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Abstract. We introduce the design of a fully parallel framework for quickly ana-
lyzing large-scale RDF data over distributed architectures. We present three core
operations of this framework: dictionary encoding, parallel joins and indexing
processing. Preliminary experimental results on a commodity cluster show that
we can load large RDF data very fast while remaining within an interactive range
for query processing.

1 Introduction

Fast loading speed and query interactivity are important for exploration and analysis
of RDF data at Web scale. In such scenarios, large computational resources would be
tapped in a short time, which requires very fast data loading of the target dataset(s). In
turn, to shorten the data processing life-cycle for each query, exploration and analysis
should be done in an interactive manner. In the context of these conditions, we follow
the following design paradigm.
Model. We employ the commonly used relational model. Namely, RDF data is stored
in the form of triples and SPARQL queries are implemented by a sequence of lookups
and joins. We do not use the graph-based approaches, because they focus on subgraph
matching, which is not suitable for handling large-scale RDF data, as described in [1].
Moreover, for a row-oriented output format, graph exploration is not sufficient to gen-
erate the final join results, as presented in [2] and graph-partitioning approaches are too
costly, in terms of loading speed.
Parallelism. We parallelize all operations such as dictionary encoding, indexing and
query processing. Although asynchronous parallel operations (such as joins) have been
seen to improve load balancing in state-of-art systems [2], we still adopt the conven-
tional synchronous manner, since asynchronous operations always rely on specified
communication protocols (e.g. MPI). To remedy the consequent load-imbalance prob-
lem, we focus on techniques to improve the implementations of each operation. For
example, for a series of parallel joins, we keep each join operation load-balanced.
Performance. We are interested in the performance in both data loading and query-
ing. In fact, current distributed RDF systems generally operate on a trade-off between
loading complexity and query efficiency. For example, the similar-size partitioning
method [3, 4] offers superior loading performance at the cost of more complex/slower
querying, and the graph-based partitioning approach [2, 5] requires significant compu-
tational effort for data loading and/or partitioning. Given the trade-offs between the two
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Fig. 1. General design of our parallel framework.

approaches, we combine elements of both to achieve fast loading while still keeping
query time in an interactive range.

Our parallel framework is shown in Figure 1. The entire data process is divided into
two parts: data loading and data querying. (1) The equal-size partitioned raw RDF data
at each computation node (core) is encoded in parallel in the form of integers and then
loaded in memory in local indexes (without redistributing data). (2) Based on the query
execution plan, the candidate results are retrieved from the built indexes, and parallel
joins are applied to formulate the final outputs. In the latter process, local filters1 at each
node can be used to reduce/remove the retrieved results that have no contribution for
the final outputs, and the redistributed data during parallel joins can be used to create
additional sharded indexes.

2 Core Operations

Triple Encoding. We utilise a distributed dictionary encoding method, as described
in [6,7], to transform RDF terms into 64-bit integers and to represent statements (aligned
in memory) using this encoding. Using a straightforward technique and an efficient
skew-handling strategy, our implementation [6] is shown to be notable faster than [8]
and additionally supports small incremental updates.
Parallel Joins. Based on existing indexes, we can lookup the candidate results for each
graph pattern and then use joins to compute SPARQL queries. For the most critical join
operation, parallel hash joins [3] are commonly used in current RDF systems. However,
they always bring in load-imbalance problems. The reason is that the terms in real-
world Linked Data are highly skewed [9]. In comparison to that, our implementation
adopts the query-based distributed joins we proposed in [10–13] so as to achieve more
efficient and robust performance on each join operation in the presence of different
query workloads.
Two-tier Indexing. We adopt an efficient two-tier index architecture we presented
in [14]. We build the primary index l1 for the encoded triples at each node using a
modified vertical partitioning approach [15]. Different from [15], to speedup the load
process, we do not do any sort operation, but just insert each tuple in a correspond-
ing vertical table. For join operations, we could have to redistribute a large number of

1 Though our system supports filtering operations, we do not give the details in this paper.



(intermediate) results around all computation nodes, which is normally very costly. To
remedy this, we employ a bottom-up dynamic programming-like parallel algorithm to
build a multi-level secondary index (l2 ... ln), based on each query execution plan. With
that, we will simply copy the redistributed data of each join to the local secondary in-
dexes, and these parts of data will be re-used by other queries that contain patterns in
common, so as to reduce (or remove) the corresponding network communication during
the execution. In fact, according to the terminology regarding graph partitioning used
in [5], the k-level index lk on each node in our approach will dynamically construct a
k-hop subgraph. This means that our method essentially does dynamic graph-based par-
titioning based on the query load, starting from an initial equal-size partitioning. There-
fore, our approach can combine the loading speed of similar-size partitioning with the
execution speed of graph-based partitioning in an analytical environment.

3 Preliminary Results

Experiments were conducted on 16 IBM iDataPlexr nodes with two 6-core Intel Xeonr

X5679 processors, 128GB of RAM and a single 1TB SATA hard-drive, connected using
Gigabit Ethernet. We use Linux kernel version 2.6.32-220 and implement our method
using X10 version 2.3, compiled to C++ with gcc version 4.4.6.
Data Loading. We test the performance of triple encoding and primary index building
through loading 1.1 billion triples (LUBM8000 with indexes on P, PO and PS) in mem-
ory. The entire process takes 340 secs, for an average throughput of 540MB or 3.24M
triples per second (254 secs to encode triples and 86 secs to build the primary index).
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Fig. 2. Runtime over different indexes using 192 cores.

Data Querying2. We implement queries over the indexes l1, l2 and l3 to examine the
efficiency of our secondary indexes. We run the two most complex queries Q2 and Q9
of LUBM. As we do not support RDF inference, the query Q9 is modified as below so
as to guarantee that we can get results for each basic graph pattern.

Q9: select ?x ?y ?z where { ?x rdf:type ub:GraduateStudent. ?y rdf:type ub:FullProfessor. ?z
rdf:type ub:Course. ?x ub:advisor ?y. ?y ub:teacherOf ?z. ?x ub:takesCourse ?z.}

2 The results presented here is a mirror of our previous work [14].



To focus on analyzing the core performance only, we report times for the operations of
results retrieval and the joins (namely we are excluding the time to decode the output)
in the execution phase.

The results in Figure 2 show that the secondary indexes can obviously improve the
query performance. Moreover, the higher the level of index is, the lower the execution
time. Additionally, it can be seen that building a high-level index is very fast, taking
only hundreds of ms, which is extremely small compared to the query execution time.

We did not employ the query-based joins as mentioned in our query execution pre-
sented here, as we found the data skew in our tests was not obvious (due to the nature
structure of the LUBM benchmark). We plan to integrate the joins with the develop-
ment of our system, and then present more detailed results using much more complex
workloads (e.g., similar to the one used in [4]).
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