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Abstract. This paper investigates how to restrict the spread of sensitive informa-
tion. This work is situated in a military context, and provides a tractable method
to decide what semantic information to share, with whom, and how. The latter de-
cision is supported by obfuscation, where a related concept or fact may be shared
instead of the original. We consider uncertain information, and utilize Subjective
Logic as an underlying formalism to further obfuscate concepts, and reason about
obfuscated concepts.
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1 Introduction

Controlling the spread of sensitive information is a problem in various contexts. In
everyday life, users share information across a plethora of social networks and other
media. This raises concerns about unwanted usage of such information [1, 2]. In strate-
gic contexts [3,4,5], information sharing can have serious economic or life threatening
repercussions. This paper therefore examines how information sharing can take place
while minimizing its negative impact through the use of obfuscation.

Following [6], a technique for restricting the spread of information to the “desired”
audience only is referred to as obfuscation, defined as:

Information-obfuscation (or data-masking) is the practice of concealing, re-
stricting, fabricating, encrypting, or otherwise obscuring sensitive data. [6]

While other approaches [1,2,6] focused on obfuscation of quantitative information
— e.g. accelerometer data from a smartphone — we focus on qualitative information
linked through a semantic description of the domain. The main contribution of this
paper is an innovative and sound ontology based obfuscation technique, useable in non-
cooperative environments.

We consider an implicit exchange of information between two agents: a sender and
a receiver . The sender wants the receiver to know some pieces of information, and
at the same time it wants to keep some inferences4 that could be surmised from this
? Corresponding author.
4 In this paper, inference refers to any reasoning process that — when applying a specific rule

or rules (e.g. deductive modus ponens) — leads to a conclusion given a set of premises.



information private. This is analogous to the work described in [2] where users wish to
share the activity level obtained from their smartphone accelerometer with an app for
medical advice, while keeping the specific activity type private.

In this paper we present the Semantic Obfuscation Framework (SOF ), which adopts
the sender ’s point of view, and thus starts considering (1) its domain model (ontology),
(2) the information to be shared, and (3) the information to be kept private. Then it iden-
tifies the relevant ontological relationships between the shared and the private informa-
tion, and computes, using Subjective Logic5 (SL) [7], the likelihood that the receiver
knows it thus leading to deriving the private information. Note that the use of SL in
such a context is not novel: SL is utilized in [8] for evaluating source of ontological
information, and in [9, 10] for computing trust/reputation degrees with uncertainty.

The paper is organized as follows. Section 2 shows a realistic military scenario
and the the main concepts of SL. Section 3 presents the requirements necessary for
applying our proposal for obfuscating semantic data, which is then illustrated in Section
4. Finally, Section 5 concludes the paper by discussing related and future work. Proofs
are omitted or sketched due to space constraints.

2 Motivation and Background

A realistic military scenario [11] is used throughout this paper as a running example for
demonstrating our proposal. Such a scenario (§ 2.1) is formalized using the Intelligence,
Surveillance, Target Acquisition and Reconnaissance (ISTAR) ontology OI [12, 13]6.

2.1 A Motivating Scenario

In [11], a realistic military scenario is developed involving peace-keeping in the country
of Sincor where coalition forces successfully executed a campaign to liberate it from a
dictatorial regime. A military task force is made up of members from many different
nations working together as a coalition, including local forces. The coalition has divided
responsibility for the country into different sectors, with a field grade officer in charge
of each sector. The Combined Joint Task Force (CJTF) commander is in critical need
of a capability to know the movement of all Person of Interest (POI) and their activities
within the country and to have full situational awareness of the activities of the members
of various Violent Extremist Organizations (VEO) that work to destabilize the country
and push it back to war.

Last night, two American diplomats were kidnapped, and their current whereabouts
are unknown. The main VEO suspected of the kidnapping is Sumer, which operates
from a safe haven in the hills just outside of Kish. The CJTF Commander “stands-
up” a Crisis Action Team (CAT) to help manage the fluid situation. Intelligence has
contacted other intelligence organizations within the coalition to try and determine the
exact whereabouts of the hostages and the size of the force holding them. CJTF Intel-
ligence is also preparing intelligence products for the CAT on the kidnapping and any

5 Subjective Logic extends probability theory by expressing uncertainty about the probability
values themselves.

6 http://goo.gl/feTio9
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coalition forces in the area as well as the available capabilities of coalition local part-
ners. This information will be used by members of the CAT in formulating possible
Courses of Actions (COA) for the commander to consider.

