
An Empirical Investigation of Difficulty of
Modules of Description Logic Ontologies

Nicolas Matentzoglu, Bijan Parsia, and Uli Sattler

The University of Manchester
Oxford Road, Manchester, M13 9PL, UK

{matentzn,bparsia,sattler}@cs.manchester.ac.uk

Abstract. Very expressive Description Logics in the SH family have
worst case complexity ranging from EXPTIME to double NEXPTIME.
In spite of this, they are very popular with modellers and serve as the
foundation of the Web Ontology Language (OWL), a W3C standard.
Highly optimised reasoners handle a wide range of naturally occurring
ontologies with relative ease, albeit with some pathological cases. A re-
cent optimisation trend has been modular reasoning, that is, breaking
the ontology into hopefully easier subsets with a hopefully smaller over-
all reasoning time (see MORe and Chainsaw for prominent examples).
However, it has been demonstrated that subsets of an OWL ontology
may be harder – even much harder – than the whole ontology. This
introduces the risk that modular approaches might have even more severe
pathological cases than the normal monolithic ones.
In this paper, we analyse a number of ontologies from the BioPortal
repository in order to isolate cases where random subsets are harder
than the whole. For such cases, we then examine whether the module
nearest to the random subset also exhibits the pathological behaviour.
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1 Introduction

Reasoning in popular, very expressive Description Logics is very difficult (e.g.,
SROIQ is N2Exptime-complete) [9]. Modern reasoners such as FaCT++ [17],
Pellet [16] and HermiT [12] generally perform well against naturally occurring
inputs such as ontologies downloadable from the Web. However, due to the poor
performance in some cases, the quest for optimisations is ongoing.

Modular reasoning techniques have experienced a resurgence in recent years.
Intuitively, breaking the input problem into smaller pieces is appealing. From a
naive perspective, it seems that keeping the inputs small is a way to deal with
high worst case complexity. Furthermore, if there are especially difficult parts
of the ontology, perhaps they can be isolated to reduce their impact. However,
classifying a subset S of an ontology O can be, in fact, much more expensive
than classifying O entirely [6]. There are a number of reasons why classification
time could vary in this way. For example, a disjointness axiom may be missing



from the random set and thus result in subsumption tests that are computed
needlessly (in the worst case almost the entire power set of possible atomic
subsumptions of entities in a signature, if the disjointness happens high up in
the hierarchy).

This raises a question for modular reasoning: Do modules ever exhibit such
a pathological behaviour? The modules currently used in modular reasoners are
depleting, that is, contain every axiom that could participate in a derivation of an
entailment from that module. They are also subsets of O. Our conjecture is that
because of this, reasoners should never perform worse on a module than on the
whole O. In this paper, we test this conjecture on ontologies from the BioPortal
repository. Our results indicate that while generally modules are “easy”, there
are cases where a module has a classification time worse than that of O. While
our current results suggest that some modular reasoning techniques are not
vulnerable to this phenomenon, others require further investigation.

2 Preliminaries

Understanding our experiment does not more than a cursory understanding of
the syntax, semantics, and proof theories implemented: For the most part, we
are treating these as black boxes. Some key points:

– The reasoners under investigations are designed to implement key reasoning
services for the Web Ontology Language (OWL).

– The services we test ignore all non-logical aspects of OWL 2, thus OWL 2
ontologies can be regarded as notational variants of SROIQ theories (with
some minor syntactic caveats, e.g., OWL ontologies are sets of axioms).

– Given an ontology (a set of axioms) O, the signature of an ontology Õ is the
set of non-predefined entities (classes, individuals, object properties, data
properties) appearing in the axioms in O. We use CL(O) to denote the task
of computing the set of entailed atomic subsumptions (i.e., statements of
the form A v B and A ≡ B, where A and B are elements of the signature)
or classification of O. We use T (X) to denote the time taken for a given
process to terminate. For example T (CL(O)) denotes the time to classify O
(for a given reasoner).

There are many sorts of “logically respectable” modules presented in the
literature, most based on deductive conservative extensions. Here we restrict our
attention to modules based on syntactic locality [7], because they are logically
sound, work for all of OWL and often behave well in practice [3], though not
always [11]. Among these kinds of modules, we are particularly interested in ⊥-
modules (bottom-modules), because they preserve all subsumptions over their
signatures with an element of the signature on the left hand side.

As a consequence, if the union of the signatures of a set of ⊥-modules equals
the signature of O, then the union of the individual classification results equals
the classification of the whole ontology.



