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Abstract. This work studies the expressiveness of the description log-
ics that extend ALCreg (a variant of PDL) with any combination of the
features: inverse roles, nominals, quantified number restrictions, the uni-
versal role, the concept constructor for expressing the local reflexivity of
a role. We compare the expressiveness of these description logics w.r.t.
concepts, positive concepts, TBoxes and ABoxes. Our results about sepa-
rating the expressiveness of description logics are based on bisimulations
and bisimulation-based comparisons. They are naturally extended to the
case when instead of ALCreg we have any sublogic of ALCreg that ex-
tends ALC.

1 Introduction

Expressiveness (expressive power) is a topic studied in the fields of formal lan-
guages, databases and logics. The Chomsky hierarchy provides fundamental re-
sults on the expressiveness of formal languages. In the field of databases, the
works by Fagin [11, 12], Immerman [15, 16], Abiteboul and Vianu [1] provide
important results on the expressiveness of query languages. Many results on the
expressiveness of logics have also been obtained, e.g. in [13, 15, 3, 17, 22, 18, 23].

The expressiveness of description logics (DLs) has been studied in a number
of works [2, 5, 6, 19, 20]. In [2] Baader proposed a formal definition of the expres-
sive power of DLs. His definition is liberal in that it allows the compared logics to
have different vocabularies. His work provides separation results for some early
DLs. In [5] Borgida showed that certain DLs have the same expressiveness as the
two or three variable fragment of first-order logic. The class of DLs considered
in [5] is large, but the results only concern DLs without the reflexive and transi-
tive closure of roles. In [6] Cadoli et al. considered the expressiveness of hybrid
knowledge bases that combine a DL knowledge base with Horn rules. The used
DL is ALCNR. The work [19] by Kurtonina and de Rijke is a comprehensive
work on the expressiveness of DLs that are sublogics of ALCNR. It is based
on bisimulation and provides many interesting results. In [20] Lutz et al. char-
acterized the expressiveness and rewritability of DL TBoxes for the DLs that
are sublogics of ALCQIO. They used semantic notions such as bisimulation,
equisimulation, disjoint union and direct product.



This work studies the expressiveness of the DLs that extend ALCreg (a vari-
ant of PDL) with any combination of the features: inverse roles, nominals, quan-
tified number restrictions, the universal role, the concept constructor for express-
ing the local reflexivity of a role. We compare the expressiveness of these DLs
w.r.t. concepts, positive concepts, TBoxes and ABoxes. Our results about sep-
arating the expressiveness of DLs are based on bisimulations and bisimulation-
based comparisons studied in our joint works [8–10]. They are naturally extended
to the case when instead of ALCreg we have any sublogic of ALCreg that extends
ALC.

Our work differs significantly from all of [2, 5, 6, 19, 20], as the class of con-
sidered DLs is much larger than the ones considered in those works (we allow
PDL-like role constructors as well as the universal role and the concept con-
structor ∃r.Self) and our results about separating the expressiveness of DLs are
obtained not only w.r.t. concepts and TBoxes but also w.r.t. positive concepts
and ABoxes.

The rest of this paper is structured as follows. In Section 2 we recall notation
and semantics of DLs, including the notion of positive concepts [10]. In Section 3
we recall the definitions of bisimulations and bisimulation-based comparisons as
well as some invariance or preservation results of [8–10]. In Section 4 we present
our results on the expressiveness of DLs. Section 5 concludes this work.

2 Notation and Semantics of Description Logics

Our languages use a finite set ΣC of concept names (atomic concepts), a finite
set ΣR of role names (atomic roles), and a finite set ΣI of individual names.
Let Σ = ΣC ∪ΣR ∪ΣI . We denote concept names by letters like A and B, role
names by letters like r and s, and individual names by letters like a and b.

We consider some DL-features denoted by I (inverse), O (nominal), Q (quan-
tified number restriction), U (universal role), Self (the local reflexivity of a role).
A set of DL-features is a set consisting of some or zero of these names. We some-
times abbreviate sets of DL-features, writing, e.g., IOQ instead of {I,O,Q}.
From now on, if not stated otherwise, let Φ be any set of DL-features and let L
stand for ALCreg.

