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Shape analysis attempts to analyze and verify correctness of programs with
dynamic data structures. This is a notoriously difficult task, because it necessi-
tates efficient decision procedures for expressive logics on graphs and graph-like
structures. In the last decade, model-theoretic approaches have been less promi-
nent, and the leading approach is proof-theoretic [15]. Recent advances in finite
model theory have created an opportunity for development of practical model-
theoretic approaches in shape analysis.

Description Logics (DLs) are a well established family of logics for Knowl-
edge Representation and Reasoning [2]. They model the domain of interest in
terms of concepts (classes of objects) and roles (binary relations between ob-
jects). These features make DLs very useful to formally describe and reason
about graph-structured information. The usefulness of DLs is witnessed e.g. by
the W3C choosing DLs to provide the logical foundations to the standard Web
Ontology Language (OWL) [14]. Another application of DLs is formalization
and static analysis of UML class diagrams and ER diagrams, which are basic
modeling artifacts in object-oriented software development and database design,
respectively [4,1]. In these settings, standard reasoning services provided by DLs
can be used to verify e.g. the consistency of a diagram.

To describe the memory of programs with dynamic data structures using a
DL, a rather powerful DL must be chosen. The DL in question needs to allow
a computationally problematic combination of constructors: (i) nominals are re-
quired to represent the program’s variables; (ii) number restrictions are required
so that the program’s pointers (represented as roles) are interpreted as functions;
(iii) inverses are needed for defining data structures such as trees, where elements
in the tree must have at most one parent, and for encoding program computa-
tion; and (iv) reachability is required since data structures should contain only
elements which are reachable from program variables via program pointers.

Our contribution: We introduce and develop decision procedures for the
logic ALCQIOb,Re, which extends the closure of ALCQIO under Boolean oper-
ations (ALCQIOb) with reachability assertions over finite structures. The main
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results of this paper are algorithms which decide the finite satisfiability and fi-
nite implication problems of ALCQIOb,Re. The algorithms are reductions to
finite satisfiability in ALCQIO, which suggests relatively simple implementa-
tion using existing ALCQIO reasoners. Currently no ALCQIO reasoners over
finite structures exist to our knowledge. Still, reasoners over arbitrary structures
could be used as part of a program verification procedure which is sound but not
complete. The algorithms run in NEXPTIME, which is optimal since ALCQIO
is already NEXPTIME-hard. We only consider finite structures since only they
and not infinite structures can represent the memory of programs.

The reachability assertions guarantee that elements of the universe of a
model are reachable in the graph-theoretic sense from initial sets of elements
using prescribed sets of binary relation symbols. Alternatively, we can think
of ALCQIOb,Re as ALCQIOb interpreted over structures containing an un-
bounded number of trees of bounded degree d.
ALCQIOb,Re is obtained from ALCQIO by (1) allowing the Boolean con-

nectives ∨,∧,¬ and (2) adding two new types of assertions:

Reachability Assertion B−→⊆ SA where A,B ∈ NC and S ⊆ NF. Intuitively, it
says that B is contained in A and that A is a set of elements reachable from
B, without leaving A, through the roles of S.

Disjointness Assertion Disj(A1, A2) = (A1 uA2 ≡ ⊥) for A1, A2 ∈ NC.

Let RE and DI be sets of reachability respectively disjointness assertions.

Compatibility RE and DI compatible if for every B1
−→
⊆

S1A1 and
B2
−→
⊆

S2A2 in RE such that S1 ∩ S2 6= ∅, Disj(A1, A2) is in DI.

If we think of the Ai as the sets of elements in different data structures in the
memory, then compatibility is the natural statement that that data structures
can only share the same domain if they use different pointers.

Let ∗ denote the reflexive-transitive closure, ◦ denote role composition,
RM = (

⋃
s∈S s

M ∩ AM × AM)∗ and RM(BM) = {v | ∃(u, v) ∈ RM. u ∈ BM}.
We have M |= B−→⊆ SA iff M |= B v A and RM(BM) = AM .

Theorem 1. Let Φi ∈ ALCQIOb,Re for i = 1, 2. There are polynomial-time
computable ALCQIO formulas η and ρ over an extended vocabulary such that

(1) Φ1 is satisfiable iff η is satisfiable.
(2) Φ1 implies Φ2 iff ρ is not satisfiable.
(3) Satisfiability and implication in ALCQIOb,Re is NEXPTIME-complete.

Satisfiability and implication here are over finite structures.

The proof of Theorem 1 is by reduction to the satisfiability problem of ALCQIO.
The models of Φ = Φ1 resp. Φ = Φ1 → Φ2 can be partitioned into standard and
non-standard models, depending on whether they satisfy the reachability asser-
tions. Since ALCQIO is contained in first order logic, ALCQIO cannot express
the reachability assertions. However, we can augment Φ so that it is guaran-
teed that whenever a non-standard model exists, so does a standard model, and



the standard model can be obtained from the non-standard model by means of
so-called tree surgery. The construction relies on a locality property of ALCQIO.

The logic ALCQIOb,Re is especially suited to shape analysis, since it con-
tains nominals, number restrictions, inverses and reachability. ALCQIOb,Re is
strong enough to describe e.g. lists, trees and lists of lists. ALCQIOb,Re supports
programs whose data structures have complex sharing patterns, and memory
cells (which in model-theoretic terms are elements of the universe of the model)
may participate in multiple data structures. The closure of the underlying logic
ALCQIOb under Boolean operations allows to describe conditional statements
in programs. The decision procedure for implication for ALCQIOb,Re is essential
for verification applications, since it allows to show that specifications relating
pre- and post-conditions are correct.

Since ALCQIOb,Re is a DL, using ALCQIOb,Re for shape analysis brings
an additional advantage. The verification community has focused mostly on
a bottom-up approach to the analysis of programs with dynamic data struc-
tures, which examines pointers and the shapes induced by them. However, many
real world programs manipulate complex data whose structure and content is
most naturally described by formalisms from object oriented programming and
databases such as UML and ER diagrams which are generalized by the frame-
work of description logic. In another extended abstract in this volume (see also
[8]) we discusse how to use a DL to reason and verify correctness of entity-
relations-type content of data structures on top of an existing shape analysis.

Related work

We list some DLs with some form of reachability from the literature. The impor-
tant work of Schild [17] exposed a correspondence between variants of proposi-
tional dynamic logic (PDL), a logic for reasoning about program behavior, and
variants of DLs extended with further role constructors, e.g. the transitive clo-
sure of a role. Close correspondences between DLs extended with fixpoints and
variants of the µ-calculus have also been identified [18,12,5,13,16,6]. Extensions
of DLs with regular expressions over roles have been proposed [7]. ALCQIO
is the extension of ALC with nominals, number restrictions and inverses, see
e.g. [3]. No extensions of ALCQIO with reachability or transitive closure were
known to be decidable on finite structures. [10] extended SHOIQ with transi-
tive closure of roles and proved decidable in non-deterministic triple exponential
time on arbitrary structures. Our result has a similarity in proof strategy with
a recent decidability result for an extension of the two-variable fragment of first
order logic with trees and counting [9]. Our results are incomparable with [9].

The use of DLs in shape analysis has been previously suggested in [11],
where a framework for verification is given based mainly on the description
logics µALCQIO, which extends ALCQIO with fixed points, and on µALCQO.
However, unlikeALCQIOb,Re, from the methods of [6] it follows that µALCQIO
is undecidable over finite structures, and µALCQO is unknown to be decidable
on finite structures.
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