
Approximating Inference-enabled Federated
SPARQL Queries on Multiple Endpoints

Yuji Yamagata and Naoki Fukuta

Graduate School of Informatics, Shizuoka University
Shizuoka, Japan

{gs14044@s,fukuta@cs}.inf.shizuoka.ac.jp

Abstract. Running inference-enabled SPARQL queries may sometimes
require unexpectedly long execution time. Therefore, demand has in-
creased to make them more usable by slightly changing their queries,
which could produce an acceptable level of similar results. In this demon-
stration, we present our query-approximation system that can transform
an inference-enabled federated SPARQL query into another one that can
produce acceptably similar results without unexpectedly long runtimes to
avoid timeout on executing inference-enabled federated SPARQL queries.

Keywords: SPARQL, inference, federated query, ontology mapping

1 Introduction

Reasoning on LODs allows queries to obtain unstated knowledge from a distinct
one [1]. Techniques to utilize reasoning capability based on ontology have been
developed to overcome several issues, such as higher complexity in the worst case
[5][7][8][9].

When a query prepared by the client might require a long execution time, a
standard SPARQL endpoint implementation will try to execute the query with
lots of cost to return answers. If the endpoint receives lots of heavy queries,
it might spend much time on their execution or, more severely, it might cause
a server-down. This is especially important for endpoints that have inference
engines to support OWL reasoning capability.

In this paper, we present an idea and its prototype implementation of a
query-approximation system that can transform an inference-enabled federated
SPARQL query into another one that can produce acceptably similar results
without unexpectedly long runtimes to avoid timeout on executing inference-
enabled federated SPARQL queries.1

2 Background

In [7], Kang et al. introduced a number of metrics that can be used to predict
reasoning performance and evaluated various classifiers to know how accurately
1 A demonstration is available at http://whitebear.cs.inf.shizuoka.ac.jp/Yaseki/

2 Yuji Yamagata, Naoki Fukuta

they predict classification time for an ontology based on its metric values. Ac-
cording to their evaluation results, they have prepared prediction models with
accuracy of more than 80%, but there are still major difficulties in improving
them.

In [5], it was introduced that reasoning tasks on ontologies constructed from
an expressive description logic have a high worst-case complexity. It has been
done by analyzing experimental results that divided each of several ontologies
into four and eight random subsets of equal size and measuring classification
times of these subsets as increments. They reported that some ontologies ex-
hibit non-linear sensitivity on their inference performance. They also argued
that there is no straightforward relationship between the performance of a sub-
set of each isolated ontology and the contribution of each subset to the whole
inference performance on the whole ontology, while they provided an algorithm
that identifies an ontology’s hot spots.

There are two possible approaches to managing long-running queries. One is
to utilize parallel and distributed computing techniques to make those executions
faster [10]. Another possible approach is rewriting a query that requires long ex-
ecution time to a light-weight one. There are some query rewriting approaches to
improve the quality of queries [2][3][4]. Also, there are some heuristic techniques
to approximate inference-enabled queries by modifying some hotspots in the
query that prevent faster execution [12]. However, since those hotspots are also
dependent on their individual ontologies, such query modification should take
into account both query-structure and characteristics of the ontologies used.

3 Outline and System Architecture

If a query seems not to be a time-consuming one, the endpoint executes the
query. If the query execution is classified as time-consuming, the endpoint may
have an option to reject the execution of the query or transform that query into
an optimized one. To implement such behaviors in an endpoint, some extensions
should be provided to allow a notification to the client that the received query
has been transformed into another one, or the query has been rejected due to a
heavy-load condition.

To realize the idea, we are implementing a preliminary system to classify
whether a query execution is time-consuming or not, rewriting the query to a
more light-weight one, and extending the protocol to notify the rejection of the
query, the applied query-transformation for the query, and so on. We applied a
pattern-based heuristic query rewriting technique that, for example, substitutes
some named classes to subsets of their potential classes that are derived by the
inference. Our prototype system has a unique proxy module called “Front-end
EP” between the client and the endpoint (called “Back-end EP” in this paper).
Figure 1 shows a brief overview of the query execution process mediated by a
Front-end EP. Figure 2 shows the basic procedure of query processing on our
system. Table 1 shows our preliminary evaluation on the heavy-query detection

Approximating Inference-enabled Federated SPARQL Queries 3

on a single endpoint configuration shown in [12]. Here, we used Linklings ontology
from the OAEI dataset in the preliminary experiment.

