1,M1〉 |=q 〈T2,M2〉, if and only if
〈T1,M1〉 |=⊥ 〈T2,M2〉 and for every database D,

〈T2,M2, D〉 |= q(a) ⇒ 〈T1,M1, D〉 |= q(a)

When q is an IQ, we call the entailment relation in the preceding definition single IQ-
entailment, while we call it single CQ-entailment if q is an arbitrary CQ.

We can generalize the previous definition to classes of queries as follows.
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Definition 4 (Query entailment). Let L be a (possibly infinite) set of queries. An
OBDA specification 〈T1,M1〉 L-entails 〈T2,M2〉, written 〈T1,M1〉 |=L 〈T2,M2〉
iff 〈T1,M1〉 |=⊥ 〈T2,M2〉 and 〈T1,M1〉 |=q 〈T2,M2〉 for every query q ∈ L.

When L = IQ, we call the preceding entailment relation IQ-entailment, and for L =
CQ, we use the term CQ-entailment.

Note that, for each of the above notions of entailment, a notion of equivalence be-
tween OBDA specifications can be immediately derived, corresponding to entailment
in both directions (we omit the formal definitions due to space limitations).

The following property immediately follows from the above definitions.

Proposition 1. Let 〈T1,M1〉, 〈T2,M2〉 be two OBDA specifications, and let L1 be a
set of queries. Then, 〈T1,M1〉 |=log 〈T2,M2〉 implies 〈T1,M1〉 |=L1

〈T2,M2〉. More-
over, if L2 ⊆ L1, then 〈T1,M1〉 |=L1

〈T2,M2〉 implies 〈T1,M1〉 |=L2
〈T2,M2〉.

As a consequence of the above property, we have that logical entailment implies
CQ-entailment, and CQ-entailment implies IQ-entailment. The converse implications
do not hold, as the following examples demonstrate.

Example 1. We start by illustrating the difference between logical entailment
and CQ-entailment. Consider a database containing instances for the relation
EXAM(studentName,courseName,grade,date). Then, let Γ1 = 〈T1,M1〉, where

T1 = {Student v Person, PhDStudent v Student}
M1 = {EXAM(x, y, z, w)→ Student(x)}

and let Γ2 = 〈T2,M2〉, where T2 = {Student v Person} and M2 = M1. It is
immediate to verify that Γ2 6|=log Γ1. However, we have that Γ2 |=CQ Γ1. Indeed,
Γ2 |=CQ Γ1 can be intuitively explained by the fact that the mapping M1 does not
retrieve any instances of the concept PhDStudent (and there are no subclasses that can
indirectly populate it), so the presence of the inclusion PhDStudent v Student in T1
does not have any effect on query answering; in particular, every CQ that mentions
the concept PhDStudent cannot be entailed both under Γ1 and under Γ2. Notice also
that, if we modify the mappingM1 to map PhDStudent instead of Student (i.e., ifM1

were {EXAM(x, y, z, w)→ PhDStudent(x)}), then CQ-entailment between Γ2 and Γ1

would no longer hold.
Next, consider Γ3 = 〈T3,M3〉, where T3 = ∅ and

M3 = {EXAM(x, y, z, w)→ Student(x), EXAM(x, y, z, w)→ Person(x)}
Again, it it immediate to see that Γ3 6|=log Γ2, while we have that Γ3 |=CQ Γ2. Indeed,
Γ3 |=CQ Γ2 follows informally from the fact that the mapping M3 is able to “exten-
sionally” simulate the inclusion Student v Person of T2, which is sufficient for Γ3 to
entail every CQ in the same way as Γ2.

Example 2. We slightly modify the previous example to show the difference between
CQ-entailment and IQ-entailment. Consider Γ1 = 〈T1,M〉 and Γ2 = 〈T2,M〉 where

T1 = {Student v Person, Student v ∃takesCourse}
T2 = {Student v Person}
M = {EXAM(x, y, z, w)→ Student(x)}
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Type of entailment Type of mapping Complexity

logical GAV / GLAV NP-complete
linear NL-complete

⊥ GAV / GLAV NP-complete
linear NL-complete

CQ linear / GAV / GLAV EXPTIME-complete

IQ linear NL-complete
GAV / GLAV NP-complete

single CQ linear / GAV / GLAV Πp
2 -complete

single IQ linear NL-complete
GAV / GLAV NP-complete

Fig. 1. Complexity results for entailment between OBDA specifications in DL-LiteR

Then, it can be easily verified that Γ2 6|=CQ Γ1. Indeed, consider the Boolean CQ
∃x, y takesCourse(x, y): for every database D, this query is not entailed by the pair
(Γ2, D), while this is not the case when the specification is Γ1. On the other hand, we
have that Γ2 |=IQ Γ1: in particular, for every database D and for every pair of individ-
uals a, b, neither (Γ1, D) nor (Γ2, D) entails the IQ takesCourse(a, b). Finally, let q be
the non-Boolean CQ ∃x takesCourse(x, y): then, it can be easily verified that the single
CQ-entailment Γ2 |=q Γ1 holds; while for the CQ q′ of the form ∃y takesCourse(x, y),
the single CQ-entailment Γ2 |=q′ Γ1 does not hold.

4 Complexity Results for DL-LiteR
In this section, we investigate the computational properties of the different notions of
entailment between OBDA specifications defined in the previous section. For this first
study, we focus on the case in which the TBox is formulated in DL-LiteR [6], as it is
the basis for the OWL 2 QL profile and one of the most commonly considered DLs for
OBDA. The results of our complexity analysis are displayed in Figure 1.

In what follows, we formally state the different complexity results and provide some
ideas about the proofs. We begin by considering the complexity of deciding classical
entailment between OBDA specifications.

Theorem 1. Classical logical entailment for OBDA specifications based upon
DL-LiteR TBoxes is NP-complete for GAV or GLAV mappings, and NL-complete for
linear mappings.

Proof. Let Γ1 = 〈T1,M1〉, Γ2 = 〈T2,M2〉. First, it is easy to see that Γ1 |=log Γ2 iff
(i) T1 |= T2; and (ii) Γ1 |=log M2. Property (i) can be decided in NL [2]. Property (ii)
can be decided by an algorithm that, for every assertionm ∈M2, first builds a database
D corresponding to gr(body(m)) (i.e., obtained by “freezing” the body ofm), and then
checks whether 〈Γ1, D〉 entails the CQ corresponding to the head of m whose frontier
variables have been replaced by the corresponding constants. This algorithm runs in
NP in the case of GAV and GLAV mappings, and in NL in the case of linear mappings,
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which implies the overall upper bounds in the theorem statement. The lower bound
for GAV mappings can be obtained through an easy reduction of conjunctive query
containment to logical entailment, while the one for linear mappings follows from a
reduction of the entailment of a concept inclusion axiom in a DL-LiteR TBox. ut

We next consider ⊥-entailment. Our upper bounds rely on the following result that
shows it is sufficient to consider a small number of small databases.

Theorem 2. Let q be a CQ, and let Γ1 = 〈T1,M1〉 and Γ2 = 〈T2,M2〉 be OBDA
specifications such that T1, T2 are formulated in DL-LiteR, and M1,M2 are GLAV
mappings. Then Γ1 |=⊥ Γ2 if and only if 〈T1,M1, D〉 |= ⊥ for every database D
satisfying the following condition:1

– Condition 1: D is obtained by (i) taking two mapping assertions m1,m2 from
M2, (ii) selecting atoms α1 and α2 from head(m1) and head(m2) respectively,
(iii) identifying in m1 and m2 some variables from α1 and α2 in such a way that
〈T , gr({α1, α2})〉 |= ⊥, (iv) setting D equal to gr(body(m1) ∪ body(m2)).

Proof. The one direction is immediate from the definitions. For the interesting direc-
tion, let us suppose that 〈T1,M1, D〉 |= ⊥ for every database D satisfying Condition
1. Let us further suppose that we have 〈T2,M2, D0〉 |= ⊥, where D0 may be any
database. We thus have 〈T2,AM2,D0〉 |= ⊥. It is well known that every minimal in-
consistent subset of a DL-LiteR KB contains at most two ABox assertions, so there
must exist a subset A′ ⊆ AM2,D with |A′| ≤ 2 such that 〈T2,A′〉 |= ⊥. Let γ be
the conjunction of atoms obtained by taking for each ABox assertion in A′, a mapping
assertion that produced it, identifying those variables (and only those variables) needed
to produce the ABox assertion(s), and then taking the conjunction of the atoms in the
bodies. We observe that by construction Dγ = gr(γ) satisfies Condition 1 and is such
that 〈T1,M1, Dγ〉 |= ⊥. By construction, there is a homomorphism of γ into the origi-
nal database D0. It follows that 〈T1,M1, D0〉 |= ⊥. ut

Using the preceding result, we can pinpoint the complexity of ⊥-entailment.

Theorem 3. The⊥-entailment problem is NP-complete for OBDA specifications based
upon DL-LiteR TBoxes and GAV / GLAV mappings, and NL-complete in the case of
linear mappings.

Proof. We know from Theorem 2 that Γ1 |=⊥ Γ2 iff 〈T1,M1, D〉 |= ⊥ for every
database D satisfying Condition 1. For the GAV / GLAV case, we guess one such
database D and a polynomial-size proof that 〈T1,M1, D〉 |= ⊥. For the linear case, we
note that the databases satisfying Condition 1 contain at most 2 tuples each and can be
enumerated in logarithmic space. For every such database, we can check using an NL
oracle whether 〈T1,M1, D〉 |= ⊥. Since LNL = NL, we obtain an NL procedure. ut

Next we consider entailment with respect to a specific query. We again start by
showing it is sufficient to consider a finite number of databases of a particular form.

1 Recall that distinct mapping assertions in a mapping have no common variables.
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Theorem 4. Let q be a CQ, and let Γ1 = 〈T1,M1〉 and Γ2 = 〈T2,M2〉 be OBDA
specifications such that T1, T2 are formulated in DL-LiteR, and M1,M2 are GLAV
mappings. Then Γ1 |=q Γ2 if and only if Γ1 |=⊥ Γ2 and 〈T2,M2, D〉 |= q(a) implies
〈T1,M1, D〉 |= q(a) for every database D satisfying the following condition:

– Condition 2: D is obtained by (i) taking k ≤ |q| mapping assertions
m1,m2, . . . ,mk from M2, (ii) identifying some of the frontier variables in
m1,m2, . . . ,mk, (iii) letting D = gr(body(m1) ∪ body(m2) ∪ . . . ∪ body(mk)).

If q is an IQ, then the latter condition can be replaced by:

– Condition 3: D is obtained by (i) taking a mapping assertion m from M2 and
choosing an atom α ∈ head(m), (ii) possibly identifying in m the (at most two)
frontier variables appearing in α, and (iii) letting D = gr(body(m)).

Proof. Again the one direction is immediate. To show the non-trivial direction, let us
suppose that Γ1 |=⊥ Γ2 and that 〈T2,M2, D〉 |= q(c) implies 〈T1,M1, D〉 |= q(c)
for every tuple c and database D satisfying Condition 2 (we return later to the case
of IQs). Let us further suppose that we have 〈T2,M2, D0〉 |= q(a). The first pos-
sibility is that 〈T2,M2, D0〉 |= ⊥, in which case we have 〈T1,M1, D0〉 |= ⊥ be-
cause of Γ1 |=⊥ Γ2. We thus obtain 〈T1,M1, D0〉 |= q0(a). The other possibility
is that 〈T2,M2, D0〉 |= q0(a) and 〈T2,M2, D0〉 6|= ⊥. If 〈T1,M1, D0〉 |= ⊥, we
immediately obtain 〈T1,M1, D0〉 |= q0(a). Otherwise, let AM2,D0

be the ABox for
M2 and D0. Since 〈T2,M2, D0〉 |= q0(a), we have 〈T2,AM2,D0〉 |= q0(a). It is
a well-known property of DL-LiteR that there exists a subset A′ ⊆ AM2,D0 with
|A′| ≤ |q0| such that 〈T2,A′〉 |= q0(a). Let |A′| = k, and let β1, . . . , βk be the
ABox assertions in A′. For each βi, we choose a mapping assertion mi ∈ M2 and
a homomorphism hi of body(mi) into D0 such that gr(hi(head(m))) contains βi.
We also select an atom αi ∈ head(m) such that gr(h(α)) = β. Let m′i be ob-
tained from mi by identifying frontier variables y and z if hi(y) = hi(z), and set
D′ = gr(body(m′1) ∪ . . . ∪ body(m′k)). It is easy to see that D′ satisfies Condition 2.
Moreover, by construction, the ABox AM2,D′ contains a subset A′′ that is isomorphic
toA′, and so 〈T2,M2, D

′〉 |= q0(a′) where a′ is tuple corresponding to a according to
this isomorphism. Applying our assumption, we obtain 〈T1,M1, D

′〉 |= q0(a′). Using
the fact that there is a homomorphism of body(m′1)∪ . . .∪ body(m′k) into D0 that is an
isomorphism on the frontier variables, we obtain 〈T1,M1, D〉 |= q0(a).

Finally, for the case of instance queries, we simply note that we have k = 1, and it
is only necessary to identify those variables in the head atom of the mapping that leads
to introducing the single ABox assertion of interest. This yields Condition 3. ut

We pinpoint the complexity of single CQ-entailment, showing it to beΠp
2 -complete.

Theorem 5. The single CQ-entailment problem is Πp
2 -complete for OBDA specifica-

tions based upon DL-LiteR TBoxes and GLAV mappings. The lower bound holds even
for linear mapping assertions and when both TBoxes are empty.

Proof. For the upper bound, consider two OBDA specifications Γ1 = 〈T1,M1〉 and
Γ2 = 〈T2,M2〉. From Theorems 2 and 4, we know that Γ1 6|=q Γ2 if and only if one of
the following holds:

62



– there is a database D satisfying Condition 2 such that 〈T1,M1, D〉 6|= ⊥;
– there is a database D satisfying Condition 2 such that 〈T2,M2, D〉 |= q(a),
〈T2,M2, D〉 6|= ⊥, and 〈T1,M1, D〉 6|= q(a).

The first item can be checked using an NP oracle (by Theorem 3). To check the sec-
ond item, we remark that the size of databases satisfying Condition 2 cannot exceed
max(2, |q|) · maxbody, where maxbody is the maximum number of atoms appearing
in the body of a mapping assertion inM2. It follows that to show that the second item
above is violated, we can guess a database D of size at most max(2, |q|) · maxbody
together with a tuple of constants a and a polynomial-size proof that 〈T2,M2, D〉 |=
q(a), and then we can verify using an NP oracle that 〈T1,M1, D〉 6|= q(a). We there-
fore obtain a Σp

2 procedure for deciding the complement of our problem.
For the lower bound, we utilize a result from [3] on query containment

over signature-restricted ABoxes. In that paper, it is shown how, given a 2QBF
∀u∃vϕ(u,v), one can construct a TBox T , Boolean CQs q1 and q2, and a signature
Σ such that ∀u∃vϕ(u,v) is valid iff T ,A |= q1 ⇒ T ,A |= q2 for all ABoxes A
with sig(A) ⊆ Σ. We will not detail the construction but simply remark that the same
TBox T = {T v V, F v V } is used for all QBFs, the signature Σ is given by
(sig(T ) ∪ sig(q1) ∪ sig(q2)) \ {V }, and the query q2 is such that V 6∈ sig(q2).

In what follows, we will show how given T , q1, q2, and Σ as above, we can reduce
the problem of testing whether T ,A |= q1 implies T ,A |= q2 for all Σ-ABoxes to
the problem of single CQ entailment. We will use Σ for our database instances, and we
create two copies Σ1 = {P 1 | P ∈ Σ} and Σ2 = {P 2 | P ∈ Σ} of the signature
Σ to be used in the head of mapping assertions. Next, we define sets of mapping as-
sertions copy1(Σ) and copy2(Σ) that simply copies all of the predicates in Σ into the
corresponding symbol in Σ1 (resp. Σ2). Formally, for j ∈ {1, 2},
copyj(Σ) = {A(x)→ Aj(x) | A ∈ Σ ∩ NC} ∪ {R(x, y)→ Rj(x, y) | R ∈ Σ ∩ NR}
We further define, given a data signature Λ1 and DL signature Λ2, a set
populate(Λ1, Λ2) of mapping assertions that populates the relations in Λ2 using all
possible combinations of the constants appearing in tuples over Λ1:

populate(Λ1, Λ2) ={P1(x1, . . . , xk)→ P2(x′1, . . . , x
′
`) | P1 ∈ Λ1, arity(P ) = k,

P2 ∈ Λ2, arity(P ) = `, {x′1, . . . , x′`} ⊆ {x1, . . . , xk)}

Using copy1(Σ), copy2(Σ), populate(Σ,Σ1), and populate(Σ,Σ2), we construct the
following mappings:

M1 = populate(Σ,Σ1) ∪ copy2(Σ)

M2 = copy1(Σ) ∪ populate(Σ,Σ2) ∪ {T (x)→ V (x), F (x)→ V (x)}

Observe that both mappings are linear. For the query, we let q′1 (resp. q′2) be obtained
from q1 (resp. q2) by replacing every predicate P by P 1( resp. P 2). We also rename
variables so that q′1 and q′2 do not share any variables. We then let q be the CQ obtained
by taking the conjunction of q′1 and q′2 and existentially quantifying all variables. In the
appendix, we show that 〈∅,M1〉 |=q 〈∅,M2〉 iff T ,A |= q1 ⇒ T ,A |= q2 for all
Σ-ABoxes. By combining this with the reduction from [3], we obtain a reduction from
universal 2QBF to the q-entailment problem, establishingΠp

2 -hardness of the latter. ut

63



If we consider IQs instead, the complexity drops to either NP- or NL-complete.

Theorem 6. The single IQ-entailment problem is NP-complete for OBDA specifica-
tions based upon DL-LiteR TBoxes and either GAV or GLAV mappings. It is NL-
complete if linear mappings are considered.

Proof. We give the arguments for GAV and GLAV mappings (for linear case, see the
appendix). For the NP upper bound, consider two OBDA specifications Γ1 = 〈T1,M1〉
and Γ2 = 〈T2,M2〉, and let q be an IQ. By Theorem 4, Γ1 |=q Γ2 if and only if Γ1 |=⊥
Γ2 and 〈T2,M2, D〉 |= α implies 〈T1,M1, D〉 |= α for all databases D satisfying
Condition 3 and for all Boolean IQs α obtained by instantiating the variable(s) in q
with constant(s) from D.

We already know that it is in NP to test whether Γ1 |=⊥ Γ2. For the second property,
observe that there are only polynomially many databases satisfying Condition 2, since
each corresponds to choosing a mapping assertion m inM2, an atom α ∈ head(m),
and deciding whether or not to identify variables in α. For every such database D, we
compute (in polynomial time) the set of Boolean IQs β obtained by instantiating the IQ
q with constants from D for which 〈T2,M2, gr(head(m))〉 |= β. For every such β, we
guess a polynomial-size proof that 〈T1,M1, D〉 |= β. If all of our polynomially many
guesses succeed, then the procedure returns yes, and otherwise no. By grouping all of
the guesses together, we obtain an NP decision procedure.

The NP lower bound is by reduction from the NP-complete CQ containment prob-
lem: given two CQs q1, q2 both having a single answer variable x, we have q1 ⊆
q2 iff 〈∅, {q2 → A(x)}〉 |=A(x) 〈∅, {q1 → A(x)}〉, where A is a concept name
that does not appear in either of q1 and q2. ut

Finally, we consider entailment with respect to entire classes of queries. Again, we
can show it is sufficient to consider a small number of databases of a particular form.

Theorem 7. Let Γ1 = 〈T1,M1〉 and Γ2 = 〈T2,M2〉 be as in Theorem 4. For L ∈
{CQ, IQ}, Γ1 |=L Γ2 if and only if Γ1 |=⊥ Γ2 and 〈T2,M2, D〉 |= q(a) implies
〈T1,M1, D〉 |= q(a) for every q ∈ L and every database D that satisfies Condition 3.

We show that testing CQ-entailment is much more difficult than for single CQs.
Both the upper and lower bounds use recent results on KB query inseparability [4].

Theorem 8. CQ-entailment is EXPTIME-complete for OBDA specifications based
upon DL-LiteR TBoxes and either GLAV, GAV, or linear mappings.

Proof. We start with the proof of membership in EXPTIME. Consider OBDA spec-
ifications Γ1 = 〈T1,M1〉 and Γ2 = 〈T2,M2〉. By Theorem 7, Γ1 |=CQ Γ2 if and
only if Γ1 |=⊥ Γ2 and 〈T2,M2, D〉 |= q(a) implies 〈T1,M1, D〉 |= q(a) for ev-
ery choice of q(a) and every database D satisfying Condition 3. We know that testing
Γ1 |=⊥ Γ2 can be done in NP (Theorem 3). To decide whether the second property
holds, we consider each of the (polynomially many) databases satisfying Condition 3.
For every such database D, we generate the two ABoxes AM1,D and AM2,D and the
corresponding KBs K1 = 〈T1,AM1,D〉 and K2 = 〈T2,AM2,D〉. We then test whether
it is the case that for every CQ q over sig(K2), K2 |= q(a) implies K1 |= q(a), and we
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return no if this is not the case. The preceding check corresponds to the Σ-query en-
tailment problem for DL-LiteR KBs, which has been recently studied in [4] and shown
to be EXPTIME-complete. We therefore obtain an EXPTIME procedure for deciding
CQ-entailment between OBDA specifications.

Our lower bound also makes use of the recent work on query inseparability of
DL-LiteR knowledge bases. In [4], the following problem is shown to be EXPTIME-
complete: given DL-LiteR TBoxes T1 and T2 that are consistent with the ABox {A(c)},
decide whether the certain answers for q w.r.t. 〈T2, {A(c)}〉 are contained in those for
〈T1, {A(c)}〉 for every CQ q with sig(q) ⊆ sig(T2). To reduce this problem to the CQ-
entailment problem for OBDA specifications, we consider the following linear map-
ping that populates a fresh concept A′ with all constants of a Σ-instance (refer to the
proof of Theorem 5 for the definition of populate):M1 =M2 = populate(Σ, {A′}).
To complete the proof, we show in the appendix that 〈T1,M1〉 |=CQ 〈T2,M2〉 iff
〈T2, {A(c)}〉 |= q(a) implies 〈T1, {A(c)}〉 |= q(a) for every CQ q, where T ′1 and T ′2
are obtained from T1 and T2 by replacing A with A′. ut

Our final result shows that IQ-entailment has the same complexity as single IQ-
entailment. The proof proceeds similarly to the proof of Theorem 6.

Theorem 9. IQ-entailment is NP-complete for OBDA specifications based upon
DL-LiteR TBoxes and either GAV or GLAV mappings. It is NL-complete if linear map-
pings are considered.

5 Conclusion and Future Work

In this paper, we have introduced notions of query-based entailment of OBDA spec-
ifications and have analyzed the complexity of checking query-based entailment for
different classes of queries and mappings and for TBoxes formulated in DL-LiteR.

The present work constitutes only a first step towards a full analysis of query-based
forms of comparing OBDA specifications, and can be extended in several directions:

– First, it would be interesting to extend the computational analysis of query entail-
ment to other DLs beyond DL-LiteR. For instance, one interesting question for DLs
with functional or cardinality restrictions concerns the impact of the Unique Name
Assumption on the complexity of (and the techniques for) query entailment.

– Second, other forms of mapping beyond GAV and GLAV could be analyzed. In par-
ticular, we would like to see whether decidability of query entailment is preserved
if we add some restricted form of inequality or negation to the mapping bodies.

– Third, we could introduce a query signature and only test entailment for queries
formulated in the given signature, as has been done for TBox and KB query insep-
arability [4]. In fact, all of the complexity upper bounds in this paper hold also if
we introduce a query signature, but this may not be the case for other DLs.

– Finally, to explore the impact of restricting the set of possible databases, we could
extend the computational analysis to database schemas with integrity constraints.
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Ontology-based query answering (OBQA) has long been an important topic in
applied and foundational research, and in particular in the area of description logics
(DLs). Query answering has been studied for every major DL, but the most prominent
use of DLs in query answering is based on the DLs of the DL-Lite family. In particular,
these have widely been used in ontology-based data access (OBDA), e.g., to integrate
disparate data sources or to provide views over legacy databases [3,14,4,9]. DL-LiteR is
also the basis of the W3C OWL 2 Web Ontology Language profile OWL QL, which was
specifically designed for OBDA applications [12].

On the other hand, research on query languages has led to a range of expressive
features beyond basic pattern matching, e.g., by supporting navigational constructs
or other forms of recursion. These developments have also affected practical query
languages. SPARQL 1.1, the recent revision of the W3C SPARQL standard, introduces
significant extensions to the capabilities of the popular RDF query language [7]. Even at
the very core of the query language, we can find many notable new features, including
property paths, value creation (BIND), inline data (VALUES), negation, and extended
filtering capabilities. In addition, SPARQL 1.1 now supports query answering over OWL
ontologies, taking full advantage of ontological information in the data [6,5]. Thus, with
the arrival of SPARQL 1.1, every aspect of OBQA is supported by W3C technologies.

In practice, however, SPARQL and OWL QL are rarely integrated. Most works on
OBDA address the problem of answering conjunctive queries (CQs), which correspond
to SELECT-PROJECT-JOIN queries in SQL, and (to some degree) to Basic Graph
Patterns in SPARQL. The most common approach for OBDA is query rewriting, where
a given CQ is rewritten into a (set of) CQs that fully incorporate the schema information
of the ontology. The answers to the rewritten queries (obtained without considering the
ontology) are guaranteed to agree with the answers of the original queries (over the
ontology). This approach separates the ontology (used for query rewriting) from the
rest of the data (used for query answering), and it is typical that the latter is stored in a
relational database. Correspondingly, the rewritten queries are often transformed into
SQL for query answering. SPARQL and RDF do not play a role in this.

In a recent paper [1], we took a fresh look on the problem of OBQA query rewriting
with SPARQL 1.1 as our target query language. The additional expressive power of
SPARQL 1.1 allows us to introduce a new paradigm of schema-agnostic query rewriting,
where the ontological schema is not needed for rewriting queries. Rather, the ontology
is stored together with the data in a single RDF database. This is how many ontologies
are managed today, and it corresponds to the W3C view on OWL and RDF, which does

∗ This extended abstract summarises the recent results of the authors’ paper Schema-Agnostic
Query Rewriting in SPARQL 1.1 [1].
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not distinguish schema and data components.4 The fact that today’s OBQA approaches
separate both parts testifies to their focus on relational databases. Our work, somewhat
ironically, widens the scope of OWL QL to RDF-based applications, which have hitherto
focused on OWL RL as their ontology language of choice.

Another practical advantage of schema-agnostic query rewriting is that it supports
frequent updates of both data and schema. The rewriting system does not need any
information on the content of the database under query, while the SPARQL processor that
executes the query does not need any support for OWL. This is particularly interesting if a
database can only be accessed through a restricted SPARQL query interface that does not
support reasoning. For example, we have used our approach to detect an inconsistency of
DBpedia under OWL semantics, using only the public Live DBpedia SPARQL endpoint
at http://live.dbpedia.org/sparql (the problem has since been corrected).

The main contributions of our work are:

– We expressed standard reasoning tasks for OWL QL, including consistency checking,
classification, and instance retrieval, in single, fixed SPARQL 1.1 queries that are
independent of the ontology. It turned out that SPARQL 1.1 property paths are
powerful enough for OWL QL reasoning.

– We showed how to rewrite arbitrary SPARQL Basic Graph Patterns (BGPs) into
single SPARQL 1.1 queries of polynomial size. This task was simplified by the fact
that SPARQL does not support “non-distinguished” variables as used in CQs.

– We presented a schema-agnostic rewriting of general CQs in SPARQL 1.1, again
into single queries of polynomial size. This rewriting is more involved, and we used
two additional features: inline data (VALUES) and (in)equality checks in filters.

– We showed the limits of schema-agnostic rewriting in SPARQL 1.1 by proving that
many other OWL features cannot be supported in this way. This includes even the
most basic features of OWL EL and OWL RL, and mild extensions of OWL QL. It
also is not possible to rewrite regular path queries (and thus basic graph patterns of
SPARQL 1.1) into SPARQL 1.1, even for RDFS knowledge bases with assumption
of standard use. This would require a more expressive query language, such as
monadically defined queries [15].

Worst-case reasoning complexity remains the same in all cases, yet our approach
is certainly more practical in the case of standard reasoning and BGP rewriting. For
general CQs, the rewritten queries are usually too complex for today’s RDF databases
to handle. Nevertheless, we think that our “SPARQL 1.1 implementation” of OWL QL
query answering is a valuable contribution, since it reduces the problem of supporting
OWL QL in an RDF database to the task of optimizing a single (type of) query. Since
OWL QL subsumes RDFS, one can also apply our insights to implement query answering
under RDFS ontologies, which again leads to much simpler queries.

The full details of our rewritings are beyond this abstract, as the length of the rewritten
queries – polynomial or not – is too long to include full examples here. However, our
basic approach to reasoning with SPARQL 1.1 can be motivated by some very simple

4 Nevertheless, it is also true that some RDF stores treat terminological triples in special ways,
e.g., by keeping them in a dedicated named graph.
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observations. Consider a situation where our TBox is guaranteed to contain only axioms
of the form A v B with A and B class names. Such axioms are encoded in RDF using
triples of the form A rdfs:subClassOf B. Clearly, one can now query for all (inferred)
instances of a class A using the graph pattern

{?X (rdf:type / rdfs:subClassOf∗) A},
which looks for elements ?X that are connected to class A through property rdf:type
followed by zero or more uses of property rdfs:subClassOf. The queries used in our
work are significantly more involved, since they need to take into account a much larger
vocabulary used in OWL, including equivalent classes, subproperties and equivalent
properties, inverses, n-ary class intersections, and existential restrictions. Moreover, the
queries need to take into account the special semantics of > and the universal property,
as well as the potential inconsistency caused by ⊥ and the empty property.

An interesting observation here is that syntactic sugar can make schema-agnostic
query rewriting more difficult. Clearly, taking into account many possible syntactic en-
codings must lead to larger queries, which will usually affect execution times. However,
the OWL feature owl:SymmetricProperty even makes query rewriting impossible alto-
gether. This is surprising, since property symmetry can easily be expressed using inverses
and subproperties, which are fully supported by our approach. Such effects can occur
since SPARQL 1.1 is not a universal computing formalism (for its complexity class).
Note that these problems vanish if one allows even the most basic kinds of normalisation,
but this is not always practical (e.g., when querying the DBpedia SPARQL endpoint).

An interesting side effect of our work is that it provides a simple, worst-case optimal
method for terminological reasoning in OWL QL (and thus DL-LiteR). As we treat TBox
axioms as data, we can actually formulate queries over terminological knowledge, or
even answer conjunctive queries where some class or property names are replaced by
variables, with the intended meaning that these “meta-variables” range over vocabulary
symbols of the ontology.5

Future steps in this line of research include empirical evaluations, where the main
challenge is to identify OWL QL benchmarks with non-trivial TBoxes. It should not
be assumed that the good theoretical properties of the approach translate directly into
good performance, and further optimisations and adjustments might be needed. Imple-
mentation techniques such as partial materialisation would lead to a form of combined
rewriting (cf. [8] for a different approach to combined rewriting). Moreover, it is in-
teresting to extend our work towards more expressive ontology and query languages.
On the one hand, one can look towards more expressive DLs, such as EL, which have
also been considered in query rewriting [13]. A schema-agnostic approach in this case
would resemble Datalog-based reasoning calculi for these logics [10], and indeed one
could view Datalog as a query language here. On the other hand, one might consider
ontology languages that extend the expressiveness of DL-Lite by using existential rules,
e.g., linear TGDs [2]. Such cases might actually be somewhat simpler to handle, since
one is free to choose a (possibly normalised) database representation of rules, given that
there is not standard RDF encoding available.

5 The term higher-order query has been used in this context [11], although true higher-order
variables would rather represent arbitrary sets without any relationship to the vocabulary.
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Abstract. A referring expression in linguistics is any noun phrase iden-
tifying an object in a way that will be useful to interlocutors. In the
context of conjunctive queries over a description logic knowledge base
(DL KB), typically constant symbols (usually treated as rigid designa-
tors) are used as referring expressions in a certain answer to the query.
In this paper, we begin to explore how this can be usefully generalized by
allowing more general DL concept descriptions, called singular referring
expressions, to replace constants in this role. In particular, we lay the
foundation for singular referring expressions in conjunctive query answers
over a DL KB using a member of the CFD family of DL dialects. In the
process, we introduce a specific language for referring concept types, and
present initial results on how conjunctive queries with referring concept
types can be efficiently supported.

1 Introduction and Motivation

Query answering in logic-based approaches to data and knowledge bases has
traditionally been viewed as finding constant names, appearing in the knowledge-
base, which can be substituted for the variables of the query. More formally, a
query q(x1, . . . , xn) is viewed as a formula with free variables x1, . . . , xn and, if
the knowledge-base K contains individual constant names IN, query answering
consists of computing the set { (a1, . . . , an) | ai ∈ IN,K |= q(a1/x1, . . . , ak/xk) }.
We believe that in a number of circumstances this is less than ideal.

(1) In object-based KBMSs (including Object-Relational, XML and Object-
Oriented DBMSs, as well as DLs with UNA), all known individual objects must
have unique (internal) distinguishing identifiers. However, these identifiers are
often insufficient to allow users to figure out what real-world object they refer
to, especially for large KBs. For example, system generated ref expressions in
object-oriented databases [10] and blank node identifiers in RDF are semantically
opaque to end-users. A specific example of this are identifiers that individual
authors or the system must invent in community-developed ontologies such as
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Freebase [2]. There, for example, the id of the “Synchronicity” album by the
Police is "/guid/9202a8c04000641f8000000002f9e349" (as of April, 2015.)

(2) In Relational DBMSs, the above problem is supposedly avoided by using
“external keys”: tuples of attributes whose values (strings, integers, ...) uniquely
identify rows of tables. Problem (1) above will then arise in OBDA access to
legacy relational systems, since the ontology will surely be object-based.1

We note that even in databases, universally unique keys are hard to find
(e.g., newly arrived foreign students do not have ssn#), though they may work
for subsets of individuals, such as those returned by queries.

(3) Additional problems for finding identifying attributes for classes of ob-
jects arise in conceptual modeling. For example, consider all cases where Ex-
tended Entity-Relationship modeling creates a new heterogeneous entity set by
“generalization” [5] from others. For example, we want to generalize Person
(whose key might be ssn#) and Company (whose key might be tickerSymbol) to
LegalEntity, which can own things. In EER modeling, such a situation forces the
introduction of a new, artificial attribute as a key, with the attendant problems.
Yet when we retrieve a set of legal entities, we can reference them in different,
more natural ways, depending on which subclass they belong to.

(4) The next example illustrates a subtler version of the above: consider the
following hierarchy of concepts relating to publications:

Journal v EditedCollection , EditedCollection v Publication

And suppose edited collections are identified by isbn#, while journals are iden-
tified by title and publisher. When we retrieve a set of objects in Publication,
we would like to describe them in different ways, depending on the subclass
they belong to; but in this case, there would be an additional preference for
textittitle, publisher) over isbn# for elements of Journal.

(5) Many kinds of KBMSs, including those based on DLs and FOL, allow
us to describe situations where objects can be inferred to exist, without having
an explicit (internal) identifier. For example, if Michelle is a person, then she has
a mother, and if she is married then she has a spouse. Normally, such objects
cannot be returned in the list of answers. This is all the more unpleasant if we
can capture information about this unknown person, such as the phone number
of Michelle’s mother: {Michelle} v ∃hasMother.∃hasPhone.{1234567}. Yet it is
common in human communication to identify objects by their relationship to
other known objects. For example, “Michelle’s mother” is a perfectly reasonable
intensional description of someone who has phone 1234567.

The standard response to some of the above problems would be to have the
user modify the query by finding the appropriate values for identifying attributes
(external keys). For example, instead of the query q1(x) :- Journal(x), the
programmer would be expected to write

q2(t, p) : −Journal(x), hasTitle(x, t), hasPublisher(x, p).

1 OBDA systems such as Mastro [4] and others try to deal with this issue by using
function symbols over database keys to generate “object terms” that act as object
identifiers. The name of the function symbols is however not semantically motivated.
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This approach has several problems: (i) In the enumeration of answers to q2,
the relationship between the original object of interest, x, and its descriptors, t
and p, is lost; something akin to “objects x with title = t and publisher =

p” would be more desirable. (ii) The above reformulation cannot be done using
regular conjunctive queries in the case of item 4 above, because the answer for
edited collections that are not journals should be identified by isbn#, for which
the query is

q5(isb) : −EditedCollection(x),¬Journal(x), hasIsbn(x, isbn)

which is not a conjunctive query, since it includes a negation. (iii) From the point
of view of software engineering, the task of choosing these identifying references
is mentally distinct from the task of selecting the objects of interest to begin
with. Both SQL’s select clause, and XQuery’s return clause are examples of
separating these two aspects in existing query languages.

This paper is then dedicated to the task of proposing a first solution to (some
of) the issues raised by providing “singular referring expressions” in the place of
individuals returned by conjunctive queries, in the context of DL KBs.

Our plan and contributions are as follows: We will start by proposing a lan-
guage for referring concept expressions and types. This language will generalize
the usual case of presenting answers to queries as individual names to situations
that: (i) allow object identification by key (paths), possibly within the limited
context of some concept instances; (ii) deal with heterogeneous answer sets, such
as LegalEntity; and (iii) allow preferential choice of referring expressions, as for
EditedCollection. We will use this language to define answers for conjunctive
queries over DL KBs. More generally, the proposed approach introduces a new
separation of concerns for knowledge bases (identification vs. qualification). In
our case, the query head will annotate each variable returned with an answer
concept type; this will be instantiated to an answer concept (a subset of our DL
concepts) for each answer; such concepts will eventually bottom out to individual
constants, rather than atomic concepts.

Because we wish to generalize the usual case of constant names in answers,
we desire referring concept types to be singular expressions – i.e., to identify
one individual.2 Unfortunately, without knowing anything else, it is impossible,
for example, to tell whether an expression such as “object with p-value 3” will be
singular or not: if p is a key, then yes, but not otherwise. Therefore, we need to use
information from the ontology to verify the singularity of referring concept type.
This can be extended by examining the body of the query (and hence learning
more about what possible values variables may take). We will concentrate in
this paper on: (i) the (compile-time) analysis of conjunctive query bodies in the
context of the TBox to determine whether a referring concept type will return
a reference to at most one individual; (ii) the reformulation of the query to

2 Researchers interested in so-called co-operative query answering have considered re-
turning predicates/concepts describing sets of individuals (e.g., [1, 3, 6, 8]), where an
answer to the query “Who can take the Data Structures course?” might include,
“Anyone who has passed the Intro to Computer Science course with at least a C
grade”. Please note that we are not considering that problem in this paper.
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guarantee that the referring expression will indeed return exactly 1 value. Our
technical results will show that this can be done in polynomial time for the DL
CFD ∀nc, which allows the capture of identification constraints such as keys.

2 Preliminaries: the Description Logic CFD ∀
nc

The knowledge bases that we consider are based on the logic CFD ∀nc, a re-
cent member of the CFD family of DL dialects. All members of this family are
fragments of FOL with underlying signatures based on disjoint sets of unary
predicate symbols called primitive concepts, constant symbols called individuals
and unary function symbols called attributes. Although attributes deviate from
the normal practice of using binary predicate symbols called roles, they make
it easier to incorporate concept constructors suited to the capture of relational
data sources that include various dependencies, e.g., by a straightforward reifi-
cation of arbitrary n-ary predicates, and also make it easier to explore varieties
of concepts that can serve as referring expressions.

Definition 1 (CFD ∀nc Concepts) Let F, PC and IN be disjoint sets of (names
of) attributes, primitive concepts and individuals, respectively. A path function
Pf is a word in F∗ with the usual convention that the empty word is denoted
by id and concatenation by “.”. The set of CFD ∀nc concepts C is given by the
following grammar, where a ∈ IN, A ∈ PC, Pf and Pfi are path functions, k > 0
and fi ∈ F.

C ::= {a} | A | ∀Pf.C | C1 u C2 | ¬A | Pf1 = Pf2 |
A : Pf1.Pf,Pf2, . . . ,Pfk → Pf1 | A : Pf1.Pf,Pf2, . . . ,Pfk → Pf1.f

(1)

Semantics is defined in the standard way with respect to an interpretation I =
(4, (·)I), where 4 is a domain of “objects” and (·)I an interpretation function
that fixes the interpretation of attributes f to be total functions on 4, primitive
concepts A to be subsets of 4, and individuals a, b to be elements of 4. The

({a})I = {(a)I},
(∀Pf.C)I = {x ∈ 4 | (Pf )I(x) ∈ (C)I},

(C1 u C2)I = (C1)I ∩ (C2)I ,

(¬A)I = 4 \ (A)I ,

(Pf1 = Pf2)I = {x ∈ 4 | (Pf1)I(x) = (Pf2)I(x)} and

(A : Pf1, . . . ,Pfk → Pf)I = {x ∈ 4 | ∀ y ∈ (A)I :∧
i
(Pfi)

I(x) = (Pfi)
I(y)→ (Pf)I(x) = (Pf)I(y)}

Fig. 1. Semantics of CFD ∀
nc Concepts.

interpretation function is extended to path expressions by interpreting id as the
identity function and concatenation as function composition. The semantics of
the remaining CFD ∀nc concepts are then defined in Figure 1. 2

Concepts having the last two forms in (1) are called a (path) key and a path
functional dependency (PFD), respectively. Informally, such concepts each de-
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note a set of objects, each of which, whenever agreeing with any A-object on all
left-hand-side path functions, also agrees with that object on the right-hand-side
path function. Thus, the axiom EditedCollection v EditedCollection : isbn#→
id, expresses that isbn# is a key for edited collections, while Person v Person :
home.phone# → home.address, says that if two persons have the same home
phone then they have the same home address.

Definition 2 (CFD ∀nc Knowledge Bases) Generic knowledge/metadata and
specific facts/data in a CFD ∀nc knowledge base K are respectively defined by a
TBox TK and an ABox AK.

A TBox TK consists of a finite set of general concept inclusion axioms, which
adhere to one of the following six forms, where A and Ai are primitive concepts,
f is an attribute in F, B is a primitive concept or a negation of a primitive
concept, and where Pf and Pfi are path functions:

A v B ; A v ∀f.B ; ∀f.A v B ; A v (Pf1 = Pf2); A1 v A2 : Pf1, . . . ,Pfk → Pf.

TK must also satisfy the following condition:

stratification of path function equalities: If A v (Pf1 = Pf2) ∈ TK then A is a
primitive concept that does not occur on the right-hand-side of any inclusion
axiom in TK.

An ABox AK consists of a finite set of axioms that express facts, each of which
has one of the following two forms, respectively called individual membership
assertions and individual relationship assertions,

A(a) and Pf1(a) = Pf2(b),

for individuals a, b ∈ IN, primitive concept A ∈ PC, and path functions Pfi ∈ F∗.
Note that ({a})I = {(a)I} and thus we can use nominal concepts as proxies
for individuals. An interpretation I satisfies an inclusion axiom C1 v C2 if
(C1)I ⊆ (C2)I . It satisfies ABox axioms A(a) and Pf1(a) = Pf2(b) if (a)I ∈ (A)I

and (Pf1)I((a)I) = (Pf2)I((b)I), respectively. I satisfies a knowledge base K if
it satisfies each axiom in K. 2

The need for the additional restriction on a TBox to avoid undecidability of
TBox reasoning due to equational constraints derives in a straightforward way
from the undecidability of the word problem for monoids [7, 9].

Proposition 3 (Consistency and Logical Implication in CFD ∀nc [11, 13])
Knowledge base consistency and logical implication for CFD ∀nc are complete for
PTIME. 2

3 Conjunctive Queries and Certain Answers

In this section we re-evaluate the way answers to conjunctive queries are under-
stood and presented.

Definition 4 (Conjunctive Queries) A conjunctive query (CQ) Q, with free
variables {x1, . . . , xk}, has the form ∃xk+1, . . . ,∃xm : Body(Q) where Body(Q),
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the query body of Q, is a first order formula over the signature C∪ F of the form(∧
C(xi)

)
∧
(∧

f(xj) = xk)
)
, (2)

where each xi, xj and xk occurs in {x1, . . . , xm}.3 2

Recall that our objective in this paper is to study how CFD ∀nc concepts can help
serve the role of a singular referring expression in certain answers to conjunctive
queries. To review current practice, assume K is a knowledge base over some
DL dialect, and consider one of the purposes served by an ABox in defining
the certain answers over K to a CQ Q: the finite collection of individual names
{a1, . . . , an} in the ABox defines a space of nk potential answers to Q: k-tuples
θi that map query variables xj to individual names aij ,

{x1 7→ ai1 , . . . , xk 7→ aik}.
Viewed as a substitution, recall that each θi is a certain answer to Q over K
exactly when K |= Qθi. Note that the occurrence of an individual aij in a certain
answer is a simple example of a referring expression, i.e., a syntactic artifact that
identifies elements of an underlying domain.

This notion of a potential answer is easily modified to accommodate a much
larger variety of referring expressions. To start, one can view a potential answer
θi as a set of size k that maps query variables to nominal concepts instead of
individuals, as in

{x1 7→ {ai1}, . . . , xk 7→ {aik}},
and then extend this idea by allowing arbitrary CFD ∀nc concepts in potential
answers to queries, i.e., potentially by allowing answers to have the form

{x1 7→ C1, . . . , xk 7→ Ck}. (3)

In this alternative setting “certain answers” are defined as follows:

Definition 5 (Referring Concepts and Certain Answers)
Let K be a CFD ∀nc knowledge base, Q a conjunctive query with free variables
x1, . . . , xk and C1, . . . ,Ck CFD ∀nc concept descriptions. We say that C1, . . . ,Ck

are referring concepts in a certain answer {x1 7→ C1, . . . , xk 7→ Ck} to Q if the
following two conditions hold:

1. K |= ∀x1, . . . , xk.C1(x1) ∧ . . . ∧ Ck(xk)→ Q, and

2. |{o ∈ 4 | I, [xi 7→ o] |= Ci(xi) ∧ (∃x1, . . . , xi−1, xi+1, . . . xk.Q)}| = 1
for every I |= K and 0 < i ≤ k.

where C (x) is the first-order formula derived from the concept description C . 2

The first condition states that Ci objects (as values of xis) satisfy Q and the
second one that we are interested in singular referring expressions Ci, as gen-
eralizations of simple individual names. In the rest of the paper we call {x1 7→
C1, . . . , xk 7→ Ck} a candidate answer to Q if condition (1) in the above definition

3 To improve readability in the rest of the paper we allow constants to appear in CQs.
However, conjuncts of the form x = a are just syntactic sugar for a conjunct {a}(x)
formed using a concept {a}. Similarly, f(x) = a is ∃y(f(x) = y ∧ {a}(y)), etc.
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is satisfied,and call it a weakly identifying answer to Q if only an upper bound
(of one) is guaranteed to hold in condition (2) We call concepts Ci that are used
in this way singular referring concepts since they replace the role of individual
names as referring expressions in certain answers to conjunctive queries.

To illustrate, assume K captures information about persons, and consider a
query with body Person(x). In the rest of the paper, we will use Pf = a as an
alternative syntax for ∀Pf.{ a } (to improve readability). Possibilities for certain
answers to the query now include one or more of the following:

{x 7→ (ssn# = 1234)}
or

{x 7→ Female u (hasSpouse.name = ’Enya’) u (hasSpouse.phone# = 1234567)}.
Note that Definition 5(2) disallows answers of the form {x 7→ Female} or more
generally, rules out any C for x in which |(C)I | 6= 1 when I |= K. Thus, the
earlier examples of certain answers would be contingent on TK ensuring that
persons have unique ssn#, as well as unique spouses, who can be identified by
a (name, phone#) pair.

4 Referring Concept Types in Conjunctive Queries

Allowing referring concepts beyond nominals in certain answers to a queryQmay
lead to infinitely many syntactically distinct certain answers. In this section, we
develop a framework that ensures the set of certain answers to any conjunctive
query is finite by introducing a specific language for referring concept types,
which bottom out at individual nominals.

Important note: while Definition 5 allows general CFD ∀nc concepts to serve
as referring concepts, in the rest of the paper we restrict our attention to the
subset of referring concepts adhering to the more limited grammar

C ::= {a} | A | ∀Pf.C | C u C
where {a} is a nominal, A is a primitive concept name, and Pf ∈ F∗. These C
are intuitively instances of the following referring types.

Definition 6 (Referring Concept Types)
A referring concept type Rt is given by the following grammar, where T denotes
a finite conjunction of primitive concepts (or > standing for empty conjunction),
to be called henceforth a simple type.

Rt ::= {?} | Pf = {?} | Rt1 u Rt2 | T → Rt | Rt1; Rt2

The referring concept set RC(Rt,K) is the “extension” of a referring concept
type Rt with respect to KB K, and is defined inductively as follows, where Si is
short for RC(Rti,K):

1. RC({?},K) = {{a} | a occurs in AK};
2. RC(Pf = {?},K) = {(Pf = {a}) | a occurs in ABox AK};
3. RC(Rt1 u Rt2,K) = {C1 u C2 | Ci ∈ Si};
4. RC(T → Rt1,K) = {T u C | C ∈ S1}; and
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5. RC(Rt1; Rt2,K) = S1 ∪ {C2 ∈ S2 | ¬∃C1 ∈ S1 s.t. K |= C1 ≡ C2}.

A referring concept type is homogeneous if it is free of any occurrence of the
construct in 5. 2

Examples of their use will follow immediately after the next definition. Note
that, as desired, the set of referring concepts associated with a single referring
concept type is finite if AK is finite.

Definition 7 (Certain Answers and Singular Referring Concepts)
Let Q be a conjunctive query with free variables {x1, . . . , xk}. A query head H
for Q is a set of pairs {x1 : Rt1, . . . , xk : Rtk} that associates a referring concept
type Rti with each xi.

The set of certain answers to Q with respect to a head H and a knowledge base
K, denoted Ans(Q,H,K), is the set of all certain answers {xi 7→ Ci | 0 < i ≤ k}
to Q over K for which Ci ∈ RC(Rti,K), for 0 < i ≤ k. 2

After the examples below, the objective in this section is to show that computing
Ans(Q,H,K) can be achieved in PTIME for CFD ∀nc, provided that referring
concept types satisfy a “weak identification condition”.

The following examples illustrate the use of referring concepts with con-
junctive queries to extend the current situation with the more expressive cases
motivated in the Introduction (a conjunctive query Q with a head H will be
written in the following SQL-like style: select H where Body(Q)):

1. (expressing the current case) “Any journals published by Italians”

select x1 : {?}
where Journal(x1) ∧ (publishedBy(x1) = x2) ∧ Italian(x2)

2. (reference via single key) “The ssn# of any person with phone 12345567”

select x : ssn# = {?}
where Person(x) ∧ (phone#(x) = 1234567)

3. (multiple attribute key) “The title and publisher of any journals”

select x : title = {?} u publishedBy = {?}
where Journal(x)

4. (choice of identification in heterogeneous set) “Any legal entity”

select x : Person → ssn# = {?} ; Company → tickerSymbol = {?}
where LegalEntity(x)

An example certain answer would be x 7→ Person u (ssn# = 7654) while
another might be x 7→ Company u (tickerSymbol = ′IBM′).

5. (preferred identification) “Any publication, identified by its most specific
identifier, when available.”

select x : Journal → (title = {?} u publisher = {?}) ;
EditedCollection → isbn# = {?} ; {?}

where Publication(x)

We now make concrete our requirement that referring concepts occurring in
query answers do indeed satisfy the ability to identify objects.

78



Definition 8 (Weak Identification in Certain Answers) Let Q be a con-
junctive query, H a head for Q, and T a CFD ∀nc TBox. Q is weakly identifying
for H with respect to T if |(C)I | ≤ 1 for every ABox A, model I of T ∪ A, and
candidate answer θ to Q with respect to H and T ∪ A in which x 7→ C ∈ θ. 2

Lemma 9 (Normal Form of Referring Concept Types) For every refer-
ring concept type Rt, there is an equivalent normal form

Rt1; . . . ; Rtn,

denoted Norm(Rt), consisting of tagged record types Rti that are, in turn, ho-
mogeneous referring concept types of the form

Ti → ((Pfi,1 = {?}) u . . . u (Pfi,mi
= {?})). (4)

By equivalent, we mean that, for any KB K, C1 ∈ RC(Rt,K) implies there exists
C2 ∈ RC(Norm(Rt),K) for which { } |= C1 ≡ C2, and vise versa. 2

Proof (sketch): By application of the following equivalence preserving rewrites.

{a} ; { } → (id = {a})
(T → Rt1) u Rt2 or Rt1 u (T → Rt2) ; T → (Rt1 u Rt2)

(Rp1 ; Rt2) u Rt3 ; (Rt1 u Rt3) ; (Rt2 u Rt3)
Rt1 u (Rt2 ; Rt3) ; (Rt1 u Rt2) ; (Rt1 u Rt3)
T → (Rt1 ; Rt2) ; (T → Rt1) ; (T → Rt2)
T1 → (T2 → Rt) ; (T1 u T2)→ Rt 2

We now present our first main result on deciding weak identification. Our theo-
rem refers to the following auxiliary functionM(·) which abstracts query bodies
as DL concepts (note that the function assumes, without harm, that variables
are also elements of F):

M(φ) =





∀x.C if φ = “C(x)”;
x1.f = x2 if φ = “f(x1) = x2”;
M(ψ1) u M(ψ2) if φ = “ψ1 ∧ ψ2”; and
M(ψ) otherwise, when φ = “∃xk+1, . . . ,∃xm : ψ”.

Theorem 10 (Deciding Weak Identification) LetQ be a conjunctive query,
H a head for Q, and T a CFD ∀nc TBox. Q is weakly identifying for H with respect
to T if and only if

T ∪ {AQ v ((∀x.T ) uM(Body(Q))) |= AQ v AQ : x.Pfi,1, . . . , x.Pfi,mi
→ x

for all (x : Rt) ∈ H, and all T → (Pf1 = {?}) u . . . u (Pfm = {?}) ∈ Norm(Rt).

Proof (sketch): The if direction is straightforward. For the only-if direction,

consider the earliest tagged record type Rt ′ ∈ Norm(Rt) for some x : Rt ∈ H
for which the check for the logical consequence of the key PFD fails. Then one
can construct an ABox A where there exists C ∈ RC(Rt ′, T ∪A) that occurs in
some candidate answer θ for Q for which one can also construct an interpretation
I for T ∪ A for which |(C)I | > 1. 2

Definition 11 Let Q be a CQ with free variables {x1, . . . , xk}. We say that H
is a homogeneous head for Q if it is of the form

H = {xi : Ti → (Pfi,1 = {?}) u . . . u (Pfi,`i = {?}) | 0 < i ≤ k}.
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For every CQ Q and a homogeneous head H for Q we define a conjunctive query

QH = Q ∧
k∧

i=1

(Ti(xi) ∧ (Pfi,1(xi) = xi,1 ∧ . . . ∧ (Pfi,`i = xi,`i)

with additional free variables {xi,j | 0 < i ≤ k, 0 < j ≤ `i}. 2

To handle preferences, i.e., non-homogeneous heads H of queries of the form
{xi : Rpi,1; . . . ; Rpi,ni

| 0 < i ≤ k} we first define a sequence of homogeneous
heads

Hj1,...,jk = {xi : Rpi,ji | 0 < i ≤ k}
over all 0 < ji < ni. In addition, we define a normalized ABox A′ for an ABox A
to contain only individual relationship assertions of the form f(a) = b obtained
from A by introducing additional individuals for the intermediate individuals
participating in A’s individual relationship assertions.4

Theorem 12 Let K = (T ,A) be a knowledge base, Q a CQ, and H a head for
Q, such that Q is weakly identifying for H in T . Then

{xi 7→ Ti u (Pfi,1 = {ai,1}) u . . . u (Pfi,`i = {ai,`i})} ∈ Ans(Q,H,K)

if and only if

{xi 7→ {bi}, xi,j 7→ {ai,j} | 0 < i ≤ k, 0 < j ≤ `i} ∈ Ans(QHj1,...,jk
, H0,K′)

and there is no

{xi 7→ {bi}, xi,j 7→ {a′i,j} | 0 < i ≤ k, 0 < j ≤ `i} ∈ Ans(QHj′
1
,...,j′

k

, H0,K′)
for Hj′1,...,j

′
k

dominates Hj1,...,jk , where H0 = {xi : {?} | 0 < i ≤ k}∪ {xi,j : {?} |
0 < i ≤ k, 0 < j ≤ `i}, K′ = (T ,A′) where A′ is a normalized A, and ai,j and
a′i,j are constants in A.

Proof (sketch): Consider first the case where H is homogeneous. Then we can
reconstruct an answer to Q and H from an answer to QH and H0 (which consists
of nominal concepts only. Conversely, from answer to Q and H we can extract
nominal concepts that are an answer to ∃x1, . . . , xk.QH and H0 (restricted to free
variables of ∃x1, . . . , xk.QH). This answer is then extended to QH and (full) H0

by using individual names introduced in the normalized ABox A′, this extension
is unique since Q is weakly identifying for H in T .

For the non-homogeneous case we simply consider all possible homogeneous sub-
cases and then filter the answers by the valuations of the variables x1, . . . , xk
(since those describe the possibly anonymous individuals inA using their system-
assigned names A′). 2

Note that the queries QHj′
1
,...,j′

k

are answered in K with respect to H0, a triv-

ial and homogeneous head: this reduces the answering to standard CQ query
answering in CFD ∀nc knowledge base K as introduced in [12].

Corollary 13 Computing certain answers to conjunctive queries with respect
to referring concepts and CFD ∀nc knowledge bases is complete for PTIME.

4 Such a transformation is already part of the CQ answering algorithm [12]. Note that
in our setting, however, the new individuals cannot participate in Q’s answers.
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5 Conclusions

The paper’s contributions are as follows.
First and foremost, on the non-technical side, it recognized and motivated

the utility of “singular referring expressions” for query answers, which are more
complex than just nominals, and it argued for the need for a new separation of
concerns in query writing: qualification (what the query body does) vs. identifi-
cation (how results are presented).

On the specification side, the paper defined formally the notion of “query
answering using referring expressions” for certain answers in conjunctive queries
over DLs. In the context of CFD ∀nc, it introduced a specific language for referring
expressions, which are a subset of CFD ∀nc concepts, and which allows us to
handle all the motivating problems (except intensional descriptions in this paper.
This language generalizes the notion of nominal, currently used in OBDA, to
handle keys (as found in both the database and DL KB literature), and supports
heterogeneous sets (as in the case of LegalEntity), as well as preferential choice
of referring expressions (as in the EditedCollection example).

On the algorithmic and complexity side, it first considered, in the context of
CFD ∀nc, the problem of determining (in polynomial time) whether a referring
concept type was “weakly” identifying in the context of a query and TBox, in
the sense that its instances necessarily referred to at most one object. It also
showed how one can transform a query and knowledge base so that the answers
had cardinality one. This led to the result that computing certain answers to
conjunctive queries with respect to referring concepts and CFD ∀nc KBs was
complete for PTIME.

There are many avenues left to explore in this work. We have already men-
tioned that lack of space prevented us from considering referring concepts types
for “Michelle’s mother”, which use inverse functions. Another direction to con-
sider are additional forms or desirable properties of referring expressions. For
example, the variety of references raises a problem: the same object may be re-
turned in an answer with different references to it, even if the knowledge base
works with the UNA. As a simplest example, a journal has multiple candidate
keys. We are currently investigating ways to reason about and avoid such dupli-
cation.

The reader may also have observed that so far it was up to the programmer
to select the referring expression(s) to consider for each variable. A form of
type inference on the query variables would be useful, as the basis of a tool
which would suggest to the user a (bounded) list of possible referring expressions
that are guaranteed to have the singular reference property with respect to a
particular TBox.

Of course, all the technical questions considered in this paper will have dif-
ferent answers for different DLs. Therefore, an orthogonal avenue of research is
to re-consider these issues in the context of other DLs, especially DL-Lite.

Acknowledgments: We wish to thank those reviewers who have made excellent
suggestions for improving the paper, and financial support from NSERC Canada.
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Motivation Context-aware systems use data collected at runtime to recognize
predefined situations and trigger adaptations; e.g., an operating system may use
sensors to recognize that a video application is out of user focus, and then adapt
application parameters to optimize the energy consumption. Using ontology-
based data access [12, 19], the situations can be encoded into queries that are
answered over an ABox containing the sensor data. In the TBox, we can encode
background knowledge about the domain. For example, if the user has been
working with another application on a second screen for a longer period, then
we may assume that he does not need the video to be displayed in the highest
resolution.

In this paper, we focus on the lightweight DL EL. We can state static knowl-
edge about applications (VideoApplication(app1)), dynamic knowledge about the
current context (NotWatchingVideo(user1)), as well as background knowledge like

VideoApplication u ∃hasUser.NotWatchingVideo v ∃hasState.OutOfFocus,
saying that a video application whose user is currently not watching the video
is out of user focus. Given such a knowledge base, we can use the conjunctive
query (CQ) ψ(x) := ∃y.hasState(x, y)∧OutOfFocus(y) to identify applications x
that can potentially be assigned a lower priority. More complex situations typi-
cally depend also on the behavior of the environment in the past—the operating
system should not switch configurations every time the user is not watching for
one second, but only after this has been the case for a longer period.

For that reason, we investigate temporal conjunctive queries (TCQs), origi-
nally proposed in [3, 4]. They combine conjunctive queries via the operators of
the propositional linear temporal logic LTL [14,18]. We can use the TCQ
(#− ψ(x)

)
∧
(#− #−ψ(x)

)
∧
(#− #− #− ψ(x)

)
∧

(
¬
(
∃y.GotPriority(y) ∧ notEqual(x, y)

)
SGotPriority(x)

)

to obtain all applications that were out of user focus during the three previous
(#−) moments of observation, were prioritized by the operating system at some
point in time, and the priority has not (¬) changed since (S) then. The semantics
of TCQs is based on temporal knowledge bases (TKBs), which, in addition to the
TBox (which is assumed to hold globally, i.e., at every point in time), contains
a sequence of ABoxes A0,A1, . . . ,An, representing the data collected at specific

∗ Partially supported by the DFG in CRC 912 (HAEC).
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points in time. We designate with n the most recent time of observation (the
current time point), at which the situation recognition is performed. We also
investigate the related temporalized formalism EL-LTL, in which axioms, i.e.,
assertions or GCIs, are combined using LTL-operators.

Related Work The axioms in a TKB do not explicitly refer to time, but are
written in a classical (atemporal) DL; only the query is temporalized. In contrast,
[1,2,13,17] extend classical DLs by temporal operators that occur within concepts
and axioms. However, most of these logics yield high reasoning complexities, even
if the underlying atemporal DL is tractable. Lower complexities are obtained by
considerably restricting either the temporal operators or the underlying DL.

Regarding temporal properties formulated over atemporal DLs, ALC-LTL,
a variant of EL-LTL over the more expressive DL ALC, was first considered
in [6]. This was the basis for introducing TCQs over ALC-TKBs in [3], which
was extended to SHQ in [4]. However, reasoning in ALC is not tractable, and
context-aware systems often need to deal with large quantities of data and adapt
fast. TCQs over several lightweight logics have been regarded in [7], but only
over a fragment of LTL without negation. In [1], the complexity of LTL over
axioms of several members of the DL-Lite family of DLs has been investigated.
However, nothing is known about TCQs over these logics.

Results We investigate the combined and data complexity of the TCQ en-
tailment problem over TKBs formulated in EL. Moreover, we determine the
complexity of satisfiability of EL-LTL-formulae, and additionally consider the
special case where only global GCIs are allowed [6]. As usual, we consider rigid
concepts and roles, whose interpretation does not change over time. In this re-
gard, we distinguish three different settings, depending on whether concepts or
roles (or both) are allowed to be rigid. Since rigid concepts can be simulated by
rigid roles [6], only three cases need to be considered: (i) no symbols are allowed
to be rigid, (ii) only rigid concepts are allowed, and (iii) both concepts and roles
can be rigid. Tables 1 and 2 summarize our results and provide a comparison
to related work. The only previously known results that directly apply here are
P-hardness of CQ entailment in EL w.r.t. data complexity [11] and PSpace-
hardness of LTL [20]. Hence, we needed to prove three additional complexity
lower bounds.

With a single exception, the complexity of TCQ entailment in EL turns out to
be lower than that in ALC (and SHQ) [4]. Regarding satisfiability in EL-LTL,
Table 2 shows that rigid symbols lead to an increase in complexity that does
not affect DL-Litekrom-LTL [1], and even matches the complexity of ALC-LTL
and SHOQ-LTL in case (ii) [6, 15]. Thus, we partially confirm and refute the
conjecture of [6] that EL-LTL is as hard as ALC-LTL. In the following, we shortly
describe some of the ideas behind them. More details can be found in [8–10].

The upper bounds are obtained by a combination of techniques that were
developed for ALC-LTL [6] and refined for TCQs over SHQ-TKBs [4], methods
for checking LTL-satisfiability [4,20,21], and algorithms for atemporal reasoning
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Table 1. The complexity of TCQ entailment. All results except the one for the data
complexity of case (iii) from [4] are tight.

Data Complexity Combined Complexity
(i) (ii) (iii) (i) (ii) (iii)

EL P co-NP co-NP PSpace PSpace co-NExpTime
ALC/SHQ [4] co-NP co-NP ExpTime ExpTime co-NExpTime 2-ExpTime

Table 2. The complexity of satisfiability in LTL over DL axioms.

Global GCIs
(i) (ii) (iii) (i) (ii) (iii)

DL-Litekrom [1] PSpace PSpace PSpace PSpace PSpace PSpace
EL PSpace NExpTime NExpTime PSpace PSpace PSpace
ALC [6] ExpTime NExpTime 2-ExpTime ExpTime ExpTime 2-ExpTime

in EL [5,16]. However, considerable work was necessary to obtain tight complexity
bounds in all cases we considered. The main approach is to separate the temporal
operators from the CQs (or axioms), which leaves us to solve a variant of the
satisfiability problem for LTL (in P w.r.t. data complexity and in PSpace w.r.t.
combined complexity), as well as the following problem for the DL part.

Definition 1. Let K = 〈T , (Ai)0≤i≤n〉 be a TKB and α1, . . . , αm be CQs.1 A set
S = {X1, . . . , Xk} ⊆ 2{α1,...,αm} is r-satisfiable w.r.t. a mapping ι : {0, . . . , n} →
{1, . . . , k} and K if there are interpretations J1, . . . ,Jk and I0, . . . , In such that

– they share the same domain and interpret all rigid symbols in the same way;
– each Ji is a model of T and χi :=

∧
Xi ∧

∧{¬αj | αj /∈ Xi}; and
– each Ii is a model of 〈T ,Ai〉 and χι(i).

Individually, the satisfiability of the conjunctions χi can be tested in P w.r.t. data
complexity and in PSpace w.r.t. combined complexity. However, the problem is
to ensure the first condition, namely that all rigid names are interpreted in the
same way by all relevant interpretations.

In case (i), this restriction is obviously irrelevant. For case (iii), one can an-
swer an exponentially large UCQ over an exponentially large atemporal knowl-
edge base instead to obtain the upper bounds. The most difficult cases were
case (ii) for the combined complexity of TCQ entailment, and the case of global
GCIs in EL-LTL, where we needed to obtain PSpace upper bounds in the pres-
ence of rigid names. For these cases, we proved that it suffices to guess additional
data of polynomial size that can be added to the knowledge bases in order to
separate the satisfiability tests in Definition 1. These tests can then be integrated
into a PSpace-Turing machine for LTL-satisfiability [20] without increasing the
complexity.

Acknowledgements We want to thank Franz Baader, Marcel Lippmann, and
Carsten Lutz for fruitful discussions on the topic of this paper.
1 In the case of EL-LTL, these are axioms.
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FOL Reformulation (Extended Abstract)

Damian Bursztyn1, François Goasdoué2 and Ioana Manolescu1
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Abstract. We propose a general query optimization framework for for-
malisms enjoying FOL reducibility of query answering, for which it reduces
to the evaluation of a FOL query against facts. This framework allows
searching within a set of alternative equivalent FOL queries, i.e., FOL re-
formulations, one with minimal evaluation cost when evaluated through
a relational database management system. We provide two algorithms,
an exhaustive and a greedy, for exploring the optimization space. This
framework is applied to the lightweight description logic DL-LiteR un-
derpinning the W3C’s OWL2 QL profile, for which an experimental eval-
uation validates the interest and applicability of our technique.

1 Introduction

Query answering in the lightweight DL-LiteR description logic [1] has received
significant attention in the literature, as it provides the foundations of the W3C’s
OWL2 QL standard for Semantic Web applications. In particular, query answer-
ing techniques based on FOL reducibility, e.g., [1,2,5,6,7], which reduce query an-
swering against a knowledge base (KB) to FOL query evaluation against the KB’s
facts only (a.k.a. ABox) by compiling the KB’s domain knowledge (a.k.a. TBox)
into the query, hold great potential for performance. This is because FOL queries
can be evaluated by a highly optimized Relational Database Management Sys-
tem (RDBMS) storing the KB’s facts.

The goal of our study is to identify efficient techniques for query answering in
description logics enjoying FOL reducibility, with a focus on DL-LiteR. Notably,
we reduce query answering to the evaluation of alternative FOL queries, a.k.a. FOL
reformulations, belonging to richer languages than those considered so far in the
literature; in particular, this may allow several (equivalent) FOL reformulations
for a given input query. This contrasts with related works, e.g., the aforemen-
tioned ones, which aim at a single FOL reformulation (modulo minimization).
Allowing a variety of reformulations is crucial for efficiency, as such alternatives,
while computing the same answers, may have very different performance (re-
sponse time) when evaluated through an RDBMS. Therefore, instead of having
a single fixed choice that may or may not be performant, we select the one with
lowest estimated evaluation cost among possible alternatives.

2 Cover-based query answering optimization

RDBMS query optimizers consider a set of evaluation alternatives (a.k.a. logical
and physical plans), and select the one minimizing a cost estimation function.
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Since the number of alternatives is in O(2n × n!) for a conjunctive query (CQ)
of n atoms [4], modern optimizers rely on heuristics to explore only a few al-
ternatives; this works (very) well for small-to-moderate size CQs. However, FOL
reformulations go beyond CQs in general, and may be extremely large, leading the
RDBMS to perform poorly.

To work around this limitation, we introduce the cover-based query answer-
ing technique to define a space of equivalent FOL reformulations of a CQ. A cover
defines how the query is split into subqueries, that may overlap, called frag-
ment queries, such that substituting each subquery with its FOL reformulation
(obtained from any state-of-the-art technique) and joining the corresponding
(reformulated) subqueries, may yield a FOL reformulation for the query to an-
swer. Not every cover of a query leads to a FOL reformulation; but every cover
which does, yields an alternative cover-based FOL reformulation of the original
query. Crucially for our problem, a smart cover choice may lead to a cover-based
reformulation whose evaluation is more efficient. Thus, the cover-based tech-
nique amounts to circumventing the difficulty of modern RDBMSs to efficiently
evaluate FOL reformulations in general.

Problem 1 (Optimization problem). Given a CQ q and a description logic KB K,
the cost-driven cover-based query answering problem consists of finding a cover-
based reformulation of q based on K with lowest (estimated) evaluation cost.

We solve this problem for DL-LiteR in two steps. First, we provide a sufficient
condition for a cover to be safe for query answering, i.e., to lead to a cover-based
FOL reformulation. The main idea for this condition is to have a cautious ap-
proximation of the query atoms which are interdependent w.r.t. reformulation,
i.e., which (directly or after specialization) unify through state-of-the-art refor-
mulation techniques, and keep them in the same cover fragment. The space of all
covers of a query q satisfying this condition is denoted Lq; all Lq covers turn out
to correspond to some fusion of fragments from a certain root cover we denote
Croot. We also refine our sufficient condition to identify an extended space of
covers Eq, which includes Lq and also leads to FOL reformulations of q.

Second, based on a function ε estimating the evaluation cost of a given FOL

query through an RDBMS, we devise two cover search algorithms. The first
one, termed EC-DL (Exhaustive Covers), starts from Croot and explores all
Eq covers in the case of DL-LiteR. The second one, named GC-DL (Greedy
Covers), also starts from Croot but explores Eq partially, in greedy fashion. It
uses an explored cover set initialized with {Croot}, from which it picks a cover C
inducing a qFOL reformulation with minimum cost ε(C), and attempts to build
from C a cover C ′, by fusing two fragments, or adding (copying) an atom to a
fragment. GC-DL only adds C ′ to the explored set if ε(C ′) < ε(C), thus it only
explores a small part of the search space. Both algorithms return a cover-based
reformulation with the minimum estimated cost w.r.t. the explored space. When
fusing two fragments into one, or adding an atom to a fragment, ε(C) decreases
if the new fragment is more selective than the fragment(s) it replaces. Therefore,
the RDBMS may find a more efficient way to evaluate the query of this new
fragment, and/or its result may be smaller, making the evaluation of qFOL based
on the new cover C ′ faster.
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Fig. 1: (a) Evaluation time for FOL reformulations. (b) Cover search running time.

3 Experimental validation

We implemented our cover-based approach in Java 7, on top of PostgreSQL
v9.3.2. We used the LUBM∃

20 DL-LiteR TBox and associated EUDG data gen-
erator [3]: LUBM∃

20 consists of 34 roles, 128 concepts and 212 constraints; the
generated ABox comprises 15 million facts. We chose RAPID [2] for CQ-to-UCQ
(unions of CQs) reformulation. For ε, we used Postgres’ own estimation, obtained
using the explain directive. We devised a set of 13 CQs, ranging from 2 to 10
atoms (5.77 on average); their UCQ reformulations have 35 to 667 CQs (290.2 on
average).

Figure 1(a) depicts the evaluation time through Postgres, of four FOL refor-
mulations: (i) the UCQ produced by RAPID [2]; (ii) the JUCQ (joins of UCQs)
reformulation based on Croot; (iii) the JUCQ reformulation corresponding to the
best-performing cover found by our algorithm EC-DL, and (iv) the JUCQ refor-
mulation based on the best-performing cover found by GC-DL. First, the figure
shows that fixed FOL reformulations are not efficiently evaluated, e.g., UCQ for
Q1, Q5 and Q9-Q11, and the one based on Croot for Q6-Q8 and Q13. This poor
performance correlates with the large size of the UCQ reformulations: such very
large unions of CQs are very poorly handled by current RDBMS optimizers, which
are designed and tuned for small CQs. Second, the reformulation based on the
cover returned by EC-DL is always more efficient than UCQ reformulation (more
than one order of magnitude for Q5), respectively, Croot-based reformulation (up
to a factor of 230 for Q6). Third, in our experiments, the GC-DL-chosen cover
leads to a JUCQ reformulation as efficient as the EC-DL one, demonstrating that
even a partial, greedy cover search leads to good performance (this cannot be
guaranteed in general). For Q7 and Q9-Q13, the best cover we found is safe; for
all the others, this is not the case, confirming the interest of the larger space Eq.

Figure 1(b) depicts the running time of the EC-DL and GC-DL algorithms,
which can be seen as the overhead of our cover-based technique. The time is very
small, between 2 ms (Q11-Q13, with just 2 atoms) and 221 ms (EC-DL on Q10, of
10 atoms). The time is higher for more complex queries, but these are precisely
the cases where our techniques are most benefficial, e.g., for Q10, EC-DL runs in
less than 2% of the time to evaluate the UCQ reformulation, while the cover we
recommend is more than 4 times faster than UCQ. As expected, GC-DL is faster
than EC-DL due to the exploration of less covers. Together, Figure 1(a) and
1(b) confirm the benefits and practical interest of our cost-based cover search.
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Description logics (DLs) of context can be employed to represent and reason
about contextualized knowledge, which naturally occurs in practice [5,4,7,9,8].
Consider, for instance, the rôles played by a person in different contexts. The
person Bob, who works for the company Siemens, plays the rôle of an employee
of Siemens in the work context, whereas he might play the rôle of a customer
of Siemens in the context of private life. Here, access restrictions to the data of
Siemens might critically depend on Bob’s rôle. Moreover, DLs capable of repre-
senting contexts are vital to integrate distributed knowledge as argued in [5,4].

DLs are well-suited to describe contexts as formal objects with formal prop-
erties that are organized in relational structures, which are fundamental require-
ments for modeling contexts [11,12]. However, classical DLs lack expressive power
to formalize that some individuals satisfy certain concepts and relate to other in-
dividuals depending on a specific context. Therefore, often two-dimensional DLs
are employed [7,9,8]: One DL LM (the meta or outer logic) is used to represent
the contexts and their relationships to each other. LM is combined with a DL LO

(the object or inner logic) that captures the relational structure within each con-
text. Moreover, while some pieces of information depend on the context, other
pieces of information are shared throughout all contexts. For instance, a person’s
name is typically independent of the actual context. To be able to express that,
some concepts and roles a designated to be rigid, i.e. they are required to be
interpreted the same in all contexts. Unfortunately, if rigid roles are admitted,
reasoning in contextualized DLs is usually undecidable [7].

We propose and investigate a family of two-dimensional DLs LM JLOK that
meet the above requirements, but are a restricted form of the one defined in [7]
in the sense that we limit the interaction of LM and LO. More precisely, in our
family of contextualized DLs the outer DL can refer to the internal structure of
each context, but not vice versa. This represents contexts in a top-down perspec-
tive. Interestingly, reasoning in LM JLOK stays decidable with such a restriction,
even in the presence of rigid roles. In some sense our family of contextualized
DLs are similar to temporalized DLs investigated in [2,3,10].

For providing better intuition on how our formalism works, we examine the
above mentioned example a bit further. Consider the following axioms:

> v J∃worksFor .{Siemens} v ∃ hasAccessRights.{Siemens}K (1)
Work v JworksFor(Bob,Siemens)K (2)

> v J∃ isCustomerOf .> v HasMoneyK (3)

?? Funded by DFG in the Research Training Group “RoSI” (GRK 1907).
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Fig. 1. Model of Axioms 1–7

J(∃worksFor .>)(Bob)K v ∃ related .(Private u JHasMoney(Bob)K) (4)
Private v JisCustomerOf (Bob,Siemens)K (5)

Private uWork v ⊥ (6)
¬Work v J∃worksFor .> v ⊥K (7)

Axiom 1 states that it holds true in all contexts that somebody who works for
Siemens also has access rights to certain data. Axiom 2 states that Bob is an
employee of Siemens in any work context. Axioms 3 and 4 say intuitively that if
Bob has a job, he will earn money, which he can spend as a customer. Axiom 5
formalizes that Bob is a customer of Siemens in any private context. Moreover,
Axiom 6 ensures that private and work contexts are disjoint. Finally, Axiom 7
states that the worksFor relation only exists in work contexts. A fundamental
reasoning task is to decide whether a set of axioms is consistent. For our example,
Figure 1 depicts a model. There, Bob’s social security number is linked to him
using a rigid role hasSSN since it does not change over the contexts.

Our family LM JLOK consists of combinations of two DLs, where we focus on
the cases where LM and LO are EL or DLs between ALC and SHOQ. Let OC,
OR, and OI be respectively sets of concept, role, and individual names for the
object logic LO. Analogously, we define the sets MC, MR, and MI for the meta
logic LM . Let O = (OC,OR,OI) and M = (MC,MR,MI). Concepts, GCIs and
assertions are defined over the respective signatures O and M as usual [1].

Definition 1. Concepts of the object logic (o-concepts) are LO-concepts over O;
o-axioms are LO-axioms over O. Concepts of the meta logic (m-concepts) are de-
fined inductively: each LM -concept over M is an m-concept, and JαK is an m-con-
cept for an o-axiom α; and m-axioms are defined analogously. Boolean LM JLOK-
knowledge bases (LM JLOK-BKBs) are Boolean combinations of m-axioms.

Note that the syntax of the object level is precisely the one of LO, whereas
the syntax of the meta level also allows to put LO-axioms in place of concept
names. The semantics of LM JLOK is defined using nested interpretations, which
consist of O-interpretations (usual DL interpretations for the names in O) for the
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Table 1. Complexity results for consistency in LM JLOK

LM

LO no rigid names only rigid concepts rigid roles
EL ALC SHOQ EL ALC SHOQ EL ALC SHOQ

EL const Exp Exp const NExp NExp const 2Exp 2Exp
ALC Exp Exp Exp NExp NExp NExp NExp 2Exp 2Exp
SHOQ Exp Exp Exp NExp NExp NExp NExp 2Exp 2Exp

specific contexts and the relational structure between them (M-interpretation),
where all contexts have the same domain. Also, let OCrig ⊆ OC denote the set
of rigid concepts, and let ORrig ⊆ OR denote the set of rigid roles. Moreover, we
assume that individuals of LO are always interpreted the same in all contexts.

Definition 2. We call a tuple J = (C, ·J , ∆, (·Ic)c∈C) a nested interpretation,
where C is a non-empty set (called contexts) and (C, ·J ) is an M-interpretation.
Moreover, Ic := (∆, ·Ic) is an O-interpretation for every c ∈ C, such that it holds
for all c, c′ ∈ C that xIc = xIc′ for all x ∈ OI ∪ OCrig ∪ ORrig.

Definition 3. Let J = (C, ·J , ∆, (·Ic)c∈C) be a nested interpretation. The map-
ping ·J is extended as follows: JαKJ := {c ∈ C | Ic |= α}. Moreover, J is a
model of the m-axiom β if (C, ·J ) is a model of β. This is extended to LM JLOK-
BKBs inductively as usual. We write J |= B if J is a model of the LM JLOK-
BKB B. We call B consistent if it has a model.

The complexity of consistency in LM JLOK is listed in Table 1. The lower bounds
are obtained using the ideas of [2,3] and hold already for the fragment ELJALCK,
even if only conjunctions of m-axioms are considered instead of BKBs. Without
rigid names, Exp-hardness follows from the complexity of LO. If rigid concept
and role names are allowed, we reduce the word problem for exponentially space-
bounded alternating Turing machines to obtain 2Exp-hardness. If only rigid
concept names are allowed, a reduction of an exponentially bounded version of
the domino problem yields NExp-hardness. For the upper bounds, we proceed
similar to what was done for ALC-LTL in [2,3] and reduce the consistency prob-
lem to two separate decision problems. First, we abstract our LM JLOK-BKB B
by replacing the m-concepts that consist of o-axioms by fresh concept names and
test this abstraction B′ for consistency. With this abstraction, we loose, however,
the information on the o-axioms. In each model of B′, the fresh concept names
have some extensions, and are treated completely independently. The induced
o-axioms, however, may not be independent. It could be that some o-axioms are
inconsistent together. We check this in a separate step.

To conclude, we have proposed novel combinations of two DLs for represent-
ing contextual knowledge and analyzed their complexity. Interestingly, even in
the presence of rigid roles the consistency problem is still decidable. For more
details, see [6]. As future work apart from others, we envision that our deci-
sion procedures can be adapted to deal with temporalized context DLs such as
LTLJALCJALCKK.
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1 Introduction

The combination of static and dynamic aspects in modeling complex organizational
domains is a challenging task that has led to study the combination of formalisms
from knowledge representation, database theory, and process management [18,23,11].
Specifically, Knowledge and Action Bases (KABs) [3] have been put forward recently
to provide a semantically rich representation of a domain. In KABs, static aspects are
modeled using a Description Logic (DL) [1] knowledge base (KB), while actions are
used to evolve its extensional part over time, possibly introducing fresh individuals.
An important aspect that has received little attention so far in such systems is the
management of inconsistency with respect to domain knowledge that may arise when the
extensional information is evolved over time. In fact, inconsistency, both in KABs and
in related approaches, is typically handled naively by just rejecting updates in actions
when they would lead to inconsistency, see e.g., [16,4,9,2].

To overcome this limitation, KABs have been extended lately with mechanisms to
handle inconsistency [12]. However, this has been done by defining ad-hoc execution
semantics and corresponding ad-hoc verification techniques geared towards specific
semantics for inconsistency management. It has also been left open whether adding
inconsistency management to the rich setting of KABs, actually increases expressive
power. This work attacks these issues by: (i) Proposing (standard) GKABs, which enrich
KABs with a compact action language inspired by Golog [20] that can be conveniently
used to specify processes at a high-level of abstraction. As in KABs, standard GKABs
still manage inconsistency naively. (ii) Defining a parametric execution semantic for
GKABs that is able to elegantly accomodate a plethora of inconsistency-aware se-
mantics based on the well-known notion of repair [17,5,19,13]. (iii) Providing several
reductions showing that verification of sophisticated first-order temporal properties over
inconsistency-aware GKABs can be recast as a corresponding verification problem over
standard GKABs. (iv) Showing that verification of standard and inconsistency-aware
GKABs can be addressed using known techniques, developed for standard KABs.

2 Setting

We use DL-LiteA [8,6] to express KBs, and consider queries such as EQL-Lite(UCQ)
(briefly ECQs) [7], to access KBs and extract individuals of interest. To handle inconsis-
? This paper is an abridged version of [14]. Full proofs can be found in [15]
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tency in KBs, we follow the repair-based approaches in [12], and distinguish between
two kinds of approaches: (i) those that compute repairs agnostically from the updates
(the added/deleted facts) [19,12], among which we have b-repairs, which are defined
as the maximal (w.r.t. set containment) subsets of an ABox that are consistent with the
TBox, and c-repairs, which are defined as the intersection of all b-repairs; (ii) those that
take into account the updates by giving higher priority to the new facts during the repair,
as in bold semantics for instance-level KB evolution (c.f., [13]).

Here, we consider KABs that are obtained by combining the framework in [3,12]
with the action specification formalism in [22], which allows us to have actions that
only update an ABox (instead of creating a new ABox at each execution, as in [3,12]).
Formally, a KAB is composed by (i) a DL-LiteA TBox T ; (ii) an initial DL-LiteA
ABox A0; (iii) a finite set Γ of parametric actions that evolve the ABox; (iv) a finite
set Π of condition-action rules that describe when actions can be executed, and with
which parameters. The execution semantics of a KAB is given in terms of a possibly
infinite-state transition system, whose construction depends on the adopted semantics
of inconsistency [12]. As in [12], we call S-KAB a KAB under the standard execution
semantics, where inconsistency is naively managed by simply rejecting those updates
that lead to an inconsistent state.

To specify temporal properties over KABs, we use the µLEQL
A logic, the FO variant

of µ-calculus defined in [3]. Given a transition system Υ and a closed µLEQL
A formula Φ,

verification is the problem of checking whether Φ holds in the initial state of Υ.

3 Golog-KABs and Inconsistency Management

We enrich KABs with a high-level action language inspired by Golog [20]. This allows
modelers to represents the dynamics of systems much more compactly. On the other
hand, we introduce a parametric execution semantics, which elegantly accommodates
the different kinds of inconsistency-aware semantics based on the notion of repair.

A Golog-KAB (GKAB) is a tuple G = 〈T,A0, Γ, δ〉, where T , A0, and Γ are as
in standard KABs, and δ is the Golog program characterizing the evolution of the
GKAB over time, using the atomic actions in Γ . For simplicity, we only consider a core
fragment of Golog based on the action language in [10], and define a Golog program as:
δ ::= ε | pick Q(~p).α(~p) | δ1|δ2 | δ1; δ2 | if ϕ then δ1 else δ2 | while ϕ do δ

where: (i) ε is the empty program; (ii) pick Q(~p).α(~p) is an atomic action invocation
guarded by an ECQ Q, such that α ∈ Γ is applied by non-deterministically substituting
its parameters ~p with an answer of Q; (iii) δ1|δ2 is a non-deterministic choice between
programs; (iv) δ1; δ2 is sequencing; (v) if ϕ then δ1 else δ2, and while ϕ do δ are
respectively conditional and loop constructs, using a boolean ECQ ϕ as condition.

We adopt the functional approach by [21] in defining the semantics of action exe-
cution over G, i.e., we assume G provides two operations: (i) ASK, to answer queries
over the current KB; (ii) TELL, to update the KB through an atomic action. Here the ASK
operator corresponds to certain answers computation. The TELL operation is parameter-
ized by filter relations f , which are used to refine the way in which an ABox is updated,
based on a set of facts to be added and deleted (specified by the action), and we require
that the result of the TELL operation is a T -consistent ABox. In this light, filter relations
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provide an abstract mechanism to accommodate several inconsistency management
approaches in the execution semantics. For instance, we define GKABs with standard
execution semantics, briefly S-GKABs, by defining a filter relation fS that updates an
ABox based on the facts to be added and deleted, and does nothing w.r.t. inconsistency
(i.e., updates that lead to an inconsistent state are simply rejected). To obtain GKABs
with inconsistency-aware semantics, we introduce filter relations fB , fC , and fE , where
fB (resp., fC) returns a b-repair (resp., c-repair) [12] of the updated ABox, and fE
updates the ABox using the bold semantics of KB evolution [13]. Consecutively, we
call the GKABs adopting the execution semantics obtained by employing those filter
relations B-GKABs, C-GKABs, and E-GKABs, respectively, and we group them under
the umbrella of inconsistency-aware GKABs (I-GKABs).
Verification Results. With respect to verification of µLEQL

A properties, we have proved
the results summarized below, where an arrow indicates that we can reduce verification
in (G)KABs in the source to verification in (G)KABs in the target:

S-GKABs S-KABs

B-GKABs C-GKABs E-GKABs

To encode S-KABs into S-GKABs, we simulate the standard execution semantics
using a Golog program that continues forever to non-deterministically pick an executable
action with parameters, or stops if no action is executable. For the opposite direction, the
key idea is to inductively interpret a Golog program as a structure consisting of nested
processes, suitably composed through the Golog operators. We mark the starting and
ending point of each Golog subprogram, and use accessory facts in the ABox to track
states corresponding to subprograms. Each subprogram is then inductively translated
into a set of actions and condition-action rules encoding its entrance and termination
conditions. For all reductions from I-GKABs to S-GKABs, our general strategy is to show
that S-GKABs are sufficiently expressive to incorporate the repair-based approaches, so
that an action executed under a certain inconsistency semantics can be compiled into a
Golog program that applies the action with the standard semantics, and then explicitly
handles the inconsistency, if needed.

It is also interesting to observe that the semantic property of run-boundedness (which
guarantees the decidability of S-KAB verification) [2,3] is preserved by all our reductions.
It follows that verification of µLEQL

A properties over run-bounded GKABs and I-GKABs
is decidable, and reducible to standard µ-calculus finite-state model checking.

4 Conclusion

We introduced GKABs, which extend KABs with Golog-inspired high-level programs,
and allow for an elegant treatment of inconsistency. We have also shown that verification
of rich temporal properties over (inconsistency-aware) GKABs can be recast as verifica-
tion over standard KABs. Our approach is very general, and can be easily extended to
account for other inconsistency handling mechanisms, and more in general data cleaning.

Acknowledgments. This research has been partially supported by the EU IP project Optique
(Scalable End-user Access to Big Data), grant agreement n. FP7-318338, and by the UNIBZ
internal project KENDO (Knowledge-driven ENterprise Distributed cOmputing).
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Introduction The problem of revising a description logic-based ontology (called DL
ontology) is closely related to the problem of belief revision which has been widely
discussed in the literature. Among early works on belief revision, the AGM theory
(Alchourrón et al., 1985) introduced intuitive and plausible constraints (namely AGM
postulates) which should be satisfied by any rational belief revision operator. However,
it is not trivial to adapt belief revision operators to DLs because DLs have their own
features (Flouris et al., 2005) (Qi and Yang, 2008). One main difficult for such revision
is that DL ontologies often incur infinitely many models. To address this issue, we
propose a finite set of finite structures, namely a set MT(O) of completion trees, for
characterizing a possibly infinite set of models of an ontology O. Then, we define a
distance over a set of completion trees. This distance allows one to determine how far
an ontology is from another one. Another problem our approach has to address is that
there may not exist a revision ontology such that (i) it is expressible in the logic used for
expressing initial ontologiesO,O′, and (ii) it admits exactly a set of models MT(O,O′)
computed from MT(O) and MT(O′). For this reason, we borrow the notion of maximal
approximation (De Giacomo et al., 2007) which allows us to build a minimal revision
ontology admitting MT(O,O′).
Construction of the revision ontology First, we define a novel tableau algorithm,
namely TA, for a SHIQ ontology without individuals by replacing expansion v-, u-,
t, ch-rules by a new rule, namely sat-rule which chooses a subset S from a set sub(O)
including all sub-concepts of a SHIQ ontology O. Note that all concepts in the form
of conjunctions or of disjunctions are removed from sub(O) and replaced with their
conjuncts and disjuncts. This can be performed by a function Flat(C) that flattens con-
junctions and disjunctions of a concept C into subsets of sub-concepts occurring in C.
For example, Flat(A u (∃R.B t C)) = {{A,∃R.B}, {A,C}}.
sat-rule. If sat-rule has never been applied to a node x then we choose a subset S ⊆
sub(O) such that L(x) ∪ ⋃

CvD∈T
f(C v D) ⊆ S where f(C v D) ∈ Flat(¬C tD)

for each C v D ∈ T , and set L(x) := S ∪ S̄ where S̄ = {¬C | C ∈ sub(O) \ S}
In this paper, a completion tree for O is a tree T = (V,E,L, x̂) where V is a

set of nodes with the root node x̂ ∈ V . Each node x ∈ V is labeled with a function
L(x) ⊆ sub(O). E is a set of edges and each edge 〈x, y〉 ∈ E is labeled with a function
L(〈x, y〉) containing a set of SHIQ roles.

The sat-rule that is applied to each node of a completion tree introduces a lot of non-
determinisms. We need this “bad” behavior of the new tableau algorithm to control the
generation process of completion trees in such a way that allows one to infer the ontol-
ogy when knowing completion trees and its signature. We use MT(O) to denote the set
of all completion trees which are generated by running the novel tableau algorithm TA
for an ontology O. Note that TA does not necessarily terminate when a complete and
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clash-free completion tree is built. It should terminate when all non-determinisms are
considered. We can extend straightforwardly MT(O) to MT(O′, sub(O)) as follows.
The set MT(O′, sub(O)) is built by the tableau algorithm TA for O′ with an extra set
of concepts sub(O) that is taken into account when applying the sat-rule. In this case
one can import additional concepts into node labels of a completion tree forO′ while re-
specting the axioms ofO′. Importing sub(O) to MT(O′) ensures that MT(O′, sub(O))
captures semantic constraints from O which are compatible with O′.

Next, we introduce a distance between two completion trees T and T ′ which allows
one to talk about the similarity between two ontologies. This distance is defined for two
completion trees which are isomorphic, i.e., there is an isomorphism π that maintains
the successor relationship from two nodes of a completion tree to the two corresponding
nodes of the other one via π. Note that we can always obtain such an isomorphism
between two completion trees by adding empty nodes and edges to completion trees
since node and edge labels are ignored in the definition of isomorphisms.

Definition 1 (Distance). Let T = 〈V,L,E, x̂〉 and T ′ = 〈V ′, L′, E′, x̂′〉 two com-
pletion trees. Let Π(T, T ′) be the set of all isomorphisms between T and T ′. The
distance between T and T ′, denoted T M T ′, is defined as follows: T M T ′ =

min
π∈Π(T,T ′)

{max
x∈V

(|L(x) M L′(π(x))|)+ max
〈x,y〉∈E

(|L(〈x, y〉) M L′(〈π(x), π(y)〉)|)}

We can check that M is a distance over a set of isomorphic trees with the operator M
defined over two node or edge labels α, α′ as follows: L(α) M L′(α′) = (L(α) ∪
L′(α′)) \ (L(α) ∩ L′(α′)). Based on this distance, we now define a set of completion
trees a revision ontology of an ontology O by another O′ should admit.

Definition 2 (Revision operation). LetO andO′ be two consistent SHIQ ontologies.
A set of tree models MT(O,O′) of the revision of O by O′ is defined as follows:

MT(O,O′) = {T ∈ MT(O′, sub(O)) | ∃T0 ∈ MT(O, sub(O′)),
∀T ′ ∈ MT(O, sub(O′)), T ′′ ∈ MT(O′, sub(O)) : T M T0 ≤ T ′ M T ′′}

Intuitively, MT(O′, sub(O)) includes completion trees from MT(O′) each node of
which is consistently filled by an arbitrary set of concepts imported from sub(O) such
that each axiom of O′ remains satisfied. Among these completion trees, MT(O,O′)
retains only those which are closest to completion trees from MT(O, sub(O′)) thanks
to the operator T M T ′ that characterizes the difference between T and T ′. We consider
the following example. Let O = {> v A u ∃R.(¬B) u ¬B} and O′ = {¬A v
∀R.B,¬B v A u ∀R.B}. By running the algorithm TA for O, we build the set
MT(O, sub(O′)) which contains a unique tree model T1 with nodes {a, b} and labels
L(a) = {A,∃R.(¬B),¬B}, L(b) = {A,∃R.(¬B),¬B}, E = {R(a, b)}. In the same
way, MT(O′, sub(O)) has 4 tree models one of which is T ′1 with nodes {a′, b′} and
labels L(a′) = {A,∃R.(¬B), B}, L(b′) = {¬B,A,∀R.B}, {R(a′, b′)}. According
to Definition 2, we have T ′1 M T1 = 2 that is minimal. Thus, MT(O,O′) contains a
unique tree model T ′1.

We obtain a strong result which states that the all AGM postulates rephrased (Qi et
al., 2006) for DL ontologies in our setting hold. This result relies on a total pre-order
over a set of all completion trees that can be devised from the distance according to
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Definition 1. The main difference between the postulates presented by Qi et al. and
those reformulated in our setting is that the set of models Mod(O) of an ontology O
is replaced with MT(O). To illustrate this point, we consider a postulate by Qi et al.
(G2): If Mod(O) ∩ Mod(O′) 6= ∅ then Mod(O,O′) = Mod(O) ∩ Mod(O′); and
our corresponding postulate: (P2) If MT(O, sub(O′)) ∩ MT(O′, sub(O)) 6= ∅ then
MT(O,O′) = MT(O, sub(O′)) ∩MT(O′, sub(O)). A proof of (P2) can be obtained
straightforwardly from the definition of MT(O, sub(O′)) and MT(O,O′).

By soundness and completeness of the tableau algorithm, we can show that Mod(O)
is semantically equivalent to MT(O), i.e., MT(O) |= α iff Mod(O) |= α for some
axiom α. Moreover, it holds that Mod(O) ∩ Mod(O′) 6= ∅ iff MT(O, sub(O′)) ∩
MT(O′, sub(O)) 6= ∅. Therefore, as (G2) our postulate (P2) captures the fact that
if O ∪ O′ is consistent, then the revision ontology of O by O′ should admit exactly
shared models of O and O′. Such models are encapsulated in MT(O, sub(O′)) ∩
MT(O′, sub(O)) by our setting.

Finally, our goal is to build from MT(O,O′) a revision ontology Ô that admits ex-
actly MT(O,O′) as tree models. However, we can show that there may not exist such an
ontology Ô by reconsidering the example above with MT(O,O′) = {T ′1}. Assume that
there exists an ontology Ô with sub(Ô) = {A,¬A,B,¬B, ∃R.(¬B),∀R.B} which
admits the unique T ′1 as tree model. Due to the specific behavior of the sat-rule with
sub(Ô), if we apply TA to Ô for building MT(Ô), we must obtain T1 and another tree
model T ′2 with one node {x}, L(x) = {A,∀R.B,B}, which is a contradiction.

For this reason, we use the notion of maximal approximation (De Giacomo et al.,
2007) to define an ontology O∗ which satisfies the following conditions: (i) O∗ is ex-
pressible in SHIQ, (ii) it admits tree models in MT(O,O′), and (iii) it is a “smallest”
ontology admitting MT(O,O′). Such an ontologyO∗, namely maximal approximation,
can be built from the node labels of all tree models in MT(O,O′).

Definition 3 (Revision ontology). Let O and O′ be two consistent SHIQ ontologies
with revision operation MT(O,O′) = {T1, · · · , Tn} where Ti = 〈Vi, Li, Ei, x̂i〉 for
1 ≤ i ≤ n. A revision ontology O∗ = (T ,R) of O by O′ can be built from completion
trees in MT(O,O′) as follows: R includes the role hierarchy of O′ and the one of O;
T contains all axioms of O′ and the following axiom : > v

⊔

1≤i≤n
(
⊔

x∈Vi

(
l

C∈Li(x)

C)).

Theorem 1. Let O and O′ be two consistent SHIQ ontologies. The revision ontology
O∗ of O by O′ is a maximal approximation from MT(O,O′). Additionally, the size of
O∗ is bounded by a doubly exponential function in the size of O and O′.

Conclusion The main limitation of our approach is to omit individuals in ontologies.
However, our approach can be extended in order to deal with individuals by extend-
ing the distance defined for completion trees to graphs. Another limitation is that the
obtained revision ontology is very large. This exponential blow-up in size arises from
doubly exponential size of completion trees. We believe that our procedure can be im-
proved by using a method for compressing completion trees generated from tableau
algorithms. Such a method has been proposed by Le Duc et al. (Le Duc et al., 2013).
Acknowledgements This work was partially supported by FUI project “Learning Café”.
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Abstract. Combined approaches have become a successful technique for CQ an-
swering over ontologies. Existing algorithms, however, are restricted to the logics
underpinning the OWL 2 profiles. Our goal is to make combined approaches ap-
plicable to a wider range of ontologies. We focus on RSA: a class of Horn ontolo-
gies that extends the profiles while ensuring tractability of standard reasoning.
We show that CQ answering over RSA ontologies without role composition is
feasible in NP. Our reasoning procedure generalises the combined approach for
ELHO and DL-LiteR using an encoding of CQ answering into fact entailment
w.r.t. a Logic Program with function symbols and stratified negation. Our results
are significant in practice since many out-of-profile Horn ontologies are RSA.

1 Introduction

Answering conjunctive queries (CQs) over ontology-enriched datasets is a core rea-
soning task for many applications. CQ answering is computationally expensive: for
expressive description logics it is at least doubly exponential in combined complexity
[10], and it remains single exponential even when restricted to Horn ontologies [15].

Recently, there has been a growing interest in ontology languages with favourable
computational properties, such as EL [1], DL-Lite [2] or the rule language datalog,
which provide the foundation for the EL, QL and RL profiles of OWL 2, resp. [13].
Standard reasoning tasks (e.g., satisfiability checking) are tractable for all three profiles.
CQ answering is NP-complete (in combined complexity) for the QL and RL profiles,
and PSPACE-complete for OWL 2 EL [18]; PSPACE-hardness of CQ answering in EL
is due to role composition axioms and the complexity further drops to NP if these
are restricted to express role transitivity and reflexivity [16]. Furthermore, in all these
cases CQ answering is tractable in data complexity. Such complexity bounds are rather
benign, and this has spurred the development of a wide range of practical algorithms.

A technique that is receiving increasing attention is the combined approach [12, 7,
8, 11, 17]. Data is augmented in a query-independent way to build (in polynomial time)
a canonical interpretation that might not be a model, but that can be exploited for CQ an-
swering in two alternative ways: either the query is rewritten and then evaluated against
? Work supported by the Royal Society, the EPSRC grants Score!, DBOnto and MaSI3, the NSF

award 1017255 “III: Small: TROn: Tractable Reasoning with Ontologies” and “La Caixa”
Foundation.
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the interpretation [7] or the query is first evaluated over the interpretation and unsound
answers are discarded by means of a filtration process [17, 11]. With the exception of
[5] and [19] who focus on decidable classes of existential rules, algorithms based on
the combined approach are restricted to (fragments of) the OWL 2 profiles.

Our goal is to push the boundaries of the logics underpinning the OWL 2 profiles
while retaining their nice complexity for CQ answering. Furthermore, we aim to devise
algorithms that seamlessly extend the combined approach and which can be applied to
a wide range of ontologies.

Recently, a class of Horn ontologies, called role safety acyclic (RSA), has been pro-
posed [3, 4]. RSA extends the profiles while ensuring tractability of standard reasoning
tasks: it allows the use of all language constructs in the profiles, while establishing poly-
nomially checkable conditions that preclude their harmful interaction. Roles in an RSA
ontology are partitioned into safe and unsafe depending on the way they are used, where
the latter ones are involved in potentially harmful interactions which could increase
complexity; an acyclicity condition is imposed on unsafe roles to ensure tractability. A
recent evaluation revealed that over 60% of out-of-profile Horn ontologies are RSA [4].

In this paper, we investigate CQ answering over RSA ontologies and show its fea-
sibility in NP. This result has significant implications in practice as it shows that CQ
answering over a wide range of out-of-profile ontologies is no harder (in combined
complexity) than over a database. Our procedure generalises the combined approach
for ELHO [17] and DL-LiteR [11] in a seamless way by means of a declarative en-
coding of CQ answering into fact entailment w.r.t. a logic program (LP) with function
symbols and stratified negation. The least Herbrand model of this program can be com-
puted in time polynomial in the ontology size and exponential in query size. We have
implemented our encoding using the LP engine DLV [9] and tested its feasibility with
encouraging results. Proofs can be found in a TR (http://tinyurl.com/pqmxa5u).

2 Preliminaries

Logic Programs We use the standard notions of constants, terms and atoms in first-
order logic (FO). A literal is an atom a or its negation not a. A rule r is an expression
of the form ϕ(~x, ~z)→ ψ(~x) with ϕ(~x, ~z) a conjunction of literals with variables ~x ∪ ~z,
and ψ(~x) a non-empty conjunction of atoms over ~x.3 We denote with vars(r) the set
~x∪~z. With head(r) we denote the set of atoms in ψ, body+(r) is the set of atoms in ϕ,
and body−(r) is the set of atoms which occur negated in r. Rule r is safe iff vars(r) all
occur in body+(r). We consider only safe rules. Rule r is definite if body−(r) is empty
and it is datalog if it is definite and function-free. A fact is a rule with empty body and
head consisting of a single function-free atom.

A program P is a finite set of rules. Let preds(X) denote the predicates in X , with
X a (set of) atoms or a program. A stratification of P is a function str : preds(P) →
{1, . . . , k}, where k ≤ |preds(P)|, s.t. for every r ∈ P and P ∈ preds(head(r)) it
holds that: (i) for every Q ∈ preds(body+(r)): str(Q) ≤ str(P ), and (ii) for every
Q ∈ preds(body−(r)): str(Q) < str(P ). The stratification partition of P induced

3 We assume rule heads non-empty, and allow multiple atoms.
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by str is the sequence (P1, . . . ,Pk), with Pi consisting of all rules r ∈ P such that
maxa∈head(r)(str(pred(a))) = i. The programs Pi are the strata of P . A program is
stratified if it admits a stratification. All definite programs are stratified.

Stratified programs have a Least Herbrand Model (LHM), which is constructed us-
ing the immediate consequence operator TP . Let U and B be the Herbrand Universe
and Base ofP , and let S ⊆ B. Then, TP(S) consists of all facts in head(r)σ with r ∈ P
and σ a substitution from vars(r) to U satisfying body+(r)σ ⊆ S and body−(r)σ ∩
S = ∅. The powers of TP are as follows: T 0

P(S) = S, T i+1
P (S) = TP(TnP (S)), and

TωP (S) =
⋃∞
i=0 T

n
P (S). Let str be a stratification ofP , and let (P1, . . . ,Pk) be its strat-

ification partition. Also, letU1 = TωP1
(∅) and for each 1 ≤ i ≤ k letUi+1 = TωPi+1

(Ui).
Then, the LHM of P is Uk and is denoted M [P]. A program P entails a positive exis-
tential sentence α (P |= α) if M [P] seen as a FO structure satisfies α.

We use LPs to encode FO theories. For this, we introduce rules axiomatising the
built-in semantics of the equality (≈) and truth (>) predicates. For a finite signature Σ,
we denote with F>Σ the smallest set with a rule p(x1, x2, . . . , xn)→ >(x1) ∧>(x2) ∧
. . . ∧ >(xn) for each n-ary predicate p in Σ, and with F≈Σ the usual axiomatisation of
≈ as a congruence over Σ. For an LP P , we denote with P≈,> the extension of P to
P ∪ F>Σ ∪ F≈Σ with Σ the signature of P .

Ontologies and Queries We define Horn-ALCHOIQ and specify its semantics via
translation to definite programs. W.l.o.g. we consider a normal form close to that in [14].
Let NC, NR and NI be countable pairwise disjoint sets of concept names, role names
and individuals. We assume {>,⊥} ⊆ NC. A role is an element ofNR∪{R−|R ∈ NR},
where the roles in the latter set are called inverse roles. The function Inv(·) is defined
as follows, where R ∈ NR: Inv(R) = R− and Inv(R−) = R. An RBoxR is a finite set
of axioms (R2) in Table 1, where R and S are roles and v∗R is the minimal reflexive-
transitive relation over roles s.t. Inv(R) v∗R Inv(S) and R v∗R S hold if R v S ∈ R.
A TBox T is a finite set of axioms (T1)-(T5) where A,B ∈ NC and R is a role.4 An
ABox A is a finite set of axioms of the form (A1) and (A2), with A ∈ NC and R ∈ NR.
An ontology is a finite set of axioms O = R∪ T ∪ A.

OWL 2 specifies the EL, QL, and RL profiles, which are all fragments of Horn-
ALCHOIQ with the exception of property chain axioms and transitivity, which we do
not consider here. An ontology is: (i) EL if it does not contain inverse roles or axioms
(T4); (ii) RL if it does not contain axioms (T5); and (iii) QL if it does not contain axioms
(T2) or (T4), each axiom (T1) satisfies n = 1, and each axiom (T3) satisfies A = >.

A conjunctive query (CQ) Q is a formula ∃~y.ψ(~x, ~y) with ψ(~x, ~y) a conjunction
of function-free atoms over ~x ∪ ~y, where ~x are the answer variables. We denote with
terms(Q) the set of terms in Q. Queries with no answer variables are Boolean (BCQs)
and for convenience are written as a set of atoms.

We define the semantics by a mapping π into definite rules as in Table 1: π(O) =

{π(α) | α ∈ O} 5. An ontology O is satisfiable if π(O)
≈,> 6|= ∃y.⊥(y). A tuple of

constants ~c is an answer to Q if O is unsatisfiable, or π(O)
≈,> |= ∃~y.ψ(~c, ~y). The set

of answers is written cert(Q,O). This semantics is equivalent to the usual one.

4 Axioms A v ≥nR.B can be simulated by (T1) and (T5).
5 By abuse of notation we say that R− ∈ O whenever R− occurs in O.
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Axioms α Definite LP rules π(α)

(R1) R− R(x, y)→ R−(y, x);R−(y, x)→ R(x, y)

(R2) R v S R(x, y)→ S(x, y)

(T1)
dn

i=1Ai v B
∧n

i=1Ai(x)→ B(x)

(T2) A v {a} A(x)→ x ≈ a
(T3) ∃R.A v B R(x, y) ∧A(y)→ B(x)

(T4) A v≤ 1R.B A(x) ∧R(x, y) ∧B(y) ∧R(x, z) ∧B(z)→ y ≈ z
(T5) A v ∃R.B A(x)→ R(x, fA

R,B(x)) ∧B(fA
R,B(x))

(A1) A(a) → A(a)

(A2) R(a, b) → R(a, b)

Table 1: Translation from Horn ontologies into rules.

3 Reasoning over RSA Ontologies

CQ answering is EXPTIME-complete for Horn-ALCHOIQ ontologies [14], and the
EXPTIME lower bound holds already for satisfiability checking. Intractability is due to
and-branching: owing to the interaction between axioms in Table 1 of type (T5) with
either axioms (T3) and (R1), or axioms (T4) an ontology may only be satisfied by large
(possibly infinite) models which cannot be succinctly represented.

RSA is a class of ontologies where all axioms in Table 1 are allowed, but their
interaction is restricted s.t. model size can be polynomially bounded [4]. We recapitulate
RSA ontologies and their properties; letO be an arbitrary Horn-ALCHOIQ ontology.

Roles in O are divided into safe and unsafe. The intuition is that unsafe roles may
participate in harmful interactions.

Definition 1. A role R is unsafe if it occurs in an axiom of the form A v ∃R.B, and
there is a role S s. t. either: 1. R v∗R Inv(S) and S occurs in an axiom of the form
∃S.A v B with A 6= >, or 2. R v∗R S or R v∗R Inv(S) and S occurs in an axiom of
the form A v≤ 1S.B. A role R in O is safe, if it is not unsafe.

It follows from Definition 1 that RL, QL, and EL ontologies contain only safe roles.

Example 1. Let OEx be the (out-of-profile) ontology with the following axioms:

A(a) (1)
A v D (2)

A v ∃S−.C (3)
∃S.A v D (4)

D v ∃R.B (5)
B v ∃S.D (6)

R v T− (7)
S v T (8)

Roles R, S, T , and T− are safe; however, S− is unsafe as it occurs in an axiom
(T5) while S occurs in an axiom (T3). We will OEx use as a running example.

The distinction between safe and unsafe roles makes it possible to strengthen the trans-
lation π in Table 1 while preserving satisfiability and entailment of unary facts. The
translation of axioms (T5) with R safe can be realised by replacing the functional term
fAR,B(x) with a Skolem constant vAR,B unique to A, R and B. The modified transfor-
mation generally leads to a smaller LHM: if all roles are safe then O is mapped into a
Datalog program whose LHM is polynomial in the size of O.
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Definition 2. Let vAR,B be a fresh constant for each concept A,B, and each safe roleR
in O. Then πsafe maps each α ∈ O to (i) A(x)→ R(x, vAR,B) ∧B(vAR,B) if α is of type
(T5) with R safe;(ii) π(α), otherwise. Let P = {πsafe(α) | α ∈ O} and PO = P≈,>.

Example 2. Mapping πsafe differs from π on ax. (5) and (6). For instance, (5) yields
D(x)→ R(x, vDR,B) ∧B(vDR,B).

Theorem 1. [4, Theorem 2] Ontology O is satisfiable iff PO 6|= ∃y.⊥(y). If O is satis-
fiable, then O |= A(c) iff A(c) ∈ M [PO] for each unary predicate A and individual c
in O.

If O has unsafe roles the model M [PO] might be infinite. We next define a Datalog
program PRSA by introducing Skolem constants for all axioms (T5) in O. PRSA intro-
duces also a predicate PE which ‘tracks’ all binary facts generated by the application
of Skolemised rules over unsafe roles. A unary predicate U is initialised with the con-
stants associated to unsafe roles and a rule U(x) ∧ PE(x, y) ∧ U(y) → E(x, y) stores
the PE-facts originating from unsafe roles using a predicate E. Then,M [PO] is of poly-
nomial size when the graph induced by the extension of E is an oriented forest (i.e., a
DAG whose underlying undirected graph is a forest). When this condition is fulfilled
together with some additional conditions which preclude harmful interactions between
equality-generating axioms and inverse roles, we say that O is RSA.

Definition 3. Let PE and E be fresh binary predicates, U be a fresh unary predicate,
and uAR,B be a fresh constant for each concept A,B and each role R in O. Function
πRSA maps each (i) α ∈ O to A(x)→ R(x, uAR,B)∧B(uAR,B)∧PE(x, uAR,B), if α is of
type (T5), and to (ii) π(α), otherwise. The program PRSA consists of πRSA(α), for each
α ∈ O, a rule U(x) ∧ PE(x, y) ∧ U(y) → E(x, y), and a fact U(uAR,B) for each uAR,B
with R unsafe.

Let MRSA be the LHM of PRSA
≈,>. Then, GO is the digraph with an edge (c, d)

for each E(c, d) in MRSA. Ontology O is equality-safe if: 1. for each pair of atoms
w ≈ t (with w and t distinct) and R(t, uAR,B) in MRSA and each role S s.t. R v
Inv(S), it holds that S does not occur in an axiom (T4); and 2. for each pair of atoms
R(a, uAR,B), S(uAR,B , a) in MRSA, with a ∈ NI, there does not exist a role T such that
both R v∗R T and S v∗R Inv(T ) hold.

We say that O is RSA if it is equality-safe and GO is an oriented forest.

The fact that GO is a DAG ensures that the LHM M [PO] is finite, whereas the lack
of ‘diamond-shaped’ subgraphs in GO guarantees polynomiality of M [PO]. The safety
condition on ≈ will ensure that RSA ontologies enjoy a special form of forest-model
property that we exploit for CQ answering. Every ontology in QL (which is equality-
free), RL (where PRSA has no Skolem constants) and EL (no inverse roles) is RSA.

Theorem 2. [4, Theorem 3] If O is RSA, then |M [PO]| is polynomial in |O|.

Tractability of standard reasoning for RSA ontologies follows from Theorems 1, 2.
It can be checked that OEx is RSA.
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Fig. 1: Original (a) and annotated (b) model for OEx

4 Answering Queries over RSA Ontologies

We next present our combined approach with filtration to CQ answering over RSA
ontologies, which generalises existing techniques for DL-LiteR and ELHO.

In Section 4.1 we take the LHM for RSA ontologies given in Section 3 as a starting
point and extend it to a more convenient canonical model over an extended signature. In
order to deal with the presence of inverse roles in RSA ontologies, the extended model
captures the “directionality” of binary atoms; this will allow us to subsequently extend
the filtration approach from [17] in a seamless way. The canonical model is captured
declaratively as the LHM of an LP program over the extended signature.

As usual in combined approaches, this model is not universal and the evaluation of
CQs may lead to spurious, i.e. unsound answers. In Section 4.2, we specify our filtration
approach for RSA ontologies as the LHM of a stratified program. In the following, we
fix an arbitrary RSA ontology O = R ∪ T ∪ A and an input CQ Q, which we use to
parameterise all our technical results.

4.1 Constructing the Canonical Model

The LHM M [PO] in Sec. 3 is a model of O that preserves entailment of unary facts.
It generalises the canonical model in [17], which is specified as the LHM of a datalog
program obtained by Skolemising all axioms (T5) into constants and hence coincides
withM [PO] whenO is EL. However, RSA ontologies allow for unsafe roles and hence
M [PO] may contain also functional terms.

A main source for spurious matches when evaluating Q over the canonical model
of an EL ontology is the presence of ‘forks’ — confluent chains of binary atoms —
in the query which map to ‘forks’ in the model over Skolem constants. This is also
problematical in our setting since RSA ontologies have the forest-model property.

Example 3. Fig. 1 a) depicts the LHM M [POEx ] of OEx (the function fS,C is abbre-
viated with f ). We see models as digraphs where the direction of edges reflects the
satisfaction of axioms (T5). Consider Q1 = {A(y1), R(y1, y2), R(y3, y2)}. Substitu-
tion (y1 7→ a, y2 7→ vDR,B , y3 7→ vBS,D) is a spurious match of Q1 as it relies on edges
(a, vDR,B) and (vBS,D, v

D
R,B) in M [POEx ], which form a fork over vDR,B .

In EL, only queries which contain forks can be mapped to forks in the model. This
is no longer the case for RSA ontologies, where forks in the model can lead to spurious
answers even for linearly-shaped queries due to the presence of inverse roles.
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R(s, y) ∧ S(t, y) R(s, y) ∧ S(y, t) R(y, s) ∧ S(y, t)
a) forward/forward b) forward/backward c) backward/backward

Fig. 2: Forks in the presence of inverse roles

Example 4. Let Q2 = {A(y1), R(y1, y2), T (y2, y3)}. Then (y1 7→ a, y2 7→ vDR,B ,

y3 7→ f(a)) is a spurious match for Q2 as it relies on the fork (a, vDR,B), (f(a), vDR,B).
Axiom R v T− causes a linear match over R and T to become a fork over R and T−.

To identify such situations, we compute a canonical model over an extended signa-
ture that contains fresh roles Rf and Rb for each role R. Annotations f (forward) and
b (backwards) are intended to reflect the directionality of binary atoms in the model,
where binary atoms created to satisfy an axiom (T5) are annotated with f . To realise
this intuition declaratively, we modify the rules in PO for axioms (T5) as follows. If R
is safe, then we introduce the rule A(x)→ Rf (x, vAR,B) ∧ B(vAR,B); if it is unsafe, we
introduce rule A(x)→ Rf (x, fAR,B(x)) ∧B(fAR,B) instead.

Superroles inherit the direction of the subrole, while roles and their inverses have
opposite directions. To reflect this we include the following rules where ∗ ∈ {f, b}:
(i) R∗(x, y) → S∗(x, y) for each axiom R v S in O; (ii) Rf (x, y) → Inv(R)b(y, x)
and Rb(x, y) → Inv(R)f (y, x) for each role R; and (iii) R∗(x, y) → R(x, y) for
each role R. Rules (ii) are included only if O has inverse roles, and rules (iii) ‘copy’
annotated atoms to atoms over the original predicate. Fig. 1 b) depicts the annotated
model for POEx : solid (resp. dotted) lines represent ‘forward’ (resp. ‘backward’) atoms.

Fig. 2 depicts the ways in which query matches may spuriously rely on a fork in
an annotated model. Nodes represent the images in the model of the query terms; solid
lines indicate the annotated atoms responsible for the match; and dashed lines depict
the underpinning fork. The images of s and t must not be equal; additionally, y cannot
be mapped to (a term identified to) a constant in O. For instance, the match in Ex. 4 is
spurious as it corresponds to pattern (b) in Fig. 2. Unfortunately, the annotated model
can present ambiguity: it is possible for both atoms Rf (s, t) and Rb(s, t) to hold.

Example 5. Consider Q2 from Ex. 4. (y1 7→ a, y2 7→ vDR,B , y3 7→ vBS,D) is also a
match, where both T f (vDR,B , v

B
S,D) and T b(vDR,B , v

B
S,D) hold in the annotated model.

Such ambiguity is problematic for the subsequent filtration step. To disambiguate,
we use a technique similar to the one in [11] for DL-LiteR, where the idea is to unfold
certain cycles of length one and two in the canonical model. We unfold self-loops to
cycles of length three while cycles of length two are unfolded to cycles of length four.

Example 6. Fig. 3 a) shows the model expansion for OEx. Ambiguities are resolved.
Fig. 3 b) shows the unfolding of a generic self-loop over a safe role R for which T
exists s.t. both R v∗R T and R v∗R Inv(T ) hold.

We now specify a program that yields the required model.
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Fig. 3: Model expansion in the presence of loops/cycles

Definition 4. Let confl(R) be the set of roles S s.t. R v∗R T and S v∗R Inv(T ) for
some T . Let ≺ be a strict total order on triples (A,R,B), with R safe and A and B
concept names B in O. For each (A,R,B), let:

– vA,0R,B , vA,1R,B , and vA,2R,B be fresh constants;
– self(A,R,B) be the smallest set containing vA,0R,B and vA,1R,B if R ∈ confl(R);
– cycle(A,R,B) be the smallest set containing, for each S ∈ confl(R), vD,0S,C if

(A,R,B) ≺ (D,S,C); vD,1S,C if (D,S,C) ≺ (A,R,B); fDS,C(vA,0R,B) and every
fFT,E(vA,0R,B) s. t. uDS,C ≈ uFT,E is in MRSA, if S is unsafe.

– unfold(A,R,B) = self(A,R,B)∪ cycle(A,R,B).

Let Rf and Rb be fresh binary predicates for each role R in O, NI be a fresh unary
predicate, and notIn be a built-in predicate which holds when the first argument is an
element of second argument. Let P be the smallest program with a rule → NI(a) for
each constant a and all rules in Fig. 4 and EO = P≈,>.

symbols/axioms in O Logic Programming Rules
ax. α not of type (T5) π(α)

R v S, ∗ ∈ {f, b} R∗(x, y)→ S∗(x, y)

R role, ∗ ∈ {f, b}
R∗(x, y)→ R(x, y)

Rf (x, y)→ Inv(R)b(y, x)

Rb(x, y)→ Inv(R)f (y, x)

ax. (T5), R unsafe A(x)→ Rf (x, fA
R,B(x)) ∧B(fA

R,B(x))

ax. (T5), R safe

A(x) ∧ notIn(x, unfold(A,R,B))→ Rf (x, vA,0
R,B) ∧B(vA,0

R,B)

if R ∈ confl(R), for every i = 0, 1:
A(vA,i

R,B)→ Rf (vA,i
R,B , v

A,i+1
R,B ) ∧B(vA,i+1

R,B )

for every x ∈ cycle(A,R,B):
A(x)→ Rf (x, vA,1

R,B) ∧B(vA,1
R,B)

Fig. 4: Rules in the program EO

The set confl(R) contains roles that may cause ambiguity in conjunction with R.
The ordering ≺ determines how cycles are unfolded using auxiliary constants. Each
axiom A v ∃R.B with R safe is Skolemised by default using vA,0R,B , except when the
axiom applies to a term in unfold(A,R,B) where we use vA,1R,B or vA,2R,B instead.

Theorem 3. The following holds: (i) M [EO] is polynomial in |O| (ii) O is satisfiable
iff EO 6|= ∃y.⊥(y) (iii) if O is satisfiable, O |= A(c) iff A(c) ∈ M [EO] and (iv) there
are no terms s, t and role R s.t. EO |= Rf (s, t) ∧Rb(s, t).
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(1) ψ(~x, ~y)→ QM(~x, ~y)

(2) → named(a) for each constant a in O
(3a) QM(~x, ~y),not NI(yi)→ id(~x, ~y, i, i), for each 1 ≤ i ≤ |~y|
(3b) id(~x, ~y, u, v)→ id(~x, ~y, v, u)
(3c) id(~x, ~y, u, v) ∧ id(~x, ~y, v, w)→ id(~x, ~y, u, w)

for all R(s, yi), S(t, yj) in Q with yi, yj ∈ ~y
(4a) Rf (s, yi) ∧ Sf (t, yj) ∧ id(~x, ~y, i, j) ∧ not s ≈ t→ fk(~x, ~y)
for all R(s, yi), S(yj , t) in Q with yi, yj ∈ ~y:
(4b) Rf (s, yi) ∧ Sb(yj , t) ∧ id(~x, ~y, i, j) ∧ not s ≈ t→ fk(~x, ~y)
for all R(yi, s), S(yj , t) in Q with yi, yj ∈ ~y:
(4c) Rb(yi, s) ∧ Sb(yj , t) ∧ id(~x, ~y, i, j) ∧ not s ≈ t→ fk(~x, ~y)

for all R(yi, yj), S(yk, yl) in Q with yi, yj , yk, yl ∈ ~y:
(5a) Rf (yi, yj) ∧ Sf (yk, yl) ∧ id(~x, ~y, j, l) ∧ yi ≈ yk ∧ not NI(yi)→ id(~x, ~y, i, k)

(5b) Rf (yi, yj) ∧ Sb(yk, yl) ∧ id(~x, ~y, j, k) ∧ yi ≈ yl ∧ not NI(yi)→ id(~x, ~y, i, l)

(5c) Rb(yi, yj) ∧ Sb(yl, yk) ∧ id(~x, ~y, i, l) ∧ yj ≈ yk ∧ not NI(yj)→ id(~x, ~y, j, k)

for each R(yi, yj) in Q with yi, yj ∈ ~y, and ∗ ∈ {f, b}:
(6) R∗(yi, yj) ∧ id(~x, ~y, i, v) ∧ id(~x, ~y, j, w)→ AQ∗(~x, ~y, v, w)

(7a) AQ∗(~x, ~y, u, v)→ TQ∗(~x, ~y, u, v), for each ∗ ∈ {f, b}
(7b) AQ∗(~x, ~y, u, v) ∧ TQ∗(~x, ~y, v, w)→ TQ∗(~x, ~y, u, w), for each ∗ ∈ {f, b}
(8a) QM(~x, ~y) ∧ not named(x)→ sp(~x, ~y), for each x ∈ ~x
(8b) fk(~x, ~y)→ sp(~x, ~y)
(8c) TQ∗(~x, ~y, v, v)→ sp(~x, ~y), for each ∗ ∈ {f, b}
(9) QM(~x, ~y) ∧ not sp(~x, ~y)→ Ans(~x)

Table 2: Rules in PQ. Variables u, v, w from U are distinct.

4.2 Filtering Unsound Answers

We now define a program PQ that can be used to eliminate all spurious matches of Q
over the annotated model ofO. The rules of the program are summarised in Table 2. We
will refer to all terms in the model that are not equal to a constant in O as anonymous.

Matches where an answer variable is not mapped to a constant in O are spurious.
We introduce a predicate named and populate it with such constants (rules (2)); then,
we flag answers as spurious using a rule with negation (rules (8a)).

To detect forks we introduce a predicate fk , whose definition in datalog encodes the
patterns in Fig. 2 (rules (4)). If terms s and t in Fig. 2 are existential variables mapping
to the same anonymous term, further forks might be recursively induced.

Example 7. Let Q3 = {A(y1), R(y1, y2), T (y2, y3), C(y4), R(y4, y5), S(y5, y3)} be
a BCQ over OEx, with (y1 7→ a, y2 7→ vD,0R,B , y3 7→ vB,0S,D, y4 7→ f(a), y5 7→ vD,0R,B)
being its only match over the model in Fig. 3a). The identity of y2, y5 induces a fork on
the match of R(y1, y2) and R(y4, y5).

We track identities in the model relative to a match using a fresh predicate id. It is ini-
tialised as the minimal congruence relation over the positions of the existential variables
in the query which are mapped to anonymous terms (rules (3)). Identity is recursively
propagated (rules (5)). Matches involving forks are marked as spurious by rule (8b).

Spurious matches can also be caused by cycles in the model and query satisfy-
ing certain requirements. First, the positions of existential variables of the query must
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be cyclic when considering also the id relation. Second, the match must involve only
anonymous terms. Finally, all binary atoms must have the same directionality.

Example 8. Consider the following BCQs overOEx:Q4 = {S(y1, y2), R(y2, y3), S(y3,
y4), R(y4, y1)}, Q5 = {T (y1, y2), S(y2, y3), R(y3, y1)}, and Q6 = {S(y1, y2), R(y2,

y3), S(y3, y4), R(y4, y5)}. Then, (y1 7→ vD,0R,B , y2 7→ vB,0S,D, y3 7→ vD,1R,B , y4 7→ vB,1S,D) is
a match of Q4 inducing a cycle: all binary atoms are mapped ‘forward’ and the cycle
involves only anonymous terms. In contrast, match (y1 7→ vD,0R,B , y2 7→ f(a), y3 7→ a)
overQ5 does not satisfy the requirements as it involves constant a. Note thatQ4 andQ5

are cyclic. Q6 is not cyclic; thus, although the match (y1 7→ vD,0R,B , y2 7→ vB,0S,D, y3 7→
vD,1R,B , y4 7→ vB,1S,D, y5 7→ vD,0R,B) involves a cycle in the model, it is not spurious.

Such cycles are recognised by rules (6) and (7). Rule (6) defines potential individual
arcs in the cycle with their directionality using fresh predicates AQ∗ with ∗ ∈ {f, b}.
Rules (7) detect the cycles recursively using predicates TQ∗. Matches involving cycles
are marked as spurious by rules (8c). All correct answers are collected by rule (9) using
predicate Ans. We next define program PQ and its extension PO,Q with EO in Def. 4,
which can be exploited to answer Q w.r.t. O.

Definition 5. Let Q = ∃~y.ψ(~x, ~y) be a CQ, let QM, sp, and fk be fresh predicates
of arity |~x| + |~y|, let id, AQ∗, and TQ∗, with ∗ ∈ {f, b}, be fresh predicates of arity
|~x| + |~y| + 2, let Ans be a fresh predicate of arity |~x|, let named be a fresh unary
predicate, and let U be a set of fresh variables s.t. |U | ≥ |~y|. Then, PQ is the smallest
program with all rules in Table 2, and PO,Q is defined as EO ∪ PQ.

Note that, to distinguish between constants in O (recorded by named in PQ) and their
closure under equality (recorded by NI in EO), we do not axiomatise equality w.r.t. PQ.

Theorem 4. (i) PO,Q is stratified; (ii) M [PO,Q] is polynomial in |O| and exponential
in |Q|; and (iii) if O is satisfiable, ~x ∈ cert(Q,O) iff PO,Q |= Ans(~x).

Theorem 4 suggests a worst-case exponential algorithm that, givenO andQ, materi-
alises PO,Q and returns the extension of predicate Ans. This procedure can be modified
to obtain a ‘guess and check’ algorithm applicable to BCQs. This algorithm first mate-
rialisesEO in polynomial time; then, it guesses a match σ toQ over the materialisation;
finally, it materialises (PO,Q)σ, where variables ~x and ~y are grounded by σ. The latter
step can also be shown to be tractable.

Theorem 5. Checking whether O |= Q is NP-complete in combined complexity.

5 Proof of Concept

We implemented our approach using the DLVsystem,6 which supports function sym-
bols and stratified negation. For testing, we used the LUBM ontology [6] (which con-
tains only safe roles) and the Horn fragments of the Reactome and Uniprot (which are
RSA, but contain also unsafe roles).7 LUBM comes with a data generator; Reactome

6 http://www.dlvsystem.com/dlv/
7 http://www.ebi.ac.uk/rdf/platform
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Ontology Facts (M1) Model M2/M3 q1(M4/M5/M6) q2(M4/M5/M6) q3(M4/M5/M6) q4(M4/M5/M6)
Reactome 54·103 8s / 242·103 6s / 10 / 0% 5s / 11 / 0% 6s / 50 / 48%

107·103 16s / 485·103 14s / 11 / 0% 14s / 17 / 0% 12s / 122 / 38%
159·103 21s / 728·103 42s / 17 / 0% 44s / 23 / 0% 36s/ 216 / 35%
212·103 19s / 970·103 19s / 21 / 0% 15s/ 24 / 0% 14s/ 299 / 34%

LUBM 37·103 4s / 213·103 11s / 2350 / 86% 4s / 650/ 96% 4s / 1580/ 0% 5s / 1743/ 0%
75·103 6s / 395·103 45s / 9340/ 85% 8s / 1640/ 97% 9s / 7925/ 0% 8s / 5969/ 0%
113·103 8s / 550·103 108s / 24901/ 83% 13s / 2352/ 98% 13s / 18661/ 0% 13s / 10870/ 0%
150·103 11s / 682·103 188s / 52196/ 83% 17s / 2550/ 98% 18s / 32370/ 0% 24s / 15076/ 0%
188·103 12s / 795·103 305s / 91366/ 82% 31s / 2550/ 98% 40s / 49555/ 0% 38s / 18517/ 0%
226·103 14s / 894·103 390s / 148340/ 80% 39s / 2550/ 98% 46s / 72438/ 0% 40s / 20404/ 0%

Uniprot 10·103 1s / 51·103 1s / 2 / 0% 1s / 0 / 0% 1s / 18 / 28%
49·103 4s / 246·103 3s / 7 / 0% 3s / 0 / 0% 3s / 89 / 26%
98·103 9s / 487·103 7s / 9 / 0% 6s / 1 / 0% 6s / 193 / 23%
146·103 11s / 726·103 13s / 14 / 0% 12s / 1 / 0% 10s / 273 / 22%

Table 3: Evaluation Results

and Uniprot come with large datasets, which we sampled. Test queries are given in the
appendix. We measured (M1) number of facts of the given data; (M2) materialisation
times for the canonical model; (M3) model size; (M4) materialisation times for PQ;
(M5) number of candidate query answers; and (M6) percentage of spurious answers.
Experiments were performed on a MacBook Pro laptop with 8GB RAM and an Intel
Core 2.4 GHz processor.

Table 3 summarises our results. Computation times for the models scale linearly in
data size. Model size is at most 6 times larger than the original data, which is a reason-
able growth factor in practice. As usual in combined approaches (e.g. see [17]), query
processing times depend on the number of candidate answers; thus, the applicability
of the approach largely depends on the ratio between spurious and correct answers.
Queries q1-q2 in Reactome and Uniprot are realistic queries given as examples in the
EBI website. Neither of these queries lead to spurious answers, and processing times
scale linearly with data size. No query in the LUBM benchmark leads to spurious an-
swers (e.g., LUBM queries q3 and q4 in Table 3). We manually crafted one additional
query for Reactome and Uniprot (q3 in both cases) and two for LUBM (queries q1 and
q2), which lead to a high percentage of spurious answers. Although these queries are
challenging, we can observe that the proportion of spurious answers remains constant
with increasing data size. Finally, note that query q1 in LUBM retrieves the highest
number of candidate answers and is thus the most challenging query. Our prototype and
all test data, ontologies and queries are available at http://tinyurl.com/qcolx3w.

6 Conclusions and Future Work

We presented an extension to the combined approaches to CQ answering that can be
applied to a wide range of out-of-profile Horn ontologies. Our theoretical results unify
and extend existing techniques for ELHO and DL-LiteR in a seamless and elegant way.
Our preliminary experiments indicate the feasibility of our approach in practice.

We anticipate several directions for future work. First, we have not considered logics
with transitive roles. Recently, it was shown that CQ answering over EL ontologies with
transitive roles is feasible in NP [16]. We believe that our techniques can be extended
in a similar way. Finally, we would like to optimise our encoding into LP and conduct
a more extensive evaluation.
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The description logic (DL) EL, in which concepts can be built using concept
names as well as the concept constructors conjunction (u), existential restric-
tion (∃r.C), and the top concept (>), has drawn considerable attention in the
last decade since, on the one hand, important inference problems such as the
subsumption problem are polynomial in EL, even with respect to expressive
terminological axioms [6]. On the other hand, though quite inexpressive, EL
can be used to de�ne biomedical ontologies, such as the large medical ontology
SNOMEDCT.3 In EL we can, for example, de�ne the concept of a happy man

as a male human that is healthy and handsome, has a rich and intelligent wife,
a son and a daughter, and a friend:

Human uMale u Healthy u Handsome u
∃spouse.(Rich u Intelligent u Female) u (1)

∃child.Male u ∃child.Female u ∃friend.>

For an individual to belong to this concept, all the stated properties need to
be satis�ed. However, maybe we would still want to call a man happy if most,
though not all, of the properties hold. It might be su�cient to have just a
daughter without a son, or a wife that is only intelligent but not rich, or maybe
an intelligent and rich spouse of a di�erent gender. But still, not too many of
the properties should be violated.

In this paper, we introduce a DL extending EL that allows us to de�ne con-
cepts in such an approximate way. The main idea is to use a graded membership

function, which instead of a Boolean membership value 0 or 1 yields a member-
ship degree from the interval [0, 1]. We can then require a happy man to belong
to the EL concept (1) with degree at least .8. More generally, if C is an EL
concept, then the threshold concept C≥t for t ∈ [0, 1] collects all the individuals
that belong to C with degree at least t. In addition to such upper threshold
concepts, we will also consider lower threshold concepts C≤t and allow the use
of strict inequalities in both. For example, an unhappy man could be required
to belong to the EL concept (1) with a degree less than .2.

? Supported by DFG Graduiertenkolleg 1763 (QuantLA).
3 see http://www.ihtsdo.org/snomed-ct/
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The use of membership degree functions with values in the interval [0, 1]
may remind the reader of fuzzy logics. However, there is no strong relationship
between this work and the work on fuzzy DLs [5] for two reasons. First, in fuzzy
DLs the semantics is extended to fuzzy interpretations where concept and role
names are interpreted as fuzzy sets and relations, respectively. The membership
degree of an individual to belong to a complex concept is then computed using
fuzzy interpretations of the concept constructors. In our setting, we consider
crisp interpretations of concept and role names, and directly de�ne membership
degrees for complex concepts based on them. Second, we use membership degrees
to obtain new concept constructors, but the threshold concepts obtained by
applying these constructors are again crisp rather than fuzzy.

We name our new logic τEL(m), where the membership degree function m
is a parameter in de�ning the logic. In [2], we propose one speci�c such function
deg , but we do not claim this is the only reasonable way to de�ne such a function.
Nevertheless, membership functions are not arbitrary. There are two properties
we require such functions to satisfy:

De�nition 1. A graded membership function m is a family of functions that

contains for every interpretation I a function mI : ∆I → [0, 1] satisfying the

following conditions:

M1 : d ∈ CI ⇔ mI(d,C) = 1

M2 : C ≡ D ⇔ for all d ∈ ∆I : mI(d,C) = mI(d,D).

Property M2 expresses the intuition that the membership value should not de-
pend on the syntactic form of a concept, but only on its semantics.

The set of τEL(m) concept descriptions is de�ned inductively, starting from
�nite sets of concept names NC and role names NR, as follows:

Ĉ, D̂ ::= > | A | Ĉ u D̂ | ∃r.Ĉ | E∼q
where A ∈ NC, r ∈ NR, ∼ ∈ {<,≤, >,≥}, q ∈ [0, 1] ∩Q, E is an EL concept de-

scription, and Ĉ, D̂ are τEL(m) concept descriptions. For a given interpretation
I = (∆I , .I), the semantics of the new threshold concepts is de�ned as follows:

[E∼q]I := {d ∈ ∆I | mI(d,E) ∼ q}.
The extension of .I to more complex concepts is de�ned as for EL by additionally
considering the semantics of the newly introduced threshold concepts.

To make things more concrete, we introduce in [2] a speci�c membership
function, denoted deg , which satis�es properties M1 and M2. Given an interpre-
tation I, an element d ∈ ∆I , and an EL concept description C, this function
measures to which degree d satis�es the conditions for membership expressed by
C. To come up with such a function, we use the homomorphism characterization
of crisp membership in EL. In EL, concept descriptions and interpretations can
be translated into EL description trees and EL description graphs, respectively
(see [4,1]). Then, homomorphisms between EL description trees can be used
to characterized subsumption in EL [4]. The proof of this result can be easily
adapted to obtain the following characterization of element-hood in EL.

118



Theorem 1. Let I be an interpretation, d ∈ ∆I and C an EL concept descrip-

tion. Then, d ∈ CI i� there exists a homomorphism ϕ from TC to GI such that

ϕ(v0) = d.