Hereafter, we will use M to refer to syntactic locality-based ⊥-modules.
Additionally, we will use S to denote an arbitrary random subset of O and H to
denote a random subset whose reasoning time is greater than that of O.

3 Modern Modular Reasoning

We focus on TBox reasoning in locality module based systems for several reasons.
First, at least one system (Pellet) has been using them for incremental reasoning
in production systems successfully for years [2]. Second, two new systems, MORe
[15] and Chainsaw [18], make use of them for non-incremental classification and
have seen at least some success. (e.g., each won a category at the 2013 Ontology
Reasoner Evaluation [4].)

The overarching rationale for exploiting the modular structure of an ontology
for reasoning is the potential in (1) reducing the number of necessary subsump-
tion tests and (2) reducing the hardness of each individual subsumption test, thus
improving performance (reasoning time and potentially memory consumption).
Additionally, modularisation may make exploiting parallelism easier, though this
has not been seriously explored to our knowledge.

Chainsaw and MORe use quite different strategies in exploiting modules.
MORe works by building two modules: the largest easy-to-find EL module and
the “complement” module which covers the rest of the signature. The EL mod-
ule is fed to a fast EL specific reasoner (typically ELK[10]) while the comple-
ment module is fed to a general purpose OWL 2 reasoner (HermiT or Pellet). If
the complement module covers most of the ontology, then there is a significant
amount of redundant computation in addition to the overhead and thus MORe
will perform comparatively poorly to the monolithic reasoner.

In contrast, Chainsaw employs the “Atomic Decomposition” (AD) [19] of
an ontology. The AD is a partitioning of the ontology into so called genuine
modules (modules that cannot further be decomposed into the union of two
“⊂”-incomparable modules). The AD is represented as a directed graph where
each node corresponds to an atom and determines the corresponding genuine
module. The set of genuine modules covers the signature of O, thus is a suitable
candidate for modular classification. While decomposing an ontology can be done
in polynomial (quadratic) time, the reality is that the overhead introduced by
such a partitioning can be substantial in some cases. Furthermore, the existing
implementation can also experience considerable redundancy due to overlapping
genuine modules.

3.1 Module Hardness

While the existence for example of Hot Spots [6] suggests that decomposition
might have dramatically beneficial effects, it was also empirically observed in [6]
(and has been known anecdotally for years) that subsets of an ontology might be
dramatically harder than the whole. This fact is not terribly surprising if one re-
calls the easy-hard-easy pattern for satisfiability of random KCNF propositional



formulae where the hard region corresponds to the phase transition from satis-
fiability to unsatisfiability. As the generated formulae move from low “density”
(i.e., a low ratio of number of clauses (L) to number of distinct variables (N)) to
high density, the size of the formulae grows (for a fixed N). Thus, we can easily
see systems where random subsets of a large problem are much harder than the
whole. While there is, as yet, no detailed theory (or even sketch of a theory) for
hardness in naturally occurring Description Logic ontologies, we can expect, to
a certain extent, that similar mechanisms may be at work.

Obviously, given an ontology O, if T (CL(Mi)) in a decomposition Dec(O) is
larger than T (CL(O)), then modular reasoning is counterproductive in that case
and thus efforts to tune the decomposition and other overhead is pointless. The
goal of this paper is to investigate the general case: Are modules of an ontology
ever (or likely) to be harder than O itself? In contrast with random subsets,
there are some prima facie reasons for thinking the answer is no if we consider
some possible sources of hardness: (1) If the reasoner is using standard enhanced
traversal to classify the ontology, a random subset might omit an explicitly
asserted subsumption or, perhaps more importantly, disjointness axiom which
considerably prunes the search space. Modules must contain all such axioms over
their signature in order to capture those entailments. (2) A random subset might
break some justification of an atomic subsumption over its signature leaving
either only harder ones or leaving enough of a justification that the reasoner has
to do a lot of work before it can determine it will not pan out.

In general, since a module contains everything from the ontology relevant
to entailments over its signature, it seems reasonable to think that reasoning
should be no harder. No shortcuts can be missing and we have removed a lot
of potential distractions. However, these considerations are merely speculative.
In this paper, we attempt to establish whether there are hard subsets that are
modules and to start to sketch their prevalence and other properties. If we can
establish the phenomenon, then we have laid the groundwork for causal inves-
tigations. We would like to note that we are not engaged in either MORe or
Chainsaw algorithm optimisation at this point. It could well be that, if there are
hard modules, that they are not the sort of modules that either technique uses.
Similarly, even if there are no hard modules, that does not mean that modules
generally will be “easy enough” to overcome the overhead challenges.

