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Abstract. Applications of description logics (DLs) such as OWL 2 and ontology-

based data access (OBDA) require understanding of how to pose database queries

over DL knowledge bases. While there have been many studies regarding tradi-

tional relational query formalisms such as conjunctive queries and their exten-

sions, little attention has been paid to graph database queries, despite the fact that

graph databases share the structure of interpretations with DLs; that is they de-

scribe essentially the same objects. In particular, not much is known about the

interplay between DLs and XPath. The last is a powerful formalism for querying

semistructured data: it is in the core of most practical query languages for XML

trees, and it is also gaining popularity in theory and practice of graph databases.

In this paper we make a step towards coupling knowledge bases and graph data-

bases by studying how to answer powerful XPath-style queries over DL-Lite. We

start with adapting the definition of XPath to the DL context, and then proceed to

study the complexity of evaluating XPath queries over knowledge bases. Results

show that, while query answering is undecidable for the full XPath, by carefully

tuning the amount of negation allowed in the queries we can arrive to XPath frag-

ments that have a potential to be used in practical applications.

1 Introduction

Satisfiability and model checking have long been two central problems in the knowl-

edge representation community. But new applications of description logics (DLs for

short), such as the Web Ontology Language (OWL) [21] and ontology-based data ac-

cess (OBDA), are forcing us to develop algorithms solving more complex data ma-

nipulation and extraction tasks, and in particular, require understanding how to answer

database-style queries over knowledge bases that are specified by DLs [14].

The literature on knowledge bases usually considers relational queries, mostly fo-

cusing on conjunctive queries (CQs) and their extensions with union [1, 7], forms of

negation [15, 24], or aggregates [10, 18]. It is also natural to look at queries that are

designed to operate over graph databases, since these share the same structure with DL

knowledge bases; namely they use unary and binary predicates (that is concepts and

roles in DL terminology) to represent graph nodes and edges. While the idea of using

graph queries in knowledge bases is not new (see e.g., [8]), we are only starting to un-

derstand how such queries can be fine tuned for various ontology languages. So far the

specific research on this topic has primarily been concerned with the class of regular

path queries (RPQs; see e.g. [2]), one of the most basic graph query languages. We now

know how to evaluate such queries over various description logics [9], how to deal with



some of their extensions [4, 5] and understand how to solve their containment problem

in the presence of DL constraints [11].

There are of course many other languages for querying graph and semi-structured

data, most notable amongst them being XPath. Originally designed to extract data from

XML trees [27], XPath has recently been adapted to work over graph databases [19]

and was shown to retain good evaluation properties while at the same time being more

powerful than RPQs and many of their extensions. Moreover, XPath also subsumes

navigational graph querying features of SPARQL [17], such as property paths, and other

commercial graph query languages (see e.g. Neo4j [23]), and thus can also be seen

as a querying primitive for more powerful languages. Given that XPath is capable of

expressing virtually all relevant querying primitives for graphs, and was tried and tested

by XML practitioners, it is natural to see if it will have the same impact as a language

for DL knowledge bases.

In this paper we take a decisive step towards the implementation of graph query

languages over ontologies and study the problem of evaluating XPath queries over DL.

To that extent, we first adapt the XPath query language to work over ontologies, arriving

to DLXPath—an expressive language designed specifically for DL knowledge bases.

To get a flavour of the interplay between DLXPath and DLs, we then study the problem

of evaluating DLXPath queries over DL-LiteR and DL-Litecore ontologies. The choice

for this particular family of DLs is twofold: on the one hand, it is simple enough to start

such a research; on the other, this family is of the most importance in practice, since it

underlies OWL 2 QL profile [21].

As a simple useful example of an DLXPath query, we can give the following: ‘Can

I fly from city A to city B making stops only in cities with UNESCO World Heritage

Sites which are endangered?’ Here we assume that the considered ontology has binary

predicates (roles) HasDirectFlight and HasUNESCOSite, as well as unary predicate

(concept) InDanger. Under this ontology this query cannot be answered by RPQs. But

note that it can, however, be expressed as a nested RPQ [4], as this language corresponds

to DLXPath without negation. However, if we additionally require the site of the last

intermediate stop to be included in the list not under cultural criteria (expressed by

concept Cultural), then such a query cannot be expressed by any known language for

knowledge bases, but can be written as DLXPath query.