A few hours ago, Intelligence determined a POI who is very likely to be involved
in the kidnapping. The CJTF Commander needs to contact the coalition local partners
because he will need support for constant surveillance of such a POI, but only if it is
unlikely that they will infer that this is a hostage rescue operation: the coalition local
partners might otherwise jeopardize the operation due to insufficient training.

Therefore, the CJTF Commander asks Intelligence to evaluate the likelihood of in-
ferences that could be made by coalition local partners. In particular, he informs Intelli-
gence that he needs to keep the nature of the operation (i.e. hostage rescue) confidential.
Intelligence, following the approach presented in this paper, replies that the probability
that the coalition partners will infer the nature of the operation is 12%, a value that the
CJTF considers acceptable. Thus the CJTF asks the coalition local partners to support
its operation with constant surveillance of a POI.

2.2 Overview of Subjective Logic

To assess the uncertainty in reasoning about another agent’s knowledge and, ultimately,
to derive a metric of obfuscation (§ 4), we rely on Subjective Logic (SL) [7], which
extends probability theory by expressing uncertainty about the probability values them-
selves. Like Dempster-Shafer evidence theory [14, 15], SL operates on a frame of dis-
cernment — i.e. a set of atomic or primitive states, namely variable assignments, e.g.
if d represents the possible results of rolling a dice, atomic states are d = 1, d = 2, . . . ,
d = 6 — denoted by Θ.

Definition 1 (Belief Mass Assignment). Given a frame of discernment Θ, we can as-
sociate a belief mass assignment (BMA) mΘ(x) with each substate x ∈ 2Θ such that

1. mΘ(x) ≥ 0
2. mΘ(∅) = 0
3.

∑
x∈2Θ mΘ(x) = 1

When we speak of belief in a certain state, we refer not only to the belief mass in
the state, but also to the belief masses of the state’s substates. Similarly, when we speak
about disbelief, that is, the total belief that a state is not true, we need to take substates
into account. Finally, SL also introduces the concept of uncertainty, that is, the amount
of belief that might be in a superstate or a partially overlapping state. These concepts
can be formalized as follows.

Definition 2 (Belief/Disbelief/Uncertainty Functions/Relative atomicity/Probabil-
ity Expectation). Given a frame of discernment Θ, a belief mass assignment mΘ on Θ,
and a state x, we define:

– the belief function for x: b(x) =
∑
y⊆x

mΘ(y), x, y ∈ 2Θ;

– the disbelief function for x: d(x) =
∑
y∩x=∅

mΘ(y), x, y ∈ 2Θ;



– the uncertainty function for x: u(x) =
∑

y ∩ x 6= ∅
y 6⊆ x

mΘ(y), x, y ∈ 2Θ;

– the relative atomicity for x w.r.t. y ∈ 2Θ: a(x/y) =
|x ∩ y|
|y|

, x, y ∈ 2Θ, y 6= ∅;

– the probability expectation for x: E[x] =
∑
y

mΘ(y)a(x/y), x, y ∈ 2Θ.

In particular, let us consider a focused frame of discernment, viz. a binary frame of
discernment containing a state and its complement.

Definition 3 (Focused Frame of Discernment/Focused BMA/Focused Relative
Atomicity). Given x ∈ 2Θ, the frame of discernment denoted by Θ̃x, which contains
two atomic states, x and¬x, where¬x is the complement of x inΘ, is the focused frame
of discernment with focus on x. Let Θ̃x be the focused frame of discernment with focus
on x of Θ. Given a belief mass assignment mΘ and the belief, disbelief and uncertainty
functions for x (b(x), d(x) and u(x) respectively), the focused belief mass assignment,
mΘ̃x on Θ̃x is defined as

mΘ̃x(x) = b(x)

mΘ̃x(¬x) = d(x)

mΘ̃x(Θ̃
x) = u(x)

The focused relative atomicity of x (which approximates the role of a prior probability
distribution within probability theory, weighting the likelihood of some outcomes over
others) is defined as

aΘ̃x(x/Θ) = [E[x]− b(x)]/u(x)

For convenience, and when clear from the context, the focused relative atomicity of x is
abbreviated to a(x).