4 Materials and Experimental Design

The conjecture under test is that given an ontology, O, reasoner R, then there
is no module M from that ontology such that the T (CL(O)) < T (CL(M)) for
R. It’s trivially the case that there is a M such that T (CL(O)) = T (CL(M))
since O is a module for itself.

The number of modules in an ontology can be very large (in principle, ex-
ponential in the number of axioms or the signature; this has been verified em-
pirically [14]), thus pure uniform sampling is unlikely to detect counterexamples
to our conjecture if they are rare. Given that empirically hard arbitrary subsets



are not particularly common either within ontologies (i.e., most subsets are not
harder than the whole) or across ontologies (i.e., most ontologies do not have
hard subsets), we need a more directed approach. Our basic approach is to look
for hard arbitrary subsets using the techniques described in [6]. We then extract
the module for the signature of that hard subset, that is, the nearest superset
of the hard subset that is a module. If the speculations on sources of hardness
are right, at least in spirit, we should see a big drop in classification time going
from the hard subset to the module. Of course, this procedure cannot rule out
that other modules might be hard (it is, intentionally, a biased sample), but at
least the modules we extract are in a known region of hard subsets.

4.1 Corpus Selection

We conducted our study on a corpus of 363 BioPortal ontologies (August 2013),
serialised into OWL/XML by the OWL API (3.4.8) [8]. BioPortal [13] is a open
repository for accessing and sharing biomedical ontologies, developed in lan-
guages such as OWL, RDF or OBO. It is the most prominent and active collec-
tion of naturally occurring ontologies on the web, and serves as the go-to point
for many empirical investigations, such as studies on modularity or reasoner pro-
filing [5]. BioPortal contains a range of interesting sizes and expressivities (see
Figure 1).

Fig. 1. Distribution of ontology sizes in Bioportal (logical axiom counts), and OWL 2
profiles.

4.2 Corpus Curation and Filtering

As we are primarily interested in classification, we considered only the TBoxes
of the ontologies (we stripped O of all ABox axioms). In order to handle large
numbers of subsets, we indexed the axioms using annotation properties and
physically manifested the subsets (or modules) only as lists of axiom identifiers.



We classified the entire set of 363 ontology TBoxes using Pellet 2.3.1 and Her-
miT 1.3.8, and then filtered them, separately for each reasoner. We excluded
ontologies that (1) not OWL DL, (2) for a given reasoner classified in less than
5 seconds (relatively easy), (3) for a given reasoner did not classify within 20
minutes (feasible), (4) that merely contained a class hierarchy (only atomic Sub-
ClassOf axioms and EquivalentClasses axioms) (expressive).

43 ontologies were filtered out as being OWL Full using the profile checker in
the OWL API tools ([1]). In order to classify an interesting amount of subsets,
and given our informed assumption that there are subsets that are harder than
the whole, an infeasible amount of resources would be required if ontologies were
included that were significantly harder than 20 minutes.

4.3 Finding Hard Subsets

In order to find hard subsets of ontologies, we employed the technique described
in [6]. We randomly sampled 3 paths from each of the ontologies in order to
identify ontologies with hard regions. A path was sampled by slicing the ontology
O (the set of logical axioms) into size regions relative to the size of O, in our
case eighths. The first slice corresponds to 1/8 of the ontology, the second slice
to 2/8 and so on, the full TBox to 8/8. A random eighth of the set of (logical)
axioms was picked from the ontology and exported into a new ontology. Then a
second eighth of the remaining axioms was drawn (randomly) and added to the
first eighth to get the 2/8 slice of the ontology, and so on. A path thus consists
of eight cumulatively grown subsets.

We then classified all the subsets generated this way to identify hard subsets
(subsets for which the reasoning time exceeds the reasoning time of the whole
TBox). Our assumption was that if we find such a hard subset, it is an indicator
for a hard region. For example, if we find a hard subset that correspond to 6/8
of the ontology, we assume that there might be more hard subsets to be found
in that region. Once we identified hard subsets, we sampled 50 random subsets
from their corresponding regions and obtained their classification time.

4.4 Classifying the Modules

For each hard subset H identified in the previous step, we extracted a ⊥-module
M with the syntactic locality-based module extractor embedded in FaCT++,
using the signature of the hard subset as seed. We then obtained the classification
time for M. In principle M should be a superset or equal to H. However, if H
contains axioms that are tautologies, they generally do not make it into the
module. The most prominent cases are axioms of the form A v (≥ 0R.C), or
simply A v >.