Regardless of the choice of a particular DL, one cannot expect that the study of

DLXPath query answering will come as a straightforward adaptation of known tech-

niques. The language of DLXPath contains expressive primitives such as transitive clo-

sure and negation, that is, the operators which are known to bring in conceptual difficul-

ties even when studied in isolation. For example, it has been shown that adding negation

to conjunctive queries immediately leads to undecidability of query answering [15],

while adding path operators usually implies jumping one or two exponents in the com-

plexity of query evaluation algorithms [9]. Thus, one of the challenges when studying

DLXPath is to fine-tune these operators to archive an optimal trade-off between good

evaluation properties and expressive power of the query language. To this end, we will

distinguish two flavours of the language: the core fragment, denoted by DLXPathcore,

and the regular fragment, denoted by DLXPathreg. The two are designed to match the

duality present in the standard XPath query language [27], and while the core fragment



allows transitive closure only over basic role names, the regular fragment lifts this re-

striction, allowing us to post more general path queries. Regarding negation, we will

distinguish full fragments, which allow both unary and binary negation, path-positive

fragments with only the unary one, and positive fragments without any negation.

As usual when gauging the usefulness of a new query language for ontologies, we

start by considering data complexity of the query answering problem, where one as-

sumes that the query and the terminological knowledge (TBox) are fixed, while the only

input is the assertional knowledge (ABox). Although we show that for the most general

case the problem is undecidable, by limiting the amount of negation we obtain expres-

sive languages whose queries can be answered in CONP and even NLOGSPACE, both

over DL-LiteR and DL-Litecore. We then move to studying the combined complexity,

where both the knowledge base and the query form the input. Here we obtain bounds

ranging from NP-complete (thus matching the ones for ordinary CQs), to EXPTIME-

complete, and undecidable for the full language. We would like to note that some of

the results are obtained using the deep connection between DLs, DLXPath and propo-

sitional dynamic logic, thus providing some interesting new techniques for answering

queries over ontologies.

Proofs Due to the space restrictions, we only give sketches of short proofs and ideas of

longer ones.

2 Preliminaries

The language of DL-LiteR (and DL-Litecore) [1,7] contains individuals c1, c2, . . ., con-

cept namesA1, A2, . . ., and role names P1, P2, . . .. ConceptsB and roles R are defined

by the grammar

B ::= Ai | ∃R, R ::= Pj | P−
j .

A DL-LiteR TBox is a finite set of concept and role inclusions of the form

B1 ⊑ B2, B1 ⊓B2 ⊑ ⊥, R1 ⊑ R2, R1 ⊓R2 ⊑ ⊥.

A DL-Litecore TBox contains only concept inclusions. An ABox is a finite set of asser-

tions of the formAi(ck) and Pj(ck, cℓ). A knowledge base (KB) is a pair (T ,A), where

T is a TBox and A an ABox.

An interpretation I = (∆I , ·I) is a nonempty domain ∆I of elements with an

interpretation function ·I that assigns an element cIk ∈ ∆I to each individual ck, a

subset AI
i of ∆I to each concept name Ai, and a binary relation P I

j ⊆ ∆I × ∆I to

each role name Pj . When dealing with DL-Lite it is usual to adopt the unique name

assumption (UNA), and we do so here by requiring that cIk 6= cIℓ , for all individuals

ck 6= cℓ. Our results, however, do not depend on UNA. The interpretation function ·I is

extended to roles and concepts in the following standard way:

(∃R)I =
{

d ∈ ∆I | there is d′ ∈ ∆I with (d, d′) ∈ RI
}

,

(P−
j )I = {(d′, d) ∈ ∆I ×∆I | (d, d′) ∈ P I

j }.



The satisfaction relation |= for TBox inclusions and ABox assertions is also standard:

I |= B1 ⊑ B2 iff BI
1 ⊆ BI

2 ,

I |= B1 ⊓B2 ⊑ ⊥ iff BI
1 ∩BI

2 = ∅,
I |= R1 ⊑ R2 iff RI

1 ⊆ RI
2 ,

I |= R1 ⊓R2 ⊑ ⊥ iff RI
1 ∩RI

2 = ∅,
I |= Ai(ck) iff cIk ∈ AI

i ,

I |= Pj(ck, cℓ) iff (cIk , c
I
ℓ ) ∈ P I

j .