Using Theorem 1 as a starting point, we consider all partial mappings h from
TC to GI that map the root of TC to d and respect the edge structure of TC .
For each of these mappings we then calculate to which degree it satis�es the
homomorphism conditions, and take the degree of the best such mapping as the
membership degree degI(d,C). Intuitively, to compute the degree associated to
a partial mapping h, we de�ne the weighted homomorphism induced by h as a
function hw : dom(h) → [0, 1]. Basically, in the de�nition of this function, the
individual d is punished (in the sense that its membership degree is lowered)
for each missing property (i.e., required element-hood in a concept name or an
existential restriction) in a uniform way (see [2] for the precise de�nition).

In [2], we describe an algorithm that, given a �nite interpretation I, computes
degI(d,C) in polynomial time. This polynomial time algorithm is inspired by
the polynomial time algorithm for checking the existence of a homomorphism
between EL description trees [3,4], and similar to the algorithm for computing
the similarity degree between EL concept descriptions introduced in [9].

The main technical contribution of this work is, however, the investigation
of the complexity of terminological (subsumption, satis�ability) and assertional
(consistency, instance) reasoning in τEL(deg). To provide lower bounds, we show
NP-hardness of the satis�ability problem by a simple reduction from the well-
known NP-complete problem ALL-POS ONE-IN-THREE 3SAT [8]. The corre-
sponding NP upper bound for satis�ability is an immediate consequence of the
following polynomial bounded model property.

Lemma 1. Let Ĉ be a τEL(deg) concept description of size m. If Ĉ is satis�-

able, then there exists an interpretation J such that ĈJ 6= ∅ and |∆J | ≤ m.

A coNP-upper bound for subsumption cannot directly be obtained from the
fact that satis�ability is in NP. In fact, though we have Ĉ v D̂ i� Ĉ u ¬D̂ is
unsatis�able, this equivalence cannot be used directly since ¬D̂ need not be a
τEL(deg) concept description. Nevertheless, we can extend the ideas used in the
proof of Lemma 1 to obtain a polynomial bounded model property for satis�a-
bility of concepts of the form Ĉ u ¬D̂. The same is true for ABox consistency.
Regarding instance checking, the bound on the size of counter models is expo-
nential w.r.t. combined complexity, but fortunately still polynomial w.r.t. data
complexity (in the sense of [7]).

Overall, we thus obtain the following complexity results for reasoning in
τEL(deg).

Theorem 2. In the DL τEL(deg), satis�ability is NP-complete, subsumption

is coNP-complete, and ABox consistency is NP-complete. Moreover, instance

checking is coNP-complete w.r.t. data complexity.

Due to the space constraints, we could not provide technical details and
proofs in this extended abstract. They can be found in the technical report [2].
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Introduction

The recent standardization of the SPARQL 1.1 Entailment Regimes [2], which extend
the SPARQL Query Language [3] with the capability of querying also for implicit
knowledge makes the need for an efficient evaluation of complex queries over OWL
ontologies urgent. We present an approach for optimizing the evaluation of SPARQL
queries over OWL ontologies using SPARQL’s OWL Direct Semantics entailment regi-
me. Such queries consist of axiom templates, i.e., Description Logic (DL) axioms with
variables in place of concept, role and individual names. Answers to such queries are
mappings of query (concept, role or individual) variables to corresponding (concept,
role or individual) names that instantiate the axiom templates to axioms entailed by the
queried knowledge base (KB).

Since computing query answers over an expressive KB is computationally very
costly, approximation techniques have been proposed that use a weakened version of
the KB to compute a lower bound (yields sound but potentially incomplete results) and
a strengthened version to compute an upper bound (yields complete but potentially un-
sound results) for the results [9, 7, 8]. Another well-known technique is to compute the
bounds from a complete and clash-free tableau generated by a DL reasoner [4, 5]. De-
terministically derived facts are used as lower bound, while also non-deterministically
derived ones are considered for the upper bound. Answers in the “gap”, i.e., potential
answers in the upper but not the lower bound, usually have to be checked individually
by performing a consistency check with a fully fledged OWL 2 DL reasoner.

While we also use bounds, we allow for much more expressive queries than related
approaches. To optimize the evaluation of possible query answers in the gap, we present
a query extension approach that uses the TBox of the queried KB to extend the query
with additional parts. We show that the resulting query is equivalent to the original one
and we use the additional parts that are simple to evaluate for restricting the bounds of
subqueries of the initial query. In an empirical evaluation we show that the proposed
query extension approach can lead to a significant decrease in the query execution time
of up to four orders of magnitude. More details about our method as well as more
evaluation results can be found in the extended version of our paper [1].

Improving Bounds via Query Extension

We will show the intuition of the proposed query extension method through an example.
Let K be a KB, A, B,C be concept names, r a role name, a, b, c, d individual names, x
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an individual variable, Y a concept variable and

T = { B v A tC, ∃r.B v C} A = {A(a), B(b), r(a, b), A(d)}
q = {A(x),∃r.Y(x),Y v B}

Note that the only answer for q over K is the mapping {µ | µ(x) = a, µ(Y) = B}.
First we compute bounds for axiom templates of q over K . Since {A(a), A(d)} ⊆ K

we have K |= A(a) and K |= A(d). That is, we can find the lower bound L = {µ |
µ(x) ∈ {a, d}} for the query {A(x)} over K without performing any tests. To find an
upper bound for {A(x)}, we can use a model I of K . It is easy to check that K has a
model I = (∆I, ·I) with ∆I = {d1, d2, d3, d4}, aI = d1, bI = d2, cI = d3, dI = d4,
AI = {d1, d2, d4}, BI = {d2}, CI = {d1} and rI = {〈d1, d2〉}. Note that I 6|= A(c).
Thus, from this model alone one can conclude that K 6|= A(c) and hence that the set
U = {µ | µ(x) ∈ {a, b, d}} provides an upper bound for the query {A(x)} over K .
Although the model I can be similarly used for finding an upper bound for complex
templates, such as {∃r.Y(x)}, in general it can only be found by iterating over all possible
mappings for x and Y and checking which instances of this template are entailed by the
model. Therefore, in practice, one does not compute the bounds for complex templates.
The bounds for the query {Y v B} can be computed by classifying the KB and retrieving
subsumption relationships for B. Since for classification one usually needs to consider
just the (relatively small) TBox T , the bounds for this query can be computed exactly,
i.e., in our example we have L = U = {µ | µ(Y) ∈ {⊥, B}}.

Our query extension method uses additionally the notion of a subquery bound,which
provides a range for those answers of a subquery (subset of templates) of q that are
sufficient to evaluate q. The intuition of our method is that subquery bounds can be
improved using bounds of other subqueries of this query. Thus, if a query q can be
extended to an equivalent query q ∪ q′, the number of reasoner calls performed for
evaluating q can be reduced using q′. The proposed algorithm can be summarized as
follows: First, we replace every (concept, role, individual) variable in q with a fresh
distinct (concept, role, individual) name. For our example, consider a mapping µ such
that µ(x) = ax, µ(Y) = AY with ax an individual and AY a concept name. Then we
materialize and classify K plus µ(q), where µ(q) denotes the result of replacing each
variable x in q with µ(x), i.e., we compute all concept assertions A(a), role assertions
r(a, b), and subsumptions A v B with atomic concepts and roles entailed by K ∪ µ(q).
Afterwards, we replace names back with their corresponding variables in the extended
KB. In our example T ∪ µ(q) = {B v A t C,∃r.B v C, A(ax),∃r.AY (ax), AY v B} |=
C(ax). Thus, for q′ = {C(x)}, we have K ∪ µ(q) |= C(ax) = µ(q′), and it holds that the
query q has the same answers forK as the extended query q∪ q′ = {A(x), ∃r.Y(x), Y v
B, C(x)}. In the end, we compute query bounds for the templates in q′ and use them to
improve the subquery bounds for templates in q. Using again the model I for K , since
I |= C(a), but I 6|= C(b), I 6|= C(c) and I 6|= C(d), we can derive the upper bound
U = {µ | µ(x) = a} for the query {C(x)}. Using this upper bound, it is now possible to
reduce the upper bound for the subquery {A(x)} of q to U. Since U is a subset of the
lower bound for {A(x)} (computed in the beginning of the section), this subquery can
be evaluated without performing any further entailment tests. The new upper boundU
can also be used to further reduce the upper bound for the subquery {∃r.Y(x)} of q to
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Table 1. Query answering times in seconds (n/a indicates a timeout, > 30 min) and number of
performed entailment checks for UOBM with the first department using evalStatic and evalExt

evalStatic evalExt
UOBM time #entail time #entail
q1 = {isAdvisedBy(x, y),GraduateStudent(x),Woman(y)}, 20.84 47 10.54 19

q′1 = {Professor(y)}
q2 = {isTaughtBy(x, y),GraduateCourse(x),Woman(y)}, 21.63 51 12.06 26

q′2 = {Faculty(y)}
q3 = {teachingAssistantOf(x, y),GraduateCourse(y),Woman(x)}, 12.78 32 5.60 12

q′3 = {TeachingAssistant(x)}
q4 = {∃worksFor.Organization(x),Woman(x)}, n/a 18.36 135

q′4 = {Employee(x)}
q5 = {X v ∃isHeadOf.Department,∃isTaughtBy.X(y)}, n/a 1.99 4

q′5 = {X v Chair,CourseTaughtByChair(y)}
q6 = {X v ∃isHeadOf.College,∃isAdvisedBy.X(y), n/a 0.21 0

q′6 = {X v Dean,PersonAdvisedByDean(y)}

{µ | µ(x) = a, µ(Y) ∈ {⊥, B}}. After this reduction, this subquery can be evaluated using
just two entailment tests.

Evaluation

The proposed method has been implemented and evaluated over a set of well-known
benchmark ontologies and relevant datasets and for several forms of queries. Although
it can be used, in general, for improving the performance of most query answering
systems based on query bounds, here the evaluation is based on the system described in
Kollia et al. [5], which, to the best of our knowledge, is the only system that supports
the evaluation of complex queries over OWL 2 DL ontologies under the OWL Direct
Semantics entailment regime of SPARQL 1.1. In our implemented method (referred
to as evalExt) we improve the subquery bounds computed in evalStatic [5] using the
method described in the previous section. Afterwards, we perform the ordering and
evaluation methods of Kollia et al. using the improved subquery bounds.

In Table 1 we show the results of the evaluation on the University Ontology Bench-
mark (UOBM) [6] using a range of custom queries since the queries provided for
UOBM are only simple conjunctive instance queries. Column 1 shows the query qi

and extension templates q′i (1 ≤ i ≤ 6), columns 2 and 3 show the query answering
times and the number of performed entailment checks for evalStatic, respectively, and
columns 4 and 5 show the respective numbers for evalExt. In all queries the time spent
for query extension is negligible compared to the time spent for query evaluation. We
observe that for all queries, additional extension templates were derived, which have
significantly better query bounds than the complex templates of the queries. This di-
rectly translates to a significantly lower number of entailment checks for evalExt and,
hence, a reduction in execution times. The reduction in query answering times is up to
four orders of magnitude.
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1 Introduction

This paper considers the setting of ontology-based query answering (OBQA). In this
setting, Description Logics (DLs) and existential rules (a.k.a. tuple-generating depen-
dencies or Datalog± rules) are popular ontology languages, while conjunctive queries
(CQs) is the main querying tool. Among KR researchers there is a clear consensus that
the required level of scalability in OBQA can only be achieved via query rewriting,
which attempts to reduce OBQA into the problem of evaluating a query over a rela-
tional database. Two query languages are usually considered: first-order queries (FO)
and non-recursive Datalog queries (NDL).

An interesting approach to query rewriting is the polynomial combined approach [7],
which can be described as follows: an ontology Σ can be incorporated together with a
CQ q into a database query qΣ in polynomial time, and also with a database D into
a database DΣ in polynomial time, such that qΣ over DΣ yields the same result as q
evaluated over the knowledge base consisting of D and Σ. The polynomial combined
approach has been applied to ELHdr

⊥ [7], an extension of the well-known DL EL, to
DL-LiteN

horn [5, 6], one of the most expressive logics of the DL-Lite family, and only
recently to the main guarded- and sticky-based classes of existential rules [3].

Research Challenges. The problem of applying the polynomial combined approach
to existing DLs and classes of existential rules is relatively understood. Nevertheless,
there are still basic open questions that deserve our attention. Regarding DLs, little is
known about formalisms with n-ary relations such as DLR-LiteR, that is, the exten-
sion of DL-LiteR with n-ary roles. Regarding existential rules, it is open whether the
polynomial combined approach can be applied to the class of linear existential rules (or
simply linear rules), that is, assertions of the form ∀X∀Y(s(X,Y) → ∃Z p(X,Z)),
where s(X,Y) and p(X,Z) are atomic formulas [1].

It is not difficult to show that, if linear rules are polynomially combined rewritable,
then also DLR-LiteR is polynomially combined rewritable — this follows from the
fact that query answering under DLR-LiteR can be easily reduced to query answering
under linear rules [1]. Thus, the key question that we need to answer, which has been
explicitly stated as an open problem in [3], is the following:
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Fig. 1. Illustration of a proof generator.

Given a (Boolean) CQ q, a database D, and a set Σ of linear rules, can we rewrite
in polynomial time: (i) q and Σ, independently of D, into a Q-query qΣ , where
Q ∈ {FO,NDL}, and (ii) D and Σ, independently of q, into a database DΣ , such
that (D ∪ Σ) |= q iff DΣ |= qΣ?

The answer to the above question is affirmative under the assumption that the arity
of the underlying schema is bounded; implicit in [2]. However, little is known for arbi-
trary linear rules, without any assumption on the underlying schema. We give a positive
answer even for linear rules that use predicates of unbounded arity. For more details,
we refer the reader to [4].

2 Proof Generator

We assume the reader is familiar with the chase procedure. Recall that the chase for
a database D and a set Σ of rules, denoted chase(D,Σ), is a universal model of D
and Σ, and thus (D ∪ Σ) |= q iff chase(D, Σ) |= q, for each CQ q. The instance
chase(D, Σ) can be naturally seen as a directed labeled graph, called chase graph,
denoted CG(D, Σ). It is also easy to verify that for linear rules, CG(D, Σ) is a directed
forest; for details on the chase, see, e.g., [1]. Our main technical tool is called proof
generator, and it formalizes the intuitive idea that (Boolean) CQ answering under linear
rules can be realized as a reachability problem on the chase graph. Let us illustrate the
key ideas underlying the proof generator via a simple example.

Example 1. Let D = {p(a, b, c), p(b, c, d)}, and let Σ be the set of linear rules (for
brevity, the universal quantifiers are omitted):

p(X,Y, Z) → ∃W p(X, W, Y ) p(X,Y, Z) → ∃W p(Z, W, Y )
p(X,Y, Z) → ∃W p(Y, X,W ) p(X,Y, Z) → p(Y, Z, X).

Given the BCQ q = ∃A∃B∃C∃D (p(A, a,B) ∧ p(C, B, b) ∧ p(D, c, b)), as shown in
Figure 1(a), there exists a homomorphism h (dashed arrows in the figure) that maps q to
an initial segment of the chase graph of D and Σ, and thus (D∪Σ) |= q. It is interesting
to observe that the nulls occurring in h(q), i.e., z1, z3, z4 and z5, form a rooted forest
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F , depicted in Figure 1(b), with the following properties; for brevity, let ν(z) be the
atom in CG(D,Σ) where the null z is invented (see shaded atoms in Figure 1(a) for
ν(z1), ν(z3), ν(z4) and ν(z5)): (i) for every root node z, ν(z) is reachable from D; (ii)
for every edge (z, w), ν(w) is reachable from ν(z); and (iii) for every atom a ∈ h(q),
there exists a unique path π in F that contains all the nulls in a, and, assuming that
the leaf node of π is z, a is reachable from ν(z). Indeed, it is easy to verify that ν(z1)
and ν(z5) are reachable from D, ν(z3) and ν(z4) are reachable from ν(z1), and finally,
h(p(A, a,B)) = p(z3, a, z1) is reachable from ν(z3), h(p(C, B, b)) = p(z4, z1, b) is
reachable from ν(z4), and h(p(D, c, b)) = p(z5, c, b) is reachable from ν(z5).

Roughly speaking, the triple consisting of: (1) the homomorphism h, that maps q to
the chase; (2) the function ν, that gives the atoms in the chase where the nulls occurring
in h(q) were invented; and (3) the forest F , that encodes how the nulls of h(q) depend
on each other, as well as the order of their generation, is what we call a proof generator
for q w.r.t. D and Σ. The existence of such a triple, allows us to generate the part of
the chase due to which the query is entailed, i.e., the proof of the query (hence the
name “proof generator”). Therefore, for query answering purposes under linear rules,
we simply need to check if such a proof generator exists.

Lemma 1. (D ∪ Σ) |= q iff there exists a proof generator for q w.r.t. D and Σ.

3 The Combined Rewriting

We give a positive answer to our research question regarding linear rules and the poly-
nomial combined approach. More precisely, we show that:

Theorem 1. The class of linear rules is polynomially combined Q-rewritable, where
Q ∈ {FO, NDL}.

To establish the above theorem, we heavily rely on the notion of the proof generator.
Fix a (Boolean) CQ q, a database D, and a set Σ of linear rules. By Lemma 1, it
suffices to construct in polynomial time a query qΣ ∈ Q (independently of D), and
a database DΣ (independently of q), such that DΣ |= qΣ iff a proof generator for q
w.r.t. D and Σ exists. Roughly, the query qΣ guesses a triple (h, ν, F ) (as described in
Example 1), and then verifies that the guessed triple is a proof generator for q w.r.t. D
and Σ. The interesting part of qΣ is the component that applies the crucial reachability
checks required by the definition of the proof generator. Although the path among two
atoms in the chase graph may be of exponential size, its existence can be checked via
Q-queries of polynomial size. An immediate consequence of Theorem 1 is that:

Corollary 1. The description logic DLR-LiteR is polynomially combined Q-rewritable,
where Q ∈ {FO, NDL}.

The results of this work are, for the moment, of theoretical nature and we do not
claim that they will directly lead to better practical algorithms. We believe that a smart
implementation of the proposed techniques can lead to more efficient rewriting proce-
dures; this will be the subject of future research. We are also planning to optimize the
proposed rewriting algorithm, with the aim of constructing queries of optimal size.
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1 Introduction

Temporal description logics (TDLs) extend classical DLs, providing built-in means to
represent and reason about temporal aspects of knowledge. The importance of TDLs
stems from the need of relevant applications to capture temporal and dynamic aspects
of knowledge, e.g., in medical and life science ontologies, which are very large but
still demand efficient reasoning, such as SNOMED CT and FMA [9], and the gene
ontology (GO) [20]. A natural task is to model dynamic knowledge about patient
histories against static medical knowledge (e.g., about diseases): e.g., the temporal
concept C := E3∃ requiresTransfusion.> describes a patient who may need a blood
transfusion in the future, and the axiom Anemic v C says that this applies to anemic
people. In contrast, Anemia v Disorder represents static knowledge.

A notable approach to designing TDLs is to combine DLs with temporal logics
commonly used in software/hardware verification such as LTL, CTL(∗), and to provide a
two-dimensional product-like semantics [19, 11, 17]. The combination allows various
design choices, e.g., we can restrict the scope of temporal operators to certain types
of entities (such as concepts, roles, axioms), or declare some DL concepts or roles as
rigid, meaning that their interpretation will not change over time. The need for rigid
roles in TDL applications, e.g., in biomedical ontologies to accurately capture life-time
relations, has been identified [7]. For example, the role hasBloodType should be rigid
since a human’s blood type does not change during their lifetime.

Alas, TDLs based on the Boolean-complete DL ALC with rigid roles cannot be
effectively used since they become undecidable when temporal operators are applied to
concepts and a general TBox is allowed [11, 15]. This is the case even if we severely
restrict the temporal operators available and use the sub-Boolean DL EL, whose standard
reasoning problems are tractable, instead of ALC [1, 15]. In the light of these results,
several efforts have been devoted to design decidable TDLs with rigid roles [3, 2]; e.g.,
decidability can be recovered by using a lightweight DL component based on DL-Lite.
Both the EL and DL-Lite families underlie prominent profiles of the OWL standard.

Interestingly, no research has been yet devoted to TDLs based on EL in the presence
of restricted TBoxes, such as classical TBoxes, which consist solely of definitions of the
form A ≡ C with A atomic and unique, or acyclic TBoxes, which additionally forbid
syntactic cycles in definitions. This is surprising since in the presence of general TBoxes
TDLs based on EL tend to be as complex as the ALC variant [3, 13, 15].
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These considerations lead us to investigating TDLs with rigid roles based on EL
and the (branching-time) CTL allowing for temporal concepts and acyclic TBoxes. We
are convinced that TDLs designed in this way are suitable for temporal extensions of
biomedical ontologies: large parts of SNOMED CT and GO are acyclic EL-TBoxes.

Our main contributions are algorithms for standard reasoning problems and (mostly
tight) complexity bounds. We begin by showing that the combination of CTL and ALC
with empty and acyclic TBoxes is decidable. Our nonelementary upper bound is optimal
even when the set of temporal operators is restricted to E3 (“possibly eventually”) or
E© (“possibly next”). We then replace ALC with EL and maintain the restriction to
E3,E© and empty TBoxes. We particularly show that the resulting TDLs are decidable
in PTIME with one of the two operators, and CONP-complete with both. To this aim, we
employ canonical models, together with expansion vectors [16] in the case with both
E3,E©. Next, we lift the PTIME upper bound to the case of acyclic TBoxes, employing
a completion algorithm in the style of those for EL and extensions, [5]. Finally, we show
that the combination of E3 with A2 (“always globally”) and acyclic TBoxes leads to
a PSPACE-complete TDL, again employing a completion algorithm. An overview of
existing and new results is given in Table 1, where CTLYX denotes the combination of
the DL X with the fragment of CTL restricted to the temporal operators Y . In particular,
all the new results hold even if rigid concepts are also included.

Rigid roles? no yes yes yes
TBoxes general general acyclic empty

CTLALC =EXPTIME [13] undecidable [15] nonelementary, nonelem.,
decidable (1) decidable (1)

CTLE3
EL ≤PTIME [13] nonelementary [15] ≤PTIME (6) ≤PTIME (6)

CTLE◦
EL ≤PTIME [13] undecidable [15] ≤PTIME (6) ≤PTIME (6)

CTLE◦,E3
EL =EXPTIME [13, 15] undecidable [15] ≥CONP, (2) =CONP (2)

≤CONEXPTIME (5)

CTLE3,A2
EL =PSPACE [13] nonelementary [15] =PSPACE (9) ≤PSPACE (9)

Table 1. Previous and new complexity results. ≥ hardness, ≤ membership, = completeness.
(n) refers to our Theorem or Corollary n.

The relatively low complexity that we obtain for EL-based TDLs over restricted
TBoxes are in sharp contrast with the undecidability and nonelementary lower bounds
known for the same logics over general TBoxes [15]. With the restriction to acyclic
TBoxes, we will thus identify the first computationally well-behaved TDLs with rigid
roles based on EL and classical temporal logics.

Additional technical notions and proofs are in a report: http://tinyurl.com/ijcai15tdl

2 Preliminaries

We introduce CTLALC , a TDL based on the classical DL ALC. Let NC and NR be
countably infinite sets of concept names and role names, respectively. We assume that
NC and NR are partitioned into two countably infinite sets: Nrig

C and Nloc
C of rigid concept
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names and local concept names, respectively; and, Nrig
R and Nloc

R of rigid role names and
local role names, respectively. CTLALC-concepts C are defined by the grammar

C := > | A | ¬C | C uD | ∃r.C | E©C | E2C | E(CUD)

where A ranges over NC, r over NR. We use standard DL abbreviations [6] and temporal
abbreviations E3C,A2C,A3C and A(C U D) [10].

The semantics of classical DLs, such as ALC, is given in terms of interpretations
of the form I = (∆, ·I), where ∆ is a non-empty set called the domain and ·I is an
interpretation function that maps each A ∈ NC to a subset AI ⊆ ∆ and each r ∈ NR to
a binary relation rI ⊆ ∆×∆. The semantics of CTLALC is given in terms of temporal
interpretations based on infinite trees [15]: A temporal interpretation based on an infinite
tree T = (W,E) is a structure I = (T, (Iw)w∈W ) such that, for each w ∈ W , Iw is a
DL interpretation with domain ∆; and, rIw = rIw′ and AIw = AIw′ for all r ∈ Nrig

R ,
A ∈ Nrig

C and w,w′ ∈ W . We usually write AI,w instead of AIw . The stipulation that
all worlds share the same domain is called the constant domain assumption (CDA). For
Boolean-complete TDLs, CDA is the most general: increasing, decreasing and varying
domains can all be reduced to it [11, Prop. 3.32]. For the sub-Boolean logics studied
here, CDA is not w.l.o.g. Indeed, we identify a logic in which reasoning with increasing
domains cannot be reduced to the constant domain case.

We now define the semantics of CTLALC-concepts. A path in T = (W,E) starting
at a node w is an infinite sequence π = w0w1w2 · · · with w0 = w and (wi, wi+1) ∈ E.
We write π[i] for wi, and use Paths(w) to denote the set of all paths starting at the node
w. The mapping ·I,w is extended from concept names to CTLALC-concepts as follows.

>I,w = ∆ (C uD)I,w = CI,w ∩DI,w

(∃r.C)I,w = {d ∈ ∆ | ∃e . (d, e) ∈ rI,w ∧ e ∈ CI,w}
(E©C)I,w = {d | ∃π ∈Paths(w) . d∈CI,π[1]}
(E2C)I,w = {d | ∃π ∈Paths(w) .∀j≥ 0 . d∈CI,π[j]}

(E(CUD))I,w = {d | ∃π ∈Paths(w) .∃j≥ 0 . (d∈DI,π[j] ∧ (∀k < j . d∈CI,π[k]))}
An acyclic CTLALC-TBox T is a finite set of concept definitions (CDs) A ≡ D with
A ∈ NC and D a CTLALC concept, such that (1) no two CDs have the same left-hand
side, and (2) there are no CDs A1 ≡ C1, . . . , Ak ≡ Ck in T such that Ai+1 occurs in
Ci for 1 ≤ i ≤ k, where Ak+1 = A1.

A temporal interpretation I is a model of a concept C if CI,ε 6= ∅; it is a model of an
acyclic TBox T , written I |= T , if AI,w =CI,w for all A≡C ∈ T and w ∈W ; it is a
model of a concept inclusion CvD, written I |= CvD, if CI,w⊆DI,w for all w∈W .

The two main reasoning tasks we consider are concept satisfiability and subsumption.
A concept C is satisfiable relative to an acyclic TBox T if there is a common model of
C and T . A concept D subsumes a concept C relative to an acyclic TBox T , written
T |= C v D, if I |= C v D for all models I of T . If T is empty, we write |= C v D.

3 First Observations

We start by observing that the combination of CTL and ALC with rigid roles relative to
empty and acyclic TBoxes is decidable and inherently nonelementary. In a nutshell, we
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show the upper bounds using a variant of the quasimodel technique [11, Thm. 13.6]; the
lower bound follows from the fact that satisfiability for the product modal logics S4×K
and K×K is inherently nonelementary [12]. Indeed, the fragment of CTLALC allowing
E3 (E©) as the only temporal operator is a notational variant of S4×K (K×K) [15].

Theorem 1. Concept satisfiability relative to acyclic and empty TBoxes for CTLALC
with rigid roles is decidable and inherently nonelementary.

With Theorem 1 and the third column of Table 1 in mind, we particularly set as our
goal the identification of elementary (ideally tractable) TDLs. To this aim, we study
combinations of (fragments of) CTL with the lightweight DL EL. CTLEL is the fragment
of CTLALC that disallows the constructor ¬ (and thus the abbreviations C tD, ∀r.C,
A2, . . . ). The standard reasoning problem for CTLEL, as for EL, is concept subsumption
since each concept and TBox are trivially satisfiable. In what follows we consider various
fragments of CTLEL obtained by restricting the available temporal operators. We denote
the fragments by putting the allowed operators as a superscript. In this context, we view
each of the operators E3, A2 as primitive instead of as an abbreviation.

In order to keep the presentation of our main results accessible, in Sections 5-6, we
concentrate on the case where only rigid role names and local concept names are present.
Later on, in Section 7, we explain how to deal with the general case.

4 CTLE◦,E3

EL relative to the Empty TBox

We begin by investigating the complexity of subsumption relative to the empty TBox for
a TDL whose subsumption relative to general TBoxes is undecidable: CTLE◦,E3

EL .

Theorem 2. Concept subsumption relative to the empty TBox is CONP-complete for
CTLE◦,E3

EL with rigid roles and in PTIME for CTLE◦
EL and CTLE3

EL with rigid roles.

CONP-hardness is obtained by embedding EL plus transitive closure into CTLE◦,E3
EL ;

the jump in complexity comes from the ability to express disjunctions, e.g., |= E3C v
C tE©E3C. We next explain CONP-membership; the PTIME results are a byproduct
and improved later.

We proceed in two steps: first we provide a characterization of |= C v D where C is an
CTLE◦

EL -concept and D an CTLE◦,E3
EL -concept. Next we generalize this characterization

to CTLE◦,E3
EL -concepts C.

Given a CTLE◦
EL -concept C, the description tree tC = (VC , LC , EC) for C is a

labeled graph corresponding to C’s syntax tree; we denote its root by xC . For example,
if C = E©(∃r.A u ∃s.B), then tC is given in Figure 1, left.

For plain EL, we have |= C vD if and only if there is a homomorphism from tD
to tC , which can be tested in polynomial time [8]. This criterion cannot directly be
transferred to CTLE◦

EL because tC does not explicitly represent all pairs of worlds and
domain elements whose existence is implied by tC , e.g., for |= E©∃r.A v ∃r.E©A
with r rigid, there is no homomorphism from tD to tC . We overcome this problem
by transforming tC into a canonical model IC of C, i.e., (1) its distinguished root is
an instance of C and (2) IC homomorphically embeds into every model of C. The
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Fig. 1. Description tree tC , canonical model IC , finite representation Ipre
C for C = E©(∃r.Au∃s.B)

construction of IC from tC is straightforward: for every node with an incoming ©-edge
(r-edge, r being a role) create a fresh world (domain element); for the root xC create
both a world and domain element. The temporal relation and the interpretation of r and
concept names is read off EC and LC . To transform (W,R) into an infinite tree, we add
an infinite path of fresh worlds to every world without R-successor. The canonical model
for the above concept C is shown in Fig. 1, center; the infinite path of worlds is dashed.

From (1), (2), and the preservation properties of homomorphisms, we obtain:

Lemma 3. For all CTLE◦
EL -concepts C and all CTLE◦,E3

EL -concepts D, we have |=
C v D if and only if xC ∈DIC ,xC .

Now xC ∈ DIC ,xC can be verified by model-checking D in world xC and element xC
of Ipre

C , which is the polynomial-sized modification of I where the lastly added infinite
path of worlds is replaced by a single loop, see Fig. 1, right. Since IC is the unraveling
of Ipre

C into the temporal dimension, IC and Ipre
C satisfy the same concepts in their roots.

Theorem 2 for CTLE◦
EL thus follows. The CTLE3

EL part can be obtained by representing
every E3 in C by a ©-edge in tC and adapting the notion of a homomorphism.

For CTLE◦,E3
EL , we use expansion vectors introduced in [16], applied to the temporal

dimension. Let C be a CTLE◦,E3
EL -concept with n occurrences of E3. An expansion

vector for C is an n-tuple U = (u1, . . . , un) of integers ui > 0. Intuitively, U fixes
a specific number of temporal steps taken for each E3 in C when constructing tC
and IC . More precisely, we denote with C[U ] the CTLE◦

EL -concept obtained from C
by replacing the i-th occurrence of E3 with (E©)ui , i.e., i times E©. For example, if
C = E3∃r.E3(A uE©B) and U = (2, 0), then C[U ] = E©E©∃r.(A uE©B).

Let UmC = {(u1, . . . , un) | ui 6 m for all i}. We denote with tdepth(D) the nesting
depth of temporal operators in D. We use expansion vectors with entries bounded by
tdepth(D) to reduce 6|= C v D for CTLE◦,E3

EL to the case where C is from CTLE◦
EL .

Lemma 4. For all CTLE◦,E3
EL -concepts C,D, we have |= C vD if and only if

|= C[U ] v D for all U ∈ Utdepth(D)+1
C .

Together with Lemma 3, this yields the desired polynomial-time guess-and-check proce-
dure for deciding |= C v D.
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5 CTLE◦
EL and CTLE3

EL relative to Acyclic TBoxes

The results of Theorem 2 transfer to acyclic TBoxes with an exponential blowup due to
unfolding [18], that is:

Corollary 5. Concept subsumption relative to acyclic CTLE◦,E3
EL -TBoxes with rigid

roles is in CONEXPTIME.

For the subfragments CTLE◦
EL and CTLE3

EL , we can even show polynomial complexity:

Theorem 6. Concept subsumption relative to acyclic CTLE◦
EL - and CTLE3

EL -TBoxes with
rigid roles is in PTIME.

We first concentrate on the E3 case and explain below how to deal with the E© one. We
focus w.l.o.g. on subsumption between concept names and assume that the input TBox
is in normal form (NF), i.e., each axiom is of the shape A ≡ A1 uA2, A ≡ E3A1, or
A ≡ ∃r.A1, where Ai ∈ NC ∪ {>} and r ∈ NR. As usual, a subsumption-equivalent
TBox in NF can be computed in polynomial time [4]. We use CN and ROL to denote the
sets of concept names and roles occurring in T .

To prove a PTIME upper bound, we devise a completion algorithm in the style
of those known for EL and (two-dimensional) extensions, cf. [5, 14], which build an
abstract representation of the ‘minimal’ model of the input TBox T (in the sense of
Horn logic). The main difficulty is that different occurrences of the same concept name
in the TBox cannot all be treated uniformly (as it is the case for, say, EL), due to the
two-dimensional semantics. Instead, we have to carefully choose witnesses for E3A and
∃r.A, respectively. Our algorithm constructs a graph G = (W,E,Q,R) based on a set
W , a binary relationE, a mappingQ that associates with eachA ∈ CN and each w ∈W
a subset Q(A,w) ⊆ CN, and a mapping R that associates with each rigid role r ∈ ROL

a relation R(r) ⊆ CN×W ×CN×W . For brevity, we write (A,w)
r→ (B,w′) instead

of (A,w,B,w′) ∈ R(r) and denote with E∗ the reflexive, transitive closure of E.
The algorithm for deciding subsumption initializesG as follows. For all r ∈ ROL, set

R(r) = ∅. SetW = CN×CN∪{E3A | A ∈ CN}. SetE = {(E3A,AA), (AB,A>) |
A,B ∈ CN}. For all A ∈ CN, set Q(A,w) = {>, B} if w = AB and Q(A,w) = {>}
otherwise.

Intuitively, the unraveling of (W,E) is the temporal tree underlying the minimal
model and the mappings Q and R contain condensed information on how to interpret
concepts and roles, respectively. More specifically, the data stored in Q(A, ·) describes
the temporal evolution of an instance of A. For example, Q(A,AA) collects all concept
names B such that T |= A v B; likewise, Q(A,E3A) captures everything that follows
from E3A. Finally, Q(A,AB) contains concept names that are implied by B given that
B appears in the temporal evolution of an instance of A, i.e., B′ ∈ Q(A,AB) implies
T |= A uE3B v E3(B uB′).

After initialization, the algorithm extends G by applying the completion rules de-
picted in Figure 2 in three phases. In the first phase – also called FORWARD-phase, since
definitions A ≡ C ∈ T are read as A v C – rules F1-F3 are exhaustively applied in
order to generate a fusion-like representation by adding witness-worlds and witness-
existentials as demanded. Most notably, rule F2 introduces a pointer to the structure
representing the temporal evolution of an instance of B′.
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F1 If B ∈Q(A,AA′) & B ≡ E3B′ ∈ T , then add (AA′, AB′) to E

F2 If B ∈ Q(A,w) and B ≡ ∃r.B′ ∈ T , then set (A,w)
r→ (B′, B′B′)

F3 If B∈Q(A,w) & B≡A1uA2 ∈T , then add A1,A2 to Q(A,w)

C1 If (BB,w) ∈ E and (A,w′)
r→ (B,BB), then add (w′, w) to E

C2 If (A,w)
r→ (B,BB), then

a) (A,w′)
r→ (B,E3B) for all w′ 6= w with (w′, w) ∈ E∗

b) (A,w′)
r→ (B,w′) for all w′ with (w′, w) /∈ E∗

B1 If B ∈ Q(A,w), (w′, w) ∈ E∗, and A′ ≡ E3B ∈ T , then add A′ to Q(A,w′)

B2 If A ∈ Q(B,w), (A′, w′)
r→ (B,w), and A′′ ≡ ∃r.A ∈ T then add A′′ to Q(A′, w′)

B3 If A1, A2 ∈ Q(B,w) & A ≡ A1 uA2 ∈ T then add A to Q(B,w)

Fig. 2. Completion rules

Subsequently, G is extended to conform with the constant domain assumption and
reflect rigidity of roles by exhaustively applying rules C1, C2. Here read C2 as ‘if two
points are connected via r in some world, then they should be connected in all worlds.’
Note that Q(B,E3B) is used as a representative for the entire “past” of B in part a).

In the final phase, BACKWARD-completion rules B1-B3 are exhaustively applied in
order to respect the ‘backwards’-direction of definitions, i.e., definitions A ≡ C ∈ T are
read as A w C. This separation into a FORWARD and BACKWARD phase is sanctioned
by acyclicity of the TBox. In fact, one run through each phase is enough; note that no
new tuples are added to E or R in the BACKWARD-phase.

The following lemma shows correctness of our algorithm.

Lemma 7. Let T be an acyclic CTLE3
EL -TBox in normal form. Then for all A,B ∈ CN,

we have T |= A v B iff, after exhaustive rule application, B ∈ Q(A,AA).

To prove “⇐”, we show that (a certain unraveling of) G “embeds” into every model of
A and T . For this purpose, we need to adapt the notion of a homomorphism to temporal
interpretations and rigid roles. For “⇒”, we construct from G a model I of T with
d ∈ AI,w \BI,w for some d,w. The algorithm runs in polynomial time: the size of the
data structures W , E, and R is clearly polynomial and the mapping Q(·, ·) is extended
in every rule application, so the algorithm stops after polynomially many steps.

Finally, we sketch two modifications of the algorithm such that it works for E©
instead of E3. First, we have to use a non-transitive version of B1. Second, and a bit
more subtly, we have to replace E3A ∈W with E©kA, 1 ≤ k ≤ |T | to capture what
is implied by E©kA; more precisely, B′ ∈ Q(A,E©kA) implies T |= E©kA v B′,
where E©k denotes E© · · ·E© k times.

We next show that there is a jump in the complexity if increasing domains are
considered instead of constant ones. Intuitively, this can be explained by the fact that
increasing domains allow rigid roles to mimic the behaviour of the A2-operator. In the
next section, we show that adding A2 to {E3} indeed leads to PSPACE-hardness.

Theorem 8. Concept subsumption relative to acyclic CTLE◦
EL - and CTLE3

EL -TBoxes with
rigid roles and increasing domains is PSPACE-hard.
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6 CTLE3,A2

EL relative to Acyclic TBoxes

We now add A2 and observe an increase in complexity over acyclic TBoxes.

Theorem 9. Concept subsumption relative to acyclic CTLE3,A2
EL -TBoxes with rigid

roles is PSPACE-complete.

The lower bound is obtained via a reduction from QBF validity. For the upper bound,
we again consider w.l.o.g. subsumption between concept names and assume that the
acyclic TBox is in normal form, i.e., axioms are of the shape A ≡ A1 uA2, A ≡ E3A1,
A ≡ A2A1, or A ≡ ∃r.A1, where Ai ∈ NC ∪ {>} and r ∈ NR. We also restrict
ourselves again to only rigid roles. CN and ROL are used as before.

In contrast to the previous section, we cannot maintain the entire minimal model in
memory since the added operator A2 can be used to enforce models of exponential size.
Instead, we will compute all concepts implied by the input concept A (the left-hand side
of the subsumption to be checked) by iteratively visiting relevant parts of the minimal
model. Our main tool for doing so are traces.

Definition 10. A trace is a tuple (σ,E,R) where σ is a sequence (d0, w0) · · · (dn, wn)
such that for all 0 ≤ i < n one of the following is true. (1) di = di+1 and (wi, wi+1) ∈
E. (2) wi = wi+1 and (di, di+1) ∈ R(r) for some r ∈ ROL.

Algorithm 1: Subsumption in CTLE3,A2
EL

Input: Acyclic TBox T , concept names A,B
Output: true if T |=AvB, false otherwise

1 σ := (d0, w0); Q(d0, w0) := {A,>};
2 E := ∅; R(r) := ∅ for all r ∈ ROL;
3 expand(σ,E,R);
4 return true if B∈Q(d0,w0), false otherwise;

5 procedure expand (σ,E,R) :
6 complete (σ,E,R,Q);
7 if (σ,Q) is periodic at (i, j) then
8 add (wj−1, wi) to E;
9 truncate;

10 complete (σ,E,R,Q);
11 return;
12 (d,w) := last element of σ;
13 foreach A∈Q(d,w) with A≡∃r.B ∈ T do
14 Q(d′, w) = {B,>} for a fresh d′;
15 add (d, d′) to R(r);
16 expand (σ · (d′, w), E,R);

17 foreach A∈Q(d,w) with A≡E3B ∈ T do
18 Q(d,w′) = {B,>} for a fresh w′;
19 add (w,w′) to E;
20 expand (σ · (d,w′), E,R);

Intuitively, traces represent paths
through temporal interpretations,
which in each step follow either
the temporal relation (Def. 10, 1)
or a DL relation r (2); so, in a pair
(d,w), d can be thought of as a
domain element and w as a world.

Our algorithm, whose basic
structure is given by Alg. 1, enu-
merates on input T , A,B, in a sys-
tematic tableau-like way, all traces
that must appear in every model
of A and T . Note that in the con-
text of Algorithm 1 a trace is used
as the basis for inducing a richer
structure that conforms with the
constant domain assumption and
captures rigidity; see Example 11
below. The algorithm also main-
tains an additional mapping Q that
labels each point (d,w) of the
trace (and all the induced points)
with a set Q(d,w) ⊆ CN. The
set Q(d,w) captures all concept
names that are satisfied in the minimal model at points represented by (d,w).
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R1 If A ≡ A1 uA2 ∈ T and A ∈ Q∗(·), then add A1, A2 to Q∗(·)
R2 If A ≡ A1 uA2 ∈ T and A1, A2 ∈ Q∗(·), then add A to Q∗(·)
R3 If (d, d′) ∈ R(r), B ∈ Q(d′, w), A ≡ ∃r.B ∈ T , then add A to Q(d,w)

R4 If B ∈ Q(d,w), (w′, w) ∈ E∗, A ≡ E3B ∈ T , then add A to Q(d,w′)

R5 If B ∈ Q(d,w), (w,w′) ∈ E∗, B ≡ A2A ∈ T , then add B,A to Q(d,w′)

R6 If (d, d′) ∈ R(r), B ∈ Qcert(d
′), A ≡ ∃r.B ∈ T , then add A to Qcert(d)

R7 If B ∈ Qcert(d), A ≡ A2B ∈ T , then add A to Qcert(d)

R8 If B ∈ Qcert(d), then add B to Q(d,w) for all w

R9 If B ∈ QA2(d,w), A ≡ A2B ∈ T , add A to Q(d,w)

R10 If A ∈ Q(d,w), A ≡ A2B ∈ T , add A,B to QA2(d,w)

R11 If (d, d′) ∈ R(r), B ∈ QA2(d′, w), A ≡ ∃r.B ∈ T , then add A to QA2(d,w)

R12 If A ∈ QA2(d,w), A ≡ E3B ∈ T , w′ added due to
A ∈ Q(d,w) in Line 18, B′ ∈Q(d,w′), A′ ≡ E3B′ ∈ T , then add A′ to QA2(d,w)

Fig. 3. Saturation rules. In R1, R2 the setQ∗(·) ranges over allQ(d,w),Qcert(d), andQA2(d,w).

The basics of Algorithm 1 are the following. In Lines 1 and 2, it creates a trace
consisting of a single point representing A and initializes the necessary data structures.
In Line 3, the systematic expansion is set off. When that is finished, the algorithm just
returns whether or not B (the right-hand of the subsumption) has been added during the
expansion. As for the expand procedure:

– in Line 6 and 10, the algorithm updates the mapping Q;
– Line 7 contains some termination condition; and finally,
– the loops in Lines 13 & 17 enumerate all ∃r.B and E3B that appear in the set
Q(d,w) of the last trace element and expand the trace to witness these concepts.

This basic description of the algorithm leaves open several points: (i) the precise behavior
of the subroutine complete, (ii) when a trace is periodic, and (iii) what happens
inside the truncate command in Line 9. Let us start with describing the subroutine
complete. It uses additional mappings Qcert(d) ⊆ CN and QA2(d,w) ⊆ CN, which
intuitively contain all the concept names that d satisfies certainly, i.e., in all worlds, and
starting from world w, respectively. It proceeds in two steps. (1) Initialize undefined
Q(d,w) and Qcert(d) with {>}, and undefined QA2(d,w) with Qcert(d). (2) Apply
rules R1-R12 in Figure 3 to Q(·), Qcert(·) and QA2(·).

The number of rules is indeed scarily high; however, they can be divided into four
digestible groups: R1 and R2 are used to ensure that all sets Q∗ are closed under
conjunction; R3-R5 are used to complete Q(·). Note that R1-R4 are already known
from the algorithm of the previous section. Furthermore, R6-R8 are used to deal with
Qcert(·); and R9-R12 to update QA2(·). As an example of the interplay between the
different mappings take R9: If B is certain for d starting in world w and A ≡ A2B,
then we also know that d satisfies A in w; and R11 for the interplay between temporal
operators and rigid roles: indeed, for r rigid, |= ∃r.A2B v A2∃r.B.
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Example 11. Let T = {A≡E3A1, A1≡∃r.B, B≡E3A1} be the input TBox; and
T |= A v A1 is to be checked. Figure 4 (left) shows the trace initiated at (d0, w0)
with Q(d0, w0) = {>, A}, and further expanded in Lines 13 and 17. The trace, as
mentioned above, induces a richer structure, reflecting rigid roles and the constant
domain assumption; see Fig. 4 (center). This richer structure is then completed to
properly enrich the types Q(d,w) of each element. In particular, during completion,
further concept names are added to the corresponding types (Fig. 4, right). One can now
easily see that T |= A v A1 indeed holds. Furthermore, note that T 6|= A v A1, if r
is local or increasing domains are assumed. This is the case since, in both cases, the
r-connection is not necessarily present in the ‘root world’.

For the termination condition in Line 7, we take the following definition of periodicity.

Definition 12. A trace (σ,E,R) together with a mapping Q is called periodic at (i, j)
if σ = (d0, w0) · · · (dn, wn), i < j, di = dj = dn, and Q(di, wi) = Q(dj , wj).

This means that during the evolution of element d = di = dj , we find two different
worlds wi, wj such that d has the same type in wi and wj . We can stop expanding
worlds appearing after wj since their behavior is already captured by the successors
of wi. If a trace periodic at (i, j) is found, we add an edge (wj−1, wi) to E reflect-
ing the periodic behavior, see Line 8. Then, in truncate, the trace is shortened to
(d0, w0) · · · (dj−1, wj−1) and the relations E and R(r), r ∈ ROL, and the mappings
Q,Qcert, QA2 are restricted to those d and w that appear in the shortened trace.

Lemma 13. On every input T , A,B, Alg. 1 terminates and returns true iff T |=AvB.

For termination, consider a trace with suffix (d,w1) · · · (d,wn) and let A1, . . . , An be
the concept names such that E3Ai lead to wi, see Line 17 of Alg. 1. It is not difficult
to show that if Ai = Aj for i < j, then Q(d,wi) ⊆ Q(d,wj) after application of
complete. Since Q(d,w) ⊆ CN, there are no infinite (strictly) increasing sequences.
Hence, the expansion in Lines 17ff. will not indefinitely be applied. Also, the expansion
in Lines 13ff. stops due to acyclicity of the TBox. Together, this guarantees termination.

Correctness is shown similar to Lemma 7. For “⇒”, we show that every trace together
with the labeling so far computed in Q can be embedded into every model of A and T .
For “⇐”, we present a model of T witnessing T 6|= A v B.

We finish the proof of Theorem 9 by noting that the termination argument indeed
yields a polynomial bound on the length of the traces encountered by Alg. 1.

(d0,w0)

(d0,w1)(d1,w1)

(d1,w2)

E

E

r

r

r

r

r

r

r

A

A1B

B1

B A,A1

A1B

B1,B A1

Fig. 4. An example trace and the induced structure
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7 Local Roles and Rigid Concepts

One can easily extend the above algorithms so as to deal with local roles. In fact, e.g.,
in Section 5 only B4 below needs to be added to the BACKWARD-rules in Figure 3.
Note that F2 is only applied to rigid roles and C2 is therefore not applied to local ones.
Clearly, the algorithm in Section 6 can be extended with a similar rule.

B4 If A ∈ Q(B,w), A ≡ ∃r.A′, B′ ∈ Q(A′, A′A′), B′′ ≡ ∃r.B′ ∈ T , add B′′ to Q(B,w)

RC If B ∈ Q(A,w), B ∈ CNrig, then add B to Q(A,w′), ∀w′ ∈W
R13 If B ∈ Q(d,w) or B ∈ QA2(d,w) & B ∈ CNrig, then add B to Qcert(d)

A rigid concept has a constant interpretation over time. In the first example of Section
1, the concept Disorder should be rigid because we regard medical knowledge as static.
PatientWithDisorder should be local because a disease history has begin and end.

In the presence of general TBoxes, rigid concepts can be simulated by rigid roles:
replace each rigid concept name A with ∃rA.>, where rA is a fresh rigid role. Alas, this
simulation does not work in the context of acyclic TBoxes: the result of replacing A with
∃rA.> in a CD A ≡ D is no longer a CD. Still, our algorithms can be extended, without
increasing the complexity, to consider rigid concepts: e.g., the algorithm in Section 5
can be extended by adding RC above to the FORWARD and BACKWARD rules – CNrig

denotes the set of rigid concepts occurring in the input TBox. Note that the intermediate
phase remains the same, i.e., rules C1 and C2 are neither extended nor modified.

Rigid concepts can analogously be included in Section 6 by adding a new rule R13
above (recall: intuitively, Qcert(d) contains the concepts that hold for d in any world).

In the empty TBox case rigid roles can again simulate rigid concepts as above.

8 Conclusions and Future Work

We have initiated the investigation of TDLs based on EL allowing for rigid roles and
restricted TBoxes. We indeed achieved our main goal: we identified fragments of the
combination of CTL and EL that have elementary, some even polynomial, complexity.

One important conclusion is that the use of acyclic TBoxes, instead of general
ones, allows to design TDLs based on EL with dramatically better complexity than
the ALC variant; e.g., for the fragment allowing only E© the complexity drops from
nonelementary to PTIME. As an important byproduct, the studied fragments of CTLEL
can be seen as positive fragments of product modal logics with elementary complexity,
e.g., implication for the positive fragment of K×K is in PTIME.

Next, we plan to look at more expressive fragments of CTLEL or at classical (cyclic)
TBoxes, e.g., consider non-convex fragments, such as CTLE◦,E3

EL , with (a)cyclic TBoxes.
We plan to incorporate temporal roles, too. It is also worth exploring how restricting
TBoxes can help tame other TDLs with bad computational behavior over general TBoxes,
such as TDLs based on LTL or the µ-calculus. We believe that the LTL case is technically
easier than ours since it does not have the extra ‘ 12 -dimension’ introduced by branching.
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Abstract. Schema.org is an initiative by the major search engine providers Bing,
Google, Yahoo!, and Yandex that provides a collection of ontologies which web-
masters can use to mark up their pages. Schema.org comes without a formal
language definition and without a clear semantics. We formalize the language of
Schema.org as a Description Logic (DL) and study the complexity of querying
data using (unions of) conjunctive queries in the presence of ontologies formulated
in this DL. In particular, we consider rewritability into FO queries and into datalog
programs and investigate the possibility of classifying the data complexity of
ontology-mediated queries.

1 Introduction

The Schema.org initiative was launched in 2011 and is supported today by Bing, Google,
Yahoo!, and Yandex. In the spirit of the Semantic Web, it provides a collection of
ontologies that establish a standard vocabulary to mark up website content with metadata
about itself (https://schema.org/). In particular, web content that is generated from
structured data as found in relational databases is often difficult to recover for search
engines and Schema.org markup elegantly solves this problem. The markup is used by
search engines to more precisely identify relevant pages, to provide richer search results,
and to enable new applications. Schema.org is experiencing very rapid adoption and is
used today by more than 15 million webpages including all major ones Guha [2013].

Schema.org does neither formally specify the language in which its ontologies are
formulated nor does it provide a formal semantics for the published ontologies. However,
the provided ontologies are extended and updated frequently and follow an underlying
language pattern. This pattern and its meaning is described informally in natural language.
Schema.org adopts a class-centric representation enriched with binary relations and
datatypes, similar in spirit to description logics (DLs) and to the OWL family of ontology
languages; the current version includes 622 classes and 891 binary relations. Partial
translations into RDF and into OWL are provided by the linked data community. Based
on the informal descriptions at https://schema.org/ and on the mentioned translations,
Patel-Schneider [2014] develops an ontology language for Schema.org with a formal
syntax and semantics that, apart from some details, can be regarded as a fragment of
OWL DL.

In this paper, we abstract slightly further and view the Schema.org ontology language
as a description logic, in line with the formalization by Patel-Schneider. Thus, what
Schema.org calls a type becomes a concept name and a property becomes a role name.
The main characteristics of the resulting ‘Schema.org DL’ are that (i) the language is very
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restricted, allowing only inclusions between concept and role names, domain and range
restrictions, nominals, and datatypes; (ii) ranges and domains of roles can be restricted to
disjunctions of concept names (possibly mixed with datatypes in range restrictions) and
nominals are used in ‘one-of enumerations’ whose semantics also involves disjunction.
While Point (i) suggests that the Schema.org DL is closely related to the tractable profiles
of OWL2, because of Point (ii) it does actually not fall into any of them. There is also a
close connection to the DL-Lite family of DLs Calvanese et al. [2007], and in particular
to the DL-LiteHbool variant Artale et al. [2009]. However, DL-LiteHbool admits existential
restriction, negation, conjunction, and free use of disjunction whereas the Schema.org
DL allows no existential quantification and includes nominals and datatypes. We use the
term schema.org-ontology to refer to ontologies formulated in the Schema.org language;
in contrast, ‘Schema.org 2015’ refers to the concrete collection of ontologies provided at
https://schema.org/ as of end of April, 2015.

Our main aim is to investigate the complexity of querying data in the presence
of schema.org-ontologies, where the data is the markup that was extracted from web-
pages. While answering queries over such data is the main reasoning task that arises in
Schema.org applications and the Schema.org initiative specifies a format for the data
in terms of so-called items, no information at all is given on how the data is queried
(or used otherwise). We consider conjunctive queries (CQs) and unions of conjunctive
queries (UCQ), a basic querying mechanism that is ubiquitous in relational database
systems and research, and that also can be viewed as a core of the Semantic Web query
language SPARQL. In particular, we also consider CQs and UCQs without quantified
variables since these are not allowed in the relevant SPARQL entailment regimes Glimm
and Krötzsch [2010]. We view a pair (O, q) that consists of a schema.org-ontology and
an actual query as a compound query called an ontology-mediated query (OMQ).

We start with the observation that evaluating OMQs is intractable in general, namely
Πp

2 -complete in combined complexity and CONP-complete in data complexity. In the
main part of the paper, we therefore aim (i) to identify large and practically useful classes
of OMQs with lower computational complexity (both combined and data complexity),
and (ii) to explore the situation in much more detail to see whether we can obtain a full
classification of each schema.org ontology or each OMQ according to its data complexity.
While the utility of aim (i) is obvious, we note that aim (ii) is also most useful from a
user’s perspective as it clarifies the complexity of every concrete ontology or OMQ that
might be used in an actual application. Apart from classical tractability (that is, PTIME),
we are particularly interested in the rewritability of OMQs into first-order (FO) queries
(actually: UCQs) and into datalog programs. One reason is that this allows to implement
querying based on relational database systems and datalog engines, taking advantage
of those systems’ efficiency and maturity. Another reason is that there is significant
research on how to efficiently answer UCQs and datalog queries in cluster computing
models such as MapReduce Afrati and Ullman [2011, 2012], which is rather natural
when processing web-scale data.

For both aims (i) and (ii) above, we start with analyzing basic schema.org ontologies
in which enumeration definitions (‘one of’ expressions) and datatypes are disallowed.
Regarding aim (i), we show that all OMQs which consist of a basic schema.org-ontology
and a CQ of qvar-size two (the connected components that consist exclusively of quanti-
fied variables have size at most two) are datalog-rewritable in polynomial time and can
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be evaluated in PTime in combined complexity. This result complements results about
datalog-rewritability of OMQs for DLs with disjunction in Grau et al. [2013]; Kaminski
et al. [2014b,a]. We establish the same results for OMQs that consist of an unrestricted
schema.org-ontology and CQs without quantified variables.

Regarding aim (ii), we start with classifying each single schema.org-ontology O
according to the data complexity of all OMQs (O, q) with q a UCQ. We establish a
dichotomy between AC0 and CONP in the sense that for each ontologyO either all these
OMQs are in AC0 or there is one OMQ that is CONP-hard. The dichotomy comes with
a transparent syntactic characterization and is decidable in PTIME. Though beautiful,
the dichotomy is of limited use in practice since most interesting ontologies are of the
intractable kind.

Therefore, we also consider an even more fine-grained classification on the level of
OMQs, establishing a useful connection to constraint satisfaction problems (CSPs) in the
spirit of Bienvenu et al. [2014b]. It turns out that even for basic schema.org-ontologies
and for ontologies that consist exclusively of enumeration definitions, a complexity
classification of OMQs implies a solution to the dichotomy conjecture for CSPs, which
is a famous open problem Feder and Vardi [1998]; Bulatov [2011]. However, the CSP
connection can also be used to obtain powerful positive results. In particular, we show
that it is decidable in NEXPTIME whether an OMQ based on a schema.org-ontology
and a restricted form of UCQ is FO-rewritable and, respectively, datalog-rewritable. We
also establish a PSpace lower bound for this problem.

2 Preliminaries

Let NC, NR, and NI be countably infinite and mutually disjoint sets of concept names,
role names, and individual names. Throughout the paper, concepts names will be denoted
by A,B,C, . . ., role names by r, s, t, . . ., and individual names by a, b, c, . . ..

A schema.org-ontology consists of concept inclusions of different forms, role inclu-
sions, and enumeration definitions. A concept inclusion takes the form A v B (atomic
concept inclusion), ran(r) v A1t· · ·tAn (range restriction), or dom(r) v A1t· · ·tAn
(domain restriction). A role inclusion takes the form r v s.

Example 1. The following are examples of concept inclusions and role inclusions (last
line) in Schema.org 2015:

MovievCreativeWork

ran(musicBy)vPerson tMusicGroup

dom(musicBy)vEpisode tMovie t RadioSeries t TVSeries

siblingv relatedTo

We now define enumeration definitions. Fix a set NE ⊆ NI of enumeration individuals
such that both NE and NI \ NE are infinite. An enumeration definition takes the form
A ≡ {a1, . . . , an} with A ∈ NC and a1, . . . , an ∈ NE.

Example 2. An example of an enumeration definition in Schema.org 2015 is
Booktype ≡ {ebook, hardcover, paperback}.
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A datatype D = (D,∆D) consists of a datatype name D and a non-empty set of
data values ∆D. Examples of datatypes in Schema.org 2015 are Boolean, Integer, and
Text. We assume that datatype names and data values are distinct from the symbols
in NC ∪ NR ∪ NI and that there is an arbitrary but fixed set DT of datatypes such that
∆D1 ∩∆D2 = ∅ for all D1 6= D2 ∈ DT.

To accommodate datatypes in ontologies, we generalize range restrictions to range
restrictions with datatypes, which are inclusions of the form ran(r) v A1 t · · · t An
with A1, . . . , An concept names or datatype names from DT.

Example 3. An example of a range restriction with datatypes in Schema.org 2015 is

ran(acceptsReservation) v Boolean t Text

A schema.org-ontology O is a finite set of concept inclusions (including range
restrictions with datatypes), role inclusions, and enumeration definitions. We denote by
NC(O) the set of concept names in O, by NR(O) the set of role names in O, and by
NE(O) the set of enumeration individuals in O.

A data instance A is a finite set of concept assertions A(a) where A ∈ NC and
a ∈ NI; and role assertions r(a, b) where r ∈ NR, a ∈ NI and b ∈ NI∪

⋃
D∈DT∆

D. We
say thatA is a data instance for the ontologyO ifA contains no enumeration individuals
except those in NE(O). We use Ind(A) to denote the set of all individuals (including
datatype elements) in A.

Example 4. Examples for assertions are Movie(a), name(a, ‘avatar’), director(a, b),
name(b, ‘Cam’).

Let O be a schema.org-ontology and A a data instance for O. An interpretation I =
(∆I , ·I) for O consists of a non-empty set ∆I disjoint from

⋃
D∈DT∆

D and with
∆I ∩ NE = NE(O), and a function ·I that maps

– every concept name A to a subset AI of ∆I ,
– every role name r to a subset rI of∆I×∆I,DT, where∆I,DT = ∆I∪⋃D∈DT∆

D;
– every individual name a ∈ (NI \ NE) ∪ NE(O) to some aI ∈ ∆I such that aI = a

for all a ∈ NE(O).
Note that we make the standard name assumption (and, therefore, unique name assump-
tion) for individuals in NE. Individual names from NE that do not occur in O (and thus
not in A) are not interpreted by I to avoid enforcing infinite domains.

For an interpretation I, set dom(r)I = {d | (d, d′) ∈ rI} and ran(r)I = {d′ |
(d, d′) ∈ rI}. To achieve uniform notation, setDI = ∆D for every datatype (D,∆D) in
DT and dI = d for every d ∈ ∆D,D ∈ DT. For concept or datatype namesA1, . . . , An,
set (A1 t · · · tAn)I = AI1 ∪ · · · ∪AIn. An interpretation I for an ontology O satisfies
a (concept or role) inclusion X1 v X2 ∈ O if XI1 ⊆ XI2 , an enumeration definition
A ≡ {a1, . . . , an} if AI = {aI1 , . . . , aIn}, a concept assertion A(a) if aI ∈ AI , and a
role assertion r(a, b) if (aI , bI) ∈ rI . Satisfaction of any of these objects is denoted
with “|=”, as in I |= X1 v X2 or I |= A(a).

An interpretation I for O is a model of O if it satisfies all inclusions and definitions
in O and a model of a data instance A if it satisfies all assertions in A. We say that
A is satisfiable w.r.t. O if O and A have a common model. Let α be a concept or
role inclusion, or an enumeration definition. We say that α follows from O, in symbols
O |= α, if every model of O satisfies α.
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We introduce the query languages considered in this paper. A term t is either a
member of NI ∪

⋃
D∈DT∆

D or an individual variable taken from an infinite set NV

of such variables. A first-order query (FOQ) consist of a (domain-independent) first-
order formula ϕ(x) that uses unary predicates from NC ∪ {D | (D,D) ∈ DT}, binary
predicates from NR, and only terms as introduced above. The unary datatype predicates
are built-ins that identify the elements of the respective datatype. We call x the answer
variables of ϕ(x), the remaining variables are called quantified. A query without answer
variables is Boolean. A conjunctive query (CQ) is a FOQ of the form ∃y ϕ(x,y) where
ϕ(x,y) is a conjunction of atoms such that every answer variable x occurs in an atom
that uses a symbol from NC ∪ NR, that is, an answer variable x is not allowed to occur
exclusively in atoms of the form D(x) with D a datatype name (to ensure domain
independence). A union of conjunctive queries (UCQ) is a disjunction of CQs. A CQ
q can be regarded as a directed graph Gq with vertices {t | t term in q} and edges
{(t, t′) | r(t, t′) in q}. If Gq is acyclic and r(t1, t2), s(t1, t2) ∈ q implies r = s, then q
is an acyclic CQ. A UCQ is acyclic if all CQs in it are.

We are interested in querying data instancesA using a UCQ q(x) taking into account
the knowledge provided by an ontology O. A certain answer to q(x) in A under O is a
tuple a of elements of Ind(A) of the same length as x such that for every model I of O
and A, we have I |= q[a]. In this case, we write O,A |= q(a).

Query evaluation is the problem to decide whether O,A |= q(a). For the combined
complexity of this problem, all of O,A, q, and a are the input. For the data complexity,
only A and a are the input. It often makes sense to combine the ontology O and actual
query q(x) into an ontology-mediated query (OMQ) Q = (O, q(x)), which can be
thought of as a compound overall query. The following can be shown using techniques
similar to those in Eiter et al. [1997]; Bienvenu et al. [2014b].

Theorem 1. Query evaluation of CQs and UCQs under schema.org-ontologies is Πp
2 -

complete in combined complexity. In data complexity, each OMQ (O, q) from this class
can be evaluated in CONP; moreover, there is such a OMQ (with q a CQ) that is
CONP-complete in data complexity.

An OMQ (O, q(x)) is FO-rewritable if there exists a FOQQ(x) (called an FO-rewriting
of (O, q(x))) such that for every data instance A for O and all a ∈ Ind(A), we have
O,A |= q(a) iff IA |= Q(a) where IA is the interpretation that corresponds to A (in
the obvious way).

We also consider datalog-rewritability, defined in the same way as FO-rewritability,
but using datalog programs in place of FOQs. Using Rossman’s homomorphism preser-
vation theorem Rossman [2008], one can show that an OMQ (O, q(x)) with O a
schema.org-ontology and q(x) a UCQ is FO-rewritable iff it has a UCQ-rewriting
iff it has a non-recursive datalog rewriting, see Bienvenu et al. [2014b] for more details
(in a slightly different context). Since non-recursive datalog-rewritings can be more
succinct than UCQ-rewritings, we will generally prefer the former.

3 Basic schema.org-Ontologies

We start with considering basic schema.org-ontologies, which are not allowed to contain
enumeration definitions and datatypes. The results obtained here can be easily extended
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Fig. 1: ABoxes used in Example 5 and the paragraph below Theorem 10.

to basic schema.org-ontologies with datatypes but do not hold for ontologies with
enumeration definitions (as will be shown in the next section). In Schema.org 2015, 45
concept names from a total of 622 are defined using enumeration definitions, and hence
are not covered by the results presented in this section.

We start with noting that the entailment problem for basic schema.org-ontologies is
decidable in polynomial time. This problem is to check whetherO |= α for a given basic
schema.org-ontology O and a given inclusion α of the form allowed in such ontologies.
In fact, the algorithm is straightforward. For example, O |= ran(r) v A1 t · · · tAn if
there is a role name s and a range restriction ran(s) v B1 t · · · t Bm ∈ O such that
OR |= r v s and OC |= Bj v A1 t · · · t An for all 1 ≤ j ≤ m, where OR and OC
denote the set of role inclusions and atomic concept inclusions in O.

Theorem 2. The entailment problem for basic schema.org-ontologies is in PTIME.

The hardness results reported in Theorem 5 crucially rely on existential quantification
in the actual query. In fact, it follows from results in Grau et al. [2013]; Kaminski et al.
[2014b] that given an OMQ Q = (O, q(x)) with O a basic schema.org-ontology and
q(x) a CQ without quantified variables, it is possible to construct a non-recursive datalog
rewriting of Q in polynomial time, and that such OMQs can be evaluated in PTIME in
combined complexity. We aim to push this bound further by admitting restricted forms
of quantification.

A CQ q has qvar-size n if all connected components of quantified variables in the
undirected graph underlying Gq have size at most n. For example, quantifier-free CQs
have qvar-size 0 and the following query q(x, y) has qvar-size 1:

∃z1∃z2
∧

v∈{x,y}
(producedBy(z1, v) ∧musicBy(v, z2))

The above consequences of the work by Grau, Kaminski, et al. can easily be extended
to OMQs where queries have qvar-size one. In what follows, we consider qvar-size
two, which is more subtle and where, in contrast to qvar-size one, reasoning by case
distinction is required. The following example shows that there are CQs of qvar-size
two for which no non-recursive datalog rewriting exists.

Example 5. Let O = {ran(s) v A t B} and consider the following CQ of qvar-size
two: q(x) = ∃x1∃x2(s(x, x1) ∧ A(x1) ∧ r(x1, x2) ∧ B(x2)). It is easy to see that
O,Am |= q(a) for every data instance Am with m ≥ 2 as defined in Figure 1a.

By applying locality arguments and using the data instances Am, one can in fact show
that (O, q(x)) is not FO-rewritable (note that removing one r(bi, bi+1) from Am results
in q(a) no longer being entailed).
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Theorem 3. For every OMQ (O, q(x)) with O a basic schema.org-ontology and q(x)
a CQ of qvar-size at most two, one can construct a datalog-rewriting in polynomial time.
Moreover, evaluating OMQs from this class is in PTIME in combined complexity.

Applied to Example 5, the proof of Theorem 3 yields a datalog rewriting that consists of
the rules

P (x1, x2, x)← s(x, x1) ∧X1(x1) ∧ r(x1, x2) ∧X2(x2)

where the Xi range over A, B, and ∃y r(y, ·), plus

IA(x1, x)← P (x1, x2, x) ∧A(x1) IB(x2, x)← P (x1, x2, x) ∧B(x2)

IA(x2, x)← P (x1, x2, x) ∧ IA(x1, x) IB(x1, x)← P (x1, x2, x) ∧ IB(x2, x)

goal(x)← s(x, x1) ∧ IA(x1, x) ∧ r(x1, x2) ∧ IB(x2, x).

The recursive rule for IA (the one for IB is dual) says that if the only option to possibly
avoid a match for (x1, x2, x) is to color (x1, x) with IA, then the only way to possibly
avoid a match for (x1, x2, x) is to color (x2, x) with IA (otherwise, since ran(s) v
A tB ∈ O, it would have to be colored with IB which gives a match).

The rewriting presented in Theorem 3 can easily be extended to accommodate
datatypes. For schema.org-ontologies O that are not basic, the rewriting is sound but not
necessarily complete, and can thus be used to compute approximate query answers.

Interestingly, Theorem 3 cannot be generalized to UCQs. This follows from the
result in the full version that for basic schema.org-ontologies O and quantifier-free
UCQs q(x) (even without role atoms), the problemO,A |= q(a) is coNP-hard regarding
combined complexity for data instances A with a single individual a. Since evaluating
datalog programs in such data instances is in PTIME, datalog rewritings of UCQ-based
OMQs can thus not be constructed in polynomial time (unless PTIME equals NP).
We note that it is not difficult to show (and follows from FO-rewritability of instance
queries in DL-LiteHbool Artale et al. [2009]) that given an OMQ (O, q(x)) with O a basic
schema.org-ontology and q(x) a quantifier-free UCQ, one can construct an FO-rewriting
in exponential time, and thus query evaluation is in AC0 in data complexity.

We now classify basic schema.org-ontologies O according to the data complexity of
evaluating OMQs (O, q) with q a UCQ (or CQ). It is convenient to work with minimized
ontologies where for all inclusions F v A1 t · · · t An ∈ O and all i ≤ n, there is a
model I of O and a d ∈ ∆Isuch that d satisfies F uAi u u

j 6=i
¬Aj (defined in the usual

way). Every schema.org-ontology can be rewritten in polynomial time into an equivalent
minimized one. We establish the following dichotomy theorem.

Theorem 4. Let O be a minimized basic schema.org-ontology. If there exists F v
A1 t · · · tAn ∈ O with n ≥ 2, then there is a Boolean CQ q that uses only concept and
role names from O and such that (O, q) is CONP-hard in data complexity. Otherwise, a
given OMQ (O, q) with q a UCQ can be rewritten into a non-recursive datalog-program
in polynomial time (and is thus in AC0 in data complexity).

The proof of the second part of Theorem 4 is easy: if there are no F v A1t· · ·tAn ∈ O
with n ≥ 2, then O essentially is already a non-recursive datalog program and the
construction is straightforward. The proof of the hardness part is obtained by extending
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the corresponding part of a dichotomy theorem for ALC-ontologies of depth one Lutz
and Wolter [2012]. The main differences between the two theorems are that (i) for basic
schema.org-ontologies, the dichotomy is decidable in PTIME (whereas decidability is
open for ALC), (ii) the CQs in CONP-hard OMQs use only concept and role names
from O (this is not possible in ALC), and (iii) the dichotomy is between AC0 and CONP
whereas for ALC OMQs can be complete for PTIME, NL, etc.

By Theorem 4, disjunctions in domain and range restrictions are the only reason that
query answering is non-tractable for basic schema.org-ontologies. In Schema.org 2015,
14% of all range restrictions and 20% of all domain restrictions contain disjunctions.

In Theorem 4, we have classified the data complexity of ontologies, quantifying over
the actual queries. In what follows, we aim to classify the data complexity of every OMQ.
This problem turns out to be much harder and, in fact, we show that a classification of
the data complexity of OMQs based on basic schema.org-ontologies and UCQs implies
a classification of constraint satisfaction problems according to their complexity (up
to FO-reductions), a famous open problem that is the subject of significant ongoing
research Feder and Vardi [1998]; Bulatov [2011].

A signature is a set of concept and role names (also called symbols). Let B be a finite
interpretation that interprets only the symbols from a finite signature Σ. The constraint
satisfaction problem CSP(B) is to decide, given a data instance A over Σ, whether there
is a homomorphism from A to B. In this context, B is called the template of CSP(B).

Theorem 5. For every template B, one can construct in polynomial time an OMQ (O, q)
where O is a basic schema.org-ontology and q a Boolean acyclic UCQ such that the
complement of CSP(B) and (O, q) are mutually FO-reducible.

Theorem 13 below establishes the converse direction of Theorem 5 for unrestricted
schema.org-ontologies and a large class of (acyclic) UCQs. From Theorem 13, we obtain
a NEXPTIME-upper bound for deciding FO-rewritability and datalog-rewritability of
a large class of OMQs. It remains open whether this bound is tight, but we can show
a PSPACE lower bound for FO-rewritable using a reduction of the word problem of
PSPACE Turing machines. The proof uses the ontology O and data instances Am
from Example 5 and is similar to a PSPACE lower bound proof for FO-rewritability
in consistent query answering Lutz and Wolter [2015] which is, in turn, based on a
construction from Cosmadakis et al. [1988].

Theorem 6. It is PSPACE-hard to decide whether a given OMQ (O, q) with O a basic
schema.org-ontology and q a Boolean acyclic UCQ is FO-rewritable.

4 Incoherence and Unsatisfiability

In the subsequent section, we consider unrestricted schema.org ontologies instead of
basic ones, that is, we add back enumeration definitions and datatypes. The purpose of
this section is to deal with a complication that arises from this step, namely the potential
presence of inconsistencies. We start with inconsistencies that concern the ontology
alone and then consider inconsistencies that arise from combining an ontology with a
data instance.

An ontology O is incoherent if there exists X ∈ NC ∪ NR such that XI = ∅ for
all models I of O. Incoherent ontologies can result from the UNA for enumeration
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individuals such as in the ontology {A ≡ {a}, B ≡ {b}, A v B}, which has no model
if a 6= b; they can also arise from interactions between concept names and datatypes
such as in the ontology {ran(r) v Integer, ran(s) v A, r v s} with A ∈ NC which has
no model I with rI 6= ∅ since ∆I ∩∆Integer = ∅. Using Theorem 2, one can show:

Theorem 7. Incoherence of schema.org-ontologies can be decided in PTime.

We now turn to inconsistencies that arise from combining an ontology O with a data
instance A for O. As an example, consider O = {A ≡ {a}, B ≡ {b}} and A =
{A(c), B(c)}. Although O is coherent, A is unsatisfiable w.r.t. O. Like incoherence,
unsatisfiability is decidable in polynomial time. In fact, we can even show the following
stronger result.

Theorem 8. Given a schema.org-ontology O, one can compute in polynomial time
a non-recursive datalog program Π such that for any data instance A for O, A is
unsatisfiable w.r.t. O iff Π(A) 6= ∅.
In typical schema.org applications, the data is collected from the web and it is usually
not acceptable to simply report back an inconsistency and stop processing the query.
Instead, one would like to take maximum advantage of the data despite the presence of
an inconsistency. There are many semantics for inconsistent query answering that can be
used for this purpose. As efficiency is paramount in schema.org applications, our choice
is the pragmatic intersection repair (IAR) semantics which avoids CONP-hardness in
data complexity Lembo et al. [2010]; Rosati [2011]; Bienvenu et al. [2014a]. A repair
of a data instance A w.r.t. an ontology O is a maximal subset A′ ⊆ A that is satisfiable
w.r.t. O. We use repO(A) to denote the set of all repairs of A w.r.t. O. The idea of IAR
semantics is then to replace A with

⋂
A′∈repO(A)A′. In other words, we have to remove

from A all assertions that occur in some minimal subset A′ ⊆ A that is unsatisfiable
w.r.t. O. We call such an assertion a conflict assertion.

Theorem 9. Given a schema.org-ontology O and concept name A (resp. role name r),
one can compute a non-recursive datalog program Π such that for any data instance A
for O, Π(A) is the set of all a ∈ Ind(A) (resp. (a, b) ∈ Ind(A)2) such that A(a) (resp.
r(a, b)) is a conflict assertion in A.

By Theorem 9, we can adopt the IAR semantics by simply removing all conflict assertions
from the data instance before processing the query. Programs from Theorem 9 become
exponential in the worst case, but can be expected to be very small in practical cases.
In the remainder of the paper, we assume that ontologies are coherent and that A is
satisfiable w.r.t. O if we query a data instance A using an ontology O.

5 Unrestricted schema.org-Ontologies

We aim to lift the results from Section 3 to unrestricted schema.org-ontologies. Regarding
Theorem 3, it turns out that quantified variables in CQs are computationally much
more problematic when there are enumeration definitions in the ontology. In fact, one
can expect positive results only for quantifier-free CQs, and even then the required
constructions are quite subtle.
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Theorem 10. Given an OMQ Q = (O, q) with O a schema.org-ontology and q a
quantifier-free CQ, one can construct in polynomial time a datalog-rewriting of Q.
Moreover, evaluating OMQs from this class is in PTIME in combined complexity. The
rewriting is non-recursive if q = A(x).

The following example illustrates the construction of the datalog program. Let O =
{A ≡ {a1, a2}} and q() = r(a1, a2). Observe thatO,A′m |= q() for every data instance
A′m defined in Figure 1b. Similarly to Example 5, one can use the data instances A′m to
show that (O, q()) is not FO-rewritable.

A datalog-rewriting of (O, q()) is given by the program Πa1,a2 which contains

goal()← r(a1, a2)

goal()← r(a1, x) ∧ pathA(x, y) ∧ r(y, a2)

pathA(x, y)← r(x, y) ∧A(x) ∧A(y)

pathA(x, y)← pathA(x, z) ∧ pathA(z, y).

It is also instructive to check thatO′,A′m 6|= q() withO′ = {A ≡ {a1, a2, a3}} because
in models of O′, a3 can be identified with some bi, a1 with b1, . . . , bi−1 and a2 with
bi+1, . . . , bm, 1 ≤ i ≤ m.

We now modify the datalog program above to obtain a rewriting of the OMQ
(O, q′(x, y)) with q(x, y) = r(x, y). First, we include in Πr the rules A(a1) ← true
and A(a2)← true. Then we add the following rules:

goal(x, y)← r(x, y), goal(x, y)← A(x) ∧A(y) ∧
∧

1≤i,j≤2
Rai,aj (x, y).

We want to use the latter rule to check that x, y have to be mapped to {a1, a2}, and
that for every possible assignment ai, aj to x, y that is consistent (i.e., we do not have
x ∈ {a1, a2} and x 6= ai, and similarly for y), r(ai, aj) is true. To this end, we add the
rules:

Rai,aj (x, y) ← neq(x, ai) Rai,aj (x, y) ← neq(y, aj)

Rai,aj (x, y) ← goal(ai, aj)

neq(a1, a2) ← true neq(a2, a1) ← true.

It remains to add rules 3 and 4 from Πa1,a2 and

goal(ai, aj)← r(ai, x) ∧ pathA(x, y) ∧ r(y, aj)

for 1 ≤ i, j ≤ 2 and i 6= j.
Theorem 10 is tight in the sense that evaluating CQs with a single atom and a single

existentially quantified variable, as well as quantifier-free UCQs, is coNP-hard in data
complexity. For instance, letO = {dom(e) v A, ran(e) v A, A ≡ {r, g, b}}. Then, an
undirected graph G = (V,E) is 3-colorable iffO, {e(v, w) | (v, w) ∈ E} 6|= ∃x e(x, x).
Alternatively, one may replace the query by r(r, r) ∨ r(g, g) ∨ r(b, b). In fact, one can
prove the following variant of Theorem 5 which shows that classifying OMQs with
ontologies using only enumeration definitions and quantifier-free UCQs according to
their complexity is as hard as CSP.
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Theorem 11. Given a template B, one can construct in polynomial time an OMQ (O, q)
where O only contains enumeration definitions and q is a Boolean variable-free UCQ
such that the complement of CSP(B) and (O, q) are mutually FO-reducible.

We now turn to classifying the complexity of ontologies and of OMQs, starting with a
generalization of Theorem 4 to unrestricted schema.org-ontologies.

Theorem 12. Let O be a coherent and minimized schema.org-ontology. If O contains
an enumeration definition A ≡ {a1, . . . , an} with n ≥ 2 or contains an inclusion
F v A1 t · · · tAn such that there are at least two concept names in {A1, . . . , An} and
O 6|= F v A t t

(D,∆D)∈DT
D for any A with A ≡ {a} ∈ O, then (O, q) is coNP-hard

for some Boolean CQ q. Otherwise every (O, q) with q a UCQ is FO-rewritable (and
thus in AC0 in data complexity).

Note that, in contrast to Theorem 4, being in AC0 does not mean that no ‘real disjunction’
is available. For example, for O = {ran(r) v A t B,A v C,B v C,C ≡ {c}} and
A = {r(a, b)} we have O,A |= A(b) ∨ B(b) and neither A(b) nor B(b) are entailed.
This type of choice does not affect FO-rewritability, however, since it is restricted to
individuals that must be identified with a unique individual in NE(O). Note that, for
the hardness proof, we now need to use a role name that possibly does not occur in O.
For example, for O = {A ≡ {a1, a2}} there exists a Boolean CQ q such that (O, q) is
NP-hard, but constructing q requires a fresh role name.

We now consider the complexity of single OMQs and show a converse of Theorems 5
and 11 for schema.org-ontologies and UCQs that are qvar-acyclic, that is, when all atoms
r(t, t′) with neither of t, t′ a quantified variable are dropped, then all CQs in it are acyclic.
We use generalized CSPs with marked elements in which instead of a single template B,
one considers a finite set Γ of templates whose signature contains, in addition to concept
and role names, a finite set of individual names. Homomorphisms have to respect also
the individual names and the problem is to decide whether there is a homomorphism
from the input interpretation to some B ∈ Γ . Every such CSP is mutually FO-reducible
with some standard CSP and FO-definability and datalog definability of the complement
of generalized CSPs with marked elements are NP-complete Bienvenu et al. [2014b].

Theorem 13. Given an OMQ (O, q) withO a schema.org-ontology and q a qvar-acyclic
UCQ, one can compute in exponential time a generalized CSP with marked elements Γ
such that (O, q) and the complement of CSP(Γ ) are mutually FO-reducible.

The proof uses an encoding of qvar-acyclic queries into concepts in the description
logic ALCIUO that extends ALC by inverse roles, the universal role, and nominals. It
extends the the template constructions of Bienvenu et al. [2014b] to description logics
with nominals. As a particularly interesting consequence of Theorem 13, we obtain:

Theorem 14. FO-rewritability and datalog-rewritability of OMQs (O, q) with O a
schema.org-ontology and q a qvar-acyclic UCQ are decidable in NEXPTIME.

6 Conclusion
The work presented in this paper lays a solid foundation for attacking many interesting
and practically relevant questions that can be asked about querying in the presence of
schema.org-ontologies. Topics of interest include different forms of queries such as
SPARQL and regular path queries as well as uncertainty in the data that accounts for
varying levels of trust in different data sources.
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Birte Glimm and Markus Krötzsch. SPARQL beyond subgraph matching. In ISWC,
volume 6496 of LNCS, pages 241–256. Springer, 2010.

Bernardo Cuenca Grau, Boris Motik, Giorgos Stoilos, and Ian Horrocks. Computing
datalog rewritings beyond horn ontologies. In IJCAI, 2013.

Ramanathan V. Guha. Light at the end of the tunnel? Invited Talk, ISWC,
https://www.youtube.com/watch?v=oFY-0QoxBi8, 2013.

Mark Kaminski, Yavor Nenov, and Bernardo Cuenca Grau. Computing datalog rewritings
for disjunctive datalog programs and description logic ontologies. In Web Reasoning
and Rule Systems, pages 76–91, 2014.

Mark Kaminski, Yavor Nenov, and Bernardo Cuenca Grau. Datalog rewritability of
disjunctive datalog programs and its applications to ontology reasoning. In AAAI,
pages 1077–1083, 2014.

Domenico Lembo, Maurizio Lenzerini, Riccardo Rosati, Marco Ruzzi, and
Domenico Fabio Savo. Inconsistency-tolerant semantics for description logics. In
Web Reasoning and Rule Systems, pages 103–117, 2010.

Carsten Lutz and Frank Wolter. Non-uniform data complexity of query answering in
description logics. In Proc. of KR, 2012.

152



Carsten Lutz and Frank Wolter. On the relationship between consistent query answering
and constraint satisfaction problems. In ICDT, 2015.

Peter F. Patel-Schneider. Analyzing schema.org. In ISWC, Part I, pages 261–276, 2014.
Riccardo Rosati. On the complexity of dealing with inconsistency in description logic

ontologies. In IJCAI, pages 1057–1062, 2011.
Benjamin Rossman. Homomorphism preservation theorems. J. ACM, 55(3), 2008.

153



Polynomial Horn Rewritings for
Description Logics Ontologies?

Mark Kaminski and Bernardo Cuenca Grau

Department of Computer Science, University of Oxford, UK

Abstract. We study the problem of rewriting an ontology O1 in a DL
L1 into an ontology O2 in a Horn DL L2 such that O1 and O2 are equi-
satisfiable when extended with any dataset. After showing undecidability
whenever L1 extends ALCF , we focus on devising efficiently checkable
conditions that ensure existence of a Horn rewriting. By lifting existing
Datalog rewriting techniques for Disjunctive Datalog programs to first-
order programs with function symbols, we identify a class of ontologies
that admit Horn rewritings of polynomial size. Our experiments indicate
that many real-world ontologies admit such polynomial Horn rewritings.

1 Introduction

Reasoning over ontology-enriched datasets is a key requirement in many appli-
cations. Standard reasoning tasks are, however, of high worst-case complexity.
Satisfiability checking is 2NExpTime-complete for the DL SROIQ underpin-
ning OWL 2 and NExpTime-complete for SHOIN , which underpins OWL
DL [13]. Reasoning is also co-NP-hard in data complexity—a key measure of
complexity for applications involving large amounts of instance data [9].

Tractability in data complexity is typically associated with Horn DLs, where
ontologies correspond to first-order Horn clauses [18, 9]. The more favourable
computational properties of Horn DLs make them a natural choice for data-
intensive applications, but they also come at the expense of a loss in expressive
power. In particular, Horn DLs cannot capture disjunctive axioms, i.e., state-
ments such as “every X is either a Y or a Z”. Disjunctive axioms are common
in real-world ontologies, like the NCI Thesaurus or the ontologies underpinning
the EBI linked data platform (see http://www.ebi.ac.uk/rdf/platform).

In this paper we are interested in Horn rewritability of description logic on-
tologies; that is, whether an ontology O1 in a DL L1 can be restated as an ontol-
ogy O2 in a Horn DL L2 such that O1 and O2 are equisatisfiable when extended
with an arbitrary dataset. Ontologies admitting such rewritings are amenable to
more efficient reasoning techniques that are tractable in data complexity.

Horn rewritability of DL ontologies is strongly related to the rewritability of
Disjunctive Datalog programs into Datalog, where both the source and target

? Work supported by the Royal Society, the EPSRC projects Score!, MaSI3 and
DBOnto, and the FP7 project Optique.
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languages for rewriting are function-free. Kaminski et al. [12] characterised Dat-
alog rewritability of Disjunctive Datalog programs in terms of linearity: a restric-
tion that requires each rule to contain at most one body atom that is IDB (i.e.,
whose predicate also occurs in head position in the program). It was shown that
every linear Disjunctive Datalog program can be rewritten into plain Datalog
(and vice versa) by means of program transposition—a polynomial transforma-
tion in which rules are “inverted” by shuffling all IDB atoms between head and
body while replacing their predicates by auxiliary ones. Subsequently, Kaminski
et al. [11] proposed the class of markable Disjunctive Datalog programs, where
the linearity requirement is relaxed so that it applies only to a subset of “marked”
atoms. Every markable program can be polynomially rewritten into Datalog by
exploiting a variant of transposition where only marked atoms are affected.

Our contributions in this paper are as follows. In Section 3, we show undecid-
ability of Horn rewritability for ontologies in ALCF . This is in consonance with
the related undecidability results by Bienvenu et al. [3] and Lutz and Wolter [17].
In Section 4, we lift the markability condition and the transposition transforma-
tion in [11] for Disjunctive Datalog to first-order programs with function symbols.
We then show that all markable programs admit Horn rewritings of polynomial
size. This result is rather general and has potential implications in areas such
as theorem proving [19] and knowledge compilation [5]. The notion of markabil-
ity for first-order programs easily transfers to ontologies via the standard FOL
translation of DLs [2]. This is, however, of limited practical value since Horn
programs obtained via transposition may not be expressible using standard DL
constructors. In Section 5, we introduce an alternative satisfiability-preserving
translation from ALCHIF ontologies to first-order programs and show in Sec-
tion 6 that the corresponding transposed programs can be translated back into
Horn-ALCHIF ontologies. Finally, we focus on complexity and show that rea-
soning over markable L-ontologies is ExpTime-complete in combined complexity
and PTime-complete w.r.t. data for each DL L between ELU and ALCHIF .
All our results immediately extend to DLs with transitive roles (e.g., SHIF) by
exploiting standard transitivity elimination techniques [2].

We have implemented markability checking and evaluated our techniques on
a large ontology repository. Our results indicate that many real-world ontologies
are markable and thus admit Horn rewritings of polynomial size.

All proofs are deferred to an extended version (see arXiv:1504.05150).

2 Preliminaries

We assume standard first-order syntax and semantics. We treat the universal
truth > and falsehood ⊥ symbols as well as equality (≈) as ordinary predicates
of arity one (> and ⊥) and two (≈), the meaning of which will be axiomatised.

Programs A (first-order) rule is a sentence ∀x∀z.[ϕ(x, z) → ψ(x)] where
variables x and z are disjoint, ϕ(x, z) is a conjunction of distinct atoms over
x∪ y, and ψ(x) is a disjunction of distinct atoms over x. Formula ϕ is the body
of r, and ψ is the head. Quantifiers are omitted for brevity, and safety is assumed
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T1.
dn

i=1 Ai v
⊔m

j=1 Cj
∧n

i=1 Ai(x)→
∨m

j=1 Cj(x)

T2. ∃R.A v C at(R, x, y) ∧ A(y)→ C(x)

T3. A v ∃R.B A(x)→ at(R, x, f(x)); A(x)→ B(f(x))

T4. A v ∀R.C A(x) ∧ at(R, x, y)→ C(y)

T5. S v R S(x, y)→ at(R, x, y)

T6. A v ≤ 1R.B A(z) ∧ at(R, z, x1) ∧ at(R, z, x2) ∧ B(x1) ∧ B(x2)→ x1 ≈ x2

Table 1. Normalised DL axioms. A,B are named or >; C named or ⊥; role S is named
and R is a (possibly inverse) role.

(all variables in the rule occur in the body). We define the following sets of rules
for a finite signature Σ: (i) P>Σ consists of a rule P (x1, . . . , xn) → >(xi) for
each predicate P ∈ Σ and each 1 ≤ i ≤ n and a rule → >(a) for each constant
a ∈ Σ; (ii) P⊥Σ consists of the rule with ⊥(x) in the body and an empty head; and
(iii) P≈Σ consists of the standard axiomatisation of ≈ as a congruence over Σ. A
program is a finite set of rules P = P0 ∪P>Σ ∪P⊥Σ ∪P≈Σ with Σ the signature of
P0, where we assume w.l.o.g. that the body of each rule in P0 does not mention
⊥ or ≈, and the head is non-empty and does not mention >. We omit Σ for the
components of P and write P>, P⊥ and P≈. A rule is Horn if its head consists
of at most one atom, and a program is Horn if so are all of its rules. Finally, a
fact is a ground, function-free atom, and a dataset is a finite set of facts.

Ontologies A signature Σ consists of disjoint countable sets of concept names
ΣC and role names ΣR. A role is an element of ΣR ∪ {R− | R ∈ ΣR}. The
function inv is defined over roles as follows, where R ∈ ΣR: inv(R) = R− and
inv(R−) = R. W.l.o.g., we consider normalised axioms as on the left-hand side
of Table 1. An ALCHIF ontology O is a finite set of axioms of type T1-T6 in
Table 1. An ontology is Horn if it contains no axiom T1 where m ≥ 2. Given O,
we write v∗ for the minimal reflexive and transitive relation over roles in O s.t.
R1 v∗ R2 and inv(R1) v∗ inv(R2) hold whenever R1 v R2 ∈ O.

We refer to the DL where only axioms T1–T3 are available and inverse roles
are disallowed as ELU . The logic ALC extends ELU with axioms T4. We then
use standard naming conventions for DLs based on the presence of inverses (I),
axioms T5 (H) and axioms T6 (F). An ontology is EL if it is ELU and Horn.

Table 1 also provides the standard translation π from normalised axioms into
rules, where at(R, x, y) stands for R(x, y) if R is named and S(y, x) if R = S−.
We define π(O) as the smallest program containing π(α) for each axiom α in O.
Given a dataset D, we say that O ∪D is satisfiable iff so is π(O) ∪ D in FOL.

3 Horn Rewritability

Our focus is on satisfiability-preserving rewritings. Standard reasoning tasks
in DLs are reducible to unsatisfiability checking [2], which makes our results
practically relevant. We start by formulating our general notion of rewriting.
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Definition 1. Let F ,F ′ be sets of rules. Then F ′ is a rewriting of F if it holds
that F∪D is satisfiable iff so is F ′∪D for each dataset D over predicates from F .

We are especially interested in computing Horn rewritings of ontologies—
that is, rewritings where the given ontology O1 is expressed in a DL L1 and the
rewritten ontologyO2 is in a Horn DL L2 (where preferably L2 ⊆ L1). This is not
possible in general: satisfiability checking is co-NP-complete in data complexity
even for the basic logic ELU [14], whereas data complexity is tractable even for
highly expressive Horn languages such as Horn-SROIQ [18]. Horn rewritability
for DLs can be formulated as a decision problem as follows:

Definition 2. The (L1,L2)-Horn rewritability problem for DLs L1 and L2 is to
decide whether a given L1-ontology admits a rewriting expressed in Horn-L2.

Our first result establishes undecidability whenever the input ontology con-
tains at-most cardinality restrictions and thus equality. This result fits in with
the related undecidability results by Bienvenu et al. [3] and Lutz and Wolter [17]
for Datalog rewritability and non-uniform data complexity for ALCF ontologies.

Theorem 3. (L1,L2)-Horn rewritability is undecidable for L1 = ALCF and L2

any DL between ELU and ALCHIF . This result holds if PTime6=NP.

Intractability results in data complexity rely on the ability of non-Horn DLs
to encode co-NP-hard problems, such as non-3-colourability [14, 9]. In practice,
however, it can be expected that ontologies do not encode such problems. Thus,
our focus from now onwards will be on identifying classes of ontologies that
admit (polynomial size) Horn rewritings.

4 Program Markability and Transposition

In this section, we introduce the class of markable programs and show that
every markable program can be rewritten into a Horn program by means of a
polynomial transformation, which we refer to as transposition. Roughly speaking,
transposition inverts the rules in a program P by moving certain atoms from head
to body and vice versa while replacing their corresponding predicates with fresh
ones. Markability of P ensures that we can pick a set of predicates (a marking)
such that, by shuffling only atoms with a marked predicate, we obtain a Horn
rewriting of P. Our results in this section generalise the results by Kaminski et
al. [11] for Disjunctive Datalog to first-order programs with function symbols.

To illustrate our definitions throughout this section, we use an example pro-
gram Pex consisting of the following rules:

A(x)→ B(x) B(x)→ C(x) ∨D(x)

C(x)→ ⊥(x) D(x)→ C(f(x))

Markability. The notion of markability involves a partitioning of a program’s
predicates into Horn and disjunctive: the extension of Horn predicates for all
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datasets depends only on the Horn rules in the program while the extension of
disjunctive predicates may depend on a disjunctive rule. This intuition can be for-
malised using the standard notion of a dependency graph in logic programming.

Definition 4. The dependency graph GP = (V,E, µ) of a program P is the
smallest edge-labeled digraph such that: (i) V contains all predicates in P; (ii) r ∈
µ(P,Q) whenever r ∈ P, P is in the body of r, and Q is in the head of r; and
(iii) (P,Q) ∈ E whenever µ(P,Q) 6= ∅. A predicate Q depends on r ∈ P if GP
has a path ending in Q and involving an r-labeled edge. Predicate Q is Horn if
it depends only on Horn rules; otherwise, Q is disjunctive.

For instance, predicates C, D, and ⊥ are disjunctive in our example program Pex,
whereas A and B are Horn. We can now introduce the notion of a marking—a
subset of the disjunctive predicates in a program P ensuring that the transposi-
tion of P where only marked atoms are shuffled between head and body results
in a Horn program.

Definition 5. A marking of a program P is a set M of disjunctive predicates in
P satisfying the following properties, where we say that an atom is marked if its
predicate is in M : (i) each rule in P has at most one marked body atom; (ii) each
rule in P has at most one unmarked head atom; and (iii) if Q ∈ M and P is
reachable from Q in GP , then P ∈M . A program is markable if it has a marking.

Condition (i) in Def. 5 ensures that at most one atom is moved from body to
head during transposition. Condition (ii) ensures that all but possibly one head
atom are moved to the body. Finally, condition (iii) requires that all predicates
depending on a marked predicate are also marked. We can observe that our
example program Pex admits two markings: M1 = {C,⊥} and M2 = {C,D,⊥}.

Markability can be efficiently checked via a 2-SAT reduction, where we assign
to each predicate Q in P a variable XQ and encode the constraints in Def. 5 as
2-clauses. For each rule ϕ ∧∧ni=1 Pi(si)→

∨m
j=1Qj(tj), with ϕ the conjunction

of all Horn atoms in the head, we include clauses (i) ¬XPi
∨ ¬XPj

for all 1 ≤
i < j ≤ n, which enforce at most one body atom to be marked; (ii) XQi ∨XQj

for 1 ≤ i < j ≤ m, which ensure that at most one head atom is unmarked; and
(iii) ¬XPi

∨XQj
for 1 ≤ i ≤ n and 1 ≤ j ≤ m, which close markings under rule

dependencies. Each model of the resulting clauses yields a marking of P.

Transposition. Before defining transposition, we illustrate the main intuitions
using program Pex and marking M1.

The first step to transpose Pex is to introduce fresh unary predicates C and
⊥, which stand for the negation of the marked predicates C and ⊥. To capture
the intended meaning of these predicates, we introduce rules X(x) → ⊥(x) for
X ∈ {A,B,C,D} and a rule ⊥(x) → ⊥(f(x)) for the unique function symbol
f in Pex. The first rules mimick the usual axiomatisation of > and ensure that
an atom ⊥(c) holds in a Herbrand model of the transposed program whenever
X(c) also holds. The last rule ensures that ⊥ holds for all terms in the Herbrand
universe of the transposed program—an additional requirement that is consistent
with the intended meaning of ⊥, and critical to the completeness of transposition
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in the presence of function symbols. Finally, a rule ⊥(z) ∧ C(x) ∧ C(x)→ ⊥(z)
ensures that the fresh predicate C behaves like the negation of C.

The key step of transposition is to invert the rules involving the marked
predicates by shuffling marked atoms between head and body while replacing
their predicate with the corresponding fresh one. In this way, rule B(x)→ C(x)∨
D(x) yields B(x) ∧ C(x) → D(x), and C(x) → ⊥(x) yields ⊥(x) → C(x).
Additionally, rule D(x) → C(f(x)) is transposed as ⊥(z) ∧ D(x) ∧ C(f(x)) →
⊥(z) to ensure safety. Finally, transposition does not affect rules containing only
Horn predicates, e.g., rule A(x)→ B(x) is included unchanged.

Definition 6. Let M be a marking of a program P. For each disjunctive pred-
icate P in P, let P be a fresh predicate of the same arity. The M -transposition
of P is the smallest program ΞM (P) containing every rule in P involving only
Horn predicates and all rules given next, where ϕ is the conjunction of all Horn
atoms in a rule, ϕ> is the least conjunction of ⊥-atoms making a rule safe:

1. ϕ>∧ϕ∧
∧m
j=1Qj(tj)∧

∧n
i=1 P i(si)→ Q(t) for each rule in P of the form ϕ∧

Q(t) ∧∧mj=1Qj(tj)→
∨n
i=1 Pi(si) where Q(t) is the only marked body atom;

2. ⊥(x) ∧ ϕ ∧∧mj=1Qj(tj) ∧
∧n
i=1 P i(si) → ⊥(x), where x a fresh variable, for

each rule in P of the form ϕ ∧∧mj=1Qj(tj) →
∨n
i=1 Pi(si), with no marked

body atoms and no unmarked head atoms;
3. ϕ ∧ ∧mj=1Qj(tj) ∧

∧n
i=1 P i(si) → P (s) for each rule in P of the form ϕ ∧∧m

j=1Qj(tj)→P (s)∨∨ni=1 Pi(si) where P (s) is the only unmarked head atom;

4. ⊥(z) ∧ P (x) ∧ P (x)→ ⊥(z) for marked predicate P ;
5. P (x1, . . . , xn)→ ⊥(xi) for each P in P and 1 ≤ i ≤ n;
6. ⊥(x1)∧. . .∧⊥(xn)→ ⊥(f(x1, . . . , xn)) for each n-ary function symbol f in P.

Clearly, Pex is unsatisfiable when extended with fact A(a). To see that ΞM1
(Pex)∪

{A(a)} is also unsatisfiable, note that B(a) is derived by the unchanged rule
A(x)→ B(x). Fact C(a) is derived using A(x)→ ⊥(x) and the transposed rule
⊥(x) → C(x). We derive D(a) using B(x) ∧ C(x) → D(x). But then, to derive
a contradiction we need to apply rule ⊥(z) ∧D(x) ∧ C(f(x)) → ⊥(z), which is
not possible unless we derive C(f(a)). For this, we first use ⊥(x) → ⊥(f(x)),
which ensures that ⊥ holds for f(a), and then ⊥(x)→ C(x).

Theorem 7. Let M be a marking of a program P. Then ΞM (P) is a polynomial-
size Horn rewriting of P.

It follows that every markable set of non-Horn clauses N can be polynomially
transformed into a set of Horn clauses N ′ such that N ∪ D and N ′ ∪ D are
equisatisfiable for every set of facts D. This result is rather general and has
potential applications in first-order theorem proving, as well as in knowledge
compilation, where Horn clauses are especially relevant [5, 6].

5 Markability of DL Ontologies

The notion of markability is applicable to first-order programs and hence can
be seamlessly adapted to ontologies via the standard translation π in Table 1.
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Ontology Oex Rule translation ξ(Oex) Transposition ΞMex (ξ(Oex)) Horn DL rewriting

α1 A v B t C A(x)→ B(x) ∨ C(x) A(x) ∧ B(x)→ C(x) A u B v C
α2 B v ∃R.D B(x)→ D(fR,D(x)) D(fR,D(x))→ B(x) ∃RD.D v B
α3 ∃R.D v D R(x, y) ∧D(y)→D(x) R(x, y) ∧D(x)→ D(y) D v ∀R.D

D(fR,D(x))→ D(x) D(x)→ D(fR,D(x)) D v ∀RDD

D(fR,B(x))→ D(x) D(x)→ D(fR,B(x)) D v ∀RBD

α4 C v ∃R.B C(x)→ B(fR,B(x)) ⊥(z) ∧ C(x) ∧ B(fR,B(x))→ ⊥(z) C u ∃RB .B v ⊥
α5 D u E v ⊥ D(x) ∧ E(x)→ ⊥(x) E(x) ∧ ⊥(x)→ D(x) E u ⊥ v D

X(x)→⊥(x), X ∈{A,B,C,D,E} X v ⊥
R(x1, x2)→ ⊥(xi), 1 ≤ i ≤ 2 > v ∀R.⊥, ∃R.>v⊥
⊥(x)→ ⊥(fR,Y (x)), Y ∈{B,D} ⊥ v ∃RY .⊥

Table 2. Rewriting the example ELU ontology Oex into a Horn-ALC ontology using
the marking Mex = {B,D,⊥}.

This, however, would be of limited value since the Horn programs resulting from
transposition may not be expressible in Horn-ALCHIF .

Consider any ontology with an axiom ∃R.A v B and any marking M involv-
ing R. Rule R(x, y) ∧ A(y) → B(x) stemming from π would be transposed as
B(x) ∧A(y)→ R(x, y), which cannot be captured in ALCHIF .1

To address this limitation we introduce an alternative translation ξ from
DL axioms into rules, which we illustrate using the example ontology Oex in
Table 2. The key idea is to encode existential restrictions in axioms T3 as unary
atoms over functional terms. For instance, axiom α2 in Oex would yield B(x)→
D(fR,D(x)), where the “successor” relation between an instance b of B and some
instance of D in a Herbrand model is encoded as a term fR,D(b), instead of a
binary atom of the form R(b, g(b)). This encoding has an immediate impact on
markings: by marking B we are only forced to also mark D (rather than both R
andD). In this way, we will ensure that markings consist of unary predicates only.

To compensate for the lack of binary atoms involving functional terms in
Herbrand models, we introduce new rules when translating axioms T2, T4, and
T6 using ξ. For instance, ξ(α3) yields the following rules in addition to π(α3): a
rule D(fR,D(x))→ D(x) to ensure that all objects c with an R-successor fR,D(c)
generated by ξ(α2) are instances of D; a rule D(fR,B(x))→ D(x), which makes
sure that an object whose R-successor generated by ξ(α4) is an instance of D
is also an instance of D. Finally, axioms α1 and α5, which involve no binary
predicates, are translated as usual.

Definition 8. Let O be an ontology. For each concept ∃R.B in an axiom of type
T3, let fR,B be a unary function symbol, and Φ the set of all such symbols. We
define ξ(O) as the smallest program containing π(α) for each axiom α of type
T1–T2 and T4–T6, as well as the following rules:

– A(x)→ B(fR,B(x)) for each axiom T3;

1 Capturing such a rule would require a DL that can express products of concepts [20].
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– A(fR′,Y (x))→ C(x) for each axiom T2 and R′, Y s.t. fR′,Y ∈ Φ and R′ v∗ R;
– A(finv(R′),Y (x))→C(x) for each ax. T4 and R′, Y s.t. finv(R′),Y ∈Φ, R′ v∗ R;
– A(x) ∧ Y (finv(R′),Y (x)) → C(finv(R′),Y (x)) for each axiom T2 and R′, Y s.t.
finv(R′),Y ∈ Φ and R′ v∗ R;

– A(x)∧Y (fR′,Y (x))→ C(fR′,Y (x)) for each axiom T4 and R′, Y s.t. fR′,Y ∈ Φ
and R′ v∗ R;

– A(z) ∧ B(fR′,Y (z)) ∧ at(R, z, x) ∧ B(x) → fR′,Y (z) ≈ x for each ax. T6 and
R′, Y s.t. fR′,Y ∈ Φ and R′ v∗ R;

– A(finv(R′),Y (x))∧B(x)∧ at(R, finv(R′),Y (x), y)∧B(y)→ x ≈ y for each axiom
T6 and R′, Y s.t. finv(R′),Y ∈ Φ and R′ v∗ R;

– A(z) ∧ B(fR′
1,Y1

(z)) ∧ B(fR′
2,Y2

(z)) → fR′
1,Y1

(z) ≈ fR′
2,Y2

(z) for each axiom
T6 and fR′

i,Yi
∈ Φ s.t. R′i v∗ R;

– A(finv(R′
1),Y1

(x))∧B(x)∧B(fR′
2,Y2

(finv(R′
1),Y1

(x)))→ x ≈ fR′
2,Y2

(finv(R′
1),Y1

(x))
for each axiom T6 and R′i, Yi s.t. {finv(R′

1),Y1
, fR′

2,Y2
} ⊆ Φ and R′i v∗ R.

The translation ξ(Oex) of our example ontology Oex is given in the second column
of Table 2. Clearly, Oex is unsatisfiable when extended with A(a) and E(a). We
can check that ξ(Oex) ∪ {A(a), E(a)} is also unsatisfiable.

Theorem 9. For every ontology O and dataset D over predicates in O we have
that O ∪D is satisfiable iff so is ξ(O) ∪ D.

This translation has a clear benefit for markability checking: in contrast to
π(O), binary predicates in ξ(O) do not belong to any minimal marking. In
particular, Mex = {B,D,⊥} is the only minimal marking of ξ(Oex).

Proposition 10. (i) If ≈ is Horn in ξ(O) then so are all binary predicates in
ξ(O). (ii) If ξ(O) is markable, it has a marking containing only unary predicates.

Thus, we define markability of ontologies in terms of ξ rather than π. We can
check that π(Oex) is not markable, whereas ξ(Oex) admits the marking Mex.

Definition 11. An ontology O is markable if so is ξ(O).

We conclude this section with the observation that markability of an ontology
O can be efficiently checked by first computing the program ξ(O) and then
exploiting the 2-SAT encoding sketched in Section 4.

6 Rewriting Markable Ontologies

It follows from the correctness of transposition in Theorem 7 and ξ in Theorem
9 that every ALCHIF ontology O admitting a marking M has a Horn rewriting
of polynomial size given as the program ΞM (ξ(O)). In what follows, we show
that this rewriting can be expressed within Horn-ALCHIF .

Let us consider the transposition of ξ(Oex) via the marking Mex, which is
given in the third column of Table 2. The transposition of α1 and α5 corresponds
directly to DL axioms via the standard translation in Table 1. In contrast, the
transposition of all other axioms leads to rules that have no direct correspondence
in DLs. The following lemma establishes that the latter rules are restricted to
the types T7–T20 specified on the left-hand side of Table 3.
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T7. ⊥(z) ∧ B(x) ∧ R(x, y) ∧ A(y)→ ⊥(z) B u ∃R.A v ⊥
T8. ⊥(z) ∧ A(fR,Y (x)) ∧ B(x)→ ⊥(z) B u ∃RY .A v ⊥
T9. ⊥(x)→ ⊥(fR,Y (x)) ⊥ v ∃RY .⊥
T10. B(x)→ A(fR,Y (x)) B v ∀RY .A if A 6= ⊥ or B 6= ⊥
T11. B(fR,Y (x))→ A(x) ∃RY .B v A
T12. A(x) ∧ B(fR,Y (x))→ C(fR,Y (x)) A u ∃RY .B v ∀RY .C

T13. ⊥(z) ∧ A(x) ∧ B(fR,Y (x)) ∧ C(fR,Y (x))→ ⊥(z) A u ∃RY (B u C) v ⊥
T14. B(fR,Y (x)) ∧ C(fR,Y (x))→ A(x) ∃RY (B u C) v A
T15. A(z) ∧ B(fR′,Y (z)) ∧ at(R, z, x) ∧ B(x) R′

Y v S{R′
Y

,R}, R v S{R′
Y

,R},

→ fR′,Y (z) ≈ x A v ≤1S{R′
Y

,R}.B

T16. A(fR′,Y (x)) ∧ B(x) ∧ at(R, fR′,Y (x), y) ∧ B(y) R̃′
Y v S{R̃′

Y
,R}, R v S{R̃′

Y
,R},

→ x ≈ y A v ≤1S{R̃′
Y

,R}.B, R̃′
Y ≡ inv(R′

Y )

T17. A(z) ∧ B(fR,Y (z)) ∧ B(fR′,Z(z)) RY v S{RY ,R′
Z

}, R′
Z v S{RY ,R′

Z
},

→ fR,Y (z) ≈ fR′,Z(z) A v ≤1S{RY ,R′
Z

}.B

T18. A(fR,Y (x)) ∧ B(x) ∧ B(fR′,Z(fR,Y (x))) R̃Y v S{R̃Y ,R′
Z

}, R′
Z v S{R̃Y ,R′

Z
},

→ x ≈ fR′,Z(fR,Y (x)) A v ≤1S{R̃Y ,R′
Z

}.B, R̃Y ≡ inv(RY )

T19. R(x, y)→ ⊥(x) ∃R.> v ⊥
T20. R(x, y)→ ⊥(y) > v ∀R.⊥

Table 3. Transformation Ψ from transposed rules to DLs. Role names R̃ are fresh for
every R, and S{R,R′} for every {R,R′}.

Lemma 12. Let O be an ontology and M a minimal marking of ξ(O). Then
ΞM (ξ(O)) contains only Horn rules of type T1–T2 and T4–T6 in Table 1 as well
as type T7–T20 in Table 3.

We can now specify a transformation Ψ that allows us to translate rules
T7–T20 in Table 3 back into DL axioms.

Definition 13. We define Ψ as the transformation mapping (i) each Horn rule
r of type T1–T2 and T4–T6 in Table 1 to the DL axiom π−1(r) (ii) each rule
T7–T20 on the left-hand side of Table 3 to the axioms on the right-hand side.2

Intuitively, Ψ works as follows: (i) Function-free rules are “rolled up” as usual
into DL axioms (see e.g., T7). (ii) Unary atoms A(fR,Y (x)) with A 6= ⊥ that
involve a functional term are translated as existentially or universally quantified
concepts depending on whether they occur in the body or in the head (e.g., T10,
T11); in contrast, atoms ⊥(fR,Y (x)) in rules ⊥(x)→ ⊥(fR,Y (x)) are translated
as ∃RY .⊥ instead of ∀RY .⊥ (T9). (iii) Rules T15–T18, which involve ≈ in the
head and roles R′ and R in the body, are rolled back into axioms of type T6 over
the “union” of R and R′, which is captured using fresh roles and role inclusions.

The ontology obtained by applying Ψ to our running example is given in the
last column of Table 2. Correctness of Ψ and its implications for the computation
of Horn rewritings are summarised in the following lemma.

2 For succinctness, axioms resulting from T7, T8, T12, T13, T14, T16 and T18 are
not given in normal form.
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Lemma 14. Let O be a markable ALCHIF ontology and let M be a marking
of O. Then the ontology Ψ(ΞM (ξ(O))) is a Horn rewriting of O.

A closer look at our transformations reveals that our rewritings do not in-
troduce constructs such as inverse roles and cardinality restrictions if these were
not already present in the input ontology. In contrast, fresh role inclusions may
originate from cardinality restrictions in the input ontology. As a result, our ap-
proach is language-preserving: if the input O1 is in a DL L1 between ALC and
ALCHI, then its rewriting O2 stays in the Horn fragment of L1; furthermore,
if L1 is between ALCF and ALCIF , then O2 may contain fresh role inclusions
(H). A notable exception is when O1 is an ELU ontology, in which case axioms
T2 and T3 in O1 may yield axioms of type T4 in O2. The following theorem
follows from these observations and Lemma 14.

Theorem 15. Every markable L ontology is polynomially Horn-L rewritable
whenever L is between ALC and ALCHI. If L is between ALCF and ALCHIF ,
every markable L ontology is polynomially rewritable into Horn-LH. Finally,
every markable ELU ontology is polynomially rewritable into Horn-ALC.

We conclude by establishing the complexity of satisfiability checking over
markable ontologies. We first show that the problem is ExpTime-hard for mark-
able ELU ontologies, which implies that it is not possible to polynomially rewrite
every markable ELU ontology into EL. Thus, our rewriting approach is optimal
for ELU in the sense that introducing universal restrictions (or equivalently in-
verse roles) in the rewriting is unavoidable.

Lemma 16. Satisfiability checking over markable ELU is ExpTime-hard.

All Horn DLs from ALC to ALCHIF are ExpTime-complete in combined
complexity and PTime-complete in data complexity [15]. By Theorem 15, the
same holds for markable ontologies in DLs from ALC to ALCHIF . Finally,
Lemma 16 shows that these results extend to markable ELU ontologies.

Theorem 17. Let L be in-between ELU and ALCHIF . Satisfiability checking
over markable L-ontologies is ExpTime-complete and PTime-complete in data.

7 Related Work

Horn logics are common target languages for knowledge compilation [5]. Selman
and Kautz [21] proposed an algorithm for compiling a set of propositional clauses
into a set of Horn clauses s.t. their Horn consequences coincide. This approach
was generalised to FOL by Del Val [6], without termination guarantees.

Bienvenu et al. [3] showed undecidability of Datalog rewritability for ALCF
and decidability in NExpTime for SHI. Cuenca Grau et al. [4] and Kamin-
ski et al. [11] proposed practical techniques for computing Datalog rewritings
of SHI ontologies based on a two-step process. First, O is rewritten using a
resolution calculus Ω into a Disjunctive Datalog program Ω(O) of exponential
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size [10]. Second, Ω(O) is rewritten into a Datalog program P. For the second
step, Kaminski et al. [11] propose the notion of markability of a Disjunctive Dat-
alog program and show that P can be polynomially computed from Ω(O) using
transposition whenever Ω(O) is markable. In contrast to our work, Kaminski
et al. [11] focus on Datalog as target language for rewriting (rather than Horn
DLs). Furthermore, their Datalog rewritings may be exponential w.r.t. the input
ontology and cannot generally be represented in DLs.

Gottlob et al. [8] showed tractability in data complexity of fact entailment
for the class of first-order rules with single-atom bodies, which is sufficient to
capture most DLs in the DL-Litebool family [1].

Lutz and Wolter [17] investigated (non-uniform) data complexity of query
answering w.r.t. fixed ontologies. They studied the boundary of PTime and
co-NP-hardness and established a connection with constraint satisfaction prob-
lems. Finally, Lutz et al. [16] studied model-theoretic rewritability of ontologies
in a DL L1 into a fragment L2 of L1. These rewritings are equivalence-preserving;
this is in contrast to our approach, which requires only satisfiability preservation.

8 Proof of Concept

To assess the practical implications of our results, we have evaluated whether
real-world ontologies are markable (and hence polynomially Horn rewritable).
We analysed 120 non-Horn ontologies extracted from the Protege Ontology Li-
brary, BioPortal (http://bioportal.bioontology.org/), the corpus by Gardiner et
al. [7], and the EBI linked data platform (http://www.ebi.ac.uk/rdf/platform).
To check markability, we have implemented the 2-SAT reduction in Section 4
and a simple 2-SAT solver.

We found that a total of 32 ontologies were markable and thus rewritable into
a Horn ontology, including some ontologies commonly used in applications, such
as ChEMBL (see http://www.ebi.ac.uk/rdf/services/chembl/) and BioPAX Re-
actome (http://www.ebi.ac.uk/rdf/services/reactome/). When using π as first-
order logic translation, we obtained 30 markable ontologies—a strict subset of
the ontologies markable using ξ. However, only 27 ontologies were rewritable to
a Horn DL since in three cases the marking contained a role.

9 Conclusion and Future Work

We have presented the first practical technique for rewriting non-Horn ontologies
into a Horn DL. Our rewritings are polynomial, and our experiments suggest that
they are applicable to widely-used ontologies. We anticipate several directions
for future work. First, we would like to conduct an extensive evaluation to assess
whether the use of our rewritings can significantly speed up satisfiability checking
in practice. Second, we will investigate relaxations of markability that would
allow us to capture a wider range of ontologies.
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Reasoning Efficiently with Ontologies and Rules in the
Presence of Inconsistencies (Extended Abstract)?

Tobias Kaminski, Matthias Knorr, and João Leite
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In this paper, we address the problem of dealing with inconsistent knowledge bases
consisting of ontologies and non-monotonic rules, following a paraconsistent reasoning
approach with a focus on efficiency.

Description Logics (DLs) and Logic Programs (LPs) provide different strengths
when used for Knowledge Representation and Reasoning. While DLs employ the Open
World Assumption and are suited for defining ontologies, LPs adopt the Closed World
Assumption and are able to express non-monotonic rules with exceptions and prefer-
ence orders. Combining features of both formalisms has been actively pursued over the
last few years, resulting in different proposals with different levels of integration and
complexity: while some extend DLs with rules [18, 25], others follow a hybrid com-
bination of ontologies with non-monotonic rules, either providing a modular approach
where rules and ontologies use their own semantics, and allowing limited interaction
between them [10], or defining a unifying framework for both components [29, 24].
Equipped with semantics that are faithful to their constitutive parts, these proposals al-
low for the specification of so-called hybrid knowledge bases (hybrid KBs) either from
scratch, benefiting from the added expressivity, or by combining existing ontologies
and rule bases.

The complex interactions between the ontology component and the rule component
of these hybrid KBs – even more so when they result from combining existing ontolo-
gies and rule bases developed independently – can easily lead to contradictions, which,
under classical semantics, trivialize standard reasoning and prevent us from drawing
any meaningful conclusions, ultimately rendering these hybrid KBs useless.

Example 1. Consider the following simplified (ground) hybrid KB KG for assessing
the risk of goods at a port.

HasCertifiedSender v ¬IsMonitored (1)

KIsMonitored(g)← Krisk(g). (2)

Krisk(g)← notisLabelled(g). (3)

KisLabelled(g)← notrisk(g). (4)

KresolvedRisk(g)← KIsMonitored(g). (5)

KHasCertifiedSender(g)← (6)

Krisk(g)← (7)

? This is an extended abstract of [22]. Partially supported by Fundação para a
Ciência e a Tecnologia under project PTDC/EIA-CCO/121823/2010 and strategic project
PEst/UID/CEC/04516/2013. M. Knorr was also supported by grant SFRH/BPD/86970/2012.
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Rules (3) and (4) state that good g is either a risk (r) or it is labeled (iL). Any risk is
monitored (IM ) (2), thus a resolved risk (rR) (5). As g has a certified sender (HCS)
(6), it can be proven by means of axiom (1) that it is not monitored. Thus, g can be
derived to be monitored and not monitored at the same time if it is considered to be a
risk (7), i.e., the hybrid KB is inconsistent, which trivializes standard reasoning.

One way to deal with this problem is to employ some method based on belief re-
vision (e.g. [26, 30, 35, 37, 9] for LPs, [14, 7, 23] for DLs, and [38, 36] for hybrid KBs)
to regain consistency so that standard reasoning services can be used, or some method
based on repairing (e.g. [5] for LPs, [17] for DLs, and [12, 11] for dl-programs [10])
where hypothetical belief revision is employed for consistent query answering, without
actually changing the KB. However, this is not always feasible e.g. because, we may not
have permission to change the KB – as for instance in [1] where the KB encodes laws
and norms – or because the usual high complexity of belief revision and repairing meth-
ods simply renders their application prohibitive. When these methods are not possible
or not feasible, paraconsistent reasoning services, typically based on some many-valued
logic, offer an alternative by being able to draw meaningful conclusions in the presence
of contradictions.

Paraconsistent reasoning has been extensively studied in both base formalisms of
hybrid KBs. For DLs, most work [31, 39, 27, 41, 28] focuses on four-valued semantics
varying which classical rules of inferences they satisfy. Among them, [27, 28] is most
general as it covers SROIQ, the DL behind OWL 2, considers tractable subclasses
and truth value removals, and permits re-using classical reasoners. Three-valued seman-
tics for DLs [40] and measuring the degree of inconsistency in DL-Lite [42] have also
been considered. For LPs, the comprehensive survey [8] discusses e.g. a four-valued
semantics without default negation [6], a four-, six-, and nine-valued semantics [34] for
answer sets [16], and a seven- [33] and nine-valued [3] well-founded semantics [15].
More recently, a very general framework for arbitrary bilattices of truth values [2] and
paraconsistent Datalog [4] have been considered. At the same time, paraconsistent rea-
soning is still a rather unexplored field in the context of hybrid KBs. Notable exceptions
are [20, 19, 13], yet their computation is not tractable in general even if reasoning in the
DL component is.

In this paper, we investigate efficient paraconsistent semantics for hybrid KBs. We
adopt the base framework of [29] because of its generality and tight integration between
the ontology and the rules – cf. [29] for a thorough argument in its favor – under the
semantics of [24] because of its computational properties. We extend this semantics
with additional truth values to evaluate contradictory pieces of knowledge, following
two common views on how to deal with contradictory knowledge bases.

According to one view, contradictions are dealt with locally, in a minimally in-
trusive way, such that a new truth value is introduced to model inconsistencies, but
non-contradictory knowledge only derivable from the inconsistent part of a KB is still
considered to be true in the classical sense. This view is adopted in paraconsistent se-
mantics for DLs, e.g. [28], LPs, e.g. [33, 34], and hybrid KBs [20, 13]. Since two dif-
ferent kinds of inconsistencies are identified in the three-valued semantics of [24], two
further truth values are introduced when following this first approach in extending the
work of [24], resulting in a five-valued semantics. Namely, we extend the set of truth
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values true (t), false (f), and undefined (u) used in [24] by the truth value b for both,
which is assigned whenever an atom is considered true and false at the same time,
and the truth value uf for undefined false, which is used whenever an atom would be
considered simultaneously undefined and false.

The alternative view is to distinguish truth which depends on the inconsistent part
of a KB from truth which is derivable without involving any contradictory knowledge.
This view, commonly referred to as Suspicious Reasoning, is adopted in paraconsistent
semantics for LPs, e.g. [3, 33, 34] and hybrid KBs [19]. In order to extend the approach
of [24] in a way that allows for paraconsistency in combination with Suspicious Reason-
ing, a sixth truth value suspiciously true (st) is introduced in addition to those already
occurring in the five-valued semantics. This truth value is assigned to atoms only deriv-
able by involving a contradiction in the program. At the same time, the truth value uf is
replaced by the slightly different truth value classically false (cf), with the aim to also
capture “propagation” on derived classical falsity.

As a result, we obtain solutions following both views through the definition of a
five-valued and a six-valued paraconsistent semantics for hybrid KBs, the latter imple-
menting Suspicious Reasoning. This requires the integration of quite different concepts
and assumptions w.r.t. paraconsistency developed independently for each of the two
base formalisms, e.g. Suspicious Reasoning has not been considered in DLs, while LP
semantics may sometimes be defined procedurally. In spite of these obstacles, we can
show that both of the resulting semantics enjoy a number of desirable properties.

– Firstly, both semantics are sound w.r.t. the three-valued semantics for consistent
hybrid KBs by [24]. In fact, the so-called 5- and 6-models corresponding to models
in [24] coincide in this case, so consistent hybrid KBs establish a link between our
two semantics.

– Secondly, the semantics assigned to a hybrid KB of which the program compo-
nent is empty is limited, in both cases, to only three truth values (t, f, and b),
which arguably leads to a stronger consequence relation than in common four-
valued paraconsistent DL semantics [32]. Still, we can show that, in this case, both
semantics coincide with the well-known paraconsistent DL semantics ALC4 by
[28] if we omit the truth value u (referred to as “removal of gaps”). Moreover, we
show that the six-valued semantics is faithful w.r.t. the paraconsistent semantics for
extended logic programs WFSXp [3] when classical negation is only applied to
unary atoms. Consequently, properties shown for these paraconsistent semantics for
the two base formalisms directly carry over to our approach, e.g. it implements the
Coherence Principle, which states that classical negation implies default negation.

– Thirdly, we present a sound and complete fixpoint algorithm, which extends the
alternating fixpoint construction defined for the three-valued approach in [24]. The
algorithm preserves the efficiency of the previous approach in that it is tractable
whenever consequences in the DL used for formalizing the ontology component
can be computed in polynomial time.

Finally, our approach and results can benefit existing implementations for hybrid
knowledge bases. In fact, the comparison between our two fixpoint computations and
that in [24] suggest an adaptation of the implementation of the latter, the Protégé plug-in
NoHR [21], to also consider paraconsistent reasoning based on our semantics.
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Abstract. This paper reports on the recent development of ELK, a consequence-
based reasoner for EL+

⊥ ontologies. It covers novel reasoning techniques which
aim at improving efficiency and providing foundation for new reasoning services.
On the former front we present a simple optimization for handling of role com-
position axioms, such as transitivity, which substantially reduces the number of
rule applications. For the latter, we describe a new rule application strategy that
takes advantage of concept definitions to avoid many redundant inferences with-
out making rules dependent on derived conclusions. This improvement is not vis-
ible to the end user but considerably simplifies implementation for incremental
reasoning and proof generation. We also present a rewriting of low-level infer-
ences used by ELK to higher-level proofs that can be defined in the standard DL
syntax, and thus be used for automatic verification of reasoning results or (vi-
sual) ontology debugging. We demonstrate the latter capability using a new ELK
Protégé plugin.

1 Introduction

ELK is an ontology reasoner designed for top classification performance on OWL EL
ontologies [1]. Its characteristic features are consequence-based calculus, highly par-
allelizable reasoning, and aggressive optimizations to reduce the number of derived
axioms sufficient for classification (deriving all subsumptions between concept names).

Sheer performance has been the sole goal for the first few versions of ELK and
it enabled it to become the reasoner of choice in biomedical circles where large EL
ontologies are built to manage scientific terminologies [2–7]. After that ELK started
to evolve towards providing additional reasoning-related services, such as incremental
classification [8] and proof tracing [9]. It turned out that some traits of ELK’s classi-
fication procedure, in particular, the non-deterministic saturation, can complicate the
development or weaken the guarantees of such extra services. For example, the compo-
sition/decomposition optimization (cf. [1]) has to be off when incrementally retracting
inferences [8]. Also, the proof tracing method guarantees only that all proofs performed
by ELK will be generated, not all proofs supported by the calculus [9]. This, in partic-
ular, means that one cannot in general obtain all justifications [10] from proofs.

In this paper we describe the steps towards adapting the main reasoning procedure
to rectify this sort of issues without major performance setbacks. On the performance
front we show a technique to reduce the number of inferences on roles. We also present
a rewriting of the low-level traced inferences into higher-level proof-based explanations
which could be shown to the user or verified using automated reasoning tools. Due to
the space constraints, some results are deferred to the technical report [11].
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E0
C v C

E>
C v >

Ev
C v D
C v E : D v E ∈ O

E−u
C v D1 uD2

C v D1 C v D2

E+
u
C v D1 C v D2

C v D1 uD2

E⊥
C v ∃R.D D v ⊥

C v ⊥

E∃
C v ∃R.D D v E

C v ∃R.E

E◦
Ci−1 v ∃Ri.Ci (1 ≤ i ≤ k, k ≥ 0)

C0 v ∃R.Ck
: R1 · · ·Rk v R ∈ O

Fig. 1. Basic inference rules for reasoning in EL+
⊥

2 Consequence-Based Reasoning in EL+
⊥

We first describe ELK’s consequence-based procedure for EL+
⊥ reasoning. Most the-

oretical results, such as completeness, redundancy elimination, and goal-directed rule
application, are minor variations of [1] but the rules for dealing with role chain axioms
without binarization and rules for reasoning with reflexive roles are new.

2.1 The Description Logic EL+
⊥

The syntax of EL+
⊥ is defined using a vocabulary consisting of countably infinite sets

of (atomic) roles and atomic concepts. EL+
⊥ concepts are defined using the grammar

C ::= A | > | ⊥ | C1 u C2 | ∃R.C, where A is an atomic concept, R a role, and
C(i) ∈ C. EL+

⊥ role chains are defined using the grammar P ::= ε | R·ρ, where ε is
the empty role chain, R a role and ρ ∈ P. We usually write role chains as R1·R2 · · ·Rn

instead of R1·(R2 · · · (Rn·ε)). An EL+
⊥ axiom is either a concept inclusion C1 v C2

for C1, C2 ∈ C or a role inclusion ρ v R for ρ ∈ P and a role R. We regard the
concept equivalence C1 ≡ C2 as an abbreviation for two concept inclusions C1 v C2

andC2 v C1. We also call ε v R a role reflexivity axiom. An EL+
⊥ ontologyO is a finite

set of EL+
⊥ axioms. Semantics of EL+

⊥ is defined in the usual way (ε is interpreted as
identity). A concept C is subsumed by D w.r.t. O if O |= C v D. In this case, we call
C v D an entailed subsumption (w.r.t. O). The ontology classification task requires to
compute all entailed subsumptions between atomic concepts occurring in O.

2.2 Inference Rules

Classification of EL+
⊥ ontologies is usually performed by applying rules that derive

logical consequences of axioms. Figure 1 lists the EL+
⊥-rules that are similar to those

usually considered in the literature [12, 13]. The premises of the rules are written above
the horizontal line, the conclusions below, and the axioms in the ontology (a.k.a. side
conditions) that trigger rule applications after the colon. Note that rule E◦ can be used
with k = 0, in which case it has no premises and uses the reflexivity axiom ε v R ∈ O.

Example 1. Consider the EL+
⊥ ontology O = {A v ∃R.B, B v ∃S.C, R·S·H v V ,

ε v H}. Then it is possible to derive A v ∃V.C using the rules in Figure 1 as follows:
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A v A by E0(), (1)
A v ∃R.B by Ev(A v A) : A v ∃R.B ∈ O, (2)
B v B by E0(), (3)
B v ∃S.C by Ev(B v B) : B v ∃S.C ∈ O, (4)
C v ∃H.C by E◦() : ε v H ∈ O, (5)
A v ∃V.C by E◦(A v ∃R.B,B v ∃S.C,C v ∃H.C) : R·S·H v V ∈ O. (6)

Formally, a derivation for EL ontologyO (using the rules in Figure 1) is a sequence
of EL+

⊥ axioms d = {αi | i ≥ 1} such that each αi with i ≥ 0 is obtained from axioms
{αj | 1 ≤ j < i} using one of the rules in Figure 1 and axioms inO as side conditions.
The size ||d|| of d is the number of axioms in d. For example, the sequence of axioms
(1)–(6) in Example 1 forms a derivation, in which every axiom is obtained from the
previous axioms by the rules in Figure 1 as indicated next to the axioms.

The rules in Figure 1 are simple to understand but not very efficient to implement.
The problem is caused by rule E◦, which may produce many conclusions for ontologies
with deep role hierarchies. For example, consider O = {Rj−1 v Rj | 1 ≤ j ≤ m} ∪
{Ci−1 v ∃R0.Ci, ∃Rm.Di v Di−1 | 1 ≤ i ≤ n} ∪ {Cn v Dn}. Then one can only
derive C0 v D0 by the rules in Figure 1 by deriving quadratically-many intermediate
axioms Ci−1 v ∃Rj .Ci by E◦ using Rj−1 v Rj ∈ O (1 ≤ i ≤ n, 1 ≤ j ≤ m).
Therefore, ELK implements optimized rules listed in Figure 2 that help avoiding this
problem by deriving subsumptions on role (chains) separately [1]. To formulate these
rules, we have slightly extended the syntax of EL+

⊥. First, we can derive role chains on
the right-hand side of role inclusions: ρ1 v ρ2 (I |= ρ1 v ρ2 if ρI1 ⊆ ρI2 ). Second, we
allow role chains to occur in existential restrictions: ∃(R·ρ).C is rewritten to ∃R.C if
ρ = ε, or to ∃R.∃ρ.C otherwise (whenever we write ∃ρ.C we assume that ρ 6= ε). The
extended EL+

⊥ axioms can be used in derivations, but not in the ontology O.

Example 2. Below is the derivation for A v ∃V.C for the ontology O in Example 1
using the rules in Figure 2:

A v A by C0(), (7)
A v ∃R.B by Cv(A v A) : A v ∃R.B ∈ O, (8)
R v R by R0(), (9)
B v B by C0(), (10)
B v ∃S.C by Cv(B v B) : B v ∃S.C ∈ O, (11)
S v S by R0(), (12)
C v C by C0(), (13)
ε v ε by R0(), (14)
ε v H by Rv(ε v ε) : ε v H ∈ O, (15)
S v S·H by Rε

r (S v S, ε v H), (16)
A v ∃(R·S·H).C by C◦(A v ∃R.B,R v R,B v ∃S.C, S v S·H), (17)
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ρ v ρ
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ρ1 v ρ2
ρ1 v R

: ρ2 v R ∈ O
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C v C

C>
C v >

Cv
C v D
C v E : D v E ∈ O

C−u
C v D1 uD2

C v D1 C v D2
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u
C v D1 C v D2

C v D1 uD2
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l
ε v R ρ1 v ρ2
ρ1 v R·ρ2
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r
ρ1 v R ε v ρ2
ρ1 v R·ρ2

C⊥
C v ∃ρ.D D v ⊥

C v ⊥

Cε
∃
C v D ε v R
C v ∃R.D

C∃
C v ∃ρ.D ρ v R D v E

C v ∃R.E

C◦
C v ∃ρ1.D ρ1 v R D v ∃ρ2.E ρ2 v ρ

C v ∃(R·ρ).E

Fig. 2. Optimized inference rules for reasoning in EL+
⊥ implemented in ELK

R·S·H v R·S·H by R0(), (18)
R·S·H v V by Rv(R·S·H v R·S·H) : R·S·H v V ∈ O, (19)

A v ∃V.C by C∃(A v ∃(R·S·H).C,R·S·H v V,C v C). (20)

As can be seen from Examples 1 and 2, derivations using the rules in Figure 2 can
be more difficult to understand because they use relatively complex rules such as Rε

r
and C◦ and manipulate with extended EL+ axioms such as A v ∃(R·S·H).C and
S v S·H , the last of which is not even expressible in EL+. Fortunately, it is always
possible to rewrite any derivation by the rules in Figure 2 into the one by the rules in
Figure 1 using a simple recursive procedure (with an unavoidable quadratic blowup):

Theorem 1. Let O be an EL+
⊥ ontology, d a derivation by the rules in Figure 2 for O,

and F v G ∈ d an (ordinary) EL+
⊥ axiom. Then one can construct a derivation e by

the rules in Figure 1 for O with F v G ∈ e such that ||e|| = O(||d||2).

The proof of Theorem 1 can be found in the technical report [11], which also con-
tains an overview of the Protégé plug-in for displaying proofs based on this result.

2.3 Composed Conclusions, Redundancy and Completeness

From now on, we focus in the rules in Figure 2, so when we talk about axioms derived
by these rules, we mean extended EL+

⊥ axioms. It is easy to see that the rules in Fig-
ure 2 are sound, that is, the conclusions of the rules are logical consequences of the
premises and the side conditions, if there are any. Therefore, every derivation contains
only axioms entailed by the ontology. It turns out that the converse property also holds:

Theorem 2. Let O be an EL+
⊥ ontology and F v G an EL+

⊥ concept inclusion such
that O |= F v G. Then there exists a derivation d using the rules in Figure 2 such that
either F v G ∈ d or F v ⊥ ∈ d.
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Similarly to existing results [12, 1], Theorem 2 is proved by constructing a canonical
model using the set of all derivable axioms. One can actually prove a stronger version
of this theorem, namely that every entailed subsumption is derivable by an optimized
derivation—a derivation which does not use a certain kind of redundant inferences [11].

Definition 1. We say that an axiom α in a derivation d is composed if can be obtained
by rules C+

u , Cε
∃ or C∃ from the previous axioms. An application of a rule in Figure 2

to premises in d is redundant if it is an application by rule C−u in which the premise is
composed, by rule C∃ in which the first premise is composed, or by rule C◦ in which
the first or the third premise is composed. The derivation d is optimized if every axiom
α in d is obtained from the previous axioms using a non-redundant rule application.

Example 3. Consider the ontology O = {A v ∃R.B, B v C, C v D}. Then the fol-
lowing derivation using the rules in Figure 2 is possible:

A v A by C0(), (21)
A v ∃R.B by Cv(A v A) : A v ∃R.B ∈ O, (22)
B v B by C0(), (23)
B v C by Cv(B v B) : B v C ∈ O, (24)
B v D by Cv(B v C) : C v D ∈ O, (25)
R v R by R0(), (26)

(+) A v ∃R.C by C∃(A v ∃R.B, R v R, B v C), (27)
C v C by C0(), (28)
C v D by Cv(C v C) : C v D ∈ O, (29)

(+) A v ∃R.D by C∃(A v ∃R.C, R v R, C v D). (30)

In this derivation, axioms (27) and (30) (labeled with +) are composed because they
were obtained by rule C∃. Hence the inference that has produced (30) is redundant
because it is made by an application of C∃ to a composed first premise (27). Still,
the derivation (21)–(30) is optimized because (30) can be obtained from the previous
axioms by another (non-redundant) application of C∃ to a non-composed premise (22):

(+) A v ∃R.D by C∃(A v ∃R.B, R v R, B v D). (31)

In other words, since a derivation is a sequence of axioms and not a sequence of rule
applications, it matters by which inferences axioms can be obtained from the previous
axioms. Note that if (25) is removed from the derivation, then the inference (31) is no
longer possible and the derivation becomes non-optimized.

In practice, the optimization above means that when applying the rules in Figure 2
to check entailment of concept inclusion, it is not necessary to apply C−u to premises
derived by C+

u or apply C∃ and C◦ to premises derived by C∃ [1].