An opinion consists of the belief, disbelief, uncertainty and relative atomicity as
computed over a focused frame of discernment.

Definition 4 (Opinion). Given a focused frame of discernment Θ containing x and
its complement ¬x, and assuming a belief mass assignment mΘ with belief, disbelief,
uncertainty and relative atomicity functions on x in Θ of b(x), d(x), u(x), and a(x),
we define an opinion over x, written ox as

ox ≡ 〈b(x), d(x), u(x), a(x)〉

We denote the set of all possible SL opinion 4-ples with O ⊆ [0, 1]4.
The probability expectation of an opinion is denoted as E[ox] = b(x)+u(x) · a(x).

Given two opinions about propositions x1 and x2, [7] defines a conjunction operator
as follows.



Definition 5 (Propositional Conjunction). Let ox1
= 〈b(x1), d(x1), u(x1), a(x1)〉

and ox2
= 〈b(x2), d(x2), u(x2), a(x2)〉 be opinions about x1 and x2. Let ox1∧x2

=
〈b(x1 ∧ x2), d(x1 ∧ x2), u(x1 ∧ x2), a(x1 ∧ x2)〉 be the opinion such that:

b(x1 ∧ x2) = b(x1) b(x2)
d(x1 ∧ x2) = d(x1) + d(x2)− d(x1) d(x2)
u(x1 ∧ x2) = b(x1) u(x2) + u(x1) b(x2) + u(x1) u(x2)

a(x1 ∧ x2) =
b(x1) u(x2) a(x2) + u(x1) a(x1) b(x2) + u(x1) a(x1) u(x2) a(x2)

b(x1) u(x2) + u(x1) b(x2) + u(x1) u(x2)

3 Requirements for Semantic Obfuscation

We now turn our attention to the requirements for providing a formal definition for an
obfuscation procedure. From a general perspective, we consider two agents: the sender
shares White knowledge — i.e. a piece of information somehow linked to a domain on-
tology — with a receiver . The sender wants to keep private some pieces of information
— Black knowledge — that might be surmised from the White knowledge by exploit-
ing semantic connections. These connections are derived from the sender ’s domain
ontology which we assume has been built by an ontology engineer.

From a formal perspective, if not explicitly mentioned, we refer to an arbitrary but
fixed ontology O built in the monotonic description logic language EL [16]. O is a finite
set of axioms in EL; NO

C is the set of concept names; NO
R is the set of role names; NO

I

is the set of individual names. Concepts v2, v3 ∈ NO
C can be inductively composed

with the following constructs: > | ⊥ | v1 | {a} | v2 u v3 | ∃r.v2 where > denotes the
top concept; ⊥ denotes the bottom concept; v1 ∈ NO

C ; a ∈ NO
I ; r ∈ NO

R . EL supports
concept inclusion v2 v v3 and membership v1(a). An axiom α is an assertion in EL
which is a well-formed formula; TBox represents all axioms in O which relate concepts
to each other; ABox represents all axioms which make assertions about individuals.
Hereafter, in order to be compliant with the methodology for reducing more expressive
languages to EL presented in [17, 18], we assume that ABox axioms are removed with
care. We use |= to denote that an ontology entails an axiom (i.e. O |= α): O∗ is the
deductive closure of O, i.e. the set of axioms in EL that can be entailed by the axioms
in O.

Returning to our running example (§ 2.1), let us consider the relevant part of the
deductive closure of the ISTAR ontology (O∗I ) shown in Figure 1; r1 denotes the role
requiresOperationalCapability.

Moreover, our ontology engineer releases a certificate assessing the degree of con-
fidence for the ontology: for instance, if the engineer is requested to describe each type
of operation that the US Army can perform, and he considered those for peace-keeping
only, the degree of confidence of this ontology will be quite low. Formally, the ontology
engineer’s degree of confidence about the ontology is a SL opinion.

Definition 6 (Confidence Degree in the Completeness of an Ontology). Given an
ontology O, oOc = 〈b(c)O , d(c)O , u(c)O , a(c)O〉 is the confidence degree in O.

Both the White knowledge and the Black knowledge are represented as subsets of
the concepts in the ontology.