Definition 2.1. The DL language LΦ allows roles and concepts defined induc-
tively as follows:

– if r ∈ ΣR then r is a role of LΦ
– if A ∈ ΣC then A is a concept of LΦ
– if R and S are roles of LΦ and C is a concept of LΦ then
• ε, R ◦ S, R t S, R∗ and C? are roles of LΦ
• >, ⊥, ¬C, C tD, C uD, ∃R.C and ∀R.C are concepts of LΦ
• if I ∈ Φ then R− is a role of LΦ
• if O ∈ Φ and a ∈ ΣI then {a} is a concept of LΦ
• if Q ∈ Φ, r ∈ ΣR and n is a natural number

then ≥ n r.C and ≤ n r.C are concepts of LΦ



• if {Q, I} ⊆ Φ, r ∈ ΣR and n is a natural number
then ≥ n r−.C and ≤ n r−.C are concepts of LΦ

• if U ∈ Φ then U is a role of LΦ
• if Self ∈ Φ and r ∈ ΣR then ∃r.Self is a concept of LΦ. 2

The following definition introduces positive concepts of LΦ.

Definition 2.2. Let Lpos
Φ be the smallest set of concepts and Lpos

Φ,∃, L
pos
Φ,∀ be the

smallest sets of roles defined recursively as follows:

– if r ∈ ΣR then r is a role of Lpos
Φ,∃ and Lpos

Φ,∀,

– if I ∈ Φ and r ∈ ΣR then r− is a role of Lpos
Φ,∃ and Lpos

Φ,∀,

– if R and S are roles of Lpos
Φ,∃ and C is a concept of Lpos

Φ

then ε, R ◦ S, R t S, R∗ and C? are roles of Lpos
Φ,∃,

– if R and S are roles of Lpos
Φ,∀ and C is a concept of Lpos

Φ

then ε, R ◦ S, R t S, R∗ and (¬C)? are roles of Lpos
Φ,∀,

– if A ∈ ΣC then A is a concept of Lpos
Φ ,

– if O ∈ Φ and a ∈ ΣI then {a} is a concept of Lpos
Φ ,

– if Self ∈ Φ and r ∈ ΣR then ∃r.Self is a concept of Lpos
Φ ,

– if C is a concept of Lpos
Φ , R is a role of Lpos

Φ,∃ and S is a role of Lpos
Φ,∀ then

• >, C tD, C uD, ∃R.C and ∀S.C are concepts of Lpos
Φ ,

• if Q ∈ Φ, r ∈ ΣR and n is a natural number
then ≥ n r.C and ≤ n r.(¬C) are concepts of Lpos

Φ ,
• if {Q, I} ⊆ Φ, r ∈ ΣR and n is a natural number

then ≥ n r−.C and ≤ n r−.(¬C) are concepts of Lpos
Φ ,

• if U ∈ Φ then ∀U.C and ∃U.C are concepts of Lpos
Φ .

A concept of Lpos
Φ is called a positive concept of LΦ. 2

We introduce both Lpos
Φ,∀ and Lpos

Φ,∃ due to the test constructor of roles. The
concepts ∃(A?).B and ∀((¬A)?).B are positive concepts. As we will see, they
are equivalent to A uB and A tB, respectively.1

If Φ is empty then we abbreviate LΦ by L. We use letters like R and S to
denote arbitrary roles, and use letters like C and D to denote arbitrary concepts.
We refer to elements of ΣR also as atomic roles. Let Σ±R = ΣR ∪ {r− | r ∈
ΣR}. From now on, by basic roles we refer to elements of Σ±R if the considered
language allows inverse roles, and refer to elements of ΣR otherwise. In general,
the language decides whether inverse roles are allowed in the considered context.

An interpretation I = 〈∆I , ·I〉 consists of a non-empty set ∆I , called the
domain of I, and a function ·I , called the interpretation function of I, which
maps every concept name A to a subset AI of ∆I , maps every role name r to a
binary relation rI on ∆I , and maps every individual name a to an element aI

of ∆I . The interpretation function ·I is extended to complex roles and complex
concepts as shown in Figure 1, where #Γ stands for the cardinality of the set
Γ . We write CI(x) to denote x ∈ CI , and write RI(x, y) to denote 〈x, y〉 ∈ RI .