2.4 The Subformula Property and Goal-Directed Rule Application

So far Theorem 2 cannot be used for effectively checking if a given subsumption C v
D is entailed by the ontology O since there are infinitely many axioms that can be
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derived by the rules in Figure 2—already C0 can produce infinitely many conclusions.
It turns out, it is sufficient to derive only axioms of the form ρ1 v ρ2, C1 v C2, and
C1 v ∃ρ2.C2 such that all concepts Ci and role chains ρi (i = 1, 2) occur (possibly as
sub-expressions) either in the ontologyO or in the given subsumption F v G tested for
entailment [1]. In other words, ifO |= F v G then F v G or F v ⊥ is derivable by the
rules in Figure 2 without creating new concepts or role chains. We refer to this property
as subformula property. The subformula property implies that checking entailmentO |=
F v G can be done in polynomial time since there are at most polynomially-many
different axioms of the above forms, and one can compute a derivation d containing all
such axioms by repeatedly applying the rules in Figure 2.

The rules, however, can be restricted even further. Specifically, an axiom C1 v C2

needs to be derived in d only if C1 = F for the tested subsumption F v G or if some
non-composed axiom of the form C v ∃ρ.C1 is already derived in d. Indeed, it is easy
to observe from the rules in Figure 2 that an axiom C1 v C2 can be used in a rule
application only if this rule derives a concept inclusion axiom with the same left-hand
side C1 or it uses another non-composed axiom of the form C v ∃ρ.C1 (rules C∃
and C◦). Similarly, an axiom ρ1 v ρ2 needs to be derived only if ρ1 = ε or if some
other non-composed axiom of the form C v ∃ρ1.D is already derived. We call this
optimization goal-directed rule application.

Example 4. Consider the ontology O = {A v ∃R.B, A v ∃R.C, B v C, C v B}.
Suppose we want to check whether O |= A v B. Then the following goal-directed
non-redundant rule applications can be performed:

A v A by C0(), (32)
A v ∃R.B by Cv(A v A) : A v ∃R.B ∈ O, (33)
B v B by R0(), (34)
B v C by Rv(B v B) : B v C ∈ O, (35)
R v R by R0(), (36)

(+) A v ∃R.C by C∃(A v ∃R.B, R v R, B v C), (37)
(+) A v ∃R.C by Cv(A v A) : A v ∃R.C ∈ O. (38)

Note that deriving axioms with the left-hand side C (e.g., C v C by rule C0) is not
necessary since the axiom A v ∃R.C is composed (and thus, e.g., cannot be used in
rule C∃ like axiomA v ∃R.B). Since no further rules need to be applied and the axiom
A v B is not derived, we can conclude that O 6|= A v B. Note that if we swap (33)
with (38), then the axiom A v ∃R.C would not be composed and we would need to
derive subsumptions C v C and C v B by rules C0 and Cv. Thus the set of derived
axioms depends on the order in which the rules are applied.

Note that if a derivation d contains C v D or ρ1 v ρ2 then C v C or ρ1 v ρ1 must
be derived in d respectively by C0 and R0 before that. Therefore, to save space, from
now on we skip applications of the rules C0 and R0 (e.g., like (32), (34), and (36) in
Example 4). We will also skip application of the rules Cv and Rv producing axioms in
the ontology from the conclusions of C0 and R0 (e.g., like (33) and (35) in Example 4).
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3 Avoiding Duplicate Role Compositions

In this section, we present an optimization, using which one can avoid some duplicate
conclusions of rule C◦. Intuitively, this optimization is designed to deal more efficiently
with specific role chain axioms such as transitivity T ·T v T . It is closely related to a
similar optimization for role chain axioms presented previously for a fragment of EL+

⊥
[13]. To illustrate the problem addressed, consider the following example.

Example 5. Consider the ontology O = {A v ∃L.B, B v ∃P.C, C v ∃P.D, L·P v
L, P ·P v P}. The roles L and P can be thought of as expressing the ‘located-in’ and
‘part-of’ relations. So the last axiom of O, in particular, expresses that if x is located
in y and y is a part of z then x is located in z. Let us try to determine whether O |=
A v B using goal-direct application of rules (skipping applications of C0 and R0, and
applications of Cv, Rv producing axioms in O as noted before):

A v ∃(L·P ).C by C◦(A v ∃L.B, L v L, B v ∃P.C, P v P ), (39)
A v ∃(L·P ).D by C◦(A v ∃(L·P ).C, L·P v L, C v ∃P.D, P v P ), (40)
B v ∃(P ·P ).D by C◦(B v ∃P.C, P v P , C v ∃P.D, P v P ), (41)
A v ∃(L·P ).D by C◦(A v ∃L.B, L v L, B v ∃(P ·P ).D, P ·P v P ). (42)

Note that the axiom A v ∃(L·P ).D was derived two times by C0 in (40) and (42).
Intuitively, this is because the role chain inclusion L·P ·P v L·P can be proved in two
ways: either as (L·P )·P v L·P usingL·P v L or asL·(P ·P ) v L·P using P ·P v P .

In general, suppose that we have a derivation where some axiom is derived by C◦:

C v ∃(R·ρ).F by C◦(C v ∃S.D, S v R, D v ∃(T ·µ).F , (T ·µ) v ρ). (43)

Let us try to determine when the same conclusion can be derived differently. Suppose
that µ 6= ε. Then D v ∃(T ·µ).F can be only derived by C◦:

D v ∃(T ·µ).F by C◦(D v ∃τ.E, τ v T , E v ∃η.F , η v µ). (44)

Now suppose that we also have S v S, S·T v R and η v ρ in the derivation. Then
C v ∃(R·ρ).F can be derived as follows:

C v ∃(S·T ).E by C◦(C v ∃S.D, S v S, D v ∃τ.E, τ v T ), (45)
C v ∃(R·ρ).F by C◦(C v ∃(S·T ).E, S·T v R, E v ∃η.F , η v ρ). (46)

Note that when we replace the rule application (43) with the two rule applications
(45) and (46), the third premises D v ∃τ.E and E v ∃η.F used in these applications
appear in the derivation before the third premise D v ∃(T ·µ).F of (43) since the
latter was obtained from the former by (44). Therefore, if we apply this transformation
repeatedly to all inferences by C◦, it will always terminate.

To summarize, we can always avoid applying C◦ with S v R and T ·µ v ρ as
the second and the last premises if µ 6= ε and we can derive S·T v R (S v S is
always derivable by R0) and τ v ρ for every derivable τ v µ. Due to the subformula
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property, we can precompute all subsumptions on role chains occurring in the ontology
and compute all pairs 〈ρ1 v R, ρ2 v ρ〉 of such role subsumptions with ρ1, ρ2 and R·ρ
occurring in the ontology, excluding the pairs 〈S v R, T ·µ v ρ〉 for which the above
condition holds. Only the remaining pairs of subsumptions should then be used in C◦.

Example 6. Continuing Example 5, we can show that the above conditions hold for the
pair 〈S v R, T ·µ v ρ〉 = 〈L v L,P ·P v P 〉. Indeed, S·T v R = L·P v L can
be derived, and since µ = ρ = P , τ v ρ is derivable if τ v µ is. Thus, the pair
〈L v L,P ·P v P 〉 should not be used in C◦, and thus inference (42) is not necessary.
One can show that the pair 〈P v P, P ·P v P 〉 should not be used in C◦ as well.

As mentioned, there is a close relation of the optimization above with a similar
optimization for rules in Figure 1 [13]. The main idea is to identify the role chain axioms
ρ v R for which rule E◦ can be applied in a left-linear way, that is, only if all premises
starting from the second one are derived by rules other than E◦ with k ≥ 2. This is the
case, e.g., for both axioms L·P v L and P ·P v P from ontology O in Example 5.
For example, rule E◦ using L·P v L ∈ O would be applied for A v ∃L.B and
B v ∃P.C (derived by Ev), but would not be applied for A v ∃L.B and B v ∃P.D
if B v ∃P.D is derived by E◦ from B v ∃P.C and C v ∃P.D using P ·P v P ∈ O.
The reason is that the same conclusion A v ∃L.D can be derived in a left-linear way
fromA v ∃L.C (derived by E◦ using L·P v L ∈ O) and C v ∃P.D (derived by Ev).
The main difference between the two optimizations, is that, due to the differences in the
rules in Figure 1 and Figure 2, instead of classifying which stated role chain axioms
can be used in a left-linear way, we determine which derived role chain axioms should
be ‘concatenated’ in rule C◦. The latter is algorithmically easier to determine using the
condition formulated above.

4 Deterministic Saturation

Recall from Example 4 that the set of axioms obtained by applying the rules in a goal-
directed way may depend on the order in which the rules are applied. Although this
side effect has no impact on reasoning results, it introduces some difficulties when ex-
tending ELK reasoning services beyond checking of logical entailment. Specifically,
the procedures for incremental reasoning [8] and proof generation [9] implemented in
ELK, require repeating some rule applications performed in the derivation, and if the
rules are applied in a different order than originally, the procedures may result in incor-
rect results. In this section we describe a modification of our rule application procedure
for which the derived axioms do not depend on the order of rule application.

Recall from Section 2.3 that to determine whether a rule such as R∃ should be
applied to some axioms in the derivation, i.e., it is not redundant, one has to check which
of these axioms are composed, i.e., can be derived by certain rules from the previous
axioms in the derivation. This property ensures that only necessary rules are applied, but
it can make rule application dependent on when (i.e, after which axioms) the premises
were derived. Instead, we may slightly relax this requirement and decide whether an
axiom is composed or not only based on the rules by which it was actually derived,
which would make rule applications not to depend on other axioms in the derivation.
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C−≡
C v A
C v D : A ≡ D ∈ O C+

≡
C v D
C v A : A ≡ D ∈ O

Fig. 3. The new inference rules for concept definitions

For example, axiom A v ∃R.C in Example 4 was derived by both rules C∃ and Cv.
We would then not apply C∃ to the first conclusion of a ‘composition’ inference by C∃,
but apply it to the second conclusion of ‘non-composition’ inference by Cv. Clearly,
the advantage here is that it does not matter which of the two inferences was made
first. It may seem that axioms are rarely derived by multiple rules, so the relaxed rule
application strategy might not result in too many unnecessary inferences. The following
example illustrates that this may not be really the case in practice.

Example 7. Consider the ontology O = {A v B u ∃R.A, C ≡ ∃R.B}. Recall, that
concept equivalence C ≡ ∃R.B represents two axioms C v ∃R.B and ∃R.B v C. To
test O |= A v C, we apply the rules in Figure 2 in a goal-directed way:

A v B by C−u (A v B u ∃R.A), (47)

A v ∃R.A by C−u (A v B u ∃R.A), (48)
(+) A v ∃R.B by C∃(A v ∃R.A, R v R, A v B), (49)

A v C by Cv(A v ∃R.B) : ∃R.B v C ∈ O, (50)
A v ∃R.B by Cv(A v C) : C v ∃R.B. (51)

Note that axiom A v ∃R.B is derived by rules C∃ and Cv, so we would need to
consider the second conclusion (51) for applications of C∃. Note that the second rule
application is a direct result of the equivalence axiom C ≡ ∃R.B, which was used to
replace the subsumer ∃R.B in (49) with C and back with ∃R.B. So it is actually not
possible to have application (51) before (49).

The scenario illustrated in Example 7 is rather common: whenever an axiomC v D
is derived and D occurs in some concept equivalence in the ontology, the same axiom
C v D will be derived again. To avoid such duplicate inferences, we introduce new
rules in Figure 3 to deal specifically with concept definitions—concept equivalences
A ≡ D where A is a (defined) atomic concept. Most concept equivalences in existing
ontologies are of this form. We assume that all concept equivalences in O are concept
definitions and each atomic conceptA is defined in at most one of them; remaining con-
cept equivalences can be always replaced with concept inclusions. Finally, we extend
Definition 1 by allowing composed axioms to be obtained by rule C+

≡ and redundant
rule applications to include applications by rule C−≡ in which the premise is composed.
Note that if the premise of C−≡ is composed, then it can only be obtained by C+

≡ us-
ing the same concept definition A ≡ D, and hence the conclusion of this rule must be
already derived.

Example 8. Continuing Example 7, with the new rules in Figure 3 we will have just rule
application (52) instead of (50)–(51); the application of rule C−≡ to (52) is redundant.

(+) A v C by C+
≡(A v ∃R.B) : C ≡ ∃R.B ∈ O. (52)
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Table 1. Summary information for the test ontologies (numbers of the different kinds of axioms)

Ontology C v D C ≡ D R v S R ·R v R R1 ·R2 v S
EL-GALEN 25,563 9,968 958 58 0
GALEN7 27,820 15,270 1000 0 385
GALEN8 53,449 113,622 1024 0 385
SNOMED CT (Jan 2014) 229,330 69,908 11 0 1
ANATOMY 17,551 21,831 4 3 2

5 Preliminary Experimental Evaluation

In this section we present the preliminary results of empirical evaluation of the two
new reasoning techniques described in Sections 3 and 4: the role composition opti-
mization and the deterministic saturation using new rules for concept definitions. For
both experiments we use a set of the well-known biomedical ontologies:1 the July 2014
version of SNOMED CT,2 three versions of OpenGALEN3 (EL-GALEN, GALEN7,
and GALEN8), and ANATOMY (an experimental version of SNOMED CT which uses
role chain axioms to model the body structure). These ontologies have been frequently
used in the past for evaluation of EL reasoners [14, 15, 1]. The summary information
about these ontologies is presented in Table 1.

For experiments we used a development version of ELK 0.5. The experimental setup
is the same for all experiments: each ontology is classified 20 times, 10 warm-up runs
to exclude the effects of JIT compilation and 10 measured runs, for which the results
are averaged. The combined loading + classification wall clock time (in ms.) is used as
the main performance metric. We used a PC with Intel Core i5-2520M 2.50GHz CPU,
Java 1.6 and 4GB RAM available to JVM.

The first experiment evaluates effectiveness of the role composition optimization
described in Section 3. All ontologies (except for SNOMED CT in which the only sub-
role chain axiom has no effect) are classified with the optimization being turned on and
off. The results are shown in Table 2. It can be seen that in most cases the optimization
considerably reduces the number of inferences as well the number of derived subsump-
tions (many subsumptions are derived by several inferences). The difference translates
into time savings. The ANATOMY ontology stands out as the case where the optimiza-
tion is critically important since it cuts down the number of inferences by rule C◦ by
nearly an order of magnitude.

The aim of the the second experiment is to evaluate the effectiveness of the deter-
ministic saturation optimization described in Section 4. We compare the classification
time and the number of derived axioms in three cases: a) with the ELK’ current non-
deterministic saturation [1], b) with deterministic saturation using the rules in Figure 2,
and c) with deterministic saturation using the additional rules for concept definitions
(see Figure 3). The results are shown in Table 3.

1Unless specified otherwise, the ontologies can be downloaded from the ELK project page
elk.semanticweb.org

2http://www.ihtsdo.org/licensing/
3http://www.opengalen.org/sources/sources.html

180



Table 2. Evaluation of the role composition optimization from Section 3

Ontology Classification time Inferences Derived subsumptions
Optimization On Off On Off On Off

EL-GALEN 964 1,039 2,080,194 2,207,823 1,485,247 1,550,695
GALEN7 1,632 1,998 5,707,082 7,001,796 2,787,261 2,952,952
GALEN8 15,587 16,981 40,239,327 49,719,156 19,377,172 20,136,178
ANATOMY 8,957 27,766 45,466,892 176,130,924 7,105,923 10,223,484

Table 3. Evaluation of deterministic saturation (see Section 3). The shortcuts “non-det”, “det”,
and “det+defn” stand for non-deterministic saturation, unoptimized deterministic saturation, de-
terministic saturation with the new optimized rules for handling of concept definitions.

Ontology Classification time Inferences Derived subsumptions
non-det det det+defn non-det det det+defn non-det det det+defn

EL-GALEN 959 1,513 1,032 2.1M 4.2M 2.3M 1.5M 2.7M 1.9M
GALEN7 1,984 3,408 2,699 5.7M 11.6M 9.9M 2.8M 5.3M 4.7M
GALEN8 16,750 27,339 19,866 40.2M 93.7M 65.3M 19.4M 37.2M 28.4M
SNOMED CT 14,441 21,791 15,431 25.5M 54.1M 31.2M 17.1M 30.3M 23.6M
ANATOMY 9,183 15,546 9,875 45.5M 73.0M 47.2M 7.1M 12.1M 8.3M

One can see that deterministic saturation without further optimizations is signifi-
cantly slower and often makes nearly twice as many inferences as non-deterministic
saturation. This is largely because many axioms are derived by multiple inferences due
to equivalence axioms (as illustrated in Example 3). The special rules to deal with con-
cept definitions reduce such redundant derivations and improve performance so that it
is close to that of non-deterministic saturation. Still in some cases, e.g., for GALEN7
and GALEN8, the difference between non-deterministic and optimized deterministic
strategies is visible and it remains our goal to investigate how it can be reduced even
further.

6 Summary

The paper presented several recent developments in ELK which range from novel rea-
soning optimizations, such as efficient handling of role chain axioms, to modifications
aimed at supporting additional reasoning services, such as proof-based explanations.
Our experiments show that the latter changes may result in minor performance setbacks,
and it remains our future goal to investigate how to avoid even such minor performance
compromises.
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Nonmonotonic Nominal Schemas Revisited
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Abstract. Recently, a very general description logic (DL) that extends SROIQ
(the DL underlying OWL 2 DL) at the same time with nominal schemas and epis-
temic modal operators has been proposed, which encompasses some of the most
prominent monotonic and non-monotonic rule languages, including Datalog un-
der the answer set semantics. A decidable fragment is also presented, but the
restricted language does not fully cover all formalisms encompassed by the com-
plete language. In this paper, we aim to remedy that by studying an alternative set
of restrictions to achieve decidability, and we show that the existing embeddings
of the formalisms covered by the full language can be adjusted accordingly.

1 Introduction

Extending Description Logics (DLs) with modeling features admitting non-monotonic
reasoning has been frequently requested in many application domains (see, e.g., [14]
for semantic matchmaking on annotations at electronic online marketplaces). In fact,
the vast amount of work dedicated to the topic may serve as a witness in its own right.
DLs have been extended, for example, with defaults [2], with notions of circumscription
[4,33], and epistemic reasoning provided by the inclusion of modal1 operators within
the language [8] or only in queries [29]. In addition, a plethora of approaches combine
DLs with (often non-monotonic) rules (see, e.g., [9,30,19] and references in their sec-
tions on related work). As these approaches are commonly of different expressivity and
based on quite advanced different formal grounds, a uniform overarching formalism
allowing the integration of possibly all the various modeling features is an extremely
complicated problem.

In [20], a very general DL language is introduced that extends the expressive DL
underlying OWL 2, SROIQ, with nominal schemas [24] and epistemic operators as
defined in [8] with the aim of integrating the W3C standards OWL [15] and (non-
monotonic) RIF [18] and their underlying formalisms, DLs and rule languages respec-
tively, thus contributing towards the goal of a unifying logic for the Semantic Web (as
foreseen in the well-known Semantic Web stack). The full language is in fact very ex-
pressive, capturing a variety of different formalisms, among them two based on MKNF
logics [27] that had been considered of different expressivity so far – MKNF DLs [8],
i.e., the epistemic extension of DLs, and Hybrid MKNF, one very expressive combi-
nation of DLs and non-monotonic rules. Though not the full language of the latter is

1 In the remainder of the paper, we use the terms modal and epistemic operator interchangeably
to refer to the same notion.
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considered, coverage of Answer Set Programming [11] is ensured, arguably the most
widely used non-monotonic reasoning rule formalism.

A decidable fragment of the full language is also considered in [20], which is
strongly related to the one presented in [8]. In fact, the restrictions are such that the
tableau algorithm presented in [8] can in principle be re-used. As it turns out, how-
ever, the decidable language does not encompass all the formalisms for which coverage
within the full language is shown. While this does not invalidate the approach as such, in
particular, if one views such a unifying formalism mainly as a conceptual underpinning,
it is certainly undesired if one rather wants to use it for modeling and reasoning.

In this paper, we aim to solve this problem, i.e., we consider a different set of re-
strictions, for which we show that reasoning is decidable and that, at the same time,
encompasses all the formalisms discussed in [20] with only minor adjustments to the
previously presented embeddings. The principal idea builds on the usage of nominals
and nominal schemas, which are necessarily present in the language by design anyway,
to limit the applicability of concept inclusions containing modal operators. As an addi-
tional result, we believe that the new restrictions are more succinct and that the resulting
adaptation of the procedure for verifying the existence of models becomes less compli-
cated. To further simplify notation, here we do not consider the full language presented
in [20], which is based on SROIQ, but rather a language based onALC with only the
minimally necessary extensions and we term this language eALCOV (see Sect. 2 for a
detailed explanation on the name). As we can show, such language is already expressive
enough to cover the desired non-monotonic modeling features.

The remainder of the paper proceeds as follows. In Sect. 2, we recall the syntax and
semantics of the DL eALCOV we consider here. We then introduce the new alterna-
tive conditions of so-called safe eALCOV KBs in Sect. 3 and we subsequently show
that these do ensure decidability of reasoning, i.e., checking (MKNF-)satisfiability. In
Sect. 4, we show that, with minor adaptations, the applied changes do now permit
coverage of the discussed formalisms in [20] within the decidable fragment (of safe
eALCOV KBs), before we conclude and discuss future work in Sect. 5.

2 Epistemic DLs

In this section, we recall the syntax and semantics of epistemic description logics (DLs)
from [20]. Here, we focus on a subset of the language considered in [20] to make the
presentation more concise and to ease the reading. Namely, we consider the epistemic
DLALCKNF [8], which isALC enhanced with epistemic operators, extended by nom-
inals, nominal schemas [24], and the universal role. Nominal schemas represent vari-
able nominals that can only be bound to known individuals, and the universal role can
be represented using role hierarchies and negation on roles [23], but as we want to keep
the presentation simple, we leave this implicit. Since the name of the resulting language
ALCOVKNF (or even ALCHOV(¬)KNF for the implicit encoding of the universal
role) following standard and historic patterns would be quite cumbersome, we propose
using the name eALCOV instead, which stands for epistemic ALCOV (including the
universal role). The term epistemic originates from the two epistemic/modal operators
K and A, where K is interpreted in terms of minimal knowledge, while A is interpreted
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Table 1. Syntax and semantics of eALCOV

Name Syntax Semantics

concept name A AI ⊆ ∆
role name V V I ⊆ ∆×∆
individual name a aI ∈ ∆
variable x Z(x) ∈ ∆
top > ∆

bottom ⊥ ∅
nominal (schema) {t} {a | [a]≈ ≈ t(I,M,N ),Z}
concept complement ¬C ∆ \ C(I,M,N ),Z

concept conjunction C uD C(I,M,N ),Z ∩D(I,M,N ),Z

concept disjunction C tD C(I,M,N ),Z ∪D(I,M,N ),Z

existential restriction ∃R.C {δ ∈ ∆ | ∃ε with (δ, ε) ∈ R(I,M,N ),Z and ε ∈ C(I,M,N ),Z}
universal restriction ∀R.C {δ ∈ ∆ | (δ, ε) ∈ R(I,M,N ),Z implies ε ∈ C(I,M,N ),Z}
knowledge concept KC

⋂
J∈M C(J ,M,N ),Z

assumption concept AC
⋂
J∈N C

(J ,M,N ),Z

universal role U ∆×∆
knowledge role KV

⋂
J∈M V (J ,M,N ),Z

assumption role AV
⋂
J∈N V

(J ,M,N ),Z

concept assertion C(a) aI ∈ C(I,M,N ),Z

role assertion V (a, b) (aI , bI) ∈ V (I,M,N ),Z

TBox axiom C v D C(I,M,N ),Z ⊆ D(I,M,N ),Z

Interpretation I; MKNF structure (I,M,N ); variable assignment Z; A ∈ NC ; C,D ∈ C;
V ∈ NR; R ∈ R; a, b ∈ NI ; x ∈ NV , and t ∈ NV ∪NI .

as autoepistemic assumption and corresponds to ¬not, i.e., the classical negation of the
negation as failure operator not used in [27] instead of A.

We consider a signature Σ = 〈NI , NC , NR, NV 〉 where NI , NC , NR, and NV are
pairwise disjoint and finite sets of individual names, concept names, role names, and
variables. In the following, we assume that Σ has been fixed. We define concepts and
roles in eALCOV by the following grammar.

R ::=V | U | KV | AV
C ::=> | ⊥ | A | {i} | {x} | ¬C | C u C | C t C | ∃R.C | ∀R.C | KC | AC

where V ∈ NR, A ∈ NC , i ∈ NI , and x ∈ NV . The names of the individual concepts
and roles can be found in Table 1. Epistemic concepts are knowledge and assumption
concepts, while epistemic roles are knowledge and assumption roles.

As usual, a TBox axiom (or general concept inclusion (GCI)) is an expression C v
D where C,D ∈ C. An ABox axiom is of the form C(a) or V (a, b) where C ∈ C,
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V ∈ NR, and a, b ∈ NI . An eALCOV axiom is any ABox or TBox axiom, and an
eALCOV knowledge base (KB) is a finite set of eALCOV axioms.

The semantics of eALCOV as recalled from [20] is an adaptation from [24] and
[8]. As common, an interpretation I = (∆I , ·I) consists of a domain ∆I 6= ∅ and a
function ·I that maps elements in NI , NC , and NR to elements, sets, and relations of
∆I respectively. Additionally, nominal schemas require a variable assignment Z for
an interpretation I, which is a function Z : NV → ∆I such that, for each v ∈ NV ,
Z(v) = aI for some a ∈ NI .

As common in MKNF-related semantics used to combine DLs with non-monotonic
reasoning (see [8,17,19,30]), specific restrictions on interpretations are introduced to
ensure that certain unintended logical consequences can be avoided (see, e.g., [30]).
Here, we adopt the standard name assumption from [20]. An interpretation I (over Σ
to which ≈ is added) employs the standard name assumption if
(1) N∗I extends NI with a countably infinite set of individuals that cannot be used in

variable assignments, and ∆I = N∗I ;
(2) for each i in N∗I , iI = i; and
(3) equality ≈ is interpreted in I as a congruence relation – that is, ≈ is reflexive,

symmetric, transitive, and allows for the replacement of equals by equals [10].
The first condition fixes the (infinite) universe, but limits the application of variable
assignments to a finite subset, the second condition defines I as a bijective function,
while the third ensures that we still can identify elements of the domain. As an immedi-
ate side-effect, the variable assignment is no longer tied to a specific interpretation and
we can simplify notation by using ∆ without reference to a concrete interpretation.

Now, the first-order semantics is lifted to satisfaction in MKNF structures that
treat the modal operators w.r.t. sets of interpretations. An MKNF structure is a triple
(I,M,N ) where I is an interpretation, M and N are sets of interpretations, and
I and all interpretations in M and N are defined over ∆. For any such (I,M,N )
and assignment Z , the function ·(I,M,N ),Z is defined for arbitrary eALCOV expres-
sions as shown in Table 1. (I,M,N ) and Z satisfy an eALCOV axiom α, written
(I,M,N ),Z |= α, if the corresponding condition in Table 1 holds. (I,M,N ) satis-
fies α, written (I,M,N ) |= α, if (I,M,N ),Z |= α for all variable assignments Z . A
(non-empty) set of interpretationsM satisfies α, writtenM |= α, if (I,M,M) |= α
holds for all I ∈ M, and M satisfies an eALCOV knowledge base KB, written
M |= KB, if M |= α for all axioms α ∈ KB. Note the small deviation of the se-
mantics of {t} in Table 1 compared to that in [24], which is necessary to ensure that the
semantics works as intended under standard name assumption.

It can be verified that the two sets of interpretations are each used to interpret
one of the modal operators, but in the monotonic semantics above, they simply coin-
cide. This changes with the non-monotonic MKNF model defined in the usual fashion
[8,17,19,30]:M is fixed to interpret A, and supersetsM′ ofM are used to test whether
the knowledge derived fromM (via K) is indeed minimal.

Definition 1. Given an eALCOV knowledge base KB, a (non-empty) set of interpre-
tations M is an MKNF model of KB if (1) M |= KB, and (2) for each M′ with
M ⊂ M′, (I ′,M′,M) 6|= KB for some I ′ ∈ M′. KB is MKNF-satisfiable if an
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MKNF model ofKB exists. An axiom α is MKNF-entailed byKB, writtenKB |=K α,
if all MKNF modelsM of KB satisfy α.

As noted in [8], sinceM |= KB is defined w.r.t. (I,M,M), the operators K and
A are interpreted in the same way, and so we can restrict instance checking KB |=K

C(a) and subsumption KB |=K C v D to C and D without occurrences of the
operator A. Also, in absence of modal operators in the eALCOV KB, there is a unique
MKNF model which simply contains all standard (first-order) models of KB as usual.

3 Reasoning in eALCOV
In [20], reasoning in eSROIQ2 is discussed following [8] for reasoning inALCKNF .
The problem with this approach is that it is undecidable in general, so, as in [8], restric-
tions are applied in [20] to regain decidability, which in certain cases prevent coverage
of the formalisms encompassed by the unrestricted language. To circumvent this, we
still rely on the same idea in principle, but we revise the applied restrictions to achieve
decidability making use of the gained expressiveness in eALCOV . In the following,
we spell out the restrictions with some motivation right away, before we show that this
indeed yields a decidable procedure for checking MKNF-satisfiability.

3.1 Safe eALCOV KBs

Following [8], the overall idea is to reduce reasoning in eALCOV to a number of rea-
soning tasks in non-modal ALCOV (again including U ), for which each model of an
eALCOV KB is represented by means of an ALCOV KB. Formally, a set of interpre-
tations M is ALCOV representable if there exists an ALCOV KB KBM such that
M = {I | I satisfies KBM}. Then, undecidability can be caused by three sources.
First, certain partially quantified expressions are not ALCOV representable (Theorem
4.1 in [8]), which is why we recall the notion of subjectively quantified KBs. For that
purpose, we define that an ALCOV expression S is subjective if each ALCOV subex-
pression in S lies in the scope of at least one modal operator.

Definition 2. An eALCOV KB KB is subjectively quantified if each expression of the
form ∃R.C, ∀R.C occurring inKB satisfies one of the conditions: (1)R is anALCOV
role and C is an ALCOV concept, or (2) R and C are both subjective and C is of the
form KD, ¬KD, AD or ¬AD.

There exists a slightly relaxed condition on subjectively quantified KBs [17], but for
our purposes the original one suffices.

Second, even if subjectively quantified, certain nested expressions can be problem-
atic, so we introduce (modally) flat concepts, that can be seen as a further restriction of
simple concepts in [8], which prohibit such nesting altogether. Formally, an eALCOV
concept is flat if it does not contain any modal operator in scope of another, and an

2 In [20], the term SROIQV(Bs,×)KNF is used, but, for the sake of readability and with a
slight abuse of notation, we follow our introduced naming scheme here.
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eALCOV KB KB is flat if each concept in it is flat. Thus, quantifier expressions of the
form (2) in Def. 2 are flat as long as D does not contain further modal operators.

Third, intuitively, we have to make sure that GCIs involving modal operators cannot
be used to derive an infinite number of true assertions (see also Theorem 4.10 in [8]).
Rather than introducing simple KBs as in [8,20], we build on nominals and nominal
schemas to introduce safe concepts.

Definition 3. Given a subjectively quantified, flat eALCOV KB KB, an eALCOV
concept C inKB is called safe if C is of the formDu{t} for some guard t ∈ NI∪NV .

The idea is to use the nominal (schema) as a guard that restricts “applicability” of con-
cepts involving modal operators to individuals occurring in KB. This all combines in
the definition of safe eALCOV KBs, for which we from now on consider two disjoint
subsets of the eALCOV TBox T ofKB: T ′, the set of all axioms that contain no modal
operators, and Γ , the set of all axioms that contain at least one modal operator.

Definition 4. LetKB be an eALCOV KB that is subjectively quantified and flat. Then,
KB is safe if the following conditions are satisfied:
1. For each C v D ∈ Γ , C is subjective and safe, D is safe for the same guard as C,

and no operator K occurs in ∃ and ∀ restrictions in D;
2. There is no concept assertion inKB containing a subconcept of the form ∃KR.KC.

Notably, due to KB also being subjectively quantified and flat, any C v D ∈ Γ in a
safe KB can be rewritten into one such that all subjective subconcepts in it are safe.
For example, the safe KB containing just the axiom

((K(C t ∃R.D) u ∃KR.KG) t ¬AE) u {x} v ∀AS.AF u {x}
can be straightforwardly rewritten into

((K(C t ∃R.D) u {x}) u (∃KR.KG u {x})) t (¬AE u {x}) v ∀AS.AF u {x}.
In the following, we assume that any C v D ∈ Γ in a safe eALCOV KB is already
rewritten this way, i.e., all subjective subconcepts in Γ are assumed safe.

Comparing to simple KBs (Def. 8 in [20]), intuitively, KB being flat covers condi-
tion 3. while 1. of Def. 4 covers to 1. and 2. there. Condition 2. in Def. 4 is not strictly
required for decidability (as the case can be handled by finitely many models up to re-
naming of individuals [8]), but it will simplify the subsequent material without affecting
coverage of related formalisms. These new conditions for safe KBs certainly have quite
a different flavor compared to simple KBs in [8,20], but we believe that they are over-
all simpler and more easy to grasp, and at the same time not jeopardizing coverage of
related formalisms. Of course, we still need to show that there is a decidable procedure
for reasoning with safe eALCOV KBs.

3.2 Determining MKNF Models

We start by grounding a given safe eALCOV KB, i.e., we replace all occurring nominal
schemas with nominals in all possible ways in the usual manner. This yields an eALCO
KB (again including U ), which is trivially safe and obtained in finite time, though, in
general, of exponential size in terms of the input KB.
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From now on, we follow the principal argument from [8] as used in [20], but with
some variations and simplifications due to our different restrictions and to some extent
inspired by the reasoning algorithms for the related Hybrid MKNF [30].

First, we will collect a set of modal atoms based on the occurrence of epistemic
concepts and roles in a given KB. In difference to [8], we only consider atoms over
individuals occurring in the given KB. In the following, we use M to denote either K
or A, and N to denote either M or ¬M, we assume Q ∈ {∃,∀}, and we remind that
we consider that all subjective concepts in Γ are safe. Given a safe eALCO KB KB,
the set of modal atoms MA(KB) is defined inductively as follows:
(1) if MD u {a} for some a ∈ NI occurs in KB, then KD(a) ∈MA(KB);
(2) if MD occurs (non-safe) in concept assertion C(a), then KD(a) ∈MA(KB);
(3) if QMR.ND u {a} for some a ∈ NI occurs in KB, then KR(a, i),KD(i) ∈

MA(KB) for all i ∈ NI ;
(4) ifQMR.ND occurs (non-safe) in concept assertionC(a), then KR(a, i),KD(i) ∈

MA(KB) for all i ∈ NI ;
(5) nothing else belongs to MA(KB).
A further difference to [8] is that we only collect modal atoms under K. This is justified
by the fact that for ensuring condition (1) of Def. 1, the same set of interpretationsM
is considered for evaluating formulas under K and A. As an immediate benefit, when
introducing partitions of these modal atoms next and guessing model candidates, we do
not have to verify whether modal atoms under K and A are aligned.

We now introduce a partition ofMA(KB), which is a pair (P,N) of positive modal
atoms P and negative modal atoms N such that P ∩N = ∅ and P ∪N = MA(KB).
As already mentioned, such partition can be understood as a guess about which modal
atoms are supposed to be true (P ) and false (N ), and we can use it to simplify an
eALCO KB as follows. Given a safe eALCO KB KB and a partition (P,N) of
MA(KB), KB[P ] denotes the eALCO KB obtained from KB and (P,N) by:
1. replacing each occurrence of the form MD u {a} in KB and each (non-safe)

occurrence of the form MD in a concept assertionC(a) ∈ KB with> if KD(a) ∈
P and with ⊥ otherwise;

2. replacing each occurrence of ∃MR.M1D u {a} (∃MR.¬M1D u {a}) in KB
and each (non-safe) occurrence of the form ∃MR.M1D (∃MR.¬M1D) in a con-
cept assertion C(a) ∈ KB with > if there exists y such that KR(a, y) ∈ P and
KD(y) ∈ P (KD(y) 6∈ P ) and with ⊥ otherwise;

3. replacing each occurrence of ∀MR.M1Du{a} (∀MR.¬M1Du{a}) in KB and
each (non-safe) occurrence of the form ∀MR.M1D (∀MR.¬M1D) in a concept
assertion C(a) ∈ KB with > if for each y such that KR(a, y) ∈ P , KD(y) ∈ P
(KD(y) 6∈ P ) and with ⊥ otherwise.

Note that we leave N implicit here, as it is completely specified by P and the definition
of a partition ofMA(KB). We generalize the notion ofKB[P ], based on two partitions
(P,N), (P ′, N ′) of MA(KB), to KB[P ′][P ] which is obtained from KB in exactly
the same way, only that if M or M1 is K, then P ′ is used in the evaluation of the
conditions, while for M or M1 being A, P is used. In either case, it can readily be
verified that the resulting KB does not contain any modal operators, hence is anALCO
KB (admitting U ) for which satisfiability can be checked using standard DL reasoners.
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With this in place, we can define an ALCO KB which takes the modal atoms
guessed to be true into account, and use the resulting KB to check whether a guess
is consistent with the original eALCO KB. Let KB be a safe eALCO KB and (P,N),
(P ′, N ′) partitions of MA(KB). Then, ObKB,P ′,P denotes the following ALCO KB:

ObKB,P ′,P = KB[P ′][P ] ∪ {C(x) | KC(x) ∈ P ′} ∪ {R(x, y) | KR(x, y) ∈ P ′}
Then, partition (P,N) of MA(KB) is consistent with the (safe) eALCO KB if the
following conditions hold:
(1) the ALCO KB ObKB,P,P is satisfiable;
(2) ObKB,P,P 6|= C(x) for each KC(x) ∈ N ;
(3) ObKB,P,P 6|= R(x, y) for each KR(x, y) ∈ N .
Basically, item (1) checks whether the guessed P does not yield contradictions w.r.t.
KB, while (2) and (3) verify that no modal atom occurs wrongfully in N .

A link between a set of interpretations and partitions is established next. LetM be
a set of interpretations over ∆. Then,M induces the partition (P,N) of MA(KB):

P = {KC(x) | KC(x) ∈MA(KB) andM |= KC(x)}
∪ {KR(x, y) | KR(x, y) ∈MA(KB) andM |= KR(x, y)}

N = {KC(x) | KC(x) ∈MA(KB) andM 6|= KC(x)}
∪ {KR(x, y) | KR(x, y) ∈MA(KB) andM 6|= KR(x, y)}

We can show that the intended correspondence indeed holds.

Lemma 1. Let KB be a safe eALCO KB, M a set of interpretations over ∆ that
satisfies KB such thatM |= KR(i1, i2) only if i1 ≈ a ∈ NI and i2 ≈ b ∈ NI , and
(P,N) the partition of MA(KB) induced byM. Then (P,N) is consistent with KB.

Note that here, the particular restriction on M is necessary, otherwise the property
would not hold. Take (∃AR.AC)(a). Then, M = {I | I |= R(a, i) ∧ C(i) for
some i ∈ ∆ and i 6≈ a} clearly satisfies the assertion, yet the induced partition with
P = ∅ is not consistent with KB (because of (1) and the fact that that KB[P ][P ]
only considers modal atoms in MA(KB)). The same restriction is no longer necessary
for MKNF models for which the following one-to-one correspondence between every
MKNF modelM of KB and the partition induced byM can be shown.

Theorem 1. A setM of interpretations over ∆ is an MKNF model for a safe eALCO
KB KB iff the partition (P,N) of MA(KB) induced byM satisfies the following:
(1) (P,N) is consistent with KB;
(2) M = {I | I |= ObKB,P,P }; and
(3) for each partition (P ′, N ′) of MA(KB) such that P ′ ⊂ P , at least one of the

following conditions does not hold:
(a) the ALCO KB ObKB,P ′,P is satisfiable;
(b) ObKB,P ′,P 6|= C(x) for each KC(x) ∈ N ′;
(c) ObKB,P ′,P 6|= R(x, y) for each KR(x, y) ∈ N ′.

As an immediate consequence of this procedure, we can show that safe eALCOV
KBs are ALCOV representable.
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Corollary 1. LetKB be a safe eALCOV KB,M an MKNF model ofKB, and (P,N)
be the partition of MA∆(KB) induced byM. ThenM = {I | I |= ObKB,P,P }.

4 Coverage within the Decidable Fragment

The established result in the previous section is certainly interesting in its own right,
since, arguably, the imposed restrictions and the applied construction is considerably
less complicated in terms of notation than the one applied in [8,20]. Anyway, the main
outlined purpose of this revision is to ensure that the new decidable fragment encom-
passes all the formalisms for which coverage was shown in [20] only for the full lan-
guage. In this section, we revisit this material and discuss relevant changes.

4.1 Monotonic Approaches

Naturally, our decidable language fragment of safe eALCOV KBs covers ALCOV
(with and without U ) and all its sub-languages. This does not include SROIQ, i.e.,
OWL 2 DL and its tractable profiles, but a trivial adjustment following the ideas in [20]
where modal operators are limited to ALCOV concepts is easily conceivable.

Coverage of RIF-CORE [3], i.e., n-ary Datalog, interpreted as DL-safe Rules [31]
carries over from [20] or alternatively from [25]. In fact, the latter does not even require
the usage of the universal role U which is just fine if we only want to embed a Datalog
program. However, if we want to cover an embedding of n-ary Datalog interacting with
DLs, then the former is required: consider the Datalog ruleC(a)→ D(a) and a concept
assertion C(a). The rule can be translated to ∃atom.(C u {a}) v ∃atom.(D u {a})
(slightly adjusted from [25]), but there is I such that atomI = ∅, i.e., D(a) is no
longer derivable. Thus, based on the former Datalog embedding, coverage of DL-safe
SWRL [31], AL-log [7], and CARIN [26] carries over, i.e., without much surprise all
monotonic approaches as outlined in [20] are covered.

4.2 ALCKNF

In [8], it is shown how several non-monotonic reasoning features (defaults, integrity
constraints, and role and concept closure) can be modeled in the full languageALCKNF
and it is argued that the restriction to simple KBs applied to achieve decidability does
not impede coverage. The full eALCOV language obviously includes ALCKNF by
design, but since we have changed the restrictions to achieve decidability, these results
do not carry over automatically, so we briefly discuss coverage of these features for safe
eALCOV KBs (and refer the reader for the detailed discussion to [8]).

First, closed DL-defaults [2] of the form

d =
α : β1, . . . , βn

γ

are covered in [8], where α, βi, and γ are DL concepts and n ≥ 0. Closed defaults
are limited in their applicability to individuals explicitly mentioned in the knowledge
base. This is achieved in [8] by using a new atomic concept I in each translation of
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a default and adding the assertions I(a) for each a appearing in the knowledge base.
Conceptually, this matches the idea of nominal schemas, so the translation of closed
defaults can be presented as a safe eALCOV axiom

τDK(d) = Kα u ¬A¬β1 u · · · u ¬A¬βn u {x} v Kγ u {x}
without the need to introduce new concepts or adding additional assertions, and it is
easy to see that Theorem 3.1 from [8] can be adapted accordingly.

Theorem 2. Let 〈Σ,D〉 be anALC KB with defaults, whereΣ is anALC KB andD is
a set of ALC-defaults. The eALCOV KB τ(Σ,D) is such that, for every ALC-concept
C and every individual a ∈ NI , it holds 〈Σ,D〉 |= C(a) iff τDK(Σ,D) |= C(a).

Secondly, integrity constraints (ICs) are considered, and it is argued that ICs com-
monly apply to individuals explicitly mentioned in the considered KB and impose re-
strictions without changing the content of the KB. This is in line with our restrictions
on safe eALCOV KBs and it can be verified that all examples discussed in [8] can be
made safe explicitly by introducing guards {x} as for defaults. Finally, similar observa-
tions hold for the considerations on role and concept closure, i.e., all modeling features
presented in [8] can indeed be adjusted to safe eALCOV KBs without much effort.

4.3 Hybrid MKNF

Hybrid MKNF as a combination of DLs with non-monotonic rules is based on MKNF
logics as well, but of different expressivity due to the different restrictions applied to
the full MKNF language in each of the two approaches [30]. In [20], an embedding of
hybrid MKNF into epistemic DLs is presented (we refer to that paper for the techni-
cal details). Though not the full language of hybrid MKNF is embedded, the presented
fragment suffices to cover Answer Set Programming [11], i.e., disjunctive Datalog with
classical negation and non-monotonic negation under the answer set semantics. Un-
fortunately, the presented embedding is in general not covered within the decidable
fragment in [20] as shown with the simple example > v ∃U.({a} uC) and KD(a)←
KC(a) as the latter would be embedded as K(∃U.({a}uC) v K(∃U.({a}uC) which
is not simple [20]. This can be remedied with safe eALCOV KB by changing the trans-
lation of MKNF rules dl(KH1 ∨ KHl ← KA1, . . . ,KAn,notB1, . . . ,notBm) in
[20] to

Kdl(A1) u . . . uKdl(An) u ¬Adl(B1) u . . . u ¬Adl(Bm) u {i} v
Kdl(H1) t . . . tKdl(Hl) u {i}

where i is a fresh individual and dl the translation function on (possibly classically
negated) atoms defined in [20]. Essentially, in the original embedding, such translated
concepts in GCIs would due to the universal role either be interpreted as ∆ or ∅. Here,
we introduce a nominal as guard that acts as a surrogate for all elements in ∆, thus
reducing such interpretation to either i or ∅. An adaptation of the results in [20] (Lemma
3 and Theorem 4) are then straightforward.

Theorem 3. Let K = (O,P) be a hybrid MKNF KB.M is an MKNF model of K iff
M1 = {J | J ∈ fam(I) with I ∈ M} is a hybrid MKNF model of dl(K).
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This ensures that safe eALCOV KBs in fact embed the restricted version hybrid MKNF
and therefore also ASP.

5 Conclusions

We have studied epistemic extensions of DLs focusing here on eALCOV , i.e., ALC
extended with nominals, nominals schemas, the universal role, and two epistemic op-
erators for modeling non-monotonic reasoning. We have shown that this language en-
compasses all non-monotonic modeling features and approaches discussed in [20], and
that an extension to a few missing monotonic languages (e.g., SROIQ) is easily con-
ceivable. We have introduced a set of restrictions on the general language which is
different from that in [20], and we have shown that, under these restrictions, reasoning,
i.e., checking MKNF-satisfiability becomes decidable, and, unlike in previous work,
the restricted language still covers all the discussed modeling features.

An immediate matter for follow-up work is the computational complexity when
reasoning with epistemic DLs, a question that has only received limited attention so
far (in [8] a triple exponential space upper bound for reasoning with simple KBs has
been pointed out, while no results are mentioned in [20]). It is clear that the complexity
results established for reasoning with nominal schemas (without epistemic operators)
[25] can serve as first necessary lower bounds, i.e., for eALCOV in particular a minimal
lower bound is established by the fact that reasoning inALCOV is 2EXPTIME-complete.
This does neither account for the universal role nor the epistemic operators. SinceALC
with arbitrary Boolean role constructors is NEXPTIME-complete [28,36] (as the restric-
tion to safe Boolean role constructors in [36] does not suffice to cover U ), and the
decision procedure for MKNF-satisfiability requires nondeterministically guessing the
right partition, by combining the different sources of complexity we conjecture a lower
bound of at least N2EXPTIME.

Another interesting topic for future work is to establish coverage for further re-
lated formalisms, for example by extending the expressiveness of rules permitted in
the embedding of Hybrid MKNF, which then allows us to include already established
embedding results for, e.g., [9,32] in [30] or by considering among others work on cir-
cumscription in DLs [4,33]. Building on the existing relation between epistemic exten-
sions of DLs and Hybrid MKNF, we can also investigate the relation to parameterized
logic programs [12,13], or multi-context systems [5] using the established connection
between these and Hybrid MKNF [21]. Finally, an implementation may be considered
given a) the more simple decision procedure proposed here and b) the recent work on
implementing nominal schemas [22,37,6,34] and Hybrid MKNF [1,16]. In particular
the encouraging results for Konclude [34,35] seem to indicate that this may in fact be
achievable in a feasible manner.
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Abstract. We want to understand when a given TBox T in a descrip-
tion logic L can be rewritten into a TBox T ′ in a weaker description
logic L′. Two notions of rewritability are considered: model-conservative
rewritability (T ′ entails T and all models of T can be expanded to
models of T ′) and L-conservative rewritability (T ′ entails T and ev-
ery L-consequence of T ′ in the signature of T is a consequence of T )
and investigate rewritability of TBoxes in ALCI to ALC, ALCQ to
ALC, ALC to EL⊥, and ALCI to DL-Litehorn. We compare conservative
rewritability with equivalent rewritability, give model-theoretic charac-
terizations of conservative rewritability, prove complexity results for de-
ciding rewritability, and provide some rewriting algorithms.

Over the past 30 years, a multitude of different description logics (DLs) have
been designed, investigated, and used in practice as ontology languages. The
introduction of new DLs has been driven both by the need for additional ex-
pressive power (such as transitive roles in the 1990s) and by applications that
require efficient reasoning of a novel type (such as ontology-based data access in
the 2000s). While the resulting flexibility in choosing DLs has had the positive
effect of making DLs available for a large number of domains and applications,
it has also led to the development of ontologies with language constructors that
are not really required to axiomatize their knowledge. For a constructor to be
‘not required’ can mean different things here, ranging from the high-level ‘this
domain can be represented in an adequate way in a weaker DL’ to the very
concrete ‘this ontology is logically equivalent to an ontology in a weaker DL’. In
this paper, we take the latter understanding as our starting point. Equivalent
rewritability of a given DL ontology (TBox) to a weaker DL has been inves-
tigated in [17], where model-theoretic characterizations and the complexity of
deciding rewritability were investigated. For example, equivalent rewritability of
an ALC TBox to an EL⊥ TBox has been characterized in terms of preservation
under products and global equisimilations, and a NExpTime upper bound for
deciding equivalent rewritability has been established. Equivalent rewritability
is a very strong notion, however, that appears to apply to a very small num-
ber of real-world TBoxes. A more practically relevant notion we propose in this
paper is conservative rewritability, which allows one to use new concept and
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role names when rewriting a given ontology into a weaker DL. In this case, we
clearly cannot demand that the new TBox is logically equivalent to the original
one, but only that it entails the original TBox. To avoid uncontrolled additional
consequences of the new TBox, we can also require that (i) it does not entail any
new consequences in the language of the original TBox, or even that (ii) every
model of the original TBox can be expanded a model of the new TBox. The lat-
ter type of conservative extension is known as model-conservative extension [16],
and we call a TBox T model-conservatively L-rewritable if a model-conservative
rewriting of T in the DL L exists. The former type of conservative extension
is known as a language-conservative extension or deductive conservative exten-
sion [12] and, given a DL L in which T is formulated and a weaker DL L′, we
call T L-conservatively L′-rewritable if there is a TBox T ′ in L′ such that T ′
has the same L-consequences as T in the signature of T . Model-conservative
rewritability is the more robust notion as it is language-independent and does
not only leave unchanged the entailed concept inclusions of the original TBox
but also, for example, certain answers if the ontologies are used to access data.

The main result of this paper is that there are important DLs for which
model-conservative and L-conservative rewritability can be transparently char-
acterized, effectively decided, and for which rewriting algorithms can be de-
signed. This is in contrast to the undecidability of the problem whether one
TBox is a model-conservative extension of another one even for weak DLs such
as EL [18, 16]. In particular, we show that, given an ALCI TBox, one can com-
pute in polynomial time its model-conservative ALC-rewriting provided that
such a rewriting exists, which can be decided in ExpTime. We characterize
model-conservative ALC-rewritability in terms of preservation under generated
subinterpretations and show that ALCI-conservative ALC-rewritability coin-
cides with model-conservative one. For ALCQ TBoxes, we show that model-
conservative ALC-rewritability coincides with equivalent rewritability, but is
different from ALCQ-conservative rewritability. The latter can be characterized
using bounded morphisms, and all these notions of rewritability are decidable
in 2ExpTime. Unlike the ALCI case, we currently do not have polynomial
rewritings for ALCQ TBoxes. As to rewritability from ALCI to DL-Litehorn,
we observe that all our notions of rewritability coincide and are ExpTime-
complete. In contrast, for rewritability from ALC to EL⊥ they are all distinct
and, in fact, rather intricate and difficult to analyse. We prove decidability of
model-conservative rewritability and give necessary semantic conditions for both
ALC-conservative and model-conservative EL⊥-rewritability.

Related work. Conservative rewritings of TBoxes are ubiquitous in the DL
research. For example, many rewritings of TBoxes into normal forms are model-
conservative [14, 4]. Regarding rewritability of TBoxes into weaker DLs, the fo-
cus has been on polynomial satisfability preserving rewritings as a pre-processing
step to reasoning [11, 9, 8] or to prove complexity results for reasoning [10]. Such
rewritings are mostly not conservative. There has been significant work on rewrit-
ings of ontology-mediated queries (pairs of ontologies and queries), which pre-
serve their certain answers, into datalog or ontology-mediated queries based on
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weaker DLs [13, 5]. It seems, however, that this problem is different from TBox
conservative rewritability. In [2], the expressive power of DLs and corresponding
notions of rewritability are introduced based on a variant of model-conservative
extension, and the relationship to L-conservative extensions is discussed.

For omitted proofs, see http://cgi.csc.liv.ac.uk/∼frank/publ/publ.html.

1 Conservative Rewritability

We consider the standard description logics ALC, ALCI, ALCQ, EL⊥, and
DL-Litehorn [3, 4, 7, 1], where EL⊥ is EL extended with the concept ⊥, and
DL-Litehorn is DL-Litecore extended with conjunctions of basic concepts on the
left-hand side of concept inclusions. As usual, the alphabet of DLs consists of
countably infinite sets NC of concept names and NR of role names. By a signa-
ture, Σ, we mean any set of concept and role names. The signature sig(T ) of a
TBox T is the set of concept and role names occurring in T .

Before introducing our notions of conservative rewritability, we remind the
reader of a simpler notion of TBox rewritability. Suppose L and L′ are DLs; we
typically assume that L is more expressive than L′.
Definition 1 (equivalent L-to-L′ rewritability). An L′ TBox T ′ is called
an equivalent L′-rewriting of an L TBox T if T |= T ′ and T ′ |= T (in other
words, if T and T ′ have the same models). An L TBox is called equivalently
L′-rewritable if it has an equivalent L′-rewriting.

Equivalent L-to-L′ rewritability has been studied in [17], where semantic
characterizations are given and complexity results for deciding equivalent re-
writability are obtained for various DLs L and L′. For example, if L is ALCI or
ALCQ and L′ is ALC, then an L TBox T is equivalently L′-rewritable just in
case its class of models is preserved under global bisimulations, which are defined
as follows. Given interpretations Ii = (∆Ii , ·Ii), for i = 1, 2, and a signature Σ,
we call a relation S ⊆ ∆I1 ×∆I2 a Σ-bisimulation between I1 and I2 if

– for any A ∈ Σ, whenever (d1, d2) ∈ S then d1 ∈ AI1 iff d2 ∈ AI2 ;
– for any r ∈ Σ and (d1, d2) ∈ S,

if (d1, e1) ∈ rI1 then there is e2 such that (e1, e2) ∈ S and (d2, e2) ∈ rI2 ,
if (d2, e2) ∈ rI2 then there is e1 such that (e1, e2) ∈ S and (d1, e1) ∈ rI1 .

S is a global Σ-bisimulation between I1 and I2 if ∆I1 is the domain of S and ∆I2

its range. I1 and I2 are globally Σ-bisimilar if there is a global Σ-bisimulation
between them, in which case we write I1 ∼ΣALC I2. For d1 ∈ ∆I1 and d2 ∈ ∆I2 ,
we say that (I1, d1) is Σ-bisimilar to (I2, d2) if there is a Σ-bisimulation S
between I1 and I2 such that (d1, d2) ∈ S. If Σ = NC ∪ NR, we omit Σ, write
I1 ∼ALC I2 and say simply ‘(global) bisimulation.’

Example 1. The ALCI TBox {∃r−.B v A} can be equivalently rewritten to the
ALC TBox {B v ∀r.A}. However, the ALCI TBox T = {∃r−.B u ∃s−.B v A}
is not equivalently ALC-rewritable. Indeed, the interpretation on the right-hand
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side in the picture below is a model of T and globally bisimilar to the interpre-
tation on the left-hand side, which is not a model of T .

B B

r s

B B

r s

We now introduce two subtler notions of TBox rewritability, which allow the
use of fresh concept and role names in rewritings. For an interpretation I and
signature Σ, the Σ-reduct of I is the interpretation I|Σ coinciding with I on the

names in Σ and having XI|Σ = ∅ for all X /∈ Σ. We say that interpretations I
and J coincide on Σ and write I =Σ J if the Σ-reducts of I and J coincide. A
TBox T ′ is a model-conservative extension of T if an interpretation I is a model
of T just in case there is a model I ′ of T ′ such that I =sig(T ) I ′.
Definition 2 (model-conservative L-to-L′-rewritability). An L′ TBox T ′
is called a model-conservative L′-rewriting of an L TBox T if T ′ is a model-
conservative extension of T . An L TBox T is model-conservatively L′-rewritable
if a model-conservative L′-rewriting of T exists.

Clearly, any equivalent L′-rewriting of a TBox T is also a model-conservative
L′-rewriting of T . The next example shows that the converse does not hold.

Example 2. The ALCI TBox T = {∃r−.B u ∃s−.B v A} from Example 1 is
model-conservatively ALC-rewritable to

T ′ = {B v ∀r.B∃r−.B , B v ∀s.B∃s−.B , B∃r−.B uB∃s−.B v A},

where B∃r−.B , B∃s−.B are fresh concept names.

A TBox T ′ is called an L-conservative extension of T if T ′ |= T and T ′ |= C v D
implies T |= C v D, for every L-concept inclusion C v D formulated in sig(T ).

Definition 3 (L-conservative L′-rewritability). An L′ TBox T ′ is called an
L-conservative L′-rewriting of an L TBox T if T ′ is an L-conservative extension
of T . An L TBox T is L-conservatively L′-rewritable if an L-conservative L′-
rewriting of T exists.

It should be clear that every model-conservative L′-rewriting of an L TBox T
is also an L-conservative L′-rewriting of T . The next example shows that the
converse implication does not hold.

Example 3. TheALCQ TBox T = {A v ≥ 2 r.B} isALCQ-conservativelyALC-
rewritable to T ′ = {A v ∃r.C, A v ∃r.D, C v ¬D, C tD v B}, where C and
D are fresh concept names. However, T ′ is not a model-conservative rewriting
of T because the model of T shown below is not the sig(T )-reduct of any model
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of T ′. Note that T is not equivalently ALC-rewritable.

A A A

B B B

r
r r

r

In our examples so far, we have used fresh concept names but no fresh role names.
This is no accident: it turns out that, for the DLs considered in this paper, fresh
role names in conservative rewritings are not required. More precisely, we call a
model-conservative or L-conservative L′-rewriting T ′ of T a model-conservative
or, respectively, L-conservative L′-concept rewriting of T if sigR(T ) = sigR(T ′),
where sigR(T ) is the set of role names in T .

Say that a DL L reflects disjoint unions if, for any L TBox T , whenever the
disjoint union

⋃
i∈I Ii of interpretations Ii is a model of T , then each Ii, i ∈ I,

is also a model of T . All the DLs considered in this paper reflect disjoint unions.

Theorem 1. Let L be a DL reflecting disjoint unions, T an L TBox, and let
L′ ∈ {ALC, EL⊥, DL-Litehorn}. Then T is model-conservatively (or L-conserva-
tively) L′-rewritable if and only if it is model-conservatively (or, respectively,
L-conservatively) L′-concept rewritable.

2 ALCI-to-ALC Rewritability

Equivalent ALCI-to-ALC rewritability was studied in [17], where the characteri-
zation in terms of global bisimulations was used to design a 2ExpTime algorithm
for checking this property. Here, we give a characterization of model-conservative
ALC rewritability of ALCI TBoxes in terms of generated subinterpretations
and use it to show that (i) model-conservative ALCI-to-ALC rewritings are of
polynomial size and can be constructed in polynomial time (if they exist), and
that (ii) deciding model-conservative ALCI-to-ALC rewritability is ExpTime-
complete. We also observe that ALCI-conservative ALC-rewritability coincides
with model-conservative rewritability.

We remind the reader that an interpretation I is a subinterpretation of an
interpretation J if ∆I ⊆ ∆J , AI = AJ ∩ ∆I for all concept names A, and
rI = rJ ∩(∆I×∆I) for all role names r. I is a generated subinterpretation of J
if, in addition, whenever d ∈ ∆I and (d, d′) ∈ rJ , r a role name, then d′ ∈ ∆I .
We say that a TBox T is preserved under generated subinterpretations if every
generated subinterpretation of a model of T is also a model of T . As well known,
every ALC TBox is preserved under generated subinterpretations.

Suppose we want to find a model-conservative ALC-rewriting of an ALCI
TBox T . Without loss of generality, we assume that T = {> v CT } and CT
is built using ¬, u and ∃ only. Let sub(T ) be the closure under single negation
of the set of (subconcepts) of concepts in T . For every role name r in T , we
take a fresh role name r̄ and, for every ∃r.C in sub(T ) (where r is a role name
or its inverse), we take a fresh concept name B∃r.C . Denote by D] the ALC-
concept obtained from any D ∈ sub(T ) by replacing every top-most occurrence
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of a subconcept of the form ∃r.C in it with B∃r.C . Now, let T † be an ALC TBox
comprised of the following concept inclusions, for r ∈ NR: > v C]T ,

C] v ∀r̄.B∃r.C , B∃r.C ≡ ∃r.C], for every ∃r.C ∈ sub(T ),

C] v ∀r.B∃r−.C , B∃r−.C ≡ ∃r̄.C], for every ∃r−.C ∈ sub(T ).

Clearly, T † can be constructed in polynomial time in the size of T .

Theorem 2. An ALCI TBox T is model-conservatively ALC-rewritable iff T
is preserved generated subinterpretations. Moreover, if T is model-conservatively
ALC-rewritable, then T † is its model-conservative ALC-rewriting.

It is now easy to show that model-conservative ALCI-to-ALC rewritability is
decidable in ExpTime. By Theorem 2, this amounts to deciding whether T † is
a model-conservative extension of T . In general, this is an undecidable problem.
It is, however, easy to see that, for every model I of T , there is a model I ′ of T †
such that I =sig(T ) I ′. It thus remains to decide whether every interpretation I
with I =sig(T ) I ′, for some model I ′ of T †, is a model of T . In other words, this

means to decide whether T † |= T , which can be done in ExpTime. A matching
lower bound is easily obtained by reducing satisfiability in ALC.
Corollary 1. The problem of deciding model-conservative ALCI-to-ALC rewri-
tability is ExpTime-complete.

ALCI-conservative ALC-rewritability of ALCI TBoxes coincides with model-
conservative ALC-rewritability. This can be proved using the characterization
via subinterpretations and robustness under replacement of ALCI TBoxes, an
important property in the context of modular ontology design [15, Theorem 4].

Theorem 3. An ALCI TBox T is ALCI-conservatively ALC-rewritable iff T
is model-conservatively ALC-rewritable.

3 ALCQ-to-ALC Rewritability

Equivalent ALCQ-to-ALC rewritability was characterized in [17] in terms of
preservation under global bisimulations. Below, we use this characterization to
give a 2ExpTime algorithm for checking equivalent ALC-rewritability.

We first prove a characterization of ALCQ-conservative ALC-rewritability
in terms of preservation under inverse bounded morphisms and use it to show
that one can (i) decide ALCQ-conservative ALC-rewritability in 2ExpTime
and (ii) construct effectively an ALCQ-conservative rewriting if it exists. We
also show that, unlike ALCI-to-ALC-rewritability, model-conservative ALC-
rewritability of ALCQ TBoxes coincides with equivalent rewritability.

A bounded Σ-morphism from an interpretation I1 to an interpretation I2 is
a global Σ-bisimulation S between I1 and I2 such that S is a function from
∆I1 to ∆I2 . A class K of interpretations is preserved under inverse bounded Σ-
morphisms if whenever there is a bounded Σ-morphism from an interpretation
I1 to some I2 ∈ K, then I1 ∈ K. The following lemma provides the fundamental
property of bounded morphisms:
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Lemma 1. Suppose f : I1 → I2 is a bounded Σ-morphism, where I2 is a model
of an ALC TBox T and sigR(T ) ⊆ Σ. Then there is J1 |= T such that J1 =Σ I1.

Proof. We define J1 in the same way as I1 except that BJ1 := f−1(BI2) for
all concept names B ∈ sig(T1) \Σ. Then f is a bounded sig(T )-morphism from
J1 to I2. Thus, J1 is a model of T since I1 is a model of T . o

An interpretation I is a directed tree interpretation if rI ∩ sI = ∅, for r 6= s, and
the directed graph with nodes ∆I and edges E defined by setting (d, d′) ∈ E iff
(d, d′) ∈ ⋃r∈NR

rI is a directed tree. We start our investigation with the obser-
vation that ALCQ-conservative ALCQ-to-ALC rewritability can be regarded as
a principled approximation of model-conservative rewritability:

Lemma 2. An ALC TBox T ′ is an ALCQ-conservative rewriting of an ALCQ
TBox T iff T ′ is a model-conservative rewriting of T over the class of directed
tree interpretations of finite outdegree.

Suppose we want to find an ALCQ-conservative ALC-rewriting of an ALCQ
TBox T . Without loss of generality, we assume that T is of the form {> v CT }
and that CT is built using ¬, u, (> n r C) only. Construct a TBox T † as follows.
Take fresh concept names BD, B

D
1 , . . . , B

D
n for every D = (> n r C) ∈ sub(T ).

We use Σ to denote sig(T ) extended with all fresh concept names of the form
BDi . For each C ∈ sub(T ), C] denotes the ALC-concept that results from C by
replacing all top-most occurrences of any D = (> n r C) in T with BD. Now,
define T † to be the infinite TBox that consists of the following inclusions:

– > v C]T ,
– BD v ∃r.(C] uBD1 ) u · · · u ∃r.(C] uBDn ),
– BDi v ¬BDj , for i 6= j, and
– for all ALC-concepts C1, . . . , Cn in Σ and all D = (> n r C) ∈ sub(T ),

u
1≤i≤n

(∃r.(C] u C]i u u
j 6=i
¬C]j)) v BD.

The next theorem characterizes ALCQ-conservative ALC-rewritability.

Theorem 4. An ALCQ TBox T is ALCQ-conservatively ALC-rewritable iff T
is preserved under inverse bounded sig(T )-morphisms. Moreover, if T is ALCQ-
conservatively ALC-rewritable, then T † is an (infinite) rewriting.

The semantic characterization of Theorem 4 can be employed to prove the fol-
lowing complexity result using a type elimination argument. We assume that
numbers in number restrictions are given in unary.

Theorem 5. For ALCQ TBoxes, ALCQ-conservative ALC-rewritability is de-
cidable in 2ExpTime.

It follows that, given an ALCQ TBox T , one can first decide ALCQ-conservative
ALC-rewritability and then, in case of a positive answer, effectively construct a
rewriting by going through the finite subsets of T † in a systematic way until a
finite T ′ ⊆ T † with T ′ |= T is reached. By compactness, such a set T ′ exists.

We finally show that every model-conservativelyALC-rewritableALCQ TBox
is equivalently ALC-rewritable.

202



Theorem 6. An ALCQ TBox is model-conservatively ALC-rewritable iff it is
equivalently ALC-rewritable, which is decidable in 2ExpTime.

4 ALCI-to-DL-Litehorn and ALC-to-EL⊥ Rewritability

We first observe that all notions of rewritability introduced in this paper coin-
cide in the case of ALCI-to-DL-Litehorn rewritability. Deciding rewritability is
ExpTime-complete in all cases since deciding equivalent ALCI-to-DL-Litehorn
rewritability is ExpTime-complete [17]:

Theorem 7. For ALCI TBoxes, equivalent DL-Litehorn-rewritability, model-
conservative DL-Litehorn-rewritability, and ALCI-conservative DL-Litehorn-rew-
ritability coincide and are ExpTime-complete.

We now provide separating examples for all three notions of ALC-to-EL⊥ re-
writability and then prove decidability of model-conservative EL⊥-rewritability.
While we have not yet been able to find purely model-theoretic characteriza-
tions of model- and ALC-conservative EL⊥-rewritability, we then give necessary
model-theoretic conditions for these two notions of rewritability.

Equivalent ALC-to-EL⊥ rewritability has been characterized in [17] in terms
of preservation under products and global equisimulations. A simulation between
interpretations I and J is a relation S ⊆ ∆I ×∆J such that, for any A ∈ NC,
r ∈ NR and (d1, d2) ∈ S, if d1 ∈ AI1 then d2 ∈ AI2 , and if (d1, e1) ∈ rI then
there exists e2 with (e1, e2) ∈ S and (d2, e2) ∈ rJ . (I, d) is simulated by (J , e)
if there is a simulation S between I and J such that (d, e) ∈ S. Interpretations
I and J are globally equisimilar if, for any d ∈ ∆I , there exists e ∈ ∆J such
that (I, d) is simulated by (J , e) and (J , e) is simulated by (I, d). According
to [17, Theorem 17], an ALC TBox is equivalently EL⊥-rewritable if its models
are preserved under products and global equisimulations.

Example 4. The TBox T = {∃r.A u ∃r.B u ∀r.(A tB) v E t F, A uB v ⊥} is
not equivalently EL⊥-rewritable because its models are not preserved under
global equisimulations. Indeed, the interpretation I shown below is clearly a
model of T . However, by removing the rightmost r-arrow from I, we obtain an
interpretation which is globally equisimilar to I but not a model of T .

A B

r r r

On the other hand, the EL⊥ TBox

{∃r.A u ∃r.B v ∃r.G, ∃r.(G uA) v E, ∃r.(G uB) v F, A uB v ⊥}

is easily seen to be anALC-conservative EL⊥ rewriting of T . We now show that T
is not model-conservatively EL⊥-rewritable. For suppose T has such a rewriting
T ′ given in standard normal form (with inclusions of the form A1u . . .uAn v B,
∃r.B v A, or A v ∃r.B where A1, . . . , An, A,B ∈ NC∪{⊥}). Consider the model

203



I of T depicted below, and let I ′ be a model of T ′ such that I =sig(T ) I ′.

E
x

F
y

A
a

B
b

r
r

r

Let J be the same as I ′ except that x, y ∈MJ iff both x ∈MI′ and y ∈MI′ ,
for every M ∈ NC. Since x /∈ EJ and y /∈ FJ , J is not a model of T ′. Since the
restriction of I ′ to {a, b} is a model of T ′, and the restrictions of I ′ to {a, b, x}
and {a, b, y} coincide, there is (C v D) ∈ T ′ such that x, y ∈ CJ but x, y 6∈ DJ .
As I ′ is a model of T ′, which is in standard normal form, and by the definition
of J , D must be a concept name. Since clearly x, y ∈ CI′ , we must also have
x, y ∈ DI′ , and so x, y ∈ DJ , which is a contradiction.

The following modified version of T

Tm = {∃r.A u ∃r.B u ∀r.(A tB) v ∃r.(A u E) t ∃r.(B u F ), A uB v ⊥}

is not equivalently EL⊥-rewritable, but has a model-conservative EL⊥-rewriting

T ′m = {∃r.A u ∃r.B v ∃r.M, ∃r.(M uA) v ∃r.(M u E),

∃r.(M uB) v ∃r.(M u F ), A uB v ⊥}.

The difference from the previous example is that if d is an instance of ∃r.Au∃r.B,
then we can place the ‘marker’ M onto an r-successor of d which is either in
A u E or in B u F , whereas in the previous example the decision on where to
put the ‘marker’ G was not determined by the r-successors of d but by d itself.

We now prove that if there exists an EL⊥-rewriting of an ALC TBox T , then
there is one without any ‘recursion’ for the newly introduced symbols. Let Σ =
sig(T ). We say that an EL⊥ TBox T ′ is in Σ-layered form of depth n if there
are mutually disjoint sets Γ0, . . . , Γn of concept names such that Γi ∩ Σ = ∅
(0 ≤ i ≤ n) and the inclusions of T ′ take the following form, where r ∈ Σ:

level i atom inclusions: A1 u · · · uAn v B, for A1, . . . , An, B ∈ Σ ∪ Γi ∪ {⊥},
level i right-atom inclusions: ∃r.A v B for A ∈ Σ ∪ Γi+1, B ∈ Σ ∪ Γi ∪ {⊥},
level i left-atom inclusions: A v ∃r.B, for A ∈ Σ ∪ Γi, B ∈ Σ ∪ Γi+1 ∪ {⊥}.

The depth of a concept C is the maximal number of nestings of existential
restrictions in C. The depth of a TBox is the maximal depth of its concepts.

Lemma 3. If an ALC TBox T of depth n is model- (or ALC-) conservatively
EL⊥-rewritable, then there exists a model- (respectively, ALC-) conservative
EL⊥-rewriting T ′ of T in sig(T )-layered form of depth n.

We use Lemma 3 to prove decidability of model-conservative EL⊥-rewritability.
An ALC ABox A is a finite set of assertions of the form C(a) and r(a, b), where
C is an ALC concept and a, b are individual names. The set of individual names
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that occur in an ABox A is denoted by ind(A). When interpreting ABoxes, we
adopt the standard name assumption: aI = a, for all a ∈ ind(A).

Let T be an ALC TBox of depth n > 0 (the case n = 0 is trivial). By
subn−1(T ) we denote the closure under single negation of the set of subconcepts
of concepts in T of depth at most n − 1. By Θn−1(T ) we denote the set of
maximal subsets t of subn−1(T ) that are satisfiable in a model of T . A T -ABox
is an ABox such that tA(a) = {D | D(a) ∈ A} ∈ Θn−1(T ) for all a ∈ ind(A).
Let A be a directed tree ABox of depth at most n (that is, all nodes in it are
at distance ≤ n from the root). We say that A is n-strongly satisfiable w.r.t. T
if there is a model I of A and T such that the rI-successors of aI , for every
a ∈ ind(A) of depth < n in A, coincide with the r-successors of a in A.

We now define inductively (T , i)-bisimilarity relations ∼i,T between pairs
(A1, a1) and (A2, a2), where the Ai are T -ABoxes and ai ∈ ind(Ai):
– (A1, a1) ∼0,T (A2, a2) if tA1(a1) = tA2(a2);
– (A1, a1) ∼i+1,T (A2, a2) if (A1, a1) ∼0,T (A2, a2) and, for every r ∈ sig(T ),

if r(d1, e1) ∈ A1 then there is r(d2, e2) ∈ A2 such that (A1, e1) ∼i,T (A2, e2),
and vice versa.

For every i ≥ 0, one can determine a finite set ATi of finite directed tree T -
ABoxes A with root ρA and of depth ≤ i such that:

– for every I |= T and every d ∈ ∆I , (I, d) is (T , i)-bisimilar to exactly one
(A, ρA) ∈ ATi;

4

– every A ∈ ATi is strongly i-satisfiable w.r.t. T .

We assume that all ABoxes in AT0, . . . ,ATn have mutually distinct roots. We
define the canonical ABox AT with individuals {ρA | A ∈ ATi, i ≤ n} as follows:

– for Ai ∈ ATi, Ai+1 ∈ ATi+1 and r ∈ sig(T ), we have r(ρAi+1
, ρAi) ∈ AT if

there exists r(ρAi+1
, b) ∈ Ai+1 such that the subtree of Ai+1 rooted at b is

(i, T )-bisimilar to Ai;
– for Ai ∈ ATi and A ∈ sig(T ), we have A(ρAi) ∈ AT iff A(ρAi) ∈ Ai.

Note that AT is acyclic (but not a directed tree ABox).

Lemma 4. Let T be an ALC TBox of depth n. An EL⊥ TBox T ′ in sig(T )-
layered form of depth n is a model-conservative EL⊥-rewriting of T iff

– T ′ |= T and
– there exists A′ =sig(T ) AT such that, for all i = 0, . . . , n, A′ satisfies all level
i inclusions in T ′ at all ρAi with Ai ∈ ATn−i.

Theorem 8. Model-conservative EL⊥-rewritability of ALC TBoxes is decidable.

Proof. Given an ALC TBox T , we first construct the canonical ABox AT . If an
EL⊥ TBox T ′ in Σ-layered form of depth n satisfies the conditions of Lemma 4,
then there exists such a TBox with at most 2|AT | distinct fresh concept names.
As the number of such EL⊥ TBoxes is finite, one can check for each of them
whether the conditions of Lemma 4 are satisfied. o

4 Here we identify I with the ABox with assertions r(a, b), for (a, b) ∈ rI , and D(a),
for D ∈ subn−1(T ) and a ∈ DI .
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We now give necessary conditions for ALC-conservative EL⊥-rewritability of
ALC TBoxes. First, we still have the preservation under products:

Theorem 9. Every ALC-conservatively EL⊥-rewritable ALC TBox is preserved
under products.

Theorem 9 can be used to show that TBoxes such as {A v B t E} are not
ALC-conservatively EL⊥-rewritable. To separate equivalently rewritable TBoxes
from ALC-conservatively rewritable TBoxes, we generalize the construction of
Example 4. In that case, we removed an r-arrow (d0, d) from a tree-shaped model
I of T and obtained a model that is globally equisimilar to the original model
but not a model of T . It turns out that ALC-conservatively EL⊥-rewritable ALC
TBoxes of depth 1 are preserved under the inverse of this operation. We say that
(I, d) is ⊆1-simulated by (J , e) if (i) d ∈ AI iff e ∈ AJ , for all A ∈ NC; (ii)
for all r ∈ NR, if (e, e′) ∈ rJ then there exists d′ with (d, d′) ∈ rI and, for all
A ∈ NC, if e′ ∈ AJ then d′ ∈ AI ; (iii) for all r ∈ NR, if (d, d′) ∈ rI then there
exists e′ with (e, e′) ∈ rJ and, for all A ∈ NC, we have d′ ∈ AI iff e′ ∈ AJ . Say
that I is globally ⊆1-simulated by J if, for every e ∈ ∆J , there exists d ∈ ∆I
such that (I, d) is ⊆1-simulated by (J , e). An ALC TBox is preserved under
⊆1-simulations if every interpretation that globally ⊆1-simulates a model of T
is a model of T .

Theorem 10. Every ALC-conservatively EL⊥-rewritable ALC TBox of depth 1
is preserved under global ⊆1-simulations.

This result can be used to show, for example, that T = {A v ∀r.B} is not
ALC-conservatively EL⊥-rewritable. For the interpretation below is not a model

A

B

r r

of T , but by removing from it the rightmost r-arrow, we obtain an interpretation
which is globally⊆1-simulated by J and is a model of T . It remains open whether
preservation under products and global ⊆1-simulations is sufficient for an ALC
TBox of depth 1 to be ALC-conservatively EL⊥-rewritable.

5 Conclusion

Conservative rewritings of ontologies provide more flexibility than equivalent
rewritings and are more natural in practice. However, they are also techni-
cally much more challenging to analyse. For future work, we are particularly
interested in better understanding conservative rewritings to EL and related
logics. For example, can we find transparent model-theoretic characterizations
and explicit axiomatizations of the rewritten TBoxes? The results in Section 4
should provide a good starting point. Another challenging problem could be to
investigate rewritability to OWL 2 QL—essentially DL-Litecore extended with
role inclusions—which preserves answers to conjunctive queries over all possible
ABoxes. (Recall [6] that conjunctive query inseparability for OWL 2 QL TBoxes
is ExpTime-complete.)
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Exact Learning Description Logic Ontologies from Data
Retrieval Examples

Boris Konev, Ana Ozaki, and Frank Wolter

Department of Computer Science, University of Liverpool, UK

Abstract. We investigate the complexity of learning description logic ontologies
in Angluin et al.’s framework of exact learning via queries posed to an oracle. We
consider membership queries of the form “is individual a a certain answer to a data
retrieval query q in a given ABox and the unkown target TBox?” and equivalence
queries of the form “is a given TBox equivalent to the unknown target TBox?”. We
show that (i) DL-Lite TBoxes with role inclusions and ELI concept expressions
on the right-hand side of inclusions and (ii) EL TBoxes without complex concept
expressions on the right-hand side of inclusions can be learned in polynomial time.
Both results are proved by a non-trivial reduction to learning from subsumption
examples. We also show that arbitrary EL TBoxes cannot be learned in polynomial
time.

1 Introduction

Building an ontology is prone to errors, time consuming, and costly. The research com-
munities has addressed this problem in many different ways, for example, by supplying
tool support for editing ontologies [15, 4, 9], developing reasoning support for debug-
ging ontologies [18], supporting modular ontology design [17], and by investigating
automated ontology generation from data or text [8, 6, 5, 14]. One major problem when
building an ontology is the fact that domain experts are rarely ontology engineering ex-
perts and that, conversely, ontology engineers are typically not familiar with the domain
of the ontology. An ontology building project therefore often relies on the successful
communication between an ontology engineer (familiar with the semantics of ontology
languages) and a domain expert (familiar with the domain of interest). In this paper, we
consider a simple model of this communication process and analyse, within this model,
the computational complexity of reaching a correct domain ontology. We assume that

– the domain expert knows the domain ontology and its vocabulary without being able
to formalize or communicate this ontology;

– the domain expert is able to communicate the vocabulary of the ontology and shares
it with the the ontology engineer. Thus, the domain expert and ontology engineer
have a common understanding of the vocabulary of the ontology. The ontology
engineer knows nothing else about the domain.

– the ontology engineer can pose queries to the domain expert which the domain
expert answers truthfully. Assuming that the domain expert can interpret data in
her area of expertise, the main queries posed by the ontology engineer are based on
instance retrieval examples:
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• assume a data instance A and a query q(x) are given. Is the individual a a
certain answer to query q(x) in A and the ontology O?

In addition, we require a way for the ontology engineer to find out whether she
has reconstructed the target ontology already and, if this is not the case, to request
an example illustrating the incompleteness of the reconstruction. We abstract from
defining a communication protocol for this, but assume for simplicity that the
following query can be posed by the ontology engineer:
• Is this ontologyH complete? If not, return a data instance A, a query q(x), and

an individual a such that a is a certain answer to q(x) in A and the ontology O
and it is not a certain answer to q(x) in A and the ontologyH.

Given this model, our question is whether the ontology engineer can learn the target
ontology O and which computational resources are required for this depending on the
ontology language in which the ontology O and the hypothesis ontologiesH are formu-
lated. Our model obviously abstracts from a number of fundamental problems in building
ontologies and communicating about them. In particular, it makes the assumption that
the domain expert knows the domain ontology and its vocabulary (without being able
to formalize it) despite the fact that finding an appropriate vocabulary for a domain of
interest is a major problem in ontology design [8]. We make this assumption here in
order to isolate the problem of communication about the logical relationships between
known vocabulary items and its dependence on the ontology language within which the
relationships can be formulated.

The model described above is an instance of Angluin et al.’s framework of exact
learning via queries to an oracle [1]. The queries using instance retrieval examples can
be regarded as membership queries posed by a learner to an oracle and the completeness
query based on a hypothesisH can be regarded as an equivalence query by the learner to
the oracle. Formulated in Angluin’s terms we are thus interested in whether there exists
a deterministic learning algorithm that poses membership and equivalence queries of
the above form to an oracle and that learns an arbitrary ontology over a given ontology
language in polynomial time. We consider polynomial learnability in three distinct DLs:
we show that DL-Lite ontologies with role inclusions and arbitrary ELI concepts on
the right-hand side of concept inclusions can be learned in polynomial time if database
queries in instance retrieval examples are ELI instance queries (or, equivalently, acyclic
conjunctive queries). We call this DL DL-Lite∃R and note that it is the core of the web
ontology language profile OWL2 QL. We also note that without complex ELI concepts
on the right-hand side of concept inclusions, polynomial learnability would be trivial as
only finitely many non-equivalent such TBoxes exist over a given vocabulary of concept
and role names. The second DL we consider is EL which is the logic underpinning the
web ontology language profile OWL2 EL. We show that EL TBoxes cannot be learned
in polynomial time using the protocol above if the database queries in instance retrieval
examples are EL instance queries. We then consider the fragment ELlhs of EL without
complex concepts on the right-hand side of concept inclusions and prove that it can be
learned in polynomial time using the above protocol with instance retrieval examples.
The proofs of the positive learning results are by reduction to polynomial time learnability
results for DL-Lite∃R and ELlhs for the case in which concept subsumptions rather than
instance retrieval examples are used in the communication between the learner and the
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oracle [12]. Our move from concept subsumptions to data retrieval examples is motivated
by the observation that domain experts are often more familiar with querying data in their
domain than with the logical notion of subsumption between complex concepts. Detailed
proofs are provided at http://csc.liv.ac.uk/˜frank/publ/publ.html.

2 Preliminaries

Let NC and NR be countably infinite sets of concept and role names, respectively. The
dialect DL-Lite∃R of DL-Lite is defined as follows [7]. A role is a role name or an inverse
role r− with r ∈ NR. A role inclusion (RI) is of the form r v s, where r and s are
roles. A basic concept is either a concept name or of the form ∃r.>, with r a role. A
DL-Lite∃R concept inclusion (CI) is of the form B v C, where B is a basic concept
expression and C is an ELI concept expression, that is, C is formed according to the
rule C,D := A | > | C u D | ∃r.C | ∃r−.C where A ranges over NC and r ranges
over NR. A DL-Lite∃R TBox is a finite set of DL-Lite∃R CIs and RIs. As usual, an EL
concept expression is an ELI concept expression that does not use inverse roles, an EL
concept inclusion has the form C v D with C and D EL concept expressions, and a
(general) EL TBox is a finite set of EL concept inclusions [2]. We also consider the
restriction ELlhs of general EL TBoxes where only concept names are allowed on the
right-hand side of concept inclusions. The size of a concept expression C, denoted with
|C|, is the length of the string that represents it, where concept names and role names are
considered to be of length one. A TBox signature is the set of concept and role names
occurring in the TBox. The size of a TBox T , denoted with |T |, is

∑
CvD∈T |C|+ |D|.

Let NI be a countably infinite set of individual names. An ABox A is a finite non-
empty set containing concept name assertions A(a) and role assertions r(a, b), where
a, b are individuals in NI, A is a concept name and r is a role. Ind(A) denotes the set of
individuals that occur inA.A is a singleton ABox if it contains only one ABox assertion.
Assertions of the form C(a) and r(a, b), where a, b ∈ NI , C an ELI concept expression,
and r ∈ NR , are called instance assertions. Note that instance assertions of the form
C(a) with C not a concept name nor C = > do not occur in ABoxes. The semantics
of description logic is defined as usual [3]. We write I |= α to say that an inclusion or
assertion α is true in I. An interpretation I is a model of a KB (T ,A) if I |= α for all
α ∈ T ∪ A. (T ,A) |= α means that I |= α for all models I of (T ,A).

A learning framework F is a triple (X,L, µ), where X is a set of examples (also
called domain or instance space), L is a set of learning concepts1 and µ is a mapping
from L to 2X . The subsumption learning framework FS , studied in [12], is defined as
(XS ,L, µS), where L is the set of all TBoxes that are formulated in a given DL; XS is
the set of subsumption examples of the formC v D, whereC,D are concept expressions
of the DL under consideration; and µS(T ) is defined as {C v D ∈ XS | T |= C v D},
for every T ∈ L. It should be clear that µS(T ) = µS(T ′) if, and only if, the TBoxes T
and T ′ entail the same set of inclusions, that is, they are logically equivalent.

1 In the learning literature (e.g., [1]), the term ‘learning concept’ is often defined as a set of
examples. We do not distinguish between learning concepts and their representations and only
consider representable learning concepts to emphasize on the task of identifying a TBox that is
logically equivalent to the target TBox.
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We study the data retrieval learning framework FD defined as (XD,L, µD), where
L is same as in FS ; X is the set of data retrieval examples of the form (A, D(a)),
where A is an ABox, D(a) is a concept assertion of the DL under consideration, and
a ∈ Ind(A); and µ(T ) = {(A, D(a)) ∈ XD | (T ,A) |= D(a)}. As in the case of
learning from subsumptions, µS(T ) = µS(T ′) if, and only if, the TBoxes T and T ′ are
logically equivalent.

Given a learning framework F = (X,L, µ), we are interested in the exact identi-
fication of a target learning concept l ∈ L by posing queries to oracles. Let MEMl,X

be the oracle that takes as input some x ∈ X and returns ‘yes’ if x ∈ µ(l) and ‘no’
otherwise. We say that x is a positive example for l if x ∈ µ(l) and a negative example
for l if x 6∈ µ(l). Then a membership query is a call to the oracle MEMl,X . Similarly,
for every l ∈ L, we denote by EQl,X the oracle that takes as input a hypothesis learning
concept h ∈ L and returns ‘yes’, if µ(h) = µ(l), or a counterexample x ∈ µ(h)⊕ µ(l)
otherwise, where ⊕ denotes the symmetric set difference. An equivalence query is a call
to the oracle EQl,X .

We say that a learning framework (X,L, µ) is exact learnable if there is an algorithm
A such that for any target l ∈ L the algorithm A always halts and outputs l′ ∈ L such
that µ(l) = µ(l′) using membership and equivalence queries answered by the oracles
MEMl,X and EQl,X , respectively. A learning framework (X,L, µ) is polynomially
exact learnable if it is exact learnable by an algorithm A such that at every step2 of
computation the time used by A up to that step is bounded by a polynomial p(|l|, |x|),
where l is the target and x ∈ X is the largest counterexample seen so far3. As argued in
the introduction, for learning subsumption and data retrieval learning frameworks we
additionally assume that the signature of the target TBox is always known to the learner.

An important class of learning algorithms—in particular, all algorithms presented
in [12, 10, 16] fit in this class—always make equivalence queries with hypotheses h
which are polynomial in the size of l and such that µ(h) ⊆ µ(l), so that counterexamples
returned by the EQl,X oracles are always positive. We say that such algorithms use
positive bounded equivalence queries.

3 Polynomial Time Learnability

In this section we prove polynomial time exact learnability of the DL-Lite∃R and ELlhs

data retrieval learning frameworks. These frameworks are instances of the general
definition given above, where the concept expression D in a data retrieval example
(A, D(a)) is an ELI concept expression in the DL-Lite∃R framework and an EL concept
expression in the ELlhs framework, respectively.

The proof is by reduction to learning from subsumptions. We illustrate its idea for
ELlhs. To learn a TBox from data retrieval examples we run a learning from subsumptions
algorithm as a ‘black box’. Every time the learning from subsumptions algorithm makes
a membership or an equivalence query we rewrite the query into the data setting and pass
it on to the data retrieval oracle. The oracle’s answer, rewritten back to the subsumption

2 We count each call to an oracle as one step of computation.
3 We assume some natural notion of a length of an example x and a learning concept l, denoted
|x| and |l|, respectively.

211



A

r,s

A

A

...

A
s

A
r

s

...

A
s

A
r

r

s
A

...

A
s

A
r

s

...

A
s

A
r

r

r

Fig. 1: An ABox A = {r(a, a), s(a, a), A(a)} and its unravelling up to level n.

setting, is given to the learning from subsumptions algorithm. When the learning from
subsumptions algorithm terminates we return the learnt TBox. This reduction is made
possible by the close relationship between data retrieval and subsumption examples. For
every TBox T and inclusions C v D, one can interpret a concept expression C as a
labelled tree and encode this tree as an ABox AC with root ρC such that T |= C v D
iff (T ,AC) |= D(ρC).

Then, membership queries in the subsumption setting can be answered with the
help of a data retrieval oracle due to the relation between subsumptions and instance
queries described above. An inclusion C v D is a (positive) subsumption example
for some target TBox T if, and only if, (AC , D(ρC)) is a (positive) data retrieval
example for the same target T . To handle equivalence queries, we need to be able to
rewrite data retrieval counterexamples returned by the data retrieval oracle into the
subsumption setting. For every TBox T and data retrieval query (A, D(a)) one can
construct a concept expression CA such that (T ,A) |= D(a) iff T |= CA v D. Such
a concept expression CA can be obtained by unravelling A into a tree-shaped ABox
and representing it as a concept expression. This unravelling, however, can increase the
ABox size exponentially. Thus, to obtain a polynomial bound on the running time of the
learning process, CA v D cannot be simply returned as an answer to a subsumption
equivalence query. For example, for a target TBox T = {∃rn.A v B} and a hypothesis
H = ∅ the data retrieval query (A, B(a)), where A = {r(a, a), s(a, a), A(a)}, is
a positive counterexample. The tree-shaped unravelling of A up to level n is a full
binary tree of depth n, as shown in Fig. 1. On the other hand, the non-equivalence of
T and H can already be witnessed by (A′, B(a)), where A′ = {r(a, a), A(a)}. The
unravelling of A′ up to level n produces a linear size ABox {r(a, a2), r(a2, a3), . . . ,
r(an−1, an), A(a), A(a2), . . . , A(an)}, corresponding to the left-most path in Fig. 1,
which, in turn, is linear-size w.r.t. the target inclusion ∃rn.A v B. Notice that A′
is obtained from A by removing the s(a, a) edge and checking, using membership
queries, whether (T ,A′) |= q still holds. In other words, one might need to ask further
membership queries in order to rewrite answers to data retrieval equivalence queries
given by the data retrieval oracle into the subsumption setting.

We address the need of rewriting counterexamples by introducing an abstract notion
of reduction between different exact learning frameworks. To simplify notation, we
assume that both learning frameworks use the same set of learning concepts L and only
consider positive bounded equivalence queries. This definition of reduction can be easily
extended to arbitrary learning frameworks and arbitrary queries.

212



We say that a learning framework F = (X,L, µ) polynomially reduces to F′ =
(X ′,L, µ′) if for some polynomials p1(·), p2(·) and p3(·, ·) there exist a function f :
X ′ → X and a partial function g : L × L ×X → X ′, defined for every (l, h, x) such
that |h| = p1(|l|), µ(h) ⊆ µ(l) and x ∈ X , for which the following conditions hold.

– For all x′ ∈ X ′ we have x′ ∈ µ′(l) if, and only if, f(x′) ∈ µ(l);
– For all x ∈ X we have x ∈ µ(l) \ µ(h) if, and only if, g(l, h, x) ∈ µ′(l) \ µ′(h);
– f(x′) is computable in time p2(|x′|);
– g(l, h, x) is computable in time p3(|l|, |x|) and l can only be accessed by calls to the

membership oracle MEMl,X .

As in the case of learning algorithms, we consider every call to the oracle as one step
of computation. Notice also that even though g takes h as input, the polynomial time
bound on computing g(l, h, x) does not depend on the size of h as g is only defined for
h polynomial in the size of l.

Theorem 1. Let (X,L, µ) and (X ′,L, µ′) be learning frameworks. If there exists a
polynomial reduction from (X,L, µ) to (X ′,L, µ′) and a polynomial learning algorithm
for (X ′,L, µ′) that uses membership queries and positive bounded equivalence queries
then (X,L, µ) is polynomially exact learnable.

We use Theorem 1 to prove that DL-Lite∃R and ELlhs TBoxes can be learned in
polynomial time from data retrieval examples. We employ the following result:

Theorem 2 ([12]). The DL-Lite∃R and ELlhs subsumption learning frameworks are
polynomial time exact learnable with membership and positive bounded equivalence
queries.

As the existence of f is guaranteed by the following lemma, in what follows we prove
the existence of g and establish the corresponding time bounds.

Lemma 1. Let L ∈ {DL-Lite∃R, ELlhs} and let C v D be an L concept inclusion. Then
(T ,AC) |= D(ρC) if, and only if, T |= C v D.

Polynomial Reduction for DL-Lite∃R TBoxes We show for any target T and hy-
pothesis H polynomial in the size of T that Algorithm 1 transforms every positive
counterexample in polynomial time to a positive counterexample with a singleton ABox
(i.e., of the form {A(a)} or {r(a, b)}). Using the equivalences (T , {A(a)}) |= C(a) iff
T |= A v C and (T , {r(a, b)}) |= C(a) iff T |= ∃r.> v C, we then obtain a positive
subsumption counterexample, so g(l, h, x) is computable in polynomial time.

Given a positive data retrieval counterexample (A, C(a)), Algorithm 1 exhaustively
applies the role saturation and parent-child merging rules introduced in [12]. We say that
an instance assertion C(a) is role saturated for (T ,A) if (T ,A) 6|= C ′(a) whenever
C ′ is the result of replacing a role r by some role s ∈ NR ∩ ΣT with T 6|= r v s and
T |= s v r, where ΣT is the signature of the target TBox T known to the learner.
To define parent/child merging, we identify each ELI concept C with a finite tree TC
whose nodes are labeled with concept names and edges are labeled with roles in the
standard way. For example, if C = ∃t.(Au∃r.∃r−.∃r.B)u∃s.> then Fig. 2a illustrates
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Algorithm 1 Reducing the positive counterexample
1: Let C(a) be an instance assertion such that (H,A) 6|= C(a) and (T ,A) |= C(a)
2: function REDUCECOUNTEREXAMPLE( A, C(a) )
3: Find a role saturated and parent/child merged C(a) (membership queries)
4: if C = C0 u ... u Cn then
5: Find Ci, 0 ≤ i ≤ n, such that (H,A) 6|= Ci(a)
6: C := Ci

7: if C = ∃r.C′ and there is r(a, b) ∈ A such that (T ,A) |= C′(b) then
8: REDUCECOUNTEREXAMPLE( A, C′(b) )
9: else

10: Find a singleton A′ ⊆ A such that (T ,A′) |= C(a) but
11: (H,A′) 6|= C(a) (membership queries)
12: return (A′,C(a))

TC . Now, we say that an instance assertion C(a) is parent/child merged for T and A
if for nodes n1, n2, n3 in TC such that n2 is an r-successor of n1, n3 is an s-successor
of n2 and T |= r− ≡ s we have (T ,A) 6|= C ′(a) if C ′ is the concept that results from
identifying n1 and n3. For instance, the concept in Fig. 2c is the result of identifying the
leaf labeled with B in Fig. 2b with the parent of its parent.

We present a run of Algorithm 1 for T = {A v ∃s.B, s v r} andH = {s v r}. As-
sume the oracle gives as counterexample (A, C(a)), where A = {t(a, b), A(b), s(a, c)}
and C(a) = ∃t.(A u ∃r.∃r−.∃r.B) u ∃s.>(a) (Fig. 2a). Role saturation produces
C(a) = ∃t.(A u ∃s.∃s−.∃s.B) u ∃s.>(a) (Fig. 2b). Then, applying parent/child merg-
ing twice we obtain C(a) = ∃t.(A u ∃s.B) u ∃s.>(a) (Fig. 2c and 2d).
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Fig. 2: Concept C being role saturated and parent/child merged.

Since (H,A) 6|= ∃t.(A u ∃s.B)(a), after Lines 4-6, Algorithm 1 updates C by
choosing the conjunct ∃t.(Au∃s.B). As C is of the form ∃t.C ′ and there is t(a, b) ∈ A
such that (T ,A) |= C ′(b), the algorithm recursively calls the function “ReduceCoun-
terExample” with A u ∃s.B(b). Now, since (H,A) 6|= ∃s.B(b), after Lines 4-6, C
is updated to ∃s.B. Finally, C is of the form ∃t.C ′ and there is no t(b, c) ∈ A such
that (T ,A) |= C ′(c). So the algorithm proceeds to Lines 11-12, where it chooses
A(b) ∈ A. Since (T , {A(b)}) |= ∃s.B(b) and (H, {A(b)}) 6|= ∃s.B(b) we have that
T |= A v ∃s.B andH 6|= A v ∃s.B.

Lemma 2. Let (A, C(a)) be a positive counterexample. Then the following holds:

1. if C is a basic concept then there is a singleton A′ ⊆ A such that (T ,A′) |= C(a);
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Algorithm 2 Minimizing an ABox A
1: Let A be an ABox such that (T ,A) |= A(a) but (H,A) 6|= A(a), for A ∈ NC, a ∈ Ind(A).
2: function MINIMIZEABOX( A)
3: Concept saturate A withH
4: for every A ∈ NC ∩ΣT and a ∈ Ind(A) such that
5: (T ,A) |= A(a) and (H,A) 6|= A(a) do
6: Domain Minimize A with A(a)
7: Role Minimize A with A(a)

8: return (A)

2. if C is of the form ∃r.C ′ (or ∃r−.C ′) and C is role saturated and parent/child
merged then either there is r(a, b) ∈ A (or r(b, a) ∈ A ) such that (T ,A) |= C ′(b)
or there is a singleton A′ ⊆ A such that (T ,A′) |= C(a).

Lemma 3. For any target DL-Lite∃R TBox T and hypothesis DL-Lite∃R TBox H given
a positive data retrieval counterexample (A, C(a)), Algorithm 1 computes in time
polynomial in |T |, |H|, |A| and |C| a counterexample C ′(b) such that (T ,A′) |= C ′(b),
where A′ ⊆ A is a singleton ABox.

Proof. (Sketch) Let (A, C(a)) be the input of “ReduceCounterExample”. The number
of membership queries in Line 3 is polynomial in |C| and |T |. If C has more than
one conjunct then it is updated in Lines 4-6, so C becomes either (1) a basic concept
or (2) of the form ∃r.C ′ (or ∃r−.C ′). By Lemma 2 in case (1) there is a singleton
A′ ⊆ A such that (T ,A′) |= C(a), computed by Line 11 of Algorithm 1. In case (2)
either there is a singleton A′ ⊆ A such that (T ,A′) |= C(a), computed by Line 11 of
Algorithm 1, or we obtain a counterexample with a refinedC. Since the size of the refined
counterexample is strictly smaller after every recursive call of “ReduceCounterExample”,
the total number of calls is bounded by |C|. o

Using Theorem 2 and Theorem 1 we obtain:

Theorem 3. The DL-Lite∃R data retrieval framework is polynomially exact learnable.

Polynomial Reduction for ELlhs TBoxes In this section we give a polynomial algo-
rithm computing g for ELlhs. First we note that the concept assertion in data retrieval
counterexamples (A, D(a)) can always be made atomic. Let ΣT be the signature of the
target TBox T .

Lemma 4. If (A, D(a)) is a positive counterexample then by posing polynomially many
membership queries one can find a concept name A ∈ ΣT and an individual b ∈ Ind(A)
such that (A, A(b)) is also a counterexample.

Thus it suffices to show that given a positive counterexample (A, D(a)) with D ∈
NC, one can compute an EL concept expression C bounded in size by |T | such that
(T , {C(b)}) |= A(b) and (H, {C(b)}) 6|= A(b), where A ∈ NC. As (T , {C(b)}) |=
A(b) if and only if T |= C v A, we obtain a positive subsumption counterexample.
Our algorithm for computing g is based on two operations: minimization, computed by
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Algorithm 3 Computing a tree shaped ABox
1: function FINDTREE( A)
2: MINIMIZEABOX( A)
3: while there is a cycle c in A do
4: Unfold a ∈ Ind(A) in cycle c
5: MINIMIZEABOX( A)
6: Let C be the concept expression corresponding to A with counterexample A(a).
7: return (C(a),A(a))

Algorithm 2, and unfolding. Algorithm 2 minimizes a given ABox with the following
rules.

(Concept saturate A with H) If A(a) /∈ A and (H,A) |= A(a) then replace A by
A ∪ {A(a)}, where A ∈ NC ∩ΣT and a ∈ Ind(A).

(Domain MinimizeAwithA(a)) IfA(a) is a counterexample and (T ,A−b) |= A(a)
then replaceA byA−b, whereA−b is the result of removing fromA all ABox assertions
in which b occurs.

(Role Minimize A with A(a)) If A(a) is a counterexample and (T ,A−r(b,c)) |=
A(a) then replace A by A−r(b,c), where A−r(b,c) be obtained by removing a role
assertion r(b, c) from A.

Lemma 5. Given a positive counterexample (A, D(a)) with D ∈ NC, Algorithm 2
computes in polynomially many steps with respect to |A|, |H|, and |T | an ABox A′ such
that |Ind(A′)| ≤ |T | and (A′, A(b)) is a positive counterexample, for some A ∈ NC and
b ∈ Ind(A′).

It remains to show that A can be made tree-shaped. We say that A has an (undirected)
cycle if there is a finite sequence a0 ·r1 ·a1 · ... ·rk ·ak such that (i) a0 = ak and (ii) there
are mutually distinct assertions of the form ri+1(ai, ai+1) or ri+1(ai+1, ai) in A, for
0 ≤ i < k. The unfolding of a cycle c = a0·r1·a1·...·rk·ak in a given ABoxA is obtained
by replacing c by the cycle c′ = a0 ·r1 ·a1 ·...·rk ·ak−1 ·rk ·â0 ·r1 · · · âk−1 ·rk ·a0, where
âi are fresh individual names, 0 ≤ i ≤ k−1, in such a way that (i) if r(ai, d) ∈ A, for an
individual d not in the cycle, then r(âi, d) ∈ A; and (ii) if A(ai) ∈ A then A(âi) ∈ A.

We prove in the full version that after every unfolding-minimisation step in Algo-
rithm 3 the ABox A on the one hand becomes strictly larger and on the other does not
exceed the size of the target TBox T . Thus Algorithm 3 terminates after a polynomial
number of steps yielding a tree-shaped counterexample.

Lemma 6. Algorithm 3 computes a minimal tree shaped ABox A with size polynomial
in |T | and runs in polynomially many steps in |T | and |A|.
Using Theorem 2 and Theorem 1 we obtain:

Theorem 4. The ELlhs data retrieval framework is polynomially exact learnable.

4 Limits of Polynomial Time Learnability

Our proof of non-polynomial learnability of general EL TBoxes from data retrieval
examples extends previous results on non-polynomial learnability of EL TBoxes from
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subsumptions [12]. We start by giving a brief overview of the construction in [12], show
that it fails in the data retrieval setting and then demonstrate how it can be modified.

The non-learnability proof in [12] proceeds as follows. A learner tries to exactly
identify one of the possible target TBoxes {TL | L ∈ Ln}, for a superpolynomial in
n set Ln defined below. At every stage of computation the oracle maintains a set of
TBoxes S, which the learner is unable to distinguish based on the answers given so far.
Initially S = {TL | L ∈ Ln}. It has been proved that for any EL inclusion C v D either
TL |= C v D for every L ∈ Ln or the number of L ∈ Ln such that TL |= C v D
does not exceed |C|. When a polynomial learner asks a membership query C v D the
oracle answers ‘yes’ if TL |= C v D for every L ∈ Ln and ‘no’ otherwise. In the
latter case the oracle removes polynomially many TL such that TL |= C v D from S.
Similarly, for any equivalence query with hypothesisH asked by a polynomial learning
algorithm there exists a polynomial size inclusion C v D, which can be returned as a
counterexample and that excludes only polynomially many TBoxes from S. Thus, every
query to the oracle reduces the size of S at most polynomially in n, but then the learner
cannot distinguish between the remaining TBoxes of our initial superpolynomial set S.

The set of indices Ln and the target TBoxes TL are defined as follows. Fix two
role names r and s. An n-tuple L is a sequence of role sequences (σ1, . . . ,σn), where
every σi is a sequence of role names r and s, that is σi = σ1

i σ
2
i . . . σ

n
i with σj

i ∈ {r, s}.
Then Ln is a set of n-tuples such that for every L,L′ ∈ Ln with L = (σ1, . . . ,σn),
L′ = (σ′1, . . . ,σ

′
n), if σi = σ′j then L = L′ and i = j. There areN = b2n/nc different

tuples in Ln. For every n > 0 and every n-tuple L = (σ1, . . . ,σn) we define an acyclic
EL TBox TL as the union of T0 = {Xi v ∃r.Xi+1 u ∃s.Xi+1 | 0 ≤ i < n} and the
following inclusions:

A1 v ∃σ1.M uX0

B1 v ∃σ1.M uX0
. . .

An v ∃σn.M uX0

Bn v ∃σn.M uX0

A ≡ X0 u ∃σ1.M u · · · u ∃σn.M.

where the expression ∃σ.C stands for ∃σ1.∃σ2 . . . ∃σn.C, M is a concept name that
‘marks’ a designated path given by σ and T0 generates a full binary tree whose edges are
labelled with the role names r and s and with X0 at the root, X1 at level 1 and so on.

In contrast to the subsumption framework, every TL can be exactly identified using
data retrieval queries. For example, as X0 u ∃σ1.M u · · · u ∃σn.M v A ∈ TL, a
learning from data retrieval queries algorithm can learn all the sequences in the n-
tuple L = (σ1, . . . ,σn), by defining an ABox A = {X0(a1), r(a1, a2), s(a1, a2), . . . ,
r(an−1, an), s(an−1, an), M(an)} and then proceeding with unfolding and minimizing
A via membership queries of the form (TL,A) |= A(a1).

To show the non-tractability for data retrieval queries, we first modify S in such a
way that the concept expression which ‘marks’ the sequences in L = (σ1, . . . ,σn) is
now given by the set Bn of all conjunctions F1 u · · · u Fn, where Fi ∈ {Ei, Ēi}, for
1 ≤ i ≤ n. Intuitively, every member of Bn encodes a binary string of length n with Ei

encoding 1 and Ēi encoding 0. For every L ∈ Ln and every B ∈ Bn we define T B
L as

the union of T0 and the concept inclusions defined above with B replacing M .
Then for any sequence σ of length n there exists at most one L ∈ Ln, at most

one 1 ≤ i ≤ n and at most one B ∈ Bn such that T B
L |= Ai v ∃σ.B and T B

L |=
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Bi v ∃σ.B. Notice that the size of each T B
L is polynomial in n and so Ln contains

superpolynomially many n-tuples in the size of each T B
L , with L ∈ Ln and B ∈ Bn.

Every T B
L entails, among other inclusions,

dn
i=1 Ci v A, where every Ci is either Ai or

Bi. Let Σn be the signature of the TBoxes T B
L and consider a TBox T ∗ defined as the

following set of concept inclusions:

∃r.(E1 u Ē1) v (E1 u Ē1),
∃s.(E1 u Ē1) v (E1 u Ē1),

(E1 u Ē1) v ∃r.(E1 u Ē1),
(E1 u Ē1) v ∃s.(E1 u Ē1),

(Ei u Ēi) v A for every 1 ≤ i ≤ n and every A ∈ Σn ∩ NC

The basic idea of extending our TBoxes with T ∗ is that if a ∈ (Ei u Ēi)
IA , for

an ABox A and individual a ∈ Ind(A), then for all L ∈ Ln and B ∈ Bn, we have
(T B

L ,A) |= D(b), where D is any EL concept expression over Σn and b ∈ Ind(A) is
any successor or predecessor of a (or a itself). This means that for each individual in
A at most one B of the 2n binary strings in Bn can be distinguished by data retrieval
queries. The following lemma enables us to respond to membership queries without
eliminating too many L ∈ Ln and B ∈ Bn used to encode T B

L in the set of TBoxes that
the learner cannot distinguish.

Lemma 7. For any ABox A, any EL concept assertion D(a) over Σn, and any a ∈
Ind(A), if there is L ∈ Ln and B ∈ Bn such that (T B

L ∪ T ∗,A) |= D(a) then:

– either (T B
L ∪ T ∗,A) |= D(a), for every L ∈ Ln and B ∈ Bn, or

– (T B
L ∪ T ∗,A) |= D(a) for at most |D| elements L ∈ Ln, or

– (T B
L ∪ T ∗,A) |= D(a) for at most |A| elements B ∈ Bn.

The next lemma is immediate from Lemma 15 presented in [12]. It shows how the
oracle can answer equivalence queries eliminating at most one L ∈ Ln used to encode
T B
L in the set S of TBoxes that the learner cannot distinguish.

Lemma 8. For any n > 1 and any EL TBox H in Σn with |H| < 2n, there exists an
ABox A, an individual a ∈ Ind(A) and an EL concept expression D over Σn such that
(i) the size of A plus the size of D does not exceed 6n and (ii) if (H,A) |= D(a) then
(T B

L ,A) |= D(a) for at most one L ∈ Ln and if (H,A) 6|= D(a) then for every L ∈ Ln

we have (T B
L ∪ T ∗,A) |= D(a).

Then, by Lemmas 7 and 8, we have that: (i) any polynomial size membership query
can distinguish at most polynomially many TBoxes from S; and (ii) if the learner’s
hypothesis is polynomial size then there exists a polynomial size counterexample that
the oracle can give which distinguishes at most polynomially many TBoxes from S.

Theorem 5. The EL data retrieval framework is not polynomially exact learnable.

5 Future Work

We plan to consider an extension of the learning protocol in which arbitrary conjunctive
queries are admitted in queries to the domain expert/oracle. We then still have polynomial
time learnability for ELlhs but conjecture non-polynomial time learnability for DL-Lite∃R.
Another extension is exact learnability for the Horn-extension of DL-Lite∃R for which
we conjecture that polynomial time learnability still holds.
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Semantics of SPARQL
under OWL 2 Entailment Regimes

Egor V. Kostylev and Bernardo Cuenca Grau
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Abstract. We study the semantics of SPARQL queries with optional
matching features under entailment regimes. We argue that the normative
semantics may lead to answers that are in conflict with the intuitive mean-
ing of optional matching, where unbound variables naturally represent
unknown information. We propose an extension of the SPARQL algebra
that addresses these issues and is compatible with any entailment regime
satisfying the minimal requirements given in the normative specification.
We then study the complexity of query evaluation and show that our
extension comes at no cost for regimes with an entailment relation of
reasonable complexity. Finally, we show that our semantics preserves the
known properties of optional matching that are commonly exploited for
static analysis and optimisation.

1 Introduction

SPARQL became the standard language for querying RDF in 2008 [1]. Since
then, the theoretical properties of SPARQL have been the subject of intensive
research efforts and are by now relatively well-understood [2–7]. At the same
time, SPARQL has become a core technology in practice, and most RDF-based
applications rely on SPARQL endpoints for query formulation and processing.

The functionality of many such applications is enhanced by OWL 2 ontolo-
gies [8], which are used to provide background knowledge about the application
domain, and to enrich query answers with implicit information. A new version of
SPARQL, called SPARQL 1.1, was released in 2013 [9]. This new version captures
the capabilities of OWL 2 by means of the so-called entailment regimes [10]: a
flexible mechanism for extending SPARQL query answering to the W3C stan-
dards layered on top of RDF. A regime specifies which RDF graphs and SPARQL
queries are legal (i.e., admissible) for the regime, as well as an entailment relation
that unambiguously defines query answers for all legal queries and graphs.

The semantics of SPARQL under entailment regimes is specified for the
conjunctive fragment, where queries are represented as basic graph patterns (i.e.,
sets of RDF triples with variables) and query answers are directly provided by
the entailment relation of the regime. Roughly speaking, to check whether a
mapping from variables of the query to nodes in the RDF graph is an answer to
the query, one first transforms the query itself into an RDF graph by substituting
each variable with the corresponding value, and then checks whether this graph
is entailed in the regime by the original data graph [10–12].
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When one goes beyond the basic fragment of SPARQL the language becomes
considerably more complicated, but the effect of entailment regimes on the query
semantics remains circumscribed to basic graph patterns [13,14]. To evaluate a
query one must first evaluate its component basic patterns using the relevant
regime and then compose the results by means of the SPARQL algebra operations.

Of particular interest from both a theoretical and a practical perspective
is the extension of the basic fragment of SPARQL with the optional matching
feature, which is realised in the language by means of the OPTIONAL operator
(abbreviated by OPT in this paper). This feature allows the optional information
to be added to query answers only when the information is available in the RDF
data graph: if the optional part of the query does not match the data, then the
relevant variables are left unbounded in query answers.

One of the main motivations behind optional matching in SPARQL is to deal
with the “lack of regular, complete structures in RDF graphs” (see [9] Section 6)
and hence with the inherent incompleteness of information in RDF data sources
where only partial information about the relevant Web resources is typically
available. In this setting, an unbound variable in an answer mapping is naturally
interpreted as a “null” value, meaning that there might exist a binding for this
variable if we consider other information elsewhere on the Web, but none is
currently available in the RDF graph at hand. Another (and slightly different)
motivation for optional matching was to introduce a mechanism for “not rejecting
solutions because some part of the query pattern does not match” [1]; in this
sense, one would naturally expect optional matching to either extend solutions
with the optional information, or to leave solutions unchanged. Both readings
of optional matching coincide if we focus just on RDF, and they are faithfully
captured by the normative semantics. In this paper we argue that they naturally
diverge once we consider more sophisticated entailment regimes. Furthermore,
the differences that arise can have a major impact on expected answers.

To make this discussion concrete, let us briefly discuss a simple example of
an RDF graph representing the direct train lines between UK cities as well as
ferry boat transfers from UK cities to international destinations. Let this graph
be exhaustive in its description of rail connections, but much less so in what
concerns ferry transfers. We may exploit optional matching to retrieve all direct
train connections between cities X and Y, extended with ferry transfers from Y
to other cities Z whenever possible. Under the normative semantics of SPARQL
we may obtain answers (London,Oxford ,−) and (London,Holyhead ,−) provided
the graph has information about direct train lines from London to both Oxford
and Holyhead , but no matching can be found in the graph for ferry connections
starting from Oxford or Holyhead to other cities. Suppose next that the data
graph is extended to a graph corresponding to an OWL 2 ontology in which
it is stated that inland cities do not have ferry connections, and that Oxford
is an inland city. The ontology establishes a clear distinction between Oxford
and Holyhead : whereas the former is inland and cannot have ferry connections,
the latter may still well be (and indeed is) a coastal city offering a number of
transfers to international destinations. The normative OWL 2 direct semantics

222



entailment regime, however, does not distinguish between the case of Holyhead
(where the information about ferry connections is still unknown) and Oxford
(where the information is certain), and both answers would be returned. In this
way, the normative semantics adopts the reading of optional matching where the
optional information is used to complete (but never discard) query answers. In
contrast, under the reading of unbounded variables as placeholders for unknown
information, one would naturally expect the answer on Oxford to be ruled out.
Indeed, if our goal were to find rail to ferry transfers starting from London and
terminating in Dublin by first querying this graph and then looking for the
missing information elsewhere on the Web, discarding cities like Oxford on the
first stage would significantly facilitate our task.

In this paper, we propose an alternative semantics for the OPT operator which
adopts the aforementioned reading of optional matching as an incomplete “null”.
We call our semantics strict, which reflects the fact that it rules out those answers
in which unbound variables in the optional part cannot be matched to any
consistent extension of the input graph. Our semantics is given as an extension of
the SPARQL algebra and hence satisfies the expected compositionality properties
of algebraic query languages. Furthermore, it is backwards-compatible with the
normative semantics for regimes in which all legal graphs are consistent, such
as the RDF regime [10]. We also study the complexity of query evaluation and
show that our extension comes at no cost for regimes in which entailment is not
harder than query evaluation under normative semantics for the RDF regime.
Finally, we show that our semantics preserves the known properties of optional
matching that are commonly exploited for static analysis and optimisation.

This paper is an updated version of the work [15].

2 SPARQL 1.1 under Entailment Regimes

In this section, we formalise the syntax and normative semantics of a core
fragment of SPARQL 1.1 with optional matching under entailment regimes. Our
formalisation is based on the normative specification documents [9–11] and builds
on the well-known foundational works on SPARQL [2,3, 6].

2.1 Syntax

Let I, L, and B be infinite sets of IRIs, literals, and blank nodes, respectively.
The set of RDF terms T is I ∪ L ∪ B. An RDF triple is a triple (s p o) from
T× I×T, with s called subject, p predicate, and o object. An (RDF) graph is
a finite set of RDF triples. Assume additionally the existence of a countably
infinite set V of variables disjoint from T. A triple pattern is a tuple from
(T∪V)× (I∪V)× (T∪V). A basic graph pattern (BGP) is a finite set of triple
patterns. Built-in conditions are conditions of the form bound(?X), ?X = c, and
?X =?Y for ?X, ?Y ∈ V and c ∈ T, and their Boolean combinations.

Complex graph patterns are constructed from BGPs using a range of available
operators that are applicable to graph patterns and built-in conditions. We
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focus on the AND-OPT-FILTER fragment (i.e., we consider neither union nor
projection), which is widely accepted to be the fundamental core of SPARQL [2].
In this setting, graph patterns are inductively defined as follows (e.g., see [11]):

1. every BGP is a graph pattern;
2. if P1 and P2 are graph patterns that share no blank nodes then (P1 AND P2)

and (P1 OPT P2) are graph patterns (called AND and OPT patterns); and
3. if P is a graph pattern and R is a built-in condition, then (P FILTERR) is a

graph pattern (called FILTER pattern).

In what follows vars(P ) (respectively triples(P )) denotes all the variables from V
(respectively all triple patterns) that appear in a graph pattern P .

We conclude with the definition of a special class of graph patterns with
intuitive behaviour [2]. A graph pattern is well-designed if and only if for each
of its OPT subpatterns (P1 OPT P2) the pattern P1 mentions all the variables
of P2 which appear outside this subpattern. Note that all graph patterns in the
examples of this paper are well-designed.

2.2 Semantics of BGPs under Entailment Regimes

The semantics of graph patterns is defined in terms of mappings; that is, partial
functions from variables V to terms T. The domain dom(µ) of a mapping µ is
the set of variables on which µ is defined. The set of triples obtained from a BGP
P by replacing each ?X from dom(µ) by µ(?X) is denoted by µ(P ).

Two mappings µ1 and µ2 are compatible (written as µ1 ∼ µ2) if µ1(?X) =
µ2(?X) for all variables ?X which are in both dom(µ1) and dom(µ2). If µ1 ∼ µ2,
then we write µ1 ∪ µ2 for the mapping obtained by extending µ1 with µ2 on
variables undefined in µ1. A mapping µ1 is subsumed by a mapping µ2 (written
µ1 v µ2) iff µ1 ∼ µ2 and dom(µ1) ⊆ dom(µ2). Finally, a set of mappings Ω1 is
subsumed by a set of mappings Ω2 (written Ω1 v Ω2) iff for each µ1 ∈ Ω1 there
exists µ2 ∈ Ω2 such that µ1 v µ2.

Based on [10], an (entailment) regime R is a tuple (R,G,P, C, J·K), where

1. R is a set of reserved IRIs from I;
2. G is the set of legal graphs;
3. P is the set of legal BGPs;
4. C is the set of consistent graphs, such that C ⊆ G; and
5. J·K is the query answering function, that takes a graph G from G and a

BGP P from P and returns either a set JP KG of mappings µ such that
dom(µ) = vars(P ), if P ∈ C; or Err, otherwise.

As in most theoretical works on SPARQL [2,3, 6, 16], we assume that the query
answering function returns a set of mappings, rather than a multiset.

The definitions of query answering and consistency in a regime are based on
an entailment relation [10], which is also specified as part of the regime. We do not
model the entailment relation explicitly, but assume two conditions that capture
the effects of any reasonable entailment relation on legality and consistency. All
regimes mentioned in the normative specification satisfy these properties and in
this paper we consider only regimes that do so.
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(C1) If graphs G, G1 and G2 are legal, and there is h : T→ T, preserving R,
such that h(G1 ∪G2) ⊆ G then G1 ∪G2 is legal; if, in addition, G is in C
then G1 ∪G2 is also in C.

(C2) If a BGP P is in P then µ(P ) is in G for any (total) µ : V→ (T \R), such
that µ(P ) is a graph; if also µ(P ) is in C then µ ∈ JP Kµ(P ).

Condition (C1) formalises (a weak form of) the monotonicity of legality and
consistency: an illegal graph that is a union of legal ones cannot be made legal by
identifying and renaming of non-reserved terms or adding triples to it; moreover, a
similar property holds for consistency. Condition (C2) guarantees, that “freezing”
variables of a legal BGP to non-reserved terms gives us a legal graph, and,
moreover, if such a graph is consistent, then the answer of the BGP on this graph
contains the mapping corresponding to the “freezing”.

The notions introduced in the remainder of this paper are parameterised with
a regime R, which is not mentioned explicitly for brevity.

2.3 Normative Semantics under Entailment Regimes

Following [2], now we show how the query answering function J·K extends to
complex graph patterns (we refer to [2] for details). A mapping µ satisfies a
built-in condition R, denoted µ |= R, if one of the following holds:

1. R is bound(?X) and ?X ∈ dom(µ); or
2. R is ?X = c, ?X ∈ dom(µ), and µ(?X) = c; or
3. R is ?X =?Y , ?X ∈ dom(µ), ?Y ∈ dom(µ), and µ(?X) = µ(?Y ); or
4. R is an evaluating to true Boolean combination of other built-in conditions.

The join, difference, and left outer join of sets of mappings Ω1, Ω2 are as follows:

Ω1 on Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1 and µ2 ∈ Ω2 such that µ1 ∼ µ2},
Ω1 \Ω2 = {µ1 | µ1 ∈ Ω1, there is no µ2 ∈ Ω2 such that µ1 ∼ µ2},
Ω1 onΩ2 = (Ω1 on Ω2) ∪ (Ω1 \Ω2).

A graph pattern is legal for a regime R if all the BGPs it contains are legal. The
normative query answering function J·Kn is inductively defined for all legal graph
patterns P on the base of J·K as follows. For graphs G from C we have:

1. if P is a BGP then JP KnG = JP KG;
2. if P is (P1 AND P2) then JP KnG = JP1KnG on JP2KnG;
3. if P is (P1 OPT P2) then JP KnG = JP1KnG on JP2KnG; and
4. if P is (P ′ FILTERR) then JP KnG = {µ | µ ∈ JP ′KnG and µ |= R}.

If G 6∈ C then JP KnG = Err for any graph pattern P (which again coincides with
JP KG when P is a BGP). Note, that by these definitions µ ∈ JP KnG implies that
dom(µ) ⊆ vars(P ), but this inclusion may be strict if P contains OPT operator.

Two legal patterns P1 and P2 are equivalent (under normative semantics),
denoted by P1 ≡n P2, if JP1KnG = JP2KnG for every RDF graph G ∈ G.

3 On Optional Matching Under the Normative Semantics

One of the main motivations for optional matching in SPARQL was to deal with
the “lack of regular, complete structures in RDF graphs” [9]. Indeed, RDF data
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is loosely structured, and in many applications it is not satisfactory to reject an
answer if some relevant information is missing. For example, if we are interested
in retrieving the names, emails, and websites of employees, we may not want to
discard a partial answer involving the name and email address of an employee
merely because the information on the employee’s website is not available in the
graph. The normative semantics was designed to deal with such situations: the
optional information is included in query answers only when the information
is available; otherwise, the relevant variables are left unbounded. An unbound
variable in an answer is thus a manifestation of inherent incompleteness of RDF
data sources, and the missing information is interpreted as unknown.

This natural interpretation of query results, however, no longer holds if the
query is evaluated under certain entailment regimes, as we illustrate next by
means of examples. In these and all other examples given later on, we focus on
the OWL 2 direct semantics regime. In order for an RDF graph to be legal for
this regime, it must correspond to an OWL 2 ontology; similarly, legal BGPs
must correspond to an extended ontology in which variables are allowed [10].
Thus, in the examples we express RDF graphs and BGPs in (extended) OWL 2
functional syntax, and use words “ontology” and “graph” interchangeably (we
also omit declaration axioms in ontologies and BGPs to avoid clatter).

Example 1. Consider the OWL 2 ontology O1 consisting of the axioms

ClassAssertion(InlandCity Oxford), PropertyAssertion(train London Oxford),

ClassAssertion(CoastalCity Holyhead),PropertyAssertion(train London Holyhead),

PropertyDomain(ferry CoastalCity), DisjointClasses(CoastalCity InlandCity).

Consider also the following graph pattern P1, which we wish to evaluate over O1:

PropertyAssertion(train ?X ?Y ) OPT PropertyAssertion(ferry ?Y ?Z).

Intuitively, solutions to P1 provide direct train lines from city X to city Y as well
as, optionally, the ferry transfers from Y to other cities Z. Under the normative
semantics, the BGPs in P1 are evaluated separately. In particular, the optional
BGP is evaluated to the empty set, and JP1KnO1

= {µ1, µ2}, where

µ1 = {?X 7→London, ?Y 7→Oxford} and µ2 = {?X 7→London, ?Y 7→Holyhead}.
In both answers, variable ?Z is unbounded and hence we conclude that O1

contains no relevant information about ferry connections starting from Oxford or
Holyhead . However, the nature of the lack of such information is fundamentally
different. On the one hand, the connections from Holyhead (e.g., to Dublin) are
missing from O1 just by the incompleteness of the information in the graph,
which is usual in (and also a feature of) Semantic Web applications. On the other
hand, Oxford cannot have a ferry connection because it is a landlocked city, and
hence the information about its (lack of) ferry connections is certain. Thus, the
normative semantics cannot distinguish between unknown and non-existent ferry
connections. However, if we adhere to the reading of unbounded variables as
incomplete information or “nulls”, then µ1 should not be returned as an answer.
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The issues described in this example become even more apparent in cases
where the optional part alone cannot be satisfied, as in the following example.

Example 2. Consider the ontology O2 with the axioms

ClassAssertion(Person Peter), DisjointProperties(hasFather hasMother).

Furthermore, consider the following pattern P2:

ClassAssertion(Person ?X) OPT ({
PropertyAssertion(hasFather ?X ?Y ),PropertyAssertion(hasMother ?X ?Y )}).

The optional BGP does not match to anything, so JP2KnO2
consists of {?X 7→

Peter}. However, this BGP is in contradiction with the disjointness axiom: under
the OWL 2 regime, no solution to P2 exists for any ontology with this axiom.

As these examples suggest, if we interpret unbound variables in answers to
queries with optional parts as an indication of unknown information in the data
graph, then the normative semantics may yield counter-intuitive answers. At
the core of this issue is the inability of the normative semantics to distinguish
between answers in which it is possible to assign values to the missing optional
part (a natural reflection of incompleteness in the data), and those where this is
impossible (a reflection that the missing information is incompatible with the
answer). This distinction is immaterial for regimes without inconsistencies, but it
becomes apparent in more sophisticated regimes, such as those based on OWL 2.

4 Semantics of Strict Optional Matching

In this section, we propose our novel semantics for optional matching under
regimes. In a nutshell, our semantics addresses the issues described in Section 3
by ruling out those answer mappings where unbound variables in the optional
part cannot be matched to any consistent extension of the input graph. Our
semantics is therefore strict, in the sense that only answers in which unbound
variables are genuine manifestations of incompleteness in the data are returned.

4.1 Definition of Strict Semantics

We start by introducing the notion of a frozen RDF graph for a pattern P and
a mapping µ. Roughly speaking, this graph is obtained by taking all the triple
patterns in P and transforming them into RDF triples by applying the extension
of µ where unbounded variables are “frozen” to arbitrary fresh constants.

Definition 1. Let R = (R,G,P, C, J·K) be an entailment regime. Let P be a legal
graph pattern, and let µ be a mapping from variables V to RDF terms T. Then,
the freezing GPµ of P under µ is the RDF graph µ̄(triples(P )), where µ̄ is the
mapping that extends µ by assigning each variable in vars(P ), which is not in
dom(µ), to a globally fresh IRI from I not belonging to R.
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The freezing GPµ depends only on the candidate mapping µ and the triple
patterns occurring in P ; thus, it does not depend either on the specific operators
used in P , or on the RDF graph over which the query pattern is to be evaluated.

Example 3. For pattern P1 and mappings µ1, µ2 from Example 1 the freezings
GP1
µ1

and GP1
µ2

have the following form, for fresh IRIs k and `:

{PropertyAssertion(train London Oxford),PropertyAssertion(ferry Oxford k)},
{PropertyAssertion(train London Holyhead),PropertyAssertion(ferry Holyhead `)}.

Intuitively, the freezing represents the simplest and most general RDF graph
over which all the undefined variables in a given solution mapping could be
bounded to concrete values. Thus, if GPµ together with the input graph G is not
a consistent graph for the relevant regime, we can conclude, using condition (C1)
of the regime, that the undefined variables in µ will never be matched to concrete
values in any consistent extension of G and hence µ should be ruled out as an
answer. On the other hand, if G∪GPµ is consistent, then such an extension exists
and, by condition (C2), the undefined variables can be mapped in this extension.

Definition 2. Let R = (R,G,P, C, J·K) be an entailment regime. A mapping µ
is R-admissible for a graph G ∈ C and legal graph pattern P if G∪GPµ is a graph
belonging to C. The set of all R-admissible mappings for a consistent graph G
and a legal graph pattern P is denoted as Adm(G,P ).

Example 4. Clearly, O1∪GP1
µ1

is inconsistent since ferries only depart from coastal

cities, but Oxford is an inland city. In contrast, O1 ∪GP1
µ2

is consistent. Thus, we
have µ1 /∈ Adm(O1, P ), but µ2 ∈ Adm(O1, P ).

We are now ready to formalise our semantics.

Definition 3. Given an entailment regime R = (R,G,P, C, J·K), the strict query
answering function J·Ks is defined for legal graph patterns P and G ∈ C as follows:

1. if P is a BGP then JP KsG = JP KG;
2. if P is P1 AND P2 then JP KsG = (JP1KsG on JP2KsG) ∩Adm(G,P );
3. if P is P1 OPT P2 then JP KsG = (JP1KsG on JP2KsG) ∩Adm(G,P ); and
4. if P is P ′ FILTERR then JP KsG = {µ | µ ∈ JP ′KsG and µ |= R},

where ∩ denotes the standard set-theoretic intersection. If G 6∈ C then JP KsG = Err
for any graph pattern P . Finally, legal patterns P1 and P2 are equivalent (under
strict semantics), written P1 ≡s P2, if JP1KsG = JP2KsG for any legal G.

Example 5. The strict semantics behaves as expected for our examples: JP1KsO1
=

{µ1} holds for O1 and P1 from Example 1, while JP2KsO2
= ∅ holds for Example 2.

The strict and normative semantics coincide in two limit cases. First, if the
entailment regime does not allow for inconsistent graphs (i.e., if C = G) as is
the case for the RDF regime [10], then JP KsG = JP KnG for every legal pattern P
and graph G. Second, if the relevant pattern P is OPT-free then the freezing for
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every candidate answer mapping contains no fresh IRIs and is R-entailed by G;
thus, we again have JP KsG = JP KnG for every legal graph G.

Thus, the difference between the normative semantics J·Kn and strict semantics
J·Ks manifests only for regimes that admit inconsistency, and is circumscribed
to the presence of OPT in graph patterns, where non-admissible mappings are
excluded in the case of the strict semantics. Note, however, that even if a mapping
µ1 (respectively µ2) is admissible for a subpattern P1 (respectively P2) containing
OPT, it is possible for µ1 ∪ µ2 not to be admissible for the joined pattern
P = P1 AND P2. Thus, the admissibility restriction is also explicitly reflected in
the semantics of AND given in Definition 3. This is illustrated in the example
given next.

Example 6. Consider ontology O3, consisting of the axioms

SubClassOf(
IntersectionOf(SomeValuesFrom(husband Thing) SomeValuesFrom(wife Thing))
Nothing),

ClassAssertion(Person Mary).

The first axiom establishes that a person cannot have both a husband and a wife.
Consider also the following well-designed graph pattern P3:

(ClassAssertion(Person ?X) OPT (PropertyAssertion(husband ?X ?Y ))) AND

(ClassAssertion(Person ?X) OPT (PropertyAssertion(wife ?X ?Z))).

Clearly, µ = {?X 7→ Mary} belongs to the strict answer to each of the OPT
subpatterns of P3 since each of them independently can match to a consistent
extension of O3. However, µ is not admissible for P3 since Mary has both a
husband and a wife in GP3

µ , and hence O3∪GP3
µ is inconsistent. Thus, JP3KsO3

= ∅.

4.2 Comparing the Normative and Strict Semantics

Our previous examples support the expected behaviour of our semantics, namely
that its effect is circumscribed to filtering out problematic answers returned under
the normative semantics. We next formally show that our semantics behaves as
expected in general, provided that we restrict ourselves to well-designed patterns
and negation-free FILTER expressions (which are rather mild restrictions).

It is known that patterns which are not well-designed easily lead to unexpected
answers, even under the normative semantics (we refer to [2] for a detailed
discussion). Therefore, it comes at no surprise that the intuitive behaviour of our
semantics is only guaranteed under this assumption.

Theorem 1. Let R = (R,G,P, C, J·K) be an entailment regime. The inclusion
JP KsG v JP KnG holds for any graph G from C and any legal well-designed graph
pattern P which does not use negation in FILTER expressions.

Note that Theorem 1 is formulated in terms of subsumption, instead of
set-theoretic containment. The rationale behind this formulation is clarified next.
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Example 7. Consider the ontology O′
1, which is obtained from O1 in Example 1

by removing all axioms involving Holyhead , and adding the axiom

PropertyAssertion(bus Canterbury London).

Consider also the following graph pattern P ′
1:

PropertyAssertion(bus ?U ?X) OPT

(PropertyAssertion(train ?X ?Y ) OPT PropertyAssertion(ferry ?Y ?Z)).

The mapping µ = {?U 7→ Canterbury , ?X 7→ London, ?Y 7→ Oxford} is returned
by the normative semantics. As already discussed, Oxford is an inland city and
hence cannot have ferry connections; thus, µ is not returned under strict semantics.
However, it may be possible to reach a ferry connection from London (although
none is given), and hence the answer µ′ = {?U 7→ Canterbury , ?X 7→ London}
is returned instead of µ under strict semantics. Clearly, µ′ is not a normative
answer and JP ′

1KsO′
1
6⊆ JP ′

1KnO′
1
; however, µ′ v µ and JP ′

1KsO′
1
v JP ′

1KnO′
1
.

5 Computational Properties and Static Optimisation

In this section we first study the computational properties of our semantics. We
show that the complexity of graph pattern evaluation under strict and normative
semantics coincide, provided that consistency checking is feasible in PSPACE for
the regime at hand. Then we focus on static query analysis, and in particular on
pattern equivalence. We show that the key equivalence-preserving transformation
rules that have been proposed for static optimisation of SPARQL queries continue
to hold if we consider equivalence under strict semantics.

5.1 Complexity of Strict Graph Pattern Evaluation

Recall that the graph pattern evaluation is the key problem in SPARQL. In the
context of entailment regimes, it is defined as follows, where x is either n or s.

Graph Pattern Evaluation

Input : Regime R, legal graph G, legal graph pattern P , and mapping µ.
Question: Is µ ∈ JP KxG under the regime R?

Here, when we say that regime R is a part of the input, we mean that it includes
two oracle functions checking consistency of legal graphs and evaluating legal
BGPs over legal graphs, respectively. In what follows, we refer to the problem as
Normative if x = n, and as Strict if x = s.

It is known that the normative graph pattern evaluation problem is in
PSPACE for the RDF regime [2]. We next argue that membership in PSPACE
holds in general for any regime satisfying the basic properties discussed in Sec-
tion 2 and for both normative and strict versions of the problem, provided that
the complexity of both oracles of the regime is in PSPACE.

230



Theorem 2. Normative and Strict Graph Pattern Evaluation problems
are in PSPACE, provided the oracles associated to input regimes are in PSPACE.

Consequently, the use of our strict semantics does not increase the computa-
tional complexity for reasonable regimes. In particular, it follows directly from
Theorem 2 that the evaluation problem is in PSPACE under both semantics for
the tractable entailment regimes associated to the OWL 2 profiles [17].

It is also known that graph pattern evaluation under normative semantics is
PSPACE-hard for the RDF regime [2]. To formulate a general hardness result
that holds for any regime we would need to require additional properties for
a regime to qualify as “reasonable”. In order not to unnecessarily complicate
the presentation, we simply point out that PSPACE-hardness holds for all the
regimes in the specification under both normative and strict semantics [10].

5.2 Static Analysis and Optimisation

Static analysis and optimisation of SPARQL queries has received significant
attention in recent years [4, 6, 18–20]. A key ingredient for optimisation is the
availability of a comprehensive catalog of equivalence-preserving transformation
rules for SPARQL patterns. A rich set of such equivalences for normative semantics
and RDF regime is established in [2] and [4]. Some of these equivalences, such as
idempotence, commutativity, and associativity of the AND operator, hold without
any restrictions (for our core fragment of SPARQL). However, those that involve
OPT are more intricate and hold only for well-designed patterns. The claim of
this section is that these equivalences continue to hold for any entailment regime,
under both normative and strict semantics.

Theorem 3. The following equivalences hold for any entailment regime, provided
the graph patterns on both sides are legal and well-designed, for x ∈ {n, s}:

(P1 OPT P2) FILTERR ≡x (P1 FILTERR) OPT P2,

P1 AND (P2 OPT P3) ≡x (P1 AND P2) OPT P3,

(P1 OPT P2) OPT P3 ≡x (P1 OPT P3) OPT P2.

6 Conclusion

In this paper, we have proposed a novel semantics for optional matching in
SPARQL under entailment regimes where unbound variables in answer mappings
are naturally interpreted as “null” values. Our strict semantics has been designed
to deal in a faithful way with the “lack of regular, complete structures in RDF
graphs” and hence with the fundamental incompleteness of information on the
Semantic Web [1]. We believe that both strict and normative semantics are valid,
but one may be more appropriate than the other in certain applications. Both
semantics are compatible at a fundamental level and it would be possible to
exploit them in the same application by letting users commit to one or the other
explicitly when posing queries. Integrating them in a clean way from a syntactic
point of view is more tricky, and it is something we leave for future investigation.
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Abstract. In metamodelling we allow concepts and roles to be classified into
“meta” concepts and to be reasoned with as if they were individuals. This is useful
in modelling of certain complex domains or in reasoning about ontology entities
for sake of verification of methodological constraints. What many proposed meta-
modelling languages lack is the ability to model with instantiation – the relation
between an instance and a concept it belongs to – similar to the ability to express
restrictions on rdf:type in the undecidable OWL Full. We investigate a variant
of higher-order description logics combining various desired metamodelling fea-
tures, including: (a) a fixly interpreted instanceOf role connecting instances with
their concepts, freely usable in modelling; (b) promiscuous concepts that may
have individuals, other concepts, and roles as instances at the same time; but also
(c) strictly typed concepts allowing only a certain type of instances. We show the
decidability of two expressive fragments by means of reduction.