Fig. 1. Part of the deductive closure of the ISTAR ontology O∗I relevant to the scenario discussed
in Section 2.1. r1 represents the role requiresOperationalCapability. Figure derived
following the approach described in [19].

Definition 7 (White and Black knowledge). The Black knowledge (resp. the White
knowledge) associated to the interaction between sender and receiver is B ⊆ NO

C

(resp. W ⊆ NO
C , W ∩ B = ∅).

In Figure 1, the White knowledge is v1 and v2 (W = {v1, v2}), while the Black
knowledge is v7 (B = {v7}).

We introduce a machinery for evaluating the White–Black knowledge connections.
For this purpose, we begin by describing a generic semantic relationship between two
concepts representing a semantic connection, i.e. being part of a role, or of a taxonomic
relation.

Definition 8 (Semantic Relationship). A semantic relationship !⊆ NO
C ×N

O
C is a

symmetric function on the domain of concepts.

As before, if not explicitly mentioned, we always refer to an arbitrary but fixed
semantic relationship !⊆ NO

C ×N
O
C .

Let us introduce R
!, a more specific semantic relationship on the concepts names,

which is parametric in the domain of the roles.

Definition 9 (Relationship R
!). Given R ⊆ NO

R , R
!⊆ NO

C × N
O
C is a symmetric

relationship such that: v1
R
! v2 and v2

R
! v1 iff (v1 v v2) ∈ O∗ or (v1 u (∃r.v2)) ∈

O∗, r ∈ R

Proposition 1. For every R ∈ 2N
O
R , the relationship R

! is a semantic relationship.



Fig. 2. Semantic relationship graph induced on OI by the semantic relation
{r1}! . The depicted SL

labelling have the following meaning: receiver knows for sure the taxonomic relations between
v1 and it subclasses v4, v5, v6 and v7; there is a large amount of evidence for believing that

receiver knows the relationships v4
{r1}! v2 and v5

{r1}! v2; the set of evidence is smaller in

the case of v6, but sender is very biased; sender has no clue about v7
{r1}! v2. The other SL

labelling do not affect our running example and are left in their symbolic form.

A semantic relationship induces an indirect graph (semantic relationship graph). We
then label each edge in such a graph with a SL opinion, which represents the likelihood
that the receiver is aware of the semantic relationship represented by such an edge.
These SL opinions can be derived from past interactions with the receiver [20], or by a
priori knowledge.

Definition 10 (SL Labelling of Semantic Relationship). The function ω! :!7→ O
is a SL labelling of !: ω!(v1 ! v2) = ω!(v2 ! v1).

In our running example, the semantic relationship graph induced by the semantic

relation
{r1}
! on OI is depicted in Figure 2. The meaning of the area comprised in the

dotted lines will be explained following Alg. 1.
We can now define a semantic path as a path in the semantic relationship graph.

Definition 11 (Semantic Path). A semantic path between vA and vB p! (vA, vB) is
a sequence of nodes p! (vA, vB) = 〈v1, . . . , vn〉 s.t. v1 = vA, vn = vB , and ∀i < n,
vi ! vi+1 holds.

In order to assess the likelihood of surmising a concept, we rely on the intuition
that the closer — in terms of semantic relationship — two concepts, the greater the
likelihood to predict one from the other. Therefore, we need a measure of the semantic
distance w.r.t. a semantic relationship between two sets of concepts. To this end, we first
need to define the set of minimal semantic paths between two set of concepts, which is
necessary to assess the distance among them.



Definition 12 (Set of Minimal Paths). Given Z1,Z2 ⊆ NO
C , the set of minimal paths

between Z1 and Z2 is

P! (Z1,Z2) = {p! (v1, v2) | v1 ∈ Z1, v2 ∈ Z2,

p! (v1, v2) ∈ argmin
p!(v1,v2)

(|p! (v1, v2) |)}

such that ∀v1 ∈ Z1, v2 ∈ Z2, ∃!p! (v1, v2) ∈ P! (Z1,Z2) .

Then, the semantic distance w.r.t. a semantic relationship between two sets of con-
cepts is the maximum among the lengths of minimal paths between them.