A KB K = (T ,A) is satisfiable if there is an interpretation I satisfying all inclu-

sions of T and assertions of A. In this case we write I |= K and say that I is a model

of K.

3 DLXPath: XPath for Knowledge Bases

As mentioned in the introduction, the family of DL-Lite was designed not only to keep

satisfiability and model checking problems simple, but mainly to keep the complexity

of conjunctive query answering the same as in the case of relational databases, while si-

multaneously maximising the expressive power of the ontological language. This allows

to use DL-Lite as a foundation for practical data managing applications, such as OWL

2 QL and OBDA. However, this does not automatically mean that other useful query

formalisms with good evaluation properties over databases also have good properties

when posed over DL-Lite knowledge bases. Hence, each class of queries which can be

useful in knowledge base applications requires a separate research on its computational

properties.

In this paper we concentrate on an adaptation of XPath query language for XML

trees to knowledge bases. Recently it was shown that (a version of) XPath can be suc-

cessfully used for querying graph databases [19]. Every interpretation of a DL-Lite

vocabulary can be seen as a graph, and hence every DL-Lite KB is an incomplete

description of a graph. That is why we expect our adaptation DLXPath for querying

knowledge bases to be useful in practical applications.

In what follows, we will consider several fragments of DLXPath. We start with

DLXPathcore, the fragment which corresponds to core XPath, the theoretical foundation

of most practical languages for querying XML trees.4

Definition 1. Node formulas ϕ, ψ and path formulas α, β of DLXPathcore are expres-

sions satisfying the grammar

ϕ, ψ := A | ¬ϕ | ϕ ∧ ψ |ϕ ∨ ψ | 〈α〉 ,
α, β := ε | R | [ϕ] | α ∪ β | α · β | α | R+,

(1)

where A ranges over concept names andR ranges over roles (i.e., role names and their

inverses).

Semantics J·KI of DLXPathcore for an interpretation I associates subsets of ∆I to

node formulas and binary relations on ∆I to path formulas as given in Table 1.

4 The subscript ‘core’ is used in this paper for two unrelated purposes. This matching is histor-

ical and accidental, but we decided to stay with conventional notation despite this undesired

collision.



JAKI = AI

J¬ϕKI = ∆I \ JϕKI

Jϕ ∧ ψKI = JϕKI ∩ JψKI

Jϕ ∨ ψKI = JϕKI ∪ JψKI

J〈α〉KI = {d | there exists d′ such that (d, d′) ∈ JαKI}

JεKI = {(d, d) | d ∈ ∆I}
JRKI = RI

J[ϕ]KI = {(d, d) | d ∈ JϕKI}
Jα ∪ βKI = JαKI ∪ JβKI

Jα · βKI = JαKI ◦ JβKI

JαKI = (∆I ×∆I) \ JαKI

JR+KI is the transitive closure of RI

Table 1. Semantics of DLXPathreg. The symbol ‘\’ stands for set-theoretic difference.

As usual when dealing with ontologies, our interest is not query answering for a

particular interpretation, but computing those answers that are true in all possible mod-

els of the knowledge base. Formally, let K = (T ,A) be a knowledge base and α a

DLXPath path formula. The certain answers of α over K, denoted Certain(α,K), is

the set of all pairs (c1, c2) of individuals such that (cI1 , c
I
2 ) ∈ JαKI for all models I

of K. Similarly, one can define certain answers Certain(ϕ,K) for a DLXPath node

formula ϕ as the set of all individuals c such that cI ∈ JϕKI , for all I models of K.

In the paper all of the results will be stated for path formulas (queries from here on),

however, they remain unchanged for node formulas.