Keywords: Description logics, higher-order logic, metamodelling.

1 Introduction

Metamodelling allows to model with extensional entities (concepts and roles) as if they
were individuals: they may be instances of other concepts, and they may be related to
other entities with roles. This is useful in some complex domains with a high number of
extensional entities where it makes sense to further categorize them into meta-concepts,
and use meta-roles to express relations among them. For example, in the biological tax-
onomy the rank Species contains the taxon Giraffa camelopardalis. Taxa are regular
concepts (they classify specimens); ranks such as Species and Genus are thus meta-
concepts. Ranks may be further classified into meta-meta-concepts, such as Rank. Other
applications of metamodelling include reasoning about ontology entities for verification
of methodological constraints. More details can be found in the literature [3,4,10,21].

Finding an agreement on how a DL suitable for metamodelling should look like is
hard. Logics proposed for this purpose include works of Motik [16] and De Giacomo et
al. [3] who take an approach similar to RDF [8] and allow all entities to have threefold
semantics – of individual, concept, and role – simultaneously; also concepts and roles
are promiscuous – the same concept (role) may contain (connect) any kind of entity.
These works rely on HiLog-style semantics developed originally for higher-order Pro-
log [2]. It is essentially first-order and corresponds to Ullmann’s meaning triangle [22]:
Each entity name is interpreted as an intension – internal meaning with no known struc-
ture, thus technically an object. Concept and role extensions are subsequently assigned
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to intensions. De Giacomo et al. interpret via intensions also concept and role expres-
sions, more in the spirit of original HiLog. Homola et al. [11,10] proposed a HiLog-style
higher-order DL that is strictly typed, i.e., the entities of different types (and orders) are
disjoint. On the other hand, works of Pan et al. [18,19] and Motz et al. [17] rely on the
stronger, Henkin’s truly higher-order semantics [9] and are strictly typed. While Ho-
mola et al. and Pan et al. sort the higher order entities beforehand, Motz et al. introduce
a new kind of axioms (=m) by which one identifies a concept with an individual when
needed. Distinctly, Glimm et al. [4] propose an axiomatization of metamodelling within
a DL, relying on companion individuals for all regular concepts, which can then be as-
serted into meta-concepts as needed. This work supports only the second order, and the
orders are separated.

Besides, in OWL 2 there is the option of punning [5], i.e., using the same name
in different contexts, which is essentially equivalent to the π-semantics investigated
by Motik [16] who showed that there is no semantic relation between the contextually
different uses. Finally, OWL Full [20] allows almost arbitrary metamodelling, including
restrictions on the language constructs, such as instantiation, subconcept relation, or
even restrictions themselves. OWL Full is undecidable and Motik [16] showed that it
remains so even if the underlying DL is downgraded to ALC. Interestingly enough,
Glimm et al. [4] axiomatized a metamodel of instantiation and, to some extent, also of
subsumption in SROIQ.

We propose a new variant of higher-order DL for metamodelling with HiLog-style
semantics, which combines and unifies some of the approaches listed above. We argue
for, and implement the following features:

– Basic level of separation between individuals, concepts, and roles is needed, to
avoid confusion, and to provide basic sanity checks for the modeller. Therefore
individuals, corresponding to particular objects in the world, have no extensions.
Concepts have only concept extensions and roles have only role extensions.

– Both promiscuous and strictly typed concept and role extensions coexist in the
framework and may be freely chosen by the modeller. This allows, e.g., to require
that the concept Person has individuals as instances only (it does not make sense
for people to have extensions), while in the same ontology the concept Deprecated
can have any instances (anything may become deprecated).

– In most of the former proposals, meta-levels can be viewed as additional layers
in the ontology. Constraints may be modelled inside each layer but they cannot
equally penetrate to different layers and create complex inter-layer dependencies.
This is possible by modelling with instantiation. In our approach, a fixed role
instanceOf connects instances with the concepts they belong to (it has equal se-
mantics to rdf:type) and it may be freely modelled with. We are able to require,
say, that for each species defined by von Linné there is specimen (instance of the
species) in the British Museum.

The paper starts with brief preliminaries in Sect. 2. Section 3.1 builds HI(L), a
promiscuous higher-order variant of L with instantiation modelling in which roles can-
not be classified. Section 3.2 buildsHIR(L) which adds the option to classify roles as
well. Consequently, Sect. 3.3 shows how strict types are axiomatized in these languages,
and Sect. 3.4 reviews the basic properties of these logics. Conclusions follow in Sect. 4.
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Table 1. Syntax and Semantics of SROIQ
Cons’tor Syntax Semantics Syn. Semantics

complement ¬C ∆I \CI nominal {a} {aI}
intersection C u D CI ∩ DI inv. role R− {〈y, x〉 | 〈x, y〉 ∈ RI}
exist. restr. ∃R.C {x | ∃y 〈x, y〉 ∈ RI∧ y ∈ CI} univ. role U ∆I × ∆I
card. restr. >nR.C {x | ]{y | 〈x, y〉 ∈ RI∧ y ∈ CI} ≥ n} chain (w) S ·Q S I ◦ QI

self restr. ∃R.Self {x | 〈x, x〉 ∈ RI}
Axiom Syntax Semantics Syntax Semantics

conc. incl. (GCI) C v D CI ⊆ DI concept assert. a : C aI ∈ CI

role incl. (RIA) w v R wI ⊆ RI role assertion a, b : R 〈aI, bI〉 ∈ RI

reflexivity assert. Ref(R) RI is reflexive neg. role assert. a, b : ¬R 〈aI, bI〉 < RI

role disjointness Dis(P,R) PI ∩ RI = ∅

2 Preliminaries

2.1 SROIQ Description Logic

SROIQ DL [12] currently constitutes a generally accepted standard for a very expres-
sive description logic. It uses a DL vocabulary N = NC]NR]NI with countable sets of
atomic concepts (NC), atomic roles (NR), and individuals (NI). Complex concepts (com-
plex roles) are defined as the smallest sets containing all concepts and roles that can be
inductively constructed using the concept (role) constructors1 in Table 1, where C,D
are concepts, P,R are atomic or inverse roles, S ,Q are any roles (including role chains),
a, b are individuals, and n is a positive integer. A SROIQ knowledge base (KB) is a
finite set K of axioms of the types shown in Table 1.

A DL interpretation is a pair I = 〈∆I, ·I〉 where ∆I , ∅ and ·I is a function
such that aI ∈ ∆I for all a ∈ NI, AI ⊆ ∆I for all A ∈ NC, and RI ⊆ ∆I × ∆I
for all R ∈ NR. Interpretation of complex concepts and roles is inductively defined
as given in Table 1. An axiom ϕ is satisfied by I (denoted I |= ϕ) if I satisfies the
respective semantic constraint listed in Table 1, and I is a model ofK (denoted I |= K)
if it satisfies all axioms of K . A concept C is satisfiable w.r.t. K if there is a model
of K such that CI , ∅. A formula ϕ is entailed by K (denoted K |= ϕ) if I |= ϕ
for all models I of K . The two reasoning tasks of concept satisfiability and concept
subsumption entailment are inter-reducible [12]. Reasoning in SROIQ is decidable if
further syntactic restrictions are applied [12], which are based on the following notions.

A role R is simple if (a) it is atomic and it does not occur on the right-hand side of
any RIA; (b) it is an inverse of a simple role S ; or (c) it occurs on the right-hand side of
a RIA, but each such RIA is of the form S v R where S is a simple role.

A regular order on roles ≺ is a strict partial order (transitive and irreflexive binary
relation) on roles (including inverse roles) such that S ≺ R iff S − ≺ R for any roles S , R.
Given a regular order on roles ≺, a RIA is ≺-regular if it has one of the following forms:
(a) R·R v R; (b) R− v R; (c) S 1· · · · ·S n v R and S i ≺ R for 1 ≤ i ≤ n; (d) R·S 1· · · · ·S n v
R and S i ≺ R for 1 ≤ i ≤ n; (e) S 1· · · · ·S n·R v R and S i ≺ R for 1 ≤ i ≤ n.

1 There are additional SROIQ constructors and axioms all of which, including individual
equality (=), are reducible to the core constructs listed in Table 1.
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Table 2. Syntax and ν-semantics of SHOIQmm

Cons’tor Syntax Semantics Syn. Semantics

intersection D1 u D2 CI(D1) ∩CI(D2) complement ¬D ∆I \CI(D)
exist. restr. ∃S .D { x | ∃y 〈x, y〉 ∈ RI(S )∧ y ∈ CI(D) } nominal {a} {aI}
card. restr. >nS .D { x | ]{y | 〈x, y〉 ∈ RI(S )∧ y ∈ CI(D)} ≥ n }
Axiom Syntax Semantics Syntax Semantics

conc. incl. (GCI) D1 v D2 CI(D1) ⊆ CI(D2)
role incl. (RIA) S 1 vR S 2 RI(S 1) ⊆ RI(S 2) transitivity S 1·S 1 vR S 1 RI(S 1) is transitive
concept assertion a : D1 aI ∈ CI(D1) role assert. a, b : S 1 〈aI, bI〉 ∈ RI(S 1)

Finally, the restrictions placed on SROIQ: (a) only simple roles may appear in car-
dinality restrictions; self restriction, and role disjointness axioms; (b) there is a regular
order of roles ≺ such that all RIAs in the KB are ≺-regular; (c) the universal role may
not appear in any RIA, role reflexivity, nor disjointness axiom.

Under these restrictions, satisfiability (and thus subsumption) is decidable [12] and
it is N2ExpTime complete [14].

2.2 DLs with Metamodelling and the ν-Semantics

Motik [16] has proposed DLs for metamodelling with HiLog-based ν-semantics. In
DL applications of HiLog semantics [2], names (and sometimes expressions) are first
assigned domain objects called intensions, which, in turn, are assigned extensions: sets
of intensions for concepts, or sets of pairs of intensions for roles. When treated as a
concept instance or a role actor, the semantics of a name is its intension. When treated
as a concept or a role, the extension of the name’s intension is considered.

Motik’s DL SHOIQ with metamodelling (abbreviated to SHOIQmm) uses a set
of names N = Na∪{ n− | n ∈ Na }where Na is a set of atomic names. The set of concepts
is the smallest superset of N containing all concepts that can be inductively constructed
using the constructors in Table 2, where D1 and D2 are concepts, a, S ∈ N, and n is a
non-negative integer. A SHOIQmm knowledge base is a set K of axioms of the forms
listed in Table 2 where S 1, S 2, a, b ∈ N, and D1, D2 are concepts. Simple names are
defined as SROIQ simple roles (using vR instead of v). A KB K employs the unique
role assumption (URA) if ({S 1} v ¬{S 2}) ∈ K for each two distinct names S 1 and S 2
occurring as roles in K .

A ν-interpretation is a quadruple I = 〈∆I , ·I,CI,RI〉 where ∆I , ∅ is a domain set,
·I : N → ∆I is a name interpretation function, CI : ∆I → 2∆

I
is an atomic concept ex-

tension function and RI : ∆I → 2∆
I×∆I is a role extension function. The extension of CI

to concepts and ν-satisfaction of axioms (I |= ϕ) are specified in Table 2. The notions
of ν-model and ν-entailment are defined analogously to their SROIQ counterparts. A
concept D is ν-satisfiable w.r.t. K if CI(D) , ∅ in some ν-model I of K .

Decidability of ν-satisfiability in NExpTime was proved by Motik [16] if (a) only
simple names appear in cardinality restrictions, and (b) the KB employs URA, or con-
tains no nominals and no cardinality restrictions.
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Table 3. Syntax and semantics ofHI(SROIQ) andHIR(SHOIQ)

Syntax Extensions inHI(SROIQ) Extensions inHIR(SHOIQ)

R0 RIE0 RIE0
R− { (y, x) | (x, y) ∈ RE } { (y, x) | (x, y) ∈ RE }
U (∆II ] ∆IC) × (∆II ] ∆IC) –
S · Q S E ◦ QE RE ◦ RE for S = R,Q = R
instanceOf { (x, y) | x ∈ ∆II ] ∆IC ∧ y ∈ ∆IC ∧ x ∈ yE } { (x, y) | x ∈ ∆I ∧ y ∈ ∆IC ∧ x ∈ yE }
A AIE AIE

¬C (∆II ] ∆IC) \CE ∆I \CE

C u D CE ∩ DE CE ∩ DE

{B} {BI} {BI}
∃R.C { x | ∃y.(x, y) ∈ RE ∧ y ∈ CE } { x | ∃y.(x, y) ∈ RE ∧ y ∈ CE }
>nR.C { x | #{ y | (x, y) ∈ RE ∧ y ∈ CE } ≥ n } { x | #{ y | (x, y) ∈ RE ∧ y ∈ CE } ≥ n }
∃R.Self { x | (x, x) ∈ RE } –

C v D CE ⊆ DE CE ⊆ DE

B : C BI ∈ CE BI ∈ CE

B1, B2 : R (BI1 , B
I
2 ) ∈ RE (BI1 , B

I
2 ) ∈ RE

B1, B2 : ¬R (BI1 , B
I
2 ) < RE –

w v R wE ⊆ RE wE ⊆ RE for w = P or w = R · R
Dis(P,R) PE ∩ RE = ∅ –

3 Higher-Order DLs with Promiscuous Concepts and
Instantiation Modelling

The logics HI(L) and HIR(L) defined in this section for an underlying first-order
DL L rely on HiLog-style semantics. They feature promiscuous higher-order concepts
with different types of entities allowed as instances. In addition, the fixed instanceOf role
metamodels the instantiation relation, and it is usable in axioms like any other role. The
letterH stands for higher-order, I for instanceOf, and R for metamodelling of roles.

3.1 Promiscuous Concepts and Instance Modelling

We first define HI(SROIQ), a higher-order variant of SROIQ allowing individuals
and concepts to be classified, and featuring the instanceOf role. Roles relate both in-
dividuals and concepts with one another, but they cannot be classified. HI(L) for a
fragment L of SROIQ is the corresponding fragment ofHI(SROIQ).

In some HiLog-based DLs [16,3], names designate intensions and are fully inter-
changeable as individuals, concepts, and roles, depending on their occurrence. We be-
lieve that such an approach is less suitable in the realm of DLs. The individual-concept-
role distinction is fundamental from the ontological standpoint (see, e.g., [6, Pt. II], [7,
Ch. 4, 6, 7], [21]) and dates back to Aristotle [1, 2a11, 6a37]. This distinction also saves
users accustomed to first-order DLs from surprises, and provides basic sanity checks.

Let us now define the syntax of HI(SROIQ). Note that the instanceOf role can
occur anywhere where any regular atomic role can.
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Definition 1. Let N = NI ] NC ] NR be a DL vocabulary such that instanceOf ∈ NR.
HI(SROIQ) role expressions are inductively defined as the smallest set containing
the expressions listed in Table 3 (upper part), where R0 ∈ NR \ {instanceOf,U}, R is
an atomic or inverse role, S and Q are role expressions. HI(SROIQ) descriptions
are inductively defined as the smallest set containing the expressions listed in Table 3
(middle part), where A ∈ NC, B ∈ NI]NC, C and D are descriptions, and R is an atomic
or inverse role. AHI(SROIQ) knowledge baseK is a finite set of axioms of the forms
listed in Table 3 (bottom part), where B, B1, B2 ∈ NI ] NC, C and D are descriptions, P
and R are atomic or inverse roles, and w is a role chain.

HI(SROIQ) easily models the taxonomic example from the Introduction. Taxons
are classified to meta-concepts of ranks (Species, Genus, . . . ), ranks to the meta-meta-
concept Rank (1). Metaconcepts are axiomatized just as concepts (2).

G. camelopardalis : Species Giraffa : Genus Species : Rank Genus : Rank (1)
Species t Genus t · · · v Taxon Species u Genus v ⊥ (2)

Metaroles with concepts on one or both sides of the relationship allow specifying
that a taxon or rank was definedBy a person (3), and that one species is an evolution-
ary successorOf of another (4). We can then express complex meta-concepts such as
LinneanSpecies (5).

∃definedBy.> v Taxon t Rank > v ∀definedBy.Person Giraffa,M. T. Brünnich : definedBy (3)
∃successorOf.> v Species > v ∀successorOf.Species (4)

LinneanSpecies ≡ Species u ∃definedBy.{vonLinné} (5)

First-order modelling still works as in SROIQ: Individual organisms are classified
to taxons and particular species are subsumed by their respective genera (6). Roles
record that a specimen (a studied example individual of a species) was describedBy a
person, and is locatedIn a museum (7).

Zarafa : G. camelopardalis G. camelopardalis v Giraffa Specimen v Organism (6)
∃describedBy.>t∃locatedIn.>vSpecimen >v∀describedBy.Personu∀locatedIn.Museum (7)

HI(SROIQ) employs HiLog-based semantics: each entity is denoted to a domain
element (the intension) using the intension function ·I. The intensions for individuals,
concepts, and roles are disjoint. Intensions of concepts (roles) are assigned concept
(role) extensions. Only one extension function ·E is therefore needed, unlike in the ν-
semantics. The instanceOf role has fixed semantics: it connects an instance with the
intension of each concept it belongs to – i.e., just like rdf:type in RDF [8].

Definition 2. An HI-interpretation of a DL vocabulary N with instanceOf ∈ NR is a
triple I = (∆I, ·I, ·E) such that:

1. ∆I = ∆II ] ∆IC ] ∆IR where ∆II , ∆
I
C, ∆

I
R are pairwise disjoint,

2. aI ∈ ∆II for each a ∈ NI, AI ∈ ∆IC for each A ∈ NC, RI ∈ ∆IR for each R ∈ NR,
3. cE ⊆ ∆II ] ∆IC for each c ∈ ∆IC, rE ⊆ (∆II ] ∆IC) × (∆II ] ∆IC) for each r ∈ ∆IR.

Extensions of role expressions RE and of descriptions CE are inductively defined ac-
cording to Table 3.
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The semantics of axioms (and of nominals above) is defined so that when a name is
treated as a concept instance or a role actor, its intension is considered.

Definition 3. An axiom ϕ is satisfied by aHI-interpretation I (I |= ϕ) if I satisfies the
respective semantic constraints from the lower part of Table 3. A HI-interpretation I
is a model of K (I |= K) if I satisfies every axiom ϕ ∈ K . A concept C is satisfiable
w.r.t. K if there exists a model I of K such that CI , ∅. An axiom ϕ is entailed by K
(K |= ϕ) if I |= ϕ holds for each I such that I |= K .

The semantics of instanceOf should now be apparent. The fixed interpretation of
this role allows to “move accross” meta-layers in modelling: Restrictions on instanceOf
can select instances of concepts satisfying various meta-criteria, e.g., specimens of Lin-
nean species described by someone else than von Linné (8). Conversely, restrictions
on instanceOf− select concepts whose instances satisfy complex criteria, e.g., species
with specimens located in the British Museum. Liberal treatment of the instanceOf role
allows creating its subroles, e.g., hasType assigning a prototypical specimen to each
species (10), and using them in number restrictions, e.g., to assert that each species has
exactly one holotype (the “most notable” specimen) and it is located in a major museum
(11). While we could have created the meta-role hasType anyway, without relating it to
instanceOf we could not assure that it connects each species with one of its instances.

Specimen u ∃instanceOf.(Species u ∃definedBy.{vonLinné}) u ∃describedBy.¬{vonLinné} (8)
Species u ∃instanceOf−.(Specimen u ∃locatedIn.{britishMusem}) (9)

hasType v instanceOf− ∃hasType.> v Species > v ∀hasType.Specimen (10)
Species v (61hasType.Holotype) u =1hasType.(Holotype u ∃locatedIn.MajorMusem) (11)

We will now show how HI(SROIQ) can be reduced to first-order SROIQ. The
reduction, fully defined below, is based on ideas by Glimm et al. [4]. For each concept A,
a new individual name cA is introduced to represent A’s intension. These new names
are instances of a new concept >C of concept intensions. The relationship between the
extension A and the intension cA is expressed through the instanceOf role in the InstSync
axioms. In the reduced knowledge base, instanceOf is an ordinary, axiomatized role.

Definition 4 (First-Order Reduction). A DL vocabulary N with instanceOf ∈ NR is re-
duced into a DL vocabulary N1 := (N1

C,N
1
R,N

1
I ) where N1

C = NC]{>C}, N1
R = NR, N1

I =

NI ] {cA | A ∈ NC} for fresh names >C and cA for all A ∈ NC. A givenHI(SROIQ) KB
K in N is reduced into a SROIQ KB K1 := Bound(K) ∪ InstSync(K) ∪ Typing(K)
in N1 where Bound(K) is obtained from K by replacing each occurence of A ∈ NC
in a nominal or in the left-hand side of a concept or (negative) role assertion by cA.
InstSync(K) consists of axioms A ≡ ∃instanceOf.{cA} for all A ∈ NC. Typing(K) con-
sists of axioms > v ∀instanceOf.>C, a : ¬>C and cA : >C for all a ∈ NI and A ∈ NC.

The following theorem asserts thatK1 is just as strong asK . The more involved part
of its proof is finding aHI(SROIQ) model I ofK for a first-order modelJ ofK1. We
define the set of concept intensions ∆IC as >JC , and let the intension of each atomic con-
cept A be cJA . We then define for each concept intension c ∈ ∆IC the extension cE as the
set of all xs related to it by instanceOfJ . This ensures instanceOfE = instanceOfJ . More-
over, since the interpretation of instanceOf is constrained by the InstSync axioms, ex-
tension of each atomic concept AIE is equal to its first-order interpretation AJ . A more
detailed proof of the theorem can be found in the extended version of this paper [15].
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Theorem 1. For anyHI(SROIQ) KBK and any axiom ϕ in a common vocabulary N,
we have K |= ϕ iff K1 |= Bound(ϕ).

Observe that K1 is linear in the size (string-length) of K (assuming N consists
exactly of all symbols occurring inK). IfK satisfies, for all roles including instanceOf,
the SROIQ restrictions (cf. Sect. 2.1), so does K1.

Corollary 1. Concept satisfiability and subsumption in HI(SROIQ) conforming to
SROIQ restrictions on roles including instanceOf are decidable in N2ExpTime.

In general, HI(L) reduces to LO if the DL L admits GCIs, existential restric-
tion, and complement. The decidability and complexity of standard reasoning tasks for
HI(L) are then the same as for LO.

A natural next step after metamodelling instantiation is metamodelling subsump-
tion. For a singleton meta-concept C, the meta-concept ∀instanceOf−.∃instanceOf.C,
due to Glimm et al. [4], classifies subconcepts of the single instance of C. We can thus
express that all species of genus Giraffa except G. camelopardalis are extinct (12). Glimm
et al. [4] axiomatized a subClassOf role over atomic concepts, but, unlike instanceOf, it
does not extend to unnamed concept intensions. Metamodelling of subsumption with
the intended semantics { (x, y) | x, y ∈ ∆IC ∧ xE ⊆ yE } is a part of our near-future work.

Species u ∀instanceOf−.∃instanceOf.{Giraffa} u ¬{G. camelopardalis} v Extinct (12)

3.2 Classification of Roles

We now define another variant of higher-order DL with a notable addition: allowing
concepts to contain and roles to connect also atomic role names. We define the logic
HIR(SHOIQ), on top of the SHOIQ DL [13] disallowing some SROIQ constructs
(we say that an expression is allowed if its extension is defined in the right column
of Table 3). HIR(L) for a fragment L of SHOIQ is the corresponding fragment of
HIR(SHOIQ).HIR uses the same vocabulary asHI.

The most notable syntactic difference for HIR(L) compared to HI(L) is the op-
tion to use atomic roles as individuals. The full syntax is as follows.

Definition 5. HIR(SHOIQ) role expressions are inductively defined as the smallest
set containing the allowed expressions listed in the upper part of Table 3, where R0 ∈
NR \ {instanceOf}, R is an atomic or inverse role. HIR(SHOIQ) descriptions are
inductively defined as the smallest set containing the allowed expressions listed in the
middle part of Table 3, where A ∈ NC, B ∈ N, C and D are descriptions and R is an
atomic or inverse role. A HIR(SHOIQ) knowledge base K is a finite set of allowed
axioms of the forms listed in the bottom part of Table 3, where B, B1, B2 ∈ N, C and D
are descriptions, P and R are atomic or inverse roles.

In contrast to HI, HIR extensions range over all intensions, and hence concepts
inHIR(L) are fully promiscuous, though about each instance we are able to say if it is
an individual, concept, or role. In many cases such promiscuity is not desired; we will
later learn how to constrain it if needed. However, there are certain concepts such as
Deprecated for which it makes sense. Concepts, but as well roles, and even individuals
may become deprecated if they are replaced by new names or more refined versions. In

240



the taxonomy domain, taxa, ranks, end even specimens may become deprecated (e.g.,
when they are invalidated by further studies). A role with a truly promiscuous domain
is, e.g., definedBy; as it is applicable on both taxa and ranks.

Definition 6. An HIR-interpretation of a DL vocabulary N with instanceOf ∈ NR is a
triple I = (∆I, ·I, ·E) such that

1. ∆I = ∆II ] ∆IC ] ∆IR (all three sets pairwise disjoint),
2. aI ∈ ∆II for each a ∈ NI, AI ∈ ∆IC for each A ∈ NC, RI ∈ ∆IR for each R ∈ NR,
3. cE ⊆ ∆I for each c ∈ ∆IC, rE ⊆ ∆I × ∆I for each r ∈ ∆IR,

and the extensions of role expressions and complex descriptions are inductively defined
according to Table 3.

Satisfiability, model, and entailment are defined as forHI(SROIQ). We will now
reduceHIR(SHOIQ) to SHOIQmm under ν-semantics. While there are similarities
with the previous first-order reduction, the target is now already a HiLog-based higher-
order logic. The core idea is to separate concepts, individuals, and roles which are not
distinguished by SHOIQmm. We introduce >I, >C and >R, representing disjoint top-
concepts for individuals, concepts, and roles (their union being >′). The instanceOf role
is reduced into an ordinary role with domain >′ and range >C, axiomatized through
InstSync axioms. As SHOIQmm uses a set of names including an inverse name n− for
each atomic name n, we also introduce >− to handle all inverse names separately.

Definition 7 (Reduction toSHOIQmm with ν-semantics). A DL vocabulary N with
instanceOf ∈ NR is reduced into the set of atomic names Nν

a = NI ] NC ] NR ]
{>C,>R,>I,>′,>−} for fresh names >C, >R, >I, >−, and >′.
HIR(SHOIQ) KB K in N is reduced into a SHOIQmm KB Kν in Nν as fol-

lows: Kν = Bound(K) ∪ InstSync(K) ∪ Typing(K), where InstSync(K) contains A ≡
∃instanceOf.{A} for all A ∈ NC, Bound(K) contains for each ϕ ∈ K its transformed
version where every occurrence of a description C in the form ¬D is replaced by >′uC
and every RIA w v S is replaced by w vR S . Typing(K) consists of axioms:

1. ¬({instanceOf,>C,>R,>I,>′,>−} t >−) ≡ >′ ≡ >C t >R t >I,
2. >C u >I v ⊥, >C u >R v ⊥, >R u >I v ⊥,
3. > v ∀instanceOf.>C, ∃instanceOf.> v >′,
4. (i) a : >I for all a ∈ NI, (ii) A : >C, A v >′ for all A ∈ NC, (iii) R : >R, > v ∀R.>′,
∃R.> v >′ for all R ∈ NR \ {instanceOf}, (iv) n− : >− for all n ∈ Nν.

The following theorem states that Kν is just as strong as K . Its proof is similar to
the proof of Theorem 1, and is included in the extended version [15].

Theorem 2. For any HIR(SHOIQ) KB K and axiom ϕ over a common vocabu-
lary N, we have K |= ϕ iff Kν |= Bound(ϕ).

The ν-reduction of aHIR(SHOIQ) KB K is linear in the size of K . Simple roles
are defined as for SROIQ. URA is defined as for SHOIQmm, but only for names
from NR. We can now state the following corollary. Its assumptions suffice to satisfy
the decidability conditions of ν-satisfiability of Kν from Sect. 2.2.
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Table 4. Knowledge base with n types

>X(t) v ∀instanceOf−.>X(t−1) for each t s. t. t > 0 a : >I(1) for each a ∈ NI

>X(t) v ¬>Y(u) for each t, u s. t. 0 < t, u ≤ n ∧ t , u

>IR(1) ≡ >I(1) t >R(1) R : >R(1) for each R ∈ NR

Corollary 2. Let a HIR(SHOIQ) KB K be such that (a) only simple roles occur in
cardinality restrictions, and (b) K employs URA, or it contains no nominals and no
cardinality restrictions. Concept satisfiability and entailment in a HIR(SHOIQ) KB
are then decidable in NExpTime.

Note that the reduction theorem can be generalized to reducibility of HIR(L)
to LOmm, if L admits GCIs, existential restriction, and complement.

3.3 Type Hierarchy Strikes Back

InHI(L) (HIR(L)), concepts are promiscuous – any individuals, concepts (and roles)
may become their instances. In case selected concepts need to be strictly typed, this is
axiomatized as follows:

Definition 8 (Typing framework). Given n ∈ N, a HI KB with n types adds fresh
concepts names >I(i) for each i such that 0 < i ≤ n, and contains axioms listed in the
upper part of Table 4 for X = Y = I. AHIR KB with n types adds fresh concept names
>X(i) for each i, 0 < i ≤ n, and each X ∈ {I,R, IR}, and contains axioms listed in the
upper and lower part of Table 4 for all X,Y ∈ {I,R, IR}.

The >I(1) concept classifies precisely all individuals (similarly, >R(1) classifies pre-
cisely all roles and >IR(1) classifies precisely all individuals and roles), >I(2) classifies
precisely all concepts with only individual instances (analogously, >R(2) for concepts
of roles, and >IR(2) for mixed concepts), etc. We can thus assert some typing in our
example:

Organism t Person t Museum v >I(1) Taxon v >I(2) Rank v >I(3)

Typing is propagated to subconcepts and instances: G. camelopardalis v >I(1) and
Species v >I(2) is now entailed, and so for other taxa and ranks. Domains and ranges of
roles may be typed similarly, e.g.: ∃successorOf.> v >I(2) and > v ∀successorOf.>I(2).
This, though, is also already entailed, since Species was already asserted as the domain
and range, and it is already typed.

3.4 Some Properties ofHI (SROIQ) andHIR(SHOIQ)

HI(SROIQ) and HIR(SHOIQ) have the basic properties of HiLog-based logics:
intensional regularityK , (X = Y) |= X ≡ Y , and the lack of extensionalityK , (X ≡ Y) |=
X = Y . Indeed, ifK |= A = B for two concept names A and B, thenK |= A ≡ B, since in
every model AI = BI, hence also AIE = BIE. Both logics are thus intensionally regular
for concepts. This is a quite natural requirement for metamodelling. If we assert that
an international and a Slovak name denote the same species (G. camelopardalis = Žirafa
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štíhla), we expect their extensions to also be equal. HIR(SHOIQ) is intensionally
regular also for roles, but K never entails R = S under decidability conditions.

A model of a KB such that K |= A ≡ B can assign A and B distinct intensions
AI = a , b = BI with the same extension, e.g., aE = bE = {x}. Both our logics thus lack
extensionality. This enables, e.g., deprecating an old binomial name of a species (e.g.,
Cervus camelopardalis) without deprecating its newer name (Giraffa camelopardalis) al-
though they classify the same organisms (Giraffa c. ≡ Cervus c.), or modelling of single-
species genera such as Sommeromys ≡ S. macrorhinos, where S. macrorhinos : Species
and Sommeromys : Genus without contradicting Species u Genus v ⊥.
HI(SROIQ)’s expressivity makes it vulnerable to Russel’s paradox of naïve set

theory. A concept of such concepts which are not instances of themselves is defined
as Barber ≡ ¬∃instanceOf.Self. Take any HI(SROIQ) model I of K , and let b :=
BarberI ∈ ∆C, B := bE, and S := ∃instanceOf.Self = { x | (x, x) ∈ instanceOfE } =

{ x | x ∈ ∆C ∧ x ∈ xE }. We have B = (∆I ] ∆C) \ S = ∆I ] (∆C \ S ) = ∆I ] { x | x ∈
∆C ∧ x < xE }. Hence the contradiction: b ∈ bE iff b < bE. Even though SHOIQ does
not admit self-restriction, simpler contradictions involving instanceOf, e.g., x : Y and
(x,Y) : ¬instanceOf, can be expressed in HIR(SHOIQ). However, these examples
are actually not specific toHI orHIR logics, as they reduce to contradictory SROIQ
and SHOIQmm KBs, respectively.

4 Conclusions

We have introduced a higher-order framework HIR(L) which enriches a DL L with
promiscuous higher-order concepts, and makes the instantiation relation accessible to
the modeller in the form of a fixly interpreted role named instanceOf, whose semantics
is akin to rdf:type. We showed a number of examples illustrating how such constructs
may be useful for metamodelling.

Our work is most closely related to that of Homola et al. [10] which is here extended
by promiscuity and modelling with instantiation. The former approach is strictly typed;
types are easily constructed inHIR(L) by axiomatization if needed, and may be used –
but they are not strictly enforced. We base many of our constructions on Glimm et al. [4]
who, however, do not enable orders higher than the second, meta-roles, nor promiscuity.
They also do not provide any higher-order model-theoretic characterization, only an
axiomatization in a regular DL. Such characterization is instrumental in showing that
the logic has desired properties, which we have discussed in Sect. 3.4.

Computational support for logics up to HIR(SHOIQ) can be obtained via a re-
duction to Motik’s extension of SHOIQ with metamodelling (under ν-semantics). For
the weaker variant HI(L), which disallows classification of roles, HI(SROIQ) is
fully reducible to regular SROIQ by adapting the reduction known from Glimm et al.
The question whether the subsumption relation and further logical constructs of the un-
derlying DL can be made accessible for metamodelling is an interesting open problem.

Acknowledgments. This work was funded by project VEGA 1/1333/12. Petra Kubin-
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Domenico Lembo1, José Mora1, Riccardo Rosati1,
Domenico Fabio Savo1, Evgenij Thorstensen2

1 DIAG, Sapienza Università di Roma
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1 Introduction

Ontology-based data access (OBDA) is a recent paradigm for accessing data sources
through an ontology that acts as a conceptual, integrated view of the data, and declara-
tive mappings that connect the ontology to the data sources [13, 6, 14, 5, 2] .

One important aspect in OBDA concerns the construction of a system specification,
i.e., defining the ontology and the mappings over an existing set of data sources. Map-
pings are indeed the most complex part of an OBDA specification, since they have to
capture the semantics of the data sources and express such semantics in terms of the on-
tology. The first experiences in the application of the OBDA framework in real-world
scenarios (e.g., [2, 9]) have shown that the semantic distance between the conceptual
and the data layer is often very large, because data sources are mostly application-
oriented: this often makes the definition, debugging, and maintenance of mappings a
hard and complex task. Such experiences have clearly shown the need of tools for sup-
porting the management of mappings.

The recent work [11] has started providing a theoretical basis for mapping manage-
ment support in OBDA, focusing on the formal analysis of mappings in ontology-based
data access. In particular, the two most important semantic anomalies of mappings have
been analyzed: inconsistency and redundancy. Roughly speaking, an inconsistent map-
ping for an ontology and a source schema is a specification that gives rise to logical
contradictions with the ontology and/or the source schema. Then, a mapping M is
redundant with respect to an OBDA specification if adding the mappingM to the spec-
ification does not change its semantics. The work presented in [11] has defined both a
local notion of mapping inconsistency and redundancy, which focuses on single map-
ping assertions, and a global notion, where inconsistency and redundancy is considered
with respect to a whole mapping specification (set of mapping assertions).

In this paper, we study the computational properties of verifying both local and
global mapping inconsistency and redundancy in an OBDA specification. We consider
a wide range of ontology languages that comprises the description logics underlying
OWL 2 and all its profiles (OWL 2 EL, OWL 2 QL, and OWL 2 RL),1 and examine
mapping languages of different expressiveness (the so-called GAV and GLAV map-
pings [7]) over sources corresponding to relational databases. We provide algorithms
and establish tight complexity bounds for the decision problems associated with both
local and global mapping inconsistency and mapping redundancy, and for both com-
bined complexity and TBox complexity (which only considers the size of the TBox).

1 http://www.w3.org/TR/owl2-profiles/
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The outcome of our analysis is twofold:
– in our framework, it is possible to define modular techniques that are able to reduce

the analysis of mappings to the composition of standard reasoning tasks over the
ontology (inconsistency, instance checking, query answering) and over the data
sources (query answering and containment). This is a non-trivial result, because
mappings are formulas combining both ontology and data source elements;

– the above forms of mapping analysis enjoy nice computational properties, in the
sense that they are not harder than the above mentioned standard reasoning tasks
over the ontology and the data sources (see Figure 1 and Figure 2) .

According to the above results, in our OBDA framework, the analysis of mappings is
feasible for languages with nice computational properties, like the three OWL profiles.

2 Theoretical background

An OBDA specification is a triple J = 〈T ,S,M〉, where T is a DL TBox, S is
a source schema, and M is a mapping between the two. In this paper, we consider
TBoxes specified through DLs that are the logical basis of the W3C standard OWL and
of its profiles, i.e., SROIQ [8], which underpins OWL 2, DL-LiteR [4], which is the
basis of OWL 2 QL, RL [10], a simplified version of OWL 2 RL, and EL⊥, a slight
extension of the DL EL [3], which is the basis of OWL 2 EL. The source schema is
assumed to be relational, and we consider both simple schemas, i.e., without integrity
constraints, and FD schemas, i.e., simple schemas with functional dependencies [1].
The mapping is a set of assertions m of the form φ(x) ; ψ(x), where φ(x), called the
body of m, and ψ(x), called the head of m, are conjunctive queries (CQs) over S and
T , respectively. We use head(m) and body(m) to denote the head and the body of m.

Mappings of the form above are called GLAV, and are the most expressive com-
monly studied mappings [12, 7]. Besides them, we refer also to GLAVBE mappings,
which are GLAV mappings where ψ(x) is a CQ with a bounded number of occur-
rences of existential variables, and to GAV mappings, which are GLAV mappings where
head(m) does not admit existential variables.

The semantics of an OBDA specification J = 〈T ,S,M〉 is given in terms of first-
order interpretations that satisfy both T andM, given a source instance D legal for S,
i.e., an instance for S that satisfies the constraints of S. We denote with Mod(J , D) the
set of models of J w.r.t.D We also say that a mapping assertionm is active on a source
instance D if the evaluation of the query body(m) over D is non-empty. A mappingM
is active on D if all its mapping assertions m ∈M are active on D.

Below we recall the definitions given in [11] that formalize the mapping analysis
services that we study in this paper. Given a TBox T , a source schema S, a mapping
assertion m, a mappingM, and an OBDA specification J = 〈T ,S,M〉, we have that

– m is (locally) inconsistent for 〈T ,S〉 if m is head-inconsistent for T , i.e., T |=
∀x.(¬ψ(x)), or m is body-inconsistent for S, i.e., S |= ∀x.(¬φ(x)).

– M is globally inconsistent for 〈T ,S〉 if there does not exist a source instance D
legal for S such thatM is active on D and Mod(J , D) 6= ∅.

– A mappingM′ is globally redundant for J if, for every source instance D that is
legal for S, Mod(〈T ,S,M〉, D) = Mod(〈T ,S,M∪M′〉, D).

Local mapping redundancy is a special case of global mapping redundancy in which
the mappingsM andM′ are both composed of a single assertion.
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GAV GLAV
task DL-LiteR RL EL⊥ SROIQ DL-LiteR RL EL⊥ SROIQ

local inc. =NLOGSPACE =P =P =N2EXPTIME =NLOGSPACE =P =P =N2EXPTIME
global inc. =NLOGSPACE =P =P =N2EXPTIME =NLOGSPACE =P =P =N2EXPTIME
local red. =NLOGSPACE =P =P =N2EXPTIME =NP =NP =NP open

global red. =NLOGSPACE =P =P =N2EXPTIME =NP =NP =NP open

Fig. 1. TBox compl. of mapping inconsistency and redundancy (for both simple and FD schemas).

GAV GLAVBE
task DL-LiteR RL EL⊥ SROIQ DL-LiteR RL EL⊥ SROIQ

local inc. =NLOGSPACE (SI) =P =P =N2EXPTIME =NLOGSPACE (SI)∗ =P∗ =P∗ =N2EXPTIME∗

=P (FD) =P (FD)∗

global inc. =NP =NP =NP =N2EXPTIME =NP =NP =NP =N2EXPTIME
local red. =NP =NP =NP =N2EXPTIME =NP =NP =NP open

global red. =NP =NP =NP =N2EXPTIME =NP =NP =NP open

Fig. 2. Combined complexity of mapping inconsistency and redundancy (SI = simple schemas,
FD = FD schemas). ∗ The result also holds for arbitrary GLAV mappings.

3 Complexity Results

We summarize below our complexity results. We consider both TBox complexity, i.e.,
the complexity computed w.r.t. the size of the TBox only, and combined complexity.

For both simple and FD schemas, and for both GAV and GLAV mappings, the
TBox complexity of local mapping inconsistency turns out to be the same as the TBox
complexity of ontology inconsistency. As for the combined complexity, simple and FD
schemas behave differently. For simple schemas, it is not necessary to check body-
inconsistency (since there are no constraints in S), and thus the combined complexity
is the same as for mapping head-inconsistency, which in turn is the same as the com-
bined complexity of ontology inconsistency. For FD schemas we further need to check
whether the mapping assertion is body-consistent, which can be done in PTIME. Com-
bining together this result with the above bounds for simple schemas, we obtain the
exact bounds for combined complexity shown in Fig. 2.

Global inconsistency can be reduced to checking the consistency of an OBDA spec-
ification w.r.t. a (minimal) source database that activatesM. In particular we have that
for both simple and FD schemas, for both GAV and GLAV mappings, the TBox com-
plexity of global mapping inconsistency is the same as the TBox complexity of ontol-
ogy inconsistency. As for combined complexity, we devise a non-deterministic algo-
rithm exploiting the above mentioned correspondence of global mapping inconsistency
and OBDA inconsistency. This algorithm allows us to prove that for both simple and
FD schemas, and for both GAV and GLAVBE mappings, it holds that: (i) if the on-
tology language is DL-LiteR, RL, or EL⊥, then the combined complexity of global
mapping inconsistency is in NP; (ii) if the ontology language is SROIQ, then it is in
N2EXPTIME. We also prove that these bounds are in fact exact.

As for redundancy, our investigation shows that both local and global redundancy
have the same computational behaviour. The complexity results are obtained with tech-
niques that resemble those used for establishing complexity of global inconsistency. All
our complexity results are reported in the tables in Fig. 1 and Fig. 2.
Acknowledgments. This research has been partially supported by the EU under FP7
Large-scale integrating project Optique (grant n. FP7-318338).
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Abstract. We investigate the computational cost of combining the open and
closed world assumptions in Description Logics. Unlike previous works, which
have considered data complexity and focused mostly on lightweight DLs, we
study combined complexity for a wide range of DLs, from lightweight to very
expressive ones. From existing results for the standard setting, where all predicates
are interpreted under the open world assumption, and the well-known relationship
between closed predicates and concept constructors like disjunction and nominals,
we infer bounds on the combined complexity of reasoning in the presence of
closed predicates. We show that standard reasoning requires exponential time even
for weak logics like EL, while answering conjunctive queries becomes hard at
least for coNEXPTIME, and in most cases even for 2EXPTIME. An important
stepping stone for our results, that is interesting on its own right, is to prove
that conjunctive query answering in (plain) ALCO is hard for coNEXPTIME

in combined complexity. This singles out nominals as a previously unidentified
source of additional complexity when answering queries over expressive DLs.

1 Introduction

As fragments of classical first-order predicate logic, description logics (DLs) have an
open-world semantics. That is, knowledge bases (KBs) are interpreted as the set of
all relational structures that satisfy what is explicitly stated in the KB, and where any
statement whose truth is not directly implied by the knowledge base can be interpreted
in an arbitrary way. However, this open-world view of DLs is not the most adequate in
all cases, and in particular, when DLs are used to describe domain-specific knowledge to
be leveraged when querying data sources, but the sources stem from traditional (closed-
world) databases that fully describe the instances that are to be included in a relation.
For example, when the students enrolled in some course are extracted from a database,
this information should be considered complete, and query answering algorithms should
exploit this to exclude irrelevant models and infer more query answers.

Combining open and closed world reasoning is not a new topic in DLs [3], but it
has received renewed attention in recent years [20,19,7,30]. A prominent proposal for
achieving partial closed world reasoning is to use DBoxes instead of ABoxes as the
∗ This work has been supported by the Austrian Science Fund (FWF) projects T515 and P25207.

249



assertional component of KBs [30]. Syntactically, a DBox looks just like an ABox, but
semantically, it is interpreted like a database: the instances of the concepts and roles in
the DBox are given exactly by the assertions it contains, and the unique name assumption
is made for the active domain of the individuals occurring in it. We follow a recent
generalization of this setting, where instead of replacing ABoxes by DBoxes, we enrich
the terminological component of KBs with a set of concepts and roles that are to be
interpreted as closed predicates [19]. In this way, some ABox assertions are interpreted
under closed semantics, as in DBoxes, while others are considered open, as in ABoxes.

There are not many works studying the complexity of reasoning with closed pred-
icates. For the DL-Lite family and for EL, the data complexity of ontology mediated
query answering has been considered [7,19]. The authors of these works consider a
conjunctive query together with a terminological component (a TBox and possibly a set
of closed predicates), and study the complexity of answering such a query over an input
data instance (an ABox or a DBox). Under the standard open-world semantics for all
predicates, this is a central problem that has received great attention in the last decade in
the DL community. Most research focuses on the cases where the problem is tractable,
or even first-order rewritable. Unfortunately, the tractability of query answering is lost
in the presence of DBoxes, even for the core fragments of DL-Lite and EL [7]. In a
nutshell, closed predicates cause the convexity property to be lost, allowing a KB to
entail a disjunction of facts without entailing any of the disjuncts. An in-depth analysis
of this and a careful classification of tractable cases can be found in [19].

In this paper, we take a closer look at the computational complexity of reasoning
in the presence of closed predicates. Unlike previous works, we consider the combined
complexity of reasoning, that is, not only the data is considered as an input, but also
the terminological information, and in the case of query answering, the query. Rather
than focusing on a few lightweight DLs, we consider a range of logics including very
expressive ones, and use existing results in the literature to infer many tight bounds on the
computational complexity of query answering. It was shown already in [30] that closed
predicates can be simulated, under the standard open world semantics, in any extension
of ALC that supports nominals, and conversely, nominals can be simulated by closed
predicates (the latter does not depend on any of the availability of any the constructs
of ALC). It is also easy to show that closed predicates suffice to easily express full
disjunction and atomic negation in any logic supporting qualified existential restrictions,
hence adding closed predicates to plain EL already results in the full expressiveness of
ALCO, and makes standard reasoning require exponential time in the worst case.

For query answering, we build on the reduction from ALC to EL to show that the
constructors that make query answering 2EXPTIME-hard in extensions of ALC (namely
inverses [17], or transitive roles together with role hierarchies [6]), have the same effect
in the analogous extensions of EL in the presence of closed predicates (i.e., ELI and
ELHtrans). However, since the precise complexity of query answering inALCO remains
open, we cannot infer tight bounds for the extensions of ELwith closed predicates that do
not support these additional constructs. This leads us to the main technical contribution
of the paper: we show that conjunctive query answering over ALCO (with the standard
open-world semantics) is coNEXPTIME-hard. Hence the same holds in the presence
of closed predicates for EL and its extensions. Although we leave a matching upper
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bound open for future work, we exhibit nominals (or closed predicates) as a previously
unidentified source of increased complexity for query answering in expressive DLs.

2 Preliminaries

We assume the reader is familiar with DLs and, in particular, with EL and ALCO.
We use NC and NR for concept names and roles, respectively. The notions of a TBox
T , an ABox A, and an interpretation I = (∆I , ·I) are defined in the usual way. The
notions of satisfaction I |= T and I |= A are also as usual. We make the standard name
assumption (SNA), i.e., aI = a for all I and individuals a. For combining the open- and
closed-world semantics, we enrich KBs with a set Σ of closed predicates. That is, we
consider knowledge bases (KBs) K = (T , Σ,A), where T is a TBox, Σ ⊆ NC ∪NR,
and A is an ABox. We call Σ the set of closed predicates in K. For such a K and an
interpretation I, we write I |= K if
(a) I |= T and I |= A,
(b) for all concept names A ∈ Σ, if e ∈ AI , then A(e) ∈ A, and
(c) for all roles r ∈ Σ, if (e, e′) ∈ rI , then r(e, e′) ∈ A.
In case Σ = ∅, K is boils down to a usual DL KB and I |= K captures the usual notion
of satisfaction. In this case, we may simply write K = (T ,A).

Note that in this paper KBs with closed predicates have the semantics as in [19],
which relies on the SNA. However, all complexity results of this paper can be recast for
the semantics of [7] that employs a weaker form of unique name assumption.

3 Standard Reasoning

Interpreting some predicates as closed allows one to simulate negation, disjunction, and
nominals in plain EL, making it as expressive as full ALCO.

Theorem 1. Assume a consistent ALCO KB K = (T ,A). For every nominal {a} that
appears in K, let Da be a fresh concept name. Then we can construct in linear time an
EL KB K′ = (T ′, Σ,A′) with closed predicates such that:

1. Every model I of K′ is a model of K. Moreover, DIa = {a}I for every {a} in K.
2. Every model I of K can be transformed into a model of K′ by modifying the

interpretation of concept names and roles that do not appear in K.

Proof. The extension of EL with atomic negation (i.e., negation is applied to concept
names only), denoted EL¬, is known to be a notational variant of ALC [1]. Hence we
simply show how to construct K′ = (T ′, Σ,A′) for a given ELO¬ KB K = (T ,A).
We do this in two steps: first we eliminate nominals and obtain from K = (T ,A) an
EL¬ KB K1 = (T1, Σ1,A1). Then we transform K1 = (T1, Σ1,A1) into the desired
K′ = (T ′, Σ,A′) in EL. Let

Σ1 = {Da | {a} appears in K}, A1 = A ∪ {Da(a) | {a} appears in K}.
This ensures that DIa = {a}I in every model of A1 where the predicates in Σ1 are

interpreted as closed. Hence we can simply replace each concept {a} by Da in T to
obtain the desired T1. Next, for eliminating negation from (T1, Σ1,A1), we let
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Σ = Σ1 ∪ {D⊥, D1, D2, Du} A′ = A1 ∪ {Du(a1), Du(a2), D1(a1), D2(a2)}
To obtain T ′ from T1, we replace every negated concept name ¬A by a fresh concept
name Ā, and add the following axioms, where rA is a fresh role name:

A u ĀvD⊥ (1)

>v ∃rA.Du (2)

∃rA.D1 vA (3)

∃rA.D2 v Ā (4)
Note that, since there are no assertions of the form D⊥(a) in A′, we have DI⊥ = ∅ in
every model I of K′, and hence D⊥ behaves as the special concept ⊥. This and axiom
(1) ensure disjointness of A and Ā, while axioms (2) – (4) together with the assertions
for the closed predicates Du, D1 and D2 ensure that e ∈ AI or e ∈ (Ā)I for every
e ∈ ∆I . Indeed, let I be a model of K′ and let e ∈ ∆I be arbitrary. Then by axiom (2)
there exists e′ ∈ ∆I such that (e, e′) ∈ rI and e′ ∈ DIu . But since Du is closed, then
e′ ∈ {a1, a2}. If e′ = a1, then e′ ∈ DI1 , so e ∈ (∃rA.D1)I and e ∈ AI by axiom (3).
Analogously, if e′ = a2, we can use axiom (4) to infer that e ∈ (Ā)I . This ensures that
Ā has exactly the same extension as ¬A in every model of K, and the claim follows.

This easy reduction allows us to extend to EL hardness results known for ALC. We
can also infer upper bounds for logics with closed predicates, from known results under
the standard open-world semantics, by exploiting the fact that in DLs that contain ALC,
closed predicates can be simulated using nominals (see [26] and Prop. 1 in [30]):

Theorem 2. For every DL KB (T , Σ,A) there exists a logically equivalent KB of the
form (T ∪ T ′, ∅,A), where T ′ is a set of ALCO axioms whose size is polynomially
bounded by the size of A.

This already allows us to obtain an almost complete picture of the landscape for
standard reasoning tasks. The following theorem is stated for KB satisfiability, but note
that it also applies to other traditional reasoning tasks like subsumption and instance
checking since they are mutually reducible to each other in ALC, and hence also in any
logic containing EL with closed predicates.

Corollary 1. The following bounds for deciding satisfiability of (T , Σ,A) hold:

1. EXPTIME-complete if T and A are in any DL containing EL and contained in
SHOQ or SHOI.

2. NEXPTIME-complete if T and A are in any DL containing ELIF and contained in
SHOIQ.

3. N2EXPTIME-complete if T and A are in SRIQ or SROIQ, and in 2EXPTIME

if T and A are in SROQ or SROI.

Proof. The lower bound of item (1) follows from Theorem 1 and the well known
EXPTIME-hardness of KB satisfiability inALC [29]. Similarly, the hardness of items (2)
and (3) follows from Theorem 1 together with the NEXPTIME-hardness of ALCOIF
[31], and the N2EXPTIME-hardness of SROIQ [13]. For the upper bounds, we use
Theorem 2 and the fact that KB satisfiability is decidable in the mentioned bounds for
the listed logics: SHOQ and SHOI in EXPTIME, SROQ and SROI in 2EXPTIME,
SHOIQ in NEXPTIME, SROIQ in N2EXPTIME (see [4,13] and references therein).
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4 Query Answering

In this section we consider the query answering problem over DL KBs. We cannot easily
transfer complexity upper bounds from known KB satisfiability since, in general, queries
are not naturally expressible in the syntax of DLs, and encoding them as part of a KB
usually requires exponential space. We focus in conjunctive queries (CQs), whose syntax
and semantics are defined in the usual way. In a nutshell, a CQ is a conjunction of atoms
of the forms A(x) or r(x, y), for a concept name A or a role name r, and variables x, y.
In what follows, all queries are Boolean queries with all variables existentially quantified.
The decision problem we consider is query entailment: deciding whether a given query
q is true in all the models of a given KB (T , Σ,A).

It is well known that, under the classical open-world semantics, CQ entailment is
hard for 2EXPTIME in most expressive DLs, but the complexity drops to EXPTIME in
Horn fragments that disallow disjunction. Unfortunately, since the presence of closed
predicates causes disjunction to be expressible, 2EXPTIME-hardness extends to many ex-
tensions of EL. For CQs, 2EXPTIME-hardness can be shown whenever the DL supports
inverse roles [17], or a single left-identity axiom r ◦ tv t, or a transitive super role of
some role [6]. If we consider query languages that extend CQs, like positive queries or
(fragments of) conjunctive (2-way) regular path queries (C(2)RPQs), the same hardness
holds already for plain ALC [25], and hence for EL with closed predicates.

Below we denote by ELLI the extension of EL with a single left-identity axiom
r ◦ tv t, and by ELHtrans the extension of EL with role inclusions and a transitive role.
Note that both logics are sublogics of EL++.

Theorem 3. Deciding (T , Σ,A) |= q is hard for 2EXPTIME in all the following cases:

1. T and A are in ELI and q is a CQ.
2. T and A are in ELLI or in ELHtrans, and q is a CQ.
3. T and A are in EL and q is either a positive query, a ∗-free CRPQ, or a ∗-free

C2RPQ with only two variables.

Proof. We have shown in Theorem 1 that for every ALC KB K there is an EL KB
K′ that has essentially the same models, and may only differ in the interpretation of
symbols not occurring in K. Hence, for every query q, we have K |= q iff K′ |= q. This
translation can be applied to extensions of ALC, and results in a KB with the same
properties in the analogous extension of EL. In particular, anALCI KB is rewritten into
a ELI one, and an SH KB into an ELHtrans one. From this an existing results for ALC
and its extensions, we obtain the desired lower bounds: item 1 follows from [18], item 2
follows from [6], and item 3 follows from [25].

Matching upper bounds are known, even for significantly more expressive queries
and logics: in the standard setting, with no closed predicates, entailment of positive
two-way regular path queries (P2RPQs) is in 2EXPTIME for any DL contained in ZIQ,
ZOQ, ZOI, SHIQ, SHOQ, or SHOI [4]. From this and Theorem 2, we get the
same upper bound for ZOQ, ZOI, SHOQ, SHOI and their sublogics.
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Corollary 2. Let q be a P2RPQ. Then deciding (T , Σ,A) |= q is 2EXPTIME complete
for T and A in any DL containing EL and contained in ZOQ, ZOI , SHOQ, SHOI .
The same holds for q a CQ if T and A are in a DL containing ELI or ELLI.

Corollary 2 implies that query entailment in the presence of closed predicates is
almost always 2EXPTIME-complete in combined complexity. But there are some excep-
tions. On the one hand, the interaction of nominals, inverses, and counting makes query
entailment very challenging. In the plain open-world setting, entailment of conjunctive
queries is coN2EXPTIME-hard for ALCOIF [10], and it has been shown to be decid-
able [28], but no elementary upper bounds on its complexity are known. For its extension
with transitive roles, and for the well known SHOIQ, decidability remains open. Hence,
in the presence of closed predicates, we do not get any interesting upper bounds for DLs
that simultaneously support inverses and counting, like ALCIF and SHIQ. Moreover,
obtaining such bounds seems very hard. We remark that the authors of [7] proved that
query entailment in ALCIF with closed predicates and query entailment under the
standard open-world semantics in ALCOIF are mutually reducible.

On the other hand, the mentioned 2EXPTIME lower bounds for CQs require the
presence of either inverse roles, left identity axioms, or transitivity and role hierarchies.
For EL (with closed predicates), ALC, and their extensions that have neither inverses
nor left identities, we only have the EXPTIME lower bound from KB satisfiability, and
the 2EXPTIME upper bound of Corollary 2. Without closed predicates, CQ entailment
for plain ALC, and even for ALCHQ, is feasible in single exponential time [18,24]. A
natural question is whether nominals, or equivalently, closed predicates, can be added to
ALCHQ without increasing the worst-case complexity of CQ entailment. Unfortunately,
the answer is negative (unless coNEXPTIME = EXPTIME), as we show next.

A coNEXPTIME lower bound for CQ entailment in ALCO
In this section, we show that deciding whether (T ,A) 6|= q for a given CQ q and a
given ALCO KB (T ,A) (with the standard open-world semantics), is hard for non-
deterministic single exponential time. By Theorem 1, the same applies to EL in the
presence of closed predicates.

Before we start with the proof, we recall a useful property of ALCO: for query
answering, it is enough to focus on forest-shaped models. A forest is a set F of non-
empty words such that w · c ∈ F with w non-empty implies w ∈ F . An interpretation I
is forest-shaped if there is a bijection f from its domain to a forest, such that

– f(aI) has length one for every individual a, and
– (e, e′) ∈ rI implies that either e′ = a for some individual a, or f(e′) is of the form
f(e) · c for some symbol c.
For many DLs and query languages, it has been shown that query entailment can be

decided over forest shaped interpretations. This applies also to CQs over ALCO KBs:

Lemma 1 ([9,4]). Let K be a given ALCO KB and let q be a CQ. Then K 6|= q iff there
is a forest shaped interpretation I such that I |= K and I 6|= q.

Now we show our lower bound. The proof is by reduction from the following
coNEXPTIME-complete variant of the tiling problem:
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Definition 1 (Domino System). A domino system D is a triple (T,H, V ), where
T = {0, . . . , k − 1}, k ≥ 0, is a finite set of tile types and H,V ⊆ T × T rep-
resent the horizontal and vertical matching conditions. Let D be a domino system
and c = c0, . . . , cn−1 an initial condition, i.e. an n-tuple of tile types. A mapping
τ : {0, . . . , 2n+1 − 1} × {0, . . . , 2n+1 − 1} → T is a solution for D and c iff for all
x, y < 2n+1, the following holds (where ⊕i denotes addition modulo i):

– if τ(x, y) = t and τ(x⊕2n+1 1, y) = t′, then (t, t′) ∈ H
– if τ(x, y) = t and τ(x, y ⊕2n+1 1) = t′, then (t, t′) ∈ V
– τ(i, 0) = ci for i < n.

For the reduction, we do not need a full ALCO knowledge base, but a simple ABox
with single concept assertion CD,c(a) for a complex ALCO concept CD,c. We show
how to translate a given domino system D and initial condition c = c0 · · · cn−1 into an
assertion CD,c(a) and query qD,c such that each forest-shaped model I of CD,c(a) that
satisfies I 6|= qD,c encodes a solution to D and c, and conversely each solution to D and
c gives rise to a model of CD,c(a) with I 6|= qD,c.

Our reduction is based on the proof of coNEXPTIME-hardness of rooted query
entailment inALCI [17], and also resembles the similar proof for S [6]. In fact, the first
part of the concept CD,c, which generates forest models that encode a potential solutions,
is essentially as in [17]. The second part and the query are quite different, since they
exploit nominals to detect errors in potential solutions.

Constructing the ABox. We now define the complex concept CD,c, and the desired
ABox is {CD,c(a)}. We assume that CD,c is a conjunction of the form C1

D,c u C2
D,c.

For convenience, letm = 2n+2. The purpose of the first conjunct C1
D,c is to enforce

a binary tree of depth m, whose edges are labeled with a single role r, and whose leaves
are labeled with the numbers 0, . . . , 2m − 1 of a binary counter C, implemented using
concept names B0, . . . , Bm. Intuitively, each of these leaves ` stores a position in the
2n+1 × 2n+1-grid to be tiled: the bits B0, . . . Bn encode the horizontal position x, and
the bits Bn+1, . . . Bm encode the vertical position y. We also use a concept name Di for
each tile type i ∈ T . Each leaf g storing a position (x, y) has as r-children three ‘grid
nodes’ gh, gright , and gup labeled G, which satisfy all the following conditions:

1. gh represents the grid node with position (x, y), and stores the same bit address as g
(that is, gh and g coincide on the interpretation of all Bi).

2. gright and gup represent the right- and up-neighbor of g, and respectively store the
addresses (x⊕2n+1 1, y) and (x, y ⊕2n+1 1).

3. gh is labeled Gh, while gright and gup are labeled Gs.
4. gh (resp., gright , gup) satisfies exactly one concept Di, representing the assigned tile

type τ(x, y) (resp., τ(x⊕2n+1 1, y), τ(x, y ⊕2n+1 1)).
5. The tiling of the gh nodes respects the initial condition, that is, if `h stores the

position (i, 0), then it satisfies Dci .
6. The tiling of gright and gup respect the matching conditions, that is, if gh satisfiesDi,
gright satisfies Dj , and gup satisfies Dj′ , then (Di, Dj) ∈ H and (Di, Dj′) ∈ V .

The tree we have described almost describes a solution for D, except for the crucial
fact that different copies of the same node in the grid may have different types assigned.
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That is, for an address (x, y), the gright and gup nodes with address (x, y) need not
satisfy the same Di as the gh with address (x, y). We call a model I of C1

D,c(a) proper
if it satisfies the following condition:

(?) For every pair g ∈ GIh , g′ ∈ GIs such that g ∈ Bi iff g′ ∈ Bi for all 0 ≤ i ≤ m,
there exists some i < k such that {g, g′} ⊆ DIi .

We can use an ALC concept C1
D,c to enforce a tree as above, such that deciding the

existence of a solution for D and c reduces to finding a proper model of C1
D,c. Such

constructions exist in the literature, and in fact, the concept we described is just a minor
modification of the conjunction C1

D,cu · · ·uC6
D,c given in [17], hence we omit its rather

technical definition. Instead, we rely on the following claim:

Lemma 2 (implicit in [17]). Let D be a domino system and c an initial condition. Then
we can build an ALC concept C1

D,c such that there exists a solution for D and c iff there
exists a proper model of C1

D,c(a). Moreover, the size of C1
D,c and the time needed to

construct it are polynomially bounded by the size of D.

We construct below a query qD,c that does not match a forest model of C1
D,c(a) iff

(?) is satisfied. By Lemmas 2 and 1, this suffices to decide whether there exists a solution
for D and c. But before defining qD,c, we define the second conjunct C2

D,c of CD,c. Its
purpose is to add nodes and labels to the forest models of C1

D,c(a) that allow us to test
for (?) using a CQ.

For defining C2
D,c, we use the following additional alphabet symbols:

– two individual names ai and āi and one concept nameAi for each bitBi, 0 ≤ i ≤ m,
– an individual name tj for each tile type j < k,
– a concept T stating that some individual stands for a tile type.

Each G node g is linked via r-arcs to the individuals ai, āi that encode its bit address.
We also link g nodes to the individuals that stand for the tile types, but we do it differently
for the Gh nodes and the Gs nodes, as follows:

– If g is a Gh-node with tile type Di, then g has an r-arc to ti.
– If g is a Gs-node with tile type Di, then g has an r-arc to each tj with j 6= i.

Finally, we make both ai and āi instances of Ai, for each bit i, and we make all tile
types tj instances of T . Formally, this is all ensured using the conjunction C2

1 u C2
2 of

the following two concepts:

C2
1 = ∀rm+1.

( l

0≤i≤m

(
Bi → ∃r.{ai} u ¬Bi → ∃r.{āi} u

l

0≤i<k

Di →
(
(Gh → ∃r.{ti}) u (Gs → (

l

0≤j<k,j 6=i

∃r.tj))
)

C2
2 = ∀rm+2.

(
(

l

0≤i≤m
{ai, āi} → Ai

)
u
(
{t0, . . . tk−1} → T

))
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Fig. 1: The query qD,c

Now we are ready to define our ABox {CD,c(a)}, by taking C2
D,c = C2

1 u C2
2 as

defined above, C1
D,c as in Lemma 2, and CD,c = C1

D,c uC2
D,c. Every model of CD,c(a)

is a model of C1
D,c(a), and every forest model of C1

D,c(a) can be extended to a model of
CD,c(a) while preserving properness, hence from Lemma 2 we get:

Lemma 3. D and c have a solution iff there exists a proper forest model of CD,c(a).

It is only left to define a query qD,c that matches a forest model of CD,c(a) if and
only if it is not proper. We will rely on the following properties ensured by C1

D,c. First,
the connections to the individuals representing the bit address ensure the following:

(†) Let g, g′ be two G-nodes. Then g and g′ share an r-arc to a common individual from
ai, āi for each 0 ≤ i ≤ m iff they have the same bit address.

Since the links to the tile types for the Gh-nodes and for the Gs-nodes are inverted, we
also have:

(‡) Let gh be a Gh-node and gs be a Gs-node. Then there exists some tj such that both
gh and gs have an r-arc to tj iff gh and gs have different tile types.

Hence, to establish non-properness it suffices to find a Gh-node and a Gs-node that
share an r-arc to a common individual from ai, āi for each 0 ≤ i ≤ m (and hence share
the same address), but also share a link to a tj node (and hence have different tile type).
This is done with the following query:

qD,c =∃x1, x2, yA0 , , . . . , yAm , yT .Gh(x1), Gs(x2),

r(x1, y
A0), A0(yA0), . . . , r(x1, y

Am), Am(yAm), r(x1, y
T ), T (yT ),

r(x2, y
A0), A0(yA0), . . . , r(x2, y

Am), Am(yAm), r(x2, y
T ), T (yT ).

The query qD,c is illustrated in Figure 1. To see that qD,c has a match iff (?) fails, we
first note that x1 can only be matched to a Gh node and x2 to a Gs node. Each yAi

must be matched to an instance of Ai, which is one of ai and āi. Since x1 and x2 are
connected to all the yAi , then they need to have either ai or āi as common successor, for
each i, in every model where the query has a match. By (†), this is the case exactly when
they have the same bit address. The variable yT can match instances of T , which are
only the tile type individuals tj , and since x1 and x2 are both connected to yT , we have
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that x1 and x2 can only be matched to nodes sharing a link to a common tj . By (‡), and
since the matches of x1 and x2 are a Gh node and a Gs node, they must have a different
tile type. Hence the query has a match iff there are a Gh node gh and a Gs node gs that
have the same bit address and different tile types, that is, there is a pair violating the
condition of (?) and the model is not proper. Hence we get that there is a model I of
CD,c(a) where there is no match for qD,c, and iff there exist a proper model of CD,c(a)
iff there is a solution for D and c.

Lemma 4. CD,c(a) 6|= qD,c iff there is a solution for D and c.

From this, the hardness of the given tiling problem, and Theorem 1, we get:

Theorem 4. The following problems are hard for coNEXPTIME:

– deciding (∅, {C(a)}) |= q for q a CQ and C an ALCO concept, and
– deciding (T , Σ,A) |= q for q a CQ and T ,A in EL.

Unfortunately, we do not have matching upper bounds. We believe that both problems
are likely to be solvable in coNEXPTIME, but we are still working on a suitable algorithm.

5 Discussion and Outlook

In this paper we have given several bounds on the combined complexity of reasoning in
various DLs in the presence of closed predicates, for standard reasoning problems like KB
satisfiability, as well as for answering queries ranging from CQs to P2RPQs. Unlike the
data-complexity, that is coNP-complete in practically all cases (from DL-Litecore [7,19]
to expressive DLs likeALCHOQ andALCHOI [21]), the combined complexity offers
a complex landscape. We summarize some results in Table 1, emphasizing the cases in
which closed predicates have an interesting effect on the complexity.

Apart from establishing the precise complexity of query answering in DLs between
ALCO and ALCHOQ (without closed predicates), and in all DLs between EL and
ALCHOQ with closed predicates, other problems remain open. Notably, in this paper
we have not considered the DL-Lite family. An algorithm for CQ entailment in DL-LiteF
was developed in [7] to obtain a coNP upper bound in data complexity, but it only yields
very high bounds on the combined complexity that are likely not to be optimal. That
algorithm deals with the intricate interactions of inverse roles, functionality, and closed
predicates, that behave as nominals, and it may be possible to use the characterization of
countermodels given there as a starting point for a better combined complexity upper
bound. In the DL-Lite variants that do not support functionality, countermodels are likely
to have a simpler structure. However, even in these simpler languages, it is not apparent
whether interesting upper bounds can be obtained by simple adaptations of existing
techniques. In particular, it has been shown that singleton nominals do not increase
neither the data nor the combined complexity of DL-Lite [11], but the effect of the
combination of nominals and (restricted) disjunction that results from closed predicates
remains to be studied for the DL-Lite family.

Finally, we have seen that in general, the disjunctive information encoded by closed
predicates has a negative effect on the complexity of reasoning. In the light of this, it
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Without closed predicates With closed predicates

KB
consistency

CQ
entailment

KB
consistency

CQ
entailment

EL P
[1]

NP
[14,27]

EXPTIME

(Cor. 1.1)
≥ coNEXPTIME (Th. 4 )
≤ 2EXPTIME (Cor. 2)

ELHtrans P
[1]

≥ NP,≤PSPACE

[15]
EXPTIME

(Cor. 1.1)
2EXPTIME

(Cor. 2)

ELI EXPTIME

[2]
EXPTIME

[5]
EXPTIME

(Cor. 1.1)
2EXPTIME

(Cor. 2)

Horn-SHOI
Horn-SHOQ

EXPTIME

[16,22]
EXPTIME

[23]
EXPTIME

(Cor. 1.1)
2EXPTIME

(Cor. 2)

ELIF
Horn-SHIQ

EXPTIME

[16]
EXPTIME

[5]
NEXPTIME

(Cor. 1.2)
≥ N2EXPTIME [10]

decidable [28] / ≤ open∗

ELOIF ,
Horn-SHOIQ

EXPTIME

[22]
EXPTIME

[23]
NEXPTIME

(Cor. 1.2)
≥ N2EXPTIME [10]

decidable [28] / ≤ open∗

ALCO EXPTIME

[32,8]
≥ coNEXPTIME

(Th. 4)
EXPTIME

(Cor. 1.1)
≥ coNEXPTIME (Th. 4 )
≤ 2EXPTIME (Cor. 2)

SHOQ,SHOI EXPTIME

[32,12,8]
2EXPTIME

[4,9]
EXPTIME

(Cor. 1.1)
2EXPTIME

(Cor. 2)

SHOIQ NEXPTIME

[31]
≥ N2EXPTIME [10]

≤ open∗
NEXPTIME

(Cor. 1.2)
≥ N2EXPTIME [10]

≤ open∗

Table 1: Combined complexity of reasoning in description logics with/without closed
predicates. By ≥ we indicate lower bounds, by ≤ upper bounds, and the rest are all
completeness results. For the cells marked with ∗, decidability if only simple roles
occur in the query follows from [28], but no complexity upper bounds are known.

seems particularly interesting to study criteria that allow to identify instances of TBoxes
and queries for which the complexity does not increase. Major contributions in this
direction can be found in [19]. In particular, the authors propose safety criteria that
ensure specific TBoxes have the convexity property, guaranteeing data tractability of
queries. It seems that this criteria may also be useful for establishing the existence of
a universal model for query answering, and when a suitable representation of such a
model can be built in single exponential time, query answering is likely to be feasible in
single exponential time. This seems a promising direction for further investigation.
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1 Introduction

Reasoning in very expressive Description Logics (DLs) such as SROIQ is often hard
since non-determinism, e.g., from disjunctions or cardinality restrictions, requires a
case-by-case analysis and since a strict separation between intensional (TBox) and ex-
tensional (ABox) knowledge is not possible due to nominals. Current state-of-the-art
reasoners for SROIQ are typically based on (hyper-)tableau algorithms, where higher
level reasoning tasks such as classification are reduced to possibly many consistency
tests. For large ABoxes and more expressive DLs, reasoning then easily becomes infea-
sible since the ABox has to be considered in each test.

For less expressive DLs, optimisations have been proposed that allow for consid-
ering only parts of the ABox for checking whether an individual is an instance of a
specific concept [22,23]. It is, however, not clear how these optimisations can be ex-
tended to SROIQ. Furthermore, approaches based on partitioning and modularisation
require a syntactic pre-analysis of the concepts, roles, and individuals in a KB, which
can be quite costly for more expressive DLs and, due to the static analysis, only queries
with specific concepts are supported. Rewriting axioms such that ABox reasoning is
improved also carries the risk that this negatively influences other reasoning tasks for
which ABox reasoning is potentially not or less relevant.

Another possibility is the caching of the completion graph that is built by the tableau
algorithm during the initial consistency check. The re-use of (parts of) the cached com-
pletion graph in subsequent tests reduces the number of consequences that have to be
re-derived for the individuals of the ABox. Existing approaches based on this idea (e.g.,
[17]) are, however, not very suitable for handling non-determinism. Since caching and
re-using non-deterministically derived facts can easily cause unsound consequences,
the non-deterministically derived facts are usually simply discarded and re-derived if
necessary. We address this and present a technique that allows for identifying non-
deterministic facts that can safely be re-used. The approach is based on a set of condi-
tions that can be checked locally and, thus, allows for efficiently identifying individuals
step-by-step for which non-deterministic consequences have to be re-considered in sub-
sequent tests. The presented technique can directly be integrated into existing tableau-
based reasoning systems without significant adaptations and reduces reasoning effort
for all tasks for which consequences from the ABox are potentially relevant. Moreover,

∗ The author acknowledges the support of the doctoral scholarship under the Postgraduate Schol-
arships Act of the Land of Baden-Wuerttemberg (LGFG).
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it can directly be used for the DL SROIQ, does not produce a significant overhead, and
can easily be extended, e.g., to improve incremental ABox reasoning. Note that com-
pletion graph caching is complementary to many other optimisations that try to reduce
the number of subsequent tests for higher level reasoning tasks, e.g., summarisation [2],
abstraction and refinement [5], bulk processing and binary retrieval [6], (pseudo) model
merging [7], extraction of known/possible instances from model abstractions [15].

The paper is organised as follows: We next introduce some preliminaries and then
present the basic completion graph caching technique in Section 3. In Section 4, we
present several extensions and applications to support nominals in ordinary satisfiability
caching, to perform incremental reasoning for changing ABoxes, and to handle very
large ABoxes by storing data in a representative way. Finally, we present an evaluation
of the presented techniques in Section 5 and conclude in Section 6. Further details and
an extended evaluation are available in a technical report [19].

2 Preliminaries

For brevity, we do not introduce DLs (see, e.g., [1,10]). We use (possibly with sub-
scripts) C,D for (possibly complex) concepts, A, B for atomic concepts, and r, s for
roles. We assume that a SROIQ knowledge base K is expressed as the union of a
TBox T consisting of GCIs of the form C v D, a role hierarchy R, and an ABox A,
such that the effects of complex roles are implicitly encoded (e.g., based on automata
[12] or regular expressions [16]). We write nnf(C) to denote the negation normal form
of C. For r a role, we set inv(r) := r− and inv(r−) := r.

Model construction calculi such as tableau [10,13] decide the consistency of a KB
K by trying to construct an abstraction of a model forK , a so-called completion graph.
For the purpose of this paper, we use a tuple of the form (V, E,L, ,̇,M) for a completion
graph G, where each node x ∈ V (edge 〈x, y〉 ∈ E) represents one or more (pairs of)
individuals. Each node x (edge 〈x, y〉) is labelled with a set of concepts (roles), L(x)
(L(〈x, y〉)), which the (pairs of) individuals represented by x (〈x, y〉) are instances of.
The relation ,̇ records inequalities, which must hold between nodes, e.g., due to at-
least cardinality restrictions, and the mapping M tracks merging activities, e.g., due
to at-most cardinality restrictions or nominals. The algorithm works by decomposing
concepts in the completion graph with a set of expansion rules. For example, if C1 t
C2 ∈ L(v) for some node v, but neither C1 ∈ L(v) nor C2 ∈ L(v), then the rule for
handling disjunctions non-deterministically adds one of the disjuncts toL(v). Similarly,
if ∃r.C ∈ L(v), but v does not have an r-successor with C in its label, then the algorithm
expands the completion graph by adding the required successor node. If a node v is
merged into a node v′,M is extended by v 7→ v′. We use mergedToM(v) to return the
node into which a node v has been merged, i.e., mergedToM(v) = mergedToM(w) for
v 7→ w ∈ M and mergedToM(v) = v otherwise.

Unrestricted application of rules for existential or at-least cardinality restrictions
can lead to the introduction of infinitely many new nodes. To guarantee termination,
a cycle detection technique called (pairwise) blocking [11] restricts the application of
these rules. The rules are repeatedly applied until either the completion graph is fully
expanded (no more rules are applicable), in which case the graph can be used to con-
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struct a model that witnesses the consistency of K , or an obvious contradiction (called
a clash) is discovered (e.g., both C and ¬C in a node label), proving that the completion
graph does not correspond to a model. A knowledge base K is consistent if the rules
can be applied such that they build a fully expanded and clash-free completion graph.

3 Completion Graph Caching and Reusing

In the following, we use superscripts to distinguish different versions of completion
graphs. We denote with Gd = (Vd, Ed,Ld, ,̇d,Md) the last completion graph of the
initial consistency test that is obtained with only deterministic rule applications and with
Gn = (Vn, En,Ln, ,̇n,Mn) the fully expanded (and clash-free) completion graph that
possibly also contains non-deterministic choices. Obviously, instead of starting with
the initial completion graph G0 to which no rule has (yet) been applied, we can use
Gd to initialise a completion graph G for subsequent consistency tests which are, for
example, required to prove or refute assumptions of higher level reasoning tasks. To be
more precise, we extend Gd to G by the new individuals or by additional assertions to
original individuals as required for a subsequent test and then we can apply the tableau
expansion rules to G. Note, in order to be able to distinguish the nodes/nominals in the
different completion graphs, we assume that all nodes/nominals that are newly created
for G do not occur in existing completion graphs, such as Gd or Gn.

This re-use of Gd is an obvious and straightforward optimisation and it is already
used by many state-of-the-art reasoning systems to successfully reduce the work that
has to be repeated in subsequent consistency tests [17]. Especially if the knowledge
base is deterministic, the tableau expansion rules only have to be applied for the newly
added assertions in G. In principle, also Gn can be re-used instead of Gd [17], but
this causes problems if non-deterministically derived facts of Gn are involved in new
clashes. In particular, it is required to do backtracking in such cases, i.e., we have to
jump back to the last version of the initial completion graph that does not contain the
consequences of the last non-deterministic decision that is involved in the clash. Then,
we have to continue the processing by choosing another alternative. Obviously, if we
have to jump back to a very early version of the completion graph, then potentially
many non-deterministic decisions must be re-processed. Moreover, after jumping back,
we also have to add and re-process the newly added individuals and/or assertions.

To improve the handling of non-deterministic knowledge bases, our approach uses
criteria to check whether nodes in G (or the nodes in a completion graph G′ obtained
from G by further rule applications) are “cached”, i.e., there exist corresponding nodes
in the cached completion graph of the initial consistency test and, therefore, it is not
required to process them again. These caching criteria check whether the expansion of
nodes is possible as in the cached completion graph Gn without influencing modified
nodes in G′, thus, only the processing of new and modified nodes is required.

Definition 1 (Caching Criteria). Let Gd = (Vd, Ed,Ld, ,̇d,Md) be a completion graph
with only deterministically derived consequences and Gn = (Vn, En,Ln, ,̇n,Mn) a fully
expanded and clash-free expansion of Gd. Moreover, let G be an extension of Gd and
G′ = (V ′, E′,L′, ,̇′,M′) a completion graph that is obtained from G by applying tab-
leau expansion rules.

264



A node v′ ∈ V ′ is cached in G′ if caching of the node is not invalid, where the
caching is invalid (we then also refer to the node as non-cached) if

C1 v′ < Vd or mergedToM
n
(v′) < Vn;

C2 L′(v′) * Ln(mergedToM
n
(v′));

C3 ∀r.C ∈ Ln(mergedToM
n
(v′)) and there is an r-neighbour node w′ of v′ such that w′

is not cached and C < L(w′);
C4 6 m r.C ∈ Ln(mergedToM

n
(v′)) and the number of the non-cached r-neighbour

nodes of v′ without nnf(¬C) in their labels together with the r-neighbours in Gn of
mergedToM

n
(v′) with C in their labels is greater than m;

C5 ∃r.C ∈ Ln(mergedToM
n
(v′)) and every r-neighbour node w′ of v′ with C < L(w′)

and C ∈ Ln(mergedToM
n
(w′)) is not cached;

C6 > m r.C ∈ Ln(mergedToM
n
(v′)) and the number of r-neighbour nodes wn

1, . . . ,w
n
k

of mergedToM
n
(v′) with C ∈ Ln(wn

1), . . . ,C ∈ Ln(wn
k), for which there is either no

node w′i ∈ V ′ with mergedToM
n
(w′i) = wn

i or w′i with mergedToM
n
(w′i) = wn

i and
C < L(w′i) is not cached for 1 ≤ i ≤ k, is less than m;

C7 mergedToM
n
(v′) is a nominal node with 6 m r.C in its label and there exists a

blockable and non-cached inv(r)-predecessor node w′ of v′ with nnf(¬C) < L(w′);
C8 mergedToM

n
(w′) is an r-neighbour node of mergedToM

n
(v′) such that w′ is not

cached and w′ is not an r-neighbour node of v′;
C9 mergedToM

n
(v′) has a successor node un such that un or a descendant of un has

a successor node mergedToM
n
(w′) for which w′ ∈ V ′, w′ is not cached, and there

exists no node u′ ∈ V ′ with mergedToM
n
(u′) = un;

C10 mergedToM
n
(v′) is blocked by mergedToM

n
(w′) and w′ ∈ V ′ is non-cached;

C11 there is a non-cached node w′ ∈ V ′ and mergedToM
n
(v′) = mergedToM

n
(w′); or

C12 there is a node w′ ∈ V ′ such that v′,̇′w′ and mergedToM
n
(v′) = mergedToM

n
(w′).

Conditions C1 and C2 ensure that a node also exists in the cached completion graph
Gn and that its label is a subset of the corresponding label in Gn such that the same ex-
pansion is possible. C3 checks whether the expansion of a node would add a concept
of the form ∀r.C such that it could propagate C to a non-cached neighbour node. Anal-
ogously, C4 checks for potentially violated at-most cardinality restrictions by counting
the new or modified neighbours in G′ and the neighbours in Gn. C5 and C6 verify that
existential and at-least cardinality restrictions are still satisfied if the cached nodes are
expanded identically. C7 checks whether the NN-rule of the tableau algorithm would
be applicable after the expansion, i.e., we check whether all potentially relevant neigh-
bours in G′ are nominal nodes. C8 checks whether the expansion would add additional
roles to edge labels between cached and non-cached nodes, which could be problem-
atic for disjoint roles. For C9: If a node w′, for which caching is invalid, is connected to
nodes in Gn that are only available in Gn (e.g., non-deterministically created ones), then
we have to identify caching as invalid for those ancestors of these nodes that are also in
G′ such that these connections to w′ can be re-built. Otherwise, we would potentially
miss new consequences that could be propagated from w′. C10 is used to reactivate the
processing of nodes for which the caching of the blocker node is invalid. C11 and C12
ensure that merging is possible as in Gn: C11 checks whether the node into which the
node is merged is also cached and C12 ensures that there is no additional entry for ,̇′

that would cause a clash if the nodes were merged as in Gn.
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va vb vc

v1

r s
r r

L(va) =
{
>, {a},∃r.{b}, B t A1, A1

}
L(vb) =

{>, {b}, B t ∃r.∃r.({c} u A2), B t ∀s−.A3,

∃r.∃r.({c} u A2),∀s−.A3

}

L(v1) =
{
>,∃r.({c} u A2)

}
L(vc) =

{ >, {c},∃s.{b},
{c} u A2,A2,A3

}

Fig. 1. Constructed and cached completion graph for Example 1 with deterministically (coloured
black) and non-deterministically (coloured grey) derived facts

Since only those nodes can be cached, which are available in the “deterministic”
completion graph Gd, it is important to maximise the deterministic processing of the
completion graph. This can, for example, be achieved by processing the completion
graph with deterministic rules only until the generation of new nodes is subset blocked.
Subset blocking is not sufficient for more expressive DLs, but it prevents the expansion
of too many successor nodes in case non-deterministic rule applications merge and
prune some parts of the completion graph. Absorption techniques (e.g., [14,18,21]) are
also essential since they reduce the overall non-determinism in an ontology.

Example 1. Assume that the tableau algorithm builds a completion graph as depicted
in Figure 1 for testing the consistency of a knowledge base K containing the axioms

{a} v B t A1 {b} v B t ∃r.∃r.({c} u A2) {c} v ∃s.{b}
{a} v ∃r.{b} {b} v B t ∀s−.A3.

The deterministic version of the completion graph, Gd, contains the elements coloured
in black in Figure 1 and the non-deterministic version, Gn, additionally contains the
elements coloured in grey. If we want to determine which individuals are instances of
the concept ∃r.>, then we have to check, for each individual i in K , the consistency
of K extended by nnf(¬∃r.>)(i), which is equivalent to adding the axiom {i} v ∀r.⊥.
The individual a is obviously an instance of this concept, which can also be observed
by the fact that expanding the extended completion graph adds ∀r.⊥ to Ld(va), which
immediately results in a clash. In contrast, if we extend Ld(vb) by ∀r.⊥, we have to
process the disjunctions Bt∃r.∃r.({c}uA2) and Bt∀s−.A3. The disjunct ∃r.∃r.({c}uA2)
would result in a clash and, therefore, we choose B, which also satisfies the second
disjunction. Note that va and vc do not have to be processed since va is cached, i.e.,
its expansion is possible in the same way as in Gn, and vc does not have any concepts
for which processing is required. Last but not least, we have to test whether Ld(vc)
extended by ∀r.⊥ is satisfiable. Now, the caching of vc is obviously invalid (due to C2)
and, therefore, also the caching of vb is invalid: C3 can be applied for ∀s−.A3 and C9
for the successor node v1 of vb in Gn which also has the non-cached successor node
vc. Since va is still cached, we only have to process vb again, which does, however, not
result in a clash. Hence, only a is an instance of ∃r.>.

Most conditions can be checked locally: For a non-cached node, we simply follow
its edges w.r.t. G′ and Gn to (potentially indirect) neighbour nodes that are also available
in Gd. Exceptions are Conditions C10, C11, and C12, for which we can, however, sim-
ply trace back established blocking relations orMn to find nodes for which the caching
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criteria have to be checked. The implementation can also be simplified by keeping the
caching of a node invalid once it has been identified as invalid (even if the caching be-
comes possible again after the node has been expanded identically). Instead of directly
checking the caching criteria, the relevant nodes can also be stored in a set/queue to
check the conditions when it is (more) convenient. Clearly, it depends on the ontology,
whether it is more beneficial to test the caching criteria earlier or later. If the criteria
are tested early, then we could unnecessarily re-process some parts of the cached com-
pletion graph since the application of (non-deterministic) expansion rules can satisfy
some conditions. A later testing could cause a repeated re-processing of the same parts
if a lot of backtracking is required and consequences of re-activated nodes are involved
in clashes. Alternatively, one could learn for the entire ontology or for single nodes,
whether the criteria should be checked earlier or later. Unfortunately, this cannot easily
be realised for all reasoning systems since it requires that dependencies between de-
rived facts are precisely tracked in order to identify nodes that are often involved in the
creation of clashes and for which the criteria should be checked early.

It is also possible to non-deterministically re-use derived consequences from Gn,
i.e., if the caching is invalid for a node v and mergedToM

n
(v) is in Gn, then we can non-

deterministically add the missing concepts fromLn(mergedToM
n
(v)) toL(v). Since the

resulting completion graph is very similar to the cached one, caching can often be es-
tablished quickly for many nodes. Of course, if some of the non-deterministically added
concepts are involved in clashes, then we potentially have to backtrack and process the
alternative where this node is ordinarily processed. Another nice side effect of storing
Gn is that we can use the non-deterministic decisions from Gn as an orientation in sub-
sequent consistency tests. By prioritising the processing of the same non-deterministic
alternatives as for Gn, we can potentially find a solution that is very similar to Gn with-
out exploring much of the search space.

4 Caching Extensions and Applications

In this section, we sketch additional applications of the caching technique, which allow
for supporting nominals for the satisfiability caching of node labels and for reducing
the incremental reasoning effort for changing ABoxes. Furthermore, we describe an
extension that allows for caching (parts of) the completion graph in a representative
way, whereby an explicit representation of many nodes in the completion graph can be
avoided and, therefore, the memory consumption can be reduced.

Satisfiability Caching with Nominals: Caching the satisfiability status of labels of
(blockable) nodes in completion graphs is an important optimisation technique for
tableau-based reasoning systems [3,4]. If one obtains a fully expanded and clash-free
completion graph, then the contained node labels can be cached and, if identical labels
occur in other completion graphs, then their expansion (i.e., the creation of required
successor nodes) is not necessary since their satisfiability has already been proven. Of
course, for more expressive DLs that include, for example, inverse roles and cardinality
restrictions, we have to consider pairs of node labels as well as the edge labels between
these nodes. Unfortunately, this kind of satisfiability caching does not work for DLs
with nominals. In particular, connections to nominal nodes can be used to propagate

267



new concepts from one blockable node in the completion graph to any other blockable
node, whereas for DLs without nominals, the consequences can only be propagated
from or to successor nodes. Hence, the caching of node labels is not easily possible and
many reasoners deactivate this kind of caching for knowledge bases with nominals.

However, in combination with completion graph caching, we re-gain the possibility
to cache some labels of (blockable) nodes for knowledge bases with nominals. Roughly
speaking, we first identify which nodes “depend on” which nominals, i.e., which nom-
inal nodes are existentially quantified as a successor/descendant for a node. The labels
of such nodes can then be cached together with the dependent nominals, i.e., with those
nominals on which the nodes depend, if all nodes for the dependent nominals are still
cached w.r.t. the initial completion graph. These cache entries can be re-used for nodes
with identical labels in subsequent completion graphs as long as the completion graph
caching of the nodes for the dependent nominals is not invalid. Of course, the blocked
processing of nodes due to matching cache entries has to be reactivated if the comple-
tion graph caching of a node for a dependent nominal becomes invalid. Moreover, we
cannot cache the labels of blockable nodes that depend on newly generated nominals
since possible interactions over these nodes are not detected.

Incremental Reasoning for Changing ABoxes: Many reasoning systems re-start reason-
ing from scratch if a few axioms in the knowledge base have been changed. However,
it is not very likely that a few changes in the ABox of a knowledge base have a huge
impact on reasoning. In particular, many ABox assertions only propagate consequences
to the local neighbourhood of the modified individuals and, therefore, the results of rea-
soning tasks such as classification are often not affected, even if nominals are used in
the knowledge base. With the presented completion graph caching, we can easily track
which nodes from the cached completion graph are modified in subsequent tests and
for which caching is invalidated to perform higher level reasoning tasks. Hence, if the
changed ABox assertions have only a known, locally limited influence, then the reason-
ing effort for many (higher level) reasoning tasks can be reduced by checking whether
a tracked node is affected by the changes. To detect the influences of the changes, an
incremental consistency check can be performed where all modified individuals and
their neighbours are deterministically re-constructed step-by-step until “compatibility”
with the previous deterministic completion graph is achieved, i.e., the same determi-
nistic consequences are derived for the nodes as in the previous completion graph. The
non-deterministic version of the new completion graph can then be obtained by con-
tinuing the (non-deterministic) processing of the re-constructed nodes and by using
the presented completion graph caching for all remaining nodes. Hence, we can iden-
tify the influenced nodes by comparing the newly obtained completion graph with the
previous one. Compared to other incremental consistency checking approaches (e.g.,
[9]), the re-construction of changed parts supported by the completion graph caching
enables a better handling of non-determinism and does not require a memory inten-
sive tracking of which consequences are caused by which ABox assertions. The idea
of tracking those parts of a completion graph that are potentially relevant/used for the
calculation of higher level reasoning tasks and comparing them with the changed parts
in new completion graphs has already been proposed for answering conjunctive queries
under incremental ABox updates [8], but the completion graph caching simplifies the
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Table 1. Ontology metrics for selected benchmark ontologies (A stands for Axioms, C for
Classes, P for Properties, I for Individuals, CA for Class Assertions, OPA for Object Property
Assertions, and DPA for Data Property Assertions)

Ontology Expressivity #A #C #P #I #CA #OPA #DPA

OGSF SROIQ(D) 1, 235 386 179 57 45 58 20
Wine SHOIN(D) 1, 546 214 31 367 409 492 2
DOLCE SHOIN 1, 667 209 317 42 101 36 0
OBI SROIQ(D) 28, 770 3, 549 152 161 273 19 1
USDA-5 ALCIF (D) 1, 401 30 147 1, 214 1, 214 12 0
COSMO SHOIN(D) 29, 655 7, 790 941 7, 817 8, 675 3, 240 665
DPC1 ALCIF (D) 55, 020 1, 920 94 28, 023 15, 445 39, 453 0
UOBM-1 SHOIN(D) 260, 728 69 44 25, 453 46, 403 143, 549 70, 628

realisation of this technique and significantly reduces the overhead for identifying those
parts of higher level reasoning tasks that have to be re-computed. Moreover, with the
completion graph caching, also very expressive DLs such as SROIQ can be supported.

Representative Caching: In order to reduce the memory consumption for caching the
completion graph, the technique can be adapted such that all relevant data is stored in a
representative way, which allows for building “local” completion graphs for small sub-
sets of the entire ABox until the existence of a complete completion graph considering
all individuals can be guaranteed. To be more precise, if a fully expanded and clash-free
completion graph is constructed for a subset of the ABox (e.g., a subset of all individu-
als and their assertions), then we extract and generalise information from the processed
individuals and store them in a representative cache. If we then try to build a completion
graph for another subset of the ABox that has some overlapping with a previously han-
dled subset (e.g., role assertions for which edges to previous handled individuals have
to be created), then we load the available data from the cache and continue the process-
ing of the overlapping part until it is “compatible”, i.e., the expansion of the remaining
individuals in the cache can be guaranteed as in the previously constructed completion
graphs. Of course, this only works well for knowledge bases for which there is not too
much non-deterministic interaction between the separately handled ABox parts. More-
over, compared to the ordinary completion graph caching, we are clearly trading a lower
memory consumption against an increased runtime since more work potentially has to
be repeated to establish compatibility.

5 Implementation and Evaluation

The completion graph caching introduced in Section 3 is integrated in our reasoning
system Konclude [20] and we selected several well-known benchmark ontologies (cf.
Table 1) for the evaluation of the presented techniques. The evaluation was carried out
on a Dell PowerEdge R420 server running with two Intel Xeon E5-2440 hexa core
processors at 2.4 GHz with Hyper-Threading and 144 GB RAM under a 64bit Ubuntu
12.04.2 LTS. In order to make the evaluation independent of the number of CPU cores,
we used only one worker thread for Konclude. We ignored the time spent for parsing
ontologies and writing results and we used a time limit of 5 minutes, i.e., 300 seconds.
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Table 2. Reasoning times for different completion graph caching techniques (in seconds)

Ontology
Prep.+ Classification Realisation
Cons. No-C Det-C ET-C LT-C No-C Det-C ET-C LT-C

OGSF 0.0 3.8 1.0 0.2 0.2 0.1 0.0 0.0 0.0
Wine 0.0 49.5 29.6 0.8 0.8 49.1 25.8 0.2 0.1
OBI 0.2 65.9 19.2 1.5 1.5 2.2 2.0 0.0 0.1
DOLCE 0.0 6.7 1.1 0.2 0.2 ≥ 300.0 5.2 0.1 0.1
USDA-5 4.1 0.8 1.0 1.0 0.8 ≥ 300.0 38.7 20.5 20.2
COSMO 0.6 ≥ 300.0 ≥ 300.0 42.2 11.2 n/a n/a 11.2 19.9
DPC1 6.5 0.1 0.2 0.1 0.1 ≥ 300.0 53.3 19.4 20.5
UOBM-1 6.7 240.6 4.8 1.3 1.1 ≥ 300.0 ≥ 300.0 ≥ 300.0 ≥ 300.0

Table 2 shows the reasoning times for consistency checking (including preprocess-
ing), classification, and realisation (in seconds) with different completion graph caching
techniques integrated in Konclude. Please note that the class hierarchy is required to re-
alise an ontology, i.e., classification is a prerequisite of realisation, and, analogously,
consistency checking as well as preprocessing are prerequisites of classification. Thus,
realisation cannot be performed if the time limit is already reached for classification.

If no completion graph caching is activated (No-C), then the realisation and classi-
fication can often require a large amount of time since Konclude has to re-process the
entire ABox for all instance and subsumption tests (if the ontology uses nominals). For
several ontologies, such as Wine and DOLCE, the caching and re-use of the determi-
nistic completion graph from the consistency check (Det-C) already leads to significant
improvements. Nevertheless, with the two variants ET-C and LT-C of the presented
completion graph caching technique, where ET-C uses an “early testing” and LT-C a
“late testing” of the defined caching criteria, Konclude can further reduce the reason-
ing times. In particular, with both completion graph caching techniques, all evaluated
ontologies can easily be classified and also the realisation can be realised efficiently
for all but UOBM-1. Table 2 also reveals that only for COMSO there is a remarkable
difference between ET-C and LT-C, where this difference can be explained by the fact
that there is often more interaction with the individuals from the ABox for instance
tests than for satisfiability and subsumption tests and, therefore, ET-C can be better for
realisation due to the potentially lower effort in combination with backtracking.

The effects of the different completion graph caching techniques can also be ob-
served for the OWL DL Realisation dataset of the ORE 2014 competition,3 which
contains several ontologies with non-deterministic language features and non-trivial
ABoxes. By excluding 1, 331 s spent for preprocessing and consistency checking, the
accumulated classification times over the contained 200 ontologies are 3, 996 s for the
version No-C, 2, 503 s for Det-C, 1, 801 s for ET-C, and 1, 606 s for LT-C. Clearly,
the dataset also contains many ontologies for which completion graph caching does not
seem to have a significant impact, for example, if the ontologies can be processed de-
terministically or the ontologies are too difficult to even perform consistency checking
(which is the case for 3 ontologies). Nevertheless, our completion graph caching im-
proves the classification time with similar performances for LT-C and ET-C. By using

3 http://www.easychair.org/smart-program/VSL2014/ORE-index.html
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Table 3. Incremental reasoning effort for different reasoning tasks on changed ABoxes

Ontology |∆|·100
|K|

Consistency Classification Realisation
Time [s] changed Time [s] reclassified Time [s] recomp. indi-
K K∓∆ nodes [%] K K∓∆ classes [%] K K∓∆ viduals [%]

USDA-5 1 3.1 0.0 0.0 0.9 − − 18.2 0.0 1.0
USDA-5 2 3.2 0.0 0.0 0.8 − − 14.9 0.0 2.0
USDA-5 4 3.2 0.1 0.0 0.8 − − 17.0 0.0 3.9
COSMO 1 0.4 0.0 3.1 24.4 17.4 73.0 0.4 0.2 3.1
COSMO 2 0.4 0.1 5.5 25.9 18.0 73.0 0.5 0.3 5.6
COSMO 4 0.4 0.1 9.9 25.2 18.6 72.8 0.6 0.4 10.0
DPC1 1 5.0 0.6 1.5 0.1 − − 29.1 14.0 10.0
DPC1 2 4.9 1.1 2.6 0.1 − − 27.7 19.9 16.9
DPC1 4 5.0 2.0 4.4 0.1 − − 29.3 26.7 26.5
UOBM-1 1 3.6 2.3 10.0 1.3 0.8 5.9 ≥ 300.0 n/a
UOBM-1 2 3.7 2.9 14.0 1.4 1.1 7.9 ≥ 300.0 n/a
UOBM-1 4 3.7 3.5 18.2 1.4 1.7 11.3 ≥ 300.0 n/a

the satisfiability caching extension for nominals, as presented in Section 4, the accu-
mulated classification time can be further improved to 725 s. Similar results are also
achieved for the realisation of these ontologies. By excluding the times for all prereq-
uisites, the accumulated realisation times over all 200 ontologies are 1, 740 s for No-C,
1, 498 s for Det-C, 1, 061 s for ET-C, 1, 256 s for LT-C, and 923 s for the version where
the satisfiability caching extension for nominals is additionally activated.

Incremental Reasoning Experiments: To test the incremental reasoning based on the
presented completion graph caching, we used those ontologies of Table 1 that have a
large amount of ABox assertions and for which Konclude still has a clearly measurable
reasoning time, i.e., USDA-5, COSMO, DPC1, and UOBM-1. We simulated a changed
ABox for these ontologies by randomly removing a certain amount of assertions from
the ontology (denoted by K) and by re-adding the removed assertions and removing
new assertions (denoted by K∓∆). For each ontology, we evaluated 10 random modifi-
cations that have 1, 2, and 4 % of the size of the ontology’s ABox. For simplicity, all
modifications have the same amount of removed and added assertions. The obtained
results for the presented incremental reasoning approach are shown in Table 3.

For consistency, the first two columns show the (incremental) consistency check-
ing time (in seconds) for K and K∓∆, respectively, and the third column shows the
percentage of the nodes in the completion graph for K that has been changed for the
application of the modification. It can be observed that, especially for smaller modifica-
tions, the incremental consistency check often requires much less time than the initial
consistency check. In particular, the individuals of USDA-5 are sparsely connected via
object properties and, therefore, often only the modified individuals have to be re-built.
For larger modifications, the incremental consistency checking time increases signifi-
cantly for some ontologies, e.g., UOBM-1, and does almost catch up to the consistency
checking time for the initial ontology. On the one hand, our incremental consistency
checking approach clearly has some additional overhead due to the fact that nodes are
re-built step by step until an expansion as for the initial completion graph can be guaran-
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teed, but, on the other hand, our prototypical implementation has still a lot of room for
improvements. For example, we currently also re-build nodes for individuals for which
only new assertions have been added although it would be sufficient to simply extend
the nodes of the previous deterministic completion graph by the new consequences.

For classification, the first two columns show analogously the (incremental) classifi-
cation time forK andK∓∆, respectively, and the third column represents the percentage
of the classes for which satisfiability and subsumption tests were re-calculated. At the
moment, the used/modified nodes from the cached completion graph are tracked to-
gether for all satisfiability and subsumption tests and we mark those classes for which
nodes have been tracked. It can be observed that for the ontologies with nominals
(e.g., UOBM-1), only a few classes have to be re-classified and, in several cases, re-
classification is not required at all.

Also for realisation, the first two columns show the (incremental) realisation time
for K and K∓∆, respectively, and the last column shows the percentage of the number
of individuals that are potentially affected by the changes and for which the (possible)
types have to be re-computed. For this, we separately track, for each individual, the
nodes of the cached completion graph that are used/modified by the instance tests.

Representative Caching Experiments: We integrated a first prototypical version of the
presented representative caching in our reasoning system Konclude, which is, however,
not yet compatible with all other integrated features and optimisations. As of now, the
integrated representative caching is primarily used for “simple individuals” that do not
have too much interaction with other individuals in the ABox. In cases where represen-
tative caching could easily cause performance deficits (e.g., through the intensive use of
nominals), Konclude caches the relevant parts of such completion graphs by using the
ordinary technique. Moreover, data property assertions are, at the moment, internally
transformed into class assertions and, as a consequence, nodes for individuals with
data property assertions can currently not be representatively cached. However, first
experiments are very encouraging. For example, Homo_sapiens is a very large SROIQ
ontology from the Oxford ontology library with 244, 232 classes, 255 object proper-
ties, and 289, 236 individuals for which Konclude requires 10, 211 MB in total to check
the consistency by using representative caching, whereas 19, 721 MB are required by
Konclude for consistency checking with a fully expanded completion graph. Note that a
large amount (9, 875 MB) of the required memory is used for the (unoptimised) internal
representation, the data from the preprocessing, and the parsed OWL objects which are
kept in memory to facilitate the handling of added/removed axioms.

6 Conclusions

We have presented a refinement of the completion graph caching technique that im-
proves ABox reasoning also for very expressive Description Logics through a more
sophisticated handling of non-deterministic consequences. In addition, we sketched ex-
tensions and applications of the caching technique, which allow for supporting nomi-
nals for the satisfiability caching of node labels, for reducing the incremental reasoning
effort for changing ABoxes, and for handling very large ABoxes by storing partially
processed parts of the completion graph in a representative way.
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Abstract. We consider the description logic CFDI∀−nc , a feature-based
dialect that allows capturing value restrictions, a variety of identification
constraints, and unqualified feature inverses. We introduce PTIME al-
gorithms for various reasoning tasks in this logic, such as knowledge
base consistency and logical implication and discuss the necessity of
restrictions over CFDI∀nc to maintain tractability. We then show how
CFDI∀−nc ’s modeling capabilities make it suitable for capturing relational
and object-relational data sources (including of n-ary relations) in a nat-
ural way. In addition, we show that CFDI∀−nc can simulate reasoning in
DL-LiteFcore. We also discuss an approach to capturing a limited variant
of role hierarchies within CFDI∀−nc .

1 Introduction

We have been developing the CFD family of feature-based description logic (DL)
dialects that are designed primarily to support efficient PTIME reasoning ser-
vices about object relational data sources. The dialects are notable for their
ability to support terminological cycles with universal restrictions over func-
tional roles together with a rich variety of functional constraints such as keys
and functional dependencies over functional role paths.

The dialect CFD was the first member of this family, initially proposed in
[8]. In [16], the authors show that reasoning about logical consequence remains
in PTIME when concept conjunction is allowed on left-hand-sides of inclusion
dependencies, but that this is no longer the case should a variety of other concept
constructors also be allowed. In particular, it was shown that adding inverse
features in posed questions alone made reasoning about logical consequence in
CFD intractable.

The dialect CFDnc was subsequently introduced in which negation on right-
hand-sides of inclusion dependencies replaced the ability to have conjunction on
left-hand-sides [17]. This allowed the capture of so-called disjointness constraints,
and also made it possible to support additional reasoning services in PTIME,
notably conjunctive query answering. These results generalize to CFD∀nc knowl-
edge bases in which universal restrictions are also permitted on left-hand-sides
of inclusion dependencies [18].

An earlier version of this paper has appeared as [19].
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In this paper, we consider the dialect CFDI∀nc which extends CFD∀nc with
an ability to have unqualified inverse features in inclusion dependencies, and
also introduce a less general dialect CFDI∀−nc in which a given CFDI∀nc TBox
is presumed to satisfy additional syntactic restrictions. The restrictions relate
to combinations of value restrictions and inverses and to combinations of value
restrictions and path functional dependencies. A Summary of our main results
concerning reasoning in CFDI∀−nc , in particular PTIME algorithms for both
logical consequence and for knowledge base consistency for CFDI∀−nc knowledge
bases.

For the remainder the paper, we give an overview of a number of applica-
tions of CFDI∀−nc , starting with how it can be used to address issues relating to
relational data sources over database schema that can include arbitrary combi-
nations of functional dependencies and unary inclusion dependencies. We also
show how the task of evaluating instance queries over RDF data sources based
on a DL-LiteFcore entailment regime can be reduced to reasoning about CFDI∀−nc
knowledge base consistency. Note that the DL dialect DL-LiteFcore is of particular
relevance to the W3C OWL 2 QL profile. A discussion of related work and future
directions then follow in Section 6.

2 The Description Logics CFDI∀nc and CFDI∀−nc
All members of the CFD family of DLs are fragments of FOL with underly-
ing signatures based on disjoint sets of unary predicate symbols called primitive
concepts, constant symbols called individuals and unary function symbols called
features. Note that incorporating features deviates from normal practice to use
binary predicate symbols called roles. However, as we shall see, features make
it easier to incorporate concept constructors suited to the capture of relational
data sources that include various dependencies by a straightforward reification
of n-ary predicates. Thus, e.g., a role R can be reified as a primitive concept
RC and two features domR and ranR in CFDI∀nc or CFDI∀−nc , and an inclu-
sion dependency A v ∀R.B can then be captured as an inclusion dependency
∀domR.A v ∀ranR.B.

Definition 1 (CFDI∀nc Knowledge Bases) Let F, PC and IN be disjoint sets
of (names of) features, primitive concepts and individuals, respectively. A path
function Pf is a word in F∗ with the usual convention that the empty word
is denoted by id and concatenation by “.”. Concept descriptions C and D are
defined by the grammars on the left-hand-side of Figure 1 in which occurrences of
“A” denote primitive concepts. A concept “C : Pf1, . . . ,Pfk → Pf” produced by
the last production of the grammar for D is called a path functional dependency
(PFD).

Metadata and data in a CFDI∀nc knowledge base K are respectively defined by
a TBox T and an ABox A. Assume A ∈ PC, C and D are arbitrary concepts
given by the grammars in Figure 1, {Pf1,Pf2} ⊆ F∗ and that {a, b} ⊆ IN. Then
T consists of a finite set of inclusion dependencies of the form C v D, and A
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Syntax Semantics: “(·)I”
C ::= A AI ⊆ 4
| ∀Pf .C {x | PfI(x) ∈ CI}
| ∃f−1 {x | ∃y ∈ 4 : fI(y) = x}

D ::= C CI ⊆ 4
| ¬C 4 \ CI

| ∀Pf .D {x | PfI(x) ∈ DI}
| ∃f−1 {x | ∃y ∈ 4 : fI(y) = x}
| C : Pf1, . . . ,Pfk → Pf {x | ∀y ∈ CI : (

∧k

i=1
PfIi (x) = PfIi (y))⇒ PfI(x) = PfI(y)}

Fig. 1. CFDI∀nc Concepts.

consists of a finite set of facts in the form of concept assertions A(a), and path
function assertions Pf1(a) = Pf2(b). Any PFD occurring in T must also satisfy
a regularity condition by adhering to one of the following two forms:

C : Pf .Pf1,Pf2, . . . ,Pfk → Pf or C : Pf .Pf1,Pf2, . . . ,Pfk → Pf .g. (1)

A PFD is a key if it adheres to the first of these forms.

Semantics is defined in the standard way with respect to an interpretation
I = (4, (·)I), where 4 is a domain of “objects” and (·)I an interpretation
function that fixes the interpretation of primitive concepts A to be subsets of
4, features f to be total functions on 4, and individuals a to be elements of
4. The interpretation function is extended to path expressions by interpreting
id , the empty word, as the identity function λx.x, concatenation as function
composition, and to derived concept descriptions C or D as defined in Figure 1.

An interpretation I satisfies an inclusion dependency C v D if CI ⊆ DI , a
concept assertion A(a) if aI ∈ AI , and a path function assertion Pf1(a) = Pf2(b)
if PfI1 (aI) = PfI2 (bI). I satisfies a knowledge base K if it satisfies each inclusion
dependency and assertion in K. 2

Condition (1) on occurrences of the PFD concept constructor distinguish, e.g.,
PFDs of the form C : f → id and C : f → g from PFDs of the form C : f → g.h,
and are necessary on CFD alone to avoid both intractability of reasoning about
logical consequence [9] and undecidability of reasoning about KB consistency
[15]. Conversely, and as usual, allowing conjunction (resp. disjunction) on the
right-hand-sides (resp. left-hand-sides) of inclusion dependencies is a simple syn-
tactic sugar.

Finally, note that CFDI∀nc does not assume the unique name assumption,
but that its ability to express disjointness enables mutual inequality between all
pairs of n individuals to be captured by introducing O(n) new atomic concepts,
concepts assertions and inclusion dependencies in a straightforward way.

Lemma 2 (CFDI∀nc KB Normal Form) For every KB (T ,A), there is an
equi-satisfiable KB (T ′,A′) in which subsumptions in T ′ adhere to the following
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forms:

A v B, A v ∀f.B, ∀f.A v B, A v ∃f−1, or A v A′ : Pf1, . . . ,Pfk → Pf,

where A and A′ are primitive concepts and B is a primitive concept or a negation
of a primitive concept, and where ABox A′ contains only assertions of the form
A(a), f(a) = b, and a = b. 2

Obtaining T ′ and A′ from an arbitrary knowledge base K that are linear in
the size of K is easily achieved by a straightforward conservative extension us-
ing auxiliary names for intermediate concept descriptions and individuals. For
further details, see the definition of simple concepts in [13, 15].

Hereon, we identify ¬∀Pf .A with ∀Pf .¬A, and say that ∀Pf .A and ∀Pf .¬A
are complementary for Pf ∈ F∗. Also, when a particular KB (T ,A) is considered,
we assume the sets PC and F contain symbols that appear in T and A only.

Unfortunately, use unqualified inverse features make reasoning about logi-
cal consequence over an arbitrary CFDI∀nc KB K intractable [19]. To recover
PTIME reasoning for both logical implication and KB consistency, K will need
to satisfy additional syntactic restrictions.

Definition 3 (CFDI∀−nc Knowledge Bases) A CFDI∀−nc KB K = (T ,A) is a
CFDI∀nc KB in normal form that satisfies the following two conditions.

1. (inverse feature and value restriction interaction) If {A v ∃f−1,∀f.A′ v
B} ⊆ T then (a) A v A′ ∈ T , (b) A′ v A ∈ T or (c) A v ¬A′ ∈ T .

2. (inverse feature and PFD interaction) Any PFD occurring in T must also
satisfy a stronger regularity condition by adhering to one of the following
two forms:

C : Pf .Pf1,Pf2, . . . ,Pfk → Pf or C : Pf .f,Pf2, . . . ,Pfk → Pf .g. (2)

Relaxing either of the conditions leads to EXPTIME and PSPACE completeness,
respectively [19]. Note also, that the additional condition (2) imposed on PFDs
applies only to non-key PFDs. Overall, however, such restrictions do not seem
to impact the modeling utility of CFDI∀nc in relation to keys and functional
constraints. Indeed, we show that arbitrary functional dependencies in relational
schema are easily captured.

3 CFDI∀−nc TBoxes and Concept Satisfiability

It is easy to see that every CFDI∀−nc TBox T is consistent (by setting all primitive
concepts to be interpreted as the empty set). To test for (primitive) concept
satisfiability we use the following construction:

Definition 4 (TBox Closure) Let T be a CFDI∀−nc TBox in normal form. We
define Clos(T ) to be the least set of subsumptions that contains T and is closed
under the following five inference rules:
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1. C1 v C1 ∈ Clos(T );
2. If {C1 v C2, C2 v C3} ⊆ Clos(T ), then C1 v C3 ∈ Clos(T );
3. If {C1 v D1, C2 v D2} ⊆ Clos(T ) and D1 and D2 are complementary,

then C1 v ¬C2 ∈ Clos(T );
4. If A v B ∈ Clos(T ), then ∀f.A v ∀f.B ∈ Clos(T ); and
5. If {A v ∃f−1,∀f.A′ v ∀f.B,A v A′} ⊆ Clos(T ), then A v B ∈ Clos(T ),

where A is a primitive concept, B is a primitive concept or its negation, and
where C1, C2, D1, and D2 are subconcepts of concepts in T or their negations.

2

Note that Clos(T ) is at most quadratic in |T |. It is also easy to verify that each
inclusion added to Clos(T ) by the inferences (1-4) in Definition 4 is logically
implied by T . Also, a variant of the closure rule (5) is not needed for the case
A′ v A since we also have A′ v ∃f−1, nor it is needed in the case A′ v ¬A
since, in this case, the value restriction in the rule is satisfied vacuously.

Given Clos(T ), an object o, and a primitive concept A, we define the following
family of subsets of PC indexed by paths of features (and their inverses), starting
from o, as follows:

1. So = {B | A v B ∈ Clos(T )};
2. Sf(x) = {B | A v ∀f.B ∈ Clos(T ) and A ∈ Sx}, when f ∈ F and x not of the

form “f−(y)”; and
3. Sf−(x) = {B | ∀f.A v B and A ∈ Sx}, when A′ v ∃f−1 ∈ Clos(T ), A′ ∈ Sx,

and x not of the form “f(y)”.

We say that Sx is defined if it conforms to one of the three above cases, and that
it is consistent if, whenever {A,A′} ⊆ Sx, A v ¬A′ 6∈ Clos(T ).

Theorem 5 (Primitive Concept Satisfiability) Let T be a CFDI∀−nc TBox
in normal form and A a primitive concept description. Then A is satisfiable with
respect to T if and only if A v ¬A 6∈ Clos(T ).

Proof (sketch): We build a model of T in which o ∈ AI for some o ∈ 4 as
follows:

– 4 = {x | Sx is defined};
– fI = {(x, f(x)) | Sf(x) is defined} ∪ {(f−(x), x) | Sf−(x) is defined}; and

– AI = {x | Sx is defined,A ∈ Sx}.

It is easy to see that, due to closure rules in Definition 4, all the defined sets Sx
must be consistent. Otherwise, A (∈ S0) must be inconsistent, implying in turn
that A v ¬A ∈ Clos(T ), a contradiction. Hence, I = (4, .I) is a model of T (it
satisfies all dependencies in Clos(T )) such that o ∈ AI . 2

Note that the model witnessing satisfiability of A does not contain any identical
path agreements (beyond the trivial id = id) and hence vacuously satisfies all
PFDs in T .
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The above theorem can be used to check satisfiability of complex (non-PFD)
concepts; e.g., satisfiability of ∀Pf .B w.r.t. T can be tested by checking satisfi-
ability of a new primitive concept A w.r.t. T ∪ {A v ∀Pf .B}. It also provides a
technique for checking satisfiability of finite conjunctions of primitive concepts
with respect to T :

Corollary 6 Let T be a CFDI∀−nc TBox in normal form and A1, . . . ,Ak primi-
tive concepts. Then A1 u . . .uAk is satisfiable with respect to T if and only if A
is satisfiable with respect to T ∪ {A v A1, . . . ,A v Ak}, for A a fresh primitive
concept. 2

4 Knowledge Base Consistency and Logical Implication

We start with the problem of determining if a given CFDI∀−nc knowledge base
is consistent. This is resolved in a straightforward way with the following no-
tion of an interesting path function and the subsequent definition of an ABox
completion procedure.

Definition 7 Let T be a CFDI∀−nc TBox. We say that a path function Pf is in-
teresting in T if it is a common prefix of all Pfi in a PFD A v B : Pf1, . . . ,Pfk →
Pf ∈ T . 2

Definition 8 Let (T ,A) be a CFDI∀−nc knowledge base. We define an ABox
completionT (A) to be the least ABox A′ such that A ⊆ A′ and A′ is closed
under the rules in Figure 2. 2

Note that since A is in normal form, individuals can only be declared to be mem-
bers of primitive concepts. Thus, a CFDI∀−nc ABox alone cannot lead to incon-
sistency. Only when combined with a TBox does it become possible that certain
conjunctions of primitive concepts must interpret as empty in every model, thus
leading to KB inconsistency. This observation combined with Corollary 6 yields
the following theorem:

Theorem 9 (CFDI∀−nc KB consistency) Let K = (T ,A) be a CFDI∀−nc KB
(in normal form). ThenK is consistent if and only if {A | A(a) ∈ completionT (A)}
is satisfiable with respect to Clos(T ) for all objects a in A. 2

It is easy to verify that constructing Clos(T ) and completionT (A) is polynomial
in |K|, and that testing for consistency implicitly contains Horn-SAT due to the
presence of PFDs. Thus, we have the following:

Corollary 10 Consistency of CFDI∀−nc knowledge bases is complete for PTIME.
2
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ABox Equality Rules:
1. If {a = b, b = c} ⊆ A, then a = c ∈ A.

2. If {f(a) = b, b = c} ⊆ A, then f(a) = c ∈ A.

3. If {a = b, f(b) = c} ⊆ A, then f(a) = c ∈ A.

4. If {f(a) = b, f(a) = c} ⊆ A, then b = c ∈ A.

5. If {a = b,A(a)} ⊆ A, then A(b) ∈ A.

ABox–TBox Interactions:
6. If A(a) ∈ A and A v B ∈ Clos(T ), then B(a) ∈ A.

7. If {A(a), f(a) = b} ⊆ A and A v ∀f.B ∈ Clos(T ), then B(b) ∈ A.

8. If {A(a), f(b) = a} ⊆ A and ∀f.A v B ∈ Clos(T ), then B(b) ∈ A.

ABox–Inverse Interactions:
9. If Pf = f1f2 · · · fk is interesting in T , A0(a0) ∈ A, a0 is an object in

the original ABox A, and {Ai−1 v ∃fi−1,∀fi.Ai−1 v Ai} ⊆ Clos(T ) for
0 < i ≤ k, then {Ai(ai), fi(ai−1) = ai} ⊆ A.

ABox–PFD Interactions:
10. If {A(a), B(b)} ⊆ A, {Pf ′i(a) = ci,Pf

′
i(b) = ci} ⊆ A for 0 < i ≤ k, and

A v B : Pf1, . . . ,Pfk → Pf ∈ T such that Pf ′i is a prefix of Pfi, then
(a) {Pf ′(a) = c,Pf ′(b) = c} ⊆ A for Pf ′ a prefix of Pf,

(b) If {Pf(a) = c,Pf(b) = d} ⊆ A, then c = d ∈ A, or

(c) If Pf is of the form Pf ′′ .f and {Pf ′′(a) = c,Pf ′′(b) = d} ⊆ A, then
f(c) = e and f(d) = e to A for a new individual e.

Fig. 2. ABox Completion Rules.

It is also straightforward to reduce logical implication for a CFDI∀−nc TBox T to
knowledge base consistency. Indeed, subsumptions between literals are directly
present in Clos(T ). Logical implication involving more general concept descrip-
tions, such as PFDs, is reduced to knowledge base (in)consistency by encoding
a counterexample as an ABox.

Theorem 11 Logical consequence for CFDI∀−nc terminologies is complete for
PTIME. 2

5 Applications

We now introduce two major applications for CFDI∀−nc : capture of relational
(and object-relational) database schemas and its ability to fully simulate DL-
LiteFcore. We also show how role hierarchies can be partially accommodated by
CFDI∀−nc .
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5.1 Relational Data Sources and BCNF

There are a number of applications of CFDI∀−nc in addressing issues that surface
with relational data sources. To illustrate, we show how a relational schema
(S,Σ) with relation symbols S and with functional dependencies and unary
foreign keys Σ can be easily mapped to a CFDI∀−nc terminology T(S,Σ), and
then exhibit a straightforward reduction of so-called Boyce-Codd normal form
(BCNF) diagnosis to logical consequence over T(S,Σ).

First the mapping: each R(A1 : D1, . . . , Ak : Dk) in S (i.e., a relation of
arity k) is reified by mapping to the following inclusion dependencies in T(S,Σ):

CR v CR : aR.A1 , . . . , aR.Ak
→ id and

CR v ∀aR.Ai .Di, for each 0 < i ≤ k,
where (a) CR is a primitive concept for which an interpretation will be the tuple
objects that correspond to tuples in R, (b) aR.Ai

are features that yield values of
fields in such tuples, and (c) Di are primitive concepts standing for the domains
of the features. In addition, for each pair of R,R′ ∈ S, add to T(S,Σ)

CR v ¬CR′ .

Each functional dependency R : Ai1 , . . . , Aik → Ai0 in Σ is then mapped to an
inclusion dependency:

CR v CR : aR.Ai1
, . . . , aR.Aik

→ aR.Ai0
,

and each unary inclusion dependency R[A] ⊆ R′[A′] in Σ to three inclusion
dependencies, where A is a fresh primitive concept unique to R[A] ⊆ R′[A′]:

CR v ∀aR.A.A,
A v ∃aR′.A′−1, and

∀aR′.A′ .A v CR′ .

BCNF diagnosis then translates to logical consequence in CFDI∀−nc in a straight-
forward fashion:

Theorem 12 (Diagnosing BCNF for Relational Data Sources) Each re-
lation R in (S,Σ) is in BCNF iff there is no set of features {aR.Ai0

, . . . , aR.Aik
}

in T(S,Σ) such that

T(S,Σ) |= CR v CR : aR.Ai1
, . . . , aR.Aik

→ aR.A0

but where

T(S,Σ) 6|= CR v CR : aR.Ai1
, . . . , aR.Aik

→ id .

2

Note that this easily generalizes to the object-relational setting where the domain
Di of an attribute may now refer directly to Ri-objects, and where a generaliza-
tion of binary decompositions called pivoting is the means of repairing violations
of BCNF [3, 4].
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An application in query optimization over relational data sources relates
to SQL distinct-keyword elimination, that is, detecting where operations in
query plans to remove duplicates can be safely eliminated [8]. Such rewrites can
be reduced to knowledge based consistency problems in CFDI∀−nc by using an
ABox to encode simple selection conditions in SQL queries [7].

5.2 Encoding of DL-Lite

Another application of CFDI∀−nc in a different setting relates to the problem of
evaluating basic graph patterns in SPARQL with a presumed entailment regime
defined by DL-LiteFcore, a DL dialect that is related to the W3C OWL 2 QL
profile. Such tasks reduce fundamentally to instance checking problems which
reduce, in turn, to knowledge base consistency problems in the standard way.

Our reduction is based on mapping a given DL-LiteFcore knowledge base K to
a CFDI∀−nc knowledge base MK as follows: for each role P in K, we reify P by
introducing a new primitive concept CP and by adding the following key PFD
to MK:

CP v CP : domP, ranP → id .

The following rules define the mapping of each inclusion dependency in K (in
normal form [2]) and each ABox assertion in K to corresponding dependencies
and assertions in MK:

A1 v A2 7→ {A1 v A2},
A1 v ¬A2 7→ {A1 v ¬A2},
A1 v ∃P 7→ {A1 v ∃domP−1,∀domP.A1 v CP },
A1 v ∃P− 7→ {A1 v ∃ranP−1,∀ranP.A1 v CP },
∃P v A1 7→ {CP v ∀domP.A1},
∃P− v A1 7→ {CP v ∀ranP.A1},
(func P ) 7→ {CP v CP : domP → id},
(func P−) 7→ {CP v CP : ranP → id},
a : A 7→ {a : A} and
P (a, b) 7→ {cPa,b : CP , domP (cPa,b) = a, ranP (cPa,b) = b}.

This mapping yields the following as a straightforward consequence:

Theorem 13 (DL-LiteFcore Reasoning) Let K be a DL-LiteFcore KB. Then
knowledge base consistency, logical implication, and instance checking with re-
spect to K can be reduced to reasoning about KB consistency with respect to
MK. 2

On Role Hierarchies The reduction above is only defined for DL-LiteFcore.
Indeed, it is well known that an (unrestricted) combination functionality with
role hierarchies, e.g., DL-LiteHFcore, leads to intractability [2]. On the other hand,
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the ability to reify roles seems to allow to capture a limited version of role
hierarchies1.

Example 14 Consider roles R and S and the corresponding primitive concepts
CR and CS , respectively. In contrast to the development in the previous section,
we assume that the domains and ranges of the reified roles are captured by the
feature dom and ran (common to both the reified roles). Then we can capture
subsumption and disjointness of these roles as follows:

R v S 7→ CR v CS ,CR v CS : dom, ran→ id ,
R u S v ⊥ 7→ CR v ¬CS ,CR v CS : dom, ran→ id ,

assuming that the reified role R (and analogously S) also satisfies the key con-
straint CR v CR : dom, ran→ id . Role typing is achieved in a way analogous to
DL-LiteFcore.

Note, however, that such a reduction does not lend itself to capturing role hierar-
chies between roles and inverses of roles: this is due to fixing the (names of the)
features dom and ran. Moreover, the condition introduced in Definition 3(1),
that governs the interactions between inverse features and value restrictions, in-
troduces additional interactions that interfere with (simulating) role hierarchies,
in particular in cases when mandatory participation constraints are present.

Example 15 Consider roles R1 and R2 and the corresponding primitive con-
cepts CR1 and CR2 , respectively, and associated constraints that declare typing
for the roles,

CR1
v ∀dom.A1,CR1

v ∀ran.B1,CR1
v CR1

: dom, ran→ id
CR2 v ∀dom.A2,CR2 v ∀ran.B2,CR2 v CR2 : dom, ran→ id

originating, e.g., from an ER diagram postulating that entity sets Ai and Bi
participate in a relationship Ri (for i = 1, 2). Now consider a situation where
the participation of Ai in Ri is mandatory (expressed, e.g., as Ai v ∃Ri in
DL-Lite). This leads to the following constraints:

A1 v ∃dom−1,∀dom.A1 v CR1 and A2 v ∃dom−1,∀dom.A2 v CR2 .

Condition (1) in Definition 3 then requires that one of

A1 v A2,A2 v A1, or A1 v ¬A2

are present in the TBox. The first (and second) conditions imply that CR1 v CR2

(CR2 v CR1 , respectively). The third condition states that the domains of (the
reified versions of) R1 and R2 are disjoint, hence the roles themselves must also
be disjoint. Hence, in the presence of CR1

v CR2
: dom, ran → id , the concepts

CR1
and CR2

must also be disjoint.

In this setting role hierarchies can be mapped to CFDI∀nc are as follows:

1 Unlike DL-Lite
(HF)
core , that restricts the applicability of functional constraints in the

presence of role hierarchies, we study what forms role hierarchies can be captured
while retaining the ability to specify arbitrary keys and functional dependencies.
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1. only primitive roles are supported,
2. for each pair of roles participating in the same role hierarchy, either one

of the roles is a super-role of the other, or the roles’ domains/ranges are
disjoint.

The first restriction originates in the way (binary) roles are reified—by assigning
canonically-named features. This prevents modeling constraints such as R v R−
(which would seem to require simple equational constraints for feature renam-
ing). The second condition is essential to maintaining tractability of reasoning
[19]. Note, however, that no such restriction is needed for roles that do not par-
ticipate in the same role hierarchy; this is achieved by appropriate choice of
names for the features dom and ran similarly to the development in Section 5.2.

One can, however, model object participation in sibling roles participating
in a role hierarchy using delegation [1], leading to a more complex translation of
role assertions to CFDI∀−nc :

Example 16 Consider roles R1, R2, and S involved in a role hierarchy R1 v S
and R2 v S. To assert that A objects must participate in both the roles Ri, for
i ∈ {1, 2}, we first explicitly establish the domains of the roles (the same applies
for ranges of roles),

DRi v ∃dom−1,∀dom.DRi v CRi
, and CRi

v ∀DRi..

Then, instead of asserting A v DRi (which immediately leads to inconsistency
due to our PTIME restrictions on roles) we assert A v ∀fRi

.DRi where the fRi

images of an A object are the delegates used to participate in the roles Ri.

Last, the CFDI∀nc-based approach to role hierarchies can easily be extended to
handling hierarchies of non-homogeneous relationships (again, via reification and
appropriate naming of features) that originate, e.g., from relating the aggregation
constructs via inheritance in the EER model [10, 11].

6 Related Work and Future Directions

Toman and Weddell have also proposed theDLF family of feature-based Boolean-
complete DL dialects obtained by allowing arbitrary use of negation in concepts
[12]. In particular, they have shown that allowing inverse features in such di-
alects makes reasoning about logical consequence undecidable [14]. They have
also shown that allowing negation on left-hand-sides of inclusion dependencies
in CFDI∀nc leads to intractability, but that PTIME algorithms exist for reason-
ing about logical consequence and knowledge base consistency if a number of
additional conditions are satisfied [20].

A variety of path based identification constraints have been proposed [5]
together with analogous applications in relational schema diagnosis [6], although
CFDI∀−nc seems to provide a more natural and transparent approach to this
problem.
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1 Introduction

Resolution is an important and attractive tool for rewriting a Description Logic
ontology into (disjunctive) datalog for the purposes of query answering [3, 5,
6]. This is because there are already many general purpose resolution calculi
that can support deduction in much more expressive logics and which have
well-defined powerful redundancy elimination criteria like clause subsumption.
However, the generality of these procedures implies that the characteristics and
structure of DL axioms are not fully exploited during saturation and as a con-
sequence the designed rewriting algorithms often suffer from performance is-
sues [7, 4]. More precisely, resolution algorithms like those designed in [3, 5,
6] usually produce far too many clauses that contain function terms, many
of which are never used to derive other function-free clauses that are mem-
bers of the ontology rewriting. For example, a typical algorithm will always
resolve clauses A(x) ← R(x, y) ∧ B(y) and R(x, f(x)) ← C(x) to produce
A(x) ← C(x) ∧ B(f(x)) even if the function term f(x) cannot be subsequently
eliminated.

In our previous work we have defined a novel resolution-based rewriting algo-
rithm for DL-Lite and ELHI that largely avoids the generation of such redun-
dant clauses [8]. The algorithm uses a macro-inference rule, called n-shrinking,
which searches for sets of clauses such that when these are used as side-premises
in consecutive resolutions, intermediate clauses with function terms can be pro-
duced but the final resolvent must be function-free. For example, in the previ-
ous scenario, the algorithm will consider resolving the two clauses to produce
A(x)← C(x)∧B(f(x)) only if a clause of the form B(f(x))← C(x) also exists
in the working set of clauses and hence the function-free clause A(x) ← C(x)
can finally be obtained. In order to reduce the size of the set where such pairs
of side premises are looked up, in contrast to previous approaches, the algo-
rithm does not “propagate” function symbols. For example, all algorithms in [3,
5, 6] will resolve clauses S(x, f(x)) ← C(x) and R(x, y) ← S(x, y) to produce
R(x, f(x)) ← C(x). In contrast, the algorithm in [8] will first try to unfold the
clause R(x, y) ← S(x, y) on some clause of the form A(x) ← S(x, y) ∧ B(y) to
produce A(x)← R(x, y) ∧B(y) and then consider n-shrinking on that clause.

We have considerably extended our previous work and designed a datalog
rewriting algorithm for Horn-SHIQ ontologies that follows the same principles.
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Our first extension is to modify the unfolding and n-shrinking rules to be appli-
cable on clauses with equality that are a distinctive feature of Horn-SHIQ.

Example 1. Consider an ontology consisting of the following axioms given also
in clausal form:

A v≤ 1R.B  y ≈ z ← A(x) ∧R(x, y) ∧R(x, z) ∧B(y) ∧B(z) (1)

D v ∃R.> R(x, g(x))← D(x) (2)

C v ∃S.B  S(x, f(x))← C(x), B(f(x))← C(x) (3)

S v R R(x, y)← S(x, y) (4)

Unfolding between (1) and (4) produces y ≈ z ← A(x) ∧ S(x, y) ∧ R(x, z) ∧
B(y)∧B(z) on which shrinking with premises clauses (3)(a) and (3)(b) produces
f(x) ≈ z ← A(x)∧C(x)∧R(x, z)∧B(z). Notice how shrinking prevents resolving
clause (1) with clause (2) which would construct a redundant resolvent. ♦

The biggest challenge in the new algorithm is to deal with equality reason-
ing. Like in [3] we employ superposition, however, following the ideas set in
[8] we try to restrict its application in such a way that unnecessary interme-
diate clauses are constructed only when necessary. First, due to n-shrinking,
only equality clauses with function-free bodies can appear in the working set
(see also previous example). Hence, superposition inferences can be restricted to
have only such clauses as side premises which significantly reduces the search
space. However, superposition inferences can introduce new function terms in
the body of a clause. Consider for example clauses f(g(x′)) ≈ x′ ← B(x′) and
R(x, f(x)) ← A(x). The first clause can be superposed into the second with
unifier x 7→ g(x′) to obtain the resolvent R(g(x′), x′)← A(g(x′)) ∧ B(x′). Now,
first, note that by the basic strategy of superposition [1] (superposition remains
complete if it is only applied into function terms not introduced by previous uni-
fication steps) no subsequent superpositions need to be applied on the body of
clause R(g(x′), x′)← A(g(x′))∧B(x′). Second, according to the ideas in [8] and
our previous discussion this intermediate clause is of importance only if g(x′)
can be eliminated from the body. These two observations combined imply that
we can devise the following macro-superposition inferences:

R(x, f(x))← A(x) f(g(x)) ≈ x← B(x), A(g(x))← C(x)

R(g(x), x)← C(x) ∧B(x)

B(f(x))← A(x) f(g(x)) ≈ x← B(x), A(g(x))← C(x)

B(x)← C(x) ∧B(x)

where f(x) has not been introduced by a previous unification.

A detailed description and definition of the algorithm can be found at http:
//www.image.ece.ntua.gr/~despoina/document.pdf.
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2 Evaluation

We have implemented our rewriting algorithm into our prototype system Rapid.1

We conducted an experimental evaluation and compared it against Clipper [2],
to the best of our knowledge, the only available conjunctive query rewriting sys-
tem for Horn-SHIQ ontologies. Our test suite included Horn-SHIQ fragments
of the ontologies NASA SWEET 2.3, Periodic, and DOLCE2.1Lite-Plus. We
also used the UOBM ontology that is provided in Clipper’s test suite. For the
UOBM ontology we used the 10 queries that come together with Clipper, while
for the rest we manually constructed 5 test queries. All tests were performed on
a 2,26GHz Intel Core 2 Duo laptop running OS X 10.9.5 and JVM 1.7. We set
a timeout to 2 hours. Table 1 indicates the results. As can be seen regarding
UOBM (left sub-table) Rapid is consistently faster than Clipper. The sizes of
the computed rewritings are roughly the same and differences are attributed to
the different structures of the computed datalog rewritings. Regarding the much
larger and relatively real-world ontologies (right sub-table) Clipper failed to
terminate within the set time limit whereas Rapid requires at most a few se-
conds.

Table 1: Evaluation results
(a)

UOBM (207 axioms)

t (ms) Rew. size

Rapid Clipper Rapid Clipper

11 64 3 2
18 56 14 16
65 1415 109 920
25 59 22 45
18 67 16 33
20 117 13 16
21 65 14 15
14 61 10 25
28 55 31 33
23 61 23 23

(b)

O Axioms t (ms) Rew. size

NASA SWEET 11578

56 170
142 399
177 551
414 979
348 989

Periodic full 43689

29 23
1768 533
1336 631
129 195
605 714

DOLCE2.1 1055

1314 1192
1230 1194

35 85
163 205

1379 1192
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Decidable Verification of Knowledge-Based Programs over
Description Logic Actions with Sensing ?

(Extended Abstract ??)

Benjamin Zarrieß1 and Jens Claßen2
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2 Knowledge-Based Systems Group, RWTH Aachen University, Germany

1 Introduction

Since the Golog [5, 10] family of action programming languages has become
a popular means for control of high-level agents, the verification of temporal
properties of Golog programs has received increasing attention [4,7]. Both the
Golog language itself and the underlying Situation Calculus [11,13] are of high
(first-order) expressivity, which renders the general problem undecidable. Identi-
fying non-trivial fragments where decidability is given is therefore a worthwhile
endeavour [6, 15].

In this extended abstract we consider the class of so-called knowledge-based
programs, which are suited for more realistic scenarios where the agent possesses
only incomplete information about its surroundings and has to use sensing in or-
der to acquire additional knowledge at run-time. As opposed to classical Golog,
knowledge-based programs contain explicit references to the agent’s knowledge,
thus enabling it to choose its course of action based on what it knows and
does not know. Formalizations of knowledge-based programs in the epistemic
Situation Calculus were proposed by Reiter [14] and later by Claßen and Lake-
meyer [3].

Here we review our work on a new epistemic action formalism based on
the basic Description Logic (DL) ALC obtained by combining and extending
earlier proposals for DL action formalisms [1] and epistemic DLs [8]. From the
latter we use a concept constructor for knowledge to formulate test conditions
within programs and desired properties thereof, while we extend the former
by not only including physical, but also sensing actions. More precisely, in our
setting a knowledge-based programs for the control of a single agent consists of
the following ingredients: 1. an (objective) ALC-TBox and ABox representing
the initial static knowledge of the agent about the world.; 2. a set of primitive
actions describing the basic abilities of an agent to change the world and to gain
new information from the environment and 3. a program expression defining
the possible courses of action by combining primitive actions and subjective
conditions formulated in the epistemic DL ALCOK (an extension of ALC with
nominals (O) and an epistemic constructor (K)) using programming constructs
? Supported by DFG Research Unit FOR 1513, (http://www.hybrid-reasoning.org)

?? See [2] for the long versions of the paper and [16] for the technical report.