Definition 13 (Semantic distance). Given Z1,Z2 ⊆ NO
C , the semantic distance w.r.t.

the semantic relationship ! between Z1 and Z2 is

d! (Z1,Z2) = max
p!(v1,v2)∈P!(Z1,Z2)

(|p! (v1, v2) |)

Note that Z1 ⊆ NO
C , d! (Z1,Z1) = 0.

Finally, in order to take into account the receiver ’s believed knowledge, a cumula-
tive SL labelling between two concepts is defined as the conjunction of the SL labelling
of the minimal paths between them.

Definition 14 (Cumulative SL Labelling). Given ω! a SL labelling of !,
Z1,Z2 ⊆ NO

C , the cumulative SL labelling between Z1 and Z2 is

ζZ1!Z2 =
∧

p!(vA,vB)∈P!(Z1,Z2)

∧
i<|p!(vA,vB)|

ω!(vi ! vi+1)

Although multiple minimal paths can exist between v1 ∈ Z1 and v2 ∈ Z2, we
require (Def. 12) that only one of them is included in P! (Z1,Z2). We do not enforce
a specific method for choosing the one: the most reasonable is to include the minimal
path which maximize a metric, like the cumulative SL labelling (Def. 14).

4 SOF : a Framework for Ontology Obfuscation

We are now able to provide a formalization for semantic obfuscation. We call our ap-
proach the Semantic Obfuscation Framework (SOF ). This measures the quality of ob-
fuscation in terms of the “likelihood” that the receiver will surmise the Black knowl-
edge from the White knowledge. First, we formalize the concept of “surmise” based on
a semantic relationship.

Definition 15 (Semantic Surmise). The surmise from a node v1 is S!
O (v1) = {v1}∪

{v2 | v1 ! v2}.

With a little abuse of notation, we define surmise on a set of concepts.



Definition 16 (Semantic Surmise of a Set). Given Z1 ⊆ NO
C :

S!
O (Z1) = Z1 ∪

⋂
v1∈Z1

S!
O (v1)

Moreover, given the confidence degree, we define a function for estimating the di-
mension (in terms of number of concept) of the “perfect” domain ontology.

Definition 17 (Estimative Function). A function φ : O × R 7→ R is an estimative
function iff φ(o,n) ≥ n and φ(o,n) = n iff o = 〈1, 0, 0, ·〉; and φ(o,n+m) = φ(o,n)+
φ(o,m).

In particular, let us introduce a cautious estimative function.

Definition 18 (Cautious Estimative Function). The cautious estimative function φC :

O× R 7→ R is defined as: φC(o, n) =
n

E[o]
. If E[o] = 0, φC(o, n) = K � 1.

Proposition 2. The cautious estimative function φC is an estimative function.

We can provide now a computational procedure (Alg. 1) for deriving the degree of
likelihood that a receiver will surmise the Black knowledge from the White knowledge.
Alg. 1 requires as input an ontology O, the White and Black knowledge (resp. W and
B), a semantic relationship !, an estimative function φ, and the confidence degree oOc .

Algorithm 1 performs several computations. First of all, it determines S (l. 1 of Alg.
1), namely the minimum set of surmised concept names from the White Knowledge
which includes the Black Knowledge also.

It then considers the focused frame of discernment composed by two disjoint prim-
itive states, viz. B and S \ B. In particular, it uses the cumulative labelling between W
and both B and S \ B (l. 2 of Alg. 1) for computing the mass assignment of the two
primitive states (l. 3 of Alg. 1). To this end, Alg. 1 exploits the well-known relationship
between SL opinions on a focused frame of discernment and the beta distribution [7].

In order to prove the soundness of such approach, in the case of perfect knowledge,
the SL opinion must collapse to a traditional probability value. The following proposi-
tions shows that this is the case.

Proposition 3. If oOc = 〈1, 0, 0, 1〉 and ∀v1, v2 ∈ NO
C , ω!(v1 ! v2) = 〈1, 0, 0, 1〉,

oB is equivalent to considering B as the set of outcomes of an experiment on the sample
space S, and thus computing the probability of B.

Proof. From Def. 17, φ(oOc , n) = n; from ω!(v1 ! v2) = 〈1, 0, 0, 1〉, ζW!B =
〈1, 0, 0, 1〉 and ζW!S\B = 〈1, 0, 0, 1〉. Therefore, r = |B|, s = |S \ B|, V = 0. ut

In our running example, SI = {v4, v5, v6, v7}— the area comprised by dotted line
in Figure 2 — is the minimum set of surmised concepts needed to reach the Black
knowledge from the white knowledge. In the case of perfect knowledge, the probability
to surmise the Black knowledge is 0.25 (cf. Proposition 3).