Example 1. Coming back to the example from the introduction, consider role names

HasDirectFlight, which connects cities with a direct flight, andHasUNESCOSite, which

connects cities with their UNESCO world heritage sites, as well as concept InDanger

denoting that a particular site is endangered. Let KB K represents the flight destination

graph, as well as knowledge about heritage sites, partially explicitly in the ABox, and

partially implicitly, by means of TBox inclusions. Then checking whether it is possible

to fly from Edinburgh to a city that has an endangered UNESCO world heritage site is

equivalent to checking if Edinburgh is in Certain(ϕ,K), where ϕ is a node formula

〈HasDirectFlight+[〈HasUNESCOSite[InDanger]〉]〉. �

As already noted, the formalism of core XPath is in the nutshell of the most practi-

cal query languages for XML trees. However, in [19] it was shown that the correspond-

ing graph language cannot express certain properties that are deemed essential when

querying graphs. Thus, besides DLXPathcore we also consider its generalisation called

regular DLXPath, or DLXPathreg, which extends the core fragment by allowing the use

of transitive closure operator + over arbitrary path formulas. Formally, path formulas

of DLXPathreg satisfy the grammar

α, β := ε | R | [ϕ] | α ∪ β | α · β | α | α+,



while node formulas remain the same as for DLXPathcore in grammar (1). As expected,

the semantics Jα+KI over an interpretation I is the transitive closure of JαKI .

Example 2. With full transitive closure we are now able to post more complex queries

than in the core fragment. Consider again the knowledge base K from Example 1. We

can now ask if it is possible to fly from Liverpool to Jerusalem, making stopovers only

in places that have an endangered UNESCO world heritage site by checking if the pair

(Liverpool, Jerusalem) is in Certain(α,K), where α is a query

(HasDirectFlight[〈HasUNESCOSite[InDanger]〉])+.

Note that here we check if each of the cities along the path has an endangered site. If

we want to additionally require that the sites along the route are not included in the

UNESCO list under cultural criteria, we need to replace [InDanger] with [InDanger ∧
¬Cultural] in the query above. �

Besides these two query languages, we will consider their fragments, which will be

introduced as needed.

Before passing on to the complexity of DLXPath query evaluation, we briefly com-

pare our languages with other formalisms. First, DLXPath is clearly incomparable with

CQs. However, all tree-shaped CQs and unions of CQs with no more than two free vari-

ables can be written as DLXPathcore queries. On the other hand, all negation-free and
+-free DLXPathreg queries can be written as unions of CQs, though with a cost of ex-

ponential blow-up. If we allow negation but only over concept and role names, then a

query can be written as a union of CQs with safe negation. Second, DLXPathreg queries

without negation and node tests [ϕ] are 2-way regular path queries (2RPQs), the stan-

dard formalism for querying graph databases. If, additionally, role inverses are not al-

lowed as path formulas, it becomes plain RPQs, that is, essentially, regular expressions.

Some fragments of DLXPath can be expressed in other description logic formalisms.

For example, it is well-known that a unary tree-shaped CQ with the corresponding tree

being rooted and directed, can be written as a concept of EL, a DL underlying OWL 2

EL profile [21]. Finally, DLXPathreg node formulas without path negation are nothing

else but propositional dynamic logic with converse (CPDL) formulas; we will discuss

this connection in more detail later on.

In the following sections we analyse the complexity of evaluating DLXPath queries

over DL-Lite knowledge bases.

4 Data Complexity of DLXPath Query Evaluation

As it is widely accepted in theory and proved in practice, the size of the query and

TBox is usually much smaller than the size of the ABox (see e.g., [25] for discussion

in the relational database context and [7] for DLs). This is why one usually considers

data complexity of query answering, assuming that the TBox and the query are fixed,

and only ABox is part of the input. In this section we study this problem for various

fragments of DLXPath. Formally, let T be a TBox and α a DLXPath query. We are

interested in the following family of problems.



CERTAIN ANSWERS (α, T )

Input: ABox A and pair (c1, c2) of individuals

Question: Is (c1, c2) ∈ Certain(α, (A, T ))?

As it was previously mentioned, data complexity of CQ query answering over DL-

LiteR knowledge bases is the same as over relational databases, that is, in LOGSPACE

[7]. At the first glance, one may expect a similar result in the case of DLXPath, where

the complexity is NLOGSPACE-complete over graph databases [19]. However, the com-

bination of the open world assumption and allowing negation in queries makes things

quite different. In fact, the situation here is more like in the case of CQ with safe nega-

tion, where the complexity jump is dramatic: from polynomiality to undecidability [15].

Theorem 1. There exists a DL-Litecore TBox T and a DLXPathcore query α such that

the problem CERTAIN ANSWERS (α, T ) is undecidable.

The proof uses similar techniques as the proof of Theorem 1 in [15], that shows

the undecidability of the problem of computing certain answers for conjunctive queries

with safe negation over DL-LiteR knowledge bases.