292



for sequencing, iteration and nondeterministic choice. Desired properties of such
a program can be expressed in LTL over ALC-concept inclusions and ALCOK-
ABox assertions - a logic we call ALCOK-LTL. The verification problem asks
whether or not all runs of a given knowledge-based program satisfy a given
ALCOK-LTL formula.

Verifying knowledge-based programs with this language yields multiple ad-
vantages. First, under reasonable restrictions we obtain decidability of verifica-
tion for a formalism whose expressiveness goes far beyond propositional logic.
Moreover, it enables us to resort to powerful DL reasoning systems. Finally,
the new formalism also inherits many useful properties of the epistemic Situa-
tion Calculus and ES such as Reiter’s [12] solution to the frame problem and
a reasoning mechanism resembling Levesque and Lakemeyer’s [9] Representa-
tion Theorem where reasoning about knowledge is reduced to reasoning in the
standard DL ALCO.

2 Example

As an example consider a mobile robot in a factory whose task it is to detect
faulty gears and do the necessary repairs before turning them on. The agent is
equipped with the following KB K = (T ,A) representing its initial knowledge
about the world:

T = {Fault v CritFault tUncritFault,∃has-f.> v System,System v ∀has-f.Fault};
A = {System(gear),¬On(gear),Fault(blocked)}.

The first concept inclusion (CI) in T states that faults are critical faults or
uncritical ones, the last two CIs define the domain System and range Fault for
the role has-f. A describes a simple initial situation.

To represent conditional effects of primitive actions and axioms whose truth
can be sensed we use boolean combinations of atoms, i.e. ABox assertions where
in place of individuals also variables are allowed. An effect is of the form ϕ/γ,
where ϕ is a boolean combination of atoms and γ is a literal of the form
A(z),¬A(z), r(z, z′) and ¬r(z, z′). A primitive action is a pair of the finite sets
eff and sense, where eff is a set of effects and sense a finite set of boolean com-
binations of atoms. For example consider the following actions:

turn-on(x) : (eff = {(¬∃has-f.CritFault(x))/On(x)}, sense = ∅),
sense-on(x) : (eff = ∅, sense = {On(x)}).

turn-on(x) with variable x has a single conditional effect that causes x to be
On after the action is executed only if x previously has no critical fault. No
sensing result is provided. sense-on(x) is a pure sensing action that represents
the agent’s ability to perceive whether On(x) is true in the real world.

Semantically, a primitive ground action induces a binary relation on epistemic
interpretations (I,W) which allow us to explicitly distinguish changes affecting
the real world, represented by the interpretation I, and changes to the knowledge
state W, which is a set of interpretations (i.e., possible worlds) over a common
countably infinite domain. In our semantics we also assume that the agent knows
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the physical effects of its primitive actions. For instance, assume K as given above
is all the agent knows initially about the world. Thus, it is initially known that
gear is not on, but the effect condition ¬∃has-f.CritFault(gear) of turn-on(gear)
is unknown, i.e. there is a least one possible world satisfying K where gear is an
instance of ∃has-f.CritFault and one where this is not the case. Consequently,
the actual outcome of executing turn-on(gear) in K is also unknown. This can
be expressed by the epistemic ABox assertion ¬KOn u ¬K¬On(gear), where
the K is used here as a concept constructor, intuitively denoting the known
instances. If the agent now in turn executes sense-on(gear), it will also come
to know whether gear has a critical fault or not, i.e. both epistemic ABox as-
sertions K∃has-f.CritFault t K¬∃has-f.CritFault(gear) and KOn t K¬On(gear)
come to hold. A knowledge-based program describing the behaviour of an agent
is then given as follows, where sense-f(gear, x) is an additional sensing action
for checking if gear has fault x and repair(gear, x) an action for removing fault
x of gear.

while ¬K(∀has-f.¬KFault)(gear)
pick(x) : KFault(x) ∧ ¬Khas-f(gear, x)? ∧ ¬K¬has-f(gear, x).sense-f(gear, x);

if Khas-f(gear, x) then repair(gear, x) else continue;

end; turn-on(gear); sense-on(gear)

As long as the agent does not know that gear has no known fault, a known fault
x is chosen non-deterministically for which it is unknown whether gear has it or
not. The agent then senses whether gear has this fault and repairs it if necessary.
After completing the loop the agent turns on the gear system and checks if this
was successful. An example for a property of this program to be verified is if a
gear initially has an unknown critical fault, then the agent will eventually come
to know it. This can be expressed by the following ALCOK-LTL formula:

∃has-f.(CritFault u ¬KFault)(gear)→ 3K∃has-f.(CritFault u ¬KFault)(gear).

In our semantics of actions it is not guaranteed that the TBox given in the
initial KB always holds. However persistence of a TBox T in a program can be
verified by checking validity of the ALCOK-LTL formula 2

(∧
%∈T %

)
.

3 Results

Unfortunately, it turns out that the verification problem is undecidable for an
already quite small subset of our formalism. In our setting a state of the program
consists of an epistemic interpretation and a program expression representing
the program that remains to be executed. Thus, we end up with an infinite
state transition system. As the source of undecidability we have identified the
pick-operator for non-deterministic choice of argument, which may range over
the whole countably infinite domain. However, we also have the positive result
that decidability of the verification problem can be retained for a syntactically
restricted fragment of the formalism where pick operators are extended with
epistemic guards such that the agent is only allowed to choose an argument
among the known individuals. We have devised an algorithm with a 2ExpSpace
upper bound.
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Concept Forgetting in ALCOI-Ontologies using
an Ackermann Approach

Yizheng Zhao and Renate A. Schmidt
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Abstract. We present a method for forgetting concept symbols in on-
tologies specified in the description logic ALCOI. The method is an
adaptation and improvement of a second-order quantifier elimination
method developed for modal logics and used for computing correspon-
dence properties for modal axioms. It follows an approach exploiting a
result of Ackermann adapted to description logics. Important features in-
herited from the modal approach are that the inference rules are guided
by an ordering compatible with the elimination order of the concept sym-
bols. This provides more control over the inference process and reduces
non-determinism, and the size of the search space. The method is ex-
tended with a new case splitting inference rule, and several simplification
rules. Compared to related forgetting and uniform interpolation meth-
ods for description logics, the method can handle inverse roles, nominals
and ABoxes. Compared to the modal approach on which it is based, it is
more efficient in time and has higher success rates. The method has been
implemented in Java using the OWL API. Preliminary experimental re-
sults show that the order in which the concept symbols are eliminated
significantly affects the success rate and efficiency.

1 Introduction

Ontology-based technologies provide novel ways of building knowledge process-
ing systems and play an important role in many different areas, both in research
projects but also in industry applications. Big ontologies contain however large
numbers of symbols and knowledge modelled in them is rich and inevitably het-
erogeneous. Thus there are situations, where it is useful to be able to restrict
the ontology to a subset of the signature and forget those symbols which do not
belong to the subset, for example, when an ontology needs to be analysed by
an ontology engineer to gain an understanding of the information represented
in it. Another example is a scenario where ontologies are distributed at separate
remote sites and information is exchanged via agents. Since the vocabularies
known to the agents at the different sites will vary, communication between the
agents needs to be limited to using the common language to avoid ambiguity
and confusion caused by the inconsistency of the vocabularies being used. At
this point, it would be beneficial if the signature symbols in one ontology that
are not known to the other agents can be eliminated without losing information
required for the communication. In other words, signature symbols belonging
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to only one of the ontologies are forgotten, and communication is restricted to
information expressed in the shared language of the agents’ ontologies. Another
use of forgetting is restricting the vocabulary of an ontology to more general
concept symbols, and forgetting those that are more specific, to create a sum-
mary of the ontology [29]. Situations where ontologies are published, shared, or
disseminated, but some sensitive parts described in terms of particular signature
symbols needs to be kept confidential or unseen to the receiver, is a potential
application of forgetting [3]. This is relevant for medical and military uses, and
uses in industry to ensure proprietary information can be kept hidden.

The contribution of this paper is the presentation of a method for forgetting
concept symbols in ontologies specified in the description logic ALCOI. ALCOI
extends the description logic ALC with nominals and inverse roles. Forgetting
concept symbols for ALCOI is a topic where no method is available yet, but a
number of related methods exist. Forgetting can be viewed as the problem dual
to uniform interpolation. A lot of recent work has been focussed on uniform
interpolation of mainly TBoxes represented in several description logics, ranging
from ones with more limited expressivity, such as DL-Lite [31] and EL [20, 22]
and EL-extensions [11], to more expressive ones, such as ALC [21, 30, 19, 14, 13],
ALCH [12], SIF [17] and SHQ [15].

Forgetting can however also be viewed as a second-order quantification prob-
lem, which is the view we take in this paper. In second-order quantifier elimina-
tion, the aim is to eliminate existentially quantified predicate symbols in order
to translate second-order formulae into equivalent formulae in first-order logic [5,
6, 8, 4, 7, 26, 23, 24, 28]. In uniform interpolation the aim is to eliminate symbols
too, though it is not required that the result is logically equivalent to the cor-
responding formula in second-order logic, only that all important consequences
are preserved.

Our method is adapted from a method, called Msqel, designed for modal
logic to compute first-order frame correspondence properties for modal axioms
and rules [26]. The adaptation exploits the close relationship between descrip-
tion logics and modal logics [25]. Our method contributes three novel aspects.
It is the first method for forgetting concept symbols from ontologies specified
in the description logic ALCOI. It inherits from Msqel the consideration of
elimination orders, which has been shown to improve the success rate and make
it succeed on a wider range for problems in the modal logic corresponding to
ALCOI [26]. The success rate and its scope is further improved by the incorpo-
ration of a new case splitting rule and generalised simplification rules. Results of
an empirical evaluation show improved success rates and performance for these
techniques.

2 Definition of ALCOI and Other Basic Definitions

Let NC and NR be the set of atomic concepts and the set of atomic roles,
respectively, and let NO be the set of nominals. ALCOI-concepts have one of
these forms:
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a | ⊥ | > | A | ¬C | C tD | C uD | ∃R.C | ∃R−.C | ∀R.C | ∀R−.C,

where a ∈ NO, A ∈ NC , R ∈ NR, and C and D are arbitrary ALCOI-concepts.
R− denotes the inverse of the role R. By definition, R−− is expressively the same
as R.

An ontology usually consists of two parts, namely a TBox and an ABox. A
TBox contains a set of axioms of the form C v D or C ≡ D, where C and D are
concepts. A concept definition C ≡ D can be expressed by two general inclusion
axioms C v D and D v C. In ALCOI, ABox axioms can be expressed as
inclusions in the TBox: a concept assertion C(a) can be expressed as a v C, and
a role assertion R(a, b) as a v ∃R.b. In this paper, we treat the ABox axioms as
inclusions, consequently in our considerations ALCOI-ontologies are assumed
to contain TBox axioms only.

We define an interpretation I forALCOI over the signature (NC ,NR,NO) as
the pair 〈∆I ,.I 〉, where ∆I is a non-empty set that represents the interpretation
domain, and .I is the interpretation function that assigns to every nominal a ∈
NO a singleton set aI ⊆ ∆I ; to every concept symbol A ∈ NC a subset AI

of ∆I ; and to every role symbol R ∈ NR a subset RI of ∆I ×∆I . We specify
the semantics of ALCOI-concepts by extending the interpretation function to
the following:

⊥I = ∅ (¬C)I = ∆I\CI (C tD)I = CI ∪DI

(∀R.C)I = {x ∈ ∆I | ∀y.(x, y) ∈ RI → y ∈ CI}
(∃R.C)I = {x ∈ ∆I | ∃y.(x, y) ∈ RI ∧ y ∈ CI}

(R−)I = {(y, x) ∈ ∆I ×∆I | (x, y) ∈ RI}

The semantics of the TBox-axioms is defined as follows: an interpretation I
satisfies C v D iff CI ⊆ DI , and I satisfies C ≡ D iff CI ≡ DI . If O is a set
of TBox axioms, I is a model of O iff it satisfies every axiom in O, denoted by
I |= O.

In the rest of the paper, we also need the following definitions. A clause is a
disjunction of ALCOI-concepts. Let A be a concept symbol and let I and I ′ be
interpretations. We say I and I ′ are A-equivalent, if I and I ′ coincide but differ
possibly in the valuation assigned to A. This means their domains coincide, i.e.,
∆I = ∆I

′
, and for each symbol s in the signature except for A, sI = sI

′
. More

generally, suppose Σ = {A1, . . . , Am} ⊆ NC , I and I ′ are Σ-equivalent, if I
and I ′ are the same but differ possibly in the valuations assigned to the concept
symbols in Σ.

3 Forgetting as Second-Order Quantifier Elimination

We are interested in forgetting concept symbols in axioms of an ontology O of
TBox axioms. Let sig(O) denote the signature of O.

Definition 1. Let O and O′ be ALCOI-ontologies and let Σ = {A1, . . . , Am} be
a set of concept symbols. O′ is the result of forgetting the symbols in Σ from O,
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if sig(O′) ⊆ sig(O)\Σ and for any interpretation I,

I |= O iff I ′ |= O′ for some interpretation I ′ Σ-equivalent to I.

The symbols in Σ are the symbols to be forgotten. We refer to them as the
non-base symbols and the symbols in sig(O)\Σ as the base symbols. The result
of forgetting a concept symbol A from O is the result of forgetting {A} from O.

The result of forgetting a symbol A from an ontology O can be represented
as ∃X OAX in the extension of the language with existentially quantified concept
variables. OAX is our notation for substituting every occurrence of A is O by X.
In general, for the target language which extends the (source) language of the
logic under consideration with existential quantification of predicate symbols, the
result of forgetting always exists. The challenge of forgetting, as a computational
problem, is to find an ontology O′ (without any occurrences of X) in the source
language (without second-order quantification) that is equivalent to ∃X OAX ,
where O is expressed in the source language. Finding such an ontology O′ that
is equivalent to ∃X OAX is an instance of the second-order quantifier elimination
problem. Forgetting a concept symbol A is thus the problem of eliminating the
existential quantifier ∃X from ∃X OAX . In the following, we slightly informally
say the aim is to eliminate the symbol A from O. For this we apply second-order
quantifier elimination techniques to the axioms of O in order to forget A (the
non-base symbol). In particular, we are going to exploit an adaptation of a result
of Ackermann [1], which is known as Ackermann’s Lemma in the literature on
second-order quantifier elimination [8].

Theorem 1 (Ackermann’s Lemma for ALCOI). Let O be an ALCOI-
ontology, let C be a concept expression and suppose the concept symbol A does
not occur in C. Let I be an arbitrary ALCOI-interpretation. (i) If A occurs
only positively in O, then I |= OAC iff for some interpretation I ′ A-equivalent
to I, I ′ |= A v C, O. (ii) If A occurs only negatively in O then I |= OAC iff for
some interpretation I ′ A-equivalent to I, I ′ |= C v A, O.

4 The Forgetting Method DSQEL

Our forgetting method is called Dsqel, which is short for Description logics
Second-order Quantifier ELimination.

Figure 1 outlines the basic routine of the Dsqel method to forget concept
symbols in ALCOI-ontologies O. Once receiving the input ontology and a set Σ
of concept symbols to forget, the method proceeds as follows. In Phase 1, a
preprocessing step is performed to transform the axioms into a set of clauses.
This is done by replacing all inclusions C v D by ¬C tD, and all equivalences
C ≡ D by ¬C t D and ¬D t C. Inexpensive equivalence-preserving syntactic
simplification rules are also applied in this phase to simplify clauses. For ex-
ample, C t (C u D) is simplified to C. Phase 2 counts the number of positive
(and negative) occurrences of each concept symbol in Σ. Using these counts an
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1. Transform ontology O to clausal representation N := clause(O).
2. Process every concept symbol A in Σ and check the frequency of A in

polarity terms to generate the ordering �.
3. Guided by �, apply the Dsqel calculus to each of the concept symbols

in Σ to produce the ontology O′ (with clauses interpreted in the obvious
way as inclusions).

4. Apply the simplification rules provided to O′ if needed and return the
resultant ontology containing the symbols only in sig(O′)\Σ.

Fig. 1. The phases in the basic Dsqel routine

ordering � is defined on the symbols in Σ. This ordering determines the order
in which the symbols in Σ are eliminated in the next phase. Phase 3 applies the
Dsqel calculus described in the next section to the non-base symbols in Σ one
by one, starting with the symbol A largest in the ordering �. To forget A the
inference rules of the Dsqel calculus are applied to the axioms containing A.
Then the next largest non-base symbol is eliminated, and so on.

Forgetting a concept symbol may lead to a change of the polarities of the
occurrences of the remaining Σ-symbols, and a new elimination order may have
to be computed based on the refreshed polarity counts, before the forgetting
method to continues. This means Phase 2 and Phase 3 will be alternately and
repeatedly executed with recomputed elimination orders. If the largest current
concept symbols to be eliminated could not be completely eliminated by Dsqel,
then a different ordering not attempted before will be used. In the case that all
possible orderings have been tried and every attempt to eliminate all non-base
symbols using Dsqel is not successful, the method returns failure, because it
was unable to solve the problem. On the other hand, when after a call of Dsqel
the set returned does not contain any non-base symbols, then this is the result
of forgetting Σ from O.

Phase 4 subsequently applies further simplification rules and transforms the
resulting axioms to simpler representations.

Different elimination orders of concept symbols applied may lead to different
but equivalent results. The results can be viewed (when the remaining non-base
symbols are existentially quantified) as equivalent representations of ∃ΣO.

What is returned by the algorithm, if it terminates successfully, is a (pos-
sibly empty) ontology with all occurrences of the non-base symbols eliminated.
I.e., what is returned is an ontology specified in terms of only the symbols in
sig(O)\Σ.

There are situations where our method does not succeed, for instance, when
no forgetting result finitely expressible in ALCOI exists. This means the method
is not complete, but since no complete method can exist for forgetting, as con-
sidered in this paper, this is to be expected. Concept forgetting is already not
always computable for the description logic EL [10]. We also note that concept
symbols cannot be eliminated by our method does not necessarily mean that
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Ackermann:
N,C1 tA, . . . , Cn tA

(NA
∼C1t...t∼Cn

)¬¬C1,...,¬¬Cn
C1,...,Cn

provided: (i) A is a non-base symbol,
(ii) A does not occur in any of the Ci,

(iii) A is strictly maximal wrt. each Ci, and
(iv) N is negative with respect to A.

Purify:
N

(NA
¬>)¬¬>>

provided: (i) A is a non-base symbol in N , and
(ii) N is negative with respect to A.

Fig. 2. The elimination rules

they are ineliminable. It might be the case that they are eliminable, but simply
our method is unable to find a solution.

We can show Dsqel algorithm is correct and is guaranteed to terminate.
This follows as an adaptation of the correctness and termination of the Msqel
procedure proved in [26], since all adaptations of Msqel to Dsqel preserve
logical equivalence and the calculus given in the next section is correct and
terminates.

5 The DSQEL Forgetting Calculus

The order in which the non-base symbols are eliminated is determined by the
ordering � computed in Phase 2 of the Dsqel algorithm. We say a concept
symbol A is strictly maximal with respect to a concept C if for any concept
symbol B (6= A) in C, A � B.

A concept C is positive (negative) with respect to a concept symbol A iff all
occurrences of A in C are positive (negative). A set of concepts N is positive
(negative) with respect to a concept symbol A iff all occurrences of A in N are
positive (negative).

The Ackermann rule and the Purify rule, given in Figure 2, are the forgetting
rules in the Dsqel calculus, which will lead to the elimination of a non-base
concept symbol. Both of them have to meet particular requirements on the form
of the concepts to which they apply. N is a set of ALCOI-clauses, and by
ND
C , we mean the set obtained from N by substituting the expression C for

all occurrences of D in N , where C and D are both ALCOI-concepts. The
inference rules in the Dsqel calculus are restricted by a set of side-conditions;
for example, the side-conditions of the Ackermann rule require that A must be a
non-base symbol and does not occur in C1, . . . , Cn, no non-base symbol occurring
in Ci (1 ≤ i ≤ n) is larger than A under the ordering �, and every occurrence
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of A in N must be negative. The Purify rule can be seen as a special case of
the Ackermann rule, since it eliminates the non-base symbols that occur only
negatively, that is, when there are no positive occurrences of A.

Surfacing:
N,C t ∀Rσ.D
N,∀Rσ,−.C tD

provided: (i) A is the largest non-base symbol in C t ∀Rσ.D,
(ii) A does not occur in C, and
(iii) A occurs positively in ∀Rσ.D.

Skolemization:
N,¬a t ¬∀Rσ.C

N,¬a t ¬∀Rσ.¬b,¬b t ∼C

provided: (i) A is the largest non-base symbol in ¬a t ¬∀Rσ.C,
(ii) A occurs positively in ¬∀Rσ.C, and
(iii) b is a new nominal.

Clausify:
N,C t ¬(D1 t ... tDn)

N,C t ∼D1, ..., C t ∼Dn

provided: (i) A is the largest non-base symbol in C t ¬(D1 t ... tDn),
(ii) A occurs positively in D1 t ... tDn.

Sign Switching:
N

(NA
¬A)¬¬AA

provided: (i) N is closed with respect to the other rules,
(ii) A is the largest non-base symbol in N , and

(iii) Sign switching wrt. A has not been performed before.

Fig. 3. The rewriting rules

The rules in Figure 3, are used to rewrite the formulae so they can be trans-
formed into the form where either the Ackermann rule or the Purify rule is appli-
cable. To apply these rules, the positive occurrences of the non-base symbol first
have to be made ‘individually isolated’. In addition, every positive occurrence
of the non-base symbol must occur at the top level as a literal in a clause [26],
that is, they must not occur under a quantifier restriction operator or any other
logical operator except for disjunction. This is done by repeatedly using the sur-
facing rule. By Rσ, we mean the composition of a sequence of roles and by Rσ,−

we mean the composition of the sequence of inverses of the roles in Rσ with the
order in the sequence reversed.
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The Skolemization rule rewrites the existential expression in a clause of the
form ¬a t ¬∀Rσ.C, where a is a nominal. The implicit existential quantifier in
¬∀Rσ.C is Skolemized by introducing a new Skolem constant (nominal) b.

The clausify rule transforms a concept of the form C t¬(D1 t ...tDn) into
a set of clauses.

The Sign switching rule is used to switch the polarity of a non-base symbol. It
is applicable only when no other rules in the calculus are applicable with respect
to this non-base symbol and the Sign switching rule has not been performed on
this non-base symbol before.

Case Splitting:
N,¬a t C1 t ... t Cn

N,¬a t C1 | ... | N,¬a t Cn

provided: (i) A is the largest non-base symbol in ¬a t C1 t ... t Cn,
(ii) A occurs positively in C1 t ... t Cn.

Fig. 4. The case splitting rule

A novelty in the Dsqel calculus is the case splitting inference rule given in
Figure 4. It splits a clause of the form ¬atC1 t ...tCn into smaller subclauses
¬atC1, ¬atC2, ..., ¬atCn. A single clause ¬atC, together with N , forms a
case. The original formula means that at least one of the disjuncts Ci (1 ≤ i ≤
n) is true for a. The benefits of the case splitting rule are twofold. On the one
hand, the case splitting rule makes up for a limitation of the Skolemization rule,
because it splits a disjunction with more than two disjuncts into several smaller
cases, which the Skolemization rule is able to handle. On the other hand, our
tests show it reduces the search space and increases the success rate.

Condensing I:
N
[
C t ∀Rσ1 .∀Rσ1,−. . . .∀Rσn .∀Rσn,−.(C tD)

]

N
[
C tD t ∀Rσ1⊥

]

provided: (i) C and D are arbitrary concepts, and
(ii) σi ≤ σ1 for 1 ≤ i ≤ n

N
[
C t ∀Rσ1 .∀Rσ1,−. . . .∀Rσn .∀Rσn,−.(C tD)

]

N
[
C tD t ∀Rσn⊥

]

provided: (i) C and D are arbitrary concepts, and
(ii) σi ≤ σn for 1 ≤ i ≤ n

Fig. 5. Sample simplification rule
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We also introduced several simplification rules to transform more expressions
so that inference rules become applicable, they keep expressions in simpler forms
for efficiency, and most importantly, they lead to success of forgetting in more
cases. Figure 5 displays two cases of the simplification rules, called Condensing I,
with which one can handle clauses of a particular pattern where other existing
methods fail.

6 Empirical Results

In order to evaluate how the Dsqel method behaves on real-life ontologies, we
implemented it in Java using the OWL API and applied the implementation to
a set of ontologies from the NCBO BioPortal1, a large repository of biomedical
ontologies. The experiments were run on a machine with an Intelr Coretm i7-
4790 processor, and four cores running at up to 3.60 GHz and 8 GB of DDR3-
1600 MHz RAM.

Since Dsqel handles expressivity as far as ALCOI, the ontologies for our
evaluation were restricted to their ALCOI-fragments, and axioms outside of the
scope of ALCOI were dropped from the ontologies. Consequently, we used 292
ontologies from the repository for our evaluation. We ran the experiments on
each ontology 100 times and averaged the results to explore how forgetting was
influenced by the number of the concept symbols in an ontology. A timeout of
1000 seconds was used.

To fit with possible needs of applications, we conducted experiments where
we forget 10%, 30%, and 50% of the concept symbols in the ontologies. The
Dsqel algorithm processes each non-base symbol and counts the number of
their positive (and negative) occurrences. Based on these counts, an elimination
order is generated by a heuristic algorithm. In order to see how the elimination
order affects the performance of the calculus, we ran two sets of experiments,
where we omitted the analysis of the elimination order for one set, and applied
the analysis to the other set. The evaluation results with respect to forgetting
10%, 30%, 50% of the concept symbols in the ontologies, without and with the
analysis of the elimination order, are shown in Table 1.

It can be seen that, the analysis of the elimination order leads to a decrease in
the average duration of the runs of every experiment, which means that it takes
shorter time to complete the same task than when analysis of the elimination
order is not performed. It is evident that the analysis for the elimination order
has brought a positive effect on the overall success rate (increase by 8.1%) and
the timeout rate (decrease by 5.9%).

Evaluations of more aspects are being conducted at the moment. These evalu-
ations are focussed on, for example, how the case splitting rule makes a difference
to the behaviour of the Dsqel calculus, and how our method compares to the
related methods of Scan [7], Dls [5], Dls∗ [6], Sqema [4], Msqel [26], and
LETHE [16] for computing uniform interpolants, in terms of the success rate
and efficiency (duration and timeouts).

1 http://bioportal.bioontology.org/
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Input Experiment Output

Axioms Avg. Symbols Avg. Percentage Order Timeouts Duration Avg. Success Rate

7 3.8% 4.509 sec. 90.1%
10%

3 1.7% 2.404 sec. 97.6%
7 7.5% 8.562 sec. 88.4%

1407 876 30%
3 2.2% 2.753 sec. 95.5%
7 13.4% 15.068 sec. 85.3%

50%
3 3.1% 3.004 sec. 94.9%

7 8.2% 9.380 sec. 87.9%
1407 876 Average

3 2.3% 2.720 sec. 96.0%

Table 1. Forgetting 10%, 30%, and 50% of concept symbols in ontologies

7 Related Work

Probably the most important early work on the elimination of second-order quan-
tifiers is that of Ackermann [1] in 1935. Only in 1992, Gabbay and Ohlbach [7]
developed the first practical algorithm, called Scan. Scan is a resolution-based
second-order quantifier elimination algorithm and can be used to forget predicate
symbols from first-order logic formulae [24].

It has been shown that the Scan algorithm is complete and terminates for
modal axioms belonging to the famous Sahlqvist class [9]. In 1994, the hier-
archical theorem proving method was developed by Bachmair et al. [2] and it
has been shown that it can be used to solve second-order quantification prob-
lems. Around the same time, in 1995, Sza las [27] described a different algorithm
for the second-order quantifier elimination problem, which exploits Ackermann’s
Lemma. The method was further extended to the Dls algorithm by Doherty et
al. [5]. Dls uses a generalised version of Ackermann’s Lemma and allows the
elimination of existential second-order quantifiers from second-order formulae,
and obtaining corresponding first-order equivalents. Nonnengart and Sza las [23]
generalised the main result underlying the Dls algorithm to include fixpoints.
Based on this work, Doherty et al. [6] proposed the Dls∗ algorithm, which at-
tempts the derivation of either an equivalent first-order formula or a fixpoint
formula from the original formula. Dls and Dls∗ are Ackermann-based second-
order quantifier elimination methods. Ackermann-based second-order quantifier
elimination was first applied to description logics in [28] by Sza las, where descrip-
tion logics were extended by a form of second-order quantification over concepts.
More recently, Conradie et al. [4] introduced the Sqema algorithm, which is also
an Ackermann-based method but for modal logic formulae. It is specialised to
find correspondences between modal formulae and hybrid modal logic formu-
lae (and first-order formulae). Schmidt [26] has extended Sqema and developed
Msqel as a refinement. A key novelty is the use of elimination orders, and the
presentation of second-order quantifier elimination as an abstract calculus.

Investigation of forgetting as uniform interpolation in more expressive de-
scription logics was started in [29] and [21]. The first approach to compute uni-
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form interpolations for ALC-TBoxes was presented in [29]. It is a tableau-based
approach, where a disjunctive normal form is required for the representation of
the TBox-axioms and the uniform interpolants are incrementally approximated.
It was shown in [21] that deciding the existence of uniform interpolants that
can be finitely represented in ALC without fixpoints is 2-ExpTime-complete
and in the worst case, the size of uniform interpolants is triple exponential with
respect to the size of the original TBox. The first goal-oriented method based
on clausal resolution was presented in [19] for computing uniform interpolants
of ALC-TBoxes, where experimental results show the practicality for real-life
ontologies. Koopmann and Schmidt presented another resolution-based method
exploiting structural transformation to compute uniform interpolants of ALC-
ontologies, which uses fixpoint operators to make uniform interpolants finitely
representable [14]. The method has been further extended to handle ALCH [12],
SIF [17], SHQ [15], and ALC with ABoxes [18].

8 Conclusion and Future Work

We have presented a second-order quantifier elimination method, called Dsqel,
for forgetting concept symbols in ontologies specified in the description logic
ALCOI.

It is adapted from Msqel, an Ackermann-based second-order quantifier elim-
ination method for a multi-modal tense logic with second-order quantification.
The method is enhanced with new inference and simplification rules. The adap-
tation was motivated for the purpose of applying the second-order quantifier
elimination techniques to the area of knowledge representation, where descrip-
tion logics provide important logical formalisms.

We have had a prototype implementation of our forgetting method, fully
realising the Dsqel method. It is known that the success of a forgetting problem
is highly dependent on, apart from the calculus itself, the non-base symbols Σ to
be forgotten, and the elimination order which the method follows. The evaluation
results of first experiments reported in this paper show promising and very good
success rates for concept symbol forgetting.

Optimisation to both the calculus and the implementation is underway. One
optimisation being investigated is the incorporation of more simplification rules
in order to increase the efficiency and success rate further. We are also currently
working on finding a heuristic algorithm using a dynamic way of ordering the
non-base symbols, because the elimination of a particular concept symbol may
affect the optimality of the elimination order, and thus computing a new order
may be beneficial. Research shows that the order in which the inference rules
are applied is significant because, as we observed, it is a main factor affecting
the efficiency of the method.

Extending the method to handle ontologies going expressively further than
ALCOI is a direction of the ongoing research. To explore how the forgetting of
role symbols can be incorporated into our method is also of interest.
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PAGOdA: Pay-as-you-go ABox Reasoning
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1 Introduction

Ontologies are increasingly used to provide structure and enhance access to
large datasets. In such applications the ontology can be seen as a TBox, and the
dataset as an ABox, with the key reasoning problem being conjunctive query
(CQ) answering. Unfortunately, for OWL 2 this problem is known to be of high
worst case complexity, even when complexity is measured with respect to the
size of the data, and in realistic settings datasets may be very large.

One way to address this issue is to restrict the ontology to a fragment with
better computational properties, and this is the motivation behind the OWL
2 profiles. Another approach is to optimise reasoning for arbitrary OWL 2 on-
tologies. This latter approach has proved very successful for TBox reasoning,
with systems such as Konclude, HermiT, Pellet and Racer being widely used
to reason over large-scale ontologies. Up to now, however, reasoning with large
ABoxes has, in practice, largely been restricted to the OWL 2 profiles.

In this paper we describe PAGOdA: a highly optimised reasoning system that
supports CQ answering with respect to an arbitrary OWL 2 ontology and an
RDF dataset (roughly equivalent to a SROIQ TBox and ABox). It uses a novel
approach to query answering that combines a datalog (or OWL 2 RL) reasoner
(currently RDFox [11]) with a fully-fledged OWL 2 reasoner (currently HermiT
[5]) to provide scalable performance while still guaranteeing sound and complete
answers.1 PAGOdA delegates the bulk of the computational workload to the
datalog reasoner, with the extent to which the fully-fledged reasoner is needed
depending on interactions between the ontology, the dataset and the query. This
approach is ‘pay-as-you-go’ in the sense that query answering is fully delegated
to the datalog reasoner whenever the input ontology is expressed in any of the
OWL 2 profies; furthermore, even when using an out-of-profile ontology, queries
can often be fully answered using only the datalog reasoner; and even when the
fully-fledged reasoner is required, PAGOdA employs a range of optimisations,
including relevant subset extraction, summarisation and dependency analysis,
to reduce the number and size of the relevant reasoning problems.

This approach has proved to be very effective in practice: in our tests of
more than 4,000 queries over 8 ontologies, none of which is contained within
any of the OWL profiles, more than 99% of queries were fully answered without

1 In practice we are limited by the capabilities of OWL 2 reasoners, which typically
restrict the structure of the ontology and/or query in order to ensure decidability
(which is open for CQ answering over unrestricted OWL 2 ontologies).
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resorting to the fully-fledged reasoner. Moreover, even when the fully-fledged
reasoner was used, the above mentioned optimisations were highly effective: the
size of the dataset was typically reduced by an order magnitude, and often by
several orders of magnitude, and it seldom required more than a single test to
resolve the status of all potential answer tuples. Taken together, our experiments
demonstrate that PAGOdA can provide an efficient conjunctive query answering
service in real-world scenarios requiring both expressive ontologies and datasets
containing hundreds of millions of facts.

The basic approach implemented in PAGOdA has been described in [13–15],
and full details about the algorithms currently implemented can be found in a
an accompanying technical report.2 Here, we provide an overview of the system
and summarise the results of an extensive evaluation.

2 The PAGOdA System

PAGOdA is written in Java and it is available under an academic license.3 As
well as RDFox and HermiT, PAGOdA also exploits the combined approach for
ELHOr

⊥ implemented in KARMA.4

PAGOdA accepts as input arbitrary OWL 2 DL ontologies, datasets in turtle
format and CQs in SPARQL. Queries can be interpreted under ground or certain
answer semantics. In the former case, PAGOdA is sound and complete. In the
latter case, however, PAGOdA is limited by the capabilities of HermiT, which
can only check entailment of ground or DL concept queries; hence, PAGOdA
can guarantee completeness only if the lower and upper bounds match, or if the
query can be transformed into a DL concept query via rolling-up.5 Otherwise,
PAGOdA returns a sound (but possibly incomplete) set of answers, along with
a bound on the incompleteness of the computed answer set.

The architecture of PAGOdA is depicted in Figure 1. We could, in principle,
use any materialisation-based datalog reasoner that supports CQ evaluation and
the incremental addition of facts, and any fully-fledged OWL 2 DL reasoner that
supports fact entailment.

PAGOdA uses four instances of RDFox (one in each of the lower and upper
bound and subset extractor components) and two instances of HermiT (one in
each of the summary filter and dependency graph components).

The process of fully answering a query can be divided into several steps. Here,
we distinguish between query independent steps and query dependent ones. As
we can see in Figure 1, the ‘loading ontology’ and ‘materialisation’ steps are
query independent. Therefore, both of them are counted as pre-processing steps.
‘Computing query bounds’, ‘extracting subset’ and ‘full reasoning’ are query
dependent, and are called query processing steps.

We next describe each component, following the process flow of PAGOdA.

2 http://www.cs.ox.ac.uk/isg/tools/PAGOdA/pagoda-tr.pdf
3 http://www.cs.ox.ac.uk/isg/tools/PAGOdA/
4 http://www.cs.ox.ac.uk/isg/tools/KARMA/.
5 PAGOdA implements an extension of the well-known rollig-up technique.
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Fig. 1: The architecture of PAGOdA

Loading ontology and data. PAGOdA uses the OWL API to parse the input
ontology O. The dataset D is given separately in turtle format. The normaliser
then transforms the ontology into a set of rules corresponding to the axioms in
O. PAGOdA’s normaliser is an extension of HermiT’s clausification component
[5], which transforms axioms into so-called DL-clauses [12]. The dataset D is
loaded directly into (the four instances of) RDFox.

After normalisation, the ontology is checked to determine if it is inside OWL
2 RL (resp. ELHOr

⊥); if so, then RDFox (resp. KARMA) is already sound and
complete, and PAGOdA simply processes O, D and subsequent queries using the
relevant component. Otherwise, PAGOdA uses a variant of shifting—a polyno-
mial program transformation commonly used in Answer Set Programming [4]—
to enrich the deterministic part of the ontology with some additional information
from disjunctive rules, resulting in a rule set Σ.

Materialisation. There are three components involved in this step, namely
lower bound, c-chase and c-chasef . Each of these takes as input Σ and D, and
each computes a materialisation (shown in Figure 1 as ellipses). The lower bound
component first uses RDFox to compute a materialisation of D using the dat-
alog subset of Σ; it then uses the materialised dataset as input to KARMA,
which computes the materialisation ML

2 using the ELHOr
⊥ subset of Σ. The

c-chase and c-chasef components compute the MU
2 and MU

3 upper bound ma-
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terialisations using chase-like procedures [1]. The former (MU
2 ) is computed by

over-approximating Σ into datalog; this involves, roughly speaking, transform-
ing disjunctions into conjunctions, and replacing existentially quantified vari-
ables with fresh constants [15]. However, PAGOdA optimises the treatment of
“Skolemised” existential rules by not applying them if the existential restriction
is already satisfied in the data. In MU

3 , PAGOdA further optimises the treat-
ment of disjunctions by selecting a single disjunct in the head of disjunctive
rules, using a heuristic choice function that tries to select disjuncts that will not
(eventually) lead to a contradiction.

If ⊥ is derived while computing ML
2 , then the input ontology and dataset is

unsatisfiable, and PAGOdA simply reports this and terminates. If ⊥ is derived
while computingMU

3 , then the computation is aborted andMU
3 is no longer used.

If ⊥ is derived while computing MU
2 , then PAGOdA checks the satisfiability of

Σ∪D (using the optimised query answering procedure described below). If Σ∪D
is unsatisfiable, then PAGOdA reports this and terminates; otherwise the input
ontology and dataset is satisfiable, and PAGOdA is able to answer queries.

Computing query bounds. Given a query q, PAGOdA uses the ML
2 lower

bound materialisation to compute the lower bound answer Lq, exploiting the
filtration procedure in KARMA to eliminate spurious answer tuples (shown as
a circle with an “F” in it in Figure 1). If ⊥ was not derived when computing the
MU

3 materialisation, then the upper bound answer Uq is the intersection of the
query answers w.r.t. MU

3 and MU
2 ; otherwise Uq is computed using only MU

2 .

Extracting subsets. If Lq = Uq, then PAGOdA simply returns Lq; otherwise
it must determine the status of the tuples in the “gap” Gq = Uq \Lq. To do this,
PAGOdA extracts subsets of Σ and D that are sufficient to check the entailment
of each such tuple. First, the tracking encoder component is used to compute a
datalog program that tracks rule applications that led to the derivation of the
tuples in Gq. This program is then added to the rules and data in the c-chase
component, and RDFox is used to extend the c-chase materialisation accordingly.
The freshly derived facts (over the tracking predicates introduced by the tracking
encoder) are then passed to the subset extractor component, which identifies the
relevant facts and rules in Σ and D.

Full reasoning. PAGOdA uses HermiT to verify answers in Gq. As HermiT
only accepts queries given either as facts or DL concepts, we have implemented
the standard rolling-up technique to transform CQs into concepts [7]. In the sum-
mary filter component, PAGOdA uses summarisation techniques inspired by the
SHER system to quickly identify spurious gap tuples [2, 3]. The remaining gap
answers G′ ⊆ Gq are then passed to the endormorphism checker, which exploits
a greedy algorithm to compute a (incomplete) dependency graph between an-
swers in G′. An edge a→ b in such graph between gap answers a and b encodes
the following dependency: b is a spurious answer whenever a is, in which case it
makes sense to check a using the fully-fledged reasoner before checking b. This
information is used by the heuristic planner to optimise the order in which the
answers in G′ are checked using HermiT. Finally, verified answers from G′ are
combined with the lower bound Lq.

312



]axioms ]rules ]∃-rules ]∨-rules ]facts

LUBM(n) 93 133 15 0 n× 105

UOBM(n) 186 234 23 6 2.6n× 105

FLY 14,447 18,013 8396 0 8× 103

NPD 771 778 128 14 3.8× 106

DBPedia+ 1,716 1,744 11 5 2.9× 107

ChEMBL 2,593 2,960 426 73 2.9× 108

Reactome 559 575 13 23 1.2× 107

Uniprot 442 459 20 43 1.2× 108

Table 1: Statistics for test datasets

3 Evaluation

We have evaluated our PAGOdA on a range of realistic and benchmark ontolo-
gies, datasets and queries. Experiments were conducted on a 32 core 2.60GHz
Intel Xeon E5-2670 with 250GB of RAM, and running Fedora 20. All test on-
tologies, queries, and results are available online.6

3.1 Test Setting

Table 1 summarises our test data. Each column from left to right indicates the
number of DL axioms, the number of rules after normalisation, the number of
rules containing ∃, the number of rules containing ∨ in each ontology and the
number of facts in each dataset.

LUBM and UOBM are widely-used reasoning benchmarks [6, 10]. To make the
tests on LUBM more challenging, we extended the benchmark with 10 additional
queries for which datalog lower-bound answers are not guaranteed to be complete
(as is the case for the standard queries).

FLY is an ontology used in the Virtual Fly Brain tool.7 Although the dataset
is small, the ontology is rich in existentially quantified rules, which makes query
answering challenging. We tested 6 CQs provided by the ontology developers.

NPD FactPages is an ontology describing petroleum activities in the Norwe-
gian continental shelf. The ontology comes with a dataset containing 3.8 million
facts. We tested all atomic queries over the signature of the ontology.

DBPedia contains information about Wikipedia entries. Although the dataset
is rather large, the ontology axioms are simple and can be captured by OWL 2
RL. To provide a more challenging test, we have used LogMap [8] to extend
DBPedia with a tourism ontology containing both existential and disjunctive
rules. We again focused on atomic queries.

ChEMBL, Reactome, and Uniprot are ontologies that are available from
the European Bioinformatics Institute (EBI) linked data platform.8 They are

6 http://www.cs.ox.ac.uk/isg/tools/PAGOdA/2015/jair/
7 http://www.virtualflybrain.org/site/vfb site/overview.htm
8 http://www.ebi.ac.uk/rdf/platform
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Fig. 2: Quality of the answers computed by each system. The four bars for each
ontology represent Trowl, Pellet, HermiT and Hydrowl respectively.

rich in both existential and disjunctive rules, and the datasets are large. In
order to test scalability, we computed subsets of the data using a data sampling
algorithm based on random walks [9]. We tested example queries provided on
the EBI website as well as all atomic queries over the relevant signatures.

3.2 Experiments and Results

Comparison with Other Systems We compared PAGOdA with HermiT
(v.1.3.8), Pellet (v.2.3.1), TrOWL-BGP (v.1.2), and Hydrowl (v.0.2). Although
TrOWL is incomplete for OWL 2, it has been included in the evaluation because,
like PAGOdA, it exploits ontology approximation techniques.

In this test we used LUBM(1) and UOBM(1), 1% of the dataset for ChEMBL
and UniProt, and 10% for Reactome; these are already hard for some systems,
but can be processed by most. We rolled up all 6 queries into concepts wherever
possible to get LUBM rolledUp, UOBM rolledUp and FLY rolledUp. Since the
answers to the FLY queries under SPARQL semantics are all empty, we only
present results for FLY rolledUp. We set timeouts of 20min for each individual
query, and 5h for all the queries over a given ontology.

In Figure 2, each bar represents the performance of a particular reasoner
w.r.t. a given ontology and set of test queries. We use green to indicate the
percentage of queries for which the reasoner computed all the correct answers,
where correctness was determined by majority voting, and blue (resp. purple) to
indicate the percentage of queries for which the reasoner was incomplete (resp.
unsound). Red, orange and grey indicate, respectively, the percentage of queries
for which the reasoner reported an exception during execution, did not accept
the input query, or exceeded the timeout. PAGOdA is not represented in the
figure as it was able to correctly compute all answers for every query and test
ontology within the given timeouts.

Figure 3 summarises the performance of each system relative to PAGOdA,
but in this case we considered only those queries for which the relevant system
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Fig. 3: Performance comparison with other systems.

yields an answer (even if unsound and/or incomplete). This is not ideal, but
we chose to consider all such queries (rather than only the queries for which
the relevant system yields the correct answer) because (i) the resulting time
measurement is obviously closer to the time that would be required to correctly
answer all queries; and (ii) correctness is only relative as we do not have a
gold standard. For each ontology and reasoner, the corresponding bar shows
t2/t1 (on a logarithmic scale), where t1 (resp. t2) is the total time required by
PAGOdA (resp. the compared system) to compute the answers to the queries
under consideration; a missing bar indicates that the comparison system failed
to answer any queries within the given timeout. Please note that two different
bars for the same ontology are not comparable as they may refer to different sets
of queries, so each bar needs to be considered in isolation.

TrOWL is faster than PAGOdA on LUBM rolledUp, UOBM rolledUp and
FLY rolledUp, but it is incomplete for 7 out of 14 LUBM queries and 3 out of
4 UOBM queries. For ChEMBL, TrOWL exceeds the timeout while performing
the satisfiability check. For the remaining ontologies, PAGOdA is more efficient
in spite of the fact that TrOWL is incomplete for some queries, and even unsound
for several UniProt queries.

Pellet times out for the FLY ontology, but it succeeds in computing all answers
in the remaining cases. We can observe, however, that in all cases Pellet is signif-
icantly slower than PAGOdA, sometimes by more than two orders of magnitude.

HermiT can only answer queries with one distinguished variable, so we could
not evaluate binary queries. HermiT exceeds the timeout in many cases, and in
the tests where it succeeds, it is significantly slower than PAGOdA.

Hydrowl is based on a theoretically sound and complete algorithm, but it was
found to be incomplete in some of our tests. It also exceeded the timeout for
three of the ontologies, ran out of memory for another two of the ontologies,
and reported an exception for ChEMBL 1%. In the remaining cases, it was
significantly slower than PAGOdA.
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Fig. 4: Scalability tests on benchmarks

Scalability Tests We tested the scalability of PAGOdA on LUBM, UOBM and
the ontologies from the EBI platform. For LUBM we used datasets of increasing
size with a step of n = 100. For UOBM we also used increasingly large datasets
with step n = 100 and we also considered a smaller step of n = 5 for hard
queries. Finally, in the case of EBI’s datasets, we computed subsets of the data
of increasing sizes from 1% of the original dataset up to 100% in steps of 10%.
In each case we used the test queries described in Section 3.1. For each test
ontology we measured pre-processing time and query processing time as described
in Section 2. We organise the test queries into three groups: G1: queries for which
the lower and upper bounds coincide; G2: queries with a non-empty gap, but for
which summarisation is able to filter out all remaining candidate answers; and
G3: queries where the fully-fledged reasoner is called over an ontology subset
on at least one of the test datasets. We set a timeout of 2.5h for each individual
query and 5h for all queries.

We also tested Pellet (the only other system found to be sound and complete
for our tests) on Reactome, the only case were Pellet managed to process at least
two datasets.

Our results are summarised in Figures 4 and 5. For each ontology, we plot
time against the size of the input dataset, and for query processing we distin-
guish different groups of queries as discussed above. PAGOdA behaves relatively
uniformly for queries in G1 and G2, so we plot only the average time per query
for these groups. In contrast, PAGOdA’s behaviour for queries in G3 is quite
variable, so we plot the time for each individual query.
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Fig. 5: Scalability tests on EBI linked data platform

LUBM(n) All LUBM queries belongs to either G1 or G3 with the latter group
containing two queries. The average query processing time for queries in G1
never exceeds 13s; for the two queries in G3 (Q32 and Q34), this reaches 8, 000s
for LUBM(800), most of which is accounted for by HermiT.

UOBM(n) As with LUBM, most test queries were contained in G1, and their
processing times never exceeded 8 seconds. We found one query in G2, and
PAGOdA took 569s to answer this query for UOBM(500). UOBM’s randomised
data generation led to the highly variable behaviour of Q18: it was in G3 for
UOBM(1) UOBM(10) and UOBM(50), causing PAGOdA to time out in the last
case; it was in G2 for UOBM(40); and it was in G1 in all other cases.

ChEMBL All test queries were contained in G1, and average processing time
was less than 0.5s in all cases.
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LUBM UOBM FLY NPD DBPedia ChEMBL Reactome UniProt

Total 35 20 6 478 1247 1896 130 240
L1 + U1 26 4 0 442 1240 1883 82 204
L2 + U1 33 4 5 442 1241 1883 82 204
L2 + U2 33 12 5 442 1241 1883 98 204
L2 + U2|3 33 16 5 473 1246 1896 128 236

Table 2: ]Queries answered by different bounds

Reactome Groups G2 and G3 each contained one query, with all the remaining
queries belonging to G1. Query processing time for queries in G1 never exceeded
10 seconds; for G2 processing time appeared to grow linearly in the size of
datasets, and average time never exceeded 10 seconds; the G3 query (Q65) is
much more challenging, but it could still be answered in less than 900 seconds,
even for the largest dataset.

On Reactome, Pellet is able to process the samples of size 10%, 20% and 30%,
with pre-processing times comparable to PAGOdA. Average query-processing
times for queries in G1 and G2 are slightly higher than those of PAGOdA,
but times for query Q65 were significantly higher. This was due to PAGOdA’s
subset extraction technique, which is able to keep the input to the fully-fledged
reasoner small, even for the largest datasets.

Uniprot In contrast to the other cases, Uniprot as a whole is unsatisfiable;
however, our sampling technique can produce a satisfiable subset up to 40%.
For larger subsets, pre-processing times drop abruptly as unsatisfiability can
be efficiently detected in the lower bound. Query processing times were only
considered for satisfiable samples. There were no queries in G3, and only four
in G2, all of which were efficiently handled.

Effectiveness of Different Techniques We have evaluated the effectiveness
of the various reasoning techniques implemented in PAGOdA by comparing the
numbers of test queries that can be fully answered using the relevant technique.

Query bounds Table 2 illustrates the effectiveness of different combinations
of upper and lower bounds in terms of the number of queries for which the
bounds coincided for each test ontology and its smallest test datasets. In the
table, we refer to the lower bound computed w.r.t. the datalog subset of the
input knowledge base as L1 and to the combined lower bound computed by
PAGOdA as L2. Similarly, we refer the naive upper bound computed using a
datalog over-approximation of Σ as U1; the upper bound computed w.r.t. MU

2

and MU
3 as U2 and U3; and the combined upper bound as U2|3.

It can be seen that L1 and U1 suffice to answer most of the queries in many
test ontologies. L2 was very effective in the case of FLY, where the basic bounds
did not match for any query, and also useful for LUBM, yielding matching bounds
for 7 more queries. U2, was especially effective for UOBM and Reactome, where
many existentially quantified rules were already satisfied by the lower bound
materialisation. Finally, the refined treatment of disjunctive rules in U2|3 was
instrumental in obtaining additional matching bounds for non-Horn ontologies.
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LUBM UOBM Fly NPD DBPedia Reactome Uniprot

Facts 0.5% 10.4% 7.3% 16.5% 9× 10−5% 5.2% 4× 10−4%
Rules 3.7% 10.9% 0.9% 18.4% 2.4% 5.3% 1.1%

Table 3: Size of the largest subsets given as percentage over input rules and facts.

LUBM UOBM FLY DBPedia NPD Reactome UniProt

L2 + U2|3 26 14 264 112 1470 264 344 10 326 18 52 168
+ Sum 26 14 264 0 1444 264 344 0 0 0 52 0
+ Dep 1 1 1 0 1 1 7 0 0 0 37 0

Table 4: The number of hard calls to HermiT to fully answer each query

Subset extraction Table 3 shows, for each dataset, the maximum percentage
of facts and rules that are included in the relevant subset over all test queries
with non-matching bounds. We can observe that subset extraction is effective in
all cases in terms of both facts and rules.

Summarisation and Dependencies The effectiveness of these techniques was
measured by the number of ‘hard’ calls to HermiT that were required to fully
answer each query, where a call is considered hard if the knowledge base passed
to HermiT is not a summary. The first row of Table 4 shows the number of
gap answers for each query where the L2 and U2|3 bounds don’t match. Without
optimisation, we would have to call HermiT this number of times to fully answer
each query. Row 2 (resp. row 3) shows the number of hard calls to HermiT after
applying summarisation (resp. summarisation plus dependency analysis).

4 Discussion

The reasoning techniques we have proposed here are very general and are ap-
plicable to a wide range of knowledge representation languages. Our main goal
in practice, however, has been to realise our approach in a highly scalable and
robust query answering system for OWL 2 DL ontologies, which we have called
PAGOdA. Our extensive evaluation has not only confirmed the feasibility of our
approach in practice, but also that our system PAGOdA significantly ourper-
forms state-of-the art reasoning systems in terms of both robustness and scal-
ability. In particular, our experiments using the ontologies in the EBI linked
data platform have shown that PAGOdA is capable of fully answering queries
over highly complex and expressive ontologies and realistic datasets containing
hundreds of millions of facts.
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pp. 129–137. AAAI Press (2014), http://www.aaai.org/ocs/index.php/AAAI/

AAAI14/paper/view/8505

12. Motik, B., Shearer, R., Horrocks, I.: Hypertableau reasoning for description logics.
Journal of Artificial Intelligence Research 36, 165–228 (2009), http://dx.doi.org/
10.1613/jair.2811

320



13. Zhou, Y., Nenov, Y., Cuenca Grau, B., Horrocks, I.: Complete query answering
over horn ontologies using a triple store. In: The Semantic Web - ISWC 2013 -
12th International Semantic Web Conference, Sydney, NSW, Australia, October
21-25, 2013, Proceedings, Part I. Lecture Notes in Computer Science, vol. 8218,
pp. 720–736. Springer (2013)

14. Zhou, Y., Nenov, Y., Cuenca Grau, B., Horrocks, I.: Pay-as-you-go ontology query
answering using a datalog reasoner. In: Informal Proceedings of the 27th Interna-
tional Workshop on Description Logics, Vienna, Austria, July 17-20, 2014. CEUR
Workshop Proceedings, vol. 1193, pp. 352–364. CEUR-WS.org (2014)

15. Zhou, Y., Nenov, Y., Cuenca Grau, B., Horrocks, I.: Pay-as-you-go OWL query
answering using a triple store. In: Proceedings of the Twenty-Eighth AAAI Con-
ference on Artificial Intelligence (2014), http://www.aaai.org/ocs/index.php/

AAAI/AAAI14/paper/view/8232

321



An Ontology-Based Archive for
Historical Research

Giovanni Adorni1, Marco Maratea1, Laura Pandolfo1, and Luca Pulina2
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1 Context and Motivation

The digitalization of cultural materials is doubtless a key-enabler for increas-
ing accessibility of cultural heritage documents, e.g., historical texts. In the last
decade Semantic Digital Libraries (see, e.g., [1]) have attracted the attention
of research communities coming from different research areas, such as Cultural
Heritage, History, and Knowledge Engineering. In order to find more innovative
methods to improve search and retrieval operations, recently portals and dig-
ital libraries concerning Cultural Heritage have been enhanced with Semantic
Web [2] technologies. Such technologies can offer effective solutions about design
and implementation of user-friendly ways to access and query content and meta-
data [1]. In this context, a prominent example is the Europeana project [3]3.

Particularly, cultural heritage documents are characterized by being syntacti-
cally and semantically heterogeneous, multilingual, semantically rich, and highly
interlinked. They are produced in a distributed, open fashion by organizations
like museums, libraries, and archives, using their own established standards and
best practices [4]. Historical documents represent an important component of
the cultural heritage field, and they have been digitized and published on the
web by means of several applications.

In this extended abstract we present stole4, an ontology-based digital archive
collecting some of the most relevant journal articles published between 1848 and
1946 concerning the legislative history of public administration in Italy. In stole
we leverage ontologies for describing domain knowledge and providing semantic
information integration among data in order to support historians’ research. The
documents stored in stole are regarded as a valuable source of information for
historical research since through the study of these texts it is possible to trace
the course of Italian history and often to find out some unexplored but useful
aspects about a particular event or person. Currently, these historical sources

3 http://europeana.eu
4 stole is the acronym of the Italian “STOria LEgislativa della pubblica amminis-
trazione italiana”, that means “legislative history of the Italian public administra-
tion”.
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Fig. 1. The architecture of stole.

can be accessed going to the State Archives of Rome or to libraries that have
a copy, but in both cases historians are not supported by information system
during their research. Our ontology-based archive intends to handle this histori-
cal information providing search features and capabilities such that the user can
search over this document collection. In the next section, we give details of the
components of the system, while the abstract is concluded in Section 3 by listing
the future work planned.

2 System Architecture

In Figure 1 we describe the architecture of stole; looking at the figure, we can
see that it is composed of the modules listed in the following:

Ontology It represents the conceptual layer of our application. It is used to
represent knowledge concerning journals, authors, cited people and events,
as well as the relations between them. The DL expressivity if the stole5

ontology is ALCOIQ(D), and it is composed of 2909 axioms. Actually,
it is comprised of 342 individuals, its population is growing continuously.
It has been developed building on existing standards and meta-data vo-
cabularies, such as Dublin Core (http://dublincore.org), FOAF (http:
//www.foaf-project.org), Bio Vocabulary (http://vocab.org/bio/0.1)
and the Bibliographic Ontology (http://bibliontology.com). Concerning
the modeling ontology language, our choice falls to OWL2 DL [5]. We also

5 The full documentation is available at http://visionlab.uniss.it/STOLE_DOC
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considered some lightweight profiles, but we cannot avoid to introduce both
cardinality restrictions and other role constraints, e.g., inverse object prop-
erties, in order to have proper expressivity for our application. The stole
ontology has been populated leveraging on a set of annotated historical doc-
uments. Such semantic annotations were provided by a team of domain ex-
perts. Finally, we also developed a data integration layer in order to exploit
information coming from external sources, such as DBpedia [6] and the On-
tology of the Chamber of Deputies6.

Inference Engine This module interacts with Ontology to check its consis-
tency and to infer new knowledge to present to the user. Actually, we are
using the HermiT reasoner [7].

Triple Store and SPARQL Endpoint They are the modules devoted to store
and query the knowledge base, respectively. For these purposes, we are cur-
rently using Open Virtuoso7.

STOLE Application In this module we implemented all functionalities related
to query the data to SPARQL Endpoint and to process the answer in order
to be presented to the user by means of the GUI.

GUI It is devoted to the user-system interaction and it aims at providing data
representations widely used in the historical research field, such as timelines
of historical events.

3 Conclusion and Future Work

We have presented an ontology-based archive and its application in the histor-
ical research domain, which includes numerous key aspects of Semantic Web.
The current implementation of this framework can be extended in several ways.
First of all, we are designing a Graphical User Interface to support the ontology
population stage, in order to make this process of knowledge acquisition more
interactive and dynamic. Finally, we are planning to introduce in stole a seman-
tic indexing mechanism using Apache Solr8, in order to extend keyword-based
search functionalities.

6 http://dati.camera.it/data/en
7 http://www.openlinksw.com/
8 http://lucene.apache.org/solr
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Abstract. This paper studies the extension of description logics with
variables ranging over infinite domains of concept names and role names.
As a preliminary work, we consider more specifically the extension of the
logic EL with variables and we investigate in this context two reason-
ing mechanisms, namely compliance (a kind of matching) and pattern
containment. The main technical results are derived by establishing a
correspondance between the EL logic and finite variable automata.

1 Introduction

We consider description logics augmented with variables ranged over concept
names and role names. As an example, consider the following description:

B ≡ Person u ∃works-for.X u ∃graduated-from.X (1)

where the variable X takes its values from an infinite set of possible atomic
concept names. B specifies the set of persons that work for the same type of
organization they were graduated from. Specifications of type (1) are called
hereafter a pattern definition and B is called a pattern name (or simply a pat-
tern). An instanciation of a pattern is given by variable valuations. For example,
if the variable X is assigned as value the atomic concept name University (re-
spectively, eSchool), we obtain the following description B1 (respectively, B2)
which is compliant with the pattern B:

B1 ≡ Person u ∃works-for.University u ∃graduated-from.University

B2 ≡ Person u ∃works-for.eSchool u ∃graduated-from.eSchool

Variables can also be used in role places as illustrated by the following pattern
definition:

B3 ≡ Person u ∃Y.Z u ∃.graduated-from.Z

The concept B3 specifies the set of persons that have a relation (i.e., any kind of
role) with the same type of organization they are graduated from. Indeed, the

326



concept B1 is compliant with B3 and it is also the case of the concept B4 defined
as follows:

B4 ≡ Person u ∃evaluates.eSchool u ∃graduated-from.eSchool

Our framework supports terminological cycles as illustrated below with the pat-
tern B5 which specifies the persons that work for the same type of organization
they are graduated from and have a relative who also work for the same type of
organization she is graduated from.

B5 ≡ Person u ∃works-for.X ′ u ∃graduated-from.X ′ u ∃has-relative.B5

For a description logic L, we denote by LV the obtained logic augmented with
concept variables and role variables. We study the following reasoning mecha-
nisms in this framework (formal definitions are given later in the paper):

– Compliance which asks whether a description E is compliant with a pattern
C.

– Pattern containment which, given two pattern definitions C1 and C2, asks
whether every description E compliant with C1 is also compliant with C2.

Indeed, the notion of a concept pattern (i.e., a concept description containing
variables) is not new and has already been used, in particular, in the context of
two non-standard reasonings, namely matching [1] and unification [2,4]. Given
a concept pattern D and a concept description C, the matching problem asks
whether there is a substitution σ of the variables by concept descriptions such
that C v σ(D). Unification is a generalization of matching. It takes as input
concept patterns and asks whether there exist a substitution of the variables by
concept descriptions that makes the concept patterns equivalent. Our definition
of concept patterns deviate from the one used in the literature with respect to
the following features: (i) our definition of concept patterns is more liberal in the
sense that we allow concept variables as well as role variables while usually only
concept variables are allowed in concept patterns, (ii) we support cyclic pattern
definitions and, inspired from the guarded variable automata theory, we consider
two different types of semantics of variables (i.e., refreshing and not refreshing
semantics), and (iii) our interpretation of variables is however more restrictive in
this paper since we consider only atomic variables (i.e., we assume that variables
take their values from an infinite set of atomic concept names and role names).
An extension of this framework to variables that stand for descriptions would be
an interesting research direction. From the reasoning perspective, our notion of
compliance coincides with matching however, up to our knowledge, the notion
of pattern containment has never been investigated in the literature.

We expect the proposed framework to be useful in various applications. For
example, concept patterns have already been proven to be beneficial in applica-
tions where a given user is interested ‘to search the knowledge base for concepts
having a certain not completely specified form’ [6]. Targeting a similar purpose,
we envision our framework to be useful as query language to: (i) formulate queries
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over terminologies. For example, the concept B3 given above can be viewed as
a query over a given terminology while the concepts B1 and B2 are examples
of answers to such a query, or (ii) to formulate ontological queries (i.e., queries
over an ontology) in the context of an Ontology Based Data Access (OBDA)
approach [7]. The reasoning mechanisms studied in this paper can prove partic-
ularly relevant to handle query evaluation and optimisation in such contexts.

Organization of the paper. Section 2 presents some preliminary notions regarding
state machines and guarded variable automata. Section 3 recalls some basic
notions of the EL description logic and describes the extension of this logic with
variables, the obtained logic is called ELV . Section 4 studies the compliance and
the containment problems in the context of the ELV logic. We conclude and
draw future research directions in section 5. Proofs are omitted and are included
in the extended version of this paper [13].

2 Preliminaries

We first recall the notion of state machines [9] and simulation preorder between
state machines. A State MachineM is a tuple< ΣM , QM , FM , Q

0
M , δM >, where:

ΣM is a finite alphabet, QM is a set of states with Q0
M ⊆ QM the set of initial

states and FM ⊆ QM the set of final states, δM ⊆ QM × ΣM × QM is a set
of labeled transitions. If QM is finite then M is called a finite state machine. If
q ∈ Q0

M is an initial state of a machine M , we say that M is rooted at q.

LetM =< ΣM , QM , FM , Q
0
M , δM > andM ′ =< ΣM ′ , QM ′ , FM ′ , Q0

M ′ , δM ′ >
be two (eventually, infinite) state machines. A state q1 ∈ QM is simulated by a
state q′1 ∈ QM ′ , noted q1 � q′1, iff the following two conditions hold : (i) ∀a ∈ ΣM
and ∀q2 ∈ QM such that (q1, a, q2) ∈ δM , there exists (q′1, a, q

′
2) ∈ δM ′ such that

q2 � q′2, and (ii) if q1 ∈ FM , then q′1 ∈ FM ′ . M is simulated by M ′, noted
M �M ′, iff ∀qM ∈ Q0

M ,∃q′M ′ ∈ Q0
M ′ s.t. qM � qM ′ .

We briefly introduce now the notion of (Guarded) Variable Automata [5].
Let X be a finite set of variables and Σ an infinite alphabet of letters. The set
G of guards is inductively defined as follows: G := true | α = β | α 6= β | G ∧ G
where α, β ∈ Σ ∪ X . A GVA is a tuple A = (Σ,X , Q,Q0, δ, F, µ), where Σ is
an infinite set of letters, X is a finite set of variables, Q is a finite set states,
Q0 ⊆ Q is a finite set of initial states, δ : Q× (ΣA ∪X )×G → 2Q is a transition
function where ΣA ⊂ Σ is a finite set of alphabet, F ⊆ Q is a finite set of final
states and µ : X → 2Q is called the refreshing function.

In the sequel, we write (q, t, g, q′) to denote a transition from q to q′, when
q′ ∈ δ((q, t, g)). At every point in time, a run of a GVA A is determined by its
instantaneous description (or simply, configuration). A configuration of a GVA
A is given by a pair id = (q, σ) where q ∈ Q is a state in A and σ : X → Σ is a
variable valuation. A valuation σ is extended to be the identity over the elements
of Σ. The satisfaction of a guard g by a valuation σ, denoted σi |= g, is defined
as usual. A run of A starts at an initial configuration id0 = (q0, σ0), with q0 ∈ Q0
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an initial control state of A and σ0 an arbitrary valuation of the variables of X 3.
Then A moves from a configuration idi = (qi, σi) to a configuration idj = (qj , σj)
over the letter σi(t) if there is a transition (qi, t, g, qj) ∈ δ s.t. σi |= g and
σi(x) = σj(x),∀x ∈ X \ µ(qj) (i.e., σi and σj coincide on the values of the
variables that are not refreshed at the state qj). Hence, given a GVA A, the runs
of a A is captured by an infinite state machine called the extended machine of
A and denoted E(A). Roughly speaking, E(A) is made of all the configurations
of A and all the transitions between these configurations. Simulation between
two guarded automata A and B, noted A � B, is defined as simulation between
their associated state machines, i.e., A � B iff E(A) � E(B).

3 Description logic with variables

Let NA and NR be respectively two disjoint and potentially infinite sets of atomic
concept names and role names and let L be a description logic. Let NC be an
infinite set of concept names including the atomic concept names (i.e., NA ⊆
NC). Concept descriptions specified in the logic L (or L-descriptions) are built
from concept names NC and role names NR using the constructors of L. The
semantics of L-descriptions is defined as usual. LetNCT ⊂ NC andNRT ⊂ NR be
respectively two finite sets of concept names and role names. An L-terminology
T over the set of concept names NCT and the set of role names NRT is a set of
concept definitions of the form A ≡ D, where A ∈ NCT is a concept name and D
is an L-description. Atomic concept names (i.e., elements of NA) are prohibited
from appearing in a left-hand side of a definition while the the concept names
occurring of NCT \ NA, called defined concepts, must appear at the left-hand
side of a definition. We assume that a terminology does not contain multiple
definitions and we allow cyclic definitions. In this paper, we study reasoning in
the context of a gfp-semantics [3].

Introducing variables. Let NA, NR and NC defined as previously. For a
description logic L, we note by LV the corresponding description logic augmented
with variables. To define the logic LV , we extend the sets of concept names and
roles names with variables. Let Ncv and Nrv be respectively the sets of concept
and role variables. The sets Ncv, Nrv and NR ∪ NC are pairwise disjoints. In
the sequel, we use the letters X,Y, . . . to denote variables. An LV -terminology
is defined over the set of concept terms NCT ⊂ NC ∪Ncv and role terms NRT ⊂
NR∪Nrv. Hence, LV -patterns (or simply patterns), are built from concept terms
NCT and role terms NRT using the L-constructors. Therefore, an LV -terminology
is a set of pattern definitions of the form C ≡ D, where C ∈ NCT \ (NA∪Ncv) is
a concept name and D is an LV -description. We allow indeed cyclic definitions
in LV -terminologies.

3 Note that we adopt a slight different vision of configurations than [5] who considers,
for example, a unique initial configuration id0 = (q0, ∅).
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Pattern valuation. Concept (respectively, role) variables take their values from
the infinite set of atomic concept names (respectively, role names). This is
captured by the notion of valuation. A variable valuation is a mapping σ :
Ncv ∪Nrv → NA ∪NR which maps concept variables into atomic concepts and
role variables into role names. We denote by Val the infinite set of all such
possible valuations. Valuations are straightforwardly extended to LV -patterns
by considering that a valuation is the identity on elements of NC ∪ NR. Con-
tinuing with the example of section 1, and taking a valuation σ1 such that
σ1(X) = University, σ1(Y ) = works-for and σ1(Z) = University we obtain
σ1(B) ≡ B1 and σ1(B3) ≡ B1. If we consider now a valuation σ2 such that
σ2(X) = σ2(Z) = eSchool and σ2(Y ) = evaluates we obtain σ2(B) ≡ B2 and
σ2(B3) ≡ B4. Hence, for an LV -pattern C, σ(C) is an L-description. As a conse-
quence, an LV -pattern C describes a (potentially infinite) set of L-descriptions
(corresponding to the potentially infinite number of possible valuations). We
extend the notion of valuation to LV -teminologies as follows: given an LV -
terminology T and a variable valuation σ, we denote by σ(T ) the terminology
made of the definitions of the form A ≡ σ(D) such that A ≡ D is a pattern
definition in T . Therefore, an LV -terminology T specifies an (infinite) set of
L-terminologies σ(T ),∀σ ∈ Val.

Variants of variable semantics. Several possibilities exist to define the seman-
tics of variables depending on the restrictions imposed on variable valuations.
We borrow the notion of non-deterministic reassignment of variables from vari-
able automata semantics [10,8,5], to define in this paper two classes of variable
semantics: refreshing vs. non refreshing variable semantics. The demarcation be-
tween these two kinds of semantics lies in the valuation of variables that appear
in the scope of a terminological cycle. A non refreshing semantics requires to
have a unique valuation of such variables while a refreshing semantics enables to
assign different values to the same variable for each unfolding of a cycle. To make
the meaning of each semantics clear, let us consider again the pattern B5 given
at section 1. A one-step unfolding of B5 leads to the following pattern descrip-
tion: Personu∃works-for.X ′ u graduated-from.X ′ u∃has-relative.(Personu
∃works-for.X ′′ugraduated-from.X ′′u∃has-relative.B5). A non-refreshing se-
mantics allows only valuations σ that satisfy σ(X ′) = σ(X ′′) while a refreshing
semantics permits to have different valuations for X ′ and X ′′ (i.e., we may have
σ(X ′) 6= σ(X ′′)). Indeed, in a non-refreshing semantics, the same variable can be
used for both X ′ and X ′′ and hence the number of variables used in a (unfolded)
definition is always finite. The case of refreshing semantics is different since in
this case a cyclic pattern refers (implicitly) to an infinite number of variables. To
keep the number of variables finite, we allow the possibility to refresh the values
of a given variable during the unfolding of a given definition. For example, a valu-
ation of the pattern B5 using the assignment σi leads to the definition: σi(B5) ≡
Personu∃works-for.σi(X ′)ugraduated-from.σi(X

′)u∃has-relative.σi+1(B5).
Hence, the valuation of a LV -pattern C is provided by a (potentially infinite)

sequence of valuations σ0, . . . , σn, where σ0 is the initial valuation and where each
valuation σi+1 coincides with the valuation σi on the non refreshed variables (i.e.,
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σi(X
′) = σi+1(X)′ if X ′ is not refreshed) while σi+1 assigns new values to the

refreshed variables.
We use the following notation to distinguish between these two classes

of semantics: r-semantics denotes refreshing variables semantics (valuations
Valr) while nr-semantics denotes non refreshing variables semantics (valua-
tions Valnr). Let t ∈ {r, nr} and C be an LV -pattern. We denote by Dt(C)=
{σ(C) | ∀σ ∈ Valt } the infinite set of L-descriptions obtained from the pattern
C by the valuations of Valt.

Reasoning in description logics with variables. Let T and T ′ two LV -
terminologies. We say that T and T ′ are coherent if NCT ∩NCT ′ = ∅.

Let t ∈ {r, nr}. Let C and D be two LV -patterns of an LV -terminology T ′

and let E be an L-description of an L-termonilogy T ′′ coherent with T ′. Let T =
T ′ ∪ T ′′. In this paper we are interested by the following reasonings.

– E is compliant with C w.r.t. a t-semantics, noted E 6tT C, iff there exists
a valuation σ ∈ Valt such that E vσ(T ) σ(C) (i.e., E is subsumed by σ(C)
w.r.t. the terminology σ(T )).

– C is contained in D w.r.t. a t-semantics, noted C �t
T ′ D, iff for every L-

description E of an L-termonilogy T ′′, we have E 6tT C implies E 6tT D
(i.e., every description E which is compliant with C w.r.t. a t-semantics is
also compiant with D w.r.t. a t-semantics),

4 The case of the logic ELV

In this paper, we study reasoning in the context of a gfp-semantics while we
believe that our framework can be extended to descriptive and lfp-semantics as
well. We are interested by classes of description logics in which reasoning w.r.t. a
gfp-semantics can be characterized using a finite state machine (e.g., automata
or graphs ([3,12]).

We provide below a characterization of compliance and pattern containment,
w.r.t. a gfp-semantics, in ELV . We explain briefly how to turn any ELV -pattern
definition C into a variable automata AtC . To achieve this task, we adapt the
EL-normal form proposed in [3] to ELV -patterns. Let T be an ELV -terminology.
An ELV -pattern definition C ≡ D ∈ T is in a normal form if D is of the form

D ≡ V1 u . . . u Vm u ∃W1.D1 u . . . u ∃Wn.Dn

for m,n ≥ 0 and each Vi is either an atomic concept name or a concept variable
(i.e., Vi ∈ NA ∪ Ncv, for i ∈ [1,m]), and Dj is a defined concept name (i.e.,
Dj ∈ NCT \ (NA ∪Ncv), for j ∈ [1, n] and each Wi is a role term (i.e., Ri ∈ NRT
(Ri). A pattern terminology T is said normalized if all the pattern definitions it
contains are in a normal form. W.o.l.g., we assume that two pattern definitions
in a normalized terminology use disjoint sets of variables. It is worth noting
that, since concept variables do not range over defined concept names, the
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normalization process proposed in [3] can be straightforwardly extended to
our context to transform any ELV -terminology into a normalized one. As an
example, a normalized terminology containing the defined concepts of our
running example is given below:

B ≡ Person u ∃works-for.D1 u ∃graduated-from.D1

B1 ≡ Person u ∃works-for.D2 u ∃graduated-from.D2

B2 ≡ Person u ∃works-for.eSchool u ∃graduated-from.eSchool
B4 ≡ Person u ∃evaluates.D3 u ∃graduated-from.D3

B5 ≡ Person u ∃works-for.D4 u ∃graduated-from.D4 u ∃has-relative.B5

D1 ≡ X
D2 ≡ University
D3 ≡ eSchool
D4 ≡ X ′

Fig. 1. Mapping ELV -pattern definitions into variable automata.

Mapping ELV -patterns into variable automata. Let T be a normalized ELV -
terminology. We explain below how to map defined concepts and patterns of T
into variable automata. Let QT = NCT \ (NA ∪ Ncv) be a set of states made
of the defined concepts of T . Each concept definition or ELV -pattern C ≡ V1 u
. . . u Vm u ∃W1.D1 u . . . u ∃Wn.Dn of T is turned into a variable automaton
AtC = (ΣC ,XC , QC , Q0, δ, F, µ) defined as follows:

– the alphabet ΣC ⊆ NA ∪NR ∪{Top}, is made of a subset of atomic concept
names, role names and the Top concept,

– the set of variables XC ⊆ Ncv ∪Nrv, is made of a subset of concept and role
variables,

– the set of states QC ⊆ QT ∪{C, Sf}, is made of the states of QT reacheable
from the state C,

– Q0 = {C} is the set of initial states of the automaton and F = {Sf} is its
set of final states,
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– the transitions are unguarded (i.e., G = ∅). The transition function δ is
defined as follows:

• (q, Top, true, Sf ) ∈ δ, ∀q ∈ QC , i.e., there is an edge labeled Top from
every node q in QC to the final state Sf ,

• (C, Vi, true, Sf ) ∈ δ, ∀i ∈ [1,m], i.e., each term Vi is turned into an edge,
labeled Vi, from the node C to the final state Sf .

• (C,Wi, true,Di) ∈ δ, ∀i ∈ [1, n], i.e., each term ∃Wi.Di is turned into
an edge, labeled Wi, from the node C to the node Di.

– the refreshing function µ is defined as follows:
• if t = r then µ(x) = QC ,∀x ∈ X
• if t = nr then µ(x) = ∅,∀x ∈ X

The proposed mapping of a pattern C ≡ V1 u . . .uVm u∃W1.D1 u . . .u∃Wn.Dn

into an automaton AtC = (ΣC ,XC , QC , Q0, δ, F, µ) is depicted at figure 1(a)
while the figure 1(b) shows the variable automaton AtB5

corresponding to the
pattern B5 of section 1. Figure 2(a) shows E(ArB5

), the extended automaton
of ArB5

, for the case of a variable refreshing semantics (i.e. t = r). Note that,

Fig. 2. The extended automaton E(At
B5

).

this machine includes an infinite set of initial states (i.e., the configurations
(B5, σi), ∀σi ∈ Valr). In the case of a refreshing semantics, the cyclic role has-
relative relates a given state (B5, σi) to all the other possible states (B5, σj),
∀σj ∈ Valr, thereby making each machine rooted at an initial configuration
(B5, σi) an infinite state machine. In the case of a non-refreshing semantics (i.e.
t = nr), E(AnrB5

) is made of an infinite set of, pairwise disconnected, finite state
machines rooted at (B5, σi), ∀σi ∈ Valnr (c.f., figure 2(b)). The following lemma
establishes a connection between subsumption in ELV and simulation between
instances of variable automata.

Lemma 1. Let t ∈ {r, nr} and let C and D be two ELV -patterns in a ELV -
terminology T . Let σ ⊆ Valt, then σ(C) vσ(T ) σ(D) iff σ(AtD) � σ(AtC).
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Let T be an EL-terminology T . This lemma is derived from the observation
that the set of all the automata E(AtC), of the patterns C of T , corresponds
to a slight modification of the notion of EL-description graph [3] of the EL-
terminology σ(T ), where: (i) a set of final states (Sf , σ) with σ ∈ Valt, marked
as a final states, is added to the graph, and (ii) the atomic concepts are turned
into edges from the nodes representing defined concepts to the final states (Sf , σ).
It is clear that such a transformation of a description graph of a terminology T
preserves the simulation relation between the nodes of the initial graph. Hence,
the characterization of subsumption w.r.t. gfp-semantics using the simulation
relation is still valid in our context.

Therefore reasoning over C can be reduced to reasoning over the correspond-
ing variable automata AtC . However, despite the correspondance established
by lemma 1, reduction of compliance and containment to simulation between
variable automata is not straightforward and requires additional transforma-
tions. Consider for example the following pattern definitions in a terminology
T = {E ≡ ∃r1.D3, A ≡ ∃X.D1 u ∃Y.D2, Di ≡ Top, for i ∈ {1, 2, 3}}. The corre-
sponding automata AtE and AtA are depicted at figure 3(a). It is easy to check
that E is compliant with A w.r.t. any t-semantics. Indeed, for any valuation σ
which satisfy σ(X) = σ(Y ) = r1, we have σ(AtA) � AtE and hence E vσ(T ) σ(A)
(which implies that E is compliant with A). However, we have clearly AtA 6� AtE .
As a witness of non simulation take any valuation σ′ which satisfy σ′(X) 6= r1
or σ′(Y ) 6= r1, and in this case we have Atσ′(A) 6� Atσ′(E) (which implies that

AtA 6� AtE). Despite this fact, it is still possible to reduce compliance to simula-
tion after a transformation of the automata AtA and AtE into two new automata,
denoted ĀtA and ĀtE (c.f., figure 3(b)). The main intuition underlying the pro-
posed transformation is to construct new automata that satisfy the following
property: ĀtA � ĀtE iff ∃σ ∈ Valt s.t. σ(AtA) � AtE . In the similar way, addi-
tional transformations are needed to reduce containment to simulation as stated
in the following theorem.

Fig. 3. Reducing compliance to simulation.

334



Theorem 1. Let T ′ be an ELV -terminology and C and D two ELV -patterns in
T and let E be a definition in and EL-terminology T ′′ coherent with T ′. Let
T = T ′ ∪ T ′′. Then there exists guarded variable automata ÂtC , Ã

t
D, Ā

t
E and ĀtC

such that:

(i) E 6tT C iff ĀtC � ĀtE, and

(ii) C �t
T D iff ÃtD � ÂtC .

The proof of this theorem is given in the extended version of this paper
[13]. We explain below the case (i) (compliance). E 6tT C iff ĀtC � ĀtE . Figure
3(b) illustrates the construction of the automata ĀtA and ĀtE corresponding
to the automata of AtA and AtE of figure 3(b). The main idea is to prefix the
automata AtA and AtE with a set of transitions that enable to ensure that: ĀtA �
ĀtE iff ∃σ ∈ Valt s.t. σ(AtA) � AtE . The new sri and qri states correspond to
states where all the variables are refreshed. Simulation can be viewed as a game
between a player PE , which moves in the automaton ĀtE with an assigned goal
to prove simulation, and a player PA, which moves in the automaton ĀtA with
an assigned goal to prove that there is no simulation. The rational behind the
proposed construction is to enable PE to force a choice of a valuation σt that
satisfy simulation if such a valuation exists. This is achieved by the two first
transitions labeled with the constant symbol c. At the beginning of the game,
PA choose an arbitrary valuation σ0 and moves from the state Ā to q1. The
player PE have a choice between several transitions c, that goes in the example
from state Ē to one of the states s1, . . . , s4. By this deterministic choice, PE
have the possibility to choose between several classes of valuations, each class
being defined w.r.t. to the relation of the variables of the automata AtA with
the constants that appear in AtE . Once such a choice is performed, the player
PA moves upon the constant c to the state qr1 where he has the possibility to
refresh the variables in order to comply with the class of valuation selected by
PE . The rest of the prefix construction enables the player PE to synchronize
his own variables with the variables of PA in order to be aware of the valuation
chosen by PA. These variables are then used in the guards that enable PE to
enter a ’universal’ final state su in the cases where the player PA cheats (i.e.,
at the state qr1, the player PA picks a valuation that do not belong to the class
selected by PE). Hence, ĀtA � ĀtE iff there is a valuation σt (that belongs to the
class of valuations picked by PE) such that σt(A

t
A) � AtE .

Based on the previous theorem, we can provide the following result w.r.t. the
considered reasoning in ELV .

Theorem 2. Let t ∈ {r, nr}. Then:

(i) Compliance in ELV w.r.t. a t-semantics is NP-complete,
(ii) Pattern containment in ELV w.r.t.a t-semantics is in 2-Exptime.

Consider first the case (i). We recall that, E is compliant with C w.r.t. a
t-semantics, noted E 6tT C, iff there exists a valuation σ ∈ Valt such that
E vσ(T ) σ(C). We know from our construction that E 6tT C is equivalent to:
∃σ s.t σ(AtC) � AtE .
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The Compliance problem is in NP : given an oracle which guess a valuation
σ, then it is possible to check in polynomial time if σ(AtC) � AtE .

The NP-hardness is proved by a reduction from graph 3-colorability problem
[11]. Let G = (V,E) be a graph. G is 3-colorable if it is possible to assign to
each node in V one of the three colors in such a way that every two nodes
connected by an edge have different colors. Starting from G and the three colors
{r, g, b}, we construct a compliance problem such that the graph G is 3-colorable
iff Ecolor 6tT CG. Where Ecolor is a definition in T ′ and CG a ELV -pattern
definition in T ′′ and T = T ′ ∪ T ′′.

Construction of the terminology T ′. For each color c ∈ {b, r, g}, we include in
T ′ a concept definition Ec as follows:

– Eb ≡ ∃b.ETop
– Er ≡ ∃r.ETop
– Eg ≡ ∃g.ETop
– ETop ≡ Top

In addition, T ′ contains the definition Ecolor ≡ ∃r.Ebu∃g.Ebu∃r.Egu∃b.Egu
∃b.Er u ∃g.Er.

Construction of the ELV -terminology T ′′. Given a graph G = (V,E) with V =
{n1, . . . , nm}, we include in T ′′ the following set of ELV -patterns:

– {Ni ≡ ∃Xi.NTop | for i ∈ [1,m]} and
– NTop ≡ Top

In addition, T ′′ includes the pattern: CG ≡
d

(ni,nj)∈E
∃Xi.Nj .

Let T = T ′ ∪ T ′′. It is then easy to check that G is 3-colorable iff Ecolor 6tT
CG.

Complexity of pattern containment (case (ii)) is obtained from theorem 1
which reduces an ELV -pattern containment test C �t

T D into a simulation test

ÃtD � ÂtC between two GVA. The automaton ÂtC is exponential in the size of
C and D. Hence, knowing from [5] that simulation is in Exptime, we obtain an
immediate 2-Exptime upper bound for the ELV -pattern containment problem.

5 Conclusion

This paper addresses the problems of pattern compliance and containment for
description logics with variables. It considers a framework that cater for cyclic
terminologies and defines two semantics of variables which differ w.r.t. to the
possibility or not to refresh the variables. The paper provides preliminary results
regarding the description logic ELV , obtained from an extension of EL with
variables. Future research work will be devoted to the extension of the approach
to more expressive logics.
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Abstract. We present an approach for integrating ontological reasoning and plan-
ning within cognitive systems. Patterns and mechanisms that suitably link plan-
ning domains and interrelated knowledge in an ontology are devised. In partic-
ular, this enables the use of (standard) ontology reasoning for extending a (hi-
erarchical) planning domain. Furthermore, explanations of plans generated by
a cognitive system benefit from additional explanations relying on background
knowledge in the ontology and inference. An application of this approach in the
domain of fitness training is presented.

1 Introduction

Cognitive systems aim to perform complex tasks by imitating the cognitive capabil-
ities of human problem-solvers. This is typically achieved by combining specialised
components, each of which is suited to fulfil a specific function within that system,
such as planning, reasoning, and interacting with the user or the environment. Each
component requires extensive knowledge of the domain at hand. Traditionally, several
representations of knowledge are used by the different components, each well suited
for their respective components. As a result, domain knowledge is distributed across
various parts of such a system, often in different formalisms. Thus, redundancy and
maintaining consistency pose a challenge.

In this paper, we present an approach for using an ontology as the central source
of domain knowledge for a cognitive system. The main issue we address is how the
planning domain (representing procedural knowledge) and other (ontological) domain
knowledge can be suitably combined. The approach uses the ontology and ontological
reasoning to automatically generate knowledge models for different components of a
cognitive system, such as the planning component or an explanation facility. In par-
ticular, the planning domain is automatically extended using ontological background
knowledge. The same ontology is used by an explanation mechanism providing coher-
ent textual explanations for the generated plans and associated background knowledge
to the user. The planning component uses Hierarchical Task Network (HTN) planning
[7, 9], which is well-suited for human-oriented planning.

This paper is organised as follows. We commence with the relevant preliminar-
ies in Section 2. A general outline of the approach and its foundations is presented in
Section 3, illustrated by a case study using a real-world fitness training scenario. In
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Section 4, the explanation mechanism is described by using accompanying examples
from the case study. Related work is discussed in Section 5 and Section 6 concludes the
paper.

2 Preliminaries

In the paper, we refer to the Description Logic ALC [24], which, as we assume, is fa-
miliar to the reader. We briefly introduce the relevant concepts of HTN planning that
help to understand the context of our work. HTN planning [7, 9] is a discipline of au-
tomated planning where tasks are hierarchically organised; tasks are either “primitive”
(they can be executed directly) or abstract (also called complex or compound in the
literature), i.e., they must be decomposed into sets of subtasks which can in turn be ab-
stract or primitive. Plans are represented by so-called task networks, which are partially
ordered sets of tasks. Planning is done in a top-down manner, such that abstract tasks in
a task network are refined stepwise into more concrete courses of action. This approach
to planning is deemed similar to human problem solving, and thus considered appropri-
ate for use in cognitive systems [4]. HTN planning problems consist of an initial task
network, a planning domain – a set of operators (specifying the preconditions and ef-
fects of primitive actions) together with a set of decomposition methods (which specify
how each abstract task can be decomposed by replacing it with a network of subtasks)
– and an initial state (specifying the state of the world before the tasks in the plan are
carried out). A decomposition method m is denoted as A 7→≺ B1, ...,Bn, stipulating
that the abstract taskA may be decomposed into the plan containing the subtasks B1 to
Bn adhering to the partial order ≺. The subscript ≺ is omitted if no order is defined on
the subtasks. Applying a method m to a plan containing A refines it into a plan where
A is replaced by the subtasks of m with the given order ≺. All orderings imposed onA
are inherited by its subtasks Bi. A plan is a solution for a planning problem if it consists
of a fully executable network of tasks.

3 Integrating Ontologies and Planning

When bringing ontologies and planning together, a key challenge is to find a represen-
tation that suitably links general ontological knowledge with information in the plan-
ning domain. The aim is to enable both a specialised reasoner and a planner to play
to their strengths in a common application domain of interest, while the consistency of
the shared domain model remains ensured. The first part of our approach is to embed
planning knowledge (a hierarchical planning domain) into a general ontology of the
application domain. To address differences in the formalisms of planning and DL, we
present suitable modelling patterns and translation mechanisms. As a second step, an
off-the-shelf DL reasoner is applied to infer new knowledge about the planning domain
in terms of new decomposition methods. Thanks to the integrated model, the struc-
ture of decompositions in the planning domain is accessible to DL reasoning, i.e., new
methods are implied using knowledge of both domains. This modelling yields a stan-
dard planning domain such that an off-the-shelf planner can be used. We have applied
this approach to a fitness scenario and have developed a system which creates a training
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plan for a user pursuing some fitness objective. Such a plan defines a training schedule,
comprising training and rest days, as well as the exercises and their duration which are
necessary to achieve a certain goal, e.g., to train the lower body. A similar scenario is
used by Pulido et al. [21], where exercises for physiotherapy of upper-limb injuries are
arranged by a planner.

3.1 Embedding Planning Methods into Ontologies

In this section we describe how the knowledge contained in a hierarchical planning do-
main can be represented in an ontology such that its contents are described declaratively
and thus become amenable to logical reasoning.

First, a link between the planning domain and corresponding/additional information
in the ontology is defined by a common vocabulary – there is a distinguished set of task
concepts in the ontology which correspond to planning tasks. If T is a planning task,
then a corresponding task concept is denoted as T. In addition to task concepts, the
ontology allows for concepts to model further aspects of the application domain. Task
concepts are provided with definitions/told subsumptions in the ontology which are de-
termined by the set of predefined decomposition methods for the counterpart planning
tasks. Based on these predefined methods, new ones are derived from the ontology,
as further described in Section 3.2. A simple decomposition method A 7→ B is inter-
preted as a subsumption B v A between task concepts A,B. This pattern, however,
works only for such simple decomposition methods. In general, a method has the form
A 7→ B1, ...,Bn and can be viewed as an instruction that A is achieved by “executing”
the tasks B1, ...,Bn. When representing such decomposition methods in an ontology
one needs to take into account that a decomposition method is a precise definition of
the tasks created. It specifies the subtasks required to achieve an abstract task, but si-
multaneously states that these tasks are also sufficient. Ontologies, on the other hand,
are built on the open world assumption – representing a task decomposition by the tasks
B1, ...,Bn is insufficient. The ontology must also contain the explicit information that
only these tasks belong to the decomposition. For this purpose we use the onlysome

construct (see, e.g., Horridge et al. [13]), which is a short-hand notation for a pattern
combining the existential and universal restrictions to represent collections of concepts.

Definition 1 Let r be a role, I an index set, and {Ci}i∈I concepts. We define the
onlysome restriction Cr.({Ci}i∈I) by Cr.({Ci}i∈I) :=

d
i∈I ∃r.Ci u ∀r.

(⊔
i∈I Ci

)
.

With the onlysome restriction we can give a decomposition method in a definition
stating that a collection of tasks corresponds to a task concept to be decomposed. Thus, a
method A 7→ B1, ...,Bn can be expressed by using the axiom
A ≡ Cincludes.(B1, ...,Bn).

Let us now turn to our application domain of fitness training. Here, elementary train-
ing exercises are represented as planning tasks whose preconditions and effects follow
certain rules (e.g. muscles must be warmed up before being exercised, intense exer-
cises must precede lighter ones, ...). The ontology further encompasses concepts for
training exercises, equipment, workouts, training objectives, and a part of the NCICB
corpus [17], describing muscles etc. Contained in the ontology are four planning-related
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types of concepts: exercises, workouts, workout templates, and trainings. Workouts are
predefined (partially ordered) sets of exercises, modelled by a domain expert using
onlysome-definitions. This implicitly defines decomposition methods for each work-
out. Workouts are, e.g., defined by:

Workout1 ≡ Cincludes.(FrontSquat,SumoDeadlift)

This axiom postulates that Workout1 includes front squats and sumo deadlifts but noth-
ing else. At a more abstract level, workout templates serve to specify groups of work-
outs with similar properties. For example, there exist many similar variants of squats
and deadlifts with similar training effects, which can be grouped together. For instance,
consider WorkoutTemplate1:

WorkoutTemplate1 ≡ Cincludes.(Squat,Deadlift)

This workout template subsumes Workout1 wrt the ontology (since FrontSquat v
Squat and SumoDeadlift v Deadlift). As detailed in the next subsection, these sub-
sumptions are the basis for generating corresponding decomposition methods, e.g., in
this case a method decomposing the taskWorkoutTemplate1 intoWorkout1 which again
is decomposed into its concrete subtasks. Finally, trainings define abstract training ob-
jectives, such as improving strength or training the lower body. Here, the requirements
that need to be met are formulated using onlysome restrictions. For instance, the fol-
lowing axiom postulates that lower body training contains at least one and only exer-
cises targeting muscles in the lower body:

LowerBodyTraining ≡ Cincludes.∃engages target.(∃part of.LowerBody)

The cornerstone of our approach is to establish a correspondence between subsumptions
among task concepts in the ontology and corresponding decompositions in the planning
domain. For two task concepts representing collections of tasks using onlysome, we
require that one is subsumed by the other if and only if the tasks defined by the first
serve to achieve all requirements specified by the second. In more detail, a collection
C1 (representing a set of tasks) should be subsumed by a collection C2 if and only if for
any task concept (requirement) from C2, there is a task concept in C1, which achieves
it (i.e., C1 is subsumed by C2), and there are only those task concepts in C1 that meet
some requirement from C2. For this property to hold, we require that in onlysome

restrictions Cr.({Ci}i∈I) the role r is independent of concepts Ci, i.e., has no semantic
relationship with them, as captured by the following definition.

Definition 2 Let O be an ontology, r a role, and C1, ..., Cn concepts. We call r inde-
pendent of C1, ..., Cn wrtO if, for any model I ofO and any binary relation [s] on the
domain of I, there is a model J of O with the same domain such that r is interpreted
as [s] in J and the interpretation of Ci, 1≤ i≤n, in I and J coincides.

Next, we show that the given intuition holds for the collections defined with the
onlysome restriction.

Theorem 1 Let O be an ontology, C1, ..., Cm concepts satisfiable wrt O, D1, ..., Dn

concepts, and r a role independent of C1, ..., Cm, D1, ..., Dn wrt O.
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Then it holds O |= Cr.(C1, ..., Cm) v Cr.(D1, ..., Dn) if and only if
(1) ∀i, 1≤ i≤ m, ∃j, 1≤j≤n, such that O |= Ci v Dj and
(2) ∀j, 1≤j≤n, ∃i, 1 ≤ i≤m, such that O |= Ci v Dj .

Proof (Sketch). The if direction can be shown using monotonicity of existential/universal
restrictions and Conditions (1) and (2). Using contraposition, we can show the only-if
direction by constructing a countermodel for the subsumption. Since each Ci is satisfi-
able, there are models of O with some instance ci of Ci. Using the negation of Condi-
tion (1), there is further a model with an instance x of some Ci that is not an instance
of any Dj . We now build a new model as the disjoint union of these models and take
an arbitrary element d in the constructed model. Using independence of r, we obtain a
model in which r contains 〈d, x〉 and the tuples 〈d, ci〉. We obtain the desired contradic-
tion since d is an instance of Cr.(C1, ..., Cm), but not an instance of ∀r.(D1t ...tDn)
(due to 〈d, x〉) and, hence, of Cr.(D1, ..., Dn). We can proceed similarly for the case
of Condition (2) not holding. �

Until now, only the tasks contained in a decomposition method have been regarded,
while their partial ordering was ignored. To incorporate it in the ontology, the notion of
collections must be extended to partially ordered sets of concepts. Unfortunately, many
DLs (also ALC) are not well suited to represent partial orders, since their expressivity
is limited by the tree-model property [28], stating that non-tree structures cannot fully
be axiomatized. Since our aim is to completely represent the planning domain in the
ontology, we propose a syntactic encoding for this information that is opaque to DL
reasoners and has no influence on the semantics. A task A following a task B is ex-
pressed by replacing the concept A in onlysome expressions by At(⊥u∃after.B). The
latter disjunct is trivially unsatisfiable and the given expression is semantically equiv-
alent to just A. This makes order opaque to any reasoner. Preconditions and effects of
primitive tasks are modelled using auxiliary roles, making them accessible for logical
reasoning, too.

3.2 Extending Planning Domains by DL Inference

Embedding the planning domain into the ontology enables us to infer new decomposi-
tion methods using off-the-shelf DL reasoners. More precisely, subsumption relations
between task concepts inferred from an ontology O result in decomposition methods
being added to the planning domain. Suppose there are task concepts A and B such that
O |= B v A and there is no other task concept C such that O |= {B v C,C v A}.
Then, a decomposition method A 7→ B is created in analogy to the way such methods
are encoded in the ontology. This simple scheme provides only for methods decom-
posing into a single subtask. Further, we interpret onlysome-definitions provided by
the ontology as told decompositions that provide collections of tasks. Besides these
two simple cases, we are also interested in knowing whether an abstract task A can
be achieved by combining some task concepts B1, ...,Bn into a new decomposition
method A 7→ B1, ...,Bn. If so, some concept expression E describing this combination
should be subsumed by A. In keeping with the principle of matching task collections
described by Theorem 1, we consider combining concepts using onlysome restrictions.
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The concepts B1, ...,Bn describe requirements, which another concept A might fulfil.
If for some tasks A,B1, ...,Bn it holds O |= Cr.(B1, ..., Bn) v A, then a decompo-
sition method of A into the collection B1, ...,Bn is created. Let us once again consider
our use-case to discuss an example. Consider the definition of lower body training in-
troduced in the previous subsection:

LowerBodyTraining ≡ Cincludes.∃engages target.(∃part of.LowerBody)

Since our ontology respects the requirement that the role includes is independent of
concepts occurring in onlysome expressions, Theorem 1 applies and we know that any
workout solely comprised of lower body exercises is subsumed by LowerBodyTraining.
This results in decomposition methods for LowerBodyTraining into every possible
workout for the lower body. Furthermore, consider the following definition of full body
training:

FullBodyTraining ≡ Cincludes.(
∃engages target.(∃part of.LowerBody),

∃engages target.(∃part of.UpperBody))

Using reasoning, one can now establish whether combinations of different workouts
achieve such a training objective, such that a corresponding decomposition method is
automatically introduced into the planning domain. For instance, we can infer that a
workout solely training the lower body and a workout solely training the upper body
in combination constitute this training. Hence a decomposition method for a full body
training into these two workouts is added to the planning domain. The following theo-
rem clarifies the relationship between the obtained decomposition methods and entailed
concept inclusions.

Theorem 2 Let A be an abstract task, which can be refined into some plan P by ap-
plying decomposition methods created from the ontology O. Let the plan P contain the
tasks B1, ...,Bn, n ≥ 1. Then there is a concept P such that O |= P v A, B1, ..., Bn

occur in P , and P is either of the form:
1. a task concept from O, or
2. an expression Cr.(F1, ..., Fm) with each Fi a concept of the form 1 or 2.

Proof. The claim is proved by induction on the number m of (decomposition) steps
made to obtain P using O. In the induction base, for m = 0, A is the required con-
cept. For m > 0, let P ′ = {C1, ..., Ck} be a set of tasks obtained in m − 1 decom-
position steps and let P ′ be a concept satisfying the claim for P ′. Let P be obtained
from P ′ by decomposing some task Ci, for i ∈ {1..., k}. Assume that a decompo-
sition method for Ci was created from the concept inclusion D v Ci entailed by O.
Then D is one of the task concepts B1, ..., Bn, we have O |= P ′Ci/D

v P ′, hence,
O |= P ′Ci/D

v A and thus, P ′Ci/D
is the required concept (denoting P ′ with every

occurrence of Ci substituted with D). If a decomposition method for Ci was created
from a concept inclusion Cr.(D1, ..., D`) v Ci entailed by O (and possibly obtained
from an axiom Ci ≡ Cr.(D1, ..., D`)), then every Dj , j = 1, ..., `, is a task concept
among B1, ..., Bn and we have O |= P ′Ci/ Cr.(D1,...,D`)

v A, so P ′Ci/ Cr.(D1,...,D`)
is

the required concept. �
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Taking into account all possible combinations of tasks in the ontology presents a
problem, since there are exponentially many. We propose a pragmatic solution. First,
the maximal number of task concepts to be combined in onlysome expressions can be
restricted by some number k. Second, most real-world domains (including our appli-
cation example) have restrictions on which tasks can be combined. In our case study
using the fitness training scenario, we only considered combinations of two task con-
cepts defined by an onlysome axiom. This already enabled a considerable number of
methods to be inferred.

Essentially, the ontology used in our system consists of two parts O1 and O2, with
O1 containing definitions as above and O2 representing the core knowledge about the
subject domain: exercises (being task concepts), training equipment, body anatomy,
etc. The ontology is built in such a way that it guarantees independence of the role
includes from any concept occurring under Cincludes, which means that the principle
of matching task collections outlined in Section 3.1 correctly applies. The general shape
of our ontology is formally described in the following theorem, where the role includes
is abbreviated as r.

Theorem 3 Let r be a role and O = O1 ∪ O2 an ontology such that O1 is an acyclic
terminology consisting of definitions A ≡ Cr.(C1, ..., Cm), where r does not occur in
C1, ..., Cm and A, r do not occur inO2. Then the role r is independent of any concepts
appearing under Cr in O1.

Proof (Sketch). Let A be the set of concept names occurring on the left-hand side of
axioms in O1. Let I be a model of O and [s] a binary relation on the domain of I. Let
I ′ be an interpretation obtained from I by changing the interpretation of r to [s]. Since
r and A-concepts do not occur in O2, we have I ′ |= O2. It remains to consider an
expansion of the terminology O1 (cf. [2, Prop. 2.1]) to verify that there exists a model
J of O1 ∪ O2 obtained from I ′ by changing the interpretation of A-concepts (and
leaving the interpretation of other symbols unchanged). For any concepts C1, ..., Cm

appearing under Cr in O1, their interpretations in J and I coincide, which shows the
required statement. �

The initial planning domain of our case-study scenario encompasses 310 differ-
ent tasks and a few methods. Its formalisation in the ontology consists of 1 230 con-
cepts and 2 903 axioms, of which 613 concepts and 664 axioms are imported from
the NCICB corpus. Initially, 9 different training objectives and 24 workout templates
are specified. For extending the ontology with inferred decompositions, we employ
the OWL reasoner FaCT++ [27], which requires 3.6 seconds on an up-to-date laptop
computer (Intel R© CoreTM i5-4300U). After being extended, the planning domain con-
tains 471 tasks and 967 methods, of which 203 are created based on subsumptions
between workouts and workout templates, and further three methods have been created
by onlysome-combinations of task concepts. In addition, 59 decomposition methods
for training objectives into workout templates are created of which 24 are onlysome-
combinations of task concepts.
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Lying
Gluteus
Stretch

Sumo
Deadlift Workout1

Strength
Training

...Gluteus Maximus
warmed up

obtained by
decomposing

obtained by
decomposing

Fig. 1. Example of a plan explanation for the task lying gluteus stretch

4 Explanations

Cognitive systems that interact with users need to be able to adequately communicate
their solutions and actions. In the field of HCI and dialog modelling, it was shown
that systems that provide additional explanations receive increased trust from their
users [16, 20]. Bercher et al. [3] empirically investigated the role of plan explanations
in an interactive companion system in a real-world scenario.

In our integrated approach, both DL reasoning and planning work together, thereby
using the procedural and declarative information contained in the integrated knowledge
model, and generating new information artefacts of different flavours (in particular, in-
ferred facts and refined plans). We now describe how explanations are generated from
this information by combining techniques from plan explanation (specifically, an ap-
proach for explaining hybrid plans [25]) and an approach for explaining ontological
inferences [23]. Together they offer complimentary views on a given application do-
main.

Plan explanation focuses on dependencies between tasks in a plan, in particular how
tasks are decomposed into subtasks, and how these tasks are linked by preconditions and
effects. To provide an explanation why a particular task is part of a generated plan, the
information relevant to justify its purpose is extracted from the causal dependencies and
the decompositions applied to the plan. Technically, this information (which internally
is represented in a logic formalism) is considered the “explanation”. It is guaranteed
that plan explanations are always linear chains of arguments, each based on its prede-
cessor. For instance, consider that in our application scenario, the user asks to justify
a particular action, for example “Why do I have to do a lying gluteus stretch?” Fig.
1 shows the dependencies that establish the use of the lying gluteus stretch within a
plan that achieves a strength training. This information is further converted into text to
be communicated to the user by using simple templates. Causal dependencies between
two tasks A and B, where A provides a precondition l for B, are verbalised as “A is
necessary as it ensures that l, which is needed by B.” Similarly, decompositions are
justified by patterns such as “Task A is necessary, since it is part of B.” In the running
example, this yields:

The lying gluteus stretch is necessary as it ensures that
the gluteus maximus is warmed up, which is needed by the sumo
deadlift. The sumo deadlift is necessary, since it is part
of the Workout1. The Workout1 is necessary, since it is part
of the strength training. ...

The mechanism presented so far represents the part of “traditional” plan explanation.
Here, method decompositions are treated as facts (e.g. “Workout1 is part of strength
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X v Y Y ≡ Z
RvDef

Y is an
atomic
conceptX v Z

“... 〈〈X v Y 〉〉. Thus, 〈〈X v Z〉〉 according
to the definition of 〈〈Y 〉〉.”

Fig. 2. Sample inference rule (left) together with corresponding text template (right). Guillements
indicate the application of a function translating DL formulas into text.

training”); however, in our approach, they can be justified further, since they correspond
to subsumptions inferred from background knowledge in the ontology. Therefore, the
reasoning behind the subsumption can be used as an explanation to justify the decom-
position. For example, the user may ask the question “Why is Workout1 a strength
training?” For this purpose, we use the second explanation mechanism, which has been
implemented as a prototype. Its aim is to generate stepwise textual explanations for
ontological inferences. In the running example, it outputs:

According to its definition, Workout1 includes front squat
and sumo deadlift. Furthermore, since sumo deadlift is an
isotonic exercise, it follows that Workout1 includes an isotonic
exercise. Given that something that includes an isotonic
exercise has strength as an intended health outcome, Workout1
has strength as an intended health outcome. Thus, Workout1
is a strength training according to the definition of strength
training.

To generate such explanations, first a consequence-based inference mechanism is used
to construct a derivation tree for a given subsumption. This is done in two stages. First
the relevant axioms in the ontology (the “justifications”) are identified using the im-
plementation provided by Horridge [12], which is done efficiently using a standard
tableau-based reasoner. Then, a (slower) proof search mechanism using consequence-
based rules is applied for building a derivation tree. This tree is then linearised to yield
a sequence of explanation steps. The ordering of the explanation steps corresponds to
a post-order traversal in the tree structure of inference rule applications (where the in-
ference step that yields the conclusion is taken to be the root). As an example of a
consequence-based inference rule used for explanation generation and its correspond-
ing text template, consider Fig. 2. This template generates the last statement in the
sample text shown above. Note that even though the presented inference rule is quite
simple, it represents a (logical) shortcut, since the conclusion X v Z could also be
obtained in two steps by inferring Y v Z from the equivalence axiom and then us-
ing the transitivity of v. For the generation of explanations, this (logically redundant)
rule is given precedence over the “standard” inference rules, in the interest of smaller
proofs and greater conciseness of the generated text. By contrast, some inference rules
are specified to never generate output, since it would be considered uninformative for
a user. Consider the rule deriving X v (Y tZ) from X v Y , which is always ignored
during text generation. Such considerations provide ample scope for further work into
adjusting the generated texts according to pragmatics and user preferences.

To answer the general question how well people understand automatically gener-
ated verbalisations of ontological axioms and inferences, studies have already been per-
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formed as part of related work. For example, in experiments, Nguyen [18] found that
the understandability of verbalised inference steps depends on the employed inference
rules, where some kinds of inference rules were found considerably more difficult than
others. Furthermore, if the more difficult-to-understand inference rules were verbalised
in a more elaborated manner, understanding was improved. Such work hints at a general
challenge for empirical evaluations of the general “usefulness” of such verbalisations
(to be addressed as future work); their accessibility partially depends on the complexity
of the formalised domain and on the prerequisites of the user.

5 Related Work

Past research on coupling ontological reasoning and planning mainly addressed the aim
of increasing expressivity/efficiency. There is a large body of research on integrating
ontology and action formalisms, see e.g., the overview in Calvanese et al. [6], which
aims at bringing together the benefits of static and dynamic knowledge representation.
Gil [10] provides a survey of approaches joining classical planning and ontologies and
names a number of planners that use ontological reasoning to speed-up plan genera-
tion. Hartanto and Hertzberg [11] use a domain-specific ontology to prune a given HTN
model. However, additional content in the domain can not be inferred in their paradigm.
A number of approaches use ontologies to enrich the structure of the planning domain.
Typically, ontologies provide hierarchies of tasks and plans and are often used to repre-
sent states under the open world assumption [22, 26]. For a survey, we refer to Sirin [26,
Chapter 8]. Further approaches (e.g. [14, 8]) use OWL as a representation language for
HTN planning domains but do not employ ontology reasoning to extend these domains.
Sirin [26] describes HTN-DL, combining HTN and description logics to solve Web
Service composition problems. HTN-DL planning domains are encoded in an ontology
by representing tasks as concepts and decomposition methods as individuals. Both are
augmented with axioms describing their preconditions and effects. Here Sirin’s view of
methods differs from standard HTN, as they define a partially ordered list of actions, but
not an abstract task they decompose. Further, preconditions and effects are assigned to
methods, which are not necessarily related to the contents of the plan. Although Sirin’s
and our approach are similar in the idea of using an ontology and DL reasoning to
generate planning domains, there are conceptual differences. In HTN-DL all decompo-
sition methods are provided in the domain by a modeller, while the presented approach
infers new decomposition methods. Sirin applies reasoning to determine whether a de-
composition method can be applied to an abstract task, using their preconditions and
effects. His approach does not allow inference based on the tasks in a method nor their
decompositions or other properties, which is the cornerstone of ours.

Related work on the generation of explanations from ontologies encompasses a
number of approaches to verbalise the formalised contents with the goal of imitating
natural language. Systems targeting non-expert users include, e.g., the NaturalOWL
system [1] and the ontoVerbal verbaliser [15]. By contrast, the generation of expla-
nations for entailments is addressed only by some approaches, e.g., by Horridge [12],
whose approach targets expert users. The generation of stepwise explanations of entail-
ments for non-expert users is considered by Borgida et al. [5], Nguyen et al. [19, 18] and
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Schiller and Glimm [23], whose work provided a basis for the approach to explanations
presented in this paper.

6 Conclusion

We presented an approach to integrating hierarchical planning knowledge into ontolo-
gies that encompass a general representation of the application domain. A central issue
of this paper is to establish the semantic correspondence between the constructs of the
planning domain (in particular, decomposition methods) and their representation in the
ontology. Our results enable a cognitive system to use a coherent knowledge model for
both planning and reasoning, which at the same time enables coherent and detailed ex-
planations for the user, as demonstrated in the application scenario. Our investigation
also highlights avenues for future work. One such topic is incorporating mixed-initiative
planning into the approach, such that communication with and participation of the user
would benefit from explanations by the system. Second, the explanations generated by
the system raise the issue of selecting the right level of verbosity. Future work should
address this from the viewpoint of pragmatics (e.g. that explanations for “obvious”
inferences should generally be omitted) and user modelling (e.g. taking prior knowl-
edge of the user into account). While our approach enables the hierarchical structure
of a planning domain to be exploited by DL reasoning, the partial order of tasks is not
amenable to DL reasoning. The question how this limitation could be addressed can be
taken up by future work.
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Abstract. In this paper we examine a confidentiality framework for construct-
ing safe KB views with respect to the object-level and the meta-level background
knowledge that users may exploit to reconstruct secrets. In particular, we will
present a first implementation of our framework equipped with several optimiza-
tion techniques that are assessed experimentally in a concrete e-health scenario.

1 Introduction

Recently, the Semantic Web has been increasingly used to encode sensible knowledge
on individuals, companies and public organizations. As reasoning techniques make it
possible to extract implicit information, any access control method that does not deal
with inference fails to ensure privacy [1, 10].

The most popular security criterion is that the published view of a knowledge base
should not entail any secret sentence [3, 9, 14]. However, such a model guarantees con-
fidentiality just in the case the filtered knowledge base is the only source of information.
On the contrary, various sources of background knowledge can be exploited to recon-
struct secrets. Background knowledge can be object-level knowledge of the domain of
interest, e.g. auxiliary ontologies, as well as meta knowledge about which kind of in-
formation the knowledge base is expected to represent. For instance, suppose a hospital
allows to know whether a patient has been hospitalized but omits to reveal where, if
she is in the infective disease ward. Since a hospital’s KB is expected to have complete
knowledge about which patients are in which ward, from the fact that John has been
admitted to the hospital and yet he does not appear to be located in any ward, a user can
reconstruct he is affected by some infection.1

To tackle the vulnerabilities arising from these scenarios, [7] has provided a fully
generic formalization of object-level and meta-level background knowledge, a confi-
dentiality model which neutralizes the inference-based attacks that exploit such knowl-
edge, and – since the user’s background knowledge is not directly possessed by the
knowledge engineer – a rule-based methodology to safely approximate it.

As the works in [11, 12], our model is inspired by the literature on Controlled Query
Evaluation ([4, 5, 6]). However, the two approaches differ in many aspects, including:
(i) [11, 12] focus on conjunctive queries, while we focus on subsumption and instance

1 For further details see the analogous Example 1 in [7]. In general, meta knowledge helps in
preventing attacks to complete knowledge and attacks to the signature.
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checking; (ii) in our framework secrets can be both intensional and extensional axioms,
whereas in [11, 12] they can only be extensional facts; (iii) although [11, 12] can deal
with object-level background knowledge, meta knowledge is not taken into account.

Regarding complexity issues, in [7] it has been shown that by using Horn rules to
encode the user’s meta knowledge, if the underlying DL is tractable, then the filter-
ing secure function is tractable too.2 Although such promising theoretical properties
suggest that the framework can be practically used, they are still to be assessed ex-
perimentally. In this paper, we present SOVGen, a first prototype suited for a concrete
e-health scenario. In particular, extensional data is encoded in realistic electronic health
records conforming to the standard HL7 v.3 - CDA Rel.2. We approximate the user’s
background knowledge with the SNOMED-CT ontology, together with an ontology
establishing the mapping between SNOMED-CT concepts and ICD-9CM codes that
occur in the records. The user’s meta knowledge, on the other hand, consists of (i)
bridge metarules that permit to identify SNOMED-CT concepts starting from the spe-
cific encoding of the records required by CDA, as well as (ii) metarules that establish
relationships between medications, diseases, medical procedures, etc.

Sec. 2 will provide a general overview on the theoretical model; due to space lim-
itations we refer to [7] for technical proofs. In Sec. 3 we will describe the algorithm
underlying SOVGen together with its optimizations. Sections 4 and 5 describe the ex-
perimental settings and performance analysis, respectively. Sec. 6 concludes the paper.

2 The Model

We assume the reader to be familiar with description logics, and refer to [2] for all defi-
nitions and results. We assume a fixed, denumerable signature Σ, specifying the names
of concepts, roles, and individuals, and a reference logical languageL is generated from
Σ by the grammar of a DL. Unless stated otherwise, by axioms we mean members of
L; a knowledge base is any finite subset of L. The notion of logical consequence is the
classical one; for all K ⊆ L, the logical consequences of K will be denoted by Cn(K)
(K ⊆ Cn(K) ⊆ L).

Let KB be a knowledge base and S ⊆ L a set of secrecies. Generally speaking,
the confidentiality of S is preserved if a user cannot expect to discover any secret by
querying the system. A possible attempt to protect the secrets is to use a view KB′ which
is a maximal subset of KB that entails no secret, Cn(KB′) ∩ S = ∅.

Unfortunately, in case some background knowledge is available to the user, this
mechanism could not ensure confidentiality. Frequently, part of the domain knowledge
is not axiomatized in KB. In such cases a user can import some external ontology or
RDF repository BK to infer more than she is allowed to. Moreover, she may possess
some meta knowledge about KB. For instance, a hospital’s KB is expected to have com-
plete knowledge about its patients; a company’s KB is likely to encode complete infor-
mation about its employees, etc. Such meta knowledge can be represented epistemically
as a set of possible knowledge bases PKB, queries can be then used to narrow PKB until
the user is able to reconstruct a secret.

2 Non-Horn metarules can be safely approximated with Horn metarules; the price to pay is a
loss of cooperativeness, i.e. a reduction of the information available to the user.
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Summarizing, we introduce a general confidentiality model which takes into ac-
count object-level and meta-level background knowledge.

Definition 1 ([7]). A bk-model is a tuple M = 〈KB, f , S ,PKB,BK〉 where KB is a
knowledge base, f : ℘(L)→ ℘(L) is a filtering function mapping each knowledge base
K on a view f (K) ⊆ Cn(K), S ⊆ L is a set of secrecies, BK ⊆ L is a set of axioms
encoding the users’ object-level knowledge, PKB ⊆ ℘(L) is a set of possible knowledge
bases encoding users’ meta knowledge.

The view of KB released to a user is f (KB). Intuitively, f is secure if for each secret s
there exists a possible knowledge base K ∈ PKB such that (i) KB and K have the same
observable behavior, that is, as far as the user knows, the knowledge base might be K,
and (ii) K and the object-level background knowledge BK do not suffice to entail s.

Definition 2. A filtering function f is secure (w.r.t. M) iff for all s ∈ S , there exists
K ∈ PKB such that 1) f (K) = f (KB) and 2) s < Cn(K ∪ BK).

In the rest of the paper we focus on concrete scenarios where all the components of
bk-models are finite. Moreover, we tacitly assume that no secret is violated a priori, that
is, for all secrets s ∈ S there exists K ∈ PKB such that s < Cn(K ∪ BK).3

Clearly, Definition 2 just formalizes our desiderata, consequently the next step is to
exhibit a secure filtering function. This function is formulated as an iterative process
where for each axiom that, according to the user’s meta knowledge, may possibly occur
in the knowledge base a censor decides whether it should be obfuscated to protect
confidentiality. The iterative construction manipulates pairs 〈X+, X−〉 ∈ ℘(L) × ℘(L)
that represent a meta constraint on possible knowledge bases: we say that a knowledge
base K satisfies 〈X+, X−〉 iff K entails all the sentences in X+ and none of those in X−

(formally, Cn(K) ⊇ X+ and Cn(K) ∩ X− = ∅).
Let PAX (the set of possible axioms) be the set of all axioms occurring in at least one

possible knowledge base, i.e. PAX =
⋃

K′∈PKB K′. Let ν = |PAX| and α1, . . . , αi, . . . , αν
be any enumeration of PAX. The secure view construction for a knowledge base K in a
bk-modelM consists of the following, inductively defined sequence of pairs 〈K+

i ,K
−
i 〉i≥0 :

– 〈K+
0 ,K

−
0 〉 = 〈∅, ∅〉 , and for all 1 ≤ i < ν , 〈K+

i+1,K
−
i+1〉 is defined as follows:

• if censorM(K+
i ,K

−
i , αi+1) = true then let 〈K+

i+1,K
−
i+1〉 = 〈K+

i ,K
−
i 〉 ;• if censorM(K+

i ,K
−
i , αi+1) = f alse and K |= αi+1 then

〈K+
i+1,K

−
i+1〉 = 〈K+

i ∪ {αi+1},K−i 〉;• otherwise let 〈K+
i+1,K

−
i+1〉 = 〈K+

i ,K
−
i ∪ {αi+1}〉 .

Finally, let K+ =
⋃

i≤ν K+
i , K− =

⋃
i≤ν K−i , and fM(K) = K+ . The iterative construction

aims at finding maximal sets K+ and K− that (i) partly describe what does / does not
follow from K (as K satisfies 〈K+,K−〉 by construction), and (ii) do not trigger the
censor (the sentences αi+1 that trigger the censor are included neither in K+ nor in K−).

In order to define the censor we need an auxiliary definition that captures all the
consequences of the background knowledge BK and the meta knowledge PKB refined
by a constraint 〈X+, X−〉. Let CnM(X+, X−) be the set of all axioms α ∈ L such that

for all K′ ∈ PKB such that K′ satisfies 〈X+, X−〉, α ∈ Cn(K′ ∪ BK) . (1)
3 Conversely, no filtering function can conceal a secret that is already known by the user.
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Now the censor is defined as follows. For all X+, X− ⊆ L and α ∈ L,

censorM(X+, X−, α) =



true if there exists s ∈ S s.t. either s ∈ CnM(X+ ∪ {α}, X−)
or s ∈ CnM(X+, X− ∪ {α});

false otherwise.
(2)

In other words, the censor checks whether telling either that α is derivable or not to a
user – aware that the knowledge base satisfies 〈X+, X−〉 – restricts the set of possible
knowledge bases enough to conclude that a secret s is entailed by the knowledge base
enriched with the background knowledge BK.

Note that the censor obfuscates αi+1 if any of its possible answers entail a secret,
independently of the actual contents of K (the possible answers “yes” and “no” corre-
spond to conditions s ∈ CnM(X+ ∪ {α}, X−) and s ∈ CnM(X+, X− ∪ {α}), respectively).
This way, roughly speaking, the knowledge bases that entail s are given the same ob-
servable behavior as those that don’t. Thm 1 in [7] shows that fM is secure w.r.t.M.

Remark 1. Observe that our method is inspired by CQE based on lies and/or refusals
([4, 5, 6] etc). Technically we use lies, because rejected queries are not explicitly
marked. However, our censor resembles the classical refusal censor, so the properties
of fM are not subsumed by any of the classical CQE methods. For example (unlike
the CQE approaches that use lies), fM(KB) encodes only correct knowledge (i.e. en-
tailed by KB), and it is secure whenever users do not initially know any secret (while
lies-based CQE further require that no disjunction of secrets should be known a priori).
Unlike the refusal method, fM can handle cover stories because users are not told that
some queries are obfuscated. As an additional advantage, our method needs not to adapt
existing engines to handle nonstandard answers like mum. Finally, the CQE approaches
do not deal specifically with DL knowledge bases, nor meta knowledge.

Of course, the actual confidentiality of a filtering f (KB) depends on a careful defi-
nition of the user’s background knowledge, that is, PKB and BK. If background knowl-
edge is not exactly known by the knowledge engineer then it can be safely overesti-
mated. More background knowledge means larger BK and smaller PKB, which leads to
the following comparison relation ≤k over bk-models:

Definition 3. LetM = 〈KB, f , S ,PKB,BK〉 andM′ = 〈KB′, f ′, S ′,PKB′,BK′〉 be two
bk-models, we write M ≤k M′ iff KB = KB′, f = f ′, S = S ′, PKB ⊇ PKB′ and
BK ⊆ BK′.

Then, it is easy to see thatM′ is a safe approximation ofM, that is if f is secure w.r.t.
M′, then it is also secure w.r.t.M (Proposition 2, [7]).
Consequently, a generic advice for estimating BK consists in (i) including public ontolo-
gies and triple stores formalizing relevant knowledge and (ii) modeling as completely
as possible the integrity constraints satisfied by the data, as well as role domain and
range restrictions and disjointness constraints.

While BK can be represented with standard languages (e.g. OWL, RDF, etc.), user’s
meta knowledge requires an ad-hoc language for defining PKB. Here we express PKB
as the set of all theories that are contained in a given set of possible axioms PAX and
satisfy a finite set MR of metarules like:

α1, . . . , αn ⇒ β1 | . . . | βm (n ≥ 0,m ≥ 0) , (3)
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where all αi and β j are in L (1 ≤ i ≤ n, 1 ≤ j ≤ m). For all metarules r, let body(r) =

{α1, . . . , αn} and head(r) = {β1, . . . , βm}.
Informally, (3) means that if KB entails α1, . . . , αn then KB entails also some of

β1, . . . , βm. Sets of similar metarules can be succintly specified using metavariables;
they can be placed wherever individual constants may occur, that is, as arguments of
assertions, and in nominals. A metarule with such variables abbreviates the set of its
ground instantiations: Given a K ⊆ L, let groundK(MR) be the ground instantiation of
MR where metavariables are uniformly replaced by the individual constants occurring
in K in all possible ways.

A set of axioms K ⊆ L satisfies a ground metarule r if either body(r) * Cn(K) or
head(r) ∩ Cn(K) , ∅. In this case we write K |=m r. Moreover, if K satisfies all the
metarules in groundK(MR) then we write K |=m MR. Therefore the formal definition of
PKB now becomes:

PKB = {K | K ⊆ PAX ∧ K |=m MR} . (4)

In this paper, we assume that MR consists of Horn metarules (|head(r)| ≤ 1) and PAX =

KB ∪ ⋃r∈groundKB(MR) head(r). Under such hypothesis, it can be shown that if all the
axioms in KB, PKB, BK, and S belong to a tractable DL, and the number of distinct
variables in MR is bounded by a constant, then fM can be calculated in polynomial
time.

3 Implementation overview

In this section we introduce SOVGen, the prototypical implementation of the confi-
dentiality model illustrated in Section 2 based on Horn metarules. By standard logic
programming techniques, a minimal K ⊆ PAX satisfying the set of metarules and the
constraints K+ can be obtained with the following polynomial construction:

K0 = K+ , Ki+1 = Ki ∪
⋃
{ head(r) | r ∈ groundKi

(MR) ∧ body(r) ⊆ Cn(Ki) }

It can be proved that the sequence limit K|PAX| satisfies 〈K+,K−〉 as well if K|PAX| does
not entail an axiom in K−. Then, for all s ∈ S , s activates the censor iff s is a conse-
quence of K|PAX| ∪ BK. For further details refer to [7].

Algorithm 1 represents the abstract algorithm underlying SOVGen. The sets MM

and MG constitute a partition of MR based on the metarules’ type (ground or containing
metavariables). Iterating over the axioms α ∈ PAX (lines 6-25), at each step K col-
lects all the axioms of PAX that does not contribute to the entailment of secrets. The
repeat-until loop (lines 9-17) computes the deductive closure K

′
of K under the set of

metarules MR. In particular, for each ground metarule (lines 10-13) we evaluate a con-
junctive query (encoded in line 11) in order to check if m body is satisfied by the current
K
′
. Similarly, for each metarule containing metavariables (lines 14-16), we obtain all

possible bindings for the metavariables in the body of m by means of a conjunctive
query evaluation (line 15). The sequence of steps described above is iterated until a fix-
point is reached (line 17). At this point the condition Cn(K

′
) ∩ K− |= ∅ is verified (line

18). It is now possible to determine the value of the censor for α. We first check that
no secret is entailed from the minimal K (line 19) enreached with BK. Finally, we can
safely include α in the view only if it is entailed by KB (line 21). Otherwise, the set K−
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Algorithm 1:
Data: KB, S ,MR,BK.
K+

i ,K
−
i ← ∅;1

MM ← {ri|ri ∈ MR and ri metarule containing metavariables};2
MG ← {ri|ri ∈ MR and ri ground metarule};3
PAX ← KB ∪⋃r∈groundKB(MR) head(r);4

K ← BK;5
forall α ∈ PAX do6

K′ ← K ∪ {α};7
M′

G ← MG;8
repeat9

forall m ∈ M′
G do10

if K′ |= body(m) then11
K′ ← K′ ∪ {head(m)};12
M′

G ← M′
G \ {m};13

forall m ∈ MM do14
forall (a0, . . . , an) | K′ |= body(m, [X0/a0, . . . , Xn/an]) do15

K′ ← K′ ∪ {head(m, [X0/a0, . . . , Xn/an])};16

until No element is added to K′;17
if {β ∈ K− | K′ |= β} = ∅ then18

if {s ∈ S | K′ ∪ BK |= s} = ∅ then19
if KB |= α then20

K+ ← K+ ∪ {α};21
K ← K′;22
MG ← M′

G;23

else24
K− ← K− ∪ {α};25

return K+
i26

is updated (line 25). Note that, due to the monotonicity of reasoning, at each iteration
we can safely remove from MG all the ground rules already satisfied at the previous
iterations (lines 13, 23).

A careful analysis of the algorithm immediately points out: (1) the opportunity to
apply a process of modularization designed to reduce the size of very large background
knowledge bases (such as SNOMED-CT). In fact, many of the axioms in a large BK
are reasonably expected to be irrelevant to the given view; (2) the need of techniques
for effective conjunctive query evaluation.4

With respect to point (1), we investigate the use of module extractors [17, 16] on
the background knowledge bases in order to make reasoning focus on relevant knowl-
edge only. Experimental results show that the modules extracted are on average two

4 Straightforward evaluation of metarules in the presence of metavariables with an OWL rea-
soner would need to consider all possible ways of uniformly replacing metavariables by indi-
vidual constants occurring in the ontology.
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or three orders of magnitude smaller than the initial BKs which drastically improves
performance.

With respect to point (2), the presence of technologies that permit native conjunc-
tive query evaluation reveals fundamental to achieve efficient framework implementa-
tion. Nowadays SPARQL5, constitute a de facto standard when it comes to conjunctive
query answering. It has been recently extended with the OWL Direct Semantics Entail-
ment Regime in order to permit reasoning over OWL ontologies. Unfortunately, only
few tools provide support to this new semantics. Among those our choice fell on Apache
Jena Semantic Web Toolkit6 (for more information and motivations see [8]). A valid al-
ternative to the consolidated SPARQL engines proves to be OWL-BGP7, a relatively
new framework for parsing SPARQL basic graph patterns (BGPs) to OWL object rep-
resentation and their assessment under the OWL Direct Semantics Entailment Regime.
OWL-BGP incorporates various optimization techniques [15] including query rewriting
and a cost-based model8 for determining the order in which conjunctive query atoms
are evaluated. As we will see in Section 5 the performance of the query evaluation
module of SOVGen is unacceptable when Jena is used and not quite satisfactory when
OWL-BGP is adopted9. As an alternative to the above frameworks for conjunctive query
evaluation we propose an hoc module, called Metarule Evaluation Engine (MEE), that
aims to take advantage of the specific nature of the Horn metarules and incremental
reasoning techniques of ELK [13].
Metarule Evaluation Engine (MEE). The evaluation algorithm is based on direct calls
to an incremental reasoner. In the following we provide a brief description of the pro-
cedure employed for the evaluation of the different types of metarules.

The evaluation of a ground metarule r requires checking that all the axioms α1, . . . , αn

in body(r) are entailed by K
′
. The algorithm takes advantage of short circuit evaluation

techniques that permit to end the evaluation as soon as K
′ 6|= αi and memoization of the

atoms αi satisfied in previous iterations in order to avoid their re-evaluation.
The evaluation of metarules with metavariables, on the other hand, comprises a

preprocession step that partition the atoms α1, . . . , αn in the metarule body in sets of
connected components. Within a component, atoms (that in this case can be viewed as
axiom templates) share common metavariables, while there are no metavariables shared
between atoms belonging to different connected components. Evaluating together tem-
plates belonging to non-related components increases unnecessarily the amount of in-
termediate results, whereas it is sufficient to combine the results for the single compo-
nents. Furthermore, for some types of templates, such as C(X), it is possible to retrieve
the solutions directly from the reasoner, instead of verifying the satisfiability of each
compatible mapping for the metavariable X. Although this can trigger some internal
controls, most of the methods of reasoners are highly optimized. Other more complex

5 http://www.w3.org/TR/sparql11-overview/
6 http://jena.apache.org/
7 https://code.google.com/p/owl-bgp/
8 The cost calculation is based on information about instances of concepts and roles extrapolated

from an abstract model built by reasoners that implement Tableaux reasoning algorithms.
9 Note that evaluation of ground metarules results in SPARQL ASK query (line11 of Alg.1),

while evaluation of metarules with metavariables in SPARQL SELECT query (line15 of Alg.1).
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templates, like the property assertions R(X,Y), do not allow the evaluation via dedicated
reasoning tasks and require satisfiability check for each possible instantiation. Conse-
quently, within each connected component, the evaluation is performed considering first
all atoms of the type C(X) for the purpose of restricting as much as possible the com-
patible mappings for the metavariables, then the atoms R(X,Y) (X or Y may possibly be
an individual constant) are considered.

Note that, unlike the previous engines, MEE does not need to initialize the inference
model on each step of the repeat-until loop. In fact, the queries are evaluated through a
number of calls to the ELK reasoner, that make it possible to exploit the characteristics
of incremental classification.

4 Experimental Settings

In this section we present synthetic test cases which have been specifically designed to
simulate the employment of SOVGen in a e-health scenario. In particular, each test case
represents the encoding of sensitive data in a CDA-compliant electronic health record.10

According to the theoretical framework each test case comprises four different com-
ponents: the ontology KB that contains confidential data to be protected; an ontology
MR encoding the user meta knowledge with a set of metarules; a set S of secrets; a
series of ontologies representing the user’s object-level background knowledge BK.
KB generation. KB is generated as a set of assertions instantiating the PS ontology. PS
encodes a patient summary clinical document following the HL7 Implementation Guide
for CDA Rel.2 Level 3: Patient Summary. As it can be seen in Figure 1, PS currently
provide a support for encoding information about (i) history of assumed medications;
(ii) clinical problem list including diagnosis, diagnostic hypothesis and clinical find-
ings; (iii) history of a family member disease; (iv) list of the procedures the patient has
undergone; (v) list of relevant diagnostic tests and laboratory data. Note that, accord-
ing to the CDA standards a disease in the PS ontology is represented by a ICD-9CM
code, while pharmaceutical products and procedures are represented by a SNOMED CT
codes. For example, <code code=”64572001” codeSystemName=”SNOMED CT”/> stands
for an instance of the SNOMED CT concept Disease (SCT 64572001). The type of
sections to be generated are randomly chosen among those mentioned above. A disease
(resp. product, procedure, test) code to associate to the entries is chosen as a random
leaf of the corresponding Disease (resp. Pharmaceutical/biologic product, Procedure by
site, Measurement procedure, Imaging) concept of the SNOMED CT ontology. In case
a disease code is needed, the ICD-9CM code corresponding to the SNOMED CT one
is retrieved and the equivalence is added to a background knowledge ontology named
EQIV-RL.
Metarule generation. The knowledge encoded in KB gives rise to several possible
types of metarules. Bridge metarules associate a ICD-9CM/SNOMED CT code to the
concept in the respective ontology. For instance,

CD(C), dtpCode(C, 64572001), dtpCodeSystem(C,SNOMED-CT)⇒ SCT 64572001(C)

10 Clinical Document Architecture (CDA) is a standard for information exchange, based on the
Health Level 7 Reference Information Model.
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makes it possible to derive that a code instance C is in fact an instance of the Disease
concept in SNOMED CT.

The second type of metarules concerns the pharmaceutical products. The presence
of a drug in the history of medication use implies that the patient suffers (certainly or
with a great probability) from a specific pathology or has undertaken a specific pro-
cedure. Consider the following example of metarule which says that the presence of a
medicine with active ingredient Phenytoin (SCT 40556005) indicates that the patient
suffers from some kind of Epilepsy (SCT 84757006):

Patient(P), SubstanceAdministration(S A), Consumable(C), hasConsumable(S A,C),
ManufacturedProduct(MP), hasManufacturedProduct(C,MP), Material(M),
hasManufacturedMaterial(MP,M), SCT 40556005(CD), hasCode(M,CD)
⇒ ∃suffer.SCT 84757006(P)

The third type of metarules concerns the problems section. In particular the presence of
a diagnosis (resp. diagnostic hypothesis) indicates that the patient suffer (resp. possibly
suffer) a certain pathology.

Other types of metarules apply to the family history – e.g. a patient could be subject
to a family members’ disease – and the procedures section. For instance, the metarule

Patient(P), Procedure(I), SCT 77465005(C), hasCode(I,C)⇒ subject(P,C)

allows to entail that the presence of an organ transplantation (SCT 77465005) in the
procedure section indicates that the patient is subject to transplantation.

Note that the generation of MR is not completely random for a part of the metarules.
In order to obtain a nontrivial reasoning, during the KB generation, together with the
creation of a section’ entry is also created one or more corresponding bridge metarules
and a metarule corresponding to the section in question. A second part of metarules
are constructed by randomly selecting appropriate SNOMED CT concepts as needed.
The adoption of such approach guarantees that al least part of metarules are actually
fired during the secure ontology view generation. Furthermore, observe that the there
are actually two levels of metarules, the bridge metarules constitute a precondition for
the activation of the others.
Secrets generation. The ontology S is randomly generated as a set of assertions of the
types:

∃suffer.X(p) ∃possiblySuffer.X(p) ∃possibleSubject.X(p) ∃subject.Y(p)

where X (resp. Y) is chosen as a random subconcept of the Disease (resp. Procedure)
concept of the SNOMED CT ontology.
Background knowledge. The background knowledge BK is approximated by means
of the PS, SNOMED-CT and the previously mentioned EQIV-RL ontologies.

5 Performance Analysis

In this section we present a performance analysis of SOVGen. Scalability evaluations
have been carried out on synthetic test cases as described in Section 4. The size of KB
is given by the parameter KB-size as the number of assertions occurring in the ontology.
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<clinicalDocument>
<recordTarget>
<patientRole>
<patient> . . . </patient>

</patientRole>
</recordTarget>
<structuredBody>
<section> <code code=’10160-0’ codeSystemName=’LOINC’/> <!-- HISTORY OF MEDICATION USE -->
<entry> . . . </entry>

</section>
<section> <code code=’11450-4’ codeSystemName=’LOINC’/> <!-- CLINICAL PROBLEM LIST -->
<entry> . . . </entry>

</section>
<section> <code code=’10157-6’ codeSystemName="LOINC"/> <!-- FAMILY MEMBER DISEASES -->
<entry> . . . </entry>

</section>
<section> <code code=’47519-4’ codeSystemName=’LOINC’/> <!-- HISTORY OF PROCEDURES -->
<entry> . . . </entry>

</section>
<section> <code code=’30954-2’ codeSystemName="LOINC"/> <!-- RELEVANT DIAGNOSTIC TESTS -->
<entry> . . . </entry>

</section>
</structuredBody>

</clinicalDocument>

Fig. 1. HL7 CDA Rel.2 Patient Summary

Then, the size of MR, MR-rate, is the ratio between the number of metarules and the
number of assertions in KB. Finally, the size of S is determined by the parameter S-rate
that specifies the ratio |S |/|KB|.

The experiments were performed on an Intel Core i7 2,5GHz laptop with 16GB and
OS X 10.10.1, using Java 1.7 configured with 8GB RAM and 4GB stack space. Each
reported value is the average execution time of five runs over five different ontologies.
Note that given the amount of background knowledge (consider that SNOMED-CT de-
scribes about 300K concepts) the use of module extraction techniques improves the
computation time of two–three orders of magnitude at a cost of about 30 sec of over-
head.