1 That the concept ≤nR.(¬A) is positive should not be a surprise, as ∀R.A is equiv-
alent to ≤0R.(¬A).



(R ◦ S)I = RI ◦ SI

(R t S)I = RI ∪ SI

(R∗)I = (RI)∗

(C?)I = {〈x, x〉 | CI(x)}
εI = {〈x, x〉 | x ∈ ∆I}
UI = ∆I ×∆I

(R−)I = (RI)−1

>I = ∆I

⊥I = ∅
(¬C)I = ∆I \ CI

(C tD)I = CI ∪DI

(C uD)I = CI ∩DI

{a}I = {aI}
(∃r.Self)I = {x ∈ ∆I | rI(x, x)}

(∃R.C)I = {x ∈ ∆I | ∃y [RI(x, y) and CI(y)]

(∀R.C)I = {x ∈ ∆I | ∀y [RI(x, y) implies CI(y)]}
(≥ nR.C)I = {x ∈ ∆I | #{y | RI(x, y) and CI(y)} ≥ n}
(≤ nR.C)I = {x ∈ ∆I | #{y | RI(x, y) and CI(y)} ≤ n}

Fig. 1. Interpretation of complex roles and complex concepts.

A terminological axiom in LΦ, also called a general concept inclusion (GCI)
in LΦ, is an expression of the form C v D, where C and D are concepts of
LΦ. An interpretation I validates an axiom C v D, denoted by I |= C v D, if
CI ⊆ DI .

A TBox in LΦ is a finite set of terminological axioms in LΦ. An interpretation
I is a model of a TBox T , denoted by I |= T , if it validates all the axioms of T .

An individual assertion in LΦ is an expression of one of the forms C(a)
(concept assertion), R(a, b) (positive role assertion), ¬R(a, b) (negative role as-
sertion), a = b, and a 6= b, where C is a concept and R is a role in LΦ.

Given an interpretation I, define that:

I |= a = b if aI = bI ,
I |= a 6= b if aI 6= bI ,
I |= C(a) if CI(aI) holds,
I |= R(a, b) if RI(aI , bI) holds,
I |= ¬R(a, b) if RI(aI , bI) does not hold.

We say that I satisfies an individual assertion ϕ if I |= ϕ.
An ABox in LΦ is a finite set of individual assertions in LΦ. An interpretation

I is a model of an ABox A, denoted by I |= A, if it satisfies all the assertions
of A.

3 Bisimulations and Bisimulation-Based Comparisons

Bisimulation is a very useful notion for DLs. It can be used for analyzing ex-
pressiveness of DLs (as investigated in [19] and the current paper), minimizing
interpretations [8–10] and concept learning in DLs [21, 25, 14, 7, 24, 26]. The fol-
lowing definition comes from our joint works [8–10].



Definition 3.1. Let I and I ′ be interpretations. A binary relation
Z ⊆ ∆I ×∆I′ is called an LΦ-bisimulation between I and I ′ if the following
conditions hold for every a ∈ ΣI , A ∈ ΣC , r ∈ ΣR, x, y ∈ ∆I , x′, y′ ∈ ∆I′ :

Z(aI , aI
′
) (1)

Z(x, x′)⇒ [AI(x)⇔ AI
′
(x′)] (2)

[Z(x, x′) ∧ rI(x, y)]⇒ ∃y′ ∈ ∆I
′
[Z(y, y′) ∧ rI

′
(x′, y′)] (3)

[Z(x, x′) ∧ rI
′
(x′, y′)]⇒ ∃y ∈ ∆I [Z(y, y′) ∧ rI(x, y)], (4)

if I ∈ Φ then

[Z(x, x′) ∧ rI(y, x)]⇒ ∃y′ ∈ ∆I
′
[Z(y, y′) ∧ rI

′
(y′, x′)] (5)

[Z(x, x′) ∧ rI
′
(y′, x′)]⇒ ∃y ∈ ∆I [Z(y, y′) ∧ rI(y, x)], (6)

if O ∈ Φ then

Z(x, x′)⇒ [x = aI ⇔ x′ = aI
′
], (7)

if Q ∈ Φ then

if Z(x, x′) holds then, for every role name r, there exists a bijection
h : {y | rI(x, y)} → {y′ | rI′(x′, y′)} such that h ⊆ Z,

(8)

if {Q, I} ⊆ Φ then (additionally)

if Z(x, x′) holds then, for every role name r, there exists a bijection
h : {y | rI(y, x)} → {y′ | rI′(y′, x′)} such that h ⊆ Z,