Having this negative result, a natural direction is to search for DLXPath fragments

that have decidable certain answers problem. Based on previous studies for XPath in

XML and graph databases (see e.g., [3]), the most problematic primitive seems to be the

negation ᾱ in path formulas. Indeed, we now show that removing this primitive from the

syntax leads to decidability of the certain answers problem. We denote DLXPath
path-pos
core

the fragment of DLXPathcore that does not allow the negation ᾱ, for α a path formula,

and define the class DLXPath
path-pos
reg accordingly. We then have the following theorem.

Theorem 2. There exists a DL-Litecore TBox T and a DLXPath
path-pos
core query α such

that the problem CERTAIN ANSWERS (α, T ) is CONP-hard. The problem is in CONP

for any DL-LiteR TBox T and DLXPath
path-pos
reg query α.

Proof (sketch). We first sketch the CONP-hardness of the problem. Consider a language

with role names P, T1, T2, T3, F1, F2, and F3, as well as concept name A. Fix a query

α =
[

P
(

∨

v1 6=u1,v2 6=u2,v3 6=u3

(

∧

i=1,2,3
〈Svi

i [Aui ]〉
))]

,

where all vi and ui range over {⊤,⊥}; Svi
i is Ti if vi = ⊤ and Fi if vi = ⊥; Aui is A

if ui = ⊤ and ¬A if v′i = ⊥.

Consider the complement of the NP-complete problem 3CNF-SAT whose input

is a conjunction Φ of clauses of the form ℓ1 ∨ ℓ2 ∨ ℓ3, where the ℓi are literals, that

is, propositional variables or their negations, and whose answer is ‘yes’ if Φ is not

satisfiable and ‘no’ otherwise.

For each variable x in Φ the ABox A uses an individual cx. Also, for each clause γ

in Φ it uses an individual cγ . Finally, it uses an individual c.

For each clause γ in Φ the ABox A contains the assertion P (c, cγ). Also, for each

literal ℓi in each clause γ = ℓ1 ∨ ℓ2 ∨ ℓ3 of Φ the ABox A contains the assertion

Ti(cγ , cx) if ℓi = x and the assertion Fi(cγ , cx) if ℓi = x̄.



It is a technicality to show that (c, c) is a certain answer to α over the KB (A, ∅) if

and only if Φ is not satisfiable.

The CONP upper bound can be obtained by a careful analysis of the proof of Theo-

rem 4. ❑

In fact, we can see that the reduction for hardness is done for the empty TBox, that

is all the complexity is ‘contained’ in the formulation of the fixed query (which does

not use the transitive closure operator +).

While this theorem looks positive in light of the general undecidability result, the

complexity might still be too high for practical applications, as it leads to algorithms

which run in exponential time in the size of the ABox. To lower the complexity and

obtain tractable algorithms, one could also consider fragments of DLXPath that do not

allow any form of negation, neither in node nor in path formulas. We denote such frag-

ments of DLXPathcore and DLXPathreg by DLXPath
pos
core and DLXPath

pos
reg , respectively.

This last fragment is nothing else but nested 2RPQs [22], a language that has already

been studied for DL-Lite knowledge bases [4], where an NLOGSPACE tight complexity

bound was shown for the problem of computing certain answers for both DL-Litecore

and DL-LiteR. Furthermore, by adapting known results from graph databases, it is not

difficult to extend this result to show that the problem is already NLOGSPACE hard even

for DLXPath
pos
core queries (see e.g., [2] for a survey on such techniques).

Note that from this result we conclude that nesting and inverse in regular expres-

sions, as well as fixed DL-LiteR TBoxes do not increase the tractable data complexity

of query evaluation.

5 Combined complexity of DLXPath Query Evaluation

Even if data complexity is the most important measure in practice, combined complex-

ity, that is complexity under the assumption that both TBox, ABox and the query are

given as input, allows us to get a better understanding of the query answering problem,

and often provides a blueprint of how to solve the problem in practice. That is why

we continue our study in this direction. Formally, we consider the following family of

problems, where X ranges over {core,R}, y over {core, reg}, and z is either nothing,

or ‘path-pos’, or ‘pos’.