In Figure 2, the left (resp. right) column shows the experimental results obtained by
using MEE (resp. OWL-BGP) to evaluate metarules – no result for Jena is reported as
the execution time on all the test cases exceeded 1 hour time-out. Figures 2(a) and 2(b)
report the execution time as the amount of secrets grows. Both MR-rate and KB-size are
fixed, respectively to 10% and 200 assertions. Note that, MEE outperforms OWL-BGP
of 1–2 orders of magnitude. Figures 2(c) and 2(d) show the impact of MR-rate when
KB-size is fixed to 200 and S-size to 10%. Here, MEE runs about 10 times faster than
OWL-BGP. Finally, Figures 2(e) and 2(f) illustrate the way the execution time changes
as the the size of KB increases. Again MEE is 102 faster than OWL-BGP.

6 Conclusions

In [7] a novel confidentiality model has been introduced which adapts Controlled Query
Evaluation to the context of Description Logics, and extends it by taking into account
object-level and meta background knowledge. Here, we have presented SOVGen, a first
implementation of this methodology that has been specialized to deal with a concrete
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(a) KB-size=200, MR-rate=10% (b) KB-size=200, MR-rate=10%

(c) KB-size=200, S-rate=10% (d) KB-size=200, S-rate=10%

(e) MR-rate=10%, S-rate=25% (f) MR-rate=10%, S-rate=25%

Fig. 2. Secure view construction time with MEE e OWL-BGP on variation of the parameters
S-rate, MR-rate and KB-rate

e-health application. In order to maximize performance, we have compared different
reasoning tools and designed several optimization techniques. Then, we assessed SOV-
Gen experimentally by using realistic electronic health records that refer to SNOMED-
CT concepts, and Horn rules to represent meta knowledge. In particular, we observed
that module extraction techniques and a suitable, ad-hoc metarule evaluation engine
– which intensively exploit ELK incremental reasoning – largely outperform general
conjunctive query evaluation engines.

Considering that secure views are constructed off-line – so that no overhead is
placed on user queries – performance analysis shows that SOVGen is close to meet
practical use in this application scenario. In future work, we aim at improving the sys-
tem with new optimizations, and extending it to general rules.
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1 Introduction

Fuzzy description logics (FDLs) have arisen as suitable formalisms for repre-
senting and reasoning with the vague or imprecise knowledge that is intrinsic to
many application domains. They extend classical description logics by allowing
additional truth degrees that lie between the classical “true” and “false” values.
These truth degrees typically belong to a subset of the interval [0, 1].

For example, in a cloud computing environment, one might be interested
in modeling the notion of an overused component. This is a typical example
of an imprecise concept, since it is impossible to give a precise point where a
component starts being overused. Instead, in FDLs, all components are assigned
the degree to which they are being overused, where a higher degree implies a
more extensive usage. For example, an idle component is overused with degree 0,
while a component running at half its capacity might be overused to degree 0.8.
The axioms

〈Overused(cpuA) ≥ 0.8〉,
〈Server u ∃hasPart.Overused v ServerWithLimitedResources ≥ 0.9〉

express that object cpuA is overused to a degree of at least 0.8, and that every
server that has an overused part is a server with limited resources with a degree
of at least 0.9, respectively. The different concept constructors are interpreted
by a t-norm and its associated operators [13]. One important t-norm is the
Łukasiewicz t-norm, which is defined by x⊗ y := max{x+ y − 1, 0}.

Since dealing with infinitely many truth degrees easily leads to undecidability
of reasoning [1, 7, 12], we focus on finitely valued FDLs, where the degrees are
? This work was partially supported by DFG under grant BA 1122/17-1 ‘FuzzyDL’
(S. Borgwardt), the European project Optique (T. Mailis), the Cluster of Excellence
‘cfAED’ (R. Peñaloza), and EPSRC grant EP/J0083-46/1 ‘PrOQAW: Probabilistic
Ontological Query Answering on the Web’ (A.-Y. Turhan).

?? The work was developed while the author was still affiliated with TU Dresden and
the Center for Advancing Electronics Dresden, Germany.
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ordered in a finite chain. In this case, standard reasoning in expressive FDLs has
been shown to be decidable, and in the same complexity class, as reasoning in
their classical counterparts [9–11]. One proposed method for reasoning in finitely
valued FDLs is based on crispification. The idea of this method is to transform
the fuzzy ontology into a classical ontology that preserves all the information
about the truth degrees expressed in the original ontology. This is achieved
through new concept and role names like Fast≥0.8 that intuitively contain all the
elements that belong to Fast to a degree of at least 0.8. In this way, one can reduce
reasoning in fuzzy DLs to reasoning in classical DLs, for which highly optimized
reasoners exist. However, this approach only works for DLs that include at least
the expressivity of ALCH.

2 Types of Fuzzy Queries

A reasoning problem extensively studied for DLs over the last years is (conjunc-
tive) query answering, together with the associated query entailment problem.
Briefly, a conjunctive query q is a finite set of concept and role atoms, which
intuitively are ABox assertions that might contain variables in place of individ-
uals. An ontology O entails the query q if every model I of O has a match for q;
that is, if all the variables in q can be mapped to elements of the domain of I
in a way that all the atoms are satisfied. In FDLs, the matches of an atom need
not be absolute, but might also hold with a truth degree between 0 and 1.

The existence of intermediate truth degrees gives rise to two different notions
of conjunctive queries that can be entailed by a fuzzy ontology. The first one,
called threshold conjunctive query, extends the notion of an atom to express
additionally the least degree to which the atom must be satisfied in each model.
Thus, for example, we can ask whether server1 is fast (to degree 0.8) and has an
overused (to degree 0.6) component through the threshold query

{Fast(server1) ≥ 0.8, hasPart(server1, x) ≥ 1, Overused(x) ≥ 0.6}. (1)

Such a query is entailed by O if every model of O has a match with at least
the given degrees. Notice that the result of a threshold query entailment check
is either “yes” (if the query is entailed by O) or “no.” There are no intermediate
degrees associated with these answers.

The second type of query, called fuzzy conjunctive query, asks for the best
entailment degree; i.e., the largest possible degree d such that every model of
the ontology has a match to degree at least d. For example, using the fuzzy
conjunctive query

{Fast(server1), hasPart(server1, x), Overused(x)}, (2)

we can find the best degree to which server1 is fast and has an overused compo-
nent, where the conjunction between the atoms is interpreted using a t-norm. In
the case of fuzzy conjunctive queries, there is only one degree that is global for
the whole match of the query. Thus, it is possible that the threshold query above
is not entailed (i.e., answers “no”) while this fuzzy conjunctive query returns a
positive degree.
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3 Results

We propose a query answering procedure based on the crispification approach.
In addition to crispifying the ontology, we also translate a threshold query into
a classical conjunctive query that preserves the semantics w.r.t. the crispified
ontology. For example, the threshold query (1) is crispified into the classical
conjunctive query

{Fast≥0.8(server1), hasPart≥1(server1, x), Overused≥0.6(x)}.

Recall that Fast≥0.8 is a classical concept name from the crispified ontology. Thus,
deciding entailment of this conjunctive query suffices for deciding entailment of
the original threshold query.

A similar translation is used for fuzzy conjunctive queries, except that the
result is a union of conjunctive queries, where each conjunctive query considers a
certain combination of individual degrees whose combination leads to the entail-
ment of the fuzzy query. For example, to decide whether the fuzzy conjunctive
query (2) is entailed to a degree of at least 0.8, say in the presence of the degree
set {0, 0.2, 0.4, 0.6, 0.8, 1}, one has to consider a union of several CQs such as

{Fast≥0.8(server1), hasPart≥1(server1, x), Overused≥1(x)} and
{Fast≥1(server1), hasPart≥1(server1, x), Overused≥0.8(x)},

where the t-norm of the individual degrees is equal to 0.8. After the translation,
one can use any existing query answering system for classical DLs.

While studying the crispification approach for expressive FDLs, we encoun-
tered two issues. First, we noticed that some of the previous crispification ap-
proaches, such as those in [4,5], do not treat number restrictions correctly when
the Łukasiewicz t-norm is used. Second, the previously known crispifications (see
also [2, 6]) produce an exponential blow-up, which makes almost any instance
of the problem infeasible. We solved the second issue by introducing a linear
normalization step that ensures a polynomial bound on the size of the crispifica-
tion. Essentially, the normalization process introduces abbreviations that avoid
copying complex concepts during the crispification step.

Using this normalization step, we are able to prove tight complexity bounds
for answering threshold conjunctive queries; the complexity is always the same
as for classical conjunctive query answering (in DLs more expressive than ALCH
that do not have number restrictions). Unfortunately, the translation of fuzzy
conjunctive queries causes an exponential blow-up, which is avoided when the
simple Gödel t-norm x⊗y := min{x, y} is used. Moreover, the data complexity of
classical query answering in DLs is not affected when considering finitely valued
semantics, as the reduction of the ABox (the data) is linear. Finally, our method
for fuzzy query answering can be applied to any crispification approach, i.e. also
in the cases that correctly handle number restrictions [3].

More details can be found in [8], which has been submitted to a journal. A
preliminary version of these results appeared in [14].
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Abstract. The Bayesian Description Logic (BDL) BEL is a probabilistic
DL, which extends the lightweight DL EL by defining a joint probability
distribution over EL axioms with the help of a Bayesian network (BN).
In the recent work, extensions of standard logical reasoning tasks in BEL
are shown to be reducible to inferences in BNs.

This work concentrates on a more general reasoning task, namely on
conjunctive query answering in BEL where every query is associated to
a probability leading to different reasoning problems. In particular, we
study the probabilistic query entailment, top-k answers, and top-k con-
texts as reasoning problems. Our complexity analysis suggests that all
of these problems are tractable under certain assumptions.

1 Introduction

Description Logics (DLs) [3], as a successful family of knowledge representation
(KR) formalisms, have been employed in various application domains such as
conceptual modeling, databases, bio-medical ontologies, natural language pro-
cessing, configuration, and the semantic web1. Arguably, all these domains, as is
real world, are subject to imprecision; may it be an assertion about an individual
or a terminological statement, it often comes along with a degree of uncertainty.

The fact that classical DLs had severe limitations in representing and rea-
soning under uncertainty led to a body of work [20] tailored towards this goal.
Several extensions to DLs have been proposed with different characteristics in
terms of their logical expressivity, their semantics, and their independence as-
sumptions.

BDLs [6] have been proposed as a means of representing the uncertainty
over DL axioms that are being asserted. In BDLs, every axiom is associated
with a probability, which is encoded with the help of a BN. This family of logics
provides a compact and easy way of encoding probabilities over DL axioms.
Two important features of BDLs are that they do not force any independence
assumptions, and they are based on the so-called multiple world semantics.

The focus of this work is the DL BEL [7], a Bayesian extension of the
lightweight DL EL [2] for which several probabilistic reasoning tasks have been

? Supported by DFG within the Research Training Group “RoSI” (GRK 1907).
1 http://www.w3.org/TR/owl2-overview/
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Table 1: Syntax and Semantics of EL
Name Syntax Semantics

Top > ∆I

Conjunction C uD CI ∩DI

Exist. Rest. ∃r.C {d | ∃e ∈ ∆I : (d, e) ∈ rI , e ∈ CI}
GCI C v D CI ⊆ DI

Concept assertion C(a) aI ∈ CI

Role assertion r(a, b) (aI , bI) ∈ rI

studied such as the probabilistic entailment, or finding most likely context (sub-
ontology) for an entailment. In fact, tight complexity bounds have been obtained
for these problems [8].

Nevertheless, problems related to query answering, and in particular con-
junctive query (CQ) answering, has not been studied in the context of BDLs,
so far. In this paper, we close this gap and focus on i) probabilistic query en-
tailment: “What is the probability of a query to be entailed?” ii) probabilistic
query answering: “What are the top-k answers to a query?” and finally iii) the
most likely context: “What are the top-k contexts that entail a query?”

Consequently, we argue that these problems generalize the reasoning prob-
lems that have been considered so far. Unsurprisingly, reasoning in BEL is in-
tractible as is CQ answering in EL and inference in BNs. Further analysis shows
that tractability can be regained by fixing the BN and the query.

2 Conjunctive Query Answering in EL

We briefly review the DL EL [5] and query answering in EL, which constitute the
basis of this paper. Formally, let NI, NC and NR be disjoint sets of individual-,
concept- and role-names, respectively. EL concept language is defined by the
grammar rule C ::= A | > | C u C | ∃r.C, where A ∈ NC and r ∈ NR.

The semantics of EL is given by an interpretation: that is a tuple I = (∆I , ·I)
where ∆I is a non-empty domain and ·I is an interpretation function that maps
every individual name a to an element aI ∈ ∆I ; every concept name A to a
set AI ⊆ ∆I and every role name r to a binary relation rI ⊆ ∆I ×∆I . The
interpretation function ·I is extended to EL concepts as shown in the upper part
of Table 1.

The domain knowledge is encoded through a set of axioms, which restrict the
interpretation domain of the concepts. A TBox T is a finite set of general concept
inclusions (GCIs) of the form C v D, where C, D are concepts. An ABox is a
finite set of concept assertions C(a) and role assertions r(a, b), where a, b ∈ NI,
C is a concept and r ∈ NR. A knowledge base is a pair K = (T ,A) where T is
a TBox and A is an ABox. We use the term axiom as a general expression for
GCIs and assertions.
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The interpretation I satisfies an axiom λ iff it satisfies the conditions on the
lower part of Table 1. It is a model of the TBox T if it satisfies all GCIs in T and
a model of the ABox A if it satisfies all the assertions in A. An interpretation is
a model of the KB K = (T ,A) iff it is a model of both T and A. For the rest of
this paper we will denote as NI(A) the set of all individual names that appear
in the ABox A.

CQA is an important reasoning task for DLs that has been investigated in
the context of EL. Let NV be a set of variables disjoint from NC, NR, and NI.
An atom is an expression of the form A(χ) or r(χ, ψ), where A ∈ NC, r ∈ NR,
and χ, ψ ∈ NI ∪ NV. A conjunctive query (CQ) q is a non-empty set of atoms
associated to a set DV(q) ⊆ NV of distinguished variables. If DV(q) = ∅, then q
is called a Boolean CQ. A special case of a CQ is an instance query (IQ), which
consists of only one atom A(χ) with A ∈ NC.

Let q be a Boolean CQ and IV(q) be the set of all individual names and
variables appearing in q. The interpretation I satisfies q if there exists a function
π : IV(q)→ ∆I such that (i) π(a) = aI for all a ∈ NI∩IV(q), (ii) π(χ) ∈ AI for all
A(χ) ∈ q, and (iii) (π(χ), π(ψ)) ∈ rI for all r(χ, ψ) ∈ q. In this case, we call π a
match for I and q. The ontologyO entails q (O |= q) iff every model ofO satisfies
q. For an arbitrary CQ q, a function a : DV(q)→ NI(A) is an answer to q w.r.t.
O iff O entails the Boolean CQ a(q) obtained by replacing every distinguished
variable χ ∈ DV(q) with a(χ). Conjunctive query answering (CQA) is the task
of finding all answers of a CQ, and query entailment is the problem of deciding
whether an ontology entails a given Boolean CQ by replacing every distinguished
variable χ ∈ DV(q) with a(χ).

It is well known that query entailment in EL is polynomial w.r.t. data and
KB complexity, but NP-complete w.r.t. combined complexity [23]. Notice that,
EL does not enjoy the so-called full first order rewritability which has been
considered as a key feature for CQA, since it allows one to reduce the problem
to standard tasks in Relational Database Management Systems (RDMSs). Yet,
CQA in EL can be successfully employed using a combined approach as described
in [22].

3 The Bayesian Description Logic BEL

The Bayesian DL BEL [7] has been introduced as a probabilistic extension of
the light-weight DL EL. In BEL probabilities are encoded through a Bayesian
network (BN) [11]; that is, a pair B = (G,Φ), where G = (V,E) is a finite
directed acyclic graph (DAG) whose nodes represent (boolean) random variables,
and Φ contains, for every node x ∈ V , a conditional probability distribution
PB(x | π(x)) of x given its parents π(x). If V is the set of nodes in G, we say
that B is a BN over V .

BNs are widely studied probabilistic graphical models where the underlying
graph G = (V,E) encodes a series of conditional independence assumptions
between the random variables. Every variable x ∈ V is known to be conditionally
independent of its non-descendants given its parents. Thus, every BN B defines
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a unique joint probability distribution (JPD) over V given by

PB(V ) =
∏

x∈V

PB(x | π(x)).

The concept language of BEL is the same as the EL concept language. The
difference appears in encoding the domain knowledge, i.e. in forming axioms.
BEL generalizes classical TBoxes (resp. ABoxes) by annotating the GCIs (resp.
assertions) with a context defined by a set of literals belonging to a BN.

Formally, let NI be a set of individual names and V a finite set of boolean
variables. A V -context is a conjunction of literals over V . A V -restricted general
concept inclusion (V -GCI) is an expression of the form 〈C v D : κ〉 where C, D
are BEL concepts and κ is a V -context. A V -restricted assertion (V -assertion) is
an expression of the form 〈C(a) : κ〉, or 〈r(a, b) : κ〉 where a, b ∈ NI, C, D are BEL
concepts and κ is a V -context. A V -TBox (resp.V -ABox) is a finite set of V -GCIs
(resp.V -assertions). A BEL knowledge base (KB) is a tuple K = (B, T ,A) where
B is a BN over V , T is a V -TBox and A is a V -ABox.

We will sometimes speak of contextual axioms to address both V -GCIs and
V -assertions. The intuition behind the contextual axioms is to enforce an axiom
to hold within a given context, but not necessarily in others. The semantic of such
axioms is realized with the so-called contextual interpretations, which differently
from the classical interpretations also evaluate the context variables. Formally,
given a finite set of Boolean variables V , (I,VI) is a contextual interpretation
where VI is a propositional interpretation over V , and I = (∆I , ·I) is a classical
EL interpretation. We will usually ignore the prefix and speak simply of e.g. a
KB, a TBox, an ABox, or an interpretation.

The interpretation function ·I is extended to arbitrary BEL concepts as in
EL, i.e. using the rules in Table 1. We say that the contextual interpretation
(I,VI) is a model of an axiom 〈λ : κ〉 denoted as (I,VI) |= 〈λ : κ〉, iff either (i)
VI 6|= κ, or (ii) I |= λ. It is a model of the TBox T (resp. ABox A) iff it is a
model of all the axioms in T (resp. A).

A contextual interpretation (I,VI) needs to satisfy only the axioms asserted
within a context κ for which it holds that VI |= κ. Formally, let K = (B, T ,A)
be a BEL KB: Given a contextual interpretation (I,VI) where VI = W, we
define the EL KB KW = (TW ,AW) that needs to be satisfied by I as:

TW := {C v D | 〈C v D : ϕ〉 ∈ T , W |= ϕ},
AW := {C(a) | 〈C(a) : ϕ〉 ∈ A,W |= ϕ} ∪ {r(a, b) | 〈r(a, b) : ϕ〉 ∈ A,W |= ϕ}.

In BEL, uncertainty is represented through a BN that describes a joint proba-
bility distribution over the context variables. Semantically, BEL is linked to this
distribution with the so called multiple world semantics: A probabilistic inter-
pretation defines a probability distribution over a set of (contextual) interpre-
tations; this distribution is required to be consistent with the joint probability
distribution provided by the BN. Formally, a probabilistic interpretation is a pair
P = (I, PI), where I is a set of contextual interpretations and PI is a probability
distribution over I such that PI(I,VI) > 0 only for finitely many interpretations
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(I,VI) ∈ I. P is a model of the TBox T (resp. ABox A) if every (I,VI) ∈ I
is a model of T (resp. A). P is consistent with the BN B if for every possible
valuation W of the variables in V it holds that

∑

(I,VI)∈I, VI=W
PI(I,VI) = PB(W).

The probabilistic interpretation P is a model of the KB (B, T ,A) iff it is a
(probabilistic) model of T , A and consistent with B.

To provide a fine-grained analysis of the complexity of reasoning in BEL, we
use different measures for the size of the input. In data complexity, we measure
only the size of the ABox, and consider the rest of the KB and the query fixed.
For ontology complexity we use the size of the TBox and the ABox; in network
complexity the relevant input is the BN, while the combined complexity considers
the size of the whole input.

4 Probabilistic Query Entailment

Different reasoning tasks have been studied in the context of Bayesian DLs; per-
haps the most prominent one being the probabilistic entailment [6]. Although,
probabilistic entailment has been considered generally, its focus was on entail-
ments of simple consequences, i.e. consequences of the form subsumption, in-
stance checking etc., all of which are tasks that can be decided in time polynomial
in EL. Thus, the class of problems based on entailments of simple consequences
has lead tight complexity bounds in BEL [8].

Here we generalize these results and study probabilistic query entailment. In
this setting, we are not just interested in the entailment of a query q but also in
the probability of such entailment.

Definition 1 (probabilistic query entailment). Let K = (B, T ,A) be a BEL
KB over V and P = (I, P ) a probabilistic interpretation. P defines a probability
distribution PP over all conjunctive queries q given by

PP(q) :=
∑

(I,VI)∈I, I|=q

P (I,VI).

The probability of the query q w.r.t. K is PK(q) := infP|=K PP(q). A query q is
entailed with probability p ∈ (0, 1] iff PK(q) ≥ p.

Recall that every valuation W defines an EL ontology that contains all the
axioms that must be satisfied by any contextual interpretation using the valua-
tionW. Given a Boolean CQ q, we can build a probabilistic model Pq = (I, P ) of
K such that for every valuationW there is exactly one contextual interpretation
IW ∈ I, and it satisfies that IW |= q iff KW |= q. It is easy to see that every
other model P of K is such that PP(q) ≥ PPq(q), which yields the following
theorem.
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Fig. 1: The BN BABC over the variables {x, y, z}

Theorem 2. For every BEL KB K and Boolean CQ q PK(q) =
∑

KW |=q PB(W).

Given Theorem 2, one can compute the probability of any query by summing up
the probabilities of the worlds that entail the query q. We illustrate probabilistic
query entailment with a simple example.

Example 3. Consider the BEL KB K = ((TABC,AABC),BABC) where

TABC := { 〈A v ∃r.B : {y}〉 , 〈B v C : {x}〉}
AABC := { 〈A(a) : {x}〉 , 〈r(a, b) : {z}〉 , 〈C(b) : {x, z}〉 , 〈A(c) : {y}〉}

BABC is the BN given in Figure 1 and the Boolean CQ q = {A(χ), r(χ, ψ), C(ψ)}.
Clearly, KW |= q only for worlds W such that W |= (x ∧ y) ∨ (x ∧ z). Hence, we
get PK(q) = PBABC((x ∧ y) ∨ (x ∧ z)) = 0.411.

Clearly the number of worlds might be exponential in |V |. In fact, this corre-
sponds to exponentially many query entailment tests, which can be performed
using polynomial space only.

Theorem 4. Probabilistic query entailment is polynomial w.r.t. data and ontol-
ogy complexity; and in PSpace w.r.t. network and combined complexity.

The bounds for network and combined complexity can be improved if we
restrict the queries to instance queries only. It is then possible to use a novel
structure, called the proof structure such as the one presented in [8]. The general
idea is to reduce probabilistic reasoning in BEL knowledge bases to standard
inferences in a BN. In essence, a proof structure compactly describes the class
of contexts that entail the wanted consequence. Using this proof-structure, it
is possible to construct a BN from which the probability of such consequence
can be computed. Importantly, it has been shown that such reduction can be
performed in polynomial time.

In a nutshell, a proof structure is a directed acyclic hyper-graph, in which
every node represents an axiom. It is constructed in a bottom up manner with
the help of a set of deduction rules. Starting from an initial set of axioms given
by the KB, it adds new nodes for the axioms resulting from 1-step application
of the deduction rules. Edges are used for denoting the axioms that have been
used for the deduction. This process continues until the rules are saturated under
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the set of axioms. This structure enables us to trace back all the causes for a
consequence. Thus, once transformed into a BN, it represents all contexts for a
consequence, the probability of which can then be computed via the BN. For
the details, we refer to [8].

To provide a better complexity bound for probabilistic query entailment, we
extend the proof structure to also handle the assertional knowledge, which was
not present so far. Following a näıve approach it is possible to introduce a new
set of deduction rules; instead, we make use of nominals to handle the assertions.

Briefly, the DL ELO extends EL with nominals; that is, it allows special types
of concepts of the form {a} with the semantics {aI}. It is well-known that in the
presence of nominals, EL KBs can be represented without an ABox. Thus, for
an ELO KB it is possible to benefit from the deduction rules presented in [19]
to construct a proof structure. Using the approach in [8] with the new rules
given in [19] over an ELO KB, we construct a proof structure for an EL KB
K = (T ,A) that is guaranteed to contain the information of all possible causes
for a consequence to follow from K. Moreover, this hypergraph is acyclic and has
polynomially many nodes, on the size of K, by the properties of the rules and
their applications.

A BEL KB can be transformed into a BELO KB in the obvious way. Let
K = {B, T ,A} be a BEL KB, we construct the BELO KB K′ = {B, T ′} where

T ′ = T ∪ { 〈{a} v C : κ〉 | 〈C(a) : κ〉 ∈ A }
∪ { 〈{a} v ∃.r{b} : κ〉 | 〈r(a, b) : κ〉 ∈ A }.

Clearly, K |= c iff K′ |= c for any consequence c. Hence, for any ABox
assertion, it is possible to construct a proof structure of polynomial size. To
check the probability of an instance query C(χ) we construct a BN using the
proof structures of C(a) where a is an individual appearing in the ABox. Observe
that the number of proof structures is bound with the individuals available in
the ABox and we obtain a polynomial construction w.r.t. the size of the input.

Together with the hardness of probabilistic entailment of simple consequences
in BEL without ABoxes, we get the following result.

Lemma 5. Probabilistic query entailment restricted to IQs is PP-complete w.r.t.
the combined complexity.

5 Probabilistic Query Answering

Query answering is the problem of finding mappings for a query, i.e. one is not
just interested whether a query is entailed or not, but also with the witnesses of
such entailment. Typically, data is assumed to be large and it is not always very
feasible to return all answers to a query q to the user. One of the most important
applications of query answering is returning the top-k answers to a given query q
w.r.t. a measure. By this way users do not only get a feasible number of answers
but also a fine grained view over the data. In the context of probabilities, we are
interested in finding the answers that are most likely.

374



Let q be a query with the distinguished variables DV(q), and K = (B, T ,A)
a BEL KB. We denote by Ind(A) the set of all individual names appearing in
A. Recall that every function a : DV(q) → Ind(A) defines a CQ obtained by
replacing every χ ∈ DV(q) in q with a(χ). Abusing the notation, we call this
query a(q). We call any function a : DV(q) → Ind(A) an answer to q w.r.t.
K, and define its probability as PK(a) := PK(a(q)). Since an answer defines a
boolean CQ, all complexity results for CQs transfer immediately. Every answer
to a query q, has a probability, which we use as a measure to distinguish the
answers. We refine the set of answers w.r.t. their probabilities and return top
answers only.

Definition 6 (top-k answer). Let q be a query, K be a BEL KB, and k ∈ N.
A top-k answer to q w.r.t. K is a tuple (a1, . . . , ak) of different answers to q
w.r.t. K such that (i) for all i, 1 ≤ i < k, PK(ai) ≥ PK(ai+1), and (ii) for every
other answer a, PK(ak) ≥ PK(a).

In other words, a top-k answer is an ordered tuple of the k answers with the
highest probability. We assume that k is a constant that is fixed a priori. Thus,
it is not considered part of the input of the problem. Obviously, since different
answers may have the same probability, top-k answers are not unique. Here we
are only interested in finding one of them. Stating it as a decision problem, we
want to verify whether a given tuple is a top-k answer.

Example 7. Consider the BEL KB K = ((TABC,AABC),BABC) provided in Example 3
and the query q = {A(χ)} with χ ∈ DV. We are interested in identifying the top-1
answer to q w.r.t. K. Notice that both a0 : χ 7→ a and a1 : χ 7→ c are answers to q
with positive probability. Clearly, a0 is the top-1 answer since PK(a0) > PK(a1).

Assuming that the size of q and the BN B are fixed, there are polynomially
many answers to q w.r.t. K, and for each answer a, we can compute PB(a)
performing polynomially many EL query entailment tests. Thus, it is possible to
verify whether (a1, . . . , ak) is a top-k answer in polynomial time w.r.t. ontology
complexity.

If we consider the combined complexity, the problem can be decided as fol-
lows. For every answer to the query, we only keep track of those answers that
are best by checking the probabilities PB(a) of the individual answers iteratively.
Since the latter can be done in PSpace, we obtain an upper bound.

Theorem 8. Let A = (a1, . . . , ak) be a tuple of answers to q w.r.t. K. Deciding
whether A is a top-k answer is polynomial w.r.t. data and ontology complexity,
in PSpace w.r.t. network complexity and combined complexity.

We show a lower bound for this problem w.r.t. the combined complexity.
by providing a reduction from the decision version of the maximum a-posteriori
(D-MAP) problem for BNs [11]. Formally, given a BN B over V , a set Q ⊆ V ,
a context κ, and p > 0, the D-MAP problem consists of deciding whether there
exists a valuation µ of the variables in Q such that PB(κ ∧ µ) > p.
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Consider an arbitrary but fixed instance of D-MAP described by the BN
B = ((V,E), Φ), the context κ, Q ⊆ V , and p > 0. We introduce a new Boolean
random variable z not appearing in V . Using this variable, we construct a new
DAG (V ′, E) with V ′ = V ∪{z} and a new BN B′ = ((V ′, E), Φ′), where PB′(v |
π(v)) = PB(v | π(x)) for all v ∈ V , and PB′(z) = p. Consider the BEL KB
K = (B′, ∅,A) where

A := {〈Ax(ax) : x〉 , 〈Ax(bx) : ¬x〉 , 〈Ax(c) : z〉 | x ∈ Q} ∪
{〈B(a) : κ〉 , 〈B(c) : z〉},

and query q := {Ax(χx) | x ∈ Q} ∪ {B(χ)}, where all the variables are distin-
guished; i.e., DV(q) = {χx | x ∈ Q} ∪ {χ}. It is easy to see that the mapping
a0 : DV(q) → {c} is an answer to this query and PK(a0) = p. Moreover, any
other answer that maps any variable to c will have the probability at most p,
since it can only be entailed in contexts satisfying z. Suppose that there is an
answer a such that PK(a) > p. This answer must map every variable χx to either
ax or bx and χ to a. Let µa :=

∧
a(χx)=ax

x ∧∧a(χx)=bx
¬x. By construction, µa

is a valuation of the variables in Q, PB(κ∧ µa) > p, and a(q) is only entailed by
valuations satisfying the context κ∧µa. Overall this means that a0 is not a top-1
answer iff there is a valuation µ of the variables in Q such that PB(κ ∧ µ) > p.

Theorem 9. Deciding whether a tuple A is a top-k answer is coNPPP-hard
w.r.t. combined complexity.

Notice that the proof uses a very simple query which is in fact acyclic. Thus,
contrary to classical EL [4], restricting to acyclic queries does not suffice for
reducing the complexity of reasoning. Clearly, if we consider IQs this hardness
might not hold any more.

Obtaining most probable answers for a query is a crucial task for the domains
where imprecise characterizations of knowledge is necessary. The next section is
dedicated to another reasoning task that can be seen dual to top-k answers,
namely top-k contexts.

6 Most Likely Contexts for a Query

Dually to finding the most likely answers to a query, we are also interested in
finding the k most likely contexts that entail a given Boolean query q. More
precisely, suppose that we have already observed that the query q holds; then,
we are interested in finding out which is the current context. As in the previous
section, we do not consider one, but search for a fixed number of contexts that
are the most likely to hold.

To define this reasoning task formally, we must generalize the notion of the
ontology KW defined to consider arbitrary contexts κ, which we denote as Kκ.
For any contextual interpretation (I,VI) with VI |= κ it must hold that I |= Kκ.
If Kκ entails the Boolean query q, then we say that q holds in context κ. We are
interested in finding out the most likely contexts in which a given query holds.
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Definition 10 (top-k contexts). Let q be a CQ, K a BEL KB, and k ∈ N.
κ1, . . . , κk are top-k contexts for q w.r.t. K if Kκi

entails q for all i, 1 ≤ i ≤ k;
PB(κi) ≥ PB(κi+1) for all i, 1 ≤ i ≤ k; and there is no other context κ such that
Kκ |= q and PB(κ) > PB(κk).

We illustrate top-k mlc with our continuing example. In this case, we are
interested in finding out the 2 most likely context that entail the query.

Example 11. Consider the BEL KB K = ((TABC,AABC),BABC) and query q provided
in Example 3. Clearly all contexts κ that entail q are such that κ |= {x, y}∨{x, z}.
The top-2 contexts are then 〈{x, y}, {x, z}〉 since PBABC({x, y}) > PBABC({x, z}).
The problem of finding one most likely context has been studied for simple
queries. In those special cases, it was shown to be coNPPP-complete problem
w.r.t. combined complexity [8]. The coNPPP upper bound holds also for top-k
contexts w.r.t. combined complexity: if a tuple is not a top-k mlc, then guess a
new context κ and show using a PP oracle that Kκ |= q and PB(κ) > PB(κk).
If the BN is fixed, then the number of contexts is constant, and they can be
ordered w.r.t. their complexity in constant time. The top-k mlc problem is then
solved by applying a constant number of EL CQ entailment tests, yielding a
polynomial upper bound w.r.t. ontology complexity. All these complexity results
are summarized in the following theorem.

Theorem 12. Deciding whether κ1, . . . , κk are top-k mlc for q w.r.t. the KB K
is polynomial w.r.t. data, and ontology complexity, PP-hard and in NPPP w.r.t.
network complexity, and NPPP-complete w.r.t. combined complexity.

Given the hardness of deciding top-k contexts, we consider a special case of
this problem: Suppose now that all contexts are of a special form, i.e. they are
valuations, we call this problem top-k worlds. In this case, we need to guess a
world W and decide whether i) KW |= q and ii) PK(W) > PK(Wk), where the
former requires an NP oracle whereas the latter can be decided in polynomial
time using tha standard chain rule of BNs.

Notice that, top-k contexts and top-k answers are dual to each other, but
they do not necessarily overlap. Consider for instance the case, where all top-k
answers to a query q are retrieved from the same context κ. In this case, top-k
contexts for q will contain other contexts than κ with the assumption that k > 1.
Deciding top-k contexts is particularly informative for cases where the diversity
of knowledge is important.

We have discussed several reasoning problems in BEL w.r.t. CQs which we
considered as natural problems that could arise in several domains. For a sum-
mary of the results, see Table 2.

7 Related Work

The literature on probabilistic extensions of DLs consists of various formalisms,
each of which with different characteristics [20]. Despite the fact that probabilis-
tic query answering has been studied widely in relational databases [15, 13, 9],
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Table 2: BEL reasoning problems and their complexity

Problem data ontology network combined

probabilistic CQ entailment P P PP-c PP/PSpace

probabilistic IQ entailment P P PP-c PP-c.

top-k answer P P PP/PSpace coNPPP/PSpace

top-k contexts P P PP/coNPPP coNPPP/PSpace

top-k worlds P P coNP-c coNP/Πp
2

RDF graphs [16] and XML databases [1, 17], only few of the probabilistic DLs
considered CQA as a reasoning task.

In the probabilistic extension of Datalog+/- [14] authors are interested in
retrieving the answers that are above a threshold value that is set a priori. In
contrast to BEL, in probabilistic Datalog+/- the underlying semantics is based
on Markov logic networks. The Prob-DL family [21] extends classical DLs with
subjective probabilities, also known as Type II probabilities [18]. The main dif-
ference with our logic is that Prob-EL introduces probabilities as a concept con-
structor, whereas we allow only probabilities over axioms. More closely related
to BEL is BDL-Lite [10]. As is in BEL, BDL-Lite only allows probabilities over
axioms and conditional dependencies are represented faithfully. However, as it
has been pointed before [8], the authors use a closed world assumption, which
easily leads to inconsistencies for the Bayesian extension of EL.

8 Conclusions

We have studied probabilistic query entailment, top-k answers and top-k con-
texts as reasoning problems. Though not being complete, for each of these prob-
lems, we provided a complexity analysis. Moreover, we have shown that assuming
that the given BN and query are relatively small, all problems become tractable.
Removing this assumption immediately results in the loss of tractability, which
is not surprising given the intractability results in BNs and CQA in EL.

As a future work, we want to obtain tight bounds w.r.t. all measures provided.
We have shown tight complexity bounds for the query entailment problem of IQs.
Restricting our attention to IQs, other problems might also get easier under
widely accepted assumptions of complexity theory. It should be reminded that
this is unfortunately not the case for acyclic queries.

On the practical side, we will consider optimizing the reasoning mechanisms
and we will implement a system for reasoning in BEL that will benefit both
from techniques in DLs, such as module extraction, query processing and from
techniques in reasoning with lifted BNs, mainly based on logic programming as
in [12].
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Conjunctive query (CQ) answering is an important reasoning task in descrip-
tion logics (DLs). Its goal is to retrieve the tuples of individuals that satisfy a
conjunctive query; i.e., a finite set of atomic queries. These tuples are called an-
swers. Clearly, a given CQ may have a considerable number of answers, specially
if the set of individual names appearing in the ABox is large, as is the case for
many existing DL ontologies. In order to manage all these answers in a structural
manner, one can try to extend query answering with preference criteria, in such
a way that the most preferred answers are returned first.

Possibilistic networks (PNs) have arisen as a way of representing conditional
preferences over a finite set of events in a compact way [1]. The general idea is
to provide a possibility degree to each conditional event which is proportional to
the preference given to that event. We apply this idea to model the preferences
of query answers indirectly, by modeling the preferences over the contexts that
entail them. In a nutshell, we divide an EL knowledge base (KB) into contexts,
and use a possibilistic network to describe the joint possibility distribution over
these contexts. Our formalism is based on ideas previously presented for rea-
soning under probabilistic uncertainty described by a Bayesian network [3]. The
preference of an answer to the query is the possibility degree of the best con-
text that entails this answer. Dually, we also compute, given a query, the most
preferred source; that is, the context with the highest degree that entails this
query.

Similar to Bayesian networks [4], PNs are graphical models providing a com-
pact representation of a discrete possibility distribution, through some inde-
pendence assumptions [2]. A possibility distribution over a set Ω is a func-
tion Pos : Ω → [0, 1] that intuitively provides a degree of how possible is an
event ω ∈ Ω to happen. This function is extended to sets Γ ⊆ Ω by defining
Pos(Γ ) = supω∈Γ Pos(ω). The product conditional distribution which is defined
by the equation Pos(Γ ∩Θ) = Pos(Γ | Θ) · Pos(Θ).

Possibilistic networks decompose a possibility distribution into a product of
conditional probability distributions that depend on the structure of a graph. A
? Supported by DFG within the Research Training Group “RoSI” (GRK 1907).

?? The work was developed while the author was still affiliated with TU Dresden and
the author has been partially supported by the Cluster of Excellence “cfAED”.
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¬x ¬y 0.9 0

Fig. 1. A possibilistic network over V0 = {x, y, z}

possibilistic network (PN) is a pair P = (G,Φ), where G = (V,E) is a DAG,
and Φ contains a conditional possibility distribution PosP(x | pa(x)) of every
variable x ∈ V given its parents pa(x) (see Figure 1). This PN defines the joint
possibility distribution over the valuations of the variables in V

PosP(V ) =
∏

x∈V

PosP(x | pa(x)).

Let V be a fixed but arbitrary finite set of propositional variables. A V -context
is a propositional formula over V . A V -GCI is of the form 〈C v D : ϕ〉 with C,D
concepts and ϕ a V -context. A V -TBox is a finite set of V -GCIs. V -assertions
are of the form 〈C(a) : ϕ〉 or 〈r(a, b) : ϕ〉 where r ∈ NC, a, b ∈ NI, C is a concept
and ϕ is a V -context. A V -ABox is a finite set of V -assertions. A PEL KB is a
tuple K = (P, T ,A) where P is a PN over V , T is a V -TBox and A is a V -ABox.

The semantics of this logic is defined using multiple worlds. A contextual in-
terpretation is a pair (I,W) where I is an EL interpretation andW is a valuation
of the variables in V . (I,W) satisfies the axiom 〈λ : ϕ〉 ((I,W) |= 〈λ : ϕ〉), iff
either (i)W 6|= ϕ, or (ii) I |= λ. It is a model of the PEL TBox T (resp. ABox A)
iff it satisfies all the axioms in T (resp. A). A possibilistic interpretation is a pair
P = (J,Pos), where J is a finite set of contextual interpretations and Pos is a
possibility distribution over I. P is a model of the PEL TBox T (resp. ABox A)
if every (I,W) ∈ J is a model of T (resp. A). P is a model of the PN P if for
every valuation W,

max
(I,W)∈J

Pos(I,W) = PosP(W).

P is a model of the PEL KB K = (P, T ,A) iff it is a model of T , A, and P.
Each possibilistic interpretation P = (I,Pos) defines a possibility distribu-

tion PosP over all CQs given by PosP(q) := max(I,W)∈I, I|=q{Pos(I,W)}. The
entailment degree of q w.r.t. the PEL KB K is

PosK(q) := inf
P|=K
{PosP(q)}.

These possibility distributions are extended to contexts in the obvious way, by
setting PosP(ϕ) := PosP(ϕ) = maxW|=ϕ PosP(W). We can then define the con-
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Table 1. PEL reasoning problems and their complexity

Problem data KB network combined

p-entailment P P NP-c NP-c

top-k answer P P ∆p
2-c ∆p

2-c

conditional top-k answer P P ∆p
2-c ∆p

2-c

k most preferred worlds P P coNP-c coNP-c

ditional possibilities of a query given a context, and of a context given a query,
using the standard product rule. Formally,

PosK(q ∧ ϕ) = PosK(q | ϕ)PosK(ϕ),

PosK(q ∧ ϕ) = PosK(ϕ | q)PosK(q),

where
PosK(q ∧ ϕ) = inf

(I,Pos)|=K

{
max

I|=q, W|=φ
Pos(I,W)}

}
.

We consider three main reasoning problems in this setting; namely, decid-
ing p-entailment, retrieving the top-k answers to a query, and the k most pre-
ferred worlds entailing a given query. We formally define these problems next.
The problem of p-entailment refers to deciding whether PosK(q) ≥ p for some
given p ∈ (0, 1]. The top-k answer problem consists in deciding whether a tuple
(a1, . . . , ak) of different answers to q w.r.t. K is such that (i) for all i, 1 ≤ i < k,
PosK(ai) ≥ PosK(ai+1), and (ii) for every other answer a, PosK(ak) ≥ PosK(a).
This problem can be generalized to consider additional contextual evidence;
that is, verify whether (a1, . . . , ak) are the top-k answers to q given the con-
text ϕ. Finally, the k most preferred worlds problem is the problem of deciding
whether a tuple of k valuations of the variables V (W1, . . . ,Wk) is such that
PosK(Wi | q) ≥ PosK(Wi+1 | q) holds for all i, 1 ≤ i < k, and there exists no
other valuation W such that PosK(W | q) > PosK(Wk | q).

The complexity of all these problems is summarized in Table 1, where net-
work complexity refers to the complexity considering only the size of the PN as
input, KB complexity considers the size of the ABox and TBox, while combined
complexity considers the whole KB together with the PN and the query as the
size of the input. As it can be seen, all the problems remain tractable w.r.t. data
and KB complexity, but the complexity increases as soon as the PN or the query
is considered part of the input. This corresponds to the behaviour exhibited by
query answering in the classical EL [5]. The full details of these results can be
found in the appendix.

Although all the complexity bounds are tight, they are all based on perform-
ing black-box query entailment tests on EL KBs. As future work we plan to
adapt specific query answering techniques to produce effective algorithms that
can be used in practice. We will also extend our framework to other kinds of
standard and non-stardard reasoning tasks.
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1 Introduction

It is well known that many artificial intelligence applications need to represent
and reason with knowledge that is not fully certain. This has motivated the
study of many knowledge representation formalisms that can effectively han-
dle uncertainty, and in particular probabilistic description logics (DLs) [7–9].
Although these logics are encompassed under the same umbrella, they differ
greatly in the way they interpret the probabilities (e.g. statistical vs. subjec-
tive), their probabilistic constructors (i.e., probabilistic axioms or probabilistic
concepts and roles), their semantics, and even their probabilistic independence
assumptions. A recent example of probabilistic DLs are the Bayesian DLs, which
can express both logical and probabilistic dependencies between axioms [2–4].

One common feature among most of these probabilistic DLs is that they
consider the uncertainty degree (i.e., the probability) of the different events to
be fixed and static through time. However, this assumption is still too strong
for many application scenarios. Consider for example a situation where a grid
of sensors is collecting knowledge that is then fed into an ontology to reason
about the situation of a large system. Since the sensors might perform an incor-
rect reading, this knowledge and the consequences derived from it can only be
guaranteed to hold with some probability. However, the failure rate of a sensor
is not static over time; as the sensor ages, its probability of failing increases.
Moreover, the speed at which each sensor ages may also be influenced by other
external factors like the weather at the place it is located, or the amount of use
it is given.

We propose to extend the formalism of Bayesian DLs to dynamic Bayesian
DLs, in which the probabilities of the axioms to hold are updated over discrete
time steps following the principles of dynamic Bayesian networks. Using this
principle, we can not only reason about the probabilistic entailments at every
point in time, but also reason about future events given some evidence at different
times. This work presents the first steps towards probabilistic reasoning about
complex events over time.

? Supported by DFG within the Research Training Group “RoSI” (GRK 1907).
?? The work was developed while the author was still affiliated with TU Dresden and

the author has been partially supported by the Cluster of Excellence “cfAED”.

384



x

y

z

t

x′

y′

z′

x′

x .4
¬x .4

y′

x y x′ .9
x y ¬x′ .5
x ¬y x′ .8
x ¬y ¬x′ .4
¬x y x′ .8
¬x y ¬x′ .4
¬x ¬y x′ .7
¬x ¬y ¬x′ .1

z′

z x′ y′ .7
z x′ ¬y′ .2
z ¬x′ y′ .4
z ¬x′ ¬y′ 1
¬z x′ y′ .6
¬z x′ ¬y′ .1
¬z ¬x′ y′ .3
¬z ¬x′ ¬y′ 1

t+ 1

Fig. 1. The TBN B→ over the variables V = {x, y, z}

2 Formalism

Following the ideas presented in [2], a dynamic Bayesian ontology is an ontology
from an arbitrary (but fixed) DL L, whose axioms are annotated with a context
that expresses when they are considered to hold. The difference is that these
contexts are now related via a dynamic Bayesian network.

A Bayesian network (BN) [5] is a pair B = (G,Φ), where G = (V,E) is a fi-
nite DAG and Φ contains, for every x ∈ V , a conditional probability distribution
PB(x | π(x)) of x given its parents π(x). Dynamic BNs (DBNs) [6,10] extend BNs
to provide a compact representation of evolving joint probability distributions for
a fixed set of random variables. Updates of the JPD are expressed through a two-
slice BN, which expresses the probabilities at the next point in time, given the
current context. A two-slice BN (TBN) is a pair (G,Φ), where G = (V ∪ V ′, E)
is a DAG containing no edges between elements of V , V ′ = {x′ | x ∈ V }, and Φ
contains for every x′ ∈ V ′ a conditional probability distribution P (x′ | π(x′)) of
x′ given its parents π(x′) (see Figure 1). A dynamic Bayesian network (DBN)
is a pair D = (B1,B→) where B1 is a BN and B→ is a TBN. Using the Markov
property: the probability of the future state is independent from the past, given
the present state, the DBN D = (B1,B→) defines, for every t ≥ 1, a probability
distribution PB(Vt) =

∏t
i=2

∏
x∈V PB→(xi | π(xi)i−1)PB1(V1). This distribution

is defined by unraveling the DBN starting from B1, using B→ until t copies of V
have been created. This produces a new BN B1:t encoding the distribution over
time of the variables. Figure 2 depicts B1:3 for the DBN (B1,B→) where B→ is
the TBN from Figure 1. The conditional probability tables of each node given
its parents (not depicted) are those of B1 for the nodes in V1, and of B→ for
nodes in V2 ∪ V3. Notice that B1:t has t copies of each random variable in V .

A V -context is a consistent set of literals over V . A V -axiom is of the form
〈α : κ〉 where α ∈ A is an axiom and κ is a V -context. A V -ontology is a finite
set O of V -axioms, from the DL L. A DBL knowledge base (KB) over V is a
pair K = (O,D) where D is a DBN over V and O is a V -ontology. The semantics
of this logic is defined by producing for every point in time, a multiple-world
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interpretation, where each world is associated to a probability that is compatible
with the probability distribution defined by the DBN at that point in time.

3 Reasoning

The main reasoning task that we consider is to compute the probability of ob-
serving a consequence at different points in time. We consider three variants of
this problem; namely, the probability of observing the consequence (i) exactly
at time t ≥ 0, (ii) at most at time t, or (iii) at any point in time. Combining
methods from DBNs and context-based reasoning [1], we show that all these
reasoning problems can be solved effectively.

The main idea is based on the unraveling of the DBN to time t. Using this
unraveling, we readily know the probability of each context at every point in time
between the present state and t. The logical element of the problem (i.e., knowing
which contexts entail the consequence under consideration) is handled through
the computation of a so-called context formula, which intuitively summarizes
all the logical causes for the consequence to follow. Importantly, this context
formula can be computed once for each consequence, and used for many different
tests while reasoning. This unraveling and context formula can be used to solve
the problems (i) and (ii) introduced above, with the help of a standard BN
inference engine. Moreover, it is possible to add evidence observed at different
points in time into the computation. This additional evidence does not yield
any technical difficulties to our techniques, although may cause an increase in
complexity, depending on the type and frequency of observations.

Clearly, the unraveling method cannot be used to compute the probability of
eventually observing the consequence, as described by the problem (iii) above:
one would potentially need to unravel the DBN to an infinite time, yielding a
structure for which no effective reasoning methods exist. Instead, we identify
some conditions under which this probability is easy to compute. Overall, this
does not yield a full reasoning mechanism, but provides a good approximation
in several meaningful cases.

As mentioned before, this work provides only the first steps towards a for-
malism for reasoning about events with evolving uncertainty. The following step
is to be able to handle more complex time expressions and evidence.

x

zy

x1

z1

y1

x2

z2

y2

x3

z3

y3

Fig. 2. B1 and the three step unraveling B1:3 of (B1,B→)
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Abstract. Recently an approach has been devised how to employ con-
cept similarity measures (CSMs) for relaxing instance queries over EL
ontologies in a controlled way. The approach relies on similarity measures
between pointed interpretations to yield CSMs with certain properties.
We report in this paper on Elastiq, which is a first implementation of
this approach and propose initial optimizations for this novel inference.
We also provide a first evaluation of Elastiq on the GeneOntology.

1 Introduction

Description Logics (DLs) are a family of knowledge representation whose for-
mal semantics allow the definition of a variety of reasoning services. The most
prominent ones are subsumption and instance query answering. However, many
applications need to query the knowledge base in a more relaxed manner. For
instance, in the application of service matching TBoxes are employed to describe
types of services. Here, a user request for a service specifies several requirements
for the desired service and can be represented by a complex concept. For such
a concept the ABox that contains the individual services is searched for a ser-
vice matching the specification by performing instance query answering. In cases
where an exact match with the provided requirements is not possible, a ‘feasible’
alternative should be retrieved from the ABox.

To relax the notion of instance query answering one can simply employ fuzzy
DLs and perform query answering on a fuzzy variant of the initial query concept.
However, on the one hand reasoning in fuzzy DLs easily becomes undecidable,
see [2–4] and on the other hand fuzzy concepts would always relax the initial
concept in a uniform way and cannot consider user or request-specific preferences
on which parts of the query are more important and should not be relaxed.

A reasoning service that allows for a given query concept the selective and
gradual extension of the answer set of individuals is answering of relaxed instance
queries, was proposed in [7] and further investigated in [8, 6, 9]. The selective,
gradual relaxation of the answer sets returned to instance queries is achieved
by the use of concept similarity measures. A concept similarity measure (CSM)
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yields, for a pair of concepts, a value from the interval [0, 1]—indicating how
similar the concepts are. To answer a relaxed instance query is to compute for a
given concept C, a CSM ∼, and a threshold t between 0 and 1, a set of concepts
such that each of these concepts are similar to C by a threshold of at least t, if
measured by the CSM ∼, and then finding all their instances.

Concept similarity measures are widely used in ontology-based applications.
For ontologies from the bio-medical field, such as the GeneOntology ontology
[10], they are employed to discover functional similarities of genes. Furthermore,
CSMs are used in ontology alignment algorithms. For DLs there exists a whole
range of CSMs, which could be employed for the task of answering relaxed in-
stance queries [1, 5, 12, 15]. In particular the CSMs generated by the framework
described in [12] allow users to specify which part of the ontology’s signature is
to be regarded more important when it comes to the assessment of similarity of
concepts. Thus, these measures naturally allow users to select important features
of the query concept and which aspect of the query concept to relax.

We investigated algorithms for computing answers to relaxed instance queries
for EL. This DL has good computational properties and large, well-known bio-
medical ontologies such as the GeneOntology [10] are written in (polynomial
extensions of) EL. Our algorithm for computing relaxed instances w.r.t. EL-KBs
with general TBoxes relies on canonical models of the query concept and of the
queried KB. The employed CSM is derived from a similarity measure for pointed
interpretations, which essentially implements relaxed forms of equisimulation
between interpretations. A similar idea in spirit is pursued in [16, 17] for EL-
concepts, where similarity is measured in terms of ‘how much is missing’ to
establish a homomorphism between graph representations of EL-concepts.

Now, for computing answers to relaxed instance queries, the similarity values
for all pairs of elements between the two canonical models need to be computed
in the worst case. Thus a naive implementation would hardly be efficient. We
report in this paper in first optimizations for this novel inference, which we have
implemented in the system Elastiq (EL answering of similarity-threshold in-
stance queries). A first evaluation on the GeneOntology shows that the proposed
optimizations are vital for this kind of inference, but that response times for a
single query over large ontologies are still about a second.

The remainder of the paper in structured as follows. Next, we give an in-
troduction to the technical terms used and the relaxed instance inference. In
Section 3 we discuss the algorithm for computing relaxed instances and the sim-
ilarity measures employed for it. The Elastiq reasoner is introduced in Section 4
together with some optimizations and the evaluation of its performance on the
GeneOntology. The paper ends with conclusions and future work.

2 Preliminaries

EL-concepts are built from two mutually disjoint sets NC of concept names, and
NR of role names using the syntactic rule: C,D ::= > | A | C u D | ∃r.C,
where A ∈ NC and r ∈ NR. The semantics of EL-concepts are defined by means
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of interpretations, in which concept names are interpreted as subsets of the
interpretation domain and roles as binary relations. The semantics are extended
to complex concepts as usual. An EL-TBox consists of a finite set of general
concept inclusion axioms (GCIs) of the form C v D. An interpretation is a
model for a TBox if it satisfies all its GCIs. An EL-ABox describes individuals
from a set NI of individual names using concept assertions of the form C(a)
and role assertions of the form r(a, b). Again, an interpretation is a model for
an ABox if it satisfies all its assertions. An EL-knowledge base (KB) is a pair
K = (T ,A) of a TBox T and an ABox A.

The following commonly used reasoning tasks are implemented in most DL
reasoning systems. Concept subsumption C vT D asks, for a TBox T and two
concepts C and D, if CI ⊆ DI for all models I of T . Given an individual a, a
concept C, and a KB K, a is called an instance of C w.r.t. K, denoted K |= C(a),
iff aI ∈ CI for all models I of K. Given a KB K = (T ,A) and a concept C,
instance retrieval returns all individuals from A that are instances of C.

For the DL EL, the polynomial-time complexity of most reasoning procedures
rely on the fact that canonical models can be built, from which it is possible to
read off entailments directly. These canonical models represent the most general
model for a concept or the individuals of an ABox w.r.t. to a TBox. Before we
can formally define these canonical models, we need to introduce some notation.
If X is a concept, TBox, ABox, or KB, then:

– Sig(X) denotes the signature of X; that is, the set of concept, role, and
individual names appearing in X, and

– sub(X) is the set of all sub-concepts of concepts occurring in X.

Definition 1. (canonical models) Let C be an EL-concept and K = (T ,A) an
EL-KB. The canonical model IC,T = (∆IC,T , ·IC,T ) of C w.r.t. the TBox T is:

– ∆IC,T = {dC} ∪ {dD | ∃r.D ∈ sub(C) ∪ sub(T )}
– AIC,T = {dD | D vT A}, for all concept names A, and
– rIC,T = {(dD, dE) | D vT ∃r.E} for all role names r.

The canonical model IK = (∆IK , ·IK) of the KB K = (T ,A) is defined as follows:

– ∆IK = {da | a ∈ Sig(A) ∩NI} ∪ {dC | ∃r.C ∈ sub(A) ∪ sub(T )},
– AIK = {dD | D vT A} ∪ {da | K |= A(a)},
– rIK = {(dD, dE) | D vT ∃r.E} ∪ {(da, dD) | K |= ∃r.D(a)} ∪

{(da, db) | r(a, b) ∈ A}.

Note that canonical models for EL are always finite. Canonical models can be
used to decide instance checking problems since a is an instance of C w.r.t.
a KB K if and only if aIK is an element of CIK in the canonical model IK
[13].These canonical models and their use for instance checking, are important
for the algorithm for answering relaxed instance queries in Section 3.

Instance checking can be relaxed by using a concept similarity measure. Such
a measure ∼ is a function that assigns to each pair of concepts (w.r.t. a TBox T )
a similarity value from the interval [0, 1] with C ∼ C = 1 for all concepts C. A
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value C ∼ D = 0 means that the concepts C and D are totally dissimilar, while a
value of 1 indicates total similarity. A set of properties for CSMs was presented in
[12]. In particular, a CSM ∼ is called symmetric, iff C ∼ D = D ∼ C; equivalence
invariant, iff for all C ≡T D and all concepts E it holds that C ∼ E = D ∼ E;
and equivalence closed, iff C ≡T D ⇐⇒ C ∼ D = 1. Using those similarity
measures, we define relaxed instances as follows:

Definition 2 (relaxed instance). The individual a is a relaxed instance of
the query concept Q w.r.t. the KB K = (T ,A), the CSM ∼T and the threshold
t ∈ [0, 1) iff there exists a concept X such that Q ∼T X > t and K |= X(a).

To compute the relaxed instances of an EL-concept (w.r.t. an EL-KB) it is not
feasible to compute all sufficiently similar concepts and then perform instance
checking for those, since (1) the number of such concepts can be infinite leading
to an infinite number of queries and (2) a CSM does not necessarily provide a
method how to obtain a ‘sufficiently similar’ concept.

3 The Algorithm for Computing Relaxed Instances

In [9], we proposed the CSM ∼c to be used to answer relaxed instance queries.
This measure compares two concepts C and D w.r.t. a TBox T by computing
their canonical models IC,T and ID,T and comparing the structure of the mod-
els starting from the elements dC and dD, respectively. For this, we define a
similarity measure ∼i on pointed interpretations. Given a pointed interpretation
p = (I, d), we denote with

– CN(p) = {A ∈ NC | d ∈ AI} the set of concept names that d is an instance
of in I, and

– SC(p) = {(r, (I, e)) | (d, e) ∈ rI} the set of direct successors of d in I.

The interpretation similarity ∼i to be defined depends on three parameters:

1. A primitive measure ∼p : NC×NC ∪ NR×NR → [0, 1] assigns a similarity
value to each pair of concept names and each pair of role names. Any prim-
itive measure has to satisfy that x ∼p x = 1 for any concept or role name x.
Additionally, for the similarity measure ∼i to be symmetric, ∼p needs to be
symmetric as well. We give a default primitive measure, that simply assigns
similarity 0 to pairs of different concept or role names x and y:

x ∼default y =

{
1 if x = y

0 otherwise

However, other primitive measures are imaginable and useful. For example,
one might want to express that two amounts Medium and High are more
similar than Low and High, which can be achieved by using a primitive
measure with Medium ∼p High = 0.5 and Low ∼p High = 0.
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2. A weighting function g : NC∪NR → R>0 to prioritize different features in the
similarity measure. We give a default weighting function gdefault, that assigns
1 to every concept and role name, but again, other weighting functions can
be useful for certain cases.

3. A discounting factor w is a constant that allows for discounting of successors,
and should have a value 0 < w < 1.

Definition 3. Given a primitive measure ∼p, a weighting function g and the
discounting factor w, the interpretation similarity measure ∼i is defined as:

p ∼i q =
simCN(p, q) + simCN(q, p) + simSC(p, q) + simSC(q, p)∑

C∈CN(p)

g(C) +
∑

D∈CN(q)

g(D) +
∑

(r,p′)∈SC(p)

g(r) +
∑

(s,q′)∈SC(q)

g(s)
,

where

simCN(p, q) =
∑

A∈CN(p)

max
B∈CN(q)

g(A)(A ∼p B), and

simSC(p, q) =
∑

(r,p′)∈SC(p)

max
(s,q′)∈SC(q)

g(r)(r ∼p s)
(
w + (1− w)(p′ ∼i q

′)
)
.

If all of the sets CN(p), CN(q), SC(p), and SC(q) are empty for pointed inter-
pretations p, q, we define p ∼i q = 1.

Note that ∼i does not necessarily yield an equivalence closed or equivalence
invariant CSM. To regain these properties, one can first normalize the inter-
pretations before applying the ∼i. An interpretation I = (∆I , ·I) is in inter-
pretation normal form if there are no elements a, b, c ∈ ∆I , b 6= c, such that
{(a, b), (a, c)} ⊆ rI and for all concepts C with b ∈ CI also c ∈ CI holds; i.e.,
no node has two successors for the same role name whose instantiators are in a
subset relation3. Any interpretation I can be transformed into normal form in
polynomial time by removing all redundant successors.

Let I ′C,T and I ′D,T denote canonical models in interpretation normal form,
then the CSM ∼c is defined as follows:

C ∼c D = (I ′C,T , dC) ∼i (I ′D,T , dD).

We showed that ∼c is indeed symmetric, equivalence invariant, and equivalence
closed [9].

Example 1. Consider the concepts:
Cex = Server u ∃hasLoad.Medium u ∃provides.(VideoStreamService u Service) and
Dex = Serveru∃hasLoad.Lowu∃provides.(DBServiceuServiceu∃queryLang.SQL).
We use the primitive measure ∼p, which is almost the default primitive mea-
sure, except for Low ∼p Medium = Medium ∼p High = 0.5 instead of 0. We also

3 Formally, one describes this using the notion of a simulation between b and c in I,
see [13] for more details.
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use the default weighting function gdefault and the discounting factor w = 0.8.
To compute the similarity between Cex and Dex, we have to compute their
normalized canonical models (w.r.t. to the empty TBox). Based on these, we
obtain: The hasLoad-successors of Cex and Dex have a similarity of 0.5, since
Medium ∼p Low = 0.5. Both provides-successors of Cex and Dex, are instances
of Service, while the concept names VideoStreamService and DBService have no
correspondence. Similarly, only the provides-successor of Dex has an existential
restriction, resulting in a value of 0 for simSC in both directions. Overall, this

yields a similarity of (1+0)+(1+0)+0+0
2+2+0+1 = 0.4 for the two services. Using this, we

can finally compute the similarity between Cex and Dex:

simCN(Cex, Dex) = simCN(Dex, Cex) = 1

simSC(Cex, Dex) = simSC(Dex, Cex) = (0.2 + 0.8 · 0.5) + (0.2 + 0.8 · 0.4) = 1.12

Cex ∼c Dex =
1 + 1 + 1.12 + 1.12

1 + 1 + 2 + 2
= 0.707.

The procedure to compute relaxed instances of a query concept Q w.r.t. a
KB K = (T ,A), a threshold t, and the CSM ∼c has the following steps [9]:

1. Compute the canonical models IQ,T and IK of the query concept Q and the
ABox A w.r.t. the TBox T .

2. Transform these models into I ′Q,T and I ′K.
3. Define a maximal interpretation similarity ∼max

i between the normalized
canonical models. The measure ∼max

i is behaves like ∼i, but chooses a subset
of the concept names and successors for elements in the canonical model IK
in a way to maximize the similarity value.

4. For each individual a occurring in K, check if the maximal interpretation
similarity between the element dQ in I ′Q,T and the element da in I ′K is larger
than the given threshold t. If so, a is a relaxed instance and is returned.

Formally, ∼max
i is defined as the unique solution of the following equation system:

p ∼max
i q = max

Cq⊆CN(q)
Sq⊆SC(q)

(
simCN

(
CN(p), Cq

)
+ simCN

(
Cq,CN(p)

)

+ simSC

(
SC(p), Sq

)
+ simSC

(
Sq,SC(p)

)
)

∑

C∈CN(p)

g(C) +
∑

D∈Cq

g(D) +
∑

(r,p′)∈SC(p)

g(r) +
∑

(s,q′)∈Sq

g(s)
, (1)

where

simCN(C1, C2) =
∑

A∈C1

max
B∈C2

g(A)(A ∼p B), and

simSC(S1, S2) =
∑

(r,p′)∈S1

max
(s,q′)∈S2

g(r)(r ∼p s)(w + (1− w)(p′ ∼max
i q′)).

We showed that using the maximal interpretation similarity indeed solves the
problem of answering relaxed instance queries correctly, see [9].
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Theorem 1 ([9]). Individual a is a relaxed instance of Q w.r.t. K =(T , A), t,
and ∼c iff (I ′Q,T , dQ) ∼max

i (I ′K, da) > t.

We showed an upper complexity bound of NP by (non-deterministically) trans-
lating the equation system that defines (I ′Q,T , dQ) ∼max

i (I ′K, da) into a linear
programming problem of polynomial size and solving it. However, this approach
is not practical. Instead, Elastiq implements an iterative approach, that refines
the similarity values and converges to ∼max

i in the limit. This approach which we
present next is sound, as it converges from below, but not necessarily complete.

4 The Elastiq Reasoner

Elastiq is the first implementation for answering instance queries relaxed by
a similarity measure. Given an EL-ontology, an EL-query concept, an instantia-
tion of ∼c and a value for a threshold, Elastiq computes a result set of ABox
individuals, where each of these individuals is relaxed instance. The CSM em-
ployed here is fixed to ∼c as defined in Section 3, but it and can be adjusted by
a custom weighting function, primitive similarity measure and the discounting
factor. Computing an answer to a relaxed instance query by Elastiq consists
of four main steps.

Step 1: Global preprocessing. The canonical model IK of the ABox and the TBox
is generated by the use of a standard DL reasoner, currently Elastiq uses the
Elk system [11].

Step 2: Local preprocessing. The canonical model of the query concept w.r.t. the
TBox IQ,T is generated—as in Step 1 by the use of Elk.

Elastiq distinguishes the two preprocessing steps for the sake of computing sev-
eral relaxed instance queries against the same KB faster. Obviously, IK does not
depend on the query concept and can therefore be reused for every subsequent
queries. The model IQ,T , however, needs to be recreated for every different query
concept Q. In both steps we use the Elk reasoner [11] to compute classification
and realization of the ontology, and then retrieve subsumption and instance
relationships from the results. Elastiq only needs to consider those domain ele-
ments that are reachable from elements representing ABox individuals and thus
can be used by the main algorithm. Similarly, for IQ,T Elastiq creates only
those domain elements that are reachable through successor relations from dQ.
The normal forms of the canonical models are computed on demand. Finally,
Step 2 also initializes the data structure for the main computation in Step 3.

Step 3: Computing the maximal interpretation similarity ∼max
i . Recall, that

Elastiq implements an iterative approach, that refines the similarity values and
converges to ∼max

i in the limit. Thus the main computation yields a sequence of
matrices, each representing an iteration of the computation. The rows of such
a matrix Mj represent domain elements from IQ,T and the columns domain
elements from IK. The values inside each cell of Mj , are identified by two domain
elements d ∈ ∆IQ,T and e ∈ ∆IK , and converge towards (IQ,T , d) ∼max

i (IK, e)
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for j →∞ [9]. Instead of computing the similarity values for all pairs of elements
from the canonical models in each iteration, Elastiq restricts the entries in
Mj to those elements that are reachable from (elements representing) ABox
individuals by paths in IK. To this end, M0 is initialized with one row (for dQ)
and as many columns as there are individuals in the ABox. The set of columns
is extended with new elements (d′, e′) if there exists an element (d, e) in M0

such that d and d′ are connected in IQ,T via some role r, and e and e′ are
connected in IK via some role s. Since the canonical models IQT and IK are
finite, the size of M0 is bounded by |∆IQ,T | · |∆IK |. Once all reachable pairs have
been added to M0, it contains values exactly for those pairs that are necessary
for computing similarities between the domain elements that we are interested
in—namely similarities of the query concept and each ABox individual (dQ, dai

).
Each iteration j + 1 creates a new matrix Mj+1, and computes the values

by applying Equation (1) to the values in Mj . Elastiq needs only to keep the
current matrix Mj+1 and the last one Mj (j ≥ 0) in memory. The iterations for
the refinement of similarity values proceeds until one of the following termination
criteria is met:

– the maximal amount of iterations imax specified by the user is reached; or
– no interesting similarity value (dQ, da) has changed during the last iteration

by more than a relative factor specified by the user.

Step 4: Comparison with t. After the iteration stopped, the interesting similarity
values Mj(dQ, da) are compared to the input threshold t and the answer set of
individuals is compiled. This set is then listed in descending order of similarity.

4.1 Optimizations for Computing Relaxed Instances

A naive implementation of the algorithm can hardly compute relaxed instances
for reasonably large ontologies in acceptable time. As mentioned before, a highly
effective optimization is the reuse of IK for multiple queries. Since ABoxes are
usually much larger than query concepts, the model IK is also be much more
costly to create than the models IQ,T . Additionally, the normalization of canon-
ical models can be done more efficiently than by computing simulations to de-
termine unnecessary role-successors. Before adding a domain element dC as an
r-successor to some element dD Elastiq checks whether there already exists an
r-successor dE for dD such that E v C. In this case normalization would elimi-
nate dC , thus avoiding the introduction of dC (and its role successors) improves
the runtime of canonical model generation further. Similarly, when adding dC
as an r-successor to dD, Elastiq eliminates all r-successors dE of dD if C v E.

During the generation of the canonical models Elastiq performs many sub-
sumption checks. Although Elk is currently one of the fastest reasoners for EL,
caching of sub- and superclass relations yielded a great performance boost, since
Elastiq needs to access sub- and superclass relationships for the same class
several times.

The algorithm from Section 3 suggests to iterate over all subsets of CN and
SC successors in order to find the maximal similarity. This exponential procedure
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can be improved by looking at the primitive similarities between elements. Let
d ∈ IQ,T and e ∈ IK. By definition of ∼max

i we are looking for those subsets of
the concept names and successors of e that maximize the similarity. Instead of
iterating over all subsets of CN(e) to find the best pairing, we showed that if
B ∈ CN(e) such that ∃A ∈ CN(d) with A ∼p B = 1, we can always keep B in
the subset of CN(e), because it will always increase the similarity. Conversely, if
B′ ∈ CN(e) such that ∀A ∈ CN(d), then A ∼p B

′ = 0, and B′ can be left out of
the subset of CN(e), since it cannot increase the similarity. Analogously, we can
remove (s, q) from SC(e) if for all (r, p) ∈ SC(d) we have r ∼p s = 0. This can
dramatically reduce the number of subsets to be checked. In fact, for the default
primitive measure, this means that the best subset of concept names can always
be computed in linear time by checking each concept name in CN(e) separately.

4.2 Evaluation

Our preliminary performance evaluation of Elastiq used different versions of
the GeneOntology that describe schizosaccharomyces pombe—some species of
yeast. These ontologies ranged from 9,157 concept names and 34,875 individuals
in the first version to 51,949 concept names and 289,206 individuals for the 15th
version. The sizes of canonical models ranged from 77,941 to 602,548 elements.

We obtained our test ontologies by custom dataset generation provided by
the Manchester OWL Corpus [14]. These GeneOntology versions are anonymised
and therefore any contentual interpretation of our results is virtually impossible.
We restricted our investigations solely to the performance of Elastiq and leave
the intricate task of a quality assessment for future work. We discovered that for
each individual e there exists a very fragmented concept assertion in the ABox of
the form ∃is a.Ce(e), where the qualification Ce is rarely larger than 3 conjuncts
with a role-depth of at most 2.

Our test suite contains 10 randomly generated query concepts with increas-
ingly complex structures. These queries were built over the common signature
of versions 1–15 of the GeneOntology (approximately 1,000 concept names and
4 roles). The smallest query (Query 1) only contained 6 concept and role names
and had a role-depth of 2, while the Query 10 had a size of 670 and a role-
depth of 5. Due to the plain structure of concept assertions we wrapped each
query concept Qi with ∃is a.Qi in order to provoke a more complex computa-
tion. For these queries, the sizes of the canonical models IQ,T ranged from 2 to
236 elements. We evaluated the queries for the default primitive measure and
weighting function, and counted the number of relaxed instances for a threshold
of t = 0.333. The test system had a 1800 MHz dual core processor AMD Turion
II Neo and 6 GB of RAM. Figure 1 shows the runtime of Elastiq for answering
all 10 relaxed instance queries w.r.t. each ontology version. The high runtimes
for ontology versions 11, 12, and especially 13–15 is mainly due to the increase
of the size of the canonical model IK. Most queries returned a lot more relaxed
instances for the ontologies 11–15 than for ontologies 1–10. Queries 8 and 9 re-
turned the largest number of relaxed instances, up to over 200,000 for Query 8
evaluated on nnotations15.owl.
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Fig. 1. Elastiq’s runtime for answering relaxed instance queries in different versions
of the GeneOntology

When breaking down the times for preprocessing and the query answering
further, it shows that the preprocessing time is dominated by the flattening of
the ontology, the reasoning done by Elk, and the construction of the canonical
model IK, while the time to construct the canonical models IQ,T is negligible.
However, the overall query answering time is largely spend on Step 3, i.e., the
iterations to compute the maximal similarity.

Elastiq performs ABox realization to obtain IK and in addition a kind of
relaxed ABox realization for the query concepts in the test suite. Now, while
it is clear that Elastiq is slower than Elk for ABox realization, it showed,
suprisingly, that this does not need to be the case for other optimized DL rea-
soners. We compared Elastiq’s overall reasoning times with the ABox realiza-
tion times of the commonly used FaCT++ reasoner [18]. Figure 2 shows that
Elastiq mostly performed better than FaCT++, although solving a more com-
plex task.4 However, computation times of more than a minute for 10 relaxed
queries over ABoxes with 1,000 individuals still calls for further improvement.

5 Conclusions and Future Work

In this paper we investigated the novel inference of answering relaxed instance
queries. These queries can be gradually relaxed by varying the threshold, while

4 Note that FaCT++ classification resulted in an error for ontologies 13–15.
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Fig. 2. Runtime of Elastiq compared to FaCT++ ABox Realization times.

the similarity measure allows to specify which parts of the query can be relaxed
and which should be kept. We devised a concept similarity measure, ∼c, that
works for general EL-TBoxes, and showed how to relax instance queries using this
measure. We presented Elastiq, a prototype sytem for relaxed instance query
answering, some straight-forward, but highly effective optimization techniques,
and gave a first performance evaluation using different queries on increasingly
complex versions of the GeneOntology.

It turned out that for ontologies with large ABoxes, Elastiq is still not fast
enough. We want to explore further optimizations for the computation of ∼max

i .
Currently, the matrices converge to ∼max

i from below. With upper bounds on
the maximal similarity, it would be possible to prune computation early on indi-
viduals that are certainly not relaxed instances. While currently the algorithm
decides which individuals are certainly relaxed answers, an upper bound could
also be used to determine which individuals are certainly not relaxed answers,
therefore making the approach not just sound, but complete. We also need to per-
form further evaluations for the performance on ontologies and query concepts
from other domains, but also to evaluate the quality of the answers returned by
Elastiq in regard of the different CSMs in use.

Currently, one needs to specify a threshold, above which individuals are con-
sidered as relaxed answers. This threshold approach guarantees a minimal simi-
larity and hence quality of the result, but it is hard to predict how many relaxed
answers a query would return for a certain threshold. In cases where just the
first few most similar relaxed answers are of interest, top-k answering would be
more useful. We are investigating to efficiently implement this type of answering
mechanism. Finally, it would be useful to not just consider instance queries, but
more expressive query types as well. We are currently working on the theoretical
basis for relaxing conjunctive queries.
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Abstract. The use of conceptual models has long been confined to the
data analysis stage of software development. In recent years, this has been
extended to use them at run-time as well, for, among others, querying
large amounts of data. This brings afore the need to have tractable logic-
based reconstructions of the conceptual models, i.e., in at most PTIME.
We provide such a logic-based reconstruction for most of ORM using the
Description Logic language CFDI∀−nc , which has several features impor-
tant for conceptual models, notably n-ary relationships, complex identi-
fication constraints, and role subsumption. The encoding captures over
96% of the constructs used in practice in the set of 33 ORM diagrams
analysed. The results are easily transferable to EER and UML Class
diagrams, with an even greater coverage.

1 Introduction

While for many years conceptual models were developed and then shelved upon
implementation or used ‘offline’ for documentation purposes, recent years has
seen an increase in using such precious resources computationally. One strand
of investigation focuses on expressiveness and a logic foundation to compute
satisfiability and detect inconsistencies over the TBox only, among others [2, 5,
8, 16, 24], and several implementations exists using various technologies that are
more or less scalable; e.g., using OCL [16], Alloy [8, 23], or a DL reasoner [19].
Another looks at usage during runtime for a range of purposes, such as using a
conceptual model for scalable test data generation [35] and for designing [6] and
executing [13] queries. Approximations of conceptual models are used also deeper
into the machinery of querying databases, in particular during various stages
of query compilation, e.g., when reasoning about duplicates [39]. The former
purpose requires a logic foundation using a (very) expressive logic, whereas the
latter requires computationally better behaved logics to keep the whole process
feasible. What such a tractable logic language looks like that captures most, or
all, important conceptual data modelling language features, has received little
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attention, however. To the best of our knowledge, there are only four efforts to
capture a fragment of which concept or full satisfiability checking is (or is claimed
to be) in polynomial time (or less): one for ER [2], two for UML [1, 25], and one
for ORM [35], with the first one logic-driven and the last one implementation-
driven, and they all differ substantially in coverage of features. The main general
question, thus, is: what is a useful fragment for tractable runtime usage of a
conceptual data model? Then, how to formalise it.

To answer this question, we choose to focus on ORM first, for it is strictly
more expressive than ER and UML class diagrams, and then facilitating trans-
ferability of the results. Given that there is a lot of insight in computational com-
plexity of Description Logic (DL) languages and which ones are in P, we zoom in
on those for a logic-based reconstruction. It appears that the DL CFDI∀−nc [40]
is a good fit and can capture 96.5% of the ORM models in a dataset of 33 ORM
models that are part of the dataset of 101 conceptual models (dataset available
from [28]). This is chiefly thanks to ‘trading’ costly but lesser used covering
constraints for the more often used arbitrary identifiers and n-ary relationships.

In the remainder of the paper, we first provide background definitions in
Section 2. The main results are presented in Section 3, and are discussed and
compared with related research in Section 4. We summarize our results and
briefly outline future work in Section 5.

2 Preliminaries

The two preliminaries are the DL CFDI∀−nc and the ORM language, so as to
keep the paper self-contained.

2.1 The Description Logic CFDI∀−nc
All members of the CFD family of DLs are fragments of FOL with underlying
signatures based on disjoint sets of unary predicate symbols called primitive
concepts, constant symbols called individuals and unary function symbols called
features.

Definition 1 (CFDI∀−nc Knowledge Bases) Let F, PC and IN be disjoint sets
of (names of) functional features, primitive concepts and individuals, respec-
tively. A path function Pf is a word in F∗, and we denote the empty word by id
and concatenation by “.”. Metadata and data in a CFDI∀−nc knowledge base K
are respectively defined by a TBox T and an ABox A. A TBox T consists of a
finite set of inclusion dependencies of the form

A v B, A v ¬B, A v ∀f.B, ∀f.A v B, A v ∃f−1,
or A v B : Pf1, . . . ,Pfk → Pf

where A,B ∈ PC, f ∈ F, and Pfi ∈ F∗. A concept “B : Pf1, . . . ,Pfk → Pf” that
participates in the last dependency is called a path functional dependency (PFD).
An ABox A consists of a finite set of facts in the form of concept assertions A(a),
and function assertions f(a) = b where A ∈ PC, f ∈ F, and a, b ∈ IN. Any PFD
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occurring in T must also satisfy a regularity condition by adhering to one of the
following two forms:

C : Pf .Pf1,Pf2, . . . ,Pfk → Pf or C : Pf .Pf1,Pf2, . . . ,Pfk → Pf .g. (1)

A PFD is a key if it adheres to the first of these forms.
The semantics is defined in the standard way with respect to an interpretation

I = (4, (·)I), where 4 is a domain of “objects” and (·)I an interpretation
function that fixes the interpretation of primitive concepts A to be subsets of
4, features f to be total functions on 4, and individuals a to be elements of
4. The interpretation function is extended to path expressions by interpreting
id , the empty word, as the identity function λx.x, concatenation as function
composition, and to derived concept descriptions as follows:

(¬A)I=4 \AI

(∀f.A)I={x | fI(x) ∈ AI}
(∃f−1)I={x | ∃y ∈ 4 : fI(y) = x}

(C : Pf1, . . . ,Pfk → Pf)I={x | ∀y ∈ CI : (
∧k
i=1 Pf

I
i (x) = PfIi (y))

⇒ PfI(x) = PfI(y)}

An interpretation I satisfies an inclusion dependency C v D if CI ⊆ DI , a con-
cept assertion A(a) if aI ∈ AI , and a function assertion f(a) = b if fI(aI) = bI .
I satisfies a knowledge base K if it satisfies each inclusion dependency and asser-
tion in K. In addition, every CFDI∀−nc knowledge base must satisfy the following
two conditions.

1. (inverse feature and value restriction interaction) If {A v ∃f−1,∀f.A′ v
B} ⊆ T then (a) A v A′ ∈ T , (b) A′ v A ∈ T or (c) A v ¬A′ ∈ T .

2. (inverse feature and PFD interaction) Any non-key PFD occurring in T that
involves features used in the ∃f−1 concept in T must also satisfy a stronger
regularity condition by adhering to the following form:

C : Pf .f,Pf2, . . . ,Pfk → Pf .g. (2)

Proposition 1 ([40]). Consistency of CFDI∀−nc knowledge bases is complete
for PTIME.

Other reasoning tasks, such as logical implication and concept consistency reduce
(linearly) to knowledge base consistency. Relaxing either of the aforementioned
conditions leads to EXPTIME and PSPACE completeness, respectively [40].
Note also, that condition (2) imposed on PFDs applies only to non-key PFDs.
Overall, however, the restrictions do not seem to impact the modeling utility
of CFDI∀−nc in relation to keys and functional constraints. Indeed, arbitrary
functional dependencies in relational schema are easily captured. Finally and
for convenience CFDI∀−nc supports additional syntax, e.g., subsumptions of the
form ∃f−1 v A. This additional syntax is mere syntactic sugar and can be
equivalently expressed in CFDI∀−nc as defined above [40].
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Fig. 1. Sample ORM2 diagram for a particular university where, among others, each
Support Staff must have exactly one Extension that is identified by a code, Support Staff
and Academics are subtypes of Employee and are disjoint, each Room is identified by
the Building and its RoomNr, each Employee has exactly one Name, and a support staff
that supports a department also works for that department.

2.2 Brief overview of ORM2

Object-Role Modelling as a general term is also known as Fact-Based Model-
ing and comprises several notational variants with varying language features,
ranging from its predecessor NIAM and its recent notation in the proprietary
CogNIAM tool of PNA, to the FCO-IM flavour [4], to ORM as in [21] popu-
larised with VisioModeler 3.1 and ORM2 [22] popularised with the NORMA
tool [15] as plugin for MS Visio, among others. We use Halpin’s notation [22]
in the remainder of the paper for its compactness. As we are interested in the
static, structural components, we ignore deontic constraints5—they did not oc-
cur in any of the evaluated ORM models anyway [28]—and derived constraints
(ORM’s version of methods). ORM2 has four different kinds of named entities:

– entity type, which is like an EER entity type and UML class and may be
objectified, and is denoted with a blue rectangle with round corners;

– value type, which is an entity type that has a binary fact type (relationship)
to a data type, denoted with a blue dashed rectangle with round corners;

– role that each entity/value type plays in a fact type, denoted with a small
rectangle and connected to the object type or value type;

– n-ary fact type (n ≥ 1) that relates entity types to each other or entity
types to value types and they have to be elementary (uniqueness constraint
spanning n or n− 1 roles), denoted with a rectangle composed of the roles.

Typically, roles and fact types are named automatically, but this can be added,
as indicated with the user-named role [DE] in Fig. 1; note that the text next to
the fact types are ‘readings’ for model verbalisations, not fact type names.

5 Refer to [36] for a treatment of deontic constraints in the context of DLs and SBVR
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ORM has many constraint types (some of which are used rarely [28]); a non-
exhaustive example is shown in Fig. 1. The ones used in the figure are mandatory
(small blob), uniqueness (line over rectangle), reference schemes (simple identi-
fiers, e.g., .empNr), and external identifiers (circle with double horizontal line),
subtype (arrow) and subset (over roles, fact types, paths), disjointness (encir-
cled cross); others include coverage, constraints on values, and 11 relationship
constraints (a.o., transitive, irreflexive).

As transformations exist from one ORM model to UML and to ER [22], ORM
is ‘more conceptual’ than the other models for one does not have to commit to
an implementation paradigm upfront. Moreover, the notation is also used for
business rules specifications [32].

3 ORM2cfd fragment into CFDI∀−nc
While we primarily focus on ORM to CFDI∀−nc mapping here, we also aim for
an easy extension to EER and UML Class diagrams, the ability to use it for
inter-model assertions across models represented in different languages [17], and
for unification of the conceptual modelling language families for a widely used
subset of features. To this end, we first define the syntax and semantics of a
‘generic’ conceptual data modelling language, which we name CM−com, as it
is, essentially, a proper fragment of CMcom—used as common conceptual data
modelling language for EER, UML, and ORM [30]—without covering and dis-
junctive mandatory constraints, and with limited cardinalities and a more precise
definition of relationship subsumption and disjointness. CM−com contains those
features mappable into CFDI∀−nc (as described in Section 3.3) and captures a
subset of features of ORM, named ORM2cfd . Thus, within the scope of this
paper, one can equate CM−com and ORM2cfd .

3.1 Syntax

The syntax is introduced first, and subsequently illustrated with an example.
We assume a transformation where an ORM value type is encoded in CM−com as
an attribute, and note that recursive relationships are allowed such that a class
can participate more than once in a relationship.

Definition 2 (Conceptual Data Model CM−com syntax) A CM−com concep-
tual data model is a tuple Σ = (L,rel,att,cardR,cardA, isaC , isaR, isaU ,
disjC ,disjR, id,extid, fd,obj,rex) such that:
1. L is a finite alphabet partitioned into the sets: C (object type symbols), A (at-

tribute symbols), R (relationship symbols), U (role symbols), and D (domain
symbols); the tuple (C,A,R,U ,D) is the signature of Σ.

2. att is a function that maps a class symbol in C to an A-labeled tuple over D,
so that att(C) = {A1 : D1, . . . , Ah : Dh} where h is a non-negative integer.

3. rel is a function that maps a relationship symbol in R to an U-labeled tuple
over C, rel(R) = {Ui : Ci}hi=1, h ≥ 1, Ui 6= Uj if i 6= j, h is called the arity of
R, and if (Ui, Ci) ∈ rel(R) then player(R,Ui) = Ci and role(R,Ci) = Ui.
The signature of the relation is σR = {Ui}ni=1.
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4. cardR is a partial function cardR : R × U → {0, 1} × {1,∞} denoting
cardinality constraints. We denote with cmin(R,U) and cmax(R,U) the first
and second component of cardR.

5. cardA is a partial function cardA : C×A → {0, 1}×{1,∞} denoting multi-
plicity constraints for attributes, such that cardA(C,A) is defined iff (A,D) ∈
att(C) for some D ∈ D. We denote with cmin(C,A) and cmax(C,A) the
first and second component of cardA.

6. isaC is a binary relationship isaC ⊆ C × C.
7. isaR is a binary relationship isaR ⊆ R × R. isaR between relationships is

restricted to relationships with compatible signatures.
8. isaU is a binary relationship isaU ⊆ U × U .
9. disjC is a relationship over 2C × C, describing disjointness partitions over

groups of isa that share the same superclass.
10. disjR is a subset of 2R, describing disjointness over a group of relations

(with compatible signatures).
11. id is a partial function, id : C → 2A, that maps a class symbol in C to its

identifier (key) attributes; cardA(C,A) = (1, 1) holds for each A ∈ id(C).
12. extid is called an external uniqueness, which is a partial function that

maps a class to a set of sets of relation-role pairs or attributes, extid : C →
22

(R×U)∪A
, where for any S ∈ extid(C) it holds that at least one pair (R,U) ∈

S, and whenever (R,U) ∈ S then player(R,U) = C, cardR(R,U) = (1, 1),
and when A ∈ S then cardA(C,A) = (1, 1).

13. fd is a functional dependency assertion, a partial function fd : R → 22
U ×U

such that fd(R) may be defined only if its arity is ≥ 2 and for all Ui, U ∈ U
such that ({Ui}, U) ∈ fd(R) then exist Ci, C such that Ui : Ci ∈ rel(R)
and U : C ∈ rel(R).

14. obj is an objectification partial function that maps an n-ary relationship
symbol R ∈ R to a C ∈ C, i.e., obj : R → C. Whenever obj(R) = C and
Ui : Ci ∈ rel(R), 1 ≤ i ≤ n then there exist n new binary relationships Ri ∈
R such that rel(Ri) = {U1

i : C,U2
i : Ci}, with U1

i , U
2
i ∈ U ; extid(C) =

{(Ui, Ci) | 0 < i ≤ n}; cardR(Ri, U
1
i ) = (1, 1) and cardR(Ri, U

2
i ) = (0, 1).

15. rex is a subset of 2U describing disjointness partitions over a group of roles,
i.e, if {Ui}hi=1 ∈ rex then exist Ri ∈ R, Ci ∈ C such Ui : Ci ∈ rel(Ri), and
all Ri have the same arity.

To link this syntax to ORM’s icons, value types are transformed into attributes,
any unary relationship is translated into a class and a binary relationship with
a Boolean datatype, and a suitable naming scheme for the roles and fact types
is in place.

Example 1 Let us consider a mapping between this CM−com syntax and some of
the mappable ORM icons of the ORM2cfd fragment, using the diagram in Fig. 1.
The fact type verbalised with works for can be represented with the relationship

rel(works) = {DE : Department, ED : Employee}
Identification (single attribute, resp. external) of the Employee and Room with

id(Employee) = {empNr} and extid(Room) = {{locBuildingName, roomNr}}.
Subsumption of ORM entity types and fact types is straightforward as:
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Academic isaC Employee and supports isaR works

and mandatory participation of Department in works as
cardR(works, DE) = (1,∞). ♦

3.2 Semantics

The model-theoretic semantics of CM−com in the light of ORM2cfd is as follows.

Definition 3 (CM−com Semantics) Let Σ be a CM−com conceptual data model.
An interpretation for the conceptual model Σ is a tuple I = (∆I ∪∆ID, ·I), such
that:
– ∆I is a nonempty set of abstract objects disjoint from ∆ID;
– ∆ID =

⋃
Di∈D∆Di

is the set of basic domain values used in Σ; and

– ·I is a function that maps:
• Every basic domain symbol D ∈ D into a set DI = ∆D.
• Every class C ∈ C to a set CI ⊆ ∆I .
• Every attribute A ∈ A to a set AI ⊆ ∆I×∆ID, such that for each A ∈ A

and C ∈ C with A : D ∈ att(C) for some D ∈ D, then for all o ∈ CI
there exists d ∈ DI such that (o, d) ∈ AI .
• Every relationship R ∈ R to a set RI of tuples of U-labeled elements

of ∆I : for R an n-ary relationship connecting the classes C1, . . . , Cn,
rel(R) = {Ui : Ci}ni=1, i.e., {Ui : oi}ni=1 ∈ RI implies oi ∈ CIi .

I is called a legal database state or legal application software state if it satisfies
all of the constraints expressed in the conceptual data model:
– for each C1, C2 ∈ C: if C1 isaC C2, then CI1 ⊆ CI2 .
– for each R1, R2 ∈ R (with the same signature): if R1 isaRR2, then RI1 ⊆ RI2 .

In addition, ORM stipulates that the participating role sequences (which in
this case are all roles ofRi) of every relationship participating in theRI1 ⊆ RI2
to be role-sequence compatible.6

– for each U1, U2 ∈ U : if U1 isaU U2, then there exist R1, R2 ∈ R with
player(R1, U1) = C1 and player(R2, U2) = C1, and C1, C2 ∈ C, and
{o ∈ CI1 such that U1 : o ∈ RI1 } ⊆ {o ∈ CI2 such thatU2 : o ∈ RI2 }.

– for each C ∈ C, R ∈ R, U ∈ U : if cardR(R,U) = (x, y) and player(R,U) =
C, then x ≤ #{o ∈ CI such thatU : o ∈ RI} ≤ y.

– for each C ∈ C, A ∈ A: if cardA(C,A) = (x, y), then A : D ∈ att(C) for
some D ∈ D, and x ≤ #{d ∈ DI such that (o, d) ∈ AI , o ∈ CI} ≤ y.

– if {Ci}ni=1 ∈ disjC then CIi 6= CIj for all i, j, j 6= i, 1 ≤ i, j ≤ n.

– if {Ri}ni=1 ∈ disjR then Ri are role-sequence compatible and RIj ∩RIk = ∅.
– for each C ∈ C, Ai ∈ A, 1 ≤ i ≤ n: if id(C) = {Ai}, then exists Di ∈ D such

that Ai : Di ∈ att(C), and #{o ∈ CI such that
∧n
i=1(o, di) ∈ AIi } ≤ 1 for

any di ∈ DIi , 1 ≤ i ≤ n.
– for each C ∈ C, Ri ∈ R, Ui ∈ U , 1 ≤ i ≤ h, Aj , 1 ≤ j ≤ l: if {(Ri, Ui)}hi=1 ∪
{Aj}lj=1 ∈ extid(C), then exist Dj ∈ D with Aj : Dj ∈ att(C), and #{o ∈
CI such that (Ui : o) ∈ RIi and (o, dj) ∈ AIj } ≤ 1 for any dj ∈ DIj , 1 ≤ j ≤ l.

6 We assume that the compatibility is enforced explicitly by additional isaC pairs of
the classes linked to the matching roles in the relationships, e.g., for U : C ∈ rel(R1)
and U : D ∈ rel(R2) we have C isaC D.

407



– for each U,Ui ∈ U , 1 ≤ i ≤ h, R ∈ R: if fd(R) = ({Ui}hi=1, U), then exists
C,Ci ∈ C such that C : U ∈ rel(R), Ci : Ui ∈ rel(R) and #{o ∈
CI such that {U : o} ∪ {Ui : oi, } ∈ RI} ≤ 1 for any oi ∈ CIi , 1 ≤ i ≤ h.

– for each R ∈ R, C ∈ C: if obj(R) = C, then exist Ri ∈ R with rel(Ri) =
{U1

i : C,U2
i : Ci}, for all 1 ≤ i ≤ n, and the following statements are also

satisfied: extid(C) = {(Ri, U2
i ) | 0 < i ≤ n}, cardR(Ri, U

1
i ) = (1, 1), and

cardR(Ri, U
2
i ) = (0, 1).

– for each Ui ∈ U , 1 ≤ i ≤ h: if {Ui}hi=1 ∈ rex, then exists Ri ∈ R with
arity m, such that Ui : Ci ∈ rel(Ri). Then for each o ∈ CIi the following
condition is true #{k such that {Uk : o} ∈ RIk , 1 ≤ k ≤ h} ≤ 1.

Σ is said to be globally consistent if it admits at least one legal state.

3.3 Mapping of ORM2cfd to CFDI∀−nc
We formalize how CFDI∀−nc can capture ORM2cfd conceptual models. Let Σ =
(L,rel,att,cardR,cardA, isaC , isaR, isaU ,disjC ,disjR, id,extid, fd,obj,
rex) be a CM−com conceptual data model corresponding to ORM2cfd . We map
Σ to a CFDI∀−nc TBox TΣ in the vocabulary PC, F using the following rules:
– Include in the vocabulary one concept name for each ORM2cfd object type

and datatype, i.e., for each C ∈ C, D ∈ D we have C ∈ PC, D ∈ PC.
– To map attributes, there are two cases to consider: if the attribute is func-

tional then it is mapped as a function symbol and two concepts that reify
each of the roles; otherwise it is reified as a new concept, with the corre-
sponding cardinality constraints. For each C ∈ C such that att(C) = {Ai :
Di}ni=1, and for each i:

• if cardA(C,Ai) = (1, 1), then we introduce two new concepts UAi
1 ,U

Ai
2 ∈

PC, a new function symbol ai ∈ F, and {C v ∀ai.Di,C v UAi
1 ,U

Ai
1 v

C,UAi
2 v ∃ai−1,∃ai−1 v UAi

2 } ∈ TΣ .
• otherwise we introduce new concept symbols Ai,U

A
i,1,U

A
i,2 ∈ PC, and

two new function symbols ai,1, ai,2 ∈ F, with {Ai v ∀ai,1.UA
i,1,Ai v

∀ai,2.UA
i,2,U

A
i,1 v C,UA

i,2 v Di,U
A
i,1 v ∃ai,1−1,UA

i,2 v ∃ai,2−1,∀ai,1.UA
i,1 v

Ai,∀ai,2.UA
i,2 v Ai,Ai v Ai : ai,1, ai,2 → id} ⊆ TΣ . If cmin(C,Ai) = 1,

then also C v UA
i,1 ∈ TΣ ; if if cmax(C,Ai) = 1, then Ai v Ai : ai,1 →

id ∈ TΣ .
– The mapping of relationships (ORM2cfd fact types) is similar as the map-

ping of attributes. If the relationship is binary and one of its roles has a
(1, 1) constraint, then it is mapped as an attribute; in the other cases the
relationship and its roles are reified as a new concepts, with new attributes
from the reified relationship to the reified roles. The reified roles are then
subconcepts of the concepts originally participating in the relationship. For
each R ∈ R such that rel(R) = {Ui : Ci}ni=1 then
• if n = 2 and cardR(R,U1) = (1, 1), then we introduce a new function

symbol u1 ∈ F, and {C1 v ∀u1.C2,C1 v C1 : u1 → id} ∈ TΣ . Similarly
if cardR(R,U2) = (1, 1) then we introduce function symbol u2 ∈ F and
{C2 v ∀u2.C1,C2 v C2 : u2 → id} ∈ TΣ .
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• otherwise we add new concept symbols R,UR
i ∈ PC, 1 ≤ i ≤ n , new

function symbols uR
i ∈ F, 1 ≤ i ≤ n, and then {R v ∀uR

i .U
R
i ,U

R
i v

Ci,U
R
i v ∃uR

i
−1
,∀uR

i .U
R
i v R}ni=1 ∪ {R : uR

1 , . . . ,u
R
n → id} ⊆ TΣ . Addi-

tionally for each i, 1 ≤ i ≤ n if cmin(R,Ui) = 1 then also Ci v UR
i ∈ TΣ ;

and if cmax(R,Ui) = 1, then R v R : uR
i → id ∈ TΣ .

– for each C1, C2 ∈ C such that C1 isaC C2, then C1 v C2 ∈ TΣ .
– for each R1, R2 ∈ R such that R1 isaR R2, then R1 v R2 ∈ TΣ . In order

to define relationship inheritance in ORM2cfd , the types of the participating
concepts must be compatible, therewith adhering to the syntax restriction
of ORM (as aside: without this condition, the reconstruction in a PTIME
language is not possible).

– for each U1, U2 ∈ U such that U1 isaU U2 then U1 v U2 ∈ TΣ .
– for each Ci, C ∈ C such that {Ci}ni=1 disjC C, then {Ci v C}ni=1 ∪ {Ci v
¬Cj}ni 6=j,i,j=1 ⊆ TΣ , stating the concepts are pairwise disjoint.

– for each Ri ∈ R such that {Ri}ni=1 ∈ disjR, then {Ri v ¬Rj,Ri v Rj :
σRj → id}ni 6=j,i,j=1 ⊆ TΣ . Again, ORM has the condition that relationship
exclusion must be defined over compatible types for the participating con-
cepts (which also happens to be a necessary condition for the efficiency of
the translation).

– for each C ∈ C, Ai ∈ A such that id(C) = {Ai}ni=1, then C v C :
a1, . . . , an → id ∈ TΣ . In this case since the attributes are keys then they
must be in (1, 1) constraint with C, so they are mapped as features in TΣ
by the first point of the respective rule, described above.

– for each C ∈ C, Ri ∈ R, Ui ∈ U , Aj ∈ A such that {(Ri, Ui)}hi=1∪{Aj}kj=1 ∈
extid(C), then C v C : uR

1 , . . . ,u
R
h , a1, . . . , ak → id ∈ TΣ . Here the only

possibility is that Ui and Aj belonging to the external identifier have a (1, 1)
constraint, so they are mapped with features.

– for each U,Ui ∈ U , R ∈ R: if fd(R) = ({Ui}hi=1, U), then CR v CR :
uR
1 , . . . ,u

R
h → uR. This case is similar as the previous one: we ensure the roles

and attributes belonging to the external identifier are mapped as features in
TΣ because the are (1, 1) to C.

– for each R ∈ R, C ∈ C: if obj(R) = C, then we have the mappings for
extid(C), cardR(Ri, U

1
i ) = (1, 1), and cardR(Ri, U

2
i ) = (0, 1).

– for each Ui ∈ U : if {Ui}hi=1 ∈ rex, then exists Ri ∈ R, Ci ∈ C with arity m,
such that (Ui : Ci) ∈ rel(Ri), 1 ≤ i ≤ h. Then {UR

i v ¬UR
j }hi6=j,i,j=1 ⊆ TΣ .

Note that rex requires optional participation in the role, and therewith uses
the second case of the relationship mapping above.

Case analysis of the translation combined with Proposition 1 yields the following:

Theorem 1. Let Σ be an ORM2cfd conceptual data model. A class C is con-
sistent in Σ if and only if the knowledge base (TΣ , {C(aC)}) is consistent. Σ is
globally consistent if and only if TΣ is consistent with A = {C(aC) | C ∈ C}.

Example 2 Consider again the running example with Fig. 1 and the illustration
of the syntax (Example 1), the corresponding CFDI∀−nc knowledge base contains,
among others: the translation where empNr is an attribute of Employee with
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cardA(empNr, Employee) = (1, 1), the following CFDI∀−nc axioms:

{Employee v ∀empNr.Integer,Employee v UempNr
1 ,UempNr

1 v Employee,

UempNr
2 v ∃empNr−1,∃empNr−1 v UempNr

2 }.
Then, to represent the identifier, we add Employee v Employee : empNr → id.
The mapping of rel(works) with cardinalities cardR(works, DE) = (1,∞) and
cardR(works, ED) = (0,∞) is the set of axioms

{Works v ∀deworks.DEworks,DEworks v Department,DEworks v ∃deworks−1,
∀deworks.DEworks vWorks,Works vWorks : deworks, edworks → id,
Department v DEworks,Works v ∀edworks.EDworks,EDworks v Employee,

EDworks v ∃edworks−1,∀edworks.EDworks vWorks },
and likewise for the remainder of the diagram in Figure 1. ♦

4 Discussion

There are many papers with logic-based reconstructions of ORM, EER, and
UML; we discuss a subset relevant to the scope of this paper.

Comparison with other ORM2 Encodings. Fairly expressive logic-based
reconstructions of ORM fragments exist, including ORM2zero in the EXPTIME-
complete ALCQI [20], ORM2− [30] in the EXPTIME-complete DLRifd [11], an
ORM2 fragment (e.g., [41]) in SROIQ that is N2EXPTIME-Complete [27], and
ORM in the undecidable FOL [21]. An Alloy encoding and a numeric model as
encoding for ORM are proposed in [23], which are experimentally compared to
unsatisfiability pattern checks, showing that the latter two far outperform the
Alloy approach (seconds vs. hours and timeouts), but complexity results are not
provided. Their ORM fragment of the number encoding does include ‘costly’ fea-
tures, such as covering constraints, disjunctive mandatory, arbitrary frequency
(with uniqueness check), external identifiers, and value constraints, but it is un-
clear what was used in the test ORM diagrams. The only ORM fragment claimed
in PTIME is Smaragdakis et al.’s ORM− [35] that also uses a number model. It
includes non-overlapping uniqueness constraints over n-ary relationships, simple
mandatory, non-overlapping frequency constraints (cardinalities > 1), value con-
straints, and subtype constraints. Arbitrary frequency constraints (like arbitrary
projections in a relational table) cause undecidability, but, though not specified
in [35], one could assume it always occurs in conjunction with a suitable unique-
ness constraint in order to regain decidability, as discussed in [23, 29]. Their value
constraints are not constrained either, i.e., value ranges of integers, floats, and
enumerations are allowed, and have no constraints, such as so-called “safe” data
types [3]. Most problematic, however, is the integer bound propagation in step 2
of Algorithm 2 in [35], which has recently shown to be NP-Complete [7], hence,
Smaragdakis et al.’s solution seems to be at least NP-Hard. To the best of our
knowledge, the here provided logic-based reconstruction of the ORM2cfd ORM
fragment in the PTIME CFDI∀−nc is the first tractable encoding of ORM, yet
still capturing most of the entities encountered in extant ORM models.
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Extensibility to EER and UML Class Diagrams. As ORM is more ex-
pressive than UML Class Diagrams and EER, and an ORM diagram can be
translated into UML and into ER [22], the results obtained should be at least as
good for those. A quick matching thanks to availing of the unifying metamodel
[31, 18] reveals that that is the case, where CFDI∀−nc can encode over 97% of
the 34 UML models and over 99% of the 34 (E)ER models in our dataset. This
can be of use here as well, as also most UML Class Diagram encodings focus
on expressiveness, using, among others, DLRifd [5] as well, or an OCL-lite en-
coding matching ALCI [34], which is still EXPTIME-complete. Kaneiwa and
Satoh claim to have some fragments of UML Class Diagrams in P and PSpace
for full satisfiability checking (all classes must be satisfiable) [25, 26], but this has
been proven otherwise by Artale et al. [1]. Focusing on coverage of features, the
smallest restricted fragment is shown to be NLogSpace [1] when disallowing isa
on associations and completeness on subclasses, using approximations of reified
binaries (i.e., missing extid, and thus also no qualified associations). An ini-
tial analysis shows that this might still capture almost 96% of the UML models
in our dataset, and might thus also be a worthwhile fragment of UML. Such
high coverage can be obtained partially due to the changes to UML v2.4.1 [33]
where relational properties (asymmetry and transitivity) for aggregation have
been dropped, with aggregation taking up about a quarter of all associations,
and not all UML features in the standard are implemented in modelling tools.

The story is similar for (E)ER. Various encodings exist [14, 37, 38], (partially
due to the absence of a standard), which either use a language in the EXPTIME-
complete DLR family [9–11] or DL-Lite family [12] with different computational
complexities for different EER fragments [2]. Trading functionality for gaining
a little in computational complexity [2], however, is certainly not an option if
coverage is also an aim, especially due to all the identifiers in EER and ORM
(which can be represented in CFDI∀−nc ).

5 Conclusions

A logic-based reconstruction for most of ORM using the PTIME Description
Logic language CFDI∀−nc has been presented, covering 96.5% of a set of extant
ORM models. This is the first tractable encoding of ORM, which includes fea-
tures important for conceptual models, notably n-ary relationships and complex
identification constraints. Future work includes working toward implementations
of the scenarios alluded to in the introduction, and we also expect to apply this
encoding to facilitate inter-model interoperability [17] as the results are easily
transferable to EER and UML Class diagrams.

Acknowledgments. This work is based upon research supported by the Na-
tional Research Foundation of South Africa (Project UID: 90041), the Argen-
tinian Ministry of Science and Technology (PRF and CMK), and NSERC (DT).
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Abstract. Data in real world applications is often subject to some kind of uncer-
tainty, which can be due to incompleteness, unreliability or inconsistency. This
poses a great challenge for ontology-based data access (OBDA) applications,
which are expected to provide a meaningful answers to queries, even under uncer-
tain domains. Several extensions of classical OBDA systems has been proposed
to address this problem, with probabilistic, possibilistic, and fuzzy OBDA being
the most relevant ones. However, these extensions present some limitations with
respect to their applicability. Probabilistic OBDA deal only with categorical as-
sertions, possibilistic logic is better suited to make a ranking of axioms, and fuzzy
OBDA addresses the problem of modelling vagueness, rather than uncertainty. In
this paper we propose Subjective DL-Lite (SDL-Lite), an extension of DL-Lite
with Subjective Logic. Subjective DL-Lite allows us to model uncertainty in the
data through the application of opinions, which encapsulate our degrees of be-
lief, disbelief and uncertainty for each given assertion. We explore the semantics
of Subjective DL-Lite, clarify the main differences with respect to its classical
DL-Lite counterpart, and construct a canonical model of the ontology by means
of a chase that will serve as the foundation for a future construction of an OBDA
system supporting opinions.

Keywords: Subjective Logic, Query Answering, OBDA, Description Logics

1 Introduction

Semantic applications that model real world scenarios often have to deal with uncer-
tainty in the data. This is usually the case when extracting data from web sources,
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Research Laboratory, the U.S. Government, the U.K. Ministry of Defence or the U.K. Govern-
ment. The U.S. and U.K. Governments are authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation hereon. This work is partially
supported by the EU K-Drive project.
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where information might be incomplete or unreliable. Even the method used for ex-
tracting the data creates another point of uncertainty, as it is quite common to rely on
heuristic algorithms that are prone to errors.

In order for a semantic application to address all these issues, such an application
should be able to comply with the following list of requirements:

– Models uncertainty in the data
– Understands the meaning of the underlying data
– Provides answering services over custom user queries
– Determines the reliability of the answers given the available information

In this paper we explore some of the theoretical foundations required to develop a
logic capable of supporting ontology-based data access (OBDA) applications that can
fulfil these requirements.

Our contributions in this paper are twofold: A) We define the semantics for Sub-
jective DL-Lite in section 4, and B) We present a methodology to build a chase-based
canonical interpretation of subjective ontologies in section 5.

2 Related Work

Several relevant approaches to model Uncertainty have been proposed in different areas
of research. Probabilistic Logic [5] extends axioms in a knowledge base with a probabil-
ity value that models the degree of trust that we place on the validity of the proposition.
Possibilistic Logics [9] offers a similar approach, but its possibility values express the
necessity and the validity for a certain proposition, alongside with the plausibility of
said proposition to be true. Fuzzy Logic [11], on the other hand, relies on a membership
function to establish the degree of membership for a given proposition to a determined
value of truth.

These approaches have become popular for the results that they yielded, and many
implementations for specific solutions have been produced based on their premises [8,
12, 13]. However, it is our belief that each of these approaches have limitations in their
expressivity for modelling Uncertainty. For instance, Probabilistic Logic is by far the
most extended approach to handle uncertain information. Yet, every axiom stated in
Probabilistic Logic is categorical. That is, let A(x) : (p) be the axiom assigning a
probability of p to the truth of the statement: ”Object x belongs to concept A”. Then it
is implicitly implied that the probability of x not being a member of A is 1−p. In other
words, A(x) : (p) =⇒ ¬A(x) : (1− p).

The use of Probabilistic Logic does not naturally allow the user to assign some
amount of believe to the fact that we might be missing some information about a cer-
tain statement. We propose the use of Subjective Logic [7] to overcome this limitation.
Subjective Logic was proposed by A. Jøsang as a tool to express structured argument
models with an associated degree of truth. It is based on Dempster-Shafer theory of be-
lief, and uses frames of discernment to assign belief masses to given statements. Under
Subjective Logic, statements are extended with opinions. An opinion is a triple (b, d, u),
where b is a degree of belief on the truth of the statement, d is the degree of disbelief as-
sociated with the statement, and u is a degree of uncertainty. These three degrees must
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sum up to 1 to comply with Kolmogorov’s probabilistic axioms. From an intuitive point
of view, b represents the amount of evidence that support the validity of the axiom, d
represents how much evidence has been collected against the statement, and u is the
amount of evidence that is not available at the moment, but could tilt our confidence
either for or against the validity of the axiom.

We will use this approach to model uncertainty in ontologies, extending ABox as-
sertions with subjective opinions. In this manner, we will be able to encapsulate how
much information is already known about the validity of a certain axiom, as well as
how much information is currently unknown. The application of opinions to axioms
will result in some constraints that must hold for the ontology to make sense. These
constraints will form the foundation for our reasoning, since they will let us propagate
our beliefs through the ontology.

3 Preliminaries

3.1 DL-Litecore

We will follow the standard syntax and semantics for classical (that is, without uncer-
tainty) description logics, and due to space constraints, will refer the reader to [2] for
further details. The subfamily DL-Litecore will be used through this paper for simplic-
ity sake, but the results presented in this paper could be extended to other families of
description logics.

As usual, A denotes atomic concept names, and r denotes atomic role names. B
denotes basic concepts, and R denotes roles or their inverses. All valid expressions for
DL-Litecore are built using the following production rules: P ::= r | r−, B ::= A | ∃P |
∃P−.

A TBox T is a finite set of concept inclusions (CIs) Bv B’, or Bv¬B’. An ABoxA
is a finite set of membership assertions of the form A(a), P(a,b). A DL-Litecore ontology
O is a pair (T , A), where T is a DL-Litecore TBox, and A is a DL-Litecore ABox.

Following the standard semantics of description logics [2], the semantics of DL-
Litecore is based on interpretations. An interpretation I is a pair (4I , ·I), where 4I
is a non-empty set of objects, and ·I is an interpretation function, which maps every
individual a ∈ A to an object aI ∈ ∆I , every class C into a subset CI ⊆ 4I , and
each role R to a subset RI ⊆4I x4I . An interpretation is a model of a TBox T (resp.
ABox A) if it satisfies all concept inclusions in T (resp. assertions in A). An ABox A
is consistent with respect to a TBox T if A and T have a common model. We write T
|= C v D if for all models I of T , CI ⊆ DI and say that C is subsumed by D relative
to T .

There are a number of common reasoning services that are usually provided when
developing an application that deals with ontologies. Among these services, we can
name:

– Instance checking: Given an individual x and an concept C, determine whether or
not x is a member of C.

– Instance retrieval: Given a conceptC, retrieve all the individuals that are members
of C.
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– Consistency checking: Given a knowledge base KB, determine whether or not a
model for KB exists.

– Query answering: Given a knowledge base KB and a query q, determine all the
answers for q that satisfy every model of KB.

3.2 Subjective ABoxes

A subjective DL-Litecore ABox SA is an extension of a DL-Litecore ABoxA in which
every assertion in A is extended with an opinion. An opinion w over a statement x is a
triple of positive numbers (b, d, u) such that b + d + u = 1; and in which b represents
the degree of belief assigned to the truth of x, d represents the degree assigned to the
falsehood of x, and u measures the degree of uncertainty associated with x. If, during
the execution of any reasoning task, an opinion w is produced such that b + d + u >
1, we say that w is invalid. We denote with b(w), d(w), and u(w) the degrees of belief,
disbelief and uncertainty associated with an opinion w, respectively, and withW the set
of all possible opinions.
Definition 1. Let w1 = (b1, d1, u1) and w2 = (b2, d2, u2) be two opinions about the
same assertion α. We call w1 a specialisation of w2 (w1 � w2) iff b2 ≤ b1 and d2 ≤ d1
(implies u1 ≤ u2). Similarly, we call w1 a generalisation of w2 (w2 � w1) iff b1 ≤ b2
and d1 ≤ d2 (implies u2 ≤ u1).

3.3 Example Scenario

In order to help us illustrate the many properties of the different aspects of Subjective
DL-Lite, we present in this subsection a running example set in a medical domain.
More specifically, we will consider a medical clinic, in which patients come seeking
for a doctor to treat their illnesses. We can have the knowledge domain modelled by
an ontology, with relevant relations represented in the TBox, and data for patients and
clinical cases instantiated in the ABox. Table 1 illustrates the ontology that we are going
to use for our example.

Table 1. Scenario knowledge base

t1 : GraveDisease v Disease t2MinorDisease v Disease
t3 : GraveDisease v ¬MinorDisease t4 : ∃hasSymptom v SickPatient
t5 : CriticalPatient v Patient u ∃hasGraveDisease t6 : PandemicDisease v GraveDisease

a1 : presentsPainIn(patientA, abdomen) : (1, 0, 0)
a2 : hasSymptom(patientA, nausea) : (0.4, 0, 0.6)
a3 : hasSymptom(patientA,migraine) : (0.4, 0, 0.6)
a4 : hasFamilyCondition(patientA, IBS) : (0, 0, 1)
a5 : hasPositiveTest(patientA, bloodTest) : (0.9, 0.05, 0.05)

In our scenario, a patient sees the doctor due to an acute abdominal pain that he is
suffering. Being the main reason for the visit, and having no reason to doubt the patient,
the doctor proceeds to instantiate with total certainty the fact that the patient suffers an
abdominal pain. This is covered by axiom a1.

Next, our patient tells the doctor that he also suffers something that he cannot de-
scribe very well, midway between a nausea or a migraine. This uncertain claim, stem-
ming from the fact that the patient lacks the expertise to differentiate two distinct symp-
toms, can be easily modelled in a subjective ontology with axioms a2 and a3. The
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rational for this approach is based on the doctor having some reasons to belief that the
patient suffers one of the symptoms, but not having enough information that could jus-
tify the choice of one over the other. It could be argued that, since either outcome is
equally probable, both axioms should be extended with the opinion (0.5,0,0.5) instead.
However, this is where the potential of Subjective Logic becomes clear, since such an
opinion would reject any other option as the cause of the discomfort. By choosing to
have a buffer of 0.1 degree in our uncertainty, we are leaving an door open for any other
possible symptom that could be responsible for the malady. Indeed, it could be easily
the case that the patient was suffering neither a nausea or a migraine, and instead had
an ear infection. This capability of modelling what is unknown to us at the moment is
what mainly differentiates Subjective Logic from similar approaches.

Continuing with our example, the doctor wants to know whether the Irritable Bowel
Syndrome is present in any member of his relatives. Not even knowing about the disease
itself, the patient finds himself unable to confirm, nor discard, any presence of it in his
family. This is modelled by axiom a4, in which there is no commitment towards the
truth nor the falsehood of the claim. The opinion (0,0,1), representing total uncertainty
about an axiom, is the most general opinion possible, since any other opinion must
necessarily be a specialisation of it. We will call (0,0,1) the default opinion, and assume
that any axioms that do not explicitly appear in our ABox are extended with it. With
this approach, we reflect the fact that anything not stated in our ontology is unknown,
rather than false.

Finally, the doctor decides to run a blood test on the patient, to discard possible
diseases that could be responsible for the symptoms. After a couple of days the results
arrive, and the test shows that all the values for the patient fall within standard nomi-
nal ranges. However, the doctor is aware that these tests have an error margin of five
percent, in which either a false positive or negative can be delivered instead of the real
result. Knowing this limitation of the tests, the doctor only commits 90% of his con-
fidence to axiom a5, reflecting the fact that the test itself is fallible by assigning 5%
of his confidence to the disbelief degree of the axiom, and covering for some possible
exceptional situations with the use of some uncertainty.

4 Semantics

4.1 Subjective DL-Lite Semantics

The semantics for a SDL-Litecore ABox is given in terms of subjective interpretations.
A subjective interpretation I is a pair (4I , ·I), where the domain 4I is a non-empty
set of objects, and ·I is a subjective function that maps:

– an individual a to an element aI ∈ 4I
– a named class A to a function AI : 4I →W
– a named property R to a function RI : 4I ×4I →W

Following the example set in [10], we summarise the semantics for various ax-
iomatic relations in SDL-Litecore through Table 2. Top (>) and bottom (⊥) are special
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Table 2. Semantics of Subjective DL-Litecore

Syntax Semantics

s1 : > >I(o) = (1, 0, 0)

s2 : ⊥ ⊥I(o) = (0, 1, 0)

s3 : ∃ R b ((∃ R)I(o1))≥max ∪
∀o2
{b(RI(o1,o2))} and

d((∃R)I(o1)) ≤ min ∪
∀o2
{d(RI(o1, o2))}

s4 : ¬B (¬B)I(o) = ¬BI(o)
s5 : R− (R−)I(o2, o1) = RI(o1, o2)

s6 : B1 v B2 ∀o ∈ ∆I , b(BI1 (o)) ≤ b(BI2 (o)) and
d(BI2 (o)) ≤ d(BI1 (o))

s7 : B1 v ¬B2 ∀o ∈ ∆I , b(BI1 (o)) ≤ d(BI2 (o)) and
b(BI2 (o)) ≤ d(BI1 (o))

s8 : B(a):w b(w) ≤ b(BI(aI)) and d(w) ≤ d(BI(aI))
s9 : R(a, b):w b(w) ≤ b(RI(aI , bI)) and d(w) ≤ d(RI(aI , bI))

concepts in our ontology. Every object in our domain is a member of top with total cer-
tainty. Likewise, we know with total certainty that no object in our domain is a member
of bottom. For the rest of the axiomatic rules, the constraints given in Table 2 must hold
for every object in the domain. To illustrate how the semantics might be applied, we
can have a look at the scenario presented in section 3.3. It is clear that the most trivial
interpretation possible is the one that links distinct object to each one of the individual
appearing in the ABox, and then assigns to each required axiom the same opinion that
it already has in the ABox. We could then proceed to infer new axioms by applying the
constraints given by the semantics. For instance, imagine that we agree that the flu is
usually a mild sickness, although at least 2% of the population experiment a virulent
outcome every year. We can then instantiate the flu for the year 2015 with the following
axiom: a6 : MinorDisease(flu2015) : (0.9, 0.02, 0.08). This opinion encapsulates
our perception that the flu is usually a mild sickness, that this is not the case for 2%
of the cases, and that there is a margin for which the actual statistical values of mild
cases versus severe cases will fall this year. Now, from table 1, and the semantic rule
s6 from table 2, we can infer the axiom a7 : Disease(flu2015) : (0.9, 0, 0.1). Notice
how only the belief is propagated from the subclass to the inferred superclass, since any
amount committed to the disbelief that flu2015 is a MinorDisease does not justify
stating that it is not a Disease. Certainly it could be the case that flu2015 is later de-
clared a PandemicDisease instead, thus making it a GraveDisease, but a Disease
nonetheless. Also notice that the semantics for rule s6 require a7 to have a belief degree
equal or greater than 0.9, but does not specify any exact value. One could argue that any
value falling in the range [0.9,1] could be chosen as the resulting belief for the inferred
axiom, since any of these values comply with the semantics. However, by selecting pre-
cisely the lowest possible value in the range, we are maximising the use of available
information in our ontology, at the same time that minimise the commitment for the
resulting axiom. In other words, this is precisely the value that yields the most general
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opinion ω that complies with the semantics. Any other opinion of a7 that complies with
the semantics must be a specialisation of ω, and vice versa.

One interesting point to remark is that, in subjective environments, positive inclu-
sions can lead to inconsistencies. This is not the case for classical knowledge bases,
where inconsistencies were produced by violation of negative inclusions. We can illus-
trate this property going back to our example scenario. Imagine that the flu for 2015
gets declared a pandemic due to the high rate of spread in the population. Since we ap-
ply a series of guidelines and well-defined rules to check the criteria for the declaration
of pandemics, we can state that the flu falls within the category of pandemia with total
confidence using the following axiom a8 : PandemicDisease(flu2015) : (1, 0, 0). It
is clear that this axiom introduces an inconsistency in the ontology. Intuitively, it does
not make sense to declare flu2015 to be a minor disease with 90% of confidence at
the same time that we state with total certainty that flu2015 is also a grave disease (as
inferred through t6). A direct application of the semantic constraint s7 lets us spot the
inconsistency.

One last note before continuing to the formal definition of inconsistencies for sub-
jective ontologies. In our example, the inconsistency arose due to some dynamic be-
haviour present in our ontology. That is, there was some initial statement that was
refined at a later stage. Although extremely interesting, the task of introducing some
dynamic aspect to our ontologies will be left for a future work. We will consider our
ABoxes to be static in nature, and the only inconsistencies will arise due to the implicit
relations given by axioms at the TBox level.

Let K = (T ,A) be a SDL-Litecoreknowledge base, α be an axiom of K, and I and
interpretation of K. The following will provide a formal definition of consistency for
subjective ontologies:

Definition 2. I is a model of α, denoted I |= α, if αI satisfies all the constraints
presented in table 2.

Definition 3. I is a model of K, denoted I |= K, if I |= α for each α ∈ K

Definition 4. K is consistent if it has at least one model

Definition 5. K models α, denoted K |= α, if I |= α for every model I of K.

Definition 6. σ is an answer for a query q over K, denoted K |=q σ, if σ is an answer
of q for every possible model of K.

Finally we need to redefine the meaning of some common reasoning tasks for a
subjective ontology K:

– Instance checking: Given an individual x and an concept C, determine the most
general opinion ω such that K |= C(x) : ω.

– Instance retrieval: Given a concept C, return the set {C(x) : ω | ω is the most
general opinion such that K |= C(x) : ω}.

– Query answering: Given a query q, return the set { σ : ω | ω is the most general
opinion such that K |=q σ : ω}.
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5 Canonical Interpretation

Following the example presented in [3], we now will provide a methodology to build a
canonical interpretation of a subjective knowledge base SK. To achieve this goal, we
will follow the notion of chase [1]. In particular, we will adapt the notion of restricted
chase adopted by Johnson and Klug in [6]. This restricted chase will be constructed in
an iterative manner by applying a series of rules based on TBox axioms. For easiness
of exposition, we assume that every assertion α that does not explicitly appear in the
subjective ABox A has the vacuous opinion (0,0,1) associated to it. In a more formal
way, our assumption states that we work with the extended subjective ABox A′ given
by A′ = A ∪ {α : (0, 0, 1)}, if α : w /∈ A for any opinion w. We will also make
use of the function ga, that takes as input a basic role and two constants, and returns a
membership assertion as specified below:

ga(R, a, b) =

{
P (a, b), ifR = P

P (b, a), ifR = P−
(1)

Definition 7. Let S be a set of DL-Litecore membership assertions, and let Tα be a set
of DL-Litecore TBox axioms. Then, an axiom α ∈ Tα is applicable in S to a membership
assertion f ∈ S if

– (cr1) α = A1 v A2, f = A1(a) : w, and A2(a) : w′ ∈ S, with b(w) > b(w′)
– (cr2) α = A1 v A2, f = A2(a) : w, and A1(a) : w′ ∈ S, with d(w) > d(w′)
– (cr3) α = A v ∃R, f = A(a) : w, and there does not exist any constant b such

that ga(R,a,b) : w’ ∈ S, with b(w′) > b(w)
– (cr4) α = ∃R v A, f = ga(R,a,b) : w, and A(a) : w’ ∈ S, with b(w) > b(w′)
– (cr5) α = ∃R v A, f = ga(R,a,b) : w, and A(a) : w’ ∈ S, with d(w′) > d(w)
– (cr6) α = A1 v ¬A2, f = A1(a) : w, and A2(a) : w′ ∈ S, with b(w′) > d(w)
– (cr7) α = A2 v ¬A1, f = A1(a) : w, and A2(a) : w′ ∈ S, with b(w′) > d(w)
– (cr8) α = A v ¬∃R, f = ga(R, a, b) : w, and A(a) : w′ ∈ S, with b(w′) > d(w)
– (cr9) α = A v ¬∃R, f = A(a) : w, and ga(R, a, b) : w′ ∈ S, with b(w′) > d(w)
– (cr10) α = ∃R v ¬A, f = ga(R, a, b) : w, and A(a) : w′ ∈ S, with b(w) >
d(w′)

– (cr11) α = ∃R v ¬A, f = A(a) : w, and ga(R, a, b) : w′ ∈ S, with b(w) >
d(w′)

Applicable axioms can be used, i.e., applied, in oder to construct the chase of a
knowledge base. The chase of a SDL-LitecoreKB is a (possibly infinite) set of mem-
bership assertions, constructed step-by-step starting from the ABox A. At each step of
the process, an axiom α ∈ T is applied to a membership assertion f ∈ S. Applying an
axiom means refining our opinion about a certain f ′, that might not appear explicitly in
S. The outcome of the application is a new set S′ in which α is no longer applicable to
f .

This construction process heavily depends on the order in which we select both the
TBox axiom and the membership assertion in each iteration, as well as what constants
we introduce when required. Therefore, we can produce a number of syntactically dis-
tinct sets of membership assertions following this process. However, it is possible to
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show that the result is unique up to renaming of constants occurring in each such set.
In order to achieve this, we select TBox axioms, membership assertions and constant
symbols in lexicographic order. We denote with ΓA the set of all constant symbols oc-
curring in A. We assume to have an infinite set ΓN of constant symbols not occurring
in A. Finally, the set ΓC = ΓA ∪ ΓN is ordered in lexicographic order.

Definition 8. Let K = 〈T ,A〉 be a SDL-LitecoreKB, let Tα be the set of assertions in
T , let n be the number of membership assertions inA, and let ΓN be the set of constants
defined above. Assume that the membership assertions in A are numbered from 1 to n
following their lexicographic order, and consider the following definition

– S0 = A
– Sj+1 = {Sj \ fold} ∪ {fnew}

Then, we call chase of K, denoted chase(K), the set of membership assertions
obtained as the (possibly infinite) union of all Sj , i.e.,

chase(K) =
⋃

j∈N
Sj (2)

The element fold, presented in definition 8, is the axiom whose opinion is being
refined by fnew. The membership assertion fnew, numbered with n+ j + 1 in Sj+1, is
obtained as follows:

Definition 9. Let f be the first membership assertion in Sj such that there exists a α ∈
Tα applicable in Sj to f , let α be the lexicographically first TBox axiom applicable in
Sj to f , and let anew be the constant of ΓN that follows lexicographically all constants
occurring in Sj

case α, f of
(cr1) α = A1 v A2, f = A1(a) : w,A2(a) : w′ ∈ S

then fnew = A2(a) : (b(w), d(w′), 1− b(w)− d(w′))
(cr2) α = A1 v A2, f = A2(a) : w,A1(a) : w′ ∈ S

then fnew = A1(a) : (b(w′), d(w), 1− b(w′)− d(w))
(cr3) α = A v ∃R, f = A(a) : w,∃R(a) : w′ ∈ S

then fnew = ga(R, a, anew) : (b(w), d(w′), 1− b(w)− d(w′))
(cr4) α = ∃R v A, f = ga(R, a, b) : w,A(a) : w′ ∈ S

then fnew = A(a) : (b(w), d(w′), 1− b(w)− d(w′))
(cr5) α = ∃R v A, f = ga(R,a,b) : w, and A(a) : w’ ∈ S

then fnew = ga(R, a, b) : (b(w), d(w′), 1− b(w)− d(w′))
(cr6) α = A1 v ¬A2, f = A1(a) : w, and A2(a) : w′ ∈ S

then fnew = A1(a) : (b(w), b(w′), 1− b(w)− b(w′))
(cr7) α = A2 v ¬A1, f = A1(a) : w, and A2(a) : w′ ∈ S

then fnew = A1(a) : (b(w), b(w′), 1− d(w)− b(w′))
(cr8) α = A v ¬∃R, f = ga(R, a, b) : w, and A(a) : w′ ∈ S

then fnew = ga(R, a, b) : (b(w), b(w′), 1− b(w)− b(w′))
(cr10) α = ∃R v ¬A , f = ga(R,a,b) : w, and A(a) : w’ ∈ S

then fnew = ga(R, a, b) : (b(w), b(w′), 1− b(w)− b(w′))
(cr11) α = ∃R v ¬A, f = A(a) : w, and ga(R, a, b) : w′ ∈ S

then fnew = A(a) : (b(w), b(w′), 1− b(w)− b(w′))
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It is worth noting that the application of chase rules can be a source of inconsis-
tencies in the ontology. By increasing the belief degree of an opinion (resp. disbelief),
we may put it in conflict with its disbelief degree (resp. belief), rendering the opinion
invalid. Having an invalid opinion in our KB means that no interpretation will be able
to satisfy it.

With the notion of chase in place we can introduce the notion of canonical interpre-
tation. We define can(K) as the interpretation 〈4can(K), ·can(K)〉, where:

– 4can(K)= ΓC
– acan(K) = a, for each constant a occurring in chase(K)
– Acan(K) : ΓC →W, such that A(a) : w ∈ chase(K) =⇒ Acan(K)(a) = w
– P can(K) : ΓC × ΓC →W, P (a1, a2) : w ∈ chase(K) =⇒ P can(K)(a, b) = w

We can also define cani(K) = 〈4can(K), ·cani(K)〉 as the interpretation relative to
chasei(K) instead of chase(K) .

Lemma 1. LetK = 〈T ,A〉 be a SDL-Litecoreknowledge base, then can(K) is a model
of K iff every opinion w that appears in can(K) is valid. ut

Proof.(Sketch)
⇐ If any of the opinions w that appear in the canonical interpretation is invalid, i.e.,

b(w) + d(w) > 1, then it is obvious that the canonical interpretation is not a model of
K.
⇒ The fact that can(K) satisfies all membership assertions in A follows from the

fact that A ⊆ chase(K). ut

Lemma 2. Let K = 〈T ,A〉 be a SDL-Litecore knowledge base, then if can(K) is a
model of K, every other model of K is a specialisation of can(K). ut

Proof.(Sketch)
Let m be a model of K, and m(α) = ω the opinion assigned by m to the assertion

α ∈ K. Let can(α) = ωc be the opinion assigned by the canonical model to α, with
ωc � ω. This means that, according tom, ω is a perfectly valid opinion for α. However,
since ωc is a specialisation of ω, we can infer that, while building the chase, there was
a semantic constraint applicable to α that it is not satisfied by m. Given that there is at
least one semantic constraint applicable to α that is not covered by m, it is clear that m
is not a model of K. We conclude for these reasons that every model of K must be at
most as general as can.

ut
The implications from lemma 2 are profound and very relevant. Knowing that every

model ofK is a specialisation of the canonical interpretation, we can focus on answering
queries over this canonical interpretation. Any answer that is valid for the canonical
interpretation will be valid for any other possible interpretation.

Of course, from a practical point of view, we will never construct the chase nor use
directly the canonical model, since it might not be feasible to construct the chase for
huge collections of data in a reasonable amount of time. Instead, we will apply the chase
rules during the rewriting of the query, in such a way that we simulate the propagation
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of the beliefs performed during the chase into the final query. Following this approach,
we can be sure to obtain a valid answer for our original query, since this will be an
answer for the canonical model and, through virtue of lema 2, an answer for any other
interpretation of K.

6 Conclusions

It is expected that the capability to handle uncertainty in query answering solutions will
be a critical requirement for future applications. Precisely to address this problem we
propose a subjective extension of DL-Lite, to combine the efficient query answering
properties of DL-Lite with the uncertainty modelling of Subjective Logic. Our main
contributions come in the form of the theoretical foundation for the justification of
the semantics used in Subjective DL-Lite, and the construction of a canonical model
through a chase. We have shown that the theory behind this approach is sound, and
could be used to develop a query answering application with support for uncertainty.
For our future works we still need to demonstrate that every possible interpretation is a
specialisation of the canonical model. Thus, any answer given for the canonical model
will be an answer for the rest of the interpretation. Finally, in order to develop our
query answering application, we need to define the algorithms that will perform infer-
ence over the set of axioms of the ontology and collect the answers to the queries. The
initial results are promising, and encourages us to continue in this interesting, though
challenging, line of research.
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Abstract. We describe DysToPic, a theorem prover for the preferential De-
scription Logic ALC + Tmin. This is a nonmonotonic extension of standard
ALC based on a typicality operator T, which enjoys a preferential semantics.
DysToPic is a multi-engine Prolog implementation of a labelled, two-phase
tableaux calculus for ALC + Tmin whose basic idea is that of performing these
two phases by different machines. The performances of DysToPic are promis-
ing, and significantly better than the ones of its predecessor PreDeLo 1.0.

1 Introduction
Nonmonotonic extensions of Description Logics (DLs) have been actively investigated
since the early 90s [3, 1, 4, 6, 7, 13, 5]. A simple but powerful nonmonotonic extension
of DLs is proposed in [7, 13, 12]: in this approach “typical” or “normal” properties can
be directly specified by means of a “typicality” operator T enriching the underlying DL;
the typicality operator T is essentially characterized by the core properties of nonmono-
tonic reasoning axiomatized by either preferential logic [14] or rational logic [15]. In
these logics one can consistently express defeasible inclusions and exceptions such as
“normally, kids eat chocolate, but typical kids who have lactose intolerance do not”:

T(Kid) v ChocolateEater
T(Kid u ∃HasIntolerance.Lactose) v ¬ChocolateEater .

In order to perform useful inferences, in [13] we have introduced a nonmonotonic ex-
tension of the logic ALC plus T based on a minimal model semantics. Intuitively, the
idea is to restrict our consideration to models that maximize typical instances of a con-
cept: more in detail, we introduce a preference relation among ALC plus T models,
then we define a minimal entailment restricted to models that are minimal with respect
to such preference relation. The resulting logic, called ALC + Tmin, supports typical-
ity assumptions, so that if one knows that Roman is a kid, one can nonmonotonically
assume that he is also a typical kid and therefore that he eats chocolate. As an example,
for a TBox specified by the inclusions above, in ALC + Tmin we can infer that:

TBox |=ALC+Tmin T(Kid u Tall) v ChocolateEater 5

TBox ∪ {Kid(daniel)} |=ALC+Tmin ChocolateEater(daniel)

TBox ∪ {Kid(daniel), ∃HasIntolerance.Lactose(daniel)} |=ALC+Tmin

5 Being tall is irrelevant with respect to eating chocolate or not.
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x |=ALC+Tmin ¬ChocolateEater(daniel)6

TBox ∪ {Kid(daniel),Tall(daniel)} |=ALC+Tmin ChocolateEater(daniel)

TBox∪ {∃HasBrother .Kid(seth)} |=ALC+Tmin ∃HasBrother .ChocolateEater(seth)7

In this work we focus on theorem proving for nonmonotonic extensions of DLs. We in-
troduce DysToPic, a theorem prover for preferential Description LogicALC+Tmin.
DysToPic implements the labelled tableaux calculus for this logic introduced in [13]
performing a two-phase computation: in the first phase, candidate models falsifying
a given query are generated (complete open branches); in the second phase the mini-
mality of candidate models is checked by means of an auxiliary tableau construction.
DysToPic is a multi-engine theorem prover, whose basic idea is that the two phases
of the calculus are performed by different machines: a “master” machine M , called the
employer, executes the first phase of the tableaux calculus, whereas other computers are
used to perform the second phase on open branches detected by M . When M finds an
open branch, it invokes the second phase on the calculus on a different “slave” machine,
called worker, S1, whileM goes on performing the first phase on other branches, rather
than waiting for the result of S1. When another open branch is detected, then another
machine S2 is involved in the procedure in order to perform the second phase of the
calculus on that branch. In this way, the second phase is performed simultaneously on
different branches, leading to a significant increase of the performances.

Labelled tableaux calculi are implemented in Prolog, following the line of the prede-
cessor PreDeLo 1.0, introduced in [11]: DysToPic is inspired by the methodology
introduced by the system leanTAP [2], even if it does not fit its style in a rigorous man-
ner. The basic idea is that each axiom or rule of the tableaux calculi is implemented by
a Prolog clause of the program: the resulting code is therefore simple and compact.

In general, the literature contains very few proof methods for nonmonotonic ex-
tensions of DLs. We provide some experimental results to show that the performances
of DysToPic are promising, in particular comparing them to the ones of PreDeLo
1.0. DysToPic is available for free download at:

http://www.di.unito.it/∼pozzato/theoremprovers.html

2 The Logic ALC + Tmin

The logic ALC + Tmin is obtained by adding to the standard ALC the typicality oper-
ator T [7, 12]. The intuitive idea is that T(C) selects the typical instances of a concept
C. We can therefore distinguish between the properties that hold for all instances of
concept C (C v D), and those that only hold for the normal or typical instances of C
(T(C) v D).

The language L of the logic is defined by distinguishing concepts and extended
concepts as follows. Given an alphabet of concept names C, of role names R, and of
individual constants O, A ∈ C and > are concepts of L; if C,D ∈ L and R ∈ R,
then C uD,C tD,¬C,∀R.C,∃R.C are concepts of L. If C is a concept, then C and
T(C) are extended concepts, and all the boolean combinations of extended concepts

6 Giving preference to more specific information.
7 Minimal consequence applies to individuals not explicitly named in the ABox as well, without

any ad-hoc mechanism.
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are extended concepts of L. A KB is a pair (TBox,ABox). TBox contains inclusion
relations (subsumptions) C v D, where C is an extended concept of the form either C ′

or T(C ′), and D ∈ L is a concept. ABox contains expressions of the form C(a) and
R(a, b), where C ∈ L is an extended concept, R ∈ R, and a, b ∈ O.