To prepare datasets to evaluate the performance sensitivity of ontology-level
simplification techniques, we reduced Linklings ontology by cutting several re-
lational descriptions and added 10 instances for each named class. As an ex-
perimental environment, we set up a SPARQL endpoint using Joseki (v3.4.4)
in conjunction with a server-side reasoner using Pellet [11] to enable OWL-level
inference capability on the endpoint. In this experiment, we used 100 ms as the
threshold time. The evaluation data set was generated by queries to get the
instances of a named class in the Linklings ontology. Here, we conducted an ex-
periment for all 1,369 queries on N-fold cross validation. We used two classifiers:
Bagged C4.5 and Boosted C4.5, implemented in Weka [6] with default parame-
ters. Further evaluation of the performance on multiple-endpoint configurations
remains as future work.

Fig. 1. Overview of Our System

Table 1. Classification Performance on Our Approach (N-fold Cross Validation)[12]

Classifier Recall Precision F-Measure

Bagged C4.5 0.959 0.977 0.964
Boosted C4.5 0.999 0.999 0.999

References

1. Baader, F., Suntisrivaraporn, B.: Debugging Snomed ct Using Axiom Pinpointing
in the Description Logic EL+. In: Cornet, R., Spackman, K. (eds.) Representing
and sharing knowledge using SNOMED. Proceedings of the 3rd International Con-
ference on Knowledge Representation in Medicine KR-MED 2008, vol. 410, pp.
1–7. CEUR-WS (2008)

2. Bischof, S., Polleres, A.: RDFS with Attribute Equations via SPARQL Rewriting.
In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) The
Semantic Web: Semantics and Big Data. LNCS, vol. 7882, pp. 335–350. Springer-
Verlag (2013)

3. Fujino, T., Fukuta, N.: SPARQLoid - a Querying System using Own Ontology and
Ontology Mappings with Reliability. In: Proc. of the 11th International Semantic
Web Conference (Poster & Demos) (ISWC 2012) (2012)

4 Yuji Yamagata, Naoki Fukuta

Client

Back end EP

Ontology with
Inference Engine

RDF Data
Querying

Querying
Notifying

Front end EP notifies to the client that
the received query is rewritten.

Front end EP optimizes the received query
and sends the optimized query,

when the received query is classified as time-consuming.

Client

Back end EP

Ontology with
Inference Engine

RDF DataQuerying

Rejecting

Front end EP

Classifier

Access
Controller

Query
Converter

Front end EP sends the request as is
when the received query is classified as

not-time-consuming.

Front end EP rejects the query
when the received query is classified as

time-consuming.

Querying

Fig. 2. Basic Query Processing Procedure

4. Fujino, T., Fukuta, N.: Utilizing Weighted Ontology Mappings on Federated
SPARQL Querying. In: Kim, W., Ding, Y., Kim, H.G. (eds.) The 3rd Joint In-
ternational Semantic Technology Conference (JIST2013). LNCS, vol. 8388, pp.
331–347. Springer International Publishing (2013)

5. Gonçalves, R.S., Parsia, B., Sattler, U.: Performance Heterogeneity and Approx-
imate Reasoning in Description Logic Ontologies. In: Cudré-Mauroux, P., Heflin,
J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler,
J., Schreiber, G., Bernstein, A., Blomqvist, E. (eds.) The Semantic Web–ISWC
2012 Part I. LNCS, vol. 7649, pp. 82–98. Springer-Verlag (2012)

6. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA Data Mining Software: An Update. ACM SIGKDD explorations newsletter
11(1), 10–18 (2009)

7. Kang, Y.B., Li, Y.F., Krishnaswamy, S.: Predicting Reasoning Performance Using
Ontology Metrics. In: Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T.,
Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G., Bernstein,
A., Blomqvist, E. (eds.) The Semantic Web–ISWC 2012 Part I. LNCS, vol. 7649,
pp. 198–214. Springer-Verlag (2012)

8. Motik, B., Shearer, R., Horrocks, I.: Hypertableau Reasoning for Description Log-
ics. Journal of Artificial Intelligence Research 36, 165–228 (2009)

9. Romero, A.A., Grau, B.C., Horrocks, I.: MORe: Modular Combination of OWL
Reasoners for Ontology Classification. In: Cudré-Mauroux, P., Heflin, J., Sirin, E.,
Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber,
G., Bernstein, A., Blomqvist, E. (eds.) The Semantic Web–ISWC 2012 Part I.
LNCS, vol. 7649, pp. 1–16. Springer (2012)

10. Schätzle, A., Przyjaciel-Zablocki, M., Hornung, T., Lausen, G.: PigSPARQL: A
SPARQL Query Processing Baseline for Big Data. In: Proc. of the 12th Interna-
tional Semantic Web Conference (Poster & Demos) (ISWC 2013) (2013)

11. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical owl-dl
reasoner. Journal of Web Semantics 5(2), 51 – 53 (2007)

12. Yamagata, Y., Fukuta, N.: A Dynamic Query Optimization on a SPARQL End-
point by Approximate Inference Processing . In: Proc. of 5th International Confer-
ence on E-Service and Knowledge Management (ESKM 2014). pp. 161–166 (2014)