DL-LiteX CERTAIN ANSWERS OVER DLXPath
z
y

Input: DL-LiteX KB K, DLXPath
z
y query α,

and pair (c1, c2) of individuals

Question: Is (c1, c2) ∈ Certain(α,K)?

As it immediately follows from Theorem 1, the problem remains undecidable for

full DLXPathcore and, hence, for full DLXPathreg. However, the last result also fol-

lows from the connection of DLXPath with propositional dynamic logic (PDL) and

some well known properties of PDL. Since this connection will be heavily used in the

remainder of the paper we now discuss it in more detail.



First of all, we note that in PDL community a different terminology is used: for

example, interpretations are called Kripke structures, concept names are called propo-

sitional letters or variables, role names are atomic programs, and inverse operator is

converse. Though, to be consistent with the rest of the paper we stay with the DL ter-

minology.

As already mentioned, node formulas of DLXPath
path-pos
reg are, essentially, PDL with

converse (CPDL) formulas (see [16] for a good introduction on the topic). Formally, the

syntax of plain propositional dynamic logic (PDL) is the same as DLXPath
path-pos
reg (i.e.,

CPDL), except that it does not allow the inverse P−
j of role names as path expressions.

The standard problem in the PDL community is the satisfiability of a node formula ϕ;

that is, checking whether there exists an interpretation I and an element d in its domain

such that ϕ holds in d (written, I, d |= ϕ).

Lutz et al. showed that the satisfiability of PDL formulas extended with arbitrary

path negation (such a logic is denoted PDL
¬

) is undecidable [20], which already implies

the undecidability of the certain answers problem DLXPathreg: indeed, a PDL
¬

formula

ϕ is satisfiable if and only if the DLXPathreg query [¬ϕ] has the certain answer (c, c)
over the empty KB with individual c in the language. Note, however, that it does not

immediately imply undecidability in data complexity shown in Theorem 1.

Turning our attention to the certain answers problem for DLXPath
path-pos

queries,

we again use the connection with the theory of PDL. It is well-known that the satisfia-

bility problem for PDL is EXPTIME-complete [16]. It remains in EXPTIME even if

these formulas are allowed to use the transitive closure operator + only over role names.

The same holds for CPDL [16] and PDL
(¬)

, that is, the extension of PDL which allows

path negation in a limited form—only on role names [20]. Similarly to the previous

undecidability result, the EXPTIME lower bounds for these classes of PDL formulas

already imply EXPTIME-hardness of the certain answers problem for DLXPath
path-pos
core ,

even for empty KBs. Also, in [4] hardness was established even for DLXPath
pos
reg .

The upper bound is, however, much more challenging. To deal with DL-LiteR

knowledge bases, in particular with role inclusions, we join the aforementioned ex-

tensions of PDL with inverse and negation on role names, and consider the language

CPDL
(¬)

whose node formulas obey the same grammar (1) as PDL (and DLXPath),

and path formulas are defined as follows:

α, β := ε | R | [ϕ] | α ∪ β | α · β | R | α+.

We need the following result to establish complexity of the certain answers problem.

Theorem 3. Checking satisfiability of a CPDL
(¬)

node formula can be done in EXP-

TIME.

The proof makes use of ideas from [20] and [26]. Although it is not strictly related

to description logics and knowledge representation, we state the result explicitly as we

believe it might be of interest to the PDL community.

Of course, satisfiability results do not transfer directly to query answering over KBs.

However, widening and recasting the ideas from [12] and [13], we obtain the desired

upper bound.



Lemma 1. The problem DL-LiteR CERTAIN ANSWERS OVER DLXPath
path-pos
reg is in

EXPTIME.

Summing up, we obtain the following theorem (the hardness results follows from

[16] and [4] and are included just for completeness).

Theorem 4. The problem DL-LiteR CERTAIN ANSWERS OVER DLXPath
path-pos
reg is

EXPTIME-complete. It remains EXPTIME-hard for DLXPath
pos
reg queries with DL-

Litecore KBs, and for DLXPath
path-pos
core even with empty KBs.

The only remaining fragment is that of DLXPath
pos
core queries, that is, the restriction

of the DLXPathcore language that use neither binary nor unary negation. In the previous

section we saw that data complexity of answering DLXPath
pos

queries is the same as

answering RPQs and 2RPQs, regardless of whether we made use of the regular or the

core fragment. For combined complexity, the case is now different. We have already

seen that query answering remains EXPTIME-hard for DLXPath
pos

. We now show

that the restriction to the core fragment limits the complexity by almost one exponential.