In order to provide a semantics to the operator T, we extend the definition of a
model used in “standard” logic ALC. The idea is that the operator T is characterized
by a set of postulates that are essentially a reformulation of the Kraus, Lehmann and
Magidor’s axioms of preferential logic P [14]. Intuitively, the assertion T(C) v D
corresponds to the conditional assertion C |∼ D of P. T has therefore all the “core”
properties of nonmonotonic reasoning as it is axiomatized by P. The idea is that there
is a global preference relation among individuals, in the sense that x < y means that x
is “more normal” than y, and that the typical members of a concept C are the minimal
elements of C with respect to this relation. In this framework, an element x ∈ ∆ is
a typical instance of some concept C if x ∈ CI and there is no element in CI more
typical than x. The typicality preference relation is partial.

Definition 1. Given an irreflexive and transitive relation< over∆, we defineMin<(S)
= {x : x ∈ S and @y ∈ S s.t. y < x}. We say that < is well-founded if and only if, for
all S ⊆ ∆, for all x ∈ S, either x ∈Min<(S) or ∃y ∈Min<(S) such that y < x.

Definition 2. A model of ALC + Tmin is any structure 〈∆,<, I〉, where: ∆ is the
domain; I is the extension function that maps each extended concept C to CI ⊆ ∆,
and each role R to a RI ⊆ ∆ × ∆; < is an irreflexive, transitive and well-founded
(Definition 1) relation over ∆. I is defined in the usual way (as for ALC) and, in
addition, (T(C))I = Min<(CI).

Given a modelM of Definition 2, I can be extended so that it assigns to each individual
a of O a distinct element aI of the domain ∆ (unique name assumption). We say that
M satisfies an inclusion C v D if CI ⊆ DI , and thatM satisfies C(a) if aI ∈ CI and
R(a, b) if (aI , bI) ∈ RI . Moreover, M satisfies TBox if it satisfies all its inclusions,
andM satisfies ABox if it satisfies all its formulas.M satisfies a KB (TBox,ABox), if
it satisfies both TBox and ABox.

The semantics of the typicality operator can be specified by modal logic. The in-
terpretation of T can be split into two parts: for any x of the domain ∆, x ∈ (T(C))I

just in case (i) x ∈ CI , and (ii) there is no y ∈ CI such that y < x. Condition (ii) can
be represented by means of an additional modality �, whose semantics is given by the
preference relation < interpreted as an accessibility relation. The interpretation of � in
M is as follows: (�C)I = {x ∈ ∆ | for every y ∈ ∆, if y < x then y ∈ CI}. We
immediately get that x ∈ (T(C))I if and only if x ∈ (C u�¬C)I .

Even if the typicality operator T itself is nonmonotonic (i.e. T(C) v E does not
imply T(C u D) v E), what is inferred from a KB can still be inferred from any
KB’ with KB ⊆ KB’. In order to perform nonmonotonic inferences, in [13] we have
strengthened the above semantics by restricting entailment to a class of minimal (or
preferred) models. Intuitively, the idea is to restrict our consideration to models that
minimize the non-typical instances of a concept.

Given a KB, we consider a finite set LT of concepts: these are the concepts whose
non-typical instances we want to minimize. We assume that the set LT contains at least

429



all concepts C such that T(C) occurs in the KB or in the query F , where a query F is
either an assertion C(a) or an inclusion relation C v D. As we have just said, x ∈ CI

is typical for C if x ∈ (�¬C)I . Minimizing the non-typical instances of C therefore
means to minimize the objects falsifying �¬C for C ∈ LT. Hence, for a modelM =

〈∆,<, I〉, we defineM�−
LT

= {(x,¬�¬C) | x 6∈ (�¬C)I , with x ∈ ∆,C ∈ LT}.
Definition 3 (Preferred and minimal models). Given a modelM = 〈∆, <, I〉 of a
knowledge base KB, and a modelM′ = 〈∆′, <′, I ′〉 of KB, we say thatM is preferred
toM′ w.r.t. LT, and we writeM <LT

M′, if (i) ∆ = ∆′, (ii)M�−
LT
⊂ M′�−LT

, (iii)
aI = aI

′
for all a ∈ O.M is a minimal model for KB (w.r.t. LT) if it is a model of KB

and there is no other modelM′ of KB such thatM′ <LT
M.

Definition 4 (Minimal Entailment inALC+Tmin). A query F is minimally entailed
inALC+Tmin by KB with respect to LT if F is satisfied in all models of KB that are
minimal with respect to LT. We write KB |=ALC+Tmin F .

As an example, consider the TBox of the Introduction.
We have that TBox ∪ {Kid(daniel)} |=ALC+Tmin

ChocolateEater(daniel), since
danielI ∈ (Kid u �¬Kid)I for all minimal modelsM = 〈∆ <, I〉 of the TBox. In
contrast, by the nonmonotonic character of minimal entailment, TBox ∪ {Kid(daniel),
∃HasIntolerance.Lactose(daniel)} |=ALC+Tmin

¬ChocolateEater(daniel).

3 A Tableau Calculus for ALC + Tmin

In this section we recall the tableau calculus TABALC+Tmin for deciding whether a query
F is minimally entailed from a KB in ALC + Tmin introduced in [13]. The calcu-
lus performs a two-phase computation: in the first phase, a tableau calculus, called
TABALC+TPH1 , simply verifies whether KB ∪ {¬F} is satisfiable in a model of Defini-
tion 2, building candidate models; in the second phase another tableau calculus, called
TABALC+TPH2 , checks whether the candidate models found in the first phase are minimal
models of KB, i.e. for each open branch of the first phase, TABALC+TPH2 tries to build a
model of KB which is preferred to the candidate model w.r.t. Definition 3. The whole
procedure is formally defined at the end of this section (Definition 5).
TABALC+Tmin tries to build an open branch representing a minimal model satisfying

KB ∪ {¬F}, where ¬F is the negation of the query F and is defined as follows: if
F ≡ C(a), then ¬F ≡ (¬C)(a); if F ≡ C v D, then ¬F ≡ (C u ¬D)(x), where x
does not occur in KB. TABALC+Tmin makes use of labels, denoted with x, y, z, . . .. Labels
represent individuals either named in the ABox or implicitly expressed by existential
restrictions. These labels occur in constraints, that can have the form x

R−→ y or x : C,
where x, y are labels, R is a role and C is a concept of ALC + Tmin or has the form
�¬D or ¬�¬D, where D is a concept.

3.1 The Tableaux Calculus TABALC+T
PH1

A tableau of TABALC+TPH1 is a tree whose nodes are pairs 〈S | U〉. S is a set of con-
straints, whereas U contains formulas of the form C v DL, representing inclusion
relations C v D of the TBox. L is a list of labels, used in order to ensure the ter-
mination of the tableau calculus. A branch is a sequence of nodes 〈S1 | U1〉, 〈S2 |
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U2〉, . . . , 〈Sn | Un〉 . . ., where each node 〈Si | Ui〉 is obtained from its immediate pre-
decessor 〈Si−1 | Ui−1〉 by applying a rule of TABALC+TPH1 , having 〈Si−1 | Ui−1〉 as
the premise and 〈Si | Ui〉 as one of its conclusions. A branch is closed if one of its
nodes is an instance of a (Clash) axiom, otherwise it is open. A tableau is closed if all
its branches are closed.

The rules of TABALC+TPH1 are presented in Fig. 1. Rules (∃+) and (�−) are called
dynamic since they can introduce a new variable in their conclusions. The other rules are
called static. We do not need any extra rule for the positive occurrences of�, since these
are taken into account by the computation of SM

x→y of (�−). The (cut) rule ensures

that, given any concept C ∈ LT, an open branch built by TABALC+TPH1 contains either
x : �¬C or x : ¬�¬C for each label x: this is needed in order to allow TABALC+TPH2

to check the minimality of the model corresponding to the open branch. As mentioned
above, given a node 〈S | U〉, each formula C v D in U is equipped with the list L of
labels to which the rule (v) has already been applied. This avoids multiple applications
of such rule to the same subsumption by using the same label.

In order to check the satisfiability of a KB, we build its corresponding constraint
system 〈S | U〉, and we check its satisfiability. Given KB=(TBox,ABox), its corre-
sponding constraint system 〈S | U〉 is defined as follows: S = {a : C | C(a) ∈
ABox} ∪ {a R−→ b | R(a, b) ∈ ABox}; U = {C v D∅ | C v D ∈ TBox}. KB is sat-
isfiable if and only if its corresponding constraint system 〈S | U〉 is satisfiable. In order
to verify the satisfiability of KB ∪ {¬F}, we use TABALC+TPH1 to check the satisfiability
of the constraint system 〈S | U〉 obtained by adding the constraint corresponding to ¬F
to S′, where 〈S′ | U〉 is the corresponding constraint system of KB. To this purpose, the
rules of the calculus TABALC+TPH1 are applied until either a contradiction is generated
(clash) or a model satisfying 〈S | U〉 can be obtained.

The rules of TABALC+TPH1 are applied with the following standard strategy: 1. apply
a rule to a label x only if no rule is applicable to a label y such that y ≺ x (where y ≺ x
says that label x has been introduced in the tableaux later than y); 2. apply dynamic
rules only if no static rule is applicable.

Theorem 1. Given LT, KB |=ALC+Tmin F if and only if there is no open branch
B in the tableau built by TABALC+TPH1 for the constraint system corresponding to KB
∪ {¬F} such that the model represented by B is a minimal model of KB.

Thanks to the side conditions on the application of the rules and the blocking machinery
adopted by the dynamic ones, in [13] it has been shown that any tableau generated by
TABALC+TPH1 for 〈S | U〉 is finite.

3.2 The Tableaux Calculus TABALC+T
PH2

Let us now introduce the calculus TABALC+TPH2 which checks whether each open branch
B built by TABALC+TPH1 represents a minimal model of the KB.

Given an open branch B of a tableau built from TABALC+TPH1 , let D(B) be the set of
labels occurring in B. Moreover, let B�− be the set of formulas x : ¬�¬C occurring
in B, that is to say B�− = {x : ¬�¬C | x : ¬�¬C occurs in B}.
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(Clash)

�S, x : C, x : ¬C | U⇥

⌅S, x : ⇤R.C, x
R�⇥ y, y : C | U⇧

⌅S, x : ⇤R.C, x
R�⇥ y | U⇧

(��)
�S, x : ¬�¬C | U⇥

⇥S, x : �R.C | U⇤

�S, x : ¬C ⇤D | U,C ⌅ DL,x⇥
�S | U,C ⇤ DL⇥

(�+)

(�+)

�S, x : ¬¬C | U⇥
(¬) (T+)

�S, x : T(C) | U⇥
(T�)

�S, x : ¬T(C) | U⇥

⌅S, x : ⇤R.C, x
R�⇥ y, y : C | U⇧

if y : C ⇥� Sif x occurs in S and x ⇥� L

�S, x : ¬�¬C, y < x, y : C, y : �¬C,SM
x�y | U⇥ . . .�S, x : ¬�¬C, v1 < x, v1 : C, v1 : �¬C,SM

x�v1
| U⇥ �S, x : ¬�¬C, vn < x, vn : C, vn : �¬C,SM

x�vn
| U⇥

⌅S, x : ⇤R.C, x
R�⇥ v1, v1 : C | U⇧ ⌅S, x : ⇤R.C, x

R�⇥ v2, v2 : C | U⇧ ⌅S, x : ⇤R.C, x
R�⇥ vn, vn : C | U⇧. . .

�S, x : C ⇤D | U⇥
(�+) (��)

�S, x : ¬(C ⇤D) | U⇥
(�+)

�S, x : C ⇤D | U⇥

(��)
�S, x : ¬(C ⇤D) | U⇥

y new

if �z ⇥ x s.t. z �S,x:¬�¬C x and �u s.t. {u < x, u : C, u : �¬C,SM
x�u} � S

⇥vi occurring in S, x �= vi

if ⇤ ⌅z ⇥ x s.t. z �S,x:�R.C x and ⌅ ⇧u s.t. x
R�⇥ u ⇤ S and u : C ⇤ S

y new

�S, x : ¬�¬C | U⇥�S, x : �¬C | U⇥

�S | U⇥
(cut)

x occurs in S

if x : ¬�¬C ⇥� S and x : �¬C ⇥� S
C � LT

�S, x : ¬¬C, x : C | U⇥
x : C ⇥� Sif

�S, x : C ⇤D,x : C, x : D | U⇥

�S, x : ¬(C ⇤D), x : ¬C | U⇥ �S, x : ¬(C ⇤D), x : ¬D | U⇥

�S, x : C ⇤D,x : C | U⇥ �S, x : C ⇤D,x : D | U⇥ �S, x : ¬(C ⇤D), x : ¬C, x : ¬D | U⇥

�S, x : T(C), x : C, x : �¬C | U⇥ �S, x : ¬T(C), x : ¬C | U⇥ �S, x : ¬T(C), x : ¬�¬C | U⇥

{x : C, x : D} ⇥� Sif

if x : ¬C ⇥� S x : ¬D ⇥� Sand

if andx : C ⇥� S x : D ⇥� S {x : ¬C, x : ¬D} ⇥� Sif

x : ¬�¬C ⇥� Sif x : ¬C ⇥� S and{x : C, x : �¬C} ⇥� Sif

�vi occurring in S

⇤S, x : ¬⇥ | U⌅ ⇥S, x : � | U⇤
(Clash)�(Clash)�

(�)

Fig. 1. The calculus TABALC+T
PH1 .

(�+)
. . .

(��)
. . .

(Clash)
�S, x : C, x : ¬C | U | K⇥

(Clash)� (Clash)��

⇥S | U | �⇤ �S, x : ¬�¬C | U | K⇥

�S | U,C ⇤ DL | K⇥
�S, x : ¬C ⇤D | U,C ⌅ DL,x | K⇥

�S, x : ¬�¬C | U | K, x : ¬�¬C⇥

⇥S, x : �R.C | U | K⇤
⇤S, x

R�⇥ v1, v1 : C | U | K⌅ ⇤S, x
R�⇥ v2, v2 : C | U | K⌅ ⇤S, x

R�⇥ vn, vn : C | U | K⌅

x � D(B)

If ⌅ ⌃u ⇤ D(B) s.t. x
R�⇥ u ⇤ S and u : C ⇤ S. ⇧vi ⇤ D(B)

⇤vi � D(B), x ⇥= vi

and x ⇥� L

(T+)

(T�)

(cut)

if x : ¬�¬C ⇥� S and x : �¬C ⇥� S
C � LT

�S, x : �¬C | U | K⇥ �S, x : ¬�¬C | U | K⇥
�S | U | K⇥

�S, x : ¬T(C) | U | K⇥
�S, x : ¬C | U | K⇥ �S, x : ¬�¬C | U | K⇥ ⌅S, x : ⇤R.C, x

R�⇥ y, y : C | U | K⇧
⌅S, x : ⇤R.C, x

R�⇥ y | U | K⇧

�S, x : T(C) | U | K⇥
�S, x : C, x : �¬C | U | K⇥

(�+)

if y : C ⇥� S

x � D(B)

⇥S, v1 : C, v1 : �¬C,SM
x�v1

, x : ¬�¬C | U | K⇤ ⇥S, v2 : C, v2 : �¬C,SM
x�v2

, x : ¬�¬C | U | K⇤ ⇥S, vn : C, vn : �¬C,SM
x�vn

, x : ¬�¬C | U | K⇤

if x : ¬�¬C ⇥� B��

⇥S, x : � | U | K⇤ ⇤S, x : ¬⇥ | U | K⌅
(Clash)� (Clash)�

(�)

if ⇥ ⇤u s.t. {u : C, u : �¬C,SM
x�u} � S

Fig. 2. The calculus TABALC+T
PH2 . To save space, we only include the most relevant rules.

A tableau of TABALC+TPH2 is a tree whose nodes are tuples of the form 〈S | U | K〉,
where S andU are defined as in TABALC+TPH1 , whereasK contains formulas of the form
x : ¬�¬C, with C ∈ LT. The basic idea of TABALC+TPH2 is as follows. Given an open
branch B built by TABALC+TPH1 and corresponding to a model MB of KB ∪ {¬F},
TABALC+TPH2 checks whetherMB is a minimal model of KB by trying to build a model
of KB which is preferred toMB. To this purpose, it keeps track (in K) of the negated
box formulas used in B (B�− ) in order to check whether it is possible to build a model
of KB containing less negated box formulas.

The rules of TABALC+TPH2 are shown in Figure 2. The tableau built by TABALC+TPH2

closes if it is not possible to build a model smaller thanMB, it remains open otherwise.
Since by Definition 3 two models can be compared only if they have the same domain,
TABALC+TPH2 tries to build an open branch containing all the labels appearing in B, i.e.
those in D(B). To this aim, the dynamic rules use labels in D(B) instead of introducing
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new ones in their conclusions. The rule (v) is applied to all the labels of D(B) (and
not only to those appearing in the branch). The rule (�−) is applied to a node 〈S, x :
¬�¬C | U | K,x : ¬�¬C〉, that is to say when the negated box formula x : ¬�¬C
also belongs to the open branch B. Also in this case, the rule introduces a branch on
the choice of the individual vi ∈ D(B) to be used in the conclusion. In case a tableau
node has the form 〈S, x : ¬�¬C | U | K〉, and x : ¬�¬C 6∈ B�− , then TABALC+TPH2

detects a clash, called (Clash)�− : this corresponds to the situation where x : ¬�¬C
does not belong to B, while the model corresponding to the branch being built contains
x : ¬�¬C, and hence is not preferred to the model represented by B. The calculus
TABALC+TPH2 also contains the clash condition (Clash)∅. Since each application of (�−)
removes the negated box formulas x : ¬�¬C from the set K, when K is empty all the
negated boxed formulas occurring in B also belong to the current branch. In this case,
the model built by TABALC+TPH2 satisfies the same set of x : ¬�¬C (for all individuals)
as B and, thus, it is not preferred to the one represented by B.

Let KB be a knowledge base whose corresponding constraint system is 〈S | U〉. Let
F be a query and let S′ be the set of constraints obtained by adding to S the constraint
corresponding to ¬F . TABALC+TPH2 is sound and complete in the following sense: an
open branch B built by TABALC+TPH1 for 〈S′ | U〉 is satisfiable in a minimal model of
KB iff the tableau in TABALC+TPH2 for 〈S | U | B�−〉 is closed.

The termination of TABALC+TPH2 is ensured by the fact that dynamic rules make use
of labels belonging to D(B), which is finite, rather than introducing “new” labels in
the tableau. Also, it is possible to show that the problem of verifying that a branch B
represents a minimal model for KB in TABALC+TPH2 is in NP in the size of B.

The overall procedure TABALC+Tmin is defined as follows:

Definition 5. Let KB be a knowledge base whose corresponding constraint system is
〈S | U〉. Let F be a query and let S′ be the set of constraints obtained by adding to S
the constraint corresponding to ¬F . The calculus TABALC+Tmin checks whether a query
F can be minimally entailed from a KB by means of the following procedure:

– the calculus TABALC+TPH1 is applied to 〈S′ | U〉;
– if, for each branch B built by TABALC+TPH1 , either: (i) B is closed or (ii) the tableau

built by the calculus TABALC+TPH2 for 〈S | U | B�−〉 is open, then the procedure
says YES else the procedure says NO

In [13] we have shown that TABALC+Tmin is a sound and complete decision procedure
for verifying if KB |=LT

ALC+Tmin
F , and that the problem is in CO-NEXPNP.

4 Design of DysToPic
In this section we present DysToPic, a multi-engine theorem prover for reasoning in
ALC + Tmin. DysToPic is a SICStus Prolog implementation of the tableaux calculi
TABALC+Tmin introduced in the previous section, wrapped by a Java interface which
relies on the Java RMI APIs for the distribution of the computation. The system is
designed for scalability and based on a “worker/employer” paradigm: the computational
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burden for the “employer” can be spread among an arbitrarily high number of “workers”
which operate in complete autonomy, so that they can be either deployed on a single
machine or on a computer grid.

The basic idea underlying DysToPic is as follows: there is no need for the first
phase of the calculus to wait for the result of one elaboration of the second phase on
an open branch, before generating another candidate branch. Indeed, in order to prove
whether a query F entails from a KB, the first phase can be executed on a machine;
every time that a branch remains open after the first phase, the execution of the second
phase for this branch can be performed in parallel, on a different machine. Meanwhile,
the main machine (worker), instead of waiting for the termination of the second phase
on that branch, can carry on with the computation of the first phase (potentially gen-
erating other branches). If a branch remains open in the second phase, then F is not
minimally entailed from KB (we have found a counterexample), so the computation
process can be interrupted early.

4.1 The Whole Architecture
In order to describe the architecture of DysToPic we refer to the worker-employer
metaphor. The system is characterized by: (i) a single employer, which is in charge of
verifying the query and yielding the final result. It also implements the first phase of
the calculus and uses TABALC+TPH1 to generate branches: the ones that it cannot close
(representing candidate models of KB ∪{¬F}), it passes to a worker; (ii) an unlimited
number of workers, which use TABALC+TPH2 to evaluate the models generated by the
employer; (iii) a repository, which stores all the answers coming from the workers.
First, each worker registers to the employer. When checking whether KB |=ALC+Tmin

F , the employer executes TABALC+TPH1 . If the employer needs to check whether an
open branch generated by the first phase represents a minimal model of the KB, then
it delegates the execution of the second phase to one of the registered workers, and
consequently proceeds with its computation on other branches generated in the first
phase. When a worker terminates its execution, it reports its result to the repository.

If every branch has been processed and each worker has answered affirmatively,
i.e. each tableaux built in the second phase by TABALC+TPH2 is open, the employer can
conclude that KB |=ALC+Tmin

F . Otherwise, the employer can conclude the proof
as soon as the first negative answer comes into the repository, since (at least) a worker
found a closed tableaux in TABALC+TPH2 for an open branch (candidate model) generated
by the employer, in this case we have that KB 6|=ALC+Tmin

F . It is worth noticing that
the employer has to keep a continuous dialogue with the repository.

The library se.sics.jasper is used in order to combine Java and SICStus Pro-
log to decouple the two phases of the calculus. In detail, the employer handles the
query in Employer.java, a piece of Java code which presents it to alct1.pl, the
Prolog core implementing TABALC+TPH1 . Every time that an open branch is generated,
alct1.pl invokes Phase1RMIStub.java, another piece of Java code which will
send it to the correct worker. Workers will then have to process the open branches with
TABALC+TPH2 , which is implemented in alct2.pl.

Concurrency is the main goal of our implementation, since we want the execution
of the first phase of the calculus to be independent from the second one. Java natively
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supports concurrency via multithreading. The employer uses a separate thread (imple-
mented in Phase1Thread.java) to perform the current invocation of TABALC+TPH1

on a query, while its main thread polls the repository waiting for termination (the pro-
cedure can be stopped when the first counterexample is found, even if not all of the
branches have been explored). During the execution of TABALC+TPH1 , every time that
the employer wants to ask a worker to verify a branch, a new thread is spawned. The
worker itself makes use of threads: its main thread simply enqueues each request com-
ing from the employer and spawns a new thread which performs TABALC+TPH2 .

4.2 The Implementation of the Tableaux Calculi
Concerning the implementation of the tableaux calculi TABALC+Tmin , each machine of
the system runs a SICStus Prolog implementation which is strongly related to the im-
plementation of the calculi given by PreDeLo 1.0, introduced in [11]. The imple-
mentation is inspired by the “lean” methodology of leanTAP, even if it does not follow
its style in a rigorous manner. The program comprises a set of clauses, each one imple-
menting a rule or axiom of the tableau calculi. The proof search is provided for free by
the mere depth-first search mechanism of Prolog, without any additional mechanism.

DysToPic comprises two main predicates, called prove and prove phase2,
implementing, respectively, the first and the second phase of the tableau calculi.

Phase 1: the prove predicate. Concerning the first phase of the calculi, executed by
the employer, DysToPic represents a tableaux node 〈S | U〉 with two Prolog lists: S
and U. Elements of S are either pairs [X, F], representing formulas of the form x : F ,
or triples of the form either [X,R,Y] or [X,<,Y], representing either roles x R−→ y
or the preference relation x < y, respectively. Elements of U are pairs of the form [[C
inc D],L], representing C v DL ∈ U described in Section 3.1.

The calculi TABALC+Tmin are implemented by a top-level predicate
prove(+ABox,+TBox,[+X,+F],-Tree).

This predicate succeeds if and only if the query x : F is minimally entailed from the
KB represented by TBox and ABox. When the predicate succeeds, then the output term
Tree matches a Prolog term representing the closed tableaux found by the prover. The
top-level predicate prove/4 invokes a second-level one:

prove(+S,+U,+Lt,+Labels,+ABOX,-Tree)

having 6 arguments. In detail, S corresponds to ABox enriched by the negation of the
query x : F , whereas Lt is a list corresponding to the set of concepts LT. Labels
is the set of labels belonging to the current branch, whereas ABOX is used to store the
initial ABox (i.e. without the negation of the query) in order to eventually invoke the
second phase on it, in order to look for minimal models of the initial KB.

Each clause of the prove/6 predicate implements an axiom or rule of the calculus
TABALC+TPH1 . To search a closed tableaux for 〈S | U〉, DysToPic proceeds as follows.
First of all, if 〈S | U〉 is a clash, the goal will succeed immediately by using one of the
clauses implementing axioms. As an example, the following clause implements (Clash):
prove(S,U,_,_,_,tree(clash)):-

member([X,C],S),member([X, neg C],S),!.
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If 〈S | U〉 is not an instance of the axioms, then the first applicable rule will be
chosen, e.g. if S contains an intersection [X,C and D], then the clause implementing
the (u+) rule will be chosen, and DysToPic will be recursively invoked on its unique
conclusion. DysToPic proceeds in a similar way for the other rules. The ordering of
the clauses is such that the application of the dynamic rules is postponed as much as
possible: this implements the strategy ensuring the termination of the calculi described
in the previous section. As an example, the clause implementing (T+) is as follows:

1. prove(S,U,Lt,Labels,ABOX,tree(...,Tree)):-member([X,ti C],S),
2. (\+(member([X,C],S)); \+(member([X, box neg C],S))),!,
3. prove([[X,C]|[[X, box neg C]|S]],U,Lt,Labels,ABOX,Tree),!.

In line 1, the standard Prolog predicate member is used in order to find a formula of the
form x : T(C) in the list S. In line 2, the side conditions on the applicability of such a
rule are checked: the rule can be applied if either x : C or x : �¬C do not belong to
S. In line 3 DysToPic is recursively invoked on the unique conclusion of the rule, in
which x : C and x : �¬C are added to the list S. The last clause of prove is:

prove(...) :- ... , jasper_call(JVM,
method(’employer/Phase1RMIStub’,’solveViaRMI’,[static]),...,
solve_via_rmi(NextWorkerName, ’toplevelphase2(...)’ ) ),!.

invoked when no other clauses are applicable. In this case, the branch built by the em-
ployer represents a model for the initial set of formulas, then the toplevelphase2
predicate is invoked on a worker in order to check whether such a model is minimal for
KB.

Phase 2: the prove phase2 predicate. Given an open branch built by the first phase,
the predicate toplevelphase2 is invoked on a worker. It first applies an optimiza-
tion preventing useless applications of (v), then it invokes the predicate

prove phase2(+S,+U,+Lt,+K,+Bb,+Db).

S and U contain the initial KB (without the query), whereas K, Bb and Db are Prolog
lists representingK, B�− andD(B) as described in Section 3.2. Lt is as for prove/6.

Also in this case, each clause of prove phase2 implements an axiom or rule
of the calculi TABALC+TPH2 . To search for a closed tableaux, DysToPic first checks
whether the current node 〈S | U | K〉 is a clash. otherwise the first applicable rule
will be chosen, and DysToPic will be recursively invoked on its conclusions. As an
example, the clause implementing (T+) is as follows:

prove_phase2(S,U,Lt,K,Bb,Db) :- select([X,ti C],S,S1),
prove_phase2([[X,C]|[[X,box neg C]|S1]],U,Lt,K,Bb,Db),!.

Notice that, according to the calculus TABALC+TPH2 , the principal formula to which the
rule is applied is removed from the current node: to this aim, the SICStus Prolog predi-
cate select is used rather than member.

4.3 Preliminary Performance Testing of DysToPic
We have made a preliminary attempt to show how DysToPic performs, especially in
comparison with its predecessor PreDeLo 1.0. The performances of DysToPic are
promising. We have tested both the provers by running SICStus Prolog 4.1.1 on Ubuntu
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14.04.1 64 bit machines. Concerning DysToPic, we have tested it on 4 machines,
namely: 1. a desktop PC with an Intel Core i5-3570K CPU (3.4-3.8GHz, 4 cores, 4
threads, 8GB RAM); 2. a desktop PC with an Intel Pentium G2030 CPU (3.0GHz, 2
cores, 2 threads, 4GB RAM); 3. a Lenovo X220 laptop with an Intel Core i7-2640M
CPU (2.8-3.5GHz, 2 cores, 4 threads, 8GB RAM); 4. a Lenovo X230 laptop with an
Intel Core i7-3520M CPU (2.9-3.6GHz, 2 cores, 4 threads, 8GB RAM).

We have performed two kinds of tests. On the one hand, we have randomly gener-
ated KBs with different sizes (from 10 to 100 ABox formulas and TBox inclusions) as
well as different numbers of named individuals: in less than 10 seconds, both DysToPic
and PreDeLo 1.0 are able to answer in more than the 75% of tests. Notice that, as
far as we know, it does not exist a set of acknowledged benchmarks for defeasible DLs.
On the other hand, we have tested the two theorem provers on specific examples. As
expected, DysToPic is better in than the competitor in answering that a query F is not
minimally entailed from a given KB. Surprisingly enough, its performances are better
than the ones of PreDeLo 1.0 also in case the provers conclude that F follows from
KB, as in the following example:

Example 1. Given TBox={T(Student) v ¬IncomeTaxPayer ,WorkingStudent v
Student ,T(WorkingStudent) v IncomeTaxPayer} and ABox={Student(mario),
WorkingStudent(mario), Tall(mario), Student(carlo),WorkingStudent(carlo),
Tall(carlo), Student(giuseppe), WorkingStudent(giuseppe), Tall(giuseppe)}, we
have tested both the provers in order to check whether IncomeTaxPayer(mario) is
minimally entailed from KB=(TBox,ABox). This query generates 1090 open branches
in TABALC+TPH1 , each one requiring the execution of TABALC+TPH2 . PreDeLo 1.0 an-
swers in 370 seconds, whereas DysToPic answers in 210 seconds if only two ma-
chines are involved (employer + one worker). If 4 workers are involved, DysToPic
only needs 112 seconds to conclude its computation.

Example 1 witnesses that the advantages obtained by distributing the computation jus-
tify the overhead introduced by the machinery needed for such distribution.

5 Conclusions
We have introduced DysToPic, a multi-engine theorem prover implementing tableaux
calculi for reasoning in preferential DL ALC + Tmin. DysToPic implements a dis-
tributed version of the tableaux calculus TABALC+Tmin introduced in [13], exploiting the
fact that the two phases characterizing such a calculus can be computed in parallel.

We aim at extending DysToPic to the lightweight DLs of the DL-Lite and EL fam-
ily. Despite their relatively low expressivity, they are relevant for several applications,
in particular in the bio-medical domain. Extensions of EL⊥ and of DL-Litecore with
the typicality operator T have been proposed in [10], where it has also been shown that
minimal entailment is in Πp

2 (for EL⊥, if restricted to a specific fragment). Tableaux
calculi performing a two phases computation, similar to TABALC+Tmin , have been pro-
posed in [9, 8].

This research is partially supported by INDAM- GNCS Project 2015 “Logiche descrit-
tive e ragionamento non monotono”.
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Abstract. Forgetting, which has also been studied under the names
uniform interpolation, projection and variable elimination, deals with
the elimination of symbols from an input ontology in such a way that
all entailments in the remaining signature are preserved. The computed
result, the uniform interpolant, can be seen as a restricted view of the
original ontology, projected to a specified subset of the signature. For-
getting has applications in ontology reuse, ontology analysis and infor-
mation hiding, and has been studied for a variety of description logics in
the last years. However, forgetting in description logics with functional
role restrictions and inverse roles has been an open problem so far. In
this paper, we study the problem of forgetting concept symbols in the
description logic SIF , an expressive description logic supporting transi-
tive roles, inverse roles and functional role restrictions. Saturation-based
reasoning has been proven to be a well-suited technique for computing
uniform interpolants practically in recently introduced methods. Since
existing methods are usually optimised towards a specific aim such as
satisfiability checking or classification, they cannot always directly be
used for forgetting. In this paper we present a new saturation technique
that is complete for forgetting concept symbols, and show how it can be
used for computing uniform interpolants.

1 Introduction

We present a method for forgetting concept symbols from SIF-ontologies. Mod-
ern applications, especially in bio-informatics or medical domains, lead to the
development of ontologies that cover a large vocabulary. With rising complex-
ity, these ontologies become harder to maintain and modify. It can therefore be
advantageous to have tool-support for reducing the vocabulary used in an on-
tology. Forgetting restricts the vocabulary in an ontology in such a way that all
entailments over the restricted vocabulary are preserved. In contrast to modules,
uniform interpolants are completely in the desired signature and may contain
different axioms than the input ontology.

There are numerous applications of forgetting that make the problem worth
studying, of which we give a few examples. Ontology Summary. Comprehend-
ing a complex ontology can be hindered by a too large vocabulary used in the
ontology. If the central concepts and roles of the ontology are known, forgetting
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all but the central concepts of an ontology can be used to compute a more fo-
cused high-level summary of the ontology. Ontology Analysis. With increasing
complexity of the ontology, understanding the relations between concepts and
roles involved becomes more difficult. By forgetting all but a few chosen sym-
bols, one can obtain a direct representation of the interactions between them.
Logical Difference. In order to maintain an evolving ontology, it is necessary
to be able to exhibit changes between different ontology versions. However, a
syntactical diff between text representations of the ontologies is rarely useful in
practice. In contrast, the logical difference between two ontologies is a semantic
notion, which is defined by the difference of logical entailments in the common
signature of these ontologies, or in a specified signature [8,7]. [16] show that the
logical difference can easily be computed using the uniform interpolants of the
ontologies. Information Hiding. As pointed out in [4], ontology-based systems
are increasingly used in a range of applications that deal with sensitive informa-
tion. Forgetting can be used as a means to eliminate confidential information if
an ontology is to be shared between users with differing privileges.

Methods for forgetting have been investigated for a range of description log-
ics, including DL-Lite [29], EL [9,17,20], ALC [28,16,12,11,14,15], ALCH [10]
and SHQ [13]. So far, forgetting for description logics with inverse roles and
functional role restrictions was an open problem.

As with most expressive description logics, SIF does not have uniform inter-
polation. This means that the result of forgetting may not always be finitely rep-
resentable in SIF . Take as an example the ontologyO = {A v ∃r.B, B v ∃r.B}.
If we only use the expressivity SIF provides, forgetting B from O would result
in an infinite ontology of the form {A v ∃r.∃r.∃r. . . .}. A solution to this prob-
lem is to use fixpoint operators in the resulting ontology [19,12]. Fixpoints are
not a common formalism for description logics, but can be simulated in classical
description logics using additional concept symbols, and can serve as a basis for
approximating of the result of forgetting [12].

As is shown in [18,20], if finite and if fixpoints are not used in the result,
already for the description logics EL and ALC, the result of forgetting can be of
size triple exponential in the size of the input. By using fixpoint operators, we ob-
tain a double-exponential upper-bound, which also holds for the description logic
SIF . Since this is still of high complexity, a goal-oriented approach is required
in order to be able to compute uniform interpolants practically. Practicality
has been achieved in [10,13,14,16] by using a saturation-based approach, which
eliminates concept symbols by resolving on these symbols. This approach is also
followed in this paper. Saturation-based reasoning has recently received increased
interest in the description logic community, due to the success of consequence-
based reasoning methods for classification [6,22,24,25,26]. However, these meth-
ods are optimised for specific reasoning tasks, and can not directly be used for
forgetting.

In this paper, we present a new sound and refutationally complete saturation-
procedure for SIF , and show that it can be used for forgetting concept sym-
bols in a goal-oriented manner. The method is based on the methods presented
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in [12,10], which we extend to incorporate transitive roles, inverse roles and
functional role restrictions.

2 Definition of SIFν and Forgetting

We define the description logic SIFν, which is SIF extended with fixpoint
operators.

Let Nc, Nr, Ni and Nv be four pair-wise disjoint sets of respectively concept
symbols, role symbols, individuals and concept variables. A role is either of the
form r or r−, where r ∈ Nr. We define the inverse of a role Inv(R) as Inv(r) = r−

and Inv(r−) = r. An RBox R is a set of transitivity axioms trans(R), where R
is a role. A role R is transitive in R if trans(R) ∈ R or trans(Inv(R)) ∈ R.
SIFν-concepts have the following form:

⊥ | A | X | ¬C | C1 t C2 | ∃R.C | ≤1R.> | νX.C[X],

where A ∈ Nc, X ∈ Nv, C, C1 and C2 are arbitrary concepts and R is any
role, and C[X] is a concept expression in which X occurs under an even number
of negations. We define further concept expressions as abbreviations: > = ¬⊥,
C1 u C2 = ¬(¬C1 t ¬C2), ∀R.C = ¬(∃R.¬C), ≥2R.> = ¬≤1R.>. Concepts
of the form ≤1R.> are called functional role restrictions. Concepts of the form
νX.C[X] are called greatest fixpoint expressions. νX.C[X] denotes the greatest
fixpoint of C[X], and ν is the greatest fixpoint operator. A concept variable X is
bound if it occurs in the scope C[X] of a fixpoint expression νX.C[X]. Otherwise
it is free. A concept is closed if it does not contain any free variables, otherwise
it is open.

A TBox T is a set of concept axioms of the forms C v D (concept inclusion)
and C ≡ D (concept equivalence), where C and D are closed concepts. C ≡ D is
short-hand for the two concept axioms C v D and D v C. We further require
greatest fixpoint expressions to occur only positively in an axiom, that is, on
the right-hand side of a concept inclusion and only under an even number of
negations. An ontology O = 〈T ,R〉 consists of a TBox T and an RBox R with
the additional restriction that roles that are transitive in R do not occur under
functional role restrictions. This is a common restriction that has been used
to guarantee decidability of common reasoning tasks for description logics with
number restrictions [5] , and our forgetting method assumes that it is satisfied.

In the definition of the semantics of SIFν, an interpretation I is a pair
〈∆I , ·I〉 of the domain ∆I , a nonempty set, and the interpretation function ·I ,
which assigns to each concept symbol A ∈ Nc a subset of ∆I and to each role
symbol r ∈ Nr a subset of ∆I ×∆I . The interpretation function is extended to
SIFν-concepts as follows.

⊥I = ∅ (¬C)I = ∆I \ CI (C tD)I = CI ∪DI

(≥ nr.C)I = {x ∈ ∆I | #{(x, y) ∈ rI | y ∈ CI} ≥ n}
The semantics of fixpoint expressions is defined following [2]. Whereas concept
symbols are assigned fixed subsets of the domain, concept variables range over
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arbitrary subsets, which is why only closed concepts have a fixed interpretation.
Open concepts are interpreted using valuations ρ that map concept variables to
subsets of ∆I . Given a valuation ρ and a set W ⊆ ∆I , ρ[X 7→W ] denotes a val-
uation identical to ρ except that ρ[X 7→W ](X) = W . Given an interpretation I
and a valuation ρ, the function ·Iρ is ·I extended with the cases XIρ = ρ(X) and

(νX.C)Iρ =
⋃
{W ⊆ ∆I |W ⊆ CIρ[X 7→W ]}.

If C is closed, we define CI = CIρ for any valuation ρ. Since C does not contain

any free variables in this case, this defines CI uniquely.
A concept inclusion C v D is true in an interpretation I iff CI ⊆ DI and a

transitivity axiom trans(R) is true in I if for any domain elements x, y, z ∈ ∆I
we have (x, z) ∈ RI if (x, y) ∈ RI and (y, z) ∈ RI . I is a model of an ontology O
if all axioms in O are true in I. An ontology O is satisfiable if a model exists
for O, otherwise it is unsatisfiable. Two TBoxes T1 and T2 are equi-satisfiable if
every model of T1 can be extended to a model of T2, and vice versa. T |= C v D
holds iff in every model I of T we have CI ⊆ DI . If an axiom α is true in all
models of O, we write O |= α.

Let sig(E) denote the concept and role symbols occurring in E, where E can
denote a concept, an axiom, a TBox, an RBox or an ontology.

Definition 1 (Forgetting). Let A be a concept symbol and O and O−A be
ontologies. An ontology O−A is a result of forgetting A from O if the following
conditions hold:

1. A 6∈ sig(O−A), and
2. for all concept inclusions α with A 6∈ sig(α): O−A |= α iff O |= α.

Given an ontology O and a set of concept symbols S, a result of forgetting S
from O is a result of forgetting each symbol in S one by one. An ontology OS
is a uniform interpolant of O for S iff O is a result of forgetting every symbol
from O that is not in S.

3 Normalisation

The saturation method works on ontologies of a specific normal form, which is
defined as follows.

Definition 2. Let Nd ⊆ Nc be a set of designated concept symbols called definer
symbols or, simply, definers. A SIF literal is a concept of one of the following
forms:

A | ¬A | ∃R.D | ∀R.D | ≥2R.> | ≤1R.>,

where A ∈ Nc, D ∈ Nd, and R is of the form r or r−, with r ∈ Nr. A SIF
clause is a transitivity axiom or an axiom of the form > v L1 t . . . tLn, where
L1, . . . , Ln are SIF literals. We may omit the leading “> v” in clauses, and
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Non-Cyclic Definer Elimination:

O ∪ {D v C}
O[D/C]

provided D 6∈ sig(C)

Definer Purification:
O

O[D/>]
provided D occurs only positively in O

Cyclic Definer Elimination:

O ∪ {D v C[D]}
O[D/νX.C[X]]

provided D ∈ sig(C[D])

Fig. 1. Rules for eliminating definer symbols

assume clauses are represented as sets, that is, they do not contain duplicate
elements and the order is not important.

An ontology N is in SIF normal form if every axiom in N is a SIF clause,
and if for every clause trans(R) ∈ N , there is also a clause trans(Inv(R)) ∈ N .

Note that the description logic SIF allows for number restrictions of the form
≥2R.>, since SIF concepts are closed under negation, and≥2R.> ≡ ¬(≤1R.>).

Any SIFν ontology can be transformed into an ontology in SIF normal form
using standard structural transformation and CNF transformation techniques.

Example 1. Consider the following ontology O1:

A1 uB1 v ⊥ A1 v ∃r−.B2 B2 v ≤1r.> B2 v ∃r.(B1 tA2)

The SIF normal form of O1 is the following set of clauses:

1. ¬A1 t ¬B1 4. ¬B2 t ≤1r.>
2. ¬A1 t ∃r−.D1 5. ¬B2 t ∃r.D2

3. ¬D1 tB2 6. ¬D2 tB1 tA2

Given a set N of SIF clauses such that every clause contains at most one
literal of the form ¬D, where D ∈ Nd, it is possible to eliminate all definer literals
in N using the rewrite rules shown in Figure 1. This is crucial for our method
for forgetting concept symbols, since the method described in the next section
operates on sets of SIF clauses. For the rules in Figure 1, it is assumed that for
every definer D occurring negatively in N , the set of clauses of the form ¬DtC1,
. . ., ¬D t Cn is replaced by a single axiom D v C1 u . . . u Cn. Note that the
last rule in Figure 1 introduces fixpoint operators to the ontology. The rules in
Figure 1 are applications of Ackermann’s Lemma [1] and its generalisation [21],
which have been used in the context of second-order quantifier elimination to
eliminate predicate symbols [3]. The result of applying these rules does not
contain any definers, but preserves all entailments of input that do not involve
definer symbols, which is a consequence of these lemmata.
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Transitivity Rule:

C t ∀R.D trans(R)

C t ∀R.Dtrans ¬D′ tD ¬D′ t ∀R.Dtrans

Universalisation Rule:

C1 t ∃R.D C2 t ≤1R.>
C1 t C2 t ∀R.D

Fig. 2. Rules used in the first stage of reasoning.

4 The Calculus

In order to forget a concept symbol A, we infer all inferences on that symbol using
a saturation-based approach, and then eliminate occurrences of that symbol from
the resulting clause set. Using the transformation rules in Figure 1, we can then
eliminate all definer symbols introduced by the normalisation or throughout the
reasoning process.

Due to possible interactions between the rules of our calculus, we process the
clause set in several stages, where only certain rules are allowed in each stage.
This is a major difference between this method and the methods for ALC and
ALCH presented in [12,10], and is necessary to guarantee termination of the
method. In the first stage, we only apply rules that infer clauses with universal
restrictions. The function of this stage is to infer all clauses that can serve as
premise in the second stage of the calculus. In the second stage, we handle inverse
roles in universal restrictions using the role inversion rule. In the last stage,
we apply all remaining inferences of the calculus with the aim of computing
inferences on A. We describe the stages one by one, and illustrate them on the
example introduced in the last section.

Stage 1. The rules for the first stage are shown in Figure 2. The transi-
tivity rule is directly taken from [13], which presents a similar calculus for the
description logic SHQ. The rule works in a similar fashion as common rewriting
rules to reduce reasoning with transitivity roles to reasoning without (see for
example [27,23]).

The universalisation rule infers from a functional role restriction and an
existential role restriction a universal restriction. The soundness of this rule
can be explained as follows. If a domain element x in a model I has an R-
successor that satisfies D (x ∈ (∃R.D)I), and if x has maximally one R-successor
(x ∈ (≤1R.>)I), then every R-successor of x satisfies D, since there is only one
such successor (x ∈ (∀R.D)I). This means (∃R.Du≤1R.>) |= ∀R.D, and implies
that the universalisation rule is sound.
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Role Inversion Rule:

C t ∀R.D
D t ∀Inv(R).DInv ¬DInv t C

Fig. 3. Role inversion rule used in the second stage of reasoning.

Resolution Rule:
C1 tA C2 t ¬A

C1 t C2

∀-Rule:
C1 t ∀R.D1 C2 t QR.D2

C1 t C2 t QR.D12

where Q ∈ {∀,∃} and D12 is a possibly new definer representing D1 uD2.

∃-Rule:
C1 t ∃R.D1 C2 t ∃R.D2

C1 t C2 t ∃R.D12 t ≥2R.>
where D12 is a possibly new definer representing D1 uD2.

Fig. 4. Rules used in the third stage of reasoning.

Example 2. Following the clause set constructed in the last example, in Stage 1,
we apply the universalisation rule on Clause 4 and 5 to infer the following clause.

7. ¬B2 t ∀r.D2 (Universalisation 4, 5)

Stage 2. In this stage, the inversion rule shown in Figure 3 is applied.

Example 3. Continuing the previous example, there is only one clause in the
current clause set that has a universal role restriction, which is Clause 7 that
was derived in Stage 1. By applying the role inversion rule, the following new
clauses are derived:

8. D2 t ∀r−.DInv (Role Inversion 7)

9. ¬DInv t ¬B2 (Role Inversion 7)

Stage 3. This is the main reasoning stage, where we compute all inferences on
the symbols we want to forget. The rules for this stage are shown in Figure 4. The
rules of this stage are an extension of the calculus used for forgetting presented in
[12,10]. The ∃-rule is influenced by the calculus for reasoning in SHQ presented
in [13].

A key for ensuring termination is the dynamic introduction of new symbols
through the rules of the calculus. This is necessary to preserve the normal form
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and still be able to infer all clauses that are required for the forgetting result.
There are two rules in the first stage that introduce new definers: the transitivity
rule and the role inversion rule. In the third stage, the ∀-rule and the ∃-rule may
introduce new definers that represent conjunctions of existing definers. More
specifically, given two definers D1 and D2, we may introduce a new definer D12

representing D1 u D2 by adding the clauses ¬D12 t D1 and ¬D12 t D2. By
doing this in an optimised way, the number of definer symbols introduced can
be restricted to by 2n, where n is the number of definer symbols present in the
input clause set [12].

The resolution rule is standard in resolution-based reasoning. The ∀-rule are
directly taken from [12]. The ∀-rule propagates concepts below a universal role
restrictions into other role restrictions. If ∀R.D1 is satisfied by some element x
of the domain, we know that all R-successors of x have to satisfy D1. This
implies that, if x furthermore satisfies QR.D2 for some Q ∈ {∃,∀}, then it also
satisfies QR.(D1 uD2).

The ∃-rule is new and necessary in order to preserve entailments that use
a ≥2-restriction. Assume we have a model with a domain element x that has
at least one R-successor x1 satisfying D1 and at least one R-successor x2 that
satisfies D2. If x1 = x2, then x satisfies ∃R.(D1uD2). If x1 6= x2, then x satisfies
≥2R.>. Hence, we have (C1 t ∃R.D1) u (C2 t ∃R.D2) |= (C1 t C2 t ∃R.(D1 u
D2) t ≥2R.>), and the ∃-rule is sound.

In order to forget a concept symbol A, we compute all resolvents on A and on
definer literals that lead to clauses with maximally one negative definer literal.
Clauses with multiple negative definer literals are not needed for the computa-
tion, which can be argued in similar ways as in [12].

Note that even though only the resolution rule directly infers clauses on
a concept symbol, the ∀- and the ∃-rule may introduce new definers, which
subsequently makes new inferences on the symbol to be forgotten possible. For
the forgetting result, only inferences with maximally one negative definer literal
are required. The role inversion rule may derive clauses with more than one
negative definer literal, but these inferences are only required if they allow for
further inferences of clauses with maximally one negative definer.

In the resulting clause set, we omit all clauses containing A or more than
one negative definer literal. Then, we eliminate all definers using the technique
described in the last section. The ontology obtained is the result of forgetting A
from the original ontology.

Example 4. Assume we want to forget B1 and B2. We begin by computing in-
ferences on B1, for which only one inference step is needed.

10. ¬D2 t ¬A1 tA2 (Resolution 1, 6)
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We continue by computing inferences on B2. This time, in order to make all
inferences possible, we have to use the ∀-rule first.

11. ¬D1 t ≤1r.> (Resolution 3, 4)

12. ¬D1 t ∃r.D2 (Resolution 3, 5)

13. ¬D1 t ∀r.D2 (Resolution 3, 7)

14. ¬A1 tD2 t ∃r−.D1Inv (∀-rule 2, 8)

15. ¬D1Inv tD1 (D1Inv v D1 uDInv)

16. ¬D1Inv tDInv (D1Inv v D1 uDInv)

17. ¬A1 tA2 t ∃r−.D1Inv (Resolution 10, 14)

18. ¬D1Inv tB2 (Resolution 3, 15)

19. ¬D1Inv t ¬B2 (Resolution 9, 16)

20. ¬D1Inv (Resolution 18, 19)

Even though we did not discuss redundancy elimination techniques here, one
can easily see that further inferences of clauses of the form ¬D1Inv t C are not
needed, since we already inferred the unary clause ¬D1Inv. For the same reason,
we do not have to include any other clause containing ¬D1Inv in the result. In
fact, no further inferences are necessary for the forgetting result. If we ignore
all clauses that do contain the symbols B1 and B2 we are forgetting, we are left
with Clauses 2, 7, 10–13, 17 and 20. Eliminating the definers in these clauses
results in the following ontology:

A1 v ∃r−.(≤1r.> u ∃r.(¬A1 tA2) u ∀r.(¬A1 tA2))

A1 v A2 t ∃r−.⊥

We can simplify the second axiom to A1 v A2, which allows us to further simplify
the first axiom, and obtain as result of forgetting B1 and B2 the following:

A1 v ∃r−.(≤1r.> u ∃r.>) A1 v A2

5 Correctness of the Method

In order to prove that the method is correct, we show that the resulting ontology
preserves all entailments of axioms that do not use the symbols to be forgotten.
More formally, if O−A denotes the output of our method for an ontology O
and a concept symbol A, we show that O−A |= α iff O |= α for all axioms α
with A 6∈ sig(α). If α = C1 v C2, we can prove O |= α by showing that
O ∪ {∃r∗.(C1 u ¬C2)} is unsatisfiable, where r∗ is a role not occurring in O.

In order to show that our forgetting method works correctly, we extend our
reasoning method to a refutational complete calculus, that, in order to prove the
satisfiability of a clause set, first infers inferences on a designated concept sym-
bol A using only the rules of the forgetting method. If this calculus is refutational
complete, we have that a contradiction can be derived from O∪{∃r∗.(C1u¬C2)}
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∃-Elimination Rule:
C1 t ∃R.D ¬D

C1

≥2-Elimination Rule I:

C1 t ≥2R.> C2 t ≤1R.>
C1 t C2

≥2-Elimination Rule II:

C1 t ≥2R.> C2 t ∀R.D ¬D
C1 t C2

Fig. 5. Additional rules needed for refutational completeness.

exactly in the same cases as it can from O−A ∪ {∃r∗.(C1 u ¬C2)}. This implies
O−A |= C1 v C2 iff O |= C1 v C2 for all concept inclusions C1 v C2 with
A 6∈ sig(C1 v C2), as required.

In order to obtain a refutationally complete calculus, we additionally need
the rules shown in Figure 5. Whereas the rules for the forgetting procedure are
aimed at making inferences on concept symbols possible, they are not sufficient
for detecting whether a set of clauses is unsatisfiable. The rules in Figure 5 are
aimed at detecting inconsistencies between clauses and eliminating unsatisfiable
literals, and transform the set of rules into a decision procedure for SIF-ontology
satisfiability.

The ∃-elimination rule eliminates unsatisfiable literals of the form ∃R.D. The
≥2-elimination rule I resolves on literals of the form ≥2R.> and ≤1R.>. The
rule is sound since an individual can only satisfy ≥2R.> or ≤1R.> at the same
time. The ≥2-elimination rule II eliminates unsatisfiable literals, similarly to the
∃-elimination rule. If the definer D is unsatisfiable, any instance of ∀R.D cannot
have R-successors. Therefore, we can resolve between ∀R.D and ≥2R.>.

We obtain the reasoning procedure RefSIF by extending the forgetting pro-
cedure presented in the last section by the rules in Figure 5, which are applied
in the last reasoning stage. We further refine the calculus with an ordering. The
reasoning procedure RefASIF uses the same rules as RefSIF , but for clauses con-
taining the concept symbol A, it only performs inferences on literals of the form
A or ¬A.

We have the following theorem.

Theorem 1. Let A be any concept symbol, RefSIF and RefASIF are sound and
refutationally complete, that is, for any set N of clauses, one can infer the empty
clause iff N is inconsistent.

Proof (Sketch). In order to prove refutational completeness, we have to show that
we can build a model based on any saturated setN ∗ of clauses such that ⊥ 6∈ N ∗.
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Such a model can be obtained by adapting the model construction presented
in [10]. This construction first constructs a model fragment for each definer,
and then connects these elements to a complete model, where each definer is
represented by a designated domain element. Different to ALCH, SIF does
not have the finite model property. By unravelling the possibly cyclic models
created in [10] to a possibly infinite tree, it is however possible to construct a
model for N ∗, which can be verified by a careful analysis of the cases used in
the proof in [10]. ut

This theorem allows us to establish that the forgetting procedure described
in the last section is correct.

Theorem 2. For any SIF-ontology O and any concept symbol A, the described
method always terminates and computes the result of forgetting A from O. A
uniform interpolant for any ontology O and signature S with Nr ⊆ S can be
computed by step-wise forgetting every symbol in sig(O) \ S.

6 Conclusion and Future Work

We described a method for forgetting concept symbols from ontologies formu-
lated in the description logic SIF , where results are represented in SIFν. For-
getting eliminates a specified set of symbols from an ontology in such a way,
that all entailments that do not use these symbols are preserved. The method
uses a resolution-based saturation procedure to compute inferences on the sym-
bols to be eliminated. By extending this saturation procedure to a refutationally
complete reasoning method, which performs inferences on the symbols to be for-
gotten first, we could prove that our method indeed preserves all entailments in
the desired signature.

In order to properly handle the interactions between functional role restric-
tions and inverse roles without losing termination, the method works in three
stages. In the first stage all clauses with a universal restriction are computed,
on which in the second stage inferences based on inverse roles are performed.
An interesting question is whether this approach can also be used in connection
with role hierarchies or with cardinality restrictions. A method for forgetting
in the description logic SHQ is presented in [13]. A simple combination of the
rules presented in this paper and presented in [13] is not sufficient to obtain a
refutational complete method already for SHIF . An open question is whether
this also affects the appropriateness of such a calculus for forgetting concept
symbols, and whether a sufficient calculus can be developed by adding addi-
tional rules and possibly further extending the underlying description logic, for
example with role conjunctions.

We are working on a prototypical implementation of the method, which we
aim to integrate into our forgetting tool Lethe.1 Experiments on similar meth-
ods for ALC, ALCH and SHQ had promising results [11,10,13,15], and we are
confident that similar results can be obtained for SIF .
1 www.cs.man.ac.uk/~koopmanp/lethe
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Abstract. Formal Concept Analysis and its methods for computing minimal
implicational bases have been successfully applied to axiomatise minimal EL-
TBoxes from models, so called bases of GCIs. However, no technique for an
adjustment of an existing EL-TBox w.r.t. a new model is available, i.e., on a model
change the complete TBox has to be recomputed. This document proposes a
method for the computation of a minimal extension of a TBox w.r.t. a new model.
The method is then utilised to formulate an incremental learning algorithm that
requires a stream of interpretations, and an expert to guide the learning process,
respectively, as input.

Keywords: description logics, formal concept analysis, base of GCIs, implica-
tional base, TBox extension, incremental learning

1 Introduction

More and more data is generated and stored thanks to the ongoing technical develop-
ment of computers in terms of processing speed and storage space. There is a vast
number of databases, some of them freely available on the internet (e.g., dbpedia.org
and wikidata.org), that are used in research and industry to store assertional know-
ledge, i.e., knowledge on certain objects and individuals. Examples are databases
of online stores that besides contact data also store purchases and orders of their
customers, or databases which contain results from experiments in biology, physics,
psychology etc. Due to the large size of these databases it is difficult to quickly derive
conclusions from the data, especially when only terminological knowledge is of interest,
i.e., knowledge that does not reference certain objects or individuals but holds for all
objects or individuals in the dataset.

So far there have been several successful approaches for the combination of de-
scription logics and formal concept analysis as follows. In [5, 6, 28] Baader, Ganter,
and Sertkaya have developed a method for the completion of ontologies by means of
the exploration algorithm for formal contexts. Rudolph has invented an exploration
algorithm forFLE-interpretations in [26, 27]. Furthermore, Baader and Distel presented
in [3, 4, 12] a technique for the computation of bases of concept inclusions for finite
interpretations in EL that has been extended with error-tolerance by Borchmann in
[7, 8]. Unfortunately, none of these methods and algorithms provide the possibility
of extension or adaption of an already existing ontology (or TBox). Hence, whenever
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a new dataset (in form of an interpretation or description graph) is observed then
the whole base has to be recomputed completely which can be a costly operation,
and moreover the changes are not explicitely shown to the user. In this document
we propose an extension of the method of Baader and Distel in [3, 4, 12] that allows
for the construction of a minimal extension of a TBox w.r.t. a model. The technique is
then utilised to introduce an incremental learning algorithm that requires a stream of
interpretations as input, and uses an expert to guide to exploration process.

In Sections 2 and 3 we introduce the neccessary notions from description logics, and
formal concept analysis, respectively. Section 4 presents the results on bases of GCIs
for interpretations relative to a TBox. Section 5 defines experts and adjustments that
are neccessary to guide the incremental learning algorithm that is shown in Section
6. Finally, Section 7 compares the incremental learning approach with the existing
single-step learning approach.

2 The Description Logic EL⊥

At first we introduce the light-weight description logic EL⊥. Let (NC, NR) be an
arbitrary but fixed signature, i.e., NC is a set of concept names and NR is a set of role
names. Every concept name A ∈ NC, the top concept>, and the bottom concept⊥ are
EL⊥-concept descriptions. When C and D are EL⊥-concept descriptions and r ∈ NR
is a role name then also the conjunction CuD and the existential restriction ∃ r. C are
EL⊥-concept descriptions. We denote the set of all EL⊥-concept descriptions over
(NC, NR) by EL⊥(NC, NR).

The semantics of EL⊥ are defined by means of interpretations. An interpretation I
over (NC, NR) is a pair (∆I , ·I) consisting of a set ∆I , called domain, and an extension
function ·I : NC ∪NR → 2∆I ∪ 2∆I×∆I that maps concept names A ∈ NC to subsets
AI ⊆ ∆I and role names r ∈ NR to binary relations rI ⊆ ∆I ×∆I . Furthermore, the
extension function is then canonically extended to all EL⊥-concept descriptions:

(CuD)I := CI ∩DI

(∃ r. C)I :=
{

d ∈ ∆I
∣∣∣ ∃e ∈ ∆I : (d, e) ∈ rI ∧ e ∈ CI

}

EL⊥ allows to express terminological knowledge with so called concept inclusions.
A general concept inclusion (abbr. GCI) in EL⊥ over (NC, NR) is of the form C v D
where C and D are EL⊥-concept descriptions over (NC, NR). An EL⊥-TBox T is a
set of EL⊥-GCIs. An interpretation I is a model of an EL⊥-GCI C v D, denoted as
I |= C v D, if the set inclusion CI ⊆ DI holds; and I is a model of an EL⊥-TBox T ,
symbolized as I |= T , if it is a model of all its EL⊥-concept inclusions. An EL⊥-GCI
C v D follows from an EL⊥-TBox T , denoted as T |= C v D, if every model of T is
also a model of C v D.
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3 Formal Concept Analysis

This section gives a brief overview on the basic definitions of formal concept analysis
and the neccessary lemmata and theorems cited in this paper.

The basic structure of formal concept analysis is a formal context K = (G, M, I) that
consists of a set G of objects, a set M of attributes, and an incidence relation I ⊆ G×M.
Instead of (g, m) ∈ I we rather use the infix notation g I m, and say that g has m. For
brevity we may sometimes drop the adjective "formal". From each formal context K

two so-called derivation operators arise: For subsets A ⊆ G we define AI as a subset of
M that contains all attributes which the objects in A have in common, i.e.,

AI := {m ∈ M | ∀g ∈ A : g I m} .

Dually for B ⊆ M we define BI as the set of all objects that have all attributes in B, i.e.,
BI := {g ∈ G | ∀m ∈ B : g I m}. An intent is a subset B ⊆ M such that B = BII holds.

A formal implication over M is of the form X→ Y where X, Y ⊆ M. It holds in the
context (G, M, I) if all objects having all attributes from X also have all attributes from
Y, i.e., iff XI ⊆ YI is satisfied. An implication set over M is a set of implications over
M, and it holds in a context K if all its implications hold in K. An implication X→ Y
follows from an implication set L if X→ Y holds in all contexts in which L holds, or
equivalently iff Y ⊆ XL where XL is defined as the least superset of X that satisfies
the implication A ⊆ XL ⇒ B ⊆ XL for all implications A→ B ∈ L.

Stumme has extended the notion of implicational bases as defined by Duquenne
and Guigues in [20] and by Ganter in [13] towards background knowledge in form of
an implication set. We therefore skip the original definitions and theorems and just cite
those from Stumme in [29]. If S is an implication set holding in a context K, then an
implicational base of K relative to S is defined as an implication set L, such that L holds
in K, and furthermore each implication that holds in K follows from S ∪L.

A set P ⊆ M is called a pseudo-intent of K relative to S if P = PS , P 6= PII, and for
each pseudo-intent Q ⊆/ P of K relative to S it holds that QII ⊆ P. Then the following
set is the canonical implicational base of K relative to S:

{
P→ PII

∣∣∣ P is a pseudo-intent of K relative to S
}

.

4 Relative Bases of GCIs w.r.t. Background TBox

In this section we extend the definition of a base of GCIs for interpretations as intro-
duced by Baader and Distel in [3, 4, 12] towards the possibility to handle background
knowledge in form of a TBox. Therefore, we simply assume that there is already a set
of GCIs that holds in an interpretation, and are just interested in a minimal extension
of the TBox such that the union of the TBox and this relative base indeed entails all GCIs
which hold in the interpretation.

In the following text we always assume that I is an interpretation, and T is a TBox
that has I as a model, and both are defined over the signature (NC, NR).

Definition 1 (Relative Base w.r.t. Background TBox). An EL⊥-base for I relative to
T is defined as an EL⊥-TBox B that fulfills the following conditions:

454



(sound) All GCIs in T ∪B hold in I, i.e., I |= T ∪B.
(complete) All GCIs that hold in I also follow from T ∪ B, i.e., I |= C v D implies
T ∪B |= C v D.

Furthermore, we call B irredundant, if none of its concept inclusions follows from the others,
i.e., if (T ∪ B) \ {C v D} 6|= C v D holds for all C v D ∈ B; and minimal, if it has
minimal cardinality among all EL⊥-bases for I relative to T . Of course all minimal bases are
irredundant but not vice versa.

The previous definition is a straightforward generalization of bases of GCIs for
interpretations since in case of an empty TBox T = ∅ both definitions coincide.

The term of a model-based most-specific concept description has been introduced by
Baader and Distel in [3, 4, 12]. The next definition extends their notion to model-based
most-specific concept descriptions relative to a TBox.

Definition 2 (Relative model-based most-specific concept description). An EL⊥-
concept description C over (NC, NR) is called relative model-based most-specific concept
description of X ⊆ ∆I w.r.t.I and T if the following conditions are satisfied:

1. X ⊆ CI .
2. If X ⊆ DI holds for a concept description D ∈ EL⊥(NC, NR) then T |= C v D.

The definition implies that all relative model-based most-specific concept descrip-
tions of a subset X ⊆ ∆I are equivalent w.r.t. the TBox T . Hence, we use the symbol
XIT for the relative mmsc of X w.r.t.I and T .

However, as an immediate consequence from the definition it follows that the
model-based most-specific concept description of X ⊆ ∆I w.r.t.I is always a relative
model-based most-specific concept description of X w.r.t.I and T .

There are situations where the relative mmsc exists but not the standard mmsc.
Consider the interpretation I described by the following graph:

I : d

A
r

Then d has no model-based most specific concept in EL⊥ but has a relative mmsc
w.r.t.T := {A v ∃ r. A}, in particular it holds dIT = A. Of course, d has a role-depth
bounded mmsc, and a mmsc in EL⊥gfp with greatest fixpoint semantics, respectively.

For the following statements on the construction of relative bases of GCIs we
strongly need the fact that all model-based most-specific concept descriptions exist. If
computability is neccessary, too, then we further have to enforce that there are only
finitely many model-based most-specific concept descriptions (up to equivalence) and
that the interpretation only contains finitely many individuals; of course the second
requirement implies the first.

The model-based most-specific concept description of every individual x w.r.t.I
clearly exists if the interpretation I is finite and acyclic. Relative model-based most-
specific concept descriptions exist if we can find suitable synchronised simulations
on a description graph constructed from the interpretation and the TBox. A detailed
characterisation and appropriate proofs will be subject of a future paper.
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In case we cannot ensure the existence of mmscs for all individuals of the interpreta-
tion we may also adopt role-depth bounds. Further details are given in [10]. Then we
modify the definition of a relative base of GCIs to only involve GCIs whose subsumee
and subsumer satisfy the role-depth bound. This is both applied to the GCIs in the
base and the GCIs that must be entailed. As a consequence we are able to treat cyclic
interpretations whose cycles are not already modeled in the background TBox.

As in the default case without a TBox, the definition of relative model-based most-
specific concept descriptions yields a quasi-adjunction between the powerset lattice
(2∆I ,⊆) and the quasiordered set (EL⊥(NC, NR),vT ).

Lemma 1 (Properties of Relative mmscs). For all subsets X, Y ⊆ ∆I and all concept
descriptions C, D ∈ EL⊥(NC, NR) the following statements hold:

1. X ⊆ CI if and only if T |= XIT v C

2. X ⊆ Y implies T |= XIT v YIT
4. X ⊆ XIT I
6. T |= XIT ≡ XIT IIT

3. T |= C v D implies CI ⊆ DI

5. T |= CIIT v C
7. CI = CIIT I

In order to obtain a first relative base of GCIs for I w.r.t.T we can prove that it
suffices to have mmscs as the right-hand-sides of concept inclusions in a relative base.
More specifically, it holds that the set

{
C v CIIT

∣∣∣C ∈ EL⊥(NC, NR)
}

is a relative of GCIs for I w.r.t.T . This statement is a simple consequence of the fact
that a GCI C v D only holds in I if it follows from T ∪

{
C v CIIT

}
.

In the following text we want to make a strong connection to formal concept analysis
in a similar way as Baader and Distel did in [3, 4, 12]. We therefore define a setMI,T
of EL⊥-concept descriptions such that all relative model-based most-specific concept
descriptions can be expressed as a conjunction over a subset ofMI,T . We use similar
techniques like lower approximations and induced contexts but in an extended way to
be explicitly able to handle background knowledge in a TBox.

For an EL-concept description in its normal form C ≡ d
A∈U Aud

(r,D)∈Π ∃ r. D
we define its lower approximation w.r.t.I and T as the EL-concept description

bCcI,T :=
l

A∈U

Au
l

(r,D)∈Π

∃ r. DIIT .

As a consequence of the definition we get that T entails the concept inclusion
bCcI,T v C. The explicit proof uses Lemma 1 5 and the fact that both conjunction
and existential restrictions are monotonic. This also justifies the name of a lower
approximation of C.

Furthermore, it is readily verified that all lower approximations can be expressed in
terms of the setMI,T which is defined as follows:

MI,T := {⊥} ∪NC ∪
{
∃ r. XIT

∣∣∣ r ∈ Nr, ∅ 6= X ⊆ ∆I
}
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In order to prove that also each model-based most-specific concept description is
expressible in terms ofMI,T it suffices to show that every model-based most-specific
concept description is equivalent to its lower approximation. We already know from
Lemma 1 5 that T entails the concept inclusion CIIT v C. Furthermore, for all concept
descriptions C, D ∈ EL⊥(NC, NR) and all role names r ∈ NR it may be easily shown
by means of Lemma 1 7 that the following two statements hold:

1. (CuD)I = (CuDIIT )I .
2. (∃ r. C)I = (∃ r. CIIT )I .

As a consequence it follows that both the mmsc CIIT and the lower approximation
bCcI,T have the same extensions w.r.t.I, and then Lemma 1 1 yields that T entails
CIIT v bCcI,T . In summary, it follows that T entails the concept inclusions

CIIT ≡ CIIT IIT v bCIIT cI,T v CIIT ,

and hence each relative model-based most-specific concept description is equivalent to
its lower approximation w.r.t.T , and thus is expressible in terms ofMI,T .

Now we are ready to use methods of formal concept analysis to construct a minimal
base of GCIs for I w.r.t.T . We therefore first introduce the induced context w.r.t.I and
T which is defined as KI,T :=

(
∆I ,MI,T , I

)
where (d, C) ∈ I if and only if d ∈ CI

holds. Additionally, the background knowledge is defined as the implication set

SI,T := {{C} → {D} |C, D ∈MI,T and T |= C v D} .

One the one hand we need this background implications to skip the computation of
trivial GCIs C v D where the implication {C} → {D} is not neccessarily trivial in
KI,T , and on the other hand it is needed to avoid the generation of GCIs that are
already entailed by T .

As an immediate consequence of the definition it follows that (
d

U)I = UI holds
for all subsets U ⊆ MI,T , and hence we infer that for all subsets U, V ⊆ MI,T
the GCI

d
U v d

V holds in I if and only if the implication U → V holds in the
induced context KI,T . Furthermore, it is true that conjunctions of intents of KI,T
are exactly the mmscs w.r.t.I and T , i.e., T |= d

UII ≡ (
d

U)IIT holds for all
subsets U ⊆MI,T . Eventually, the previous statements allow for the transformation
of a minimal implicational base of the induced context KI,T w.r.t. the background
knowledge SI,T into a minimal base of GCIs for I relative to the background TBox T .

Theorem 1 (Minimal Relative Base of GCIs). Assume that all model-based most-specific
concept descriptions of I relative to T exist. LetL be a minimal implicational base of the induced
context KI,T w.r.t. the background knowledge SI,T . Then

{d
U v d

UII
∣∣U→ UII ∈ L

}

is a minimal base of GCIs for I relative to T .

Eventually, the following set is the (minimal) canonical base for I relative to T :

BI,T :=
{l

P v
l

PII
∣∣∣ P is a pseudo-intent of KI,T relative to SI,T

}
.

All of the results presented in this section are generalisations of those from Baader
and Distel in [3, 4, 12], and for the special case of an empty background TBox T = ∅
the definitions and propositions coincide. In particular, the last Theorem 1 constructs
the same base of GCIs as [12, Theorem 5.12, Corollary 5.13] for T = ∅.
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5 Experts in the Domain of Interest

We have seen how to extend an existing TBox T with concept inclusions holding in
an interpretation I that is a model of T . However, there might be situations where
we want to adjust a TBox T with information from an interpretation I that is not a
model of T . In order to use the results from the previous section on relative bases it
is neccessary to adjust the interpretation or the TBox such that as much knowledge
as possible is preserved and the adjusted interpretation models the adjusted TBox.
However, an automatic approach can hardly decide whether counterexamples in the
interpretation are valid in the domain of interest, or whether concept inclusions hold in
the domain of interest. We therefore need some external information to decide whether
a concept inclusion should be considered true or false in the domain of interest.

Beforehand, we define the notion of adjustments as follows.

Definition 3 (Adjustment). Let I be an interpretation that does not model the GCI C v D.

1. An interpretation J is called an adjustment of I w.r.t. C v D if it satisfies the following
conditions:
(a) J |= C v D.
(b) ∆I \X ⊆ ∆J .
(c) AI \X ⊆ AJ holds for all concept names A ∈ NC.
(d) rI \ (∆I ×X ∪X×∆I) ⊆ rJ holds for all role names r ∈ NR.
The set X := CI \DI denotes the set of all counterexamples in I against C v D.
We call an adjustment J minimal if the value ∑A∈NC

∣∣AI 4 AJ
∣∣+ ∑r∈NR

∣∣rI 4 rJ
∣∣

is minimal among all adjustments of I w.r.t. C v D.
2. A general concept inclusion E v F is called an adjustment of C v D w.r.t.I if it satisfies

the following conditions:
(a) I |= E v F.
(b) E v C.
(c) D v F.
An adjustment E v F is called minimal if there is no adjustment X v Y such that E v X
and Y v F holds.

As next step we introduce the definition of an expert that is used to guide the
incremental exploration process, i.e., it ensures that the new interpretation is always
adjusted such that it models the adjusted TBox.

Definition 4 (Expert). An expert is a mapping from pairs of interpretations I and GCIs
C v D where I 6|= C v D to adjustments. We say that the expert accepts C v D if it
adjusts the interpretation, and that it declines C v D if it adjusts the GCI.

Furthermore, the following requirements must be satisfied:

1. Acceptance must be independent of I, i.e., if χ accepts C v D w.r.t.I then χ must also
accept C v D w.r.t. any other interpretation J .

2. Adjusted interpretations must model previously accepted GCIs and must not model previ-
ously declined GCIs.

3. Adjustments of declined GCIs must be accepted.

An expert is called minimal if it always returns minimal adjustments.
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5.1 Examples for Experts

Of course, we may use a human expert who is aware of the full knowledge holding in
the domain of interest. However, the problem of the construction of automatically acting
experts is left for future research. We will only present some first ideas.

An expert may be defined by means of the confidence measure that has been
introduced by Borchmann in [7, 8]. For a GCI C v D and an interpretation I it is
defined by

confI(C v D) :=

∣∣(CuD)I
∣∣

∣∣CI
∣∣ ∈ [0, 1].

Note that confI(C v D) = 1 iff I |= C v D. This confidence can give a hint whether
an expert should accept or decline the GCI. Assume that c ∈ [0, 1) is a confidence
threshold. In case 1 > confI(C v D) ≥ c, i.e., if there are some but not too many
counterexamples against C v D in I, the expert accepts the GCI and has to adjust I,
and otherwise declines the GCI and returns an adjustment of it.

Another approach is as follows. Let I = It ] Iu be a disjoint union of the trusted
subinterpretation It (which is assumed to be error-free) and the untrusted subinterpretation
Iu. Then the expert accepts C v D if it holds in It, and declines otherwise.

Of course, the automatic construction of adjustments is not addressed with both
approaches as they only provide methods for the decision whether the expert should
accept or decline. The next section presents possibilities for adjustment construction.

5.2 Construction of Adjustments

Adjusting the general concept inclusion Consider a general concept inclusion
C v D that does not hold in the interpretation I. The expert now wants to decline
the GCI by adjusting it. According to the definition of adjustments of GCIs it is both
possible to shrink the premise C and to enlarge the conclusion D to construct a GCI
that holds in I but is more general than C v D. Of course, it is always simply possible
to return the adjustment ⊥ v > but this may not be a good practise since then no
knowledge that is enclosed in C v D and holds in I would be preserved.

In order to adjust the GCI more carefully the expert has the following options:

1. Add a conjunct to C, or choose an existential restriction ∃ r. E in C and modify E
such that the resulting concept description is more specific than E, e.g., by adding a
conjunct, or by adjusting an existential restriction.

2. Choose a conjunct in D and remove it, or choose an existential restriction ∃ r. E in
D and modify E such that the resulting concept description is more general than E,
e.g., by removing a conjunct, or adjusting an existential restriction.

In order to obtain a minimal adjustment the expert should only apply as few changes
as possible.

Adjusting the interpretation To generate an adjustment of I w.r.t. C v D the expert
may either remove or modify the counterexamples in I, or introduce new individuals,
to enforce the GCI. The simplest solution is to just remove all counterexamples against
C v D from I, and this may always be done by automatic experts. Of course, the
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removal of a counterexample from the interpretation is an impractical solution since
in most cases there will only be few errors in the dataset. A more intelligent solution
involves the modification of the concept and role name extensions occuring in the
premise or conclusion of the GCI at hand.

Let x ∈ CI \DI be a counterexample. Then the expert may proceed as follows:

1. Remove x from the interpretation.
2. For a modification of the premise it suffices to choose one conjunct E of C and modify

its extension such that x 6∈ EI holds. The expert may choose either a concept
name A in C and remove the element x from the extension AI , or an existential
restriction ∃ r. E in C and modify the interpretation such that x is not in the extension
(∃ r. E)I anymore. This may either be done by removing all r-successors of x that
are elements of EI , or by modifying all r-successors such that they are not elements
of the extension EI anymore.

3. For a modification of the conclusion the expert has to modify all conjuncts E of D with
x 6∈ EI . If E = A is a concept name in D then the expert simply has to add x to the
extension of A. If E = ∃ r. F is an existential restriction in D then the expert has the
following choices:
(a) Choose an existing r-successor y of x and modify y such that y ∈ EI holds. In

case of E containing an existential restriction as a subconcept a modification or
introduction of further successors may be neccessary.

(b) Introduce a new r-successor y of x such that y ∈ EI holds. If E contains an
existential restriction as a subconcept then this action requires the introduction
of further new elements in the interpretation.

6 An Incremental Learning Algorithm

By means of experts it is possible to adjust an interpretation I and a TBox T such
that I |= T . This enables us to use the techniques for the computation of relative
bases as described in Section 4. Based on these results and definitions, we now want
to formulate an incremental learning algorithm which takes a possibly empty initial
TBox T0 and a sequence (In)n≥1 of interpretations as input, and iteratively adjusts
the TBox in order to compute a TBox of GCIs holding in the domain of interest. This
is modeled as a sequence (Tn)n≥0 of TBoxes where each TBox Tn is defined as the
base of the adjustment of In relative to the adjustment of Tn−1. Of course, we also
have to presuppose an expert χ that has full knowledge on the domain of interest
and provides the neccessary adjustments during the algorithm’s run. The algorithm is
briefly described as follows and also given in pseudo-code in Algorithm 1.

(Start) Assume that the TBox Tn−1 has been constructed and a new interpretation In
is available. In case In |= Tn−1 we may skip the next step, and otherwise we first
have to adjust both the TBox and interpretation in the next step.

(Adjustment) For each GCI C v D ∈ Tn−1 ask the expert χ whether it accepts it. If
yes then set In to the returned adjustment χ(C v D,In). If it otherwise declines it
then replace the GCI C v D with the returned adjustment χ(C v D,In) in Tn. After
all GCIs have been processed then we have that In |= Tn holds.
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(Computation of the Relative Base) As a next step we compute the base Bn of In
relative to Tn−1 and set Tn := Tn−1 ∪Bn. Set n := n + 1 and goto (Start).

It may occur that a previously answered question is posed to the expert again during
the algorithm’s run. Of course, we may apply caching techniques, i.e., store a set
of accepted GCIs and a set of declined GCIs but this will raise the problem how an
adjustment of the interpretation (for acceptance), or of the GCI (for decline), respectively,
can be constructed, when it is not returned from the expert itself. Some simple solutions
are given in the previous section, e.g., one may just remove all counterexamples for an
accepted GCI from the interpretation, or replace the GCI with the adjusted one that
has been previously returned by the expert. For this purpose the algorithm may build
a set Tχ of accepted GCIs to avoid a second question for the same concept inclusion,
and a set Fχ of pairs of declined GCIs and their adjustments.

Algorithm 1 Incremental Learning Algorithm
Require: a domain expert χ, a TBox T (initial knowledge)
1 Let Tχ := ∅ and Fχ := ∅.
2 while a new interpretation I has been observed do
3 while I 6|= T do
4 for all C v D ∈ T do
5 if I 6|= C v D then
6 if C v D ∈ Tχ then
7 Remove all counterexamples against C v D from I.
8 else if (C v D, E v F) ∈ Fχ then
9 Remove C v D from T .

10 else if χ accepts C v D then
11 Set I := χ(C v D,I).
12 Set Tχ := Tχ ∪ {C v D}.
13 else
14 Let E v F := χ(C v D,I) be the adjustment of the GCI.
15 Set T := (T \ {C v D})∪ {E v F}.
16 Set Fχ := Fχ ∪ {(C v D, E v F)}.
17 Set Tχ := Tχ ∪ {E v F}.
18 Let T := T ∪B where B is a base of I relative to T .
19 return T .

With slight restrictions on the expert and the interpretations used as input data
during the algorithm’s run we may prove soundness (w.r.t. the domain of interest)
and completeness (w.r.t. the processed input interpretations) of the final TBox that is
returned after no new interpretation has been observed.

Proposition 1 (Soundness and Completeness). Assume that I is the domain of interest,
and T0 is the initial TBox where I |= T0. Furthermore, let χ be an expert that has full
knowledge of I, i.e., does not decline any GCI holding in I; and let I1, . . . ,In be a sequence of
sound interpretations, i.e., each Ik only models GCIs holding in I. Then the final TBox Tn is
sound for I, i.e., only contains GCIs holding in I, and is complete for the adjustment of each
Ik, i.e., all GCIs holding in the adjustment of any Ik are entailed by Tn.

Proof. We prove the claim by induction on k. Since we have that Tk holds in I the
expert does not adjust Tk but constructs an adjustment I ′k+1 of Ik+1 that is a model
of Tk. Then the next TBox is obtained as Tk+1 := Tk ∪Bk+1 where Bk+1 is a base of
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I ′k+1 relative to Tk. By assumption, I is a model of Bk+1, i.e., also of Tk+1, and by
construction Tk+1 is complete for I ′k+1. Finally, T` ⊆ Tk holds for all ` ≤ k, and thus we
conclude that Tk+1 must be complete for all adjusted interpretations I ′1, . . . ,I ′k+1. ut

7 Comparison with the existing single-step-learning approaches

In comparison with a single-step approach that explores the canonical base of the
disjoint union

⊎Ik there are several drawbacks. The first problem is to store all the
observed interpretations. Secondly, upon input of a new interpretation there is no
output of the refuted old GCIs, and newly obtained GCIs, respectively. Thirdly, a major
disadvantage is the computational complexity. In order to iteratively compute the
relative bases the model-based most-specific concept descriptions of each interpretation
Ik are neccessary, and their number can be exponential in the size of the domain of Ik.
Hence for n input interpretations up to m := (2|∆

I1 | − 1) + . . . + (2|∆
In | − 1) mmscs

have to be constructed. In order to compute the canonical base of the disjoint sum
⊎Ik

we have to compute up to m′ := 2|∆
I1 |+...+|∆In | − 1 mmscs. Obviously, m is much

smaller than m′ for a sufficently large number n of input interpretations.
Furthermore, the upper bound for the size of the induced context KIk is |∆Ik | · (1 +

|NC|+ |NR| · (2|∆
Ik | − 1)), and the number of implications may be exponential in the

size of the context, i.e., double-exponential in the size of the interpretation Ik, hence in
the iterative approach we get an upper bound of

2|∆
I1 |·(1+|NC|+|NR|·(2|∆

I1 |−1)) + . . . + 2|∆
In |·(1+|NC|+|NR|·(2|∆

In |−1))

GCIs, and in the single-step approach the upper bound is given as

2(|∆I1 |+...+|∆In |)·(1+|NC|+|NR|·(2|∆
I1 |+...+|∆In |−1)).

It is easy to see that ∑k 22|∆
Ik |

is much smaller than 22∑k |∆
Ik |

.

8 Conclusion

We have presented a method for the construction of a minimal extension of a TBox
w.r.t. a model, and utilised it to formulate an algorithm that learns EL⊥-concept
inclusions from interpretation streams with external support by means of an expert in
the domain of interest. The approach can be applied to a wide range of input data as
there are various cryptomorphic structures for interpretations, like description graphs,
binary power context families, RDF-graphs (with some effort for a transformation) etc.
It may be extended towards more expressive description logics, e.g., FLE , orALE , or
to include the construction of RBoxes in DLs allowing for role hierarchies or complex
role inclusions. Another direction for future research is the construction of bases for
temporal terminological knowledge.

This document has not considered the problem of the computation of relative model-
based most-specific concept descriptions. However, it is possible to use synchronised
simulations for their construction, and a detailed characterisation of the existence and
construction will be subject of a future paper.
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Recent OBDA projects have pointed out that one of the drawbacks of OWL 2 is
the lack of metamodeling and metaquerying capabilities, i.e., features for specify-
ing and reasoning about metaconcepts and metaproperties [1]. Roughly speaking,
a metaconcept is a concept whose instances can be themselves concepts, and a
metaproperty is a relationship between metaconcepts. Although OWL 2 provides
syntactic support for metamodeling through punning (by which the same name
can be used to denote ontology elements of different categories, such as a class
and an individual), we argue that the official semantics of OWL 2, the so-called
Direct Semantics (DS), treats punning in a way that is not adequate for rep-
resenting metaconcepts and metaproperties. The reason is simply that proper
metamodeling requires that the same element plays the role of individual and
class (or, class and relation), while DS sanctions that an individual and a class
with the same name are different elements. This is confirmed by the fact that the
Direct Semantics Entailment Regime (DSER), which is the logic-based seman-
tics of the SPARQL 1.1 query language when applied to OWL 2 QL, forces queries to
obey the so-called typing constraint, which rules out the possibility of using the
same variable in incompatible positions (for example, in individual and in class
position).

The issue of metamodeling in OWL has been investigated in several papers.
It is known that the semantics of metamodeling of OWL 2 Full leads to unde-
cidability of basic inference problems [7]. A possible solution to this problem is
to enable metamodeling in OWL 2 DL by axiomatizing the higher order knowl-
edge into first order assertions [4], but the process involves the use of complex
expressions that are not supported by OWL 2 DL tractable profiles, and therefore
seems inapplicable in OBDA. Another possible solution is the stratification of
class constructors and axioms to describe metalevels of classes and properties [8],
but such stratification poses challenges for the modeler, and rules out interest-
ing ontology patterns. Relevant to our work are recent papers aiming at devising
efficient techniques to answer SPARQL 1.1 queries posed to OWL 2 QL ontologies [2,
6, 5]. However, such papers concentrate on DSER, and therefore do not aim at
the full power of metamodeling and metaquerying.

The goal of our work is to present a new higher-order semantics for OWL 2 QL,
called HOS and inspired by [3], allowing us to effectively exploit the capabilities
for metamodeling offered by punning, and to show that, based on such semantics,
it is possible to define a new SPARQL entailment regime, called HOSER, for the
class of (meta)queries obtained by relaxing the typing constraint of DSER.
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Illustrating scenario. We refer to an OWL 2 QL ontology (see an excerpt in Ta-
ble 1), whose central entity is :financial instrument.Metamodeling comes into
play in order to capture the notion of types of financial instruments, modeled
by using the metaclass :type of f i, whose instances are other classes which
are intended to be subclasses of :financial instrument (for example, :BTP and
:commercial paper, see axioms (3),(4),(6)), and by defining its properties. One
notable example of such properties is :established by (see axioms (9),(10),(11)),
which associates to each type of financial instrument the law that formally estab-
lished it (for example, the law :DR135bis established :BTP as a type of financial
instrument, see axiom (5)).Observe that syntactically we are using punning.
However, as we said before, the direct semantics of OWL 2 considers the individ-
ual named :BTP different from the class with the same name, and therefore is
inadequate for metamodeling. This is evident if one considers the query

select $x $ywhere {:IT0005069395 rdf:type $x . $x :established by $y}
asking for the law that established the type of financial instrument having a spe-
cific financial instrument (for example :IT0005069395) as instance. This query
is not legal under DSER, because the variable $x appears both in individual
and in class position. Note that if typing constraint is lifted, thus making the
query legal, then it would become empty under DSER is trivially empty since
DS cannot interpret any ontology element as both an individual and a class.
ClassAssertion(:BTP :IT0005069395) (1)
ClassAssertion(:commercial paper :ZAG000117292) (2)
ClassAssertion(:type of Italian f i :BTP) (3)
ClassAssertion(:type of foreign f i :commercial paper) (4)
ObjectPropertyAssertion(:established by :BTP :DR135bis) (5)
SubClassOf(:BTP :financial instrument) (6)
SubClassOf(:commercial paper :financial instrument) (7)
SubClassOf(:financial instrument DataSomeValuesFrom(:duration)) (8)
SubClassOf(:type of f i ObjectSomeValuesFrom(:established by :law)) (9)
SubClassOf(:type of Italian f i ObjectSomeValuesFrom(:established by :Italian law)) (10)
SubClassOf(ObjectSomeValuesFrom(ObjectInverseOf(:established by)) :type of f i) (11)
SubClassOf(:type of Italian f i :type of f i) (12)
SubClassOf(:type of foreign f i :type of f i) (13)

Table 1: The ontology

Higher-Order Semantics for OWL 2 QL. A vocabulary V for an ontology is
constituted by a tuple V = (VN , VC , VOP , VDP , VDT , L), where VN is a set of
IRIs that includes the reserved vocabulary R of OWL 2 QL, VC , VOP , VDP , VDT are
subsets of VN , and L is the set of OWL 2 QL literals. The symbols in VN are called
entity names, since they are used to name all the entities of the ontology, while
VC (resp., VOP , VDP , VDT ) is the subset of VN used to name those entities play-
ing the role of class (resp., object properties, data properties, datatypes). Any
symbol in VN \ R may denote an entity that simultaneously plays the role of (i)
an individual, (ii) either a class or a datatype, and (iii) either an object property
or a data property. We denote by VI the set VN \(VC∪VOP ∪VDP ∪VDT ), i.e., the
set of entity names that can only play the role of individuals in the ontology. The
symbols in VN , also called atomic expressions, constitute the building blocks for
denoting the entities of an ontology. Entities, however, can be denoted by using
general expressions. The set ExpV of expressions over V is the set VI ∪ExpOP

V ∪
ExpC

V ∪ VDP ∪ VDT , where ExpOP
V = VOP ∪ {ObjectInverseOf(e1) | e1 ∈ VOP },

and ExpC
V = VC ∪ {ObjectSomeValuesFrom(e1e2) | e1 ∈ ExpOP

V , e2 ∈ VC} ∪
{DataSomeValuesFrom(e1e2) | e1 ∈ VDP , e2 ∈ VDT }. Expressions over V are then
used in the axioms forming any ontology defined over the vocabulary V . HOS is
based on the notion of interpretation structure, which plays the role of “interpre-
tation domain” in classical logic. Given a vocabulary V = (VN , VC , VOP , VDP ,
VDT ), an interpretation structure for V is a tuple Σ = (∆, ·I , ·E , ·R, ·A, ·T )
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Fig. 1: Interpretation
structure

Axiom a I |= a if
SubClassOf(e1e2) ·E is defined for both e

Io
1 and e

Io
2

and (e
Io
1 )E ⊆ (e

Io
2 )E

ObjectPropertyDomain(e1e2) ·R is defined for e
Io
1 , ·E is defined for e

Io
2

and ∀〈d, d′〉 ∈ (e
Io
1 )R : d ∈ (e

Io
2 )E

ClassAssertion(e1e2) ·E is defined for e
Io
1 , (e

Io
2 )I = T

and e
Io
2 ∈ (e

Io
1 )E

ObjectPropertyAssertion(e1e2e3) ·R is defined for e
Io
1 , (e

Io
2 )I = (e

Io
3 )I = T

and 〈eIo
2 , e

Io
3 〉 ∈ (e

Io
1 )R

DataPropertyAssertion(e1e2v) ·A is defined for e
Io
1 , (e

Io
2 )I = T

and 〈eIo
2 , vIo 〉 ∈ (e

Io
1 )A

Table 2: Satisfaction of OWL 2 QL axioms

where: (i) ∆ is the disjoint union of two sets: ∆o, the object domain, and ∆v,
the value domain; and (ii) ·E : ∆o → P(∆o), ·R : ∆o → P(∆o×∆o), ·A : ∆o →
P(∆o×∆v), and ·T : ∆o → P(∆v) are partial functions, and ·I : ∆o → {T, F} is
a total function such that for each d ∈ ∆o, if ·E , ·R, ·A, ·T are all undefined for d,
then dI = T. Thus, the interpretation structure is a mathematical representation
of a world made up by domain elements (the members of the set ∆) which can
be either objects or values. Objects are polymorphic, in the sense that each of
them can simultaneously be an individual(this is the case where function ·I is T),
a set (this is the case where the partial function ·E is defined), a binary relation
(·R is defined), an attribute (·A is defined), and a value type (·T is defined).
Also, an object that is a set (resp., relation, attribute, value type) is associated
to its extension through ·E (resp., ·R, ·A, ·T ). Figure 1 shows a representation
of an interpretation structure, where α is an individual, a set and a relation,
whereas β is a set, but not an individual or a relation. An interpretation I for
V is a pair, 〈Σ, Io〉, where Σ is an interpretation structure for V , and Io is
the interpretation function for I, i.e., a function that maps every expression in
ExpV into an object in ∆o, and every literal in L into a value in ∆v, according to
a set of suitable conditions. (e.g., ((ObjectInverseOf(e1))Io)R = ((eIo

1 )R)−1). To
define the semantics of axioms, we refer to the notion of satisfaction of an axiom
with respect to an interpretation I. Some of the rules defining such notion are
specified in Table 2 (where e, e1, e2, e3 and v are expressions).
SPARQL higher-order semantics entailment regime Defining a SPARQL en-
tailment regime requires to specify (α) which is the semantics used to interpret
the queried ontology, (β) which queries are legal, and (γ) a definition for the
notion of answer to queries (called solution in SPARQL jargon). As for (α), we
adopt HOS. As for (β), we extend the class of queries which are legal for DSER,
by relaxing the typing constraint. As for (γ), we propose to interpret as pure
existentials, variables that occur in the body of the query but not in the target,
thus following the classical notion of existential variables in logic. Observe that
the query mentioned in the scenario is legal for HOSER and that by evaluat-
ing it over the scenario ontology, it would return the answer 〈:BTP, :DR135bis〉.
One of the results of our work is an algorithm, based on “blind metagrounding”,
showing that query answering over OWL 2 QL ontologies under HOSER has the
same data complexity as under DSER. Nevertheless, such algorithm can be in-
efficient in practice. Hence, we devised a new algorithm that is polynomial with
respect to extensional assertions and more efficient for a huge class of OWL 2 QL
ontologies (so called ISA-closed) that are very common in practice.
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Abstract. Fuzzy Description Logics (FDLs) generalize crisp ones by
providing membership degree semantics. To offer efficient query answer-
ing for FDLs it is desirable to extend the rewriting-based approach for
DL-Lite to its fuzzy variants. For answering conjunctive queries over
fuzzy DL-LiteR ontologies we present an approach, that employs the
crisp rewriting as a black-box procedure and treats the degrees in a sec-
ond rewriting step. This pragmatic approach yields a sound procedure
for the Gödel based fuzzy semantics, which we have implemented in the
FLite reasoner that employs the Ontop system. A first evaluation of
FLite suggests that one pays only a linear overhead for fuzzy queries.

1 Introduction

Fuzzy variants of Description Logics (DLs) were introduced in order to describe
concepts for which there exists no sharp, unambiguous distinction between mem-
bers and nonmembers. For example, a natural way to model a component run-
ning at half of its capacity is to state that is overused to a degree of, say, 0.6.

In the last years, conjunctive query answering has been investigated for crisp
and fuzzy DLs. The DL-Lite family of DLs [2, 6, 5] guarantees that query an-
swering can be done efficiently —in the size of the data and in the overall size of
the corresponding ontology. Though fuzzy DL-Lite variants have already been
successfully investigated [18, 19, 10], their algorithms do not exploit the opti-
mizations of query rewriting techniques that have been implemented in many
systems for the crisp DLs, such as QuOnto2 [1, 12], Ontop [14], Owlgres [16],
and IQAROS [22].

A pragmatic approach for answering conjunctive queries over crisp DL-LiteR-
TBoxes and fuzzy DL-LiteR-ABoxes, that takes advantage of these optimiza-
tions, was presented in [9]. The combination of crisp TBoxes with fuzzy ABoxes
is useful in applications, where only the data is imprecise, while the terminolog-
ical knowledge is not, e.g., as in situation recognition applications that rely on
sensor data.
? Partially supported by DFG in the Collaborative Research Center 912 “Highly

Adaptive Energy-Efficient Computing”.
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In our pragmatic approach to answering of (fuzzy) conjunctive queries, a
crisp DL-Lite reasoner is used as a black box to obtain an initial rewriting of the
conjunctive query (without the fuzzy degrees). The obtained query gets extended
in a second rewriting step by (1) fuzzy atoms, (2) degree variables that capture
numerical membership degrees, and (3) numerical predicates that realize the
fuzzy operators. The resulting query can then be evaluated by a SQL engine.
This simple approach yields a sound and complete implementation only if fuzzy
semantics with the min operator for conjunction is employed as, for instance, the
popular Gödel semantics. For other semantics, at it will later be explained, our
approach remains complete but not sound. We have implemented this approach
in the FLite prototype, which uses the optimized Ontop reasoner to generate
the first rewriting.

In this paper we describe the pragmatic approach, introduce some optimiza-
tions of it and study the scalability of FLite—in particular the overhead intro-
duced by reasoning over fuzzy information. To this end we evaluate the FLite
implementation against Ontop for different (fuzzy) conjunctive queries per-
formed on a TBox and fuzzy ABoxes of different sizes. The benchmarks used
for the evaluation are based on a situation recognition application for complex
hard- and software systems.

The rest of the paper is structured as follows: Section 2 recalls DL-LiteR

and its fuzzy variant. Section 3 presents a description of the two-step rewriting
approach for answering fuzzy conjunctive queries and we discuss its limitations.
In Section 4 we examine optimizations for this approach, which are implemented
in FLite. Section 5 introduces our application of situation recognition that
motivates the two-step rewriting approach for querying crisp TBoxes with fuzzy
ABoxes and a benchmark from this application. The detailed evaluation of the
FLite system against Ontop is given in Section 6 for different ontology sizes and
different fuzzy queries. Conclusions and future work end the paper in Section 7.

2 Preliminaries

We start with DL-LiteR [2] and introduce its fuzzy variant [19, 10] afterwards.
Let the following be countably infinite and pairwise disjoint sets: NC of concept
names, NR of role names, NI of individual names, and NV of variable names. From
these sets the complex DL-LiteR-concepts, -roles and -queries are constructed.
DL-LiteR-concepts and -roles are defined according to the following grammar:

B →A | ∃Q C →> | B | ¬B Q→P | P− R→Q | ¬Q,

where > is the top concept, A ∈ NC, P ∈ NR. Based on these kinds of complex
concepts and roles, a DL-LiteR TBox T is a finite set of axioms of the form:
B v C, Q v R or funct(Q). Let a, b ∈ NI and d ∈ [0, 1] a fuzzy degree. A fuzzy
assertion is of the forms: 〈B(a),> d〉 or 〈P (a, b),> d〉. An ABox A is a finite
set of fuzzy assertions. A fuzzy DL-Lite-ontology O = (T ,A) consists of a TBox
T and an ABox A. Please note that the TBoxes are always crisp in our setting.
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Table 1. Families of fuzzy logic operators.

Family t-norm a⊗b negation 	a implication α⇒ b

Gödel min(a, b)

{
1, a = 0

0, a > 0

{
1, a 6 b
b, a > b

 Lukasiewicz max(a+ b− 1, 0) 1− a min(1− a+ b, 1)

Product a× b
{

1, a = 0

0, a > 0

{
1, a 6 b
b/a, a > b

Crisp DL-LiteR-ontologies are a special case of fuzzy ones, where only degrees 1
and 0 are admitted.

The reasoning problem we address is answering of (unions of) conjunctive
queries. Let t1, t2 ∈ NI ∪ NV be terms, an atom is an expression of the form:
C(t1) or P (t1, t2). Let x and y be vectors over NV, then φ(x,y) is a conjunction
of atoms of the forms A(t1) and P (t1, t2). A conjunctive query (CQ) q(x) over an
ontology O is a first-order formula ∃y.φ(x,y), where x are the answer variables,
y are existentially quantified variables and the concepts and roles in φ(x,y)
appear in O. Observe, that the atoms in a CQ do not contain degrees. A union
of conjunctive queries (UCQ) is a finite set of conjunctive queries that have the
same number of answer variables.

The semantics of fuzzy DL-LiteR is provided via the different families of
fuzzy logic operators depicted in Table 1 and interpretations. An interpretation
for fuzzy DL-LiteR is a pair I = (∆I , ·I), where ∆I is as usual, but ·I is an
interpretation function mapping every

– a ∈ NI to some element aI ∈ ∆I ,
– A ∈ NC to a concept membership function AI : ∆I → [0, 1],
– P ∈ NR to a role membership function P I : ∆I ×∆I → [0, 1].

Let δ, δ′ denote elements of ∆I and 	 denote fuzzy negation (Table 1), then
the semantics of concepts and roles are inductively defined as follows:

(∃Q)I(δ) = supδ′∈∆IQI(δ, δ′) (¬B)I(δ) = 	BI(δ) >I(δ) = 1

P−I(δ, δ′) = P I(δ′, δ) (¬Q)I(δ, δ′) = 	QI(δ, δ′)

An interpretation I satisfies B v C iff BI(δ) 6 CI(δ) for every δ ∈ ∆I , Q v R
iff QI(δ, δ′) 6 RI(δ, δ′) for every δ, δ′ ∈ ∆I , and func(Q) iff for every δ ∈ ∆I
there is a unique δ′ ∈ ∆I such that QI(δ, δ′) > 0. An interpretation I is a model
of a TBox T , i.e. I |= T , iff it satisfies all axioms in T . I satisfies 〈B(a),> d〉
iff BI(aI) > d, and 〈P (a, b),> d〉 iff P I(aI , bI) > d. I is a model of an ABox
A, i.e. I |= A, iff it satisfies all assertions in A. Finally an interpretation I is a
model of an ontology O = (T ,A) iff it is a model of A and T .

Given a CQ q(x) = ∃y.φ(x,y), an interpretation I, a vector of individuals α
with the same arity as x, we define the mapping π that maps: i) each individual
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a to aI , ii) each variable in x to an element of αI , and iii) each variable in y
to an element δ ∈ ∆I . Suppose that for an interpretation I, Π is the set of
mappings that comply to these three conditions. Computing the t-norm ⊗ of
all atoms: AI(π(t1)) and P I(π(t1), π(t2)) yields the degree of φI(αI , π(y)). A
tuple of individuals α is a certain answer to q(x), over O, with a degree greater
or equal than d (denoted O |= q(α) > d), if for every model I of O:

qI(αI) = supπ∈Π{φI(α, π(y))} > d.

We denote the set of certain answers along with degrees, to a query q(x) w.r.t.
an ontology O with ans(q(x),O):

ans(q(x),O) = {(α, d) | O |= q(α) > d ∧ 6 ∃d′.d′ > d ∧ O |= q(α) > d′}.

To illustrate the use of the fuzzy DL-LiteR language and queries, we provide
an example from our application domain.

Example 1. The ontology Oex for our running example consists of:

Tex := {Server v ∃hasCPU, ∃hasCPU− v CPU, func(hasCPU−)}
Aex := {〈Server(server1),> 1〉, 〈hasCPU(server1, cpu1),> 1〉,

〈OverUsed(cpu1),> 0.6〉, 〈hasCPU(server1, cpu2),> 1〉,
〈OverUsed(cpu2),> 0.8〉 }

The first two axioms in Tex state that each server has a part that is a CPU. The
third one states that no CPU can belong to more than one server. Aex provides
information about the connections between servers and CPUs and each CPU’s
degree of overuse. To query the ontology Oex we can formulate the queries:

q1(x, y) = hasCPU(x, y) ∧OverUsed(y)

q2(x) = ∃y hasCPU(x, y) ∧OverUsed(y)

The query q1 asks for pairs of Servers and CPUs with an overused CPU. The
query q2 asks for Servers, where the Server’s CPU is overused. If conjunction and
negation are interpreted as the Gödel family of operators, the certain answers
w.r.t. Oex are:

ans(q1(x, y),Oex) = {(server1, cpu1, 0.6), (server2, cpu2, 0.8)}
ans(q2(x),Oex) = {(server1, 0.8)}.

3 Fuzzy Query Answering by Extended Crisp Rewritings

Let CQ q(x) be formulated over the vocabulary of the DL-LiteR ontology O =
(T ,A). The main idea underlying the classic DL-LiteR query answering algo-
rithm is to rewrite the query q(x) with the information from the TBox T into
a UCQ qT (x) and then apply this UCQ to the ABox A alone [6, 2]. For fuzzy
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DLs we extend this approach to handle degrees of ABox assertions. The main
idea is depicted in Figure 1. To explain the algorithm we need the predicates Af ,
Pf , and Φ⊗. Intuitively, each binary predicate Af is an extension of the unary
predicate A such that the fuzzy concept assertion 〈A(a),> d〉 is equivalent to
the predicate assertion Af (a, d) (similarly for Pf ). The n-ary predicate Φ⊗ is
adopted in order to realize the semantics of the fuzzy conjunction (e.g. mini-
mum for the Gödel norm) within a FOL query. Thus, for each tuple of degrees
d1, . . . , dn ∈ [0, 1] such that d1 = ⊗(d2, . . . , dn), we have that (d1, . . . , dn) ∈ Φ⊗.
Suppose now that the CQ q(x) is to be answered. The two-step rewriting algo-
rithm proceeds as follows:

1. The crisp DL-LiteR algorithm rewrites q(x) to qT (x). (For ease of presenta-
tion we assume that qT (x) is still a CQ.)

2. The fuzzy query qT ,f (x, xd) is computed from qT (x) by replacing atoms
of the form A(t1) and P (t1, t2) by Af (t1, yd) and Pf (t1, t2, yd), where the
variable yd is a degree variable. Its purpose is to retrieve the degree of an
assertion. The degree value for fuzzy conjunction is retrieved by the predi-
cate Φ⊗ and (to be) stored in the additional degree variable xd. Thus, the
conjunction degree of a new atom qT ,f (x, xd) is obtained by the predicate
Φ⊗(xd, y1, . . . , yn), where yi is a degree variable in the ith atom of the CQ.

3. The query is evaluated over the ABox and the actual computation of the
degree values takes place. Now, for a tuple of individuals α and degrees
d1, d2 ∈ [0, 1], if (α, d1) and (α, d2) are both answers to the query, only the
answer with the higher degree is returned.

Note that this description abstracts from the fact that the ABox A is usually
implemented by a relational database D and a mappingM. We see in Section 3.1
how this mapping is extended to incorporate fuzzy information. For a more
detailed presentation of the algorithms, the reader may refer to [9].

Example 2. We return to Example 1 and illustrate the application of the algo-
rithm to the queries. Initially, q1 and q2 are rewritten to the following UCQs:

q1Tex(x, y) ={hasCPU(x, y) ∧OverUsed(y)}
q2Tex(x) ={∃y.hasCPU(x, y) ∧OverUsed(y)}

FLITE Reasoner 

Fig. 1. The process flow diagram of the FLite rewriting procedure.
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In the next step, the algorithm extends the queries with degree variables and
atoms, so that the corresponding degrees can be returned:

q1
f
Tex(x, y, xd) ={hasCPU(x, y, yd1) ∧OverUsed(y, yd2) ∧ Φ⊗(xd, yd1 , yd2)}
q2
f
Tex(x, xd) ={∃y.hasCPU(x, y, yd1) ∧OverUsed(y, yd2) ∧ Φ⊗(xd, yd1 , yd2)}

For the ABox Aex the following set of answers to each of the queries are returned:

ans(q1
f
Tex(x, xd),Aex) ={(server1, cpu1, 0.6), (server1, cpu2, 0.8)}

ans(q2
f
Tex(x, xd),Aex) ={(server1, 0.8)}.

The limitations of our pragmatic approach are explained in [9]. To sum up,
our approach yields sound and complete results for fuzzy semantics based on
the min t-norm operator such as the Gödel family of operators. The correct-
ness for this case can be derived from the crisp DL-LiteR proof along with the
following points: (1) only crisp TBox axioms are allowed, (2) conjunctions only
appear in conjunctive query expressions, (3) Ontop optimizations do not af-
fect the correctness of the algorithm due to the properties of the min operator.
To illustrate the last point a conjunctive query qT (x) := A(x) ∧ A(x) is sim-
plified by Ontop to qT (x) := A(x). This simplification is correct for the min
operator since min(AI(δ), AI(δ)) = AI(δ) (for every interpretation I and every
δ ∈ ∆I) . The latter does not apply for other t-norms, therefore the proposed
methodology is complete but not sound for the  Lukasiewicz and Gödel families
of operators. Nevertheless, as described in [9], we devised a method by which
each unsound answer can be identified and its correct degree estimated between
two membership values. I.e. our algorithm asserts that for some d ∈ [0.7, 0.8],

(server1, d) ∈ ans(q3fTex(x, xd),Aex).

3.1 The FLite Reasoner Implementation

FLite4 (Fuzzy DL-LiteR query engine) implements the presented query answer-
ing algorithm and builds on the Ontop framework [14]. On a technical level, the
rewriting procedure becomes more involved when a reasoner such as Ontop is
deployed, since such systems are build to operate on relational databases. Thus
the queries qT (x) and qT ,f (x, xd) in Figure 1 are SQL queries, while the ABox
A is derived from a partial mapping:

M : SQL SELECT Statements→ ABox assertions.

In order to embed fuzzy information into mappings we adopt a reification ap-
proach sketched in the following example.

Example 3. We consider a fuzzy mapping described in the Quest syntax [13].
In this mapping, for the concept popularVideo each id of the table videos is

4 The FLite reasoner is available from the following Git: https://iccl-share.inf.tu-
dresden.de/flite-developer/flite.git
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annotated with a popularity, i.e. a fuzzy degree:

t a r g e t haec : v ideo { p o p u l a r i t y d e g r e e } a haec : PopularVideo .
source SELECT fuzzy ( id , popu la r i ty )

AS p o p u l a r i t y d e g r e e
FROM v ideos

Now, if a video with an id of 12 and a popularity of 0.8 appears in the database,
then this corresponds to 〈PopularVideo(videos12),> 0.8〉 stated in the ontology.

The function fuzzy(column, degree) is a marker for the FLite parser to recognize
fuzzy statements. It indicates that every element of the particular column (or
SQL expression) gets a fuzzy degree assigned. This degree can either be a column
with values in [0, 1], or an SQL expression corresponding to a fuzzy membership
function. It should be noted that SQL expressions containing the fuzzy marker
function appear in the initial mapping M and in qT (x) queries while these
markers are converted in qT ,f (x, xd) queries to a SQL expressions that return
the membership degree.

4 Optimizations for the FLite Implementation

Implementing the pragmatic approach naively would be very inefficient. First,
in contrast to Ontop’s rewritings, the “fuzzy” SQL query resulting from the
FLite rewriting process is not optimized for fast execution. Thus, the query
engine retrieves the same items multiple times. Second, the database contains
numerical values, that are mapped to coarser categories with membership degrees
at query execution time. These overheads can be reduced by optimizing the fuzzy
rewritings and fuzzifying numerical values in the database on a preprocessing
step. These optimizations are discussed in the following.

Self-join Removal (SR). Ontop performs a restructuring of query rewritings as
outlined in [15, 7]. Due to the reification process for embedding fuzzy informa-
tion, some of the optimizations performed by Ontop are obscured by the fuzzy
pseudo-function. Currently, Ontop appears to omit the optimization step, if an
unknown function is found in the query. Thus, its optimizer is not aware of the
fact that the fuzzy function is exclusively used by FLite to tag fuzzy degrees in
the query. Extending the process shown in Figure 1, the query optimizer should
be applied to the query qT ,f (x, xd), e.g. to remove self-joins. To illustrate the
problem, consider a query qT ,f that contains self-joins of the following form:

SELECT a . column a , a . degree a , b . column b
FROM table A as a ,
INNER JOIN table A as b ON a . column a=b . column a

It can easily be verified that this query contains redundant selection statements
over the same database table and can be simplified to:

SELECT column a , degree a , column b FROM table A
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The second query is performed in linear time w.r.t. the size of table A, while the
first one is performed in quadratic time. Indeed, we observed a huge improvement
on query execution time, depending on the number of tables that are self-joined.

Pre-computation of Membership Degrees (PD). Calculation of membership de-
grees of numerical values during query execution can lead to significant run-time
overhead depending on the complexity of the applied membership function. The
following listing shows an SQL statement where fuzzy degrees are assigned to
the values of a column by the membership degree function f :

SELECT fuzzy ( column a , f ( column b ) ) FROM c r i s p t a b l e

The case where membership degrees are available directly , reduces the overhead
of calling and executing such a function. In the following SQL statement, function
f was replaced by a membership degree column.

SELECT fuzzy ( column a , membership degree column )
FROM f u z z y t a b l e

For simple mappings of this form, database schema restructuring is unnecessary,
since the observed raw data in our application database are often numerical val-
ues, an automatic mechanism that translates these values to membership degrees
is necessary. For this purpose we introduce computed or virtual columns, which
contain values that are computed by a user-defined membership function, which
is triggered when a new row is added to the table. This avoids the overhead for
the computation of membership function during the evaluation of the rewritten
query at the cost of an increase in database size and membership function over-
head during the database update process. In the end he FLite user has to assess
on the basis of the mapping whether to spend more time for query execution or
more disc space for additional fuzzy columns.

5 A Sample Application: Situation Recognition

The project “Highly Adaptive Energy-efficient Computing” (HAEC) investigates
complex computing environments that are highly energy-efficient while compro-
mising utility of services as little as possible. In order to be adaptive, the system
needs to trigger adaptations (of hard- or software components), if the quality of
the requested services or their number changes. To provide such a trigger mech-
anism we investigate an ontology-based situation recognition. The situations to
be recognized are modelled as conjunctive queries. The background information
on the system is captured in the TBox and the current system’s state is cap-
tured by an ABox. Such ABoxes are automatically generated from sensor data
and other systems information and the conjunctive queries for the situations are
evaluated. In such a setting the numerical sensor data need to be mapped to
coarser, symbolic categories and membership degrees. Similarly, the query needs
to be able to retrieve individuals that fulfill the conditions of the query to a
degree. We have built a TBox and a collection of ABoxes and queries for this
application.

476



5.1 Towards a Benchmark

The hard- and software components of the HAEC system are modeled in a TBox
which consists of 197 GCIs, 168 named classes and 38 roles (415 axioms total).
Each state of the HAEC system is stored in tables of a relational database.
This database stores the information on the soft- and hardware of the HAEC
system. The tables contain numerical values for boards, processes, requests, etc.5

Identifying the HAEC ontology as TBox and the HAEC database as ABox, this
benchmark compares the run-time to answer (fuzzy) conjunctive queries over
TBox and ABox by Ontop and FLite. In contrast to Ontop which requires a
crisp mapping, FLite is using a partially fuzzy mapping.

6 Results of FLite on the Benchmark

FLite was evaluated over a series of variations of the HAEC benchmarks. The
number of additional atoms in the conjunctive query n and the database scale
factor k were increased in the series.

The initial database with a size of 768.0 KiB was scaled by k in the range
of 100 to 105 to about 13 GiB by the Virtual Instance Generator (VIG) [8]. For
each of these scaled databases, the number of atoms of the initial conjunctive
query (2 concepts, 4 roles) was increased by n additional atoms from one atom
to a maximum of seven (13 atoms total). The system on which the benchmark
was performed on is powered by an Intel Core i7 2.6 GHz processor and was
equipped with 8 GB DDR 1600 main memory. ABox information was stored in
a MySQL 5.6.23 database. FLite and Ontop are executed on Oracle the JVM
1.7.

Figure 2 shows the query execution time of Ontop for a query with seven
additional atoms and with a crisp mapping compared to the naive FLite imple-
mentation for a query with one to seven additional atoms with fuzzy mapping
using Gödel t-norms for an increasing database size.
FLite needs longer run-time in the order of almost two magnitudes compared to
the one of Ontop. Therefore, it is vital that the naive FLite implementation is
enhanced by optimization techniques. Employing the optimizations introduced
in Section 4 results in the query execution times displayed in Figure 3.

Optimization SR in Figure 3 shows run-time reduction up to a scale factor of
about thousand, then it converges with the naive FLite implementation. Thus,
an optimization that also effect larger databases is necessary. Optimization PD
in Figure 3 shows opposite behavior, resulting in a run-time reduction from a
scale factor of thousand. Finally, a combination of both reduces the run-time on
all scale factors and is even on the same level with Ontop up to a scale factor
of thousand. Thus, a query execution time with a flat linear run-time overhead
with respect to Ontop is possible when the fuzzy rewriting is optimized and
fuzzy translation functions are replaced by fuzzy computed columns.

5 The files necessary to perform this benchmark can be found here: https://iccl-
share.inf.tu-dresden.de/erikzenker/flite-benchmark.git
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Fig. 2. Query execution time of Ontop with seven additional atoms with crisp mapping
compared to the naive FLite implementation with one to seven additional atoms with
fuzzy mapping.
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Fig. 3. Ontop is compared to optimized FLite versions SR, PD, and SR+PD. All
setups were executed over a CQ with seven additional atoms.

Instead of comparing FLite with Ontop, a comparison with other fuzzy
DL reasoners would have been desirable. However, reasoners such as LiFR [21],
FuzzyDL [4], FiRE [17], and DeLorean [3] support only instance checking rather
than conjunctive query answering (albeit for more expressive DLs than DL-LiteR).
Others such as the DL-Lite reasoner Ontosearch2 [11] or SoftFacts [20] could
either not be obtained or installed. Thus we had to resort to Ontop for a com-
parison for query answering in DL-LiteR.

7 Conclusions

We presented a pragmatic approach for answering fuzzy conjunctive queries over
DL-LiteR-ontologies with fuzzy ABoxes. Our approach uses rewritings obtained
by the algorithm for answering crisp queries as an intermediate step and thus
allows to make use of standard query rewriting engines. Although described
here for DL-LiteR, our approach can be extended to other DLs that enjoy FOL
rewritability. Our algorithm is sound for those t-norms that have idempotent
operators, such as the Gödel t-norm.

We implemented our approach in the FLite system and evaluated it against
the Ontop reasoner for ABoxes of varying size. Our evaluation gave evidence
that there is a substantial increase of run-time for large ABoxes, when fuzzy
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information is queried. This increase can be reduced by basic optimizations.
However, developing and extending FLite is on-going work.
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Abstract. Recently, modular techniques have been employed for op-
timising Description Logic reasoning, specifically to enable incremental
reasoning and improve overall classification time. Classifying a module
of an ontology should be significantly easier than reasoning in the whole
ontology. However, we observed in previous work that neither it is gen-
erally true that modular reasoning techniques have a reliable positive
effect, nor even that the classification time of a module is less than or
equal to the classification time of the whole ontology. One possible ex-
planation for the latter could be that counter-productive optimisations
are triggered within the reasoner when dealing with the sub-module, and
thus individual subsumption tests get harder when parts of the ontology
are missing. The goal of this paper is to understand the contribution
of subsumption tests to the hardness of classification. The contribution
is twofold: (1) We analyse the impact of subsumption test hardness on
DL classification by analysing a well known corpus of ontologies, and (2)
we present a novel approach based on modularity to robustly detecting
subsumption tests that are too hard.

Keywords: classification,ontologies,benchmarking,modular reasoning

1 Introduction

Reasoning in popular, very expressive Description Logics (DL) is very difficult
(e.g., SROIQ is N2Exptime-complete) [12]. Perhaps surprisingly, modern rea-
soning systems suitable for the entirety of OWL 2 DL (essentially a notational
variant of SROIQ) such as FaCT++ [20], Pellet [18], HermiT [5] and recently
Konclude [19] generally perform well against real ontologies. However, due to the
poor performance in some (often important) cases, the quest for optimisations
is ongoing. The need to empirically validate such optimisations stems from the
sheer complexity of reasoner architectures. Worst case complexity analysis and
its variants do not account for the high variability of classification times of real
ontologies. Modern reasoning systems have to accommodate multiple reasoning
services and also tend to implement a wide range of optimisation techniques that
might affect each other. Various sources of non-determinism, mainly traversal
(subsumption test order) and or-branch exploration of a tableau further com-
plicate the situation. Statistical methods such as linear regression [16] tend to
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be only precise for trivial cases, and are limited in their explanatory richness.
Currently, principled benchmarking provides the only way to creating detailed
characterisations of DL reasoning performance.

Using locality-based modules to optimise Description Logic classification ex-
perienced a resurgence in recent years [15, 21]. Intuitively, breaking the input
problem into smaller pieces, reasoning over those pieces separately, then recom-
bining the results is appealing. Furthermore, if there are especially difficult parts
of the ontology, perhaps they can be isolated to reduce their impact. In practice
however, modular reasoning techniques do not always improve the performance
of classification [6]. In fact, they can drastically impair performance, making it
a hit and miss game to chose between a modular reasoner (e.g. MORe-HermiT,
Chainsaw-JFact) and its monolithic counterpart (e.g. HermiT, JFact). These
cases can often be due to various kinds of overhead induced by modular reason-
ers (module extraction) or redundancy introduced by the mostly unavoidable
and often significant overlap between the various modules extracted. In a pre-
liminary set of experiments [13] we observed that not only are there cases where
there are individual subsumption tests that can be, often significantly, harder in
a module extracted by a modular reasoner than in the whole ontology, but also
that there are occasionally modules whose classification time exceeds that of the
entire ontology O it was extracted from.

The goal of this paper is to understanding the contribution of subsumption
tests (ST) to the hardness of classification. The contribution is twofold: (1)
We analyse the impact of ST hardness on DL classification by characterising
a well known corpus of ontologies, and (2) we present a novel approach based
on modularity to robustly detecting subsumption tests that are potentially too
hard. As a result, we re-confirm the almost 20 years old results by Horrocks [11]
that ST’s are generally rather easy. We also isolate counter-intuitive instances
that, however, are often likely to be the consequence of the surprising degree of
observed stochasticity in the classification process.

2 Background

Understanding the experimental design and methodology presented here does
not require more than a cursory understanding of the syntax, semantics, and
proof theories implemented. The most prominent families of reasoning algorithms
for description logics are tableau (incl. hyper-tableau) and consequence-based. In
our work, we are mainly concerned with tableau-based algorithms. The reason-
ers under investigations in this paper are designed to implement key reasoning
services for the Web Ontology Language (OWL), most importantly classification
and consistency checking. Given an ontology (a set of axioms) O, the signature

of an ontology Õ is the set names appearing in the axioms in O. We use CT (O)
(classification time) and CT (M) respectively to denote the time of computing
the set of atomic subsumptions (i.e., statements of the form A v B where A and
B are properties or classes in the signature) or classification of O. For brevity,
we refer to overall classification time as OCT and subsumption test time as STT.
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While subsumption testing, and therefore classification, is in theory intractable,
highly optimised reasoners do fairly well in practice. The observed efficiency de-
spite the worst case complexity is in principle down to four factors. (1) Real
ontologies are bounded in size. That means that even an exponential algorithm
might fully classify an ontology, from a user perspective, in an acceptable amount
of time. (2) Many ontologies fall into tractable fragments of OWL, and can be
classified using efficient polynomial algorithms such as the ones from the family
of consequence-based algorithms. (3) The last 20 years brought a plethora of
different optimisations to make satisfiability checks easier [11, 3]. (4) Very effi-
cient algorithms were developed to avoid the vast majority of subsumption tests
altogether [1, 4, 17].

Current modular classification approaches use so-called syntactic locality-
based ⊥-modules [10] which have a number of desirable properties: (1) They are
relatively cheap to extract and are reasonably compact and exact, (2) If O |=
A v C then for any given ⊥-module M⊥, of O where A ∈ M̃⊥, M⊥ |= A v C
(were C is an arbitrary expression over the signature of O). Thus, ⊥-modules are
classification complete for their signature with respect to their parent ontology.
Hereafter, we will use M to refer to a syntactic locality based ⊥-module.

Very recently, reasoner developers have started to utilise modularity for
classification. They either are (1) using modules for incremental reasoning [9]
or (2) using modules to improve classification time [15, 21].

3 Related Work

Attempts to understand DL reasoning performance are, up until today, rarely
systematic or comprehensive. Recently, the ORE reasoner competition tries to
establish the methodological foundations for more reliable comparisons [6] be-
tween different reasoners and across a range of different reasoning services. OWL
Reasoner benchmarks have been conducted for varying purposes, for example
(and most prominently) guiding end-users for selecting appropriate reasoners
for their problem [2, 6] or understanding reasoning or the state of reasoning in
general [7]. Dentler et al. [2] conduct a principled investigation to identify suit-
able criteria for choosing an appropriate reasoner for EL ontologies. In our work,
we are interested in mapping out subsumption test hardness during full classi-
fication across reasoner-ontology pairs (phenomenological characterisation) and
the potential of modularity to pinpoint counter-intuitive cases (i.e. harder tests
in a sub-module). Most benchmarks conduct an only semi-principled dataset
selection: Even carefully executed benchmarks such as Dentler et al. [2] usually
cherry pick a set of somehow relevant ontologies. Few works sample from existing
corpora or the web, and only Gonçalves et al. [7], to the best of our knowledge,
deal with corpora larger than 500 ontologies. In practice, the current de facto
gold-standard corpus for ontology experimentation is BioPortal [14], which also
provides a well designed infrastructure to obtain an interesting range of biomedi-
cal ontologies programatically. We are using a snapshot of BioPortal in this work.
As far as we know, no benchmark to date has investigated subsumption testing
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during classification across reasoners in a principled manner. However, various
benchmarks have investigated the effect of certain optimisations on subsump-
tion test avoidance [4]. While the literature on classification optimisation and
reasoning is vast, little progress has been made in understanding classification
hardness of real ontologies, both empirically and formally.

4 Subsumption Test Hardness

The phenomenon under investigation is subsumption test hardness in the
context of classification. A subsumption test is a question asked by the
reasoner to determine whether A v B. The subsumption test hardness is
the time it takes to compute the answer, operationalised as wall-clock time. In
this work the answer to a test is either yes or no. Note however, that for any
implementation (1) more than just a binary answer will be provided (i.e., cached
models, derived subsumptions) and (2) no guarantee is given that the answer
is correct (bugs in the reasoner). “In the context of classification” means that
we are not exploring individual “cold” tests, i.e. letting the reasoner compute
whether A v B for any A,B from outside the classification process, because we
want to understand the contribution of subsumption testing to classification as
a whole, with all the optimisations involved.

Our model of subsumption test hardness with respect to sub-modules
is based on the following intuition: Given a positive ST ST , it should be the
case that for every two modules M1,M2 with M1 ⊂M2 ⊂ O in which the ST
is triggered, the hardness of ST always stays the same. The reason for that are
module properties: every justification for an entailment is part of every module
that entails it. Thus, every way that the entailment holds is contained in the
module, no “new” information about the entailment exists in the rest of the
ontology. Intuitively, additional “stuff” can make it harder to figure out the
entailment, but not make it easier. This makes this metric a possible indicator
of counter-productive optimisations: If we find that STM2

is harder than STM1
,

we might conclude that the reasoner is doing some unnecessary extra work in
M2 (case 1); if STM1

is harder than STM2
, there is a possibility that a counter-

productive optimisation may have been triggered (case 2). Only the second case
is truly pathological: A test should never get harder when irrelevant axioms
are removed from the ontology. The first case might simply occur because if M
grows, it gets harder to identify the irrelevant axioms. One possibility to explain
both cases may be the inherent stochasticity of classification as implemented by
current OWL Reasoners. For example, a random factor might (for example by
changing the test order) simply shift the load of ST in M1 to another ST ST 2

that consecutively makes ST easier. Another reason for a test becoming easier
in a sub-module might be the exploitation of partial results from negative tests
(e.g. caching).

Our empirical investigation of subsumption tests has two parts: (A) a broad
characterisation of the landscape of subsumption testing and (B) an in-depth
characterisation of non-easy subsumption tests. We treat a test as non-easy if it
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takes longer than 100 ms . The first part A will attempt to answer the following
questions: What is the impact of subsumption testing on reasoning performance
in general (RQ1)? How many tests are positive or negative and how do they
differ in hardness (RQ2)? How hard are real tests actually (RQ3)?

Part B serves as an in-depth characterisation that attempts to address ques-
tions related to the general stability of the measurements (intra-module) and
the effect of modularity (inter-module). Is ST hardness a stable phenomenon
(RQ4)? This is important in order to judge how reliably we can trace a single sub-
sumption test through different sub-modules of an ontology, and may also give a
warning sign for triggered non-determinism, for example in the case that a test
appears or disappears given a particular ontology-reasoner pair across runs. We
will address this problem mainly by looking at the coefficient of variation (COV)
of subsumption test hardness. The COV is a statistical, standardised measure
of dispersion of a distribution (for example the distribution of test hardness) de-
fined as the ratio of the standard deviation to the mean and is used to compare
the variation of one data series to another, even if they are on a different scale.
What are the reasons for instability (RQ5)? We will not conclusively try to an-
swer this problem, but we will collect some evidence for stochasicity by looking
at intra-module variation of test counts, a strong indicator of non-determinism.

Does modularity change the hardness of tests (RQ6)? In order to answer
this question, we will classify tests by analysing how modularity affects their
hardness. This happens as follows: We identify all super and submodule combi-
nations M1,M2 as described earlier. For each test triggered in both M1 and
M2, we determine: (1) was the effect positive on average (across runs), (2) what
was the magnitude of the effect and (3) was the effect stable? We define sta-
bility of an effect as follows: given a subsumption test ST that occurs in two
modules M1,M2 with M1 ⊂ M2, and two sets of measurements X(STM1

)
and X(STM2) (a) measurements ME ∈ X(STM1) are either all harder or all
easier than measurements ME ∈ X(STM2) (strong stability) or (b) the over-
lap of the ranges of X(STM1

) and X(STM2
) is less than 10% of the range of

X(STM1
) uX(STM1

).
We group ST hardness into the following bins: Very Hard (more than 100

seconds), Hard (>10 sec), Medium Hard (>1 sec), Medium (>100 ms), Medium
Easy (>10 ms), Easy (>1 ms), Very Easy (>100 µs.), Trivial (<100 µs). The
upper bound of each bin corresponds to the lower bound of the previous one.

5 Experimental Design

We conducted our study on a corpus of 339 OWL API (3.5.0)-parsable BioPor-
tal ontologies, obtained through the BioPortal REST Services1 (January 2015
snaphshot). All ontologies were serialised into OWL/XML, with merged imports
closure. A minimum amount of repair (injecting missing declarations, dropping
empty n-ary axioms, etc.) was applied to ensure that trivial violations do not
impair DLness.

1 http://data.bioontology.org/documentation
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For all our experiments, we use four OWL reasoners that implement the OWL
API interface: HermiT 1.3.8, Pellet 2.3.1, JFact 1.2.3 and FaCT++ 1.6.3. All four
are among the most heavily used reasoners for OWL 2 DL. The reasoners have
been modified for the benchmark: When a subsumption test is conducted, the
start and end timestamps, the sub and super class under consideration and the
result of the test are recorded. While we can use this approach to compare results
for each reasoner, interpretation of comparisons between reasoners might be
misleading due to implementational details. For example, methods that test for
subsumption and ultimately satisfiability may be nested. See companion website
for more information (Section 6). Because we are interested in real life behaviour,
we allowed the reasoner to fall into states like the deterministic part of HermiT
for Horn-SHIQ or Pellets internal EL-Reasoner. That said, we cannot claim to
measure all subsumption tests a reasoner does. We can, however, establish a
lower bound and are confident that we capture the vast majority of the hard
tests, because the sum of test times occasionally account for almost 100% of the
OCT for all reasoners.

A set of four equal-spec Mac Minis with Mac OS X Lion 10 (64 bit), 16 GB
RAM and 2.7 GHz Intel Core i764-bit was used for the benchmarking. Every
single classification was done in a separate isolated virtual machine (Java 7,
-Xms2G, -Xmx12G). In order to reduce potential bias induced by run order
(unaccounted for background processes kicking in, runtime optimisations), we
fully randomise the run order and evenly distribute the experiment run jobs
across the four machines.

Experimental Pipeline: For the first experiment we execute a single run of all
reasoners across the entire corpus, with a timeout of 60 minutes per run. Due
to technical details, the timeout is a lower bound and might not be triggered
until some minutes later. Note that we include every ontology in the corpus,
including the ones not strictly in OWL DL (53). The reason for that is that these
ontologies do form part of the landscape, and reasoners are used on them. The
main sources of violations are uses of reserved vocabulary (37% of all violations
across the corpus), illegal punning (32%) and uses of datatypes not on the OWL 2
datatype map (11%).

For the second experiment, we select a set of reasoner-ontology pairs for
which, according to the results of experiment 1, at least one test was measured
that was harder than 100 milliseconds. Because of the various claims we have
with respect to modules, we also excluded ontologies that do not fall under
OWL 2 DL. Runtime limitations forced us to exclude the NCIt from the sample,
due to the extreme number of measured subsumption tests (JFact 751,907 tests,
Pellet 461,831, FaCT++ 605,481). For this experiment, we first obtain random
cumulative subsets from the ontologies in our narrowed down sample, similar to
Gonçalves et al. [8], with 16 slices. In a nutshell, given the set of logical axioms the
ontologies are comprised of, we obtain a random 1

16 th of the axioms, serialise
this subset, add another randomly drawn 1

16 th from the remaining axioms to
the first, serialise them together, and then iteratively grow each consecutive
subset until the final set is the whole ontology. From the signature of each subset
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sampled, we obtain the ⊥-locality module using the OWL API module extractor.
Module properties ensure that, given subset S1 ⊂ S2,M

S̃1
⊂M

S̃2
. The module

of 16
16 th, MÕ, corresponds to the whole ontology. We call this nested set of

modules a path. Note that the modules are usually considerably larger than
their respective subsets, which will give us a good sample of relatively large
modules with hopefully hard subsumption tests. Each of the modules obtained
is classified three times (i.e., three independent runs) by each reasoner. Given a
path M1 ⊂M2... ⊂Mn, we call P the set of all pairs Mi,Mj with i<j.

6 Results

Supporting materials, datasets and scripts can be found online2. Percentages in
this section are subject to appropriate rounding.

6.1 Subsumption Test Landscape

Out of the 1356 attempted classification runs (4 reasoners and 339 ontologies),
1136 (85%) completed successfully. 322 ontologies were dealt with by at least one
reasoner (95%) within the 60 minute timeout. Reasons for failure include hitting
the timeout, unsupported datatypes (FaCT++), and lack of DLness (mainly
HermiT). From the 322 ontologies successfully processed, 186 did not have any
subsumption tests measured by any of the three reasoners. By reasoner, FaCT++
did not test in 177 cases, HermiT in 189, JFact in 191 and Pellet did not fire
a ST during 218 successful classifications. For the remaining 136, at least one
reasoner conducted a ST as described in Section 5. One interesting observation

0, Fact++[EXP] 0, HermiT[EXP] 0, JFact[EXP] 0, Pellet[EXP]

1, Fact++[EXP] 1, HermiT[EXP] 1, JFact[EXP] 1, Pellet[EXP]

10
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100000

10
1000

100000

T VE E MEMDMH H VH T VE E MEMDMH H VH T VE E MEMDMH H VH T VE E MEMDMH H VH

Fig. 1. Counts of ST’s for each hardness bin by reasoner (log scale), distinguished by
positive (1) and negative (0) tests.

is that most positive tests are of only trivial hardness, while negative tests are
generally harder. While subsumption testing dominates the OCT only in a few
cases, it occasionally accounts for more than 80%. Very rarely we can observe
a single test accounting for more than 10% of the OCT. The maximum impact
for a single test by Pellet is 11.3%, HermiT 23.1%, JFact 24.8% and FaCT++
9.2%. The distribution of subsumption test hardness across all runs according
to our hardness scale (Sec. 4) is shown in Figure 1.

2 http://bit.ly/1bIqdNX
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6.2 In-depth Characterisation

From the previous experiment, according to the process detailed in Section 5, 3
ontologies were selected for FaCT++, 13 for HermiT, 5 for JFact and 4 for Pellet.
The full ontologies have OCT’s ranging from 7.31 seconds to 1211.00 seconds
(median: 103.20, mean: 210.70). Out of the 1200 (16 modules per ontology, 3 runs
per module, 25 ontology reasoner pairs) attempted classifications (timeout 60
minutes), 1093 (91%) successfully terminated. Out of the possible 400 modules
(16 modules, 25 ontology-reasoner pairs) across the entire set, we obtain 371
records from the intra-module analysis, 358 out of which were obtained from
three distinct measurements, 6 are comprised of two distinct measurements and 7
by only one. Since we are interested in observing variability, we discard the latter
7 and stick with 364 partially or fully complete records. Variability is determined
using the coefficient of variation (COV). From the module perspective, we look
at three distinct sources of variation: overall classification time (OCT), sum of
all subsumption test times (SUMST) and the total number of tests conducted
(CTT). Across modules, only 3 module OCT varies by more than 30%, 12 by
more than 20% and 19 by more than 10%. The module with the worst variation
corresponds to a module taken from a 2

16 th of the Biotop ontology, classified by
JFact (min=38.49 sec, max=194.22 sec). A more detailed picture of the overall
variation can be taken from Figure 2. In terms of test count, the variation is
surprisingly large. 246 out of 364 cases (68%) show differences in the number of
test measured across runs. Only 118 (32%) do not vary at all. 20 modules vary
by more than 10% in the number of subsumption tests.

Across all 371 modules, we measured the hardness of 2,536,339 distinct ST’s.
Only 89% of the tests are measured more than once and we discard the rest. As
can be seen in Figure 2, the coefficient of variation is generally log10-normally
distributed (here reported in percent rather than in proportions of 1), but varies
considerably across reasoners. On average, measurements deviate as much as
13.22% and 13.96% for Pellet and HermiT respectively, while measurements for
and JFact deviate by 3.5%, and FaCT++ only 2.83%. The maximum varia-
tion for any test measurement for Pellet is 172.65%, for HermiT 172.50%, for
FaCT++ 167.87% and for JFact 169.07%.

For the inter-module analysis, we sampled 30 sub-module super-module
pairs from P from the 120 possible combinations as described in Section 5. Tak-
ing into account the successful classification we obtained data from 703 out of
750 possible comparisons. For result stability, we excluded a further 14 pairs
that had only a single measurement for either the sub or the super-module, and
continued with 689. Figure 3 shows the overall changes in measurement times
across pairs by reasoner. Bin membership is determined as follows. Given a pair
<M1,M2>∈ P we look at the change from either the CT (M1) to CT (M2)
or the change from a subsumption test STM1

to STM2
. Every pair of mea-

surements has a tendency, a magnitude and a degree of stability. The tendency
easier (mean hardness change less than -5%) denotes that a test is easier in the
super-module (potentially pathological), harder (mean hardness change more
than 5%) the reverse, and neutral means the mean measurement difference does

488



Subsumption Test Hardness in DL Classification 9
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Fig. 2. Top 2 rows: Histogram of variation (COV) by reasoner. Top: OCT, bottom:
SUMST. Bottom: Histogram of variation (COV) of ST measurements by reasoner.
Mind the log scale.

not change by more than 5%. High magnitudes are changes above 50%, medium
magnitudes are changes between 5% and 50% and low changes are below 5%.
An effect can be of three degrees of stability: clear cut, high or low, see Section 4.
Neutral cases have high stability if both sets of measurements have a variation
coefficient less than 5%. From the module perspective, the main observation to
be made here is that there are 39 cases in the set where the sub-module is harder
than the super-module and 173 where there is no significant change in hardness
(less than 5% change). Test time stability varies a lot across reasoners. While
FaCT++ measurements are mostly stable, Pellet and JFact measurements vary
a lot across almost all potential categories. The pathological cases as described
in Section 4, EHC and EHH, occur rarely. Out of the 1,507,654 tests that got
easier overall, only 399,644 (26%) are of a high magnitude. Out of those, 376,078
are clear cut, and 8,850 of high stability. From the clear cut cases, 59,656 are
potentially unaffected by non-determinism, out of which 204 are harder than
100 ms. Out of the highly stable cases, only 302 are potentially unaffected by
non-determinism, out of which only 10 are harder than 100ms. None of the tests
in both groups are harder than a second.