Let us consider instead the case where there is complete (unbiased) uncertainty
about the completeness of OI , i.e. oOIc = 〈0, 0, 1, 0.5〉. Therefore, φC(oOIc , n) = 2 · n.
Let us also suppose that the SL labelling are as depicted in Figure 2.



Algorithm 1 Procedure for deriving the degree of likelihood about surmising Black
knowledge
DegreeBlackSurmising(O,W,B,!, φ, oOc )

1: compute S = min

 ⋃
Z1⊆N

O
C

, d!(W,Z1)≤d!(W,B)

S!
O (Z1)

 s.t. B ⊆ S

2: compute the cumulative labelling ζW!B = 〈b(ζW!B), d(ζW!B), u(ζW!B), a(ζW!B)〉,
and ζW!(S\B) = 〈b(ζW!(S\B)), d(ζW!(S\B)), u(ζW!(S\B)), a(ζW!(S\B))〉

3: compute

b(B) =
r

V + φ(oOc , r + s)
d(B) =

s

V + φ(oOc , r + s)

u(B) =
V + φ(oOc , r + s)− r − s

V + φ(oOc , r + s)
a(B) = min{a(ζW!B), a(ζW!(S\B))}

where

r =


|B| · b(ζW!B)

u(ζW!B)
u(ζW!B) 6= 0

|B| otherwise
s =


|S \ B| · b(ζW!S\B)

u(ζW!S\B)
u(ζW!S\B) 6= 0

|S \ B| otherwise

V = u(ζW!S\B) · u(ζW!B) · |S|

4: return 〈b(B), d(B), u(B), a(B)〉

Therefore, ζW!B = ω{r1}!
(v7

{r1}
! v2) and ζW!(SI\B) = 〈0.61, 0.36, 0.03, 0.25〉.

The result of the computation is oB = 〈0, 00, 0.49, 0.51, 0.25〉: E[oB ] = 0.12.
Intelligence thus informs the CJTF Commander that the coalition local partners

will surmise that the operation will be a hostage rescue given the request for support
for constant surveillance of the POI with a 12% probability. Since the CJTF considers
12% a reasonable risk, he requests for constant surveillance of the member of the VEO
Sumer. This leads the coalition forces to the location of the two American diplomats
and to the solution of the situation.

5 Discussion and Conclusions

In this paper we introduce SOF , a Semantic Obfuscation Framework, which includes
a sound and effective procedure for evaluating the likelihood that the receiver of some
pieces of information will derive some additional information that the sender desires to
keep private. Related works can be found in two different areas. First, which is the main
line of investigation that motivates this work, regards multi-agents strategic interactions
and the assessment of risk-benefit trade-off of information sharing [1,2,4,5,6,20,21]. In
this context, past approaches relied on information theoretic metrics and on quantitative
data. We claim that a qualitative representation of the domain like the one proposed in
this paper has several advantages. First, encompassing contextual knowledge — e.g.
the receiver knows that the American diplomats have been kidnapped by reading the



newspaper — is possible by enlarging the ontology and applying the same methodology.
Second, such a formalization improves the users’ awareness of inferences that could
be surmised. For instance half of the elements in SI requires operational capability
related to Unmanned aerial vehicles (UAVs) (cf. Figure 2): this might suggest that there
could be a semantic connection between ConstantSurveillanceCapability
and UAV Performance. In future work we will enlarge this discussion and provide
both a formal and an experimental comparison with the quantitative approaches.

The second trend in the literature regards ontology mapping under uncertainty.
Among others, the relevant work utilizes either supervised machine learning [22], or
unsupervised machine learning using Bayesian networks [23], Markov networks [24],
and information theory [25]; or Fuzzy logic approaches [26]. In addition, [27, 28] ad-
dress the topic of uncertainty management using qualitative techniques, in particular
beliefs networks and argumentation. However, the present paper is the first approach
aimed at “obfuscating” shared pieces of knowledge for a specific purpose: i.e., to pre-
vent the revelation of Black knowledge. This shift of paradigm thus makes a comparison
with ontology mapping approaches difficult.