Theorem 5. The problem DL-LiteR CERTAIN ANSWERS OVER DLXPath
pos
core is NP-

complete. It remains NP-hard for DL-Litecore.

Proof (sketch). For designing an NP algorithm we rethink the ideas from the proof of

Theorem 4.4 in [3], where a similar problem was solved in the context of XML. First,

we show that a pair (c1, c2) is a certain answer to a query α over a satisfiable KB K
if and only if (c1, c2) ∈ JαKCan(K), where Can(K) is the canonical model of K (see

e.g., [7] for definition). Second, if (c1, c2) is an answer, then this is witnessed by a sub-

interpretation of Can(K) of polynomial size. Hence, the algorithm can just guess this

sub-interpretation.

To show hardness we give a reduction from the NP-complete problem 3CNF-SAT.

Suppose we are given a conjunction Φ of clauses of the form ℓ1 ∨ ℓ2 ∨ ℓ3, where ℓk are

literals, that is propositional variables or their negations (we can assume that all literals

in each clause are distinct). Let x1, . . . , xn be the variables in Φ.

Consider the KB K with the ABox A = {A(c)} and the TBox T consisting of the

inclusions
A ⊑ ∃(Xv

1 )
−, for v ∈ {⊤,⊥},

∃Xv
i−1 ⊑ ∃(Xu

i )
−, for v, u ∈ {⊤,⊥}, 1 < i ≤ n.

For every variable xi and truth value v ∈ {⊤,⊥} let ψv
xi

be the node formula

〈(X⊤
n ∪ X⊥

n ) · · · (X⊤
i+1 ∪ X⊥

i+1) · Xv
i · (X⊤

i−1 ∪ X⊥
i−1) · · · (X

⊤
1 ∪ X⊥

1 )〉.

Let ϕ be the node formula 〈α[ψ]〉, where

α = ((X⊤
1 )− ∪ (X⊥

1 )−) · . . . · ((X⊤
n )− ∪ (X⊥

n )−),

and ψ is a conjunction of node formulas of the following form, for each clause γ in Φ,

using variables x, y, z:
∨

(vx,vy,vz) assignment of (x,y,z)
satisfying γ

ψvx
x ∧ ψvy

y ∧ ψvz
z .



Complexity DLXPath
pos

DLXPath
path-pos

DLXPath

Data NLOGSPACE-c CONP-c undec.

Combined NP-c∗ / EXPTIME-c† EXPTIME-c undec.

Table 2. A summary of the complexity results. Here “-c” stands for “-complete” and “undec.”

for “undecidable”. All the results hold for both DL-Litecore and DL-LiteR, as well as for both

DLXPathcore and DLXPathreg; the only exception is that ∗ holds just for DLXPathcore and † just

for DLXPathreg. The new results of this paper are set off in bold.

One can show that (c, c) is a certain answer to [ϕ] over K iff Φ is satisfiable. ❑

It is worth to mention, that the result holds even if the queries are not allowed to

use the transitive closure operator + at all, being, essentially, very restricted form of

unions of CQs but with the same complexity of query answering. Hence, the border

between tractable and intractable combined complexity of the problem lies somewhere

very close to here, leaving 2RPQs on one side and DLXPath
pos
core with CQs on the other.

6 Conclusions and Future Work

In this paper we conducted a detailed study about using the XPath language to query on-

tologies of the DL-Lite family. The results, summarised in Table 2, show that although

the problem is generally undecidable, by limiting the amount of negation we can get

decidable and even tractable fragments. The deep connection between XPath, DL and

PDL allowed us to use ideas developed in other areas and gave insight on how query

evaluation can be affected by certain aspects of the language. Although this connection

was explored previously (see e.g., discussion in Chapters 13 and 14 in [6]), we believe

that the time is ripe for a comprehensive survey describing how techniques from one

area can be transferred to another and hope that the results of this paper can motivate

such a survey.

From a practical point of view, we would like to find and test the classes of queries

that are of particular practical interest and have either tractable general algorithms or re-

liable heuristics. Here we primarily want to tackle positive and path-positive fragments

of XPath, as these queries were implemented and tested by the XML community, and

many good heuristics have been developed over the years.
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