7 Discussion

We quantify the impact of subsumption test hardness (RQ1) on classification
time in two ways: (1) Contribution of test times measured to OCT and (2)
ratio of number of ontologies with tests to those without. Only few of the 136
ontologies with tests were dominated by test hardness: Only 1 ontology had more
than a 50% contribution of total SST for Hermit, 7 for Pellet, 19 for FaCT++
and 23 for JFact. However, there are cases where the contribution is very high.
The ratio of ontologies entirely without tests is very high: FaCT++: 52%-71%,
HermiT 55%-80%, JFact in 56%-76% and Pellet 64%-84%. We have established
only the lower bound. The upper bound covers the very unlikely possibility
that the failed classifications might be all without tests. Additionally, 36 of the
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Fig. 3. Hardness classes by reasoner. Top row: OCT, bottom 4: SST. Bin labels x-axis:
1st letter: tendency (easier, neutral, harder), 2nd: magnitude (low, medium, high), 3rd:
stability: (clearcut, high, low). Y-axis: number of comparisons.

ontologies entirely without tests have less than 100 TBox axioms (12 less than
10).

RQ2 is quantified by ratio of positive to negative tests. Positive tests account
to between 0.12% (Pellet) and 2.61% (FaCT++) of the overall number of tests
(JFact 2.49%, HermiT 2.12%). This low ratio is not surprising, given that the
worst case N2 is dominated by far by non-subsumptions. As a side observation,
current traversal algorithms appear highly efficient. Only 3 ontology-reasoner
pairs (two distinct ontologies, small TBoxes) trigger more than 10% of the worst
case N2 number of subsumption tests, and 50 pairs (30 unique ontologies) trigger
more than 1% of the worst case. This result however is only indicative of the
efficiency, as we do not guarantee to measure all tests.

The distribution of test hardness as shown in Figures 1 tends towards easy
tests (RQ3). Figure 1 show that the number of really hard tests are in the
minority: only 346 out of 2,671,896 tests measured overall are harder than a
second. This result may emphasise the importance of test avoidance over further
optimising individual subsumption tests. However, as there are individual tests
that can make up to 25% of the overall reasoning time, it cannot be disregarded.

The variation of the measurements, both for individual tests and overall
times, is, at least in its magnitude, surprising (RQ4). While the variation of test
times could be so high merely due to the low number of measurements that are
very vulnerable to experimental error (for example an unaccounted for system
background kicking in, stochasticity in the garbage collection, room tempera-
ture), we cannot claim the same for the variation in the numbers of triggered
tests. That 68% of the modules in the sample vary in the number of tests is a
very strong indicator for the stochasticity of the classification process (at least
in this particular sample), be it due to random effects in the programming lan-
guage or deliberate randomness induced by the implementation. This poses a
serious threat for single-run benchmarking, as it is still general practice in the
DL community. A small indication of the potential impact of a particular pro-
gramming environment is the very low average variation in test times collected
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for FaCT++, which is the only reasoner in the set implemented in C++. In the
inter-module comparison we learned that our pathological cases rarely happen
and if so, the effect they might have on overall classification time is negligible,
due to the potential degree of the effect and the rarity in which they occur. Fur-
thermore, the strong evidence of stochasticity of the classification process makes
it unclear whether the effect might not simply be due to non-determinism. De-
spite having detected some cases that are clearly counter-intuitive (in the sense
of getting easier when irrelevant stuff is added in), we cannot be sure whether
modularity is the cause, due of the small effect size (RQ6). On top of that, eas-
ier and harder tests almost balance each other out. Given our sample bias, our
results are not conclusive.

8 Conclusions and Future Work

In this paper we have presented a procedure for reliable and reproducible isola-
tion of counter-intuitive reasoning behaviour on subsumption tests during clas-
sification and presented some such isolated cases. Future work includes com-
pleting the full characterisation of the corpus with respect to the pathological
cases and then investigating the causal basis of those cases. The most likely ex-
planation is that the additional axioms trigger a cheaper choice in the complex
non-determinism algorithms. The big challenge is whether any progress can be
made in a fairly reasoner independent way. One idea is to extract the justifica-
tions for a given entailment and see whether they are disproportionally difficult
individually. This would suggest that the additional information is directing the
algorithm toward “easier” reasoners.
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Abstract. In OBDA systems, cached rewritings can be used to
significantly shorten the process of finding rewritings of bigger queries.
The main challenge in using cached rewritings is finding the optimal
combination to apply, a problem which is NP-complete. In this paper, we
present a way to calculate the value of a cached rewriting, and propose
using this value to decide which cached rewritings to apply. The idea
behind our technique is to estimate how much computation, in particular
optimization, has gone into the rewriting. This can tell us something
about which cached rewritings we should prioritise, and also when to
cache a rewriting. In order to quantify optimization, we define a measure
of UCQs, and calculate this measure at different stages of the rewriting.

1 Introduction

Ontology-based data access (OBDA) [11] is a recent paradigm for accessing
data sources through an ontology that acts as a conceptual, integrated view of
the data. The data sources are connected to the ontology via mappings that
specify how to retrieve the appropriate data from the sources. The framework of
OBDA has received a lot of attention in the last years: many theoretical studies
have paved the way for the construction of OBDA systems (e.g., [3, 5, 13]) and
the development of OBDA projects for enterprise data management in various
domains [2].

The usual way of answering a query over the ontology in the OBDA
framework [11] is to transform it into a set of queries to be executed over the
data sources. This process is computationally expensive, as it requires logical
reasoning over knowledge represented in the ontology (rewriting) followed by
the application of mappings to the ontological query (unfolding). Furthermore,
as the resulting set of queries is likely to contain redundancies, optimization
techniques are typically applied along the way [10]. It therefore makes sense to
cache the results of a query rewriting and unfolding, in the hope of using them
to speed up the answering of future queries [10]. However, the problem of finding
the cached rewritings to use is itself hard, as it is a variant of the well-known
problem of query answering using views [8]. In particular, checking whether a
cached rewriting can be applied to a query is in general NP-complete.

In this paper, we therefore study the following problem: Given a query Q
to answer and a set of cached rewritings of previous queries, how useful is each
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cached rewriting likely to be, if it is applicable to Q? Knowing this, the system
can make sensible decisions as to which cached rewritings to try and apply, and
in what order.

As a measure of the usefulness of an existing cached rewriting, previous work
by Di Pinto et al. [10] use the number of atoms in the queries. This approach
does not take into account the details of the rewriting algorithm used, nor the
specification of the OBDA system the queries are answered over. In order to
get a finer picture of the usefulness of a cached rewriting, we define a measure
for UCQs, and apply it to an intermediate stage of the rewriting. We then use
this measure, as well as measures of the cached rewriting, to define a heuristic.
In addition to analysing the queries of a cached rewriting directly, this heuristic
also takes into account how ontology queries are rewritten by the OBDA system.

2 Preliminaries

In this section, we define basic notions related to OBDA systems and their
components: databases, ontologies, and mappings. We then give a definition of
query rewriting and unfolding, followed by a formal definition of cached query
rewritings as mappings that possess specific properties.

2.1 Databases

In this paper, we assume a fixed relational schema S, and adopt the standard
notions for conjunctive queries (CQs) over S [1]. To every conjunctive query CQ
we associate a measure of its size, denoted by size(CQ). There are several ways
to measure the size of a conjunctive query; we will discuss using the number of
atoms or the number of variables in the query. However, it is possible to also use
more advanced measures of query size, such as tree and hypertree width [6, 7].

Given a conjunctive query Q and a tuple of constants t, we write Q[t] for
the query obtained by replacing the free variables of Q with the constants in t.
Given a database instance D and a query Q, we write ans(Q,D) for the set of
answers to Q over D, defined in the standard way.

2.2 Ontologies

An ontology is a description of a domain of interest in some formal language.
Here, we consider the languages of Description Logics (DLs). In general, an
ontology expressed in a description logic is a pair O = 〈T ,A〉, where the TBox
T contains axioms specifying universal properties of the concepts and roles in
the domain, while the ABox A specifies instances of concepts and roles. In the
OBDA setting, the ABox is given by mappings rather than explicitly, and so the
TBox is the only relevant component. We therefore set O = T .

In the examples discussed in this paper, we will use the description logic
DL-LiteA [4, 12]. The syntax of DL-LiteA is based on concepts, value-domains,
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roles, and attributes, and can be defined using the following grammar [10]:

B → A | ∃Q | δ(UC) E → ρ(U)

C → B | ¬B F → T1 | . . . | Tn
Q→ P | P− V → U | ¬U
R→ Q | ¬Q,

where A is a concept name, P is a role name, U is an attribute name, and
T1, . . . , Tn are value-domains. We let ΣO be a set of ontology predicates, and
ΓC a set of constants. The semantics of DL-LiteA is defined in terms of first-
order interpretations I = (∆I , ·I) over ΣO ∪ ΓC . The non-empty domain ∆I

is the union of the disjoint sets ∆V and ∆IO, where ∆V is the domain for
interpreting data values, and ∆IO is the domain for interpreting object constants.
The interpretation function ·I is defined as follows:

AI ⊆ ∆IO (¬U)I = (∆IO ×∆V ) \ UI

P I ⊆ ∆IO ×∆IO (P−)I = {(o, o′) | ∃v.[(o′, o) ∈ P I ]}
UI ⊆ ∆IO ×∆V (∃Q)I = {o | ∃o′.[(o, o′) ∈ QI ]}

(¬B)I = ∆IO \BI (δ(U))I = {o | ∃v.[(o, v) ∈ UI ]}
(¬Q)I = (∆IO ×∆IO) \QI (ρ(U))I = {v | ∃o.[(o, v) ∈ UI ]}.

A DL-LiteA TBox T is a finite set of axioms of the form

B v C Q v R E v F U v V (funct Q) (funct U).

The interpretation I satisfies an axiom X v Y if XI ⊆ Y I . I satisfies (funct Z)
if for every o, o′, o′′ ∈ ∆IO, if (o, o′) ∈ ZI and (o, o′′) ∈ ZI , then o′ = o′′.

2.3 Mappings

In the general case, a mapping assertion m between a database schema S and
an ontology O has the form Q q, where the body Q is a CQ over S, and the
head q a CQ over the vocabulary of O [11], possibly with shared free variables.
To define the semantics of mapping assertions, we first need to define the notion
of an OBDA system.

2.4 OBDA systems

An OBDA system specification is a triple B = 〈O,S,M〉 where S is a database
schema, M a set of mapping assertions, and O an ontology. The semantics
of query answering in OBDA systems are usually defined using first-order
interpretations.

Definition 1 (OBDA semantics). Let B = 〈O,S,M〉 be an OBDA system
specification, and D a database for S. A first order interpretation I with I |= D
is a model for B if
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– I |= O, and
– for every tuple of constants t from D, and every mapping assertion
Q q ∈M, we have that I |= q[t] whenever I |= Q[t].

The set of answers to a query q over B and D is the set of tuples t from D
such that q[t] is true in every model of B and D. We write ans(q,B,D) for the
answers to q over B and D.

As mentioned in the introduction, answering a query in an OBDA system
is usually done by rewriting and unfolding the query into the correct database
queries to execute.

Definition 2 (Rewriting and unfolding). Let B = 〈O,S,M〉 be an OBDA
system specification, and q a CQ over the vocabulary of O. A rewriting of q
under B is a query q′ over the same vocabulary such that ans(q′, 〈∅,S,M〉,D) =
ans(q,B,D) for every database instance D.

An unfolding of the rewriting q′ of q is a query Q over S such that
ans(Q,D) = ans(q,B,D) for every database instance D.

We can now define the notion of a perfect mapping assertion, which captures
the idea of caching the rewriting and unfolding of a query.

Definition 3 (Perfect mapping assertion [10]). Let B = 〈O,S,M〉 be an
OBDA system specification. A mapping assertion Q  q is a perfect mapping
assertion if for every database instance D, we have ans(q,B,D) = ans(Q,D).

Each cached rewriting and unfolding is a perfect mapping assertion. In
fact, caching is one of the primary methods for obtaining perfect mapping
assertions [10].

3 Applying Perfect Mapping Assertions

As part of their full OBDA rewriting algorithm, Di Pinto et al. [10] present
the algorithm ReplaceSubqueryR for applying a perfect mapping assertion
before the regular rewriting procedure starts. Using the notion of restricted
homomorphisms, they give an exact definition of when a perfect mapping
assertion can be applied.

Given a conjunctive query q, ReplaceSubqueryR goes through the perfect
mapping assertions in the order specified by some heuristic, modifying q
whenever the perfect mapping assertion is applicable. The order of application
is significant, since the application of one perfect mapping assertion can prohibit
the subsequent application of another. Finding the optimal combination of
perfect mapping assertions to apply is NP-hard [10]. Di Pinto et al. use a greedy
strategy. The heuristic for this strategy is the number of atoms in the heads of
the perfect mapping assertions.

Our goal is to define an improved heuristic for the order of application of
perfect mapping assertions.
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The following example, based on one of the challenges faced by the Optique
project1, shows how we create perfect mapping assertions.

Example 4. Let company(name, owner,manager, accountant) be a database
table. We define the concepts Company and Owner, Manager and Accountant,
and the roles hasOwner, hasManager, and hasAccountant. We define the
TBox,

T =





∃hasOwner v Company,
∃hasManager v Company,
∃hasAccountant v Company




,

and mapping assertions

M =





∃y, z, w.company(x, y, z, w) Company(x)

∃z, w.company(x, y, z, w) hasOwner(x, y)

∃y, w.company(x, y, z, w) hasManager(x, z)

∃y, z.company(x, y, z, w) hasAccountant(x,w)




.

We now look at the query q(x) = Company(x). The ontology rewriting of
Company(x) is

q′(x) = Company(x) ∨ ∃v.hasOwner(x, y)

∨ ∃v.hasManager(x, y) ∨ ∃v.hasAccountant(x, y).

When unfolding q′(x) we get the UCQ

∃y, z, w.company(x, y, z, w)

∨ ∃v, z, w.company(x, v, z, w)

∨ ∃y, v, w.company(x, y, v, w)

∨ ∃y, z, v.company(x, y, z, v),

which is obviously equivalent to

∃y, z, w.company(x, y, z, w).

We cache this rewriting by saving the perfect mapping assertion

∃y, z, w.company(x, y, z, w) Company(x).

Example 4 illustrates one situation where perfect mapping assertions are
useful. An alternative way of dealing with his particular example is by modifying
the setM of mapping assertions according to the TBox [13], and then to optimise
it [9, 13]. This approach is not as general as the perfect mapping assertion
approach, because it only works when there are redundancies in the mapping
assertions. The perfect mapping assertions can represent optimisations that are
only valid in special cases.

1 http://optique-project.eu/
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4 Query Measure

In order to evaluate the quality of a perfect mapping assertion, we need some
way of measuring a UCQ. We will use this measure to quantify the amount of
optimization that has gone into creating a perfect mapping assertion.

There are several ways to measure the size of a conjunctive query. For ease
of exposition, we will use the number of atoms in the query in our examples,
although the number of variables is usually more relevant to the exact cost of
optimising a query, since query optimisation amounts to finding homomorphisms
between queries. If the number of variables is approximately linear in the number
of atoms, the results of using either will be similar.

Furthermore, the number of atoms in each conjunction of the unfolding of a
conjunctive query can be approximated from the number of mapping assertions
that mentions conjunct. On the other hand, finding the number of variables
requires an analysis of each mapping assertion.

The size of a UCQ is harder to describe with a single number, because UCQs
have two dimensions: the conjunctions and the conjuncts in them.

Definition 5 (Measure of UCQs). Let Q = CQ1 ∨ . . . ∨ CQk be a UCQ,
size(CQi) the size (e.g. number of atoms) of CQi, and f a weighting function.
Define g(x) = x if f is at most linear, and g = f−1 otherwise. The measure of
Q is

SQ = g

(
k∑

i=1

f(size(CQi))

)
.

The function f defines how SQ depends on the size of the conjunctive queries,
the function g makes SQ at most linear in the sum of the sizes. Our choice of
g will make SQ of the order O(k ·maxi[size(CQi)]), where, and k is the number
of conjunctive queries in the UCQ. We choose f according to the following
observations.

– f constant: We disregard the size of disjuncts. The cost of performing
optimizations is assumed to be insignificant compared to the cost of
rewriting, unfolding and storing the query.

– f linear: The cost of optimization is assumed to be on the same order as
the cost of rewriting, unfolding and storing the query.

– f polynomial or exponential: The cost of optimization is assumed to be
more important than the cost of rewriting, unfolding and storing the query.

The above list is explains how different definitions of f affects the measure
SQ. It gives a strong indication of how we should define f , depending on what
we want to use the measure SQ for. In Sections 5 and 6, we will use linear f . We
get back to the choice of f briefly in Section 7.
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5 Maximal expansion

Having defined a measure for UCQs, we are now in a position to assign a value
to the body Q of a perfect mapping assertion Q  q. Such an analysis gives
us some information about how much we stand to gain by applying this perfect
mapping assertion. We can, however, get an even better picture by looking at
the process of rewriting q. Doing this, we can get a measure of how complex q
really is in the relevant OBDA system.

Definition 6 (Maximal expansion). Let q be a query, B = 〈O,S,M〉 an
OBDA system specification, and R an ontology rewriting algorithm. The
maximal expansion of q over B and R, denoted me(q,B,R), is the unoptimised
ontology rewriting and unfolding of q over B using R.

We write me(q,B) when the choice of R is clear from the context. When
the OBDA system is also understood from the context, we let Sme(q) denote the
measure of me(q,B). The following example shows how we calculate Sme(q).

Example 7. We look at an OBDA system specification with TBox axioms
A v ∃R and S v T , and the mapping

M =





QA1
 A,QA2

 A,QA3
 A,

QR1
 R,QR2

 R,QR3
 R,QR4

 R,

QS1
 S,QS2

 S,

QT1
 T,QT2

 T,QT3
 T





and rewrite the query q(x, y) = ∃z.R(x, z) ∧ T (x, y). The ontology rewriting of
q according to rewriting algorithm R is

q′(x, y) = [∃z.R(x, z) ∧ T (x, y)] ∨ [∃z.R(x, z) ∧ S(x, y)]

∨ [A(x) ∧ T (x, y)] ∨ [A(x) ∧ S(x, y)]

We choose f(x) = g(x) = x, let size(CQ) be the number of atoms in CQ, and
calculate Sme(q). If each QXn

is a query without joins, then the resulting maximal
expansion is a UCQ with joins of size 2. The first disjunct in q′ is unfolded into
12 conjunctive queries of size 2, since there are four queries mapped to R and
3 to T . We do similar calculations with each disjunct of q′, and end up with a
total of 35 conjunctive queries, each of size 2. Therefore Sme(q) = 70.

In Example 7, we assumed that there were no conflicts between mapping
assertions during the unfolding. Such conflicts can arise when there the mapping
assertions contain constants in place of some variables. In this case, only those
mapping assertions that have constants replacing the same variables can create
conflict, and this will usually only be the case for a very few combinations of
assertions. If constants are common in the used mapping assertions, then greater
care must be taken when using approximations of Sme(q).
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6 Heuristic

With a measure for UCQs and the notion of maximal expansions, we are now
in a position to expand on the heuristic suggested by Di Pinto et al. [10]. We
design a heuristic where large values are better. In the following we assume a
fixed OBDA system and ontology rewriting algorithm.

For a perfect mapping assertion Q  q, we calculate the measures Sq,
SQ and Sme(q). Note that Sq = size(q), since q is a conjunctive query.During
both ontology rewriting and unfolding, the size of a conjunctive query can
grow exponentially. In both cases there is generally multiple options for dealing
with every conjunct, and the result is a very large UCQ. For this reason, we
will use logSQ and logSme(q), since they will be approximately proportional
to Sq. We also calculate the ratio logSme(q)/ logSQ, which tells us how much
optimisation has gone into the creation of the perfect mapping assertion. We
use this optimization ratio to adjust other measures of the value of the perfect
mapping assertion.

If Sq is large for a perfect mapping assertion Q  q, that is, the size of
q is large, then applying it cuts a large portion of the original query. There
is, however, a risk that this portion could be rewritten directly without much
difficulty. In order to compensate for this effect, we scale Sq by the optimisation
ratio logSme(q)/ logSQ.

A perfect mapping assertion is also valuable if the corresponding Sme(q) is
large, no matter the size of Sq. Again, we scale logSme(q) by the optimisation
ratio logSme(q)/ logSQ.

Assigning a weight parameter to each of these compound measures, we get
the heuristic

a
(logSme(q))

2

logSQ
+ b

Sq · logSme(q)

logSQ
+ cSq

We assume Sq, logSQ and logSme(q) have the same units, since they are all
approximately linear in the size of the head q of the perfect mapping assertion
Q  q. Then, the unit of each term in the above sum is the same, and also
approximately linear in the size(q). This means that the ratio between the terms
will be fairly stable in respect to typical query size, and as such, the tuning of
the parameters a, b, and c will not be very sensitive to the typical query size.

Example 8. We look at an ontology with an empty TBox, and the four roles R1,
R2, R3, and R4. We define the set of mapping assertions

M = {Qj
i  Ri | j = 1, . . . , i2},

where i = 1, . . . , 4. We let size(CQ) be the number of atoms in CQ, and assume
that each Qj

i is atomic. We let f(x) = x, and calculate Sq and Sme(q) for different
conjunctions of Ri, with each role occurring at most once in each query. The
results are shown in Table 1. We see that Sme(q) gives us a much finer division
than Sq, which only divides the queries into 3 groups. Given the query

R1(x1, x2) ∧R2(x2, x3) ∧R3(x3, x4) ∧R4(x4, x5),
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and the perfect mapping assertions

QA(y1, y2, y3, y4) R1(y1, y2) ∧R2(y2, y3) ∧R3(y3, y4)

QB(z1, z2, z3) R3(z1, z2) ∧R4(z3, z4),

there is a good chance that our best option is to apply the second, shorter perfect
mapping assertion, because the maximal expansion of R3(x3, x4)∧R4(x4, x5) is
so large. In order to be more precise, we would need to obtain the measures SQA

and SQB
.

R1 R1 R1 R2

R1 R1 R1 R2 R2 R3 R2 R2 R3 R3

q R1 R2 R3 R4 R2 R3 R4 R3 R4 R4 R3 R4 R4 R4

Sq 1 1 1 1 2 2 2 2 2 2 3 3 3 3
Sme(q) 1 4 9 16 8 18 32 72 128 288 108 192 432 1728

Table 1. The measure Sme(q) can be used to fine order the groups defined by Sq, but
there are also pairs of queries where Sq and Sme(q) disagree on ordering.

7 Discussion and Conclusion

Di Pinto et al. [10] have found that using cached rewritings can significantly
reduce the cost of answering queries. Their well performing algorithm,
ReplaceSubqueryR, relies on a heuristic for determining the order in which to
apply cached rewritings. Di Pinto et al. have chosen a simple heuristic based
on the sizes of the heads of the cached rewritings. This is a good choice if all
subqueries have approximately the same complexity when seen together with
the TBox and the mapping. If some ontology predicates are easier to rewrite
and unfold than others, then the measures of the maximal expansion Sme(q) and
the optimised rewriting SQ become relevant to the choice of cached rewriting.

We suggest the heuristic

a
(logSme(q))

2

logSQ
+ b

Sq · logSme(q)

logSQ
+ cSq

If we let a = b = 0, c 6= 0, and define size(CQ) to be the number of atoms in
CQ, then our heuristic becomes the same as the one used in [10]. By tweaking
f in Definition 5, and the parameters a, b and c, we can shift importance away
from Sq, and towards maximal expansion Sme(q) and optimisation SQ. The ideal
setup will depend on the OBDA system specification, and should be decided
experimentally. For the heuristic presented here to be more accurate than the
one in [10], the OBDA system specification needs to be uneven in terms of how
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each ontology predicate is rewritten. If the mapping has very many assertions
for some ontology predicates and few for others, or if some ontology predicates
occur often in the TBox while others don’t, then the count of predicates in a
query need not reflect how it behaves during rewriting. Also, if the mapping is
very large, the optimisation ratios are more likely to be significant, since the
unfolding and subsequent optimisation will be a large part of query rewriting.

Since Sq, Sme(q), and SQ are relatively cheap to calculate or approximate
during rewriting, and cheap to store in a cache, we claim our suggested heuristic,
in many settings, will outperform the simpler heuristic provided by [10]. Even
when the simple heuristic performs very well, we can let a = 0 and b � c, so
that Sme(q) is used for a fine splitting as illustrated by Example 8.

8 Future Work

We plan to continue this work by experimentally verifying our results. In
particular, we would like to compare the different weighting and scaling functions
discussed here on real-world datasets. Another line of enquiry would be to see
how well these heuristics can substitute for e.g. techniques to eliminate mapping
redundancy, as discussed in Section 3.
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Abstract. Quality of Service (QoS) guarantees are usually regulated
in a Service Level Agreement (SLA) between provider and consumer
of services. Such guarantees are often violated, it may however be the
case where the available services do not match exactly all required QoS,
leading the system to grind to a halt. It would be better to look for an
approximation for acceptable QoS and avoid the complete stopping of the
running services. This paper aims at making dynamic QoS acceptability
easy for service selection. The proposed model is based on an extension
of existing probabilistic description logics reacting to QoS variations.
The contributions made are twofold (1) a query description language to
express the required QoS by means of a probabilistic description logic
(2) a reasoning algorithm for decision making about the acceptability of
QoS w.r.t the probabilistic description.

1 Introduction

In a Service Oriented Architecture, service providers need to characterize their
services defining both the offered functionalities and the offered quality. Then,
the quality of service (QoS) properties can be critical elements for achieving the
business goals of service providers. Establishing QoS contracts, described in a
SLA, that can be monitored at runtime, is therefore of paramount importance.
The SLA must stipulate the values of QoS attributes that a service provider is
expected to deliver to a client.

Moreover, a successful execution of a service composition implies continuous
monitoring of QoS at runtime. However, at this step, variations could occur
in the QoS and most likely induce violations of the agreement. For that, the
service composition should support a dynamic QoS-driven adaptation. A static
adaptation is not adequate due to variations of the QoS. Existing approaches
deal with static QoS, they do not address the attribute variations issue. A formal
and declarative approach to achieve a dynamic adaptation is then highly desired.
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In this paper, we propose a probabilistic description logic based approach to
describe the QoS attributes and handle their variations through the use of lin-
guistic concepts. The proposed approach helps to select services in order to build
approximate compositions which may not satisfy all the requirements, hence
avoiding to completely stop running the processes. It provides the basis allowing
the representation and reasoning about the introduced symbolic concepts, where
the variation of QoS is modeled in a probabilistic way, hence managing the QoS
acceptability. Our main contributions are summarized in the following:

1. We introduce a query description language to express the required QoS using
both linguistic concepts and probabilistic representations. To this end, we
extend existing probabilistic description logics to handle QoS variations.

2. We develop a suitable reasoning algorithm for computing the QoS acceptabil-
ity of the selected service w.r.t the probabilistic description. The algorithm
achieves an approximate reasoning using inference rules involving probabilis-
tic statements.

The remainder of the paper is structured as follows. In section 2, we provide
first, a discussion about existing works dealing with QoS and, second a review of
the approaches related to probabilistic description logics. Section 3 describes our
proposal to manage the QoS acceptability. In section 4, we present the syntax and
semantics of the proposed language. Section 5 details the reasoning algorithm
and section 6 concludes the paper.

2 Related Work

Most of existing approaches focused on the contract definition and on mecha-
nisms for contract enactment. [1] describes a matchmaking algorithm for rank-
ing functionally equivalent services. In [8], a fuzzy service adaptation approach
that leverages the degrees of QoS satisfaction, is discussed. [11] proposes a soft
constraint-based framework to seamlessly express QoS properties reflecting both
customer preferences and penalties applied to unfitting situations. The work in
[2] discusses a constraint based approach for quality assurance in a choreogra-
phy system. In [10], a new trend called service skyline computation for handling
multiple quality criteria including user preferences, is proposed.

On the other hand, semantic technologies have been applied in recent works
for reasoning about QoS of different systems during service composition. [7] pro-
poses a meta-model for non functional property descriptions targeted to support
the selection of Web services. The contribution in [3] focuses on the analysis
of the requirements for a semantically rich QoS-based Web Service Description
Model and an accurate, effective QoS-based WS Discovery (WSDi) process. [9]
presents an overview of prominent research works related to developing QoS
ontologies.

It is worthy to note that the above approaches do not handle the varia-
tions of QoS at runtime. An effective service composition management requires
a support for the acceptance of QoS values, and should also allow for a flexible
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acceptability for autonomous corrective actions. We provide here a probabilistic
description logic based approach allowing self-healing in reaction to QoS varia-
tions by expressing their semantics.

In the literature, a number of works on probabilistic description logics exists
[6, 5, 4]. In cite[4], the authors proposed a probabilistic extension of the expressive
description logics P-SHIF(D) and P-SHOIN (D) that encompasses both statis-
tical and subjective features, and also addresses the non-monotonic aspects of
probabilistic knowledge using a semantics based on Lehmanns lexicographic en-
tailment. In the cited approaches, the terminological and assertional knowledge is
extended with conditional constraints and refered to as probabilistic knowledge.
Those constraints express probabilities relating concepts or individual assertions.
Our approach describes probabilities in a higher level of abstraction which allows
to define probabilistic concepts that can be used in complex descriptions. We
provide a reasoning algorithm dealing with such concepts.

3 Dynamic QoS Acceptability Framework

As depicted in Figure 1, our work can be integrated into a service composition
system as a real-time QoS acceptability process. The inputs are the QoS required
by the service selection process and the events captured by the monitoring pro-
cess. The output is a set of acceptable services regarding their effective QoS.
Events dealing with real-time execution of services are captured by the mon-

Monitoring   
process 

Probablistic calculus 
 process 

Service execution 

Service composition 

events 

execution results 

Probabilistic QoS 

Required QoS 

Acceptable services  
w.r.t. QoS 

Services  

Service Composition Framework 

QoS selection process 

Symbolic encoding 
 process 

Interpreted events 

SLA 
 

QoS Requirements 
Probabilistic QoS 
Selection process 

Probabilsitic description 

Probabilistic reasoning 

Fig. 1. QoS variations framework for service selection
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itoring process. From these events, we extract real-time measures of the QoS
provided by services. To efficiently handle such measures for the purpose of de-
cision making, they are expressed thanks to symbolic concepts while taking into
account their variations in a probabilistic way. We illustrate this idea through
the following example.

Let us consider two services S1 and S2 involved in a web services composition.
Assume that the monitoring process has captured the events given in Table 1.

Event Execution time Service ID Response time (TR) RAM Consuming (RC)

1 10:15:45 S1 12ms 3MB
2 10:55:05 S1 3ms 11MB
3 21:30:00 S1 2ms 4MB
4 10:15:45 S1 4ms 13MB
5 21:35:55 S2 1ms 80MB
6 23:10:09 S2 2ms 75MB

Table 1. Example of events captured by the monitoring process

3.1 Symbolic encoding of the events

Each quantitative measure captured by the monitoring process is interpreted
by symbolic value using business rules. Business rules may be provided by the
application domain experts in a Service Level Agreement (SLA). In what follow
are examples of business rules:

– Rule 1 (for the interpretation of Time Response measures): A response time
is said to be good (GoodTR) if it is less than 3ms, medium (MediumTR) if
it is between 4ms and 6ms and bad (BadTR) otherwise.

– Rule 2 (for the interpretation of RAM consuming measures): A RAM con-
suming is said to be good (GoodRC) if it is less than 5Mb, bad (BadRC)
otherwise.

Given the above two rules, the measures of Time Response and RAM are shown
in Table 1 can be expressed in the following qualitative/symbolic descriptions:

– Event 1: S1 : BadTR, S1 : GoodRC.

– Event 2: S1 : GoodTR, S1 : BadRC.

– Event 3: S1 : GoodTR, S1 : GoodRC.

– Event 4: S1 : MiddleTR, S1 : BadRC.

– Event 5: S2 : GoodTR, S2 : BadRC.

– Event 6: S2 : GoodTR, S2 : BadRC.
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3.2 Probabilistic QoS

The real-time QoS of a given service is not static but varies over different execu-
tions of the service. The QoS of each service has to be represented by a unique
description in terms of a probability distribution 1. Hence, the multiple values
about a symbolic QoS are described using the Bayesian probability defined as
follows:

P (SymbQoS|Si) = P (SymbQoS∩Si)
P (Si)

= |SymbQoS∩Si|
|Si|

= number of appearences of SymbQoS in the events of Si

Number of executions of Si

where
SymbQoS ∈ {BadTR,GoodTR,MiddleTR,BadRC,GoodRC,MiddleRC}.

Back to the example introduced in section 3.1, the services S1 and S2 have
been executed four times and twice, respectively. Hence, the probability values
associated with their QoS can be computed as follows:

– S1 received once BadTR. So, S1 is BadTR with a probability of 0.25.
– S1 received three times GoodTR. So, S1 is GoodTR with a probability of

0.75.
– S1 received twice GoodRC. So, S1 is GoodRC with a probability of 0.5.
– S1 received twice BadRC. So, S1 is BadRC with a probability of 0.5.
– S2 received twice GoodTR. So, S2 is GoodTR with a probability of 1.
– S2 received twice BadRC. So, S2 is BadRC with a probability of 1.

3.3 Probabilistic QoS selection process

Given a required QoS, a traditional selection process decides whether a known
service is acceptable or not. In our case, the selection process operates in an
uncertain (probabilistic) environment since each QoS is described thanks to a
probability distribution.

To this end, we propose a formal model based on probabilistic DLs to pro-
cess acceptability of QoS. In this model, the required and provided QoS are
described using a formal description language. A reasoning algorithm to decide
the acceptability, is proposed as well.

As example for a required QoS, let’s consider the following query: Retrieve the
services that should provide a Good Response Time with a probability greater
than 0.7 and Bad RAM Consuming with a probability less than 0.55. Intuitively,
Only service S1 is acceptable with respect to this required QoS, the Service S2 is
not acceptable because it does not provide Bad RAM consuming with probability
less than 0.55.

1 The interpretation of probability considered here is the so-called ”the a-priori inter-
pretation” which is the oldest and simplest one. The probability of an event is the
number of favorable cases, where this event occurs, divided by the total numbers
of possibles cases. So, w.r.t the same service and the same attribute, the required
axiom that probabilities add up to 1 holds
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In what follows, we present the proposed formal model for QoS acceptability
decision making.

4 Probabilistic DL for Handling QoS Acceptability

The model relies on a probabilistic extension of DL defined with the following
components:

– An expression language, including a set of symbols that are used to express
knowledge about QoS.

– A semantic of symbols of the expression language, based on an interpretation
domain and an interpretation function.

– A reasoning algorithm based on a set of inference rules to make a decision
about the QoS acceptability.

Syntax of the description language
The proposed syntax is summarized in Table 2 (with ◦ ∈ {<,>,≤,≥}). The in-
troduced description language allows expressing two types of information related
to QoS:

1. The knowledge about dynamic QoS, and
2. The information related to the required QoS.

Syntax Interpretation

Q◦p Refers to services that provide the QoS Q with a probability ◦ p (Q◦1 is noted Q)
Q1◦p uQ2◦q Refers to services that provide the QoS Q1 and Q2 with probability, respectively, ◦ p and ◦ q
Q1◦p tQ2◦q Refers to services that provide the QoS Q1 or Q2 with probability, ◦ p and ◦ q, respectively
¬Q◦p Refers to services that do not have the QoS Q with a probability ◦ p
Q1 v Q2 Means: Any service that provides the QoS Q1, then it provides automatically the QoS Q2.

Table 2. Syntax of the proposed description language

For instance, the dynamic QoS of the example provided in the previous sec-
tion can be written as follows:
BadTR0.25(S1), GoodTR0.75(S1), GoodRC0.5(S1), BadRC0.5(S1),

GoodTR1(S2), BadRC1(S2).

Similarly, the description of the required QoS can also be expressed using this
language. For example, the following formulas are two different descriptions of
possible required QoS:
GoodTR≥0.7 uGoodRC≥0.4
¬BadTR≥0.1 uGoodRC≥0.9
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In the first, we require a good time response with a minimum rate of 70% and
good RAM Consuming with the minimum rate of 40%. While in the second one,
we require services that provide good RAM Consuming with probability greater
or equal than 90% and, at the same time, do not provide bad time response with
probability greater than 10%.

Formal semantics of the description language
The formal semantics of terms and constructors of the description language is
defined by the pair

〈
∆I , .I

〉
where:

– ∆I is an interpretation domain. It is composed of individuals that represent
the services managed in the BPM (Business Process Management) system.

– .I is an interpretation function that assigns terms Q of the language to indi-
viduals of ∆I as shown in Table 4 (where ◦̄p stands for the complementary
of ◦p, for instance >̄p = ≤ p):

Syntax Formal interpretation

Q◦p QI◦p =
{
s ∈ ∆I | QI(s) ◦ p

}

Q1◦p uQ2◦q Q1I◦p uQ2I◦q =
{
s ∈ ∆I | Q1I(s) ◦ p ∧Q2I(s) ◦ q

}

Q1◦p tQ2◦q Q1I◦p tQ2I◦q =
{
s ∈ ∆I | Q1I(s) ◦ p ∨Q2I(s) ◦ q

}

¬Q◦p (¬Q)I◦p = QI◦̄p =
{
s ∈ ∆I | QI(s) ◦̄ p

}

Q1 v Q2 ∀s ∈ ∆I , Q1I(s)⇒ Q2I(s)

Table 3. Formal semantics of the proposed probabilistic DL

For instance, the probabilistic concept Q≥0.5 is interpreted as the set of
individuals with a probability degree greater than 0.5. Interpretation of complex
and composed descriptions is also allowed as stated in Table 3.

5 Reasoning Algorithm for the Dynamic QoS
Acceptability Decision

Based on the syntax and semantics of the description language presented in
the previous section, we develop a reasoning algorithm that decides whether a
provided dynamic QoS is acceptable with respect to a required one.

The decision problem is formulated as follows:
”Is the dynamic QoS provided by the service Si acceptable with respect to a
given required QoS RQ ?”

This acceptability decision problem can be formalized by the following logical
deduction: 〈(TBox,ABox)〉 |= RQ(Si)
where (TBox,ABox) is the knowledge base with two components:
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– A TBox: containing knowledges about the considered domain application.
For example, it may contain the following axioms:

{GoodTR1 v BadTR0, BadRC1 v GoodRC0}
– An ABox: containing knowledges about dynamic QoS provided by services.

For example, the ABox may contain the previous QoS of services S1 and S2:

{BadTR0.25(S1), GoodTR0.75(S1), GoodRC0.5(S1), BadRC0.5(S1),
GoodTR1(S2), BadRC1(S2)}

The logical deduction is achieved by checking the inconsistency of the follow-
ing knowledge base:

〈TBox,ABox ∪ {¬RQ(Si)}〉

The inference machinery calls on the propagation rules introduced in the
following sub-section.

5.1 Algorithm for QoS acceptability

A sample of the propagation rules that constitute the foundations of our prob-
abilistic DL is depicted in Figure 2. Those rules are defined with respect to the
formal semantics given in section 4. For sake of clarity, the Rreduction rules are
given for ≤ and ≥, one can easily deduce the corresponding rules for < and >.
The algorithm checks the consistency of the knowledge base:

〈TBox,ABox ∪ ¬RQ(Si)〉

by applying the propagation rules until termination. Each application of a prop-
agation rule generates a new inference system ISi. The algorithm terminates
if:

1. There exists a clash in the current inference system. In this case, the knowl-
edge base is not consistent which means that the checked QoS is acceptable.

2. No more rule can be applied to generate a new inference system. In this case,
the knowledge base is consistent, which means that the checked QoS is not
acceptable.

An inference system ISi contains clash if:
ISi = {Q<p(s), Q>p′(s), p ≤ p′}, or
ISi = {Q≤p(s), Q≥p′(s), p < p′}, or
ISi = {Q<p(s), Q≥p′(s), p < p′}, or
ISi = {Q≤p(s), Q>p′(s), p < p′}, or
ISi = {Q=p(s), Q=p′(s), p 6= p′}

The algorithm is sound because for any satisfiable concept of the proposed
desciption logic, the application of propagation rules given in Fig. 2 terminates on
at least one state free of clash. By the same way, starting from an inconsistant
concept, all terminal states of the algorithm after applying propagation rules
contain clash.
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Rule R1 :
ISi = {Q(s)} −→ ISi+1 = ISi ∪ {Q≥1(s)}

Rule R0 :
ISi = {¬Q(s)} −→ ISi+1 = ISi ∪ {Q≤0(s)}

Rule R¬ :
ISi = {¬Qo p(s)} −→ Si+1 = ISi∪{Qō p(s)} (Note that: <̄ =≥, ≤̄ =>, >̄ =≤, ≥̄ =<)
Rule Ru :
ISi = {(Q1◦p uQ2◦q)(s)} −→ ISi+1 = ISi ∪ {Q1◦p(s), Q2◦q(s)}

Rule Rt :
ISi = {(Q1◦p tQ2◦q)(s)} −→ IS′i+1 = ISi ∪ {Q1◦p(s)} , IS′′i+1 = ISi ∪ {Q2◦q(s)}

Rule Rv :
ISi = {(Q1◦p v Q2◦q), Q1◦p(s)} −→ ISi+1 = ISi ∪ {Q2◦q(s)}

Rule R′v :
ISi = {(Q1≥p v Q2◦q), Q1=r(s), p ≤ r} −→ ISi+1 = ISi ∪ {Q2◦q(s)}

Rule Rreduction:
ISi = {Q≥p(s), Q≤p(s)} −→ ISi+1 = ISi − {Q≥p(s), Q≤p(s)}+ {Q=p(s)}
ISi = {Q≥p(s), Q≥q(s), p ≥ q} −→ ISi+1 = ISi − {Q≥q(s)}
ISi = {Q≥p(s), Q=q(s), q ≥ p} −→ ISi+1 = ISi − {Q≥p(s)}
ISi = {Q≤p(s), Q≤q(s), p ≤ q} −→ ISi+1 = ISi − {Q≤q(s)}
ISi = {Q≤p(s), Q=q(s), p ≥ q} −→ ISi+1 = ISi − {Q≤p(s)}

Fig. 2. A sample of the propagation rules

5.2 An illustrative example

We illustrate the use of the proposed algorithm to decide whether the dymanic
QoS of services S1 and S2 is acceptable with respect to the following required
QoS:

RQ = (GoodRC≥0.4 u ¬BadTR≥0.8) tGoodRC≥0.9.

Acceptance of the QoS of S2 The QoS of the service S2 is acceptable w.r.t
RQ if:

〈TBoxexple, ABoxexple〉 |= RQ(S2).
That is, 〈TBoxexple, ABoxexple ∪ {¬RQ(S2)}〉 is inconsistent
where,
TBoxexple = {BadRC1 v GoodRC0}
ABoxexple = {GoodTR1(S2), BadRC1(S2)}

The reasoning algorithm generates inference systems ISi by applying the
propagation rules as follows:
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IS0 = {TBoxexple, ABoxexple,¬RQ(S2)}
= {BadRC1 v GoodRC0, GoodTR1(S2), BadRC1(S2),¬[(GoodRC≥0.4u

¬BadTR≥0.8) tGoodRC≥0.9](S2)}
IS1 = IS0∪{GoodRC0(S2), [¬(GoodRC≥0.4 u ¬BadTR≥0.8) u ¬GoodRC≥0.9] (S2)}

(generated by Rv and pushing the negation)
IS2 = IS1 ∪ {¬(GoodRC≥0.4 u ¬BadTR≥0.8)(S2),
¬GoodRC≥0.9(S2)} (generated by Ru)
IS3 = IS2∪{(GoodRC<0.4tBadTR≥0.8)(S2), GoodRC<0.9(S2)} (generated

by R¬)
IS′4 = IS2∪{(GoodRC<0.4(S2), GoodRC<0.9(S2)} or IS′′4 = IS2∪{(BadTR≥0.8)(S2),
GoodRC<0.9(S2)} ( IS′4, IS

′′
4 generated by Rt)

IS′5 = IS′4 ∪ {(GoodRC<0.4(S2)} (generated by Rreduction on IS′4)
IS′6 = IS′5 ∪ {(GoodRC0(S2)} (generated by Rreduction with GoodRC0(S2))
The algorithm stops at the inference system IS′6 because no more rule can

be applied.
As there is no clash in IS′6, the system is not inconsistent (without performing

the inference system IS′′4 ). That is, it exists an interpretation such that:
〈TBoxexple, ABoxexple〉 |= ¬RQ(S2)

We can deduce that the service S2 is not acceptable w.r.t. the required QoS RQ.

Acceptance of the QoS of S1 The QoS of the service S1 is acceptable w.r.t
RQ if:

〈TBoxexple, ABoxexple〉 |= RQ(S1).
That is,
〈TBoxexple, ABoxexple ∪ {¬RQ(S1)}〉 is inconsistant

where,
TBoxexple = {Φ}
ABoxexple = {BadTR0.25(S1), GoodTR0.75(S1), GoodRC0.5(S1), BadRC0.5(S1)}
The reasoning algorithm generates inference systems ISi by applying the

propagation rules as follows:

IS0 = {TBoxexple, ABoxexple,¬RQ(S1)}
= {BadTR0.25(S1), GoodTR0.75(S1), GoodRC0.5(S1), BadRC0.5(S1),

¬[(GoodRC≥0.4 u ¬BadTR≥0.8) tGoodRC≥0.9](S1)}
IS1 = IS0∪{GoodRC0(S2), [¬(GoodRC≥0.4 u ¬BadTR≥0.8) u ¬GoodRC≥0.9] (S1)}

(generated by pushing the negation)
IS2 = IS1 ∪ {¬(GoodRC≥0.4 u ¬BadTR≥0.8)(S1),¬GoodRC≥0.9(S1)} (gen-

erated by Ru)
IS3 = IS2∪{(GoodRC<0.4 tBadTR≥0.8)(S1), GoodRC<0.9(S1)} (generated

by R¬)
IS′4 = IS3∪{GoodRC<0.4(S1), GoodRC<0.9(S1)} or IS′′4 = IS3∪{BadTR≥0.8(S1),
GoodRC<0.9(S1)} ( IS′4, IS

′′
4 are generated by Rt)

IS′′4 contains the clash {BadTR≥0.8(S1), BadTR0.25(S1)}
IS′5 = IS′4 ∪ {(GoodRC<0.4(S1)} (generated by Rreduction on IS′4)
IS′5 contains the clash : GoodRC<0.4(S1), GoodRC0.5(S1)
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The algorithm stops because all the inference systems contain a clash. There-
fore, the system is inconsistent.

This means that the service S1 is acceptable w.r.t. the required QoS RQ.

6 Conclusion and Future Work

In this paper, we proposed a high level support for describing the semantic
QoS variations in order to react to the service behavior changes. It provides an
appropriate adaptation and avoid the process to grind to a halt. The key element
of our model is the probabilistic extension of DL proposed. This extension allows
to express the QoS requirements and performs an efficient reasoning mechanism
to let the system self healing. Our variant of description logic has a minimal
set of logical constructors. It contains only concept terms and two constructors
which are conjunction and disjunction. As future work, we plan to extend the
proposed approach by providing more constructors.
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Abstract. Ontologies have been increasingly used as a core representation for-
malism in medical information systems. Diagnosis is one of the highly relevant
reasoning problems in this domain. In recent years this problem has captured at-
tention also in the description logics community and various proposals on formal-
ising abductive reasoning problems and their computational support appeared. In
this paper, we focus on a practical diagnostic problem from a medical domain –
the diagnosis of diabetes mellitus – and we try to formalize it in DL in such a
way that the expected diagnoses are abductively derived. Our aim in this work is
to analyze abductive reasoning in DL from a practical perspective, considering
more complex cases than trivial examples typically considered by the theory- or
algorithm-centered literature, and to evaluate the expressivity as well as the par-
ticular formulation of the abductive reasoning problem needed to capture medical
diagnosis.

Keywords: Diagnosis, abduction, use case.

1 Introduction

Abduction, originally introduced by Peirce [15], is a form of backward reasoning, typ-
ically with a diagnostic rationale. We have a knowledge base K that is supposed to
model some problem, and we have an observation O which is supposed to follow in
situations captured by K , but we are not able to explain O deductively, i.e., K 6|= O. In
abductive reasoning we ask the question – why is it that O does not follow fromK , and
we look for a hypothesis (or, explanation) H such that, if added toK , then O will follow
from the resulting knowledge base. Moreover, we most typically look for explanations
consisting of extensional rather than intensional knowledge, i.e., some set of ground
facts that will, together with K , explain O.

Abduction only recently captured the researchers’ interest also in the area of on-
tologies and DL [7], where it also has some interesting applications, including possible
explanations of incomplete modelling or incomplete matching [4], monitoring malfunc-
tions in complex systems [11], and multimedia interpretation [16], among others.

The problem of diagnosis, often shown as a classic example of abductive reasoning
[7,9], is highly relevant in the medical domain. Not only for primary diagnosis of a
certain disease (as the model example in this use case), but also in emerging applications
such as telemedical monitoring systems and ambient assisted living, where the patient’s
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condition is continually monitored and diagnosed for anomalies, therapy adherence,
etc. Most of these applications nowadays heavily rely on ontologies (i.e., DL-based
knowledge bases) that have been increasingly used as core representation formalism
for clinical knowledge. While abduction over DL has been studied especially from the
theoretical and from the algorithmic perspective, we are not aware of any case studies
focusing on the practical aspects of modelling problems for abductive reasoning.

In this paper, we focus on a practical diagnostic problem from a medical domain:
the diagnosis of diabetes mellitus. Based on information from clinical guidelines and
other relevant sources (e.g., [1,2]) we formalize it in DL in such a way that the ex-
pected diagnoses are abductively derived. While we simplify the problem for reasons
of conciseness, we do abstract a number of distinct, less or more problematic cases that
need to be addressed, including: (a) dealing with the hierarchy of symptoms and possi-
ble diagnoses, (b) differential and elimination diagnosis, (c) associated conditions with
similar symptoms, (d) distinguishing and reporting complications, and some more.

In the analysis that follows, we evaluate the modelled examples from the perspective
of which particular variant of abduction is being addressed, what DL expressivity is
needed, and we highlight the most important modelling issues that we run into.

In the end, we learned the following lessons: medical diagnosis especially requires
ABox abduction, as hypothesizing the intensional knowledge in this domain is typi-
cally not desired – that is the area of domain experts. We were mostly able to model our
simplified examples with the rather less expressive DL ALC for which abductive rea-
soning is available [9,12,13]. Though, examples requiring more complex constructs can
also be found. Finally, modelling diagnostic knowledge bases with DL is different from
modelling typical ontologies. In order to get the desired explanations the statements of-
ten need to be formulated more strongly, so that the desired observations follow. Also,
to compare the generated hypotheses, at least part of the knowledge is used also deduc-
tively. Combining abductive and deductive reasoning within one knowledge base poses
some difficulties, even on simplistic examples.

2 Abductive Reasoning with DL

The basic abductive framework for DL was introduced by Elsenbroich et al. [7] who
proposed formulations for a number of distinct abductive problems. The main three
types are summarized below. We will assume that the reader is already familiar with
DL, the split of the knowledge base into the TBox (intensional knowledge) and the
ABox (extensional knowledge), basic syntax, and semantics [3].

Definition 1 (Abduction problems in DL [7]). An abduction problem is a pair P =

(K ,O) such that K is a knowledge base in DL, and O a TBox or ABox assertion. A
solution of P is any finite set H of TBox and ABox assertions such that K ∪ H is
consistent and K ∪ H |= O. In addition, P is called

– TBox abduction problem: if H is a set of TBox assertions and O is a TBox asser-
tion.

– ABox abduction problem: if H is a set of ABox assertions and O is an ABox asser-
tion.
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– Knowledge base abduction problem: the general problem, i.e., if there are no re-
strictions on H and O.

The definition gives a generic framework for abduction, but it is not very useful
without further constraining the possible hypotheses. The number of possible explana-
tions is very high, even infinite, therefore we need to be able to compare them and select
the most preferred ones. The commonly used restrictions include [7]:

Definition 2. Given an abduction problem P = (K ,O) and hypotheses H,H′, we say
that:

1. H is consistent if H ∪ K 6|= ⊥, i.e. H is consistent w.r.t. K
2. H is relevant if H 6|= O, i.e. H does not entail O
3. H is explanatory if K 6|= O, i.e. K does not entail O
4. H is stronger than H′ (H ≺K H′) if K ∪ H entails H′ (and vice-versa H is weaker

than H′ if K ∪ H′ entails H)
5. minimal if for every H′, H′ ≺K H, i.e., H is weaker than any other H′

In general, H is a preferred solution if it is consistent, relevant, explanatory and
there is no strictly weaker solution H′ (i.e., such that H ≺K H′ and H′ ⊀K H). If there is
single such solution, it is called the most preferred. Such hypotheses are (semantically)
minimal. Minimality is important, because if there is a (strictly) weaker hypothesis than
H it means that H hypothesizes too much. As abduction amounts to guessing, in a sense
we do not want to guess more than necessary in order to derive the observation.

Consistency is required, because from inconsistency (K ∪ H |= ⊥) one is able to
derive everything. Such hypotheses would explain every observation and so it is not
meaningful to find solutions not consistent with the knowledge baseK . The knowledge
base K represents the background theory from which we are interested to derive the
hypotheses. Therefore we should not be able to explain the observation without it. Such
hypotheses (i.e., when H |= O) are therefore irrelevant. Similarly, an abduction problem
only needs explaining the observation does not already follow from K .

The diagnostic problems in the medical domain, which is our interest in this paper,
will most often call for ABox abduction. This is because our aim is not to enrich the
knowledge base with new axioms; these are typically sufficiently described by domain
experts. Therefore our purpose is to build a knowledge base formalizing the available
expert’s knowledge (TBox) and use it to find explanations in form of facts (ABox as-
sertions) to any observation, which is typically also a fact (ABox assertion).

A number of researchers addressed the computational solution for abduction prob-
lems. We will focus on those who addressed ABox abduction. Klarman et al. [12] pro-
posed an algorithm for ABox abduction on top ofALC based on resolution. They show
that it is sound and complete. Halland and Britz [9] developed, also forALC, a method
based on the DL tableau algorithm. Ma et al. [13] also rely on th DL tableau algorithm,
but extend the approach towards ALCI. Completeness was not shown by Ma et al.,
while Halland and Britz explicitly note that their approach is incomplete.

Du et al. [5] solve abduction reasoning in DL via a reduction to logic programming,
where abduction has been extensively studied [6]. In logic programming, abductive
explanations are not arbitrary, but are typically drawn from a set of distinctive literals
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called abducibles. This is because the user is often able to charaterzie in which part
of the knowledge the hypothesis is expected, and thus to reduce the search space. To
transfer this notion to the area of DL, Du et al. introduced a new variant of the ABox
abduction problem, which we will call simple, in the form of P(K , A,O). Besides for
the knowledge base K and the observation O (set of concept assertions or atomic roles
assertions), it adds the abducibles A – a set of atomic concepts and atomic roles. An
abductive solution H for P = (K , A,O) is a minimal set of ABox axioms composed of
individuals of K and concepts or roles of A, such that K ∪ H |= O. The solution should
be relevant, and consistent. The simple ABox abduction problem may be solved by
reduction to logic programming, and consecutive evalaution by a readymade reasoning
engine for logic programming.

3 Diabetes Mellitus Use Case

of the assumed simplification
Diabetes mellitus (DM) is a group of metabolic diseases characterized by hyper-

glycemia resulting from defects in insulin secretion, insulin action, or both. The chronic
hyperglycemia of diabetes is associated with long-term damage, dysfunction, and fail-
ure of various organs, especially the eyes, kidneys, nerves, heart, and blood vessels
[2]. We chose DM for our use case, as its diagnosis is a complex problem, with need
to distinguish between particular subtypes and associated conditions, identification of
possible complications, etc.

Our aim is to conceptualize a KB in DL that can be used for diagnosis of DM
relying on abductive reasoning. As the problem is rather complex, we will concentrate
on selected specific subproblems, and we will also abstract from some details which
can be implemented analogously.

3.1 Hierarchy of Symptoms

Typical symptoms of diabetes mellitus include: frequent urination, excessive thirst, hy-
perglycemia, blurred vision, anorexia, weight loss, fatigue, and weakness. There are
some more, but they can be added into the formalization analogously. In the follow-
ing, diabetes mellitus is represented by the concept symbol DM, and the symptoms by
S1, . . . ,S8, respectively. In abductive reasoning, we observe some set of symptoms and
try to hypothesize the most relevant diagnosis. Therefore we record the relation between
the diagnosis and its symptoms by the axiom:

∃hasDiag.DM v ∃hasSymp.(S1 u · · · u S8) (1)

While literally (more precisely: deductively) this axiom means, that whoever has
DM must simultaneously manifest all eight symptoms S1, . . .S8, which is not always
true; it allows to generate relevant abductive hypotheses: if the patient p is observed
to have any subset of the symptoms S1, . . . ,S8 (e.g., we have an observation O1 =

p : (∃hasSymp.S2) u (∃hasSymp.S8)) then H1 = {p : ∃hasDiag.DM} is among the
generated diagnoses. Note that this kind of modelling is simplified, as it ignores uncer-
tainties, often present in medical knowledge. In this paper we take this simplification as
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we want to explore the possibilities of abduction with regular DL. Introducing uncer-
tainties is left for future work.

There are, possibly, some relations between symptoms, like one symptom may be
a more specific or a synonymous name for another, for instance, polydipsia (S9) is a
synonym for excessive thirst. This is modelled by adding:

S2 ≡ S9 (2)

Now, whenever we observe S9 instead of S2 among some other symptoms of DM we
derive equal hypotheses (e.g., if O2 = {p : (∃hasSymp.S9) u (∃hasSymp.S7)}, H1 is
still abductively derived).

A more complex relationship among symptoms may occur in cases when some
symptoms are conditions which may themselves be manifested by some other symp-
toms. For instance anorexia (S5) is a condition associated with weight loss, fatigue, and
weakness (S6, . . . ,S8). This may be modelled in two ways, adding either (3–4) or (5):

S5 v ∃hasSymp.(S6 u · · · u S8) (3)

hasSymp · hasSymp v hasSymp (4)
S5 v S6 u · · · u S8 (5)

This then allows us to keep the axioms that relate diagnoses to symptoms more concise,
e.g., we may now replace (1) by:

∃hasDiag.DM v ∃hasSymp.(S1 u · · · u S5) (6)

Using either (2–4), (6) or (2), (5–6) as the KB, we equally derive the hypothesis H1
for both observations O1 and O2, exactly as before.

As both of the above outlined solutions allow to derive the desired hypothesis, we
will favour the solution on the right hand side, as it requires a less expressive DL (i.e.,
role transitivity axioms of the form (4) are not needed).

3.2 Hierarchy of Diagnoses

Potential diagnoses of our interest are listed in Table 1. These concepts can be readily
taken from a number of medical ontologies. We chose to root them in SNOMED CT,
where they are present as disorders. As in many cases in the medical domain, the main
diagnosis (DM), has some subtypes which we want to distinguish. There are some al-
ternate diagnoses (e.g., diabetes insipidus) which need to be rooted out or confirmed
during the diagnostic process. And there are some related diagnoses (e.g., obesity, ke-
toacidosis) which may take part in the diagnosis of DM as relevant symptoms. The
diagnoses thus form a hierarchy.

We will narrow down our focus on the diagnoses listed in Table 1. The respective
part of the hierarchy is formalized using the following DL axioms:

DM1 t DM2 t GD v DM (7)

LADA v DM1 (8)

The hierarchy of diagnoses has significant influence on the generated hypotheses.
For instance, considering the axioms (5–6) formalizing the symptoms of DM, together
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Table 1. Relevant diagnoses in the use case

Disorder (SNOMED) DL
Diabetes mellitus DM
Diabetes insipidus DI
Diabetes mellitus type 1 DM1
Diabetes mellitus type 2 DM2
Latent autoimmune diabetes mellitus in adult LADA
Gestational diabetes GD
Obesity Ob
Ketoacidosis KA

with (7–8), if some of the symptoms of DM are observed (e.g., O1 or O2), the ab-
ductive reasoner will generate a number of diagnoses: H1 = {p : ∃hasDiag.DM} as
before, but in addition also H2 = {p : ∃hasDiag.DM1}, H3 = {p : ∃hasDiag.DM2},
H4 = {p : (∃hasDiag.DM1) u (∃hasDiag.DM2)}, and similar hypotheses for all (as-
serted or derived) subconcepts of DM. This is because they now all allow to derive the
given observations. On the other hand, if we compare these hypotheses semantically,
we see that Hi ≺K H1 for i > 1 in the hypotheses above, asK ∪Hi |= H1, and never vice
versa. Hence only H1 will be preferred.

3.3 Distinguishing Between Two Diagnoses

A typical task in medical diagnostics is to distinguish one diagnosis from another, often
similar one. This is called differential diagnosis. The two diagnoses may be distin-
guished by considering some symptoms relevant to one of them, but not the other.

We will consider DM1 and DM2; as differentiating between them is a relevant medi-
cal problem. DM1 and DM2 have some symptoms in common, but they also have some
different symptoms. In this case, the common symptoms are those of DM. When the
patient has some of these symptoms we say that she has DM – this case is covered by
axioms (5–6).

Specific symptoms of DM1 include: belly pain, vomiting, fruity breath odor, drowsi-
ness, and coma (S10, . . . ,S14). This is formalized as follows:

∃hasDiag.DM1 v ∃hasSymp.(S10 u . . . u S14) (9)

Analogously, the symptoms of DM2 include: skin problems, slow healing, tingling,
numbness, and high BMI. We will name these as S15, . . . ,S19, which gives us the axiom:

∃hasDiag.DM2 v ∃hasSymp.(S15 u . . . u S19) (10)

Together the three diagnoses are now covered with (5–7) and (9–10). Let us consider
some observations and the respective hypotheses:

– If we observe some set of symptoms that are common to both DM1 and DM2, e.g.,
having again the observation O1 = p : (∃hasSymp.S2)u (∃hasSymp.S8), then the
most preferred diagnosis will be H1 = {p : ∃hasDiag.DM}. However, also H2 =

{p : ∃hasDiag.DM1}, H3 = {p : ∃hasDiag.DM2}, H4 = {p : (∃hasDiag.DM1) u
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(∃hasDiag.DM2)}, will be valid abductive explanations (among others), but as we
already discussed in Sect. 3.2 they are all stronger than H1 and hence H1 will be the
most preferred.

– If we observe at least one symptom specific to DM1, e.g., having the observa-
tion O3 = p : (∃hasSymp.S2) u (∃hasSymp.S10), this is no longer abductively
explained by H1, nor H3. The most preferred hypothesis will be H2. H4 is an ab-
ductive explanation as well, but it is stronger than H2, and hence H2 is preferred.

– The case when we observe some specific symptoms of DM2 (but none of DM1) is
exactly analogous.

– Finally, if we observe specific symptoms of both DM1 and DM2, e.g., we have
O4 = p : (∃hasSymp.S10) u (∃hasSymp.S15), the most preferred hypothesis that
abductively explains this observation is H4. This is because in case of H1–H3 there
is always some symptom which is not explained. There are other explanations (e.g.,
H5 = {p : ∃hasDiag.(DM1 u DM2)}), but they are all stronger than H4.

3.4 Case of Secondary Explanation of the Observation

During differential diagnosis it is also important to recognize cases when the given set of
observed symptoms may have other possible explanations than the disease in question.
For instance, one of the major symptoms of DM (hyperglycemia named as S3) may be
caused as a side effect of some medication.

As the axiom (6) includes S3 as one of the DM symptoms, we are already able
to answer on the observation of having S3. Another possible explanation is taking the
medications (name them M1). So we add a new axiom:

∃hasMedication.M1 v ∃hasSymp.S3 (11)

As this is a very simple conceptualization, there is only one observation by which this
axiom play role. This observation is O5 = p : ∃hasSymp.S3. As well we have exactly
two hypotheses H6 = {p : ∃hasMedication.M1} and H7 = {p : ∃hasDiag.DM}. Neither
H6 nor H7 is stronger then the other one so both are preferred.

This result means, that we cannot be sure, which explanation is correct and we have
to continue in diagnosting. We are satisfied with this answer because also in medical
domain information about hyperglycemia presence is insufficient condition to decide
between taking medications and having diagnosis DM.

3.5 Associated Conditions

In the medical domain, relations between diagnoses may come into play. Some associ-
ated conditions may have similar symptoms, or subset of symptoms as other diagnoses.
Thus, in fact, in Axiom (9) the symptoms S10, . . . ,S14 are symptoms of an associated
diagnosis called ketoacidosis. Similarly the symptom S19 is a symptom of obesity, an
associated diagnosis of DM2.

To take this into the account, we may add to (9) a new axiom, Axiom (12), and
analogously to (10) a new axiom, Axiom (13), as follows:

∃hasDiag.KA v ∃hasSymp.(S10 u . . . u S14) (12)

∃hasDiag.Ob v ∃hasSymp.S19 (13)
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When we take the observations O1 and O3 and try to explain them using axioms (5–7)
and (9–13), we see some changes:

– The case of observation O1 = p : (∃hasSymp.S2)u (∃hasSymp.S8) is not affected
by the newly added axioms, as the symptom S2 is not explained by any of them.
So, the most preferred hypothesis is again H1.

– If we observe at least one symptom specific to ketoacidosis together with some
symptoms of DM (which are all symptoms of DM1 as we already know), e.g.,
having the observation O3 = p : (∃hasSymp.S2) u (∃hasSymp.S10), then be-
sides for H2 = {p : ∃hasDiag.DM1} we have to consider also hypothesis H6 =
{p : (∃hasDiag.DM)u(∃hasDiag.KA)}: they both explain O3 and both are preferred
to any other but they are mutually incomparable. But H6 is certainly unexpected as
so far we modelled the axioms in such a way that abductively the symptoms DM
and ketoacidosis explain the diagnosis of DM1. To solve this we have to add yet
another axiom:

∃hasDiag.DM u ∃hasDiag.KA v ∃hasDiag.DM1 (14)

The axiom enables to compare the two hypotheses also deductively, i.e., any patient
with both diagnoses DM and ketoacidosis is inferred to have also DM1. Hence H6
is now stronger than H2, and so H2 is the single most preferred hypothesis.

– The case when we observe some specific symptoms of obesity together with symp-
toms of DM is analogous. We get the expected hypothesis H3 = {p : ∃hasDiag.
DM2}, but to suppress H7 = {p : (∃hasDiag.DM) u (∃hasDiag.Ob)} as less pre-
ferred, we need to add:

∃hasDiag.DM u ∃hasDiag.Ob v ∃hasDiag.DM2 (15)

– If we observe only the symptoms shared by obesity and DM2, in our simplified ex-
ample, only O5 = p : (∃hasSymp.S18), two preferred and incomparable hypotheses
are H8 = {p : (∃hasDiag.Ob)} and H3 = {p : (∃hasDiag.DM2)}. In this case, this is
in accord with the medical knowledge: this symptom can either be caused by one
condition or by the other.

3.6 Case of Complications

However, in certain circumstances, one may wish to model the associated diagnoses
differently, to capture a closer relation between them. This is, for instance, the case of
DM1 and ketoacidosis. When we consider O3 = p : (∃hasSymp.S2)u(∃hasSymp.S10)
the modelling from the previous section gives the single most preferred diagnosis H2 =

{p : ∃hasDiag.DM1}. While ketoacidosis is also indicated by symptom S10, the hypoth-
esis H9 = {p : ∃hasDiag.KA} is not an abductive explanation as it does not explain S10.

This solution does not correctly capture the importance of ketoacidosis presence in
diabetic patients. Ketoacidosis does not merely share symptoms with DM1, but it is an
acute complication thereof which rarely occurs in non-diabetic individuals.

Therefore, we would intuitively want the explanation H10 = {p : ∃hasDiag.DM1)u
(∃hasDiag.KA)} in this case. In fact, H10 also explains O3 in this case but is is stronger
than H2 and hence also less preferred.
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To achieve this, we have to remodel the knowledge, so that, given some symptoms
that are shared by both DM1 and ketoacidosis, only the conjunction of these diagnoses
explains them: we exchange (9) together with (12) with a new axiom:

(∃hasDiag.DM1) u (∃hasDiag.KA) v ∃hasSymptom.(S10 u . . . u S14) (16)

This however still does not force H10 as single most preferred, as due to the presence
(7) and (14) we now have H10 ≺K H6 and H6 ≺K H10, hence both H10 and H6 are
equally preferred. However, recall that we have asserted (14) only to support a slightly
different relation between DM1 and ketoacedosis in the previous section, so when we
drop this axiom then the single, most preferred diagnosis remains to be H10.

This last move reflects the fact that in order to model different relationships between
preferred explanations we need to manipulate also the deductive part of the KB (used
during deductive comparisons of hypotheses) and, what is more, these manipulation is
not just additive, it is selective, which may cause problems in more complex cases with
higher number of variously interrelated diagnoses.

3.7 Case of Further Examination Needed

Consider again the case of one hypothesis being a more specific case of another. Typ-
ically, we have two diagnoses which have some common symptoms, while the more
specific one likely has some additional symptoms (like with DM1 and DM, or DM2 and
DM above). If we observe only some of the common symptoms, our previous modelling
derives the less specific hypothesis. The more specific hypothesis also explains the ob-
servations, but there is no additional evidence for it, so we prefer the less specific one.

Most of the time this is expected, but not all the time. It may be necessary to dif-
ferentiate between such hypotheses by all means, and so, if perhaps some evidence is
lacking it should be obtained by additional examination if possible, by a laboratory test
for instance. Hence the outcome from the diagnosis procedure should not be just the less
specific hypothesis, but instead it should indicate also that additional tests are needed.

From a medical perspective this might be illustrated on the following problem: some
patients who fit a certain profile (they are older, and not obese) and typically show
symptoms common to DM1, may in fact have a specific type of DM1 called LADA (cf.
Table 1 and axiom (8)). To differentiate between these two diagnoses, medical practi-
tioners are advised to test antibodies (e.g., GADA) in a blood sample.

As this case leads to some complex modelling, we will explain it on simplified
examples. Assume that LADA is a specific form of DM1, and that DM1 has some
symptom (S′1) and LADA has an additional specific one (S′2). That is, we start from:

LADA v DM1 (17)

∃hasDiag.DM1 v ∃hasSymp.S′1 (18)

∃hasDiag.LADA v ∃hasSymp.S′2 (19)

Now we end up exactly in the situation described above. If only DM1 symptoms
are observed (i.e., in our simplified case O6 = p : ∃hasSymp.S′1) then the preferred
hypothesis is H2 = {p : ∃hasDiag.DM1}. In order to resolve this we may try to use (20)
instead of (18):

(∃hasDiag.DM1) u (∃needS.LT) v ∃hasSymp.S′1 (20)
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We now get the expected most preferred hypothesis H11 = {p : (∃hasDiag.DM1) u
(∃needS.LT)} for O6 and so much for O7 = p : ∃hasSymp.S′2 we will get H12 =
{p : ∃hasDiag.LADA} as most preferred , however for O8 = p : (∃hasSymp.S′1) u
(∃hasSymp.S′2) we now get H12 = {p : (∃hasDiag.LADA) u (∃needS.LT)} as most
preferred, as the need of the lab test is now necessary to explain S′1. This is unintuitive
as indeed once we observe S′2 we know that the patient has LADA, no more tests are
needed. It is easy to verify that it does not help to alter (19) to (21):

∃hasDiag.LADA v ∃hasSymp.(S ′1 u S ′2) (21)

This is due to (17), (20), and (21) now for O6 give both H11 and H12 as preferred, and
they are incomparable. But clearly H12 is exactly the wrong hypothesis here. We are
getting into some vicious circle.

The only solution we were able to come up with is to start treating the symptoms
as completely specified. That is, either S′1 or ¬S′1 is always part of the observation, and
same for S′2 or other symptoms possibly involved in this part of the derivation. Using
(17), (22), and (23), we always get the expected results:

(∃hasDiag.DM1) u (∃needS.LT) v ∃hasSymp.(S′1 u ¬S′2) (22)

∃hasDiag.LADA v ∃hasSymp.(S′1 u S′2) u ∃hasSymp.(¬S′1 u S′2) (23)

However, we now have to ask queries differently. For O′6 = p : ∃hasSymp.(S′1 u ¬S′2)
the most preferred hypothesis is H11, and for both for O′7 = p : ∃hasSymp.(¬S1 u S′2)
and for O8 (no need to change here) we will get H12.

So, we were able to get the expected results, but for a considerable price. Treating
symptoms as completely specified is not in line with the usual intuitions behind ab-
duction, where it is normal to assume that the observations are incomplete, and we are
tasked to give the most appropriate explanation for any such given observation. In addi-
tion, it leads to a considerable blow up in the axioms, where all possible combinations
of positive and negative symptoms need to be enumerated.

4 Discussion

All formalizations in our use case are instances of the ABox abduction problem as
defined in Definition 1, based on Elsenbroich et al. [7]. The explanations that we seek
are typically of a specific form of a single assertion:

p : (∃R1.C1) u · · · u (∃Rn.Cn) (24)

involving single patient p, where R1, . . . , Rn most typically will come from some a pri-
ori known set of roles which are relevant based on the domain knowledge. A similar
assumption may often hold also for the concepts C1, . . . , Cn (e.g., most often these will
be atomic concepts for various diagnoses and conditions relevant to the patients state).

While exceptions to these constraints may certainly be found (e.g., a second person
involved from which the patient contracted the disease), in many cases the form of
expected explanations will be reducible into atomic diagnoses by adding “interface”
axioms of the form:

Diag1 ≡ (∃R1.C1) u · · · u (∃Rn.Cn) (25)
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The hypothesis of the complex form (24) now reduces into the atomic form p : Diag1
which makes it possible to postulate the problem as simple ABox abduction. This is an
important observation, as Du et al. [5] showed that the simple abduction problem can
be effectively solved even for DLs up to SHIQ.

Most of the examples we have shown rely in a fairly basic DL ALC, abduction
support for which is known [12,13,5,9]. We used complex role inclusions to capture
dependencies between symptoms, but we also showed a simpler modelling which does
not require it. Different complex DL constructs that might possibly be needed in more
realistic situations certainly include number restrictions, and also restriction over con-
crete domains (known, e.g., in OWL [14]), that would enable to support some more
elaborate statements about symptoms (the patient has at least some number of symp-
toms, or has a numeric value of some symptom from a specific range). Extensions of
abductive reasoning for more expressive DLs that include such constructs are therefore
desirable.

From a modelling perspective, an interesting lesson learned from the use case is that
modelling a knowledge base to be used in a classical, deductive way, and modelling it to
support abductive reasoning pose different, and sometimes conflicting requirements. As
we noted in Sect. 3.1, it is often the case that certain explanation is expected to be valid
for a number of symptoms, including any subsets thereof. Hence the typical approach
that we relied upon is to formulate the axioms in a stronger fashion – the explanation
implies all the symptoms, hence any subset follows. This kind of modelling is also
demonstrated in the literature [7,5].

Firstly, we note that this requires the knowledge to be used in abductive application
to be modelled differently than it is typically usual for ontologies, which normally are
subject to deductive reasoning. Secondly, as we have repeatedly observed in this paper,
even the process of abduction has an important subtask when hypotheses are compared
and strictly deductive reasoning is used for this. This results in complex inter-relations
between the “abductive” and the “deductive” part of the knowledge base and may lead
to rather complicated modelling. A possible way how to deal with this is to treat the
abductive and the deductive knowledge separately [16], or to used a more refined for-
mulation of the abduction problem [10]. We plan to try this in the future.

Finally, we note that abduction has also a number of advantages, e.g., when com-
pared to deductive diagnostic reasoning. In number of works [8,17,18] relying upon the
latter, where deductive rules of the form S 1, · · · , S n → D are used, where S i are symp-
toms and D is the diagnosis, the authors point out the problem occurring in case of two
diagnoses D1, D2 with the former having a subset of symptoms of the latter. Using de-
ductive inference, and observing all symptoms of D2, both D1 and D2 are derived. This
is counterintuitive as specific symptoms of D2 were observed which are not symptoms
of D1. This problem has to be addressed by some suitable workarounds. In comparison,
as we have demonstrated in the use case, abductive reasoning naturally eliminates the
hypotheses which do not explain all of the observed symptoms.
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Abstract. One shortcoming of classic Descriptions Logics, DLs, is their inability
to encode probabilistic knowledge and reason over it. This is, however, a strong
demand of some modern applications, e.g. in biology and healthcare. Therefore,
probabilistic extensions of DLs are attracting attention nowadays. We introduce
the probabilistic DL SHIQP which extends a known probabilistic DL. We in-
vestigate two reasoning problems for TBoxes: deciding consistency and com-
puting tight probability bounds. It turns out that both problems are not harder
than reasoning in the classic counterpart SHIQ. We gain insight into complex-
ity sources.

1 Introduction

Descriptions Logics [1], DLs, are a family of knowledge representation formalisms
that form the basis for popular knowledge representation languages. In particular, they
underly the Web Ontology Language [5], OWL, which is a W3C standard. Logical
theories that encode a domain of interest in such languages are called ontologies. The
last decade has witnessed a rapid growth in the number and size of ontologies which
have become the common way to encode and share information in application areas
such as medicine, biology, astronomy, defence and others.1 Since DLs are essentially
decidable fragments of first-order logic, FOL, ontologies are only capable to encode
certain knowledge. Although some means of uncertainty, in fact, can be encoded, e.g.
“a parent is a human who has some children” and “sky is sunny or cloudy”, there are
no built-in ways to represent probabilistic knowledge.

Successful application areas of DLs, however, often require modelling probabilistic
knowledge which DLs are not able to deal with. The examples showing this appeal are
evident in medicine. For instance, the medical ontology SNOMED CT [17] contains
concepts mentioning “Probable cause”, “Probable diagnosis”, etc. This shortcoming in
expressive power of classic DLs has recently caused non-classic proposals and various
extensions. A recent survey is given in [12].

Two main approaches to probabilistic extensions of DLs differ in the view of prob-
ability. Halpern [4] makes a distinction between statistical and subjective probabili-
ties. He formalizes statistical probabilities in “Type 1” probabilistic FOL and subjective
probabilities in “Type 2” probabilistic FOL. The statistical view considers a probability

1 http://bioportal.bioontology.org/
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distribution over a domain that specifies the probability for an individual in the domain
to be randomly picked. The subjective view is based on so-called possible worlds and
specifies the probability distribution over a set of possible worlds [4]. We call the se-
mantics of a probabilistic DL statistical if it uses the statistical view (Type 1 extension)
and subjective if it is based on possible worlds (Type 2 extension).

The contributions of this work are as follows. Firstly, we introduce a new probabilis-
tic extension of the classic DL SHIQ, called SHIQP , with the statistical semantics
inherited from the Type 1 probabilistic FOL that distinguishes it from many existing
extensions whose semantics is based on possible worlds. We discuss relations to other
extensions and some important features of the statistical semantics of SHIQP . Sec-
ondly, we study two reasoning problems for TBoxes in this extension: deciding con-
sistency and computing tight probability bounds. We show that both problems are in
ExpTime in the size of a TBox which implies that they are not harder than reasoning in
the classic DL SHIQ. The algorithm for solving each problem consists of two parts:
detecting satisfiable types and solving a linear program on those types. We show that, in
fact, the linear program can be built on the types over the probabilistic part only. Some
examples and proofs are moved to Appendix.2

2 Syntax and Semantics of SHIQP

The syntax of SHIQP extends classical SHIQ axioms with probabilistic statements
over concepts. We assume the reader to be familiar with the DL SHIQ [6]. As usual, a
classic SHIQ TBox Tc is a finite set of general concept inclusions and role inclusions.

Definition 1. (TBox syntax) A SHIQP TBox T is a set Tc ∪ Tp, where Tc is a classic
SHIQ TBox and Tp is a set of probabilistic statements. A probabilistic statement is a
statement in one of the following forms:

(i)
∑m′

j=1 a
′
j · P(Cj) ./ r

′ (unconditional form);

(ii)
∑m′′

j=1 a
′′
j · P(Cj |D) ./ r′′ (conditional form);

where ./ ∈ {<,≤,≥, >}, a′j , a′′j , r′, r′′ ∈ R, Cj , D are possibly complex SHIQ
concepts. We call concept inclusions, role inclusions, and probabilistic statements ax-
ioms of a TBox.

We use the abbreviation C ≡ D for {C v D, D v C} and
∑m′

j=1 a
′
j · P(Cj) = r′

for {∑m′

j=1 a
′
j ·P(Cj) ≤ r′,

∑m′

j=1 a
′
j ·P(Cj) ≥ r′} in (i) and the analogous one in (ii).

Before defining the semantics we give an illustrative example, see Example 1.

Example 1. (SHIQP TBox) According to statistics on smoking in England in 2010,3

47% of all adults in the sample are men (1); 20% and 25% of all adults (2), 20% and
29% of all men (3), 19% and 22% of all women (4) are current and former smokers,
respectively. Current and former smokers are 17% and 28% of all married adults (5),

2 www.cs.man.ac.uk/˜sazonauv/SazonauDL15.pdf
3 http://www.hscic.gov.uk/catalogue/PUB11454
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18% and 33% of all married men (6), 17% and 23% of all married women (7). 34% and
25% of all diseases are caused by smoking for men and women (8), respectively. This
knowledge can be expressed as follows:

T = {S v A, CS v S, FS v S,
FS v ¬CS, S v CS t FS,
M v A, W v A, M v ¬W, A vM tW,
P(M | A) = 0.47, (1)

P(CS | A) = 0.2, P(FS | A) = 0.25, (2)

P(CS |M) = 0.2, P(FS |M) = 0.29, (3)

P(CS |W ) = 0.19, P(FS |W ) = 0.22, (4)

P(CS | ∃m.A) = 0.17,P(FS | ∃m.A) = 0.28, (5)

P(CS |M u ∃m.W ) = 0.18, P(FS |M u ∃m.W ) = 0.33, (6)

P(CS |W u ∃m.M) = 0.17, P(FS |W u ∃m.M) = 0.23, (7)

P(∃d.(D u ∃c.S) |M) = 0.34, P(∃d.(D u ∃c.S) |W ) = 0.25}, (8)

whereA,M,W,S,CS, FS,D are concepts representing adults, men, women, smokers,
current smokers, former smokers, diseases, respectively; m, d, c are roles representing
marriage, having a disease, having a cause, respectively.

The semantics of a SHIQP TBox is based on the statistical view of probability
and inherited from Halpern’s Type 1 probabilistic FOL [4].

Definition 2. (TBox semantics) An interpretation of a SHIQP TBox is a structure
I = (∆I , ·I , µ) where (∆I , ·I) is a standard SHIQ interpretation and µ a discrete4

probability distribution over ∆I . The semantics of concept and role inclusions is de-
fined as usual. For concepts C,D we set P (CI) =

∑
d∈CI µ(d) and

P (CI |DI) =

{
P (CI∩DI)
P (DI) if P (DI) > 0

0 otherwise

An interpretation I satisfies a probabilistic statement

(i)
∑m′

j=1 a
′
j · P(Cj) ./ r

′ if
∑m′

j=1 a
′
j · P (CIj ) ./ r′ holds;

(ii)
∑m′′

j=1 a
′′
j · P(Cj |D) ./ r′′ if

∑m′′

j=1 a
′′
j · P (CIj |DI) ./ r′′ holds.

An interpretation I is called a model of a TBox T = Tc ∪ Tp, written I |= T ,
if it satisfies each concept inclusion and role inclusion in Tc and each probabilistic
statement in Tp. A TBox T is equivalent to a TBox T ′ if T and T ′ have the same
models. A TBox T entails an axiom α, T |= α, if all models of T satisfy α. Given
probability distribution µ, a TBox T entails an axiom α under µ, written T |=µ α, if
all models of T with probability distribution µ satisfy α.

4 A discrete function has a finite or countably infinite set of inputs.
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Since µ is a probability distribution,
∑
d∈∆I µ(d) = 1. Hence, P(>) = 1 because

> has the standard DL definition. It also follows from Definition 2 that P(⊥) = 0.
Halpern [4] presents an axiom system, which includes standard probabilistic laws, for
the Type 1 probabilistic FOL and shows that it is sound. Since the semantics of SHIQP
is derived from the Type 1 probabilistic FOL as its fragment, it follows that all standard
probabilistic laws hold.

The syntax of SHIQP allows arbitrary linear combinations of probabilities with
the same conditioning concept, e.g. considering (2) in Example 1 we could express
P(FS | A) = 1.25 · P(CS | A), or “former smokers are 25% more likely than current
smokers to be met among adults”.

One may notice that C v D and P(D|C) = 1 are semantically different. For
example, an interpretation I with CI = ∅ is a model of C v D and not a model of
P(D|C) = 1. On the other hand, interpretation I = {∆I = {a, b}, CI = {a, b}, DI =
{b}, µ(a) = 0, µ(b) = 1} is a model of P(D|C) = 1 and not a model of C v D.

An unconditional probability P(C) is a special case of the conditional probability
P(C|D) withD ≡ >, i.e. P(C) = P(C|>). We can also write all conditional statements
in the unconditional form. The following lemma states this.

Lemma 1. Each probabilistic statement in SHIQP has an equivalent unconditional
form

∑m
j=1 ajP(Dj) ./ r where ./ ∈ {≥, >}, aj , r ∈ R, Dj is a SHIQ concept.

Proof. See Appendix.

Therefore, we further assume without loss of generality that each statement in Tp is
in unconditional form

∑m
j=1 ajP(Dj) ./ r, i.e. a linear combination of unconditional

probabilities. Thus, a probabilistic TBox Tp that consists of n probabilistic statements
is written as follows:

∑mi

j=1 aijP(Dij) ./ ri, i = 1..n.

The signature of Tc, Tp is the set T̃c, T̃p of all concept names and role names occur-
ring in Tc, Tp, respectively. Thus, T̃ = T̃c ∪ T̃p. We call |T̃ | the size of T . This way of
measuring TBox size underestimates the usual size.

3 Illustration and Comparison of the Semantics

Now let us discuss representation capabilities of the statistical and subjective seman-
tics. As mentioned above, the statistical semantics specifies a probability distribution µ
over a domain ∆I , i.e. P (CI) =

∑
d∈CI µ(d), whereas the subjective one specifies a

probability distribution µ over a set W of possible worlds (which correspond to realiz-
able types), i.e. P (C) =

∑
I∈W | C∈I µ(I) [9]. In other words, the statistical semantics

represents proportions of domain elements while the subjective one represents degrees
of belief. Importantly, in this section the probability distribution µ is fixed, i.e. uniform,
and reasoning under restricted distribution may be harder than under unrestricted one
due to the reasons discussed in [14]. Let us illustrate some differences between the
statistical semantics and the subjective semantics of [9].
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Example 2. The following TBox is given:

T = {H ≡ (= 1 m.W ), W ≡ (= 1 m−.H),

P(H) = 0.3},

where H,W are concepts representing husbands and wives, respectively, m is a role
representing marriage.

In Example 2, the TBox T implies that there are exactly as many husbands in the
domain as there are wives. Hence, given µ is uniform, i.e. all individuals in the domain
have the same probability µ0 to be randomly picked, one can expect T |=µ P(W ) =
0.3. However, the subjective semantics is not able to handle this because relationships
between individuals within a single world are ignored by the semantics since it operates
on a set of possible worlds. As a result, the following is entailed: T |= P(W ) ≥ 0. On
the other hand, the statistical semantics does capture this:

P (W I) =
∑
d∈WI µ(d) = µ0 · |W I |

= µ0 · |HI | =
∑
d∈HI µ(d) = P (HI).

Example 3 illustrates that there are at least as many pets in the domain as there
are pet owners. Given µ is uniform, under the statistical semantics the following is
entailed: T |=µ P(Pe) ≥ 0.2. In contrast, the subjective one gives T |= P(Pe) ≥ 0
due to similar reasons as in Example 2.

Example 3. The following TBox is given:

T = {PeO ≡ ∃o.Pe, Pe ≡ (= 1 o−.P eO),

P(PeO) = 0.2},

where Pe, PeO are concepts representing pets and pet owners, respectively, o is a role
representing ownership.

Example 2 and 3 show the capabilities of the statistical semantics to handle statis-
tics. The statistical semantics allows for incorporating prior information about the prob-
ability distribution over the domain in a natural way that leads to possibly interesting
entailments. In contrast, the subjective semantics ignores relationships between individ-
uals within a single world and is not able to handle proportions.

4 TBox Reasoning in SHIQP

In the context of TBox reasoning in SHIQP we investigate two reasoning problems:
deciding consistency and computing tight probability bounds. We state the problems,
develop decision procedures, investigate computational complexity and its sources.
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4.1 Deciding Consistency

As usual, a SHIQP TBox T = Tc ∪ Tp is called consistent if it admits a model and
inconsistent otherwise. We call PCon the problem of deciding consistency of a SHIQP
TBox. Further description requires the definition of types similar to (complete) types in
classic DLs (see e.g. [1]). This should not be confused with the Type 1 and Type 2 logic
given by Halpern.

Let T be a SHIQP TBox. Let sub(T ) be the set of all subconcepts of concepts
occurring in T , nsub(T ) = {¬̇C | C ∈ sub(T )} the set of their negations in negation
normal form, i.e. ¬̇C = NNF (¬C), and clos(T ) = sub(T ) ∪ nsub(T ).

Definition 3. A type of T is a set t ⊆ clos(T ) such that the following conditions are
satisfied:

(i) C ∈ t iff ¬̇C /∈ t, for all C ∈ clos(T );
(ii) C uD ∈ t iff C ∈ t and D ∈ t, for all C uD ∈ clos(T );

(iii) C tD ∈ t iff C ∈ t or D ∈ t, for all C tD ∈ clos(T );
(iv) C v D ∈ T and C ∈ t implies D ∈ t.

Given I |= T and e ∈ ∆I , we set type(e) = {D ∈ clos(T ) | e ∈ DI}. We say that
a type t of T is realized in a model I |= T if there is e ∈ ∆I such that type(e) = t.

Definition 4. A type t of T is realizable if (uC∈tC) is satisfiable w.r.t. T .

From now on, we consider only realizable types and omit “realizable”. It is well-
known that satisfiability w.r.t. a SHIQ TBox is decidable in ExpTime [19]. Lutz et
al. (see Appendix in [15]) state the theorem for complexity of deciding consistency of
a Prob1-ALC TBox and sketch the proof. It can be extended to a SHIQP TBox.

Theorem 1. Deciding consistency of a SHIQP TBox T is ExpTime-complete.

Proof. Given a SHIQP TBox T = Tc ∪ Tp, we can compute the set Tc of all types
of Tc in ExpTime. It is well-known for DLs with expressivity up to SHIQ that models
are preserved under disjoint union (see e.g. [13]). This implies that there is always a
SHIQ model (∆I , ·I) |= Tc where all (realizable) types are realized. If T̃p\T̃c 6= ∅,
Tc is trivially extended to match T̃ and denoted T .

Let a variable xt be associated with each type t ∈ T . Then, by Definition 2 and
Lemma 1, the TBox T induces the system of linear inequalities:

E(T ) :=

{∑
t∈T xt = 1; xt ≥ 0 for each t ∈ T ;∑mi

j=1 aij
∑
Dij∈t xt ./ ri, i = 1..n

System E(T ) can be solved using linear programming with the constant objective.
Since linear programming is in P [18] and E(T ) is of exponential size in T we can
decide in ExpTime whether there is a solution. It is sufficient to show that E(T ) has a
solution iff T is consistent.

“If”. Assume that E(T ) has a solution Ẋ = {ẋt | t ∈ T}. There is a classic model
(∆I , ·I) |= Tc where all types are realized. Choose any µ satisfying

∑
type(d)=t µ(d) =
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ẋt, d ∈ ∆I , e.g. if type(d) = t then µ(d) = ẋt/(#{e ∈ ∆I | type(e) = t}). Let
I = (∆I , ·I , µ). Then, by Definition 2 of the semantics and Lemma 1

∑
Dij∈t ẋt =

∑
Dij∈t

∑
type(d)=t µ(d)

=
∑
d∈DI

ij
µ(d) = P (DIij).

This implies that all probabilistic statements in Tp are satisfied. Hence, I |= T .
“Only If”. Assume T is consistent, i.e. there is a model I = (∆I , ·I , µ) |= T . Let

ẋt :=
∑

type(d)=t µ(d) for each t ∈ T . By Definition 2 of the semantics and Lemma 1,
each probabilistic statement

∑mi

j=1 aijP (DIij) ./ ri, i = 1..n holds. We observe that

P (DIij) =
∑
d∈DI

ij
µ(d)

=
∑
Dij∈t

∑
type(d)=t µ(d) =

∑
Dij∈t ẋt.

Therefore, Ẋ = {ẋt} is a solution of E(T ). ut

Reduction of a TBox entailment T |= C v D to consistency is analogous to
SHIQ. By Lemma 1, a probabilistic TBox entailment is reduced to consistency as
follows:

T |= ∑m
j=1 ajP(Dj) ./ r iff

T ∪ {(−1)
∑m
j=1 ajP(Dj) .̇/ − r} is inconsistent,

where .̇/ =

{
> if ./ is ≥
≥ if ./ is >

.

Thus, deciding TBox consistency, and consequently TBox entailment, in SHIQP
is not harder than in SHIQ. The procedure is based on solving a system of linear
inequalities over variables representing types.

4.2 Computing Tight Probability Bounds

In addition to consistency checking, one may be interested in probabilistic entailments
that come in form of tight bounds T |= P(C|D) ≥ p` and T |= P(C|D) ≤ pu. For
example, tight bounds can identify possible data flaws, see Appendix. We define the
reasoning task of computing tight probability bounds in SHIQP .

Definition 5. (Tight bounds) Let T be a consistent SHIQP TBox.

– A real value p` ∈ [0, 1] is a lower bound for P(C|D) w.r.t. T if T |= P(C|D) ≥ p`.
p` is a tight lower bound for P(C|D) w.r.t. T if p` is maximal.

– A real value pu ∈ [0, 1] is an upper bound for P(C|D) w.r.t. T if T |= P(C|D) ≤
pu. pu is a tight upper bound for P(C|D) w.r.t. T if pu is minimal.

– A real value po ∈ [0, 1] is called a tight bound for P(C|D) w.r.t. T if po is a tight
lower or upper bound.
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– TEnt is the problem of computing a pair p`, pu for P(C|D), written T |=tight

{P(C|D) ≥ p`, P(C|D) ≤ pu}. We set `[P(C|D)] = p` and u[P(C|D)] = pu for
a tight lower and upper bound of P(C|D), respectively.

We now state TEnt as an optimization problem.

Lemma 2. Given a consistent SHIQP TBox T , tight bounds p`, pu for P(C|D) are
computed by solving the optimization problem, called OP (T ):

maximise s ·
∑
CuD∈t xt∑
D∈t xt

subject to E(T ),

such that p` = −p′, pu = p′′, where p′, p′′ are optimal values of OP (T ) when s = −1
and s = 1, respectively.

Proof. See Appendix.

As one can see, the objective function in OP (T ) is not linear. Fortunately, OP (T )
can be translated into an equivalent linear program using a substitution xt = yt/z [2]:

maximise s ·∑CuD∈t yt
subject to

∑
t∈T yt − z = 0; yt ≥ 0 for each t ∈ T ;∑mi

j=1 aij
∑
Dij∈t yt − riz ./ 0, i = 1..n;

∑
D∈t yt = 1; z > 0

In case of unconditional probability, a substitution is not required (i.e. it is trivial),
since the objective function is already linear:

maximise s ·∑C∈t xt
subject to E(T )

Thus, the optimization problem OP (T ) is reducible to a linear program. Since lin-
ear programming is in P [18], finding a solution of OP (T ) requires a polynomial num-
ber of iterations in the size of OP (T ). Nonetheless, the optimization problem OP (T )
is of exponential size w.r.t. the TBox T due to exponentially many types t ∈ T . There-
fore, computing TEnt is in ExpTime in the size of T which is stated by the following
theorem.

Theorem 2. Given a consistent SHIQP TBox T , computing tight probability bounds
is in ExpTime in the size of T .

4.3 More Detailed Complexity Analysis

One can notice that signatures of classic T̃c and probabilistic part T̃p do not necessarily
coincide. In particular, a probabilistic T̃p can be much smaller than classic T̃c, |T̃c| �
|T̃p|, e.g. for medical knowledge bases. Once realizable types are obtained from Tc,
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Tp produces an optimization problem OP (T ) which includes variables for each type
from Tc. If |T̃c| � |T̃p|, this makes OP (T ) unreasonably large and, consequently,
reasoning over relatively simple probabilistic parts hard. Fortunately, as the following
lemma shows, this can be avoided via a refinement of OP (T ).

Lemma 3. Given a consistent TBox T = Tc ∪ Tp, there is a refinement of OP (T ),
OPp(T ), that gives the same tight bounds as OP (T ) and has exponentially many vari-
ables in the size of Tp.

Proof. Let T be the set of all types of T as above and Tp the set of all types of Tp
alone. Let T ′ be the set of types of Tp “allowed” by Tc, i.e. T ′ := {τ ∈ Tp | there is t ∈
T s.t. τ ⊆ t}. Then, sums in the optimization problem OP (T ) can be rewritten as
follows:

∑
C∈t xt =

∑
C∈τ

∑
τ⊆t xt =

∑
C∈τ xτ ,

where t ∈ T, τ ∈ T ′. Thus, every sum in OP (T ), except
∑
t∈T xt, is potentially

“squeezed” via substitutions, since |T ′| ≤ |T |. Let T ′′ = {t ∈ T | there is no τ ∈
T ′ s.t. τ ⊆ t}. Then

∑
t∈T xt =

∑
τ∈T ′ xτ +

∑
t∈T ′′ xt =

∑
τ∈T ′ xτ +x. Constraints

{xt ≥ 0 | there is τ ∈ T ′ s.t. τ ⊆ t} are substituted by corresponding constraints
{xτ ≥ 0}. Constraints {xt ≥ 0 | t ∈ T ′′} are substituted by single constraint {x ≥ 0}.

Let OPp(T ) be the optimization problem obtained from OP (T ) via the aforemen-
tioned substitutions. Since |T ′| ≤ |Tp| = 2|T̃p|, the number of variables in OPp(T ) is
at most 2|T̃p| + 1. ut

The result of Lemma 3 also holds for deciding TBox consistency in SHIQP .

Corollary 1. Given a TBox T = Tc ∪ Tp, there is a refinement of E(T ), Ep(T ), that
gives the same consistency result as E(T ) and has exponentially many variables in the
size of Tp.

Lemma 3 gives a procedure to reduce, possibly massively, the number of variables
in the linear program for both computing TEnt and deciding PCon. This is achieved via
substituting suitable sums of type variables by fresh variables. As a result, the number
of variables is reduced from exponentially many w.r.t. T to exponentially many w.r.t.
Tp only.

It should be noted that Lemma 3 and Corollary 1 do not provide new complexity
results: one has to compute the set of realizable types which is still in ExpTime. Never-
theless, it gives insight into complexity sources and may lead to a significant optimiza-
tion because otherwise the size of a probabilistic part has to be significantly limited,
e.g. in [16].

5 Related Work

There are several criteria to distinguish the existing approaches. Firstly, we distin-
guish loose and tight proposals to handle probabilities. Loose ones are mainly based
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on the combination of logic with probabilistic graphical models such as Bayesian net-
works [10, 20, 3]. They mainly admit a single model. The influence in one direction is
typical for them: logical knowledge affects probabilistic knowledge but not the other
way around. Among their drawbacks is limited expressivity: the syntax is restricted due
to underlying graphical models. In addition, the graphical models often have large sizes
that make them hardly manageable. They can also require non-domain assumptions
such as probabilistic independences.

By tight proposals we mean those which attempt to deal with uncertainty in purely
logical ways. In contrast to loose proposals, they admit multiple models. Influence
works in both directions between logical and probabilistic knowledge. The probabilistic
DL SHIQP is a tight proposal by this definition.

Probabilistic extensions differ in their syntax and semantics. One of the major syn-
tax differences is how and where probabilities can occur. In particular, probabilistic
statements can be added to classical DL axioms [11, 9] or probabilities can be em-
bedded into axioms via application to concepts and roles [15], e.g. P=0.2(A) v CS
expresses “20 % of adults are current smokers”. The syntax of SHIQP is an example
of the first approach.

As pointed out above, there are two views of probability that separate the existing
probabilistic DLs by their semantics: statistical and subjective. The statistical view has
been intensely used by non-logic extensions where a probability distribution is typically
represented by graphical models [10, 20, 3]. The examples of logic extensions taking
the statistical view are [7, 15]. The subjective view is associated with possible worlds
which are, in fact, the core of the semantics for many existing extensions [11, 15, 9].
Lutz et al. [15] obtain the probabilistic DL Prob-ALC with the subjective semantics
from Halpern’s Type 2 probabilistic FOL and study its expressivity and computational
properties. They also derive Prob1-ALC from Halpern’s Type 1 probabilistic FOL. The
statistical semantics of SHIQP is similarly inherited from Halpern’s Type 1 probabilis-
tic FOL. A TBox in SHIQP admits linear combinations of conditional probabilities
which are not explicitly permitted in Prob1-ALC.

TBox reasoning in SHIQP is the combination of classic DL reasoning and linear
programming. The extensions with the subjective semantics [11, 15, 9] also perform
reasoning via solving systems of linear inequalities, commonly over possible worlds.
This has been implemented and used for medical applications [8].

6 Summary and Future Work

In this work, we study the probabilistic extension of the DL SHIQ that we call SHIQP .
It has the statistical semantics inherited from the Type 1 probabilistic FOL [4]. We in-
vestigate two reasoning problems for TBoxes in SHIQP : deciding consistency PCon
and computing tight probability bounds TEnt. We obtain the ExpTime complexity
bounds for deciding consistency of a SHIQP TBox. While deciding consistency of
TBoxes is already explored for Prob1-ALC, to the best of our knowledge, no studies
are carried out for the problem of computing tight probability bounds for any exten-
sion with the same semantics. We state this problem for SHIQP as an optimization
problem. We also show that solving this optimization problem is, in fact, reducible to
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linear programming and, hence, is in P w.r.t. its size. Therefore, computing TEnt is in
ExpTime in the size of the TBox T . Thus, both PCon and TEnt are not harder than rea-
soning in the classic DL SHIQ. Moreover, we show that the size of a linear program
for PCon and TEnt can be (significantly) reduced since it depends on the probabilistic
part only which is an important insight into the sources of computational complexity.

In Section 3 we discuss abilities of the statistical semantics to handle the statistical
knowledge and observe that it is naturally suited for this purpose. As noted by several
authors [4, 11, 15], the main shortcoming of the statistical semantics, however, is its
inability to represent probabilistic assertional knowledge, i.e. degrees of belief. For ex-
ample, there is no way to encode “Martin is a smoker with probability 0.7” since he is
either a smoker or he is not, according to the statistical view. Lutz et al. [15] state that
“only TBox reasoning is relevant” for the statistical semantics and exclude ABoxes.

Nevertheless, we argue that ABox reasoning may be relevant for the statistical se-
mantics if it is extended to capture population wide, incomplete data, i.e. it is of suf-
ficient size and spread w.r.t. the whole population. Reasoning over such data might
help to answer the question how well the data fits the background knowledge including
probabilistic statements, i.e. whether they are compatible with the proportions of indi-
viduals in the data. In case of incomplete data, the incompatibility might show whether
and which information is missing. Thus, we plan to further study ABox reasoning in
the statistical semantics and its possible extensions.

As Example 2 and 3 show, prior knowledge about probability distribution acts as
an additional parameter to the reasoning procedure. We plan to further investigate how
restrictions of a probability distribution affect entailments and their complexity. We
also consider extending expressivity of probabilistic statements in TBoxes, e.g. with
probabilistic independence constraints, and investigate related complexity issues. We
plan implementations of developed procedures and their optimizations.
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Abstract. Artifact-centric models for business processes recently raised
a lot of attention, as they manage to combine structural (i.e. data re-
lated) with dynamical (i.e. process related) aspects in a seamless way.
Many frameworks developed under this approach, although, are not built
explicitly for planning, one of the most prominent operations related to
business processes. In this paper, we try to overcome this by propos-
ing a framework named Dynamic Knowledge Bases, aimed at describing
rich business domains through Description Logic-based ontologies, and
where a set of actions allows the system to evolve by modifying such
ontologies. This framework, by offering action rewriting and knowledge
partialization, represents a viable and formal environment to develop
decision making and planning techniques for DL-based artifact-centric
business domains.

1 Introduction

Classically, management of business processes always focused on workflows and
the actions/interactions that take part in them, an approach called process-
centric. One of the most prominent operations related to business processes is
planning [7], namely finding a sequence of operations/actions that allows to
reach a desired goal. Lately, such approach has been call into question, as the
sole focus on the workflow leaves out the informational context in which the
workflow is executed.

Artifact-centric models for business processes recently raised a lot of atten-
tion [2,6], as they manage to combine structural (i.e. data related) with dy-
namical (i.e. process related) aspects in a seamless way, thus overcoming the
limits of process-centric approach. In this context, we can see the development
of the framework called Knowledge and Actions Bases [9], the later higher for-
malization of it named Description Logic Based Dynamic Systems [5], and the
Golog-based work of [1]. These works all share the same concept: handle the
data-layer through a Description Logic ontology, while the process-layer, since
DLs are only able to give a static representation of the domain of interest, is
defined as actions that update the ontology (the so-called “functional view of
knowledge bases” [10]). The combination of these two elements generates a tran-
sition system in which states are represented by DL knowledge bases. They do
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also share a similar objective: verification of temporal formulas over the afore-
mentioned transition system. Since finding a path that lead to a goal state can be
expressed as a reachability temporal formula, these environments can be used for
planning purposes, but they are not explicitly meant for this task. From their
definition, we are limited to explore the state-space in a forward manner (we
could end up having to explore the full state-space) and only by using the full
body of the available knowledge, which is not ideal for developing different ways
to search the state-space, as well as under a performance point of view.

In this paper we propose an artifact-centric framework, called Dynamic Knowl-
edge Bases, aimed at describing data-rich business domains and be a more versa-
tile environment for planning and decision-making: the data-layer is taken care
of by a DL knowledge base, while a set of actions allows the system to evolve by
adding/removing assertions, as well as introducing new instances to the system.
To reach our goals, and overcome the afore-mentioned limitations, our frame-
work relies on few optimizations. First of all, although our framework is based
on Description Logic, it is desirable to skip completely the use of the TBox: this
would allow us to avoid executing reasoning tasks and only work with facts from
the ABox, simplifying especially the transition-building process. We fulfil this
aspect with action rewriting, which rewrites actions and introduces a blocking
query : such query (which is fixed for each action) tells if, given a state, we can
perform the given action and built the ending state of the transition, or if the
action will lead us to an inconsistent state w.r.t. the TBox. These operations are
done without calculating the ending state, and without the need of the TBox
(while keeping the consistency w.r.t. it).

Secondly, while the totality of the available knowledge is necessary to asses
the consistency of the overall system, it bounds us to work with details that might
not be of interests immediately. In decision making [8], “an heuristic is a strategy
that ignores part of the information, with the goal of making decisions more
quickly, frugally, and/or accurately than more complex methods”. Being able to
work with partial information is vital when we deal with systems described by
complex ontologies and are composed of millions (if not more) instances. To
allow our framework to be used for such strategies we introduce partialization,
so that users can focus on a chosen subset of knowledge (partial knowledge); it
allows to build a transition system which starts from a subset of the original
ABox (the facts that describe the complete system), and, for each transition,
choose which knowledge to transfer to the next state. Lastly, we demonstrate
how, given a path found over the partial knowledge transition system, we can
calculate a global blocking query, which tells if such path can be performed in
the original transition system with no modifications.

The resulting framework constitutes a sound base on top of which researchers
can develop new planning techniques useful for all those situations in which is
necessary to manipulate both actions and data together (e.g. the decision making
process in agents, composition of web services, etc.).
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2 Dynamic Knowledge Bases

Dynamic Knowledge Bases (DKBs) are, briefly, a variation of Knowledge and
Action Bases (KABs) [9], namely dynamic systems (more precisely labelled tran-
sition systems) in which states are constituted by DL knowledge bases (KBs),
and a set of actions that makes the system evolve by modifying those KBs.

Definition 1. A DKB is a tuple D = (T,A0, Γ ), where (T,A0) is a DL-LiteA
KB, while Γ is a finite set of actions.

We adopt a restricted version of DL-LiteA knowledge bases [4], which does
not use attributes (available in full DL-LiteA KBs). DL-LiteA employs the
Unique Name Assumption, thus equality assertions are not allowed. We adopt
DL-LiteA as it is, like other DL-Lite dialects, quite expressive while maintaining
decidability, good complexity results, and enjoys the FOL-rewritability prop-
erty. In the followings, the set adom(A) identifies the individual constants in
the ABox A, which are defined over a countably infinite (object) universe ∆
of individuals (it follows that adom(A) ⊆ ∆). AT denotes the set of all pos-
sible consistent ABoxes w.r.t. T that can be constructed using atomic concept
and atomic role names in T , and individuals in ∆. The adopted semantic is the
standard one based on first-order interpretations and on the notion of model: a
TBox is satisfiable if admits at least one model, an ABox A is consistent w.r.t.
a TBox T if (T,A) is satisfiable, and (T,A) logically implies an ABox assertion
α (denoted (T,A) |= α) if every model of (T,A) is also a model of α.

We define an action as:
a: q,N  E

where a is the action name, q is a query called action guard, N is a set of variables
which are used in an instance creation function, and E are the action effects.
The guard q is a standard conjunctive query (CQ) of the type q = ∃−→y .conj(−→x ,−→y ),
where conj(−→x ,−→y ) is a conjunction of atoms using free variables −→x and existen-
tially quantified variables −→y , no individuals. Atoms of q uses concepts and roles
found in T . Vars(q) represents the variables in q (i.e., −→x ∪ −→y ), while Vars(q)6∃
(resp., Vars(q)∃) only the set −→x (resp., −→y ).
The set N contains variables which do not appear in q (i.e., Vars(q) ∩N = ∅),
and which are fed to an assignment function m when the action is executed.
The set E is a set of atomic effects (i.e., atomic non-grounded ABox assertions)
which is divided in two subsets: the set E− of negative effects, and the set E+ of
positive effects. All atoms of E− must use variables that are in Vars(q)6∃, while
the atoms of E+ uses variables from the set Vars(q) 6∃ ∪ N . All variables are
defined over a countably infinite (object) universe V of variables.

Definition 2. The transition system ΥD is defined as a tuple (∆,T,Σ,A0,⇒),
where: (i) ∆ is the universe of individual constants; (ii) T is a TBox; (iii) Σ is
a set of states, namely ABoxes from the set AT (Σ ⊆ AT ); (iv) A0 is the initial
state; (v) ⇒ ⊆ Σ×L×Σ is a labelled transition relation between states, where
L = Γ ×Θ is the set of labels containing an action instantiation aϑ, where a is
an action from Γ and ϑ a variable assignment in Θ from V to ∆.
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The transition system ΥD represent the dynamics of a DKB D. Given a state A
and selected an action a, the informal semantic of a transition is:

1. extract the certain answers ans(q, T,A) of the guard q from the state A;
2. pick randomly one tuple from ans(q, T,A) and use it to initiate the variable

assignment ϑa for the variables Vars(a) (at this point we covered only the
free variables in Vars(q)6∃);

3. choose an assignment for the variables in N and use it to extend ϑa. We
define an assignment function m(N,A) : N → (∆\adom(A)), which assigns
to each variable of N an individual from ∆ which does not appear in A;

4. use ϑa to instantiate the effects E and calculate Anext by applying the in-
stantiated effects to A.

The sets Σ and ⇒ are thus mutually defined using induction (starting from A0)
as the smallest sets satisfying the following property: for every A ∈ Σ and action
a ∈ Γ , if exists an action instantiation aϑa s.t.

Anext = A \ sub(ent(E−, T )ϑa, A) ∪ E+ϑa

and Anext ∈ AT , then Anext ∈ Σ and A
l⇒ Anext, with l = aϑa. aϑa is called an

instantiation of a.

ent(E−, T ) represents a set of atoms derived from E−, which represents all
the atoms which entail one or more single negative effects e− in E− w.r.t. to
the TBox T . We take each single negative effect e− and, by considering e− as a
CQ composed only by one atom, obtain an UCQ rewT (e−) by using the query
reformulation algorithm [3, Chapter 5.2]. Since we consider a single atom at
a time, the algorithm produces an UCQ composed only by CQs with a single
atom e−rew in them. Each atom e−rew either contains variables found in e− or,
in case of a role term, one of the two variables can be a non-distinguished non-
shared variable represented by the symbol ‘ ’ (never both variables). We add
each atom e−rew to the set ent(E−, T ). Given ent(E−, T ), we calculate the set
sub(ent(E−, T )ϑa, A) in the following way. For each atom e−rew in ent(E−, T ),
we apply the variable transformation ϑa to it (the symbol ‘ ’ remains untouched,
as it is not linked to any variable that appears in ϑa); we then check if it exists
in the ABox A an assertion α such that e−rewϑa = α, assuming that the symbol
‘ ’ can be evaluated equal to any individual ( = ind , ∀ind ∈ adom(A)).

For clarity, from now on we will denote the set sub(ent(E−, T )ϑa, A) with
E−sub(ϑa)

. Notice that the set E−sub(ϑa)
is not uniquely determined, as it depends

on the ABox on which it is applied. This behaviour is intentional, as our aim is to
have the certainty that an assertion e− marked for removal will not appear in the
next state nor in the ABox Anext, nor as an inferable assertion (〈T,Anext〉 6|= e−);
to reach such goal, we have to remove all possible assertions that entail e−. The
set ent(E−, T ), instead, depends only on E− and T , thus it’s constant and can
be calculated only one time at the beginning.

As we see from the definition of Anext, actions modify only ABox assertions:
it follows that the TBox is fixed, while the ABox changes as the system evolves
(thus an ABox Ai is sufficient to identify the state i of the system). The transition
system ΥD clearly can be infinite, as we have the possibility to introduce new
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constants. We call a path π a (possibly infinite) sequence of transitions over ΥD
that start from A0 (π = A0

a1ϑ1⇒ ...
anϑn⇒ An).

Example 1. Consider the DKB D described by the following elements and which
models a simple business scenario:
– the TBox T = {Employee v ¬Product,Technician v Employee};
– the ABox A0 = {Technician(t1),Product(p1)};
– the action set Γ composed of the following actions:

create: {Employee(x)}, {y}  {Product(y)}+
fire: {Employee(x)}  {Employee(x)}−

If we consider A0 as the initial state in ΥD, then a possible transition is A0
createϑ⇒

A1 where: ϑ = {x 7→ t1, y 7→ p2} (notice that we introduce a new individual p2),
and A1 = {Technician(t1),Product(p1),Product(p2)}.

We could also perform the action fire, as it exists a proper instantiation of it
by using the variable assignment ϑfire = {x 7→ t1}. The set ent(E−, T ) for the
action fire corresponds to the set {Employee(x),Technician(x)}, thus E−sub(ϑfire)

would be equal to {Technician(t1)}. Performing the action instantiation would
get us to the state A2{Product(p1)}, and it’s clear that 〈T,A2〉 6|= Employee(t1). If
we would simply remove the instantiated negative effects in E−ϑfire), we wouldn’t
achieve the same result (as the assertion Technician(t1) would still appear in the
final state), as if the action didn’t have any effect at all.

3 Optimizations

3.1 Action Rewriting

The first optimization we bring to the framework regards actions, and, more
specifically, the guard q. Using the query reformulation algorithm [3, Chapter
5.2], we can transform a query q into an UCQ rewT (q) such that ans(q, T, a) =
ans(rewT (q), ∅, A). We then take every action a, calculate rewT (q), and, for ev-
ery CQ qrew ∈ rewT (q), create an action arew: qrew, N  E (with N and E taken
from a without modifications). These new actions slightly modify the transition
function ⇒: the guard is now evaluated without using the TBox, and the vari-
able assignment ϑarew must be taken from the certain answers ans(qrew, ∅, A),
while the rest of the transition function remains the same.

The second optimization regards the ending state of the transition: in the
specification of a DKB, actions could lead to inconsistent states. We introduce
an additional element called blocking query B, a boolean UCQ used as a block
test in the state A before performing the action: if B returns false, then we
can perform the action and have the guarantee that the ending state Anext is
consistent w.r.t. T . The building of B is based on the NI-closure of T (denoted
cln(T )) defined in [3]. Each positive effect e+ ∈ E+ (column 1 in Table 1, we
need to change the variables accordingly to the ones in e+) could take part
in a negative inclusion assertion α ∈ cln(T ) (column 2 in Table 1); this mean
that we have to look for a possible assertion β (column 3 in Table 1) which
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could break α when e+ is added (z represents a newly introduced variable, thus
z 6∈ Vars(q) ∪N ∪ Vars(B)). To do so, for each possible β we get from e+ and
α, we perform the following steps (we start from B = ⊥, where ⊥ indicates a
predicate whose evaluation is false in every interpretation):

1. we check if β is present in the positive effects E+ by executing ans(β, ∅, E+)
and retrieve all the certain answers φE+ . For each φE+ , it means it exist an
assertion βφE+ which poses a problem. Since we are dealing with variables
(the effects are not instantiated yet), we have to express in B under which
conditions βφE+ would make Anext inconsistent; we do this by adding the
corresponding CQ βE+ (column 4 in Table 1) to B by or -connecting it to
the rest of the CQs.
Notice that we treat z as an existential variable, as it does not appear in e+

and thus we have no constrains about it.
2. we check if in E− there are negative effects that could block β by re-

moving it (thus eliminating the threat of an inconsistency). by executing
ans(β, ∅, ent(E−, T )) and retrieve all the certain answers ϑE− . For each ϑE− ,
it means it exist an assertion βφE− which is removed. Since we are dealing
with variables (the effects are not instantiated yet), we have to express in B
under which conditions βφE− can’t block an inconsistency in Anext; we do
this by adding the corresponding UCQ βE− (column 5 in Table 1) to B by
or -connecting it to the rest of the CQs.

3. if E− can’t block any inconsistency (thus ans(β, ∅, ent(E−, T )) = ∅), then
we have to express in B under which conditions there will be a inconsistency
in Anext due to an assertion β in A w.r.t e+; we do so by adding βA (column
6 in Table 1) to B by or -connecting it to the rest of the CQs.

Note that while building the blocking query B, we could have, for the UCQs
βE− , inequalities of the type x 6= , with the non-distinguished non-shared
variable generated by ent(E−, T ). Such inequalities always evaluate to False.

Definition 3. Given an action a ∈ Γ , its rewritten action arew is defined as:
arew: qrew, N,B  E

where qrew ∈ rewT (q), and B is the blocking query of arew.

The union of all possible rewritten actions defines the set of actions Γ rew.

Example 2. Let’s consider the action create: {Employee(x)}, {y} {Product(y)}+.
First we calculate rewT (q), which is the UCQ Employee(x) ∨ Technician(x).

We can now calculate the blocking query B. We see that the concept term
Product of the positive effect e+ = Product(y) takes part in the negative-inclusion
assertion Employee v ¬Product, and, by the definition of cln(T ), also in the as-
sertion Technician v ¬Product: we thus have two β assertions, Employee(y), and
Technician(y). By following the procedure for building B, we have no βE+ ele-
ments (as ans(β, ∅, E+) = ∅, and no βE− elements (as ans(β, ∅, ent(E−, T )) =
∅). The final query is thus composed only of βA elements, and is

B = Employee(y) ∨ Technician(y)
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e+ α β ϑE+ → βE+ ϑE− → βE− βA

A(x)
A v ¬A1

A1 v ¬A A1(x) {x 7→ y} → x = y {x 7→ y} → x 6= y ∧ A1(x) A1(x)

A(x)
A v ¬∃P
∃P v ¬A P(x, z) {x 7→ y} → x = y

{x 7→ y1, z 7→ y2} →
∃z.P(x, z) ∧ x 6= y1 ∧ z 6= y2

∃z.P(x, z)

A(x)
A v ¬∃P−
∃P− v ¬A P(z, x) {x 7→ y} → x = y

{x 7→ y1, z 7→ y2} →
∃z.P(z, x) ∧ x 6= y1 ∧ z 6= y2

∃z.P(z, x)

P(x1, x2)
∃P v ¬A
A v ¬∃P A(x1) {x1 7→ y} → x1 = y {x1 7→ y} → x1 6= y ∧ A(x1) A(x1)

P(x1, x2)
∃P− v ¬A
A v ¬∃P− A(x2) {x2 7→ y} → x2 = y {x2 7→ y} → x2 6= y ∧ A(x2) A(x2)

P(x1, x2)
∃P v ¬∃P1

∃P1 v ¬∃P P1(x1, z) {x1 7→ y} → x1 = y
{x1 7→ y1, z 7→ y2} →
∃z.P(x1, z) ∧ x1 6= y1 ∧ z 6= y2

∃z.P1(x1, z)

P(x1, x2)
∃P− v ¬∃P1

−

∃P1
− v ¬∃P− P1(z, x2) {x2 7→ y} → x2 = y

{x2 7→ y1, z 7→ y2} →
∃z.P(z, x2) ∧ x2 6= y1 ∧ z 6= y2

∃z.P1(z, x2)

P(x1, x2)
∃P v ¬∃P1

−

∃P1
− v ¬∃P P1(z, x1) {x1 7→ y} → x1 = y

{x1 7→ y1, z 7→ y2} →
∃z.P(z, x1) ∧ x1 6= y1 ∧ z 6= y2

∃z.P1(z, x1)

P(x1, x2)
∃P− v ¬∃P1

∃P1 v ¬∃P− P1(x2, z) {x2 7→ y} → x2 = y
{x2 7→ y1, z 7→ y2} →
∃z.P(x2, z) ∧ x2 6= y1 ∧ z 6= y2

∃z.P1(x2, z)

P(x1, x2)

P v ¬P1

P1 v ¬P
P− v ¬P1

−

P1
− v ¬P−

P1(x1, x2)
{x1 7→ y1, x2 7→ y2}
→ x1 = y1 ∧ x2 = y2

{x1 7→ y1, x2 7→ y2} →
(x1 6= y1 ∧ P(x1, x2))∨
(x2 6= y2 ∧ P(x1, x2))

P1(x1, x2)

P(x1, x2)

P v ¬P1
−

P1
− v ¬P

P− v ¬P1

P1 v ¬P−
P1(x2, x1)

{x1 7→ y1, x2 7→ y2}
→ x1 = y1 ∧ x2 = y2

{x1 7→ y1, x2 7→ y2} →
(x1 6= y1 ∧ P(x2, x1))∨
(x2 6= y2 ∧ P(x2, x1))

P1(x2, x1)

P(x1, x2) funct P
P(x1, z)
∧ x2 6= z

{x1 7→ y1, x2 7→ y2}
→ x1 = y1 ∧ x2 6= y2

{x1 7→ y1, z 7→ y2} →
(∃z.P(x1, z) ∧ x1 6= y1 ∧ z 6= x2)∨
(∃z.P(x1, z) ∧ x1 = y1 ∧ z 6= x2 ∧ z 6= y2)

∃z.P(x1, z)
∧ x2 6= z

P(x1, x2) funct P−
P(z, x2)
∧ x1 6= z

{x1 7→ y1, x2 7→ y2}
→ x2 = y2 ∧ x1 6= y1

{z 7→ y1, x2 7→ y2} →
(∃z.P(z, x2) ∧ x2 6= y2 ∧ z 6= x1)∨
(∃z.P(z, x2) ∧ x2 = y2 ∧ z 6= x1 ∧ z 6= y1)

∃z.P(z, x2)
∧ x1 6= z

Table 1: Assertions βE+ , βE− , and βA for a given positive effect e+ and assertion α
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We get the following two rewritten actions:
createrew

1 : {Employee(x)}, {y}, {Employee(y) ∨ Technician(y)}  {Product(y)}+
createrew

2 : {Technician(x)}, {y}, {Employee(y) ∨ Technician(y)}  {Product(y)}+

Theorem 1. Given a satisfiable KB (T,A), an action arew ∈ Γ rew such that
ϑarew ∈ ans(qrew, ∅, A) and ans(Bϑarew , ∅, A) = ∅, then the ABox Anext = A \
E−sub(ϑarew ) ∪ E+ϑarew is consistent w.r.t. T .

Proof. For the proof of the theorem we remind the reader to the Appendix of
the extended version of this paper [11].

Lemma 1. Given an action arew ∈ Γ rew, for every ABox A such that ϑarew ∈
ans(qrew, ∅, A) and ans(Bϑarew , ∅, A) = ∅, we can always perform the transition

A
arewϑarew⇒ Anext, with Anext ∈ AT .

Thanks to the rewriting of actions, we can build the transition system ΥD
without the need of the TBox T , while still having the guarantee that the system
is consistent w.r.t. it.

3.2 Partial Transition System

We now build a partialization Υ pD of the transition system ΥD, which is built in
the same way as ΥD, apart from two points: i) the initial state is a subset of the
ABox A0 ii) it uses a looser transition function.

Definition 4. A partial transition system Υ pD is a tuple (∆,T,Σp, Ap0,→), where:
(i) ∆ is the universe of individual constants; (ii) T is a TBox; (iii) Σp is a set
of states, namely ABoxes from the set AT (Σp ⊆ AT ); (iv) Ap0 is a subset of
the initial ABox A0 (Ap0 ⊆ A0); (v) → ⊆ Σp × L ×Σp is a labelled transition
relation between states, where L = Γ rew × Θ is the set of labels containing an
action instantiation arewϑ, where arew is an action from Γ rew and ϑ a variable
assignment in Θ from V to ∆.

As Ap0 ⊆ A0, we have the guarantee that Ap0 ∈ AT . The sets Σp and →
are mutually defined using induction (starting from Ap0) as the smallest sets
satisfying the following property: for every Ap ∈ Σp and action arew ∈ Γ rew, if
exists an action instantiation arewϑarew s.t.

Apnext ⊆ Ap \ E−sub(ϑarew ) ∪ E+ϑarew

and Apnext ∈ AT , then Apnext ∈ Σp and Ap
l⇒ Apnext, with l = arewϑarew .

Notice that Apnext can be any subset of Ap\E−sub(ϑarew )∪E+ϑarew , thus allowing

to select which knowledge to focus on, unlike in ΥD where we transfer all the
knowledge from one state to another. We now define the existing relation between
the the partial transition system Υ pD and the transition system ΥD. Given a path
πp in Υ pD, we say that πp is a proper partialization of a path π in ΥD (resp., π is
a proper completion of πp) if:
– each state Api is a subset of the relative state Ai (Api ⊆ Ai);
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– each transition is caused by the same action arew
i and the related variable

assignments are equal (ϑpi = ϑi).
Between ΥD and Υ pD there is no relation such as bisimulation or even simula-

tion; this is a clear (and intended) consequence of working with partial knowl-
edge. This also means that we have no immediate way to know if, given a partial
path πp in Υ pD, we can use the same actions instantiations in ΥD, and thus if it
exists a path π that is a proper completion πp. To overcome this problem, we
extend the definition of the blocking query B by creating a global blocking query
Bπp w.r.t to a finite partial path πp. Bπp is a boolean UCQ that can be evalu-
ated in the complete initial state A0, and, if it is evaluated False, gives us the
certainty that we can use the same actions instantiations found in πp starting
from A0 without generating any inconsistent state w.r.t. T .

Bπp is built by iteratively adding the single instantiated blocking queries
Biϑ

p
i of the actions that compose πp (Algorithm 1, the symbol > indicates a

predicate whose evaluation is true in every interpretation). At each step, be-
fore adding the i-th instantiated blocking query Biϑ

p
i to Bπp , we perform the

following operations:
– check that ans(Bπp , ∅, E+

i ϑ
p
i ) is False;

– remove any CQ β inBπp that evaluates always False (i.e., contains (in)equalities
that evaluates always to False, like indi = indl, or indi 6= indi);

– remove from each CQ the (in)equalities that evaluates always to True, as they
do not influence the ending result. We are sure that no CQ will be left empty,
because it would mean the whole CQ would always evaluate to True, and this
would have blocked the first step;

– for each CQ β, generate a temporary CQ βtemp by removing all the (in)equalities
and transform existential variables in free ones. Looking at how the blocking
query is built, we have that βtemp is either empty (β is composed only of
(in)equalities) or contains only one atomic assertion with at most one free
variable. For example, if β = ∃z.P(i1, z) ∧ i2 6= z, then βtemp = P(i1, z);

– perform ans(βtemp, ∅, E−sub(ϑp
i )

):

• if it evaluates to True, then it means that the instantiated negative effects
E−
sub(ϑp

i )
remove the atom βtemp, and in this case we can remove the CQ

β from Bπp ;
• if it returns answers of the type ϑβtemp

= {z 7→ ind}, then it means that

the instantiated negative effects E−
sub(ϑp

i )
remove the atom βtemp only if z

is mapped to the individual ind. We thus add to the CQ β the inequality
z 6= ind.

Theorem 2. Given a DKB D, a finite partial path πp, and its global blocking
query Bπp , if ans(Bπp , ∅, A0) = ∅, then it exists a concretion π of πp such that
π ∈ ΥD.

Proof. For the proof of the theorem we remind the reader to the Appendix of
the extended version of this paper [11].

Example 3. Consider the DKB D described by the following elements and which
models a simple business scenario:
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Algorithm 1: The algorithm to build the global blocking query Bπp

input : A partial path πp

output: An UCQ Bπp

Bπp := {⊥}
i := n. of transitions in πp // counter variable

while i > 0 do // each cycle refers to transition Api−1

aiϑ
p
i→ Api

if ans(Bπp , ∅, E+
i ϑ

p
i ) 6= ∅ then

Bπp := > // inconsistency in the i-th transition

break

end
foreach β ∈ Bπp do

if β contains (in)equalities that are always False then
Bπp := Bπp \ β // remove CQs that are always False

end
remove from β (in)equalities that are always True
βtemp := β without (in)equalities and existential operator

if ans(βtemp, ∅, E−sub(ϑp
i )

) = True then

Bπp := Bπp \ β // E−
sub(ϑ

p
i )

erases the CQ βtemp

else if ans(βtemp, ∅, E−sub(ϑp
i )

) 6= ∅ then
foreach ϑβtemp = {z 7→ ind} ∈ ans(βtemp, ∅, E−sub(ϑp

i )
) do

β := β ∧ z 6= ind // update the CQ β
end

end

end
Bπp := Bπp ∪Biϑpi // add the blocking query of action ai

i := i− 1

end

– the TBox T = {Stored v ¬Shipped};
– the ABox A0 = {Product(p1),Stored(p1),Product(p2)};
– the action set Γ composed by the following actions:

pack: {Product(x)}  {Packed(x)}+,
ship: {Packed(x)}  {Shipped(x)}+
which becomes the set Γ rew composed of the actions:
packrew: {Product(x)}  {Packed(x)}+,
shiprew: {Packed(x)}, {Stored(x)}  {Shipped(x)}+

At this point, we develop a partial transition system Υ̂D by considering the partial
initial state Ap0 = {Product(p1)}. We can perform the sequence of transitions

πp = Ap0
packϑ→ Ap1

shipϑ→ Ap2, where: ϑ = {x 7→ p1}, Ap1 = {Packed(p1)}, and Ap2 =
{Shipped(p1)}. The global blocking query Bπp is Stored(p1), and we see that, if
we try to transpose πp in the original ABox A0, we have ans(Bπp , ∅, A0) 6= ∅,
thus meaning that πp doesn’t have a proper concretion π (indeed if we perform
the two actions, we would end up having an inconsistent state A2).
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If we would consider instead the partial initial state Ap0 = {Product(p2)},
instead, we woould be able to find a proper completion of πp, as Bπp would be
Stored(p2) and ans(Bπp , ∅, A0) = ∅.

Given a finite partial path πp and its global blocking query Bπp , we have a
way to know if we can transform πp into a complete path π without actually
calculating it, only by performing an UCQ over the initial state A0. Notice also
that this result can be applied to all possible ABoxes, not only A0; as long as
Ap0 is contained in an ABox A, and ans(Bπp , ∅, A) = ∅, then it exists a path π
which starts from A and is a proper concretion of πp.

4 Conclusions

In this paper we formalize a framework, called Dynamic Knowledge Bases, aimed
at modelling the dynamics of artifact-centric business processes. Such framework
is represented by a transition system where states are defined by DL-LiteA knowl-
edge bases, and where a set of actions allows the system to evolve by adding or
removing assertions, along with the possibility to introduce new instances. The
expressive power and reasoning services of Description Logics are very helpful
to describe and manage the domain knowledge, but constitute a difficult envi-
ronment to deal with when it comes to the dynamics of the processes. To tackle
this problem, we introduce two optimizations, namely action rewriting and the
partialization of the transition system related to a Dynamic Knowledge Base:
these optimizations give us a framework where we can work with partial knowl-
edge and where the TBox is not needed, still guaranteeing that the resulting
system is consistent with it. Given a path valid for the partial transition system,
we can calculate its global blocking query, and know if it can be transferred to
the complete transition system without any change, and without the need to do
any other calculation.

Our work does not aim to propose a planning technique, neither try to give
a solution w.r.t. the decidability/undecidability problem of plan research in our
environment (since it is possible to generate an infinite transition system), but
to create a framework that can be used as a formal domain-independent base to
develop planning and decision making techniques for data-rich business domains
by taking full advantage of the DL-Lite reasoning power.

We are currently working to further expand this framework in various di-
rections. Under the theoretical side, we are already developing an abstraction
of the transition system, in particular by expressing the needed knowledge by
using only queries, which can be then used over the complete transition system.
Under the practical side, we intend to propose a backward planning algorithm,
which takes advantage of the abstract transition system and the possibility to
work with partial knowledge to return all plans of interest w.r.t. a goal.

Although further investigation is surely needed, Dynamic Knowledge Bases
are a promising framework that can be usefully employed to tackle the problem
of planning and decision making in artifact-centric business domains.
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Temporal information plays a central role in many applications of ontology-based
data access (OBDA). For example, knowledge about the past is usually kept in patient
records, and collected by companies or scientific projects as MesoWest4, focusing on
weather data. Such applications obviously benefit from using ontologies for data inte-
gration and access (e.g., the wind force ‘Storm’ on the well-known Beaufort Wind Force
Scale is equally characterized by wind speed and wave height, which can be represented
by a general concept inclusion as HighWindSpeed t HighWaves v Storm). Temporal
knowledge is however not taken into account by systems implementing OBDA, in gen-
eral. Though, assuming that we consider several weather stations’ data of the past 24
hours, a query such as the following could be interesting: “Get the heritage sites that
are nearby a weather station, for which at some time in the past (24 hours) a danger of
a hurricane was detected, since then, the wind force has been continuously very high,
and it increased considerably during the two latest times of observation.”

For that reason, we investigate different approaches for answering temporal con-
junctive queries (TCQs) [4, 5] w.r.t. ontologies written in the description logic (DL)
DL-Litecore (hereinafter called DL-Lite). TCQs combine conjunctive queries (CQs) via
LTL operators5 and have already been studied extensively in the context of DL-Lite [13,
8]. The above example query could be specified as the following TCQ:
HeritageSite(x) ∧WeatherStation(y) ∧ nearby(x, y) ∧(
HighWind(y)SDangerOfHurricane(y)

)
∧ #− Storm(y) ∧ ViolentStorm(y),

asking for all pairs (x, y) of heritage sites and nearby weather stations, whose sensor
values at some point in time implied a danger of a hurricane, since (S) then, the mea-
surements have implied Beaufort category ‘high wind’, in the previous (#−) moment of
observation they implied category ‘storm’, and the latest values imply ‘violent storm’.
The semantics of TCQs is based on temporal knowledge bases, which, in addition to
the ontology (assumed to hold at every point in time), contain a sequence of fact bases
A0,A1, . . . ,An, representing the data collected at specific points in time. Especially
note that the ontology and the fact bases itself are formulated in a classical DL.

Related Work

On the DL side, there are various optimized systems realizing OBDA [10]. In particu-
lar, the so-called rewriting approach realized by Ontop [15] allows for efficient query

*Partially supported by the DFG in CRC 912 (HAEC) and by the EU Commission as part of
the FP7 project Optique.

4http://mesowest.utah.edu/
5Please note that we do not consider negation.

552



answering w.r.t. an ontology written in DL-Lite. Specifically, Ontop internally rewrites a
given conjunctive query, which is written in the abstract vocabulary of the ontology, into
an SQL query that encodes the relevant ontological knowledge but addresses a standard
database system; the latter can then be used to store the data and efficiently answer the
queries. But whereas a lot of DL research is studying temporal extensions of ontology
and query languages [2, 6, 3, 11, 13, 5, 8, 14], none of the freely available systems takes
the temporal nature of the data into account, yet (i.e., the query languages supported
do not provide operators for explicitly referencing different points in time). Neverthe-
less, recently, several practical approaches for answering temporal queries have been
developed in the fields of (RDF) stream reasoning [7] and complex event processing [9,
1]. These systems are tailored to continuously answering given queries over an infinite
stream of data—which is usually realized by restricting the focus to a window of the
data (i.e., instead of considering all the past data available, the number of considered
time points or data instances is fix). But only few of these systems support ontologies,
yet, and standards for a common stream representation and processing, for query lan-
guages, and for operation semantics are still to be developed.

Our work complements these applied approaches by starting from a DL perspec-
tive, where many use cases consider static data, ontologies are important, and there are
several well-investigated query languages. Specifically, we study three pragmatic ap-
proaches for answering TCQs based on the work of [8]. We prototypically implemented
and evaluated them, and in this paper report on our experiences.

Algorithms for Temporal Query Answering

In particular, [8] propose algorithms for answering temporal queries (w.r.t. TKBs) that
generalize TCQs in that they combine queries of a generic atemporal query languageQ
via LTL-operators (i.e., we restrict Q to CQs).6 Similar to the streaming scenario, [8]
assume a fix set of TCQs to be answered continuously at time point n.

We first implemented the Iterative Algorithm (IA) (cf. Section 6 in [8]), which it-
eratively computes sets of answers to several subqueries of the TCQ to be answered,
for each time point i, 0 ≤ i ≤ n. For example, the answers to #−Storm(x) at i are
obtained by evaluating Storm(x) at i − 1. Since the processing at i only uses Ai and
the sets computed for the previous moment, whose sizes are bounded, the IA achieves a
so-called bounded history encoding (i.e., it’s runtime does not depend on the number of
considered fact bases). A growing number of data from the past however usually leads
to an increase in processing time, in practice. We therefore describe a window-based
variant of the IA, the Vector Algorithm (VA) (cf. Section 4 in [12]). With this approach,
the entire history can still be regarded (i.e., by considering it as one window) but, for
example, streaming scenarios can be managed, too. The VA specifically supports slid-
ing windows, where the TCQs are not evaluated at every time point, but in fix intervals,
by only regarding the then necessary of the above mentioned sets of answers. To answer
the query #−Storm(x) at every second point in time, for example, Storm(x) does not
always have to be evaluated. Our implementations of both algorithms are based on ma-
terializing the fact bases and thus may be extended in the future w.r.t. other rewritable

6[8] assume Q to be a rewritable query language, which basically means that the certain an-
swers to every query inQ w.r.t. a knowledge baseK can be obtained by answering an appropriate
adaptation of the query in a canonical model of K.
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query languages (e.g., by employing a corresponding reasoner for the atemporal query
answering, temporal queries over EL-TKBs could be answered).

To get an impression of the performance of a temporal rewriting approach, we fi-
nally consider (a rather simple) Rewriting Algorithm (RA) translating TCQs into stan-
dard database queries. Note that the idea is similarly described by [8]. However, in [8],
the TCQs are assumed to be rewritten into a temporal standard query language. Since it
turned out that such query languages are only partially supported by existing databases,
we describe a rewriting into basic SQL. In particular, we developed the QuAnTOn li-
brary, which translates TCQs w.r.t. a DL-Lite ontology into SQL queries encoding the
relevant ontological knowledge and addressing a standard database. QuAnTOn applies
Ontop for rewriting the CQs into SQL, appropriately combines these SQL queries, and
adds clauses specifying the temporal conditions. For example, the TCQ #−Storm(x)
could be translated into the below SQL query with the inner query coming from Ontop.

SELECT loc FROM
(SELECT loc, sensor, timestamp FROM sensorvalues

WHERE (sensor = 'wind-speed' AND value > 24.5) OR
(sensor = 'wave-height' AND value > 9))

WHERE timestamp = current_time-1;

Evaluation Results
We focus on the querying of weather data as outlined above and regard sequences of fact
bases each containing 1000 assertions representing sensor measurements. We chose this
(streaming) scenario, sketched in [17], to facilitate a comparison with stream reasoning
systems, which is planned for future work. We also use an extension of the correspond-
ing sensor-observation ontology7. To especially learn about the performance of different
kinds of TCQs, we only use very simple CQs within the latter. We investigate the time
needed for rewriting and answering TCQs in dependence of the number n + 1 of fact
bases considered and show the below;8 the full details can be found in [16, 12].

– The time required for the initial preprocessing (per TCQ) is negligible: less than 1
ms for the IA/VA and about 200 ms for the application of the RA.

– The scenario considering a fix set of sensors suits our constant domain assumption,
and the IA shows a rather constant performance (Figure 1).

– The VA is only applicable for windows of moderate size, due to memory issues.
– The time taken for answering the queries of the RA strongly depends on the kind

of the queries and the application (e.g., the impact of fetching the results is large).
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Fig. 1. The time the IA takes for
answering a TCQ in dependence
of the number of fact bases, n+1.

7http://wiki.knoesis.org/index.php/LinkedSensorData
8The tests were run on an 2,2 GHz Intel Core i7 machine with 4 GB RAM. For answering

the queries returned by QuAnTOn, we applied a MySQL (v5.2.38) database.
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