Although this paper is focused on sharing set of concepts, a natural evolution would
involve sharing set of axioms. In this area several approaches have been proposed for
modifying an ontology to conceal sensitive information both in EL [29] and in more
expressive languages [30, 31]. A discussion on this topic is beyond the scope of this
paper and is left for future work.

Finally, it is worth mentioning that the impact of this line of research can spread be-
yond the military context, which we considered in this paper: for instance it could form
the basis for an investigation on how to improve users’ awareness of the confidentiality
of the information shared across social media.

On the other hand, considering the point of view of the receiver, such approach can
identify gaps in the received information, a relevant topic within intelligence analysis.
In intelligence analysis often the key information is lacking, and analysts must factor the
impact of missing data in their confidence when judging a situation. Failing to recognize
absence of evidence is one of the most important causes of cognitive bias [32]. However,
it is hard to identify what is known to be missing and why (e.g. different clearance
levels, hidden agenda, . . . ). Reversing our approach can support analysts in the quest
for further evidence to fill the gaps required to deliver more effective intelligence.
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13. Şensoy, M., Vasconcelos, W.W., Norman, T.J.: Combining Semantic Web and Logic Pro-
gramming for Agent Reasoning. In Dechesne, F., Hattori, H., Mors, A., Such, J., Weyns, D.,
Dignum, F., eds.: Advanced Agent Technology. Volume 7068 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg (2012) 428–441

14. Dempster, A.P.: A Generalization of Bayesian Inference. Journal of the Royal Statistical
Society. Series B (Methodological) 30(2) (1968) pp. 205–247

15. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)
16. Baader, F.: Terminological Cycles in a Description Logic with Existential Restrictions. In

Gottlob, G., Walsh, T., eds.: IJCAI, Morgan Kaufmann (2003) 325–330
17. Ren, Y., Pan, J.Z., Zhao, Y.: Towards Soundness Preserving Approximation for ABox Rea-

soning of OWL2. In Haarslev, V., Toman, D., Weddell, G.E., eds.: Proceedings of the 23rd
International Workshop on Description Logics (DL 2010), Waterloo, Ontario, Canada, May
4-7, 2010 2010), Waterloo, Ontario, Canada, May 4-7, 2010. (2010)

https://www.usukitacs.com/sites/default/files/Scenario%20stabilization%20operations%20v2.doc
https://www.usukitacs.com/sites/default/files/Scenario%20stabilization%20operations%20v2.doc
https://www.usukitacs.com/sites/default/files/Scenario%20stabilization%20operations%20v2.doc


18. Ren, Y., Pan, J.Z., Zhao, Y.: Soundness Preserving Approximation for TBox Reasoning. In
Fox, M., Poole, D., eds.: Proceedings of the Twenty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010. (2010) 351–356

19. Mitra, P., Wiederhold, G., Kersten, M.: A Graph-Oriented Model for Articulation of Ontol-
ogy Interdependencies. In Zaniolo, C., Lockemann, P., Scholl, M., Grust, T., eds.: Advances
in Database Technology EDBT 2000. Volume 1777 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg (2000) 86–100

20. Pipes, S., Cerutti, F., Chakraborty, S., Gibson, C., Norman, T.J., Oren, N., Srivastava,
M.: Architecture Options for Realization of Inference Management in Information Fabric.
https://www.usukitacs.com/node/2633 (2014)

21. Bisdikian, C., Tang, Y., Cerutti, F., Oren, N.: Reasoning about the Impacts of Information
Sharing. Information Systems Frontiers Journal, under submission

22. Duan, S., Fokoue, A., Srinivas, K.: One Size Does Not Fit All: Customizing Ontology
Alignment Using User Feedback. In: The Semantic Web ISWC 2010. (2010) 177–192

23. Mitra, P., Noy, N., Jaiswal, A.R.: Ontology mapping discovery with uncertainty. In: Proc.
4th International Semantic Web Conference (ISWC). Volume 3729. (2005) 537–547

24. Albagli, S., Ben-Eliyahu-Zohary, R., Shimony, S.E.: Markov network based ontology match-
ing. Journal of Computer and System Sciences 78(1) (2012) 105–118
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