
ASSG: Adaptive structural summary for RDF
graph data

Haiwei Zhang, Yuanyuan Duan, Xiaojie Yuan, and Ying Zhang⋆

Department of Computer Science and Information Security, Nankai University.
94,Weijin Road, Tianjin, China

{zhanghaiwei,duanyuanyuan,yuanxiaojie,zhangying}

@dbis.nankai.edu.cn

http://dbis.nankai.edu.cn

Abstract. RDF is considered to be an important data model for Seman-
tic Web as a labeled directed graph. Querying in massive RDF graph data
is known to be hard. In order to reduce the data size, we present ASSG,
an Adaptive Structural Summary for RDF Graph data by bisimulations
between nodes. ASSG compresses only the part of the graph related to
queries. Thus ASSG contains less nodes and edges than existing work.
More importantly, ASSG has the adaptive ability to adjust its structure
according to the updating query graphs. Experimental results show that
ASSG can reduce graph data with the ratio 85% in average, higher than
that of existing work.

Keywords: Adaptive structural summary, RDF graph, Equivalence class

1 Introduction

The resource description framework (RDF) data model has been designed as a
flexible representation of schema-relaxable or even schema-free information for
the Semantic Web [1]. RDF can be modeled by a labeled directed graph and
querying in RDF data is usually thought to be a process of subgraph matching.
The subgraph matching problem is defined as follows: for a data graph G and a
query graph Q, retrieve all subgraphs of G that are isomorphic to Q. Existing
two solutions, subgraph isomorphism and graph simulation, are expensive where
subgraph isomorphism is NP-complete and graph simulation takes quadratic
time. Further, indices are used to accelerate subgraph queries on large graph
data, but indices incur extra cost on construction and maintainence (see [2] for
a survey). Motivated by this, a new approach, using graph compression, has
been proposed recently [3]. In [3], Fan et al. proposed query preserving graph
compressionGr, which compresses massive graph into a small one by partitioning
nodes into equivalence classes. For subgraph matching, Gr can reduce graph data
with the ratio 57% in average. However, for a designated query graph, lots of
components (nodes and edges) in Gr are redundant. Hence it is possible to
construct a compressed graph for designed subgraph matching.

⋆ Corresponding author.

2 H. Zhang et al

In this paper, we present ASSG (Adaptive Structural Summary of Graphs),
a graph compression method that further reduces the size of the graph data.
ASSG has less components than Gr and more importantly, it has adaptive ability
to adjust its structure according to different subgraph matchings. In the following
sections, we mainly introduce our novel technique.

2 Adaptive Structural Summary

In this section, we present our approach of adaptive structural summary for
labeled directed graph data (such as RDF). ASSG is actually an compressed
graph constructed by equivalence classes of nodes and it has adaptive ability to
adjust its structure according to different query graphs.

Graph data is divided into different equivalence classes by bisimulation rela-
tions as [3] proposed. For computing bisimulation relation, we refer to the notion
rank proposed in [4] for describing structural feature from leaf nodes (if exist).
A.Dovier, et al.[4] proposed function of computing ranks of nodes for both di-
rected acyclic graph (DAG) and directed cyclic graph (DCG). Rank is something
like structural feature of nodes from leaf nodes in graph data.

An equivalence class ECG of nodes in graph data G = (V,E, L) is denoted
by a triple (Ve, Re, Le), where (1) Ve is a set of nodes included in the equivalence
class, (2) Re is the rank of the nodes, and (3) Le denotes the labels of the nodes.

A1 A2

B1 B2

C1 D1 C2 D2 C3 D3

A3

B3

A1A2A3

B1B2B3

C1C2C3 D1D2D3

(a) Graph data G (b) ASSG

C D

A

B
C D

B

B1B2B3

C1C2C3 D1D2D3

A1 A2 A3

(c) Query graphs (d) ASSG

Q1 Q2

Fig. 1. Graph data and equivalence classes

Fig. 1 shows examples of a graph (Fig. 1(a)) and the equivalence classes
of nodes (Fig. 1(b)). Labels and ranks of nodes in the same equivalence class
are the same, such as rank(C1) = rank(C2) = rank(C3) = 0, rank(A1) =
rank(A2) = rank(A3) = 2, and so on. Two times of DFS processing will be
performed to construct equivalence classes of node. DCG will be changed into
DAG by algorithm of Tarjan in the first DFS (not shown in Fig. 1). Subsequently,
in the second DFS, rank of each node will be measured and then the node will
be collapsed into corresponding equivalence class by its label and rank. Hence,
V of G is partitioned to different equivalence classes with a cost of O(|V |+ |E|).

For a labeled directed graph G = (V,E, L), We define ASSG as GASS =
(VASS , EASS , LASS , RASS), where: (1) VASS denotes the set of nodes that col-
lapsed by the nodes in the same equivalence class, (2) EASS is the set of edges,
(3) LASS is the labels of nodes in VASS , (4) RASS records the rank of each
v ∈ VASS .

ASSG: Adaptive structural summary for RDF graph data 3

Obviously, ASSG is the minimum pattern that can describe labeled directed
graph data because nodes with the same label and rank will be collapsed. Unfor-
tunately, the process of measuring ranks will lose some descendants or ancestors
of nodes. And this case will not conform to the definition of bisimulation, and
thus bring out wrong answers for subgraph matching. For example, in Fig. 1(b),
the nodes A1 and A2 in the same equivalence class have different children. To
solve the problem, ASSG will adaptively adjust its structure for updating query
graphs.