4.5 Experiment Machine Specification

A Dell Optiplex 790, with Ubuntu Release 12.10 (quantal) 64-bit, Memory: 15.6
GiB (1333MHz, DDR3), Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz x 4 was



used for the actual benchmarking (obtaining the classification times). Every
single classification was done in a separate isolated virtual machine (Java 7,
-Xms2G, -Xmx12G). Network and other unnecessary system services were dis-
abled to prevent background processes from affecting reasoning performance.

5 Results

5.1 Hard Subset Finding

The filtering process described in Section 4.2 resulted in 21 ontologies for HermiT
and 15 ontologies for Pellet from the BioPortal corpus. Out of these, we found
hard subsets using the technique described in Section 4.3 for three ontologies
with Pellet and three ontologies for HermiT. For Pellet we had to check a total
of 315 subsets to find 4 hard subsets (all in region 7), for HermiT a total of 441
to find 3 hard subsets (two in region 7, one in region 6). It should be noted that
there were a minor amount of failed classifications (6 for Pellet, 1 for HermiT),
which were either due to a stack overflow or a timeout (fixed at 20 min, wall
clock time). They were excluded from the analysis. There are two things to
observe at this point: (1) hard subsets are relatively rare and (2) they are found
in the higher regions that correspond to 6/8 or 7/8 of the ontology. As for the
first observation, it should be noted that a lot of subsets under consideration
corresponded to less than half of the size of the ontology (252 for HermiT, 180
for Pellet). Although it was not clear whether hard subsets might be hidden
in these regions, it was also not surprising that they did not turn out to be.
In particular, a random sample is likely to select unrelated axioms, thus small
subsets are unlikely to be tightly constrained.

5.2 Performance Heterogeneity

Gonçalves et al [6] observed that ontologies which have non-linear path profiles
are highly likely to be performance heterogenous, and thus have Hot Spots.
Performance heterogeneity also seems to correlate with having hard subsets. We
observed the performance profiles exhibited by the paths (i.e. the classification
times of the cumulative grown 1/8, 2/8, ..., 8/8 of O). In principle we could
count a local peak in a path that grows non-monotonically as a candidate for a
region of hard subsets, but for experiment resource related reasons we restricted
our attention to regions were a path had a peak that was harder than the whole
ontology – in such cases we knew that there was at least one hard subset.

For HermiT, 3 out of the 63 paths (3 for each of the 21 ontologies in the set)
contain hard subsets and 5 have some non-monotonic characteristics (i.e. there
was a drop in reasoning time from one subset to its successor). The profiles of
the ontologies that contained hard subsets can be seen in Figure 2. 16 paths have
a Pearson product-moment correlation coefficient higher than 0.85 (between the
relative size of the subset and the reasoning time), i.e. T (CL(S)) and |S| have
a strong linear dependence, while a total of 7 paths have a coefficient between



0.5 and -0.5, indicating a relatively weak linear relationship. For Pellet, 4 out of
the 45 paths have hard subsets, 10 of the respective performance graphs have
non-monotonic characteristics, 11 paths have a high Pearsons coefficient and 9
a low one. Figure 2 shows the profiles of the three ontologies that contain hard
subsets.
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Fig. 2. Performance profiles for SIHPO, CO and MDA with Pellet (top) and Biomodels,
Biotop and Gazetteer with HermiT (bottom). Y axis is T (CL(O)) in seconds

5.3 Performance Profile of Hard Subsets and their Corresponding
Modules

We selected a sample of 50 subsets from the identified hard regions for each
ontology/reasoner pair for a total of 300 subsets. We then tested each subset for
hardness. For HermiT, a total of 25 hard subsets were identified, for Pellet 42.
We subsequently classified these subsets and their corresponding modules. To
mitigate unanticipated experimental effects, we classified the subset / module
pairs three times, as well as the ontology. Details can be found in Figure 5.3.
The timeout was set to 30 minutes.

Each grouped column on the x-axis in the figures represents the classification
times of a pair (the subset and its corresponding module). The y-axis represents
the classification time in seconds. The red line CT (O) (CT(X) as an equivalent



shorter form of T (CL(X))) represents the median classification time of the entire
ontology measured in the three runs mentioned earlier. If one of the other runs for
classification of O deviated from the median by more than 5%, we included the
value in the plot (CT(O)+ standing for the highest classification time obtained
for the ontology, and CT(O)- the lowest).

6 Discussion

We call a case (a subset/module/ontology triplet) strictly confirmatory of our
hypothesis if the maximum classification time measured for a module is lower
than the minimum classification time measured for the entire TBox. We call a
case tendentiously confirmatory if the median classification time measured for
a module is lower than the median classification time measured for the entire
TBox.