(9)

if U ∈ Φ then

∀x ∈ ∆I ∃x′ ∈ ∆I
′
Z(x, x′) (10)

∀x′ ∈ ∆I
′
∃x ∈ ∆I Z(x, x′), (11)

if Self ∈ Φ then

Z(x, x′)⇒ [rI(x, x)⇔ rI
′
(x′, x′)]. (12)

By (2′), (7′) and (12′) we denote the conditions obtained respectively from (2),
(7) and (12) by replacing equivalence (⇔) by implication (⇒). If the conditions
(2), (7) and (12) are replaced by (2′), (7′) and (12′), respectively, then the relation
Z is called an LΦ-comparison between I and I ′ [10]. 2

As shown in [4], the PDL-like role constructors are “safe” for the conditions
(3)-(6). That is, we need to specify these conditions only for atomic roles, and
as a consequence, they also hold for complex roles.

Definition 3.2. A concept C in LΦ is invariant for LΦ-bisimulation if, for any
interpretation I, I ′ and any LΦ-bisimulation Z between I and I ′, if Z(x, x′)
holds then x ∈ CI iff x′ ∈ CI′ . A TBox T in LΦ is invariant for LΦ-bisimulation
if, for every interpretations I and I ′, if there exists an LΦ-bisimulation between
I and I ′ then I is a model of T iff I ′ is a model of T . The notion of whether
an ABox in LΦ is invariant for LΦ-bisimulation is defined similarly. 2



Definition 3.3. An interpretation I is said to be unreachable-objects-free (w.r.t.
the considered language) if every element of ∆I is reachable from some aI , where
a ∈ ΣI , via a path consisting of edges being instances of basic roles. 2

The following theorem comes from our joint work [8].

Theorem 3.4.

1. All concepts in LΦ are invariant for LΦ-bisimulation.
2. If U ∈ Φ then all TBoxes in LΦ are invariant for LΦ-bisimulation.
3. Let T be a TBox in LΦ and I, I ′ be unreachable-objects-free interpretations

(w.r.t. LΦ) such that there exists an LΦ-bisimulation between I and I ′. Then
I is a model of T iff I ′ is a model of T .

4. Let A be an ABox in LΦ. If O ∈ Φ or A contains only assertions of the form
C(a) then A is invariant for LΦ-bisimulation.

Definition 3.5. A concept C of LΦ is preserved by LΦ-comparisons if, for any
interpretations I, I ′ and any LΦ-comparison Z between I and I ′, if Z(x, x′)
holds and x ∈ CI then x′ ∈ CI′ . 2

The following theorem comes from our joint work [10].

Theorem 3.6. All concepts of Lpos
Φ are preserved by LΦ-comparisons.

4 Comparing the Expressiveness of Description Logics

Definition 4.1. Two concepts C and D are equivalent if, for every interpreta-
tion I, CI = DI . Two TBoxes T1 and T2 are equivalent if, for every interpre-
tation I, I is a model of T1 iff I is a model of T2. Two ABoxes A1 and A2 are
equivalent if, for every interpretation I, I is a model of A1 iff I is a model of A2.

Definition 4.2. We say that a logic L1 is at most as expressive as a logic L2

w.r.t. concepts (resp. positive concepts, TBoxes, ABoxes), denoted by L1 ≤C L2

(resp. L1 ≤PC L2, L1 ≤T L2, L1 ≤A L2), if every concept (resp. positive
concept, TBox, ABox) in L1 has an equivalent concept (resp. positive concept,
TBox, ABox) in L2.

We say that a logic L2 is more expressive than a logic L1 (or L1 is less
expressive than L2) w.r.t. concepts (resp. positive concepts, TBoxes, ABoxes),
denoted by L1 <C L2 (resp. L1 <PC L2, L1 <T L2, L1 <A L2), if L1 ≤C L2

(resp. L1 ≤PC L2, L1 ≤T L2, L1 ≤A L2) and L2 6≤C L1 (resp. L2 6≤PC L1,
L2 6≤T L1, L2 6≤A L1). 2

The following proposition clearly holds.

Proposition 4.3. If a logic L1 is at most as expressive as a logic L2 w.r.t.
concepts (resp. positive concepts, TBoxes, ABoxes) and a logic L2 is at most
as expressive as L3 w.r.t. concepts (resp. positive concepts, TBoxes