For each subgraph matching, the procedure of adaptively updating ASS-
G includes two stages: matching and partitioning. Given a query graph Q =
(VQ, EQ, LQ) and ASSG GASS = (VASS , EASS , LASS , RASS), assuming that
RQ={rank(vQ)|vQ∈VQ}. For the matching stage, ∀v∈VQ and u∈VQ, ∃v′, u′∈VASS ,
if LQ(v) = LASS(v

′), LQ(u) = LASS(u
′), and RQ(v) − RQ(u) = RASS(v

′) −
RASS(u

′), then v, u matches v′, u′ respectively. For the partitioning stage, n-
odes in ASSG matching current query graph will be partitioned into different
parts according to its neighbors by the algorithm presented in [5] with the com-
plexity of time O(|E|log|VQ|). In Fig. 1(c), ASSG will not change while matching
Q1, but ASSG will change to the structure shown in Fig. 1(d) while matching
Q2. It is obvious that the size of ASSG will increase after further partition, but
each partition will adjust minimum amount of nodes. While subgraph matching
focuses on frequent nodes, ASSG will remain stable.

3 Experimental Evaluation

In this section, we performed experiments on both realistic and synthetic data
sets to verify the performance of ASSG.

Table 1. Compress Ratio of Gr and ASSG

Data Set |G| < |V |, |E|, |L| > Gr ASSG(15%)

California 60K<24K, 32K, 95> 49.22% 33.25%
Internet 530K<96K, 421K, 50> 42.41% 17.08%
Citation 1.7M<815K, 806K, 67> 31.71% 5.83%
Synthetic 2.6M<1.4M, 2.1M, 60> 26.9% 3.73%

Firstly, we use compression ratio as a measurement for evaluating the effec-
tiveness of ASSG for subgraph matchings compared with Gr. We define com-
pression ratio of ASSG as: CASS = |VASS |/|V |. Similarly, the compression ratio
of Gr is CGr = |Vr|/|V |. The ration is lower, the better. The effectiveness of
ASSG compared with Gr is reported in Table 1 where |G| denotes to the size
of graph data. For a query graph Gq = (Vq, Eq, Lq), the compression ratio of
ASSG is decided by the number of labels |Lq| in the query graph. Assuming
that |Lq| = 15% × |L|, then we can study from table 1: By ASSG, graph data
can be highly compressed according to query graphs. ASSG reduces graph data
by 85% in average. The compression ratio of ASSG is lower than that of Gr.

Secondly, we evaluate the efficiency of updating ASSG. Assuming that num-
ber of labels in query graph is 15% of |L|. We generate two query graphs for

4 H. Zhang et al

updating ASSG. The number of repeated labels in these two graphs are 0, 1,
2, 5 respectively as table 2 shows. We can study that the more repeated labels
in different query graphs, the less time occupation for ASSG to update. As a
result, for frequent subgraph matchings, ASSG can be updated and maintained
with low cost of time.

Table 2. Time Occupations of Updating ASSG (s)

Data Set 0 repeated label 1 repeated label 2 repeated labels 5 repeated labels

California 8.95 2.96 2.79 2.73
Internet 28.64 25.42 21.29 9.9
Citation 55.49 53.7 47.1 6.35
Synthetic 113.47 101.32 91.24 33.73

4 Conclusion and Future work

We have proposed ASSG, adaptive structural summary for RDF graph data.
ASSG is based on equivalence classes of nodes, and ASSG compresses graph
data according to the query graphs. We presented main idea for constructing
and updating ASSG and designed experiments on realistic and synthetic data
sets to evaluate the effectiveness and efficiency of our technique. Experimental
results show that the compression ratio of ASSG is lower than that of existing
work Gr and ASSG is efficiently updated for frequent queries. Further more, we
will use ASSG for optimizing SPARQL queries on RDF data for semantic web.

Acknowledgments. This work is supported by National Natural Science Foun-
dation of China under Grant No. 61170184, 61402243, the National 863 Project
of China under Grant No. 2013AA013204, National Key Technology R&D Pro-
gram under Grant No.2013BAH01B05, and the Tianjin Municipal Science and
Technology Commission under Grant No.13ZCZDGX02200, 13ZCZDGX01098
and 13JCQNJC00100.

References

1. T.Neumann., G.Weikum.: The rdf-3x engine for scalable management of rdf data.
VLDB J., 19(1), 91–113, 2010.

2. Z.Sun., H.Wang., H.Wang., B.Shao., J.Li.: Efficient Subgraph matching on billion
node graphs. The VLDB Journal, 5(9), 788–799 (2012)

3. W.Fan., J.Li., X.Wang., Y.Wu.:Query preserving graph compression. In: ACM SIG-
MOD International Conference on Management of Data, pp. 157–168. ACM, New
York (2012)

4. A.Dovier., C.Piazza., A.Policriti.: A fast bisimulation algorithm. In: Conference on
Computer Aided Verification, pp. 79–90. Springer-Verlag Berlin Heidelberg (2001)

5. R.Paige., R.E.Tarjan., R.Bonic.: A linear time solution to the single function coars-
est partition problem. Theoretical Computer Science, 40(1), 67–84 (1985)