The first, and most striking, observation is that only three of the six ontol-
ogy/reasoner pairs are strictly confirmatory of our hypothesis as a whole (contain
only strictly confirmatory cases, Biomodels, MDA, SIHPO) and only one other
ontology is tendentiously confirmatory as a whole (Biotop). Biotop/HermiT
shows modules that are easier (at least for the median value) than their gen-
erating subset, but one measurement was taken were the subset was classified
faster. Cell ontology/Pellet was strictly confirmatory in 21 out of 27 cases, and
tendentiously confirmatory in another 4 (25/27 in total).

Gazetteer/HermiT clearly contradict the conjecture. We must thus, barring
experiment error, regard it as false. We found this surprising.

In all cases, both the hard subset and the module were significant fractions
of the ontology, as expected. This makes the results more relevant for reasoners
like MORe which tries to generate large modules. Hard large modules suggest
that MORe may have surprisingly pathological cases. In conversation with the
MORe developers, the threat to performance that they saw was that the non-
EL reasoner might essentially perform as it would on the whole ontology (or
perhaps a little better, but still close) but MORe would also have the cost of
running the EL reasoner. That is, they were concerned with duplicated work.
Our results show that the complement module might take much longer than
the whole ontology. Determining how often this sort of pathological behaviour
may occur is part of our future work. One possibility to explain the hardness of
subsets over their generating module is the presence or absence of search space
pruning axioms. It is at least possible that the existence of an axiom or a group
of axioms in the module reduces the amount of necessary subsumption tests,
either by pruning the traversal space (for example through a disjointness axiom)
or by asserting a subsumption that makes a lot of tests redundant (for example
by making a concept unsatisfiable) or reduces the amount of non-deterministic
choices. We tried to gather some very initial evidence for these kinds of ex-
planations by counting the number of SAT calls for a given reasoner/ontology
pair. For Biomodels/HermiT we can confirm that the subset requires between
11057 and 25271 more SAT calls then its module for a complete classification
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(Median 15066.5). In the Biotop/HermiT case, we have 110, in the MDA/Pellet
case 9 and in the SIHPO/Pellet case between 7606 and 42296 (Median 28053.5)
more SAT calls. All of the former were at least tendentiously confirming of our
hypothesis. In the Gazetteer case, where in all but one cases, T (CL(M)) was
higher than T (CL(S)) (strongly contradicting the hypothesis), we can observe
exactly the reverse: we have at between 541 and 624 (Median 578) fewer SAT
calls during the subset classification, which at least strengthens the evidence
that the amount of SAT calls correlates somehow with the overall classification
time. The CO/Pellet combination appears to draw a more mixed picture. For a
random third (9) of the subset/module pairs, all of which are strictly confirma-
tory of our hypothesis, the differences in SAT calls tend from 6065 more to 6009
less calls, with a Median of 2740 less (ie, does not support this explanation).

The primary threat to internal validity is that we occasionally observed non-
deterministic reasoning times for the same input. While we believe our current
results are stable, further work needs to be done to ensure that the way we feed
inputs to the reasoner ensures a like behaviour. It could be that we accidentally
have modules triggering a “hard state” of the reasoner while the ontology is
triggering an easy state due to irrelevant features such as order of axioms in the
file (which can have an effect on absorption). If the reasoner can be kicked into
a state where the reasoning times are reversed, then it is possible that a refined
version of our conjecture is true.

The primary threat to external validity is the relatively small sample sets and
ontologies examined as well as the inherent biasing of our sampling strategy. We
will continue to cover more hard subsets and candidate ontology reasoner pairs to
get a fuller picture even though our current work suffices to refute the conjecture.
Given that we start with random, thus not coherent, subsets, it may be the case
that we can find ‘interestingly hard” modules by looking at genuine modules or
other guided seed signature strategies. While not telling for the conjecture, they
might help provide insight into sources of difficulty.

With respect to field significance, it seems that it is not unreasonable for
modular reasoner developers to neglect this threat. The comparatively low num-
ber of hard subsets in general and of hard modules suggests that other issues
still dominate.

In addition to broadening our sampling as wide as possible, the key future
task is to investigate the hard subsets and their modules to see if we can isolate
the sources of pathological or benign behaviour. One strategy is to search for
minimal supersets of hard subsets or modules that are easy. In this way, we can
provide minimal test cases for pathological hardness to reasoner developers.
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5. R. S. Gonçalves, N. Matentzoglu, B. Parsia, and U. Sattler. The empirical robust-
ness of description logic classification. In CEUR Workshop Proceedings, volume
1014, pages 197–208, 2013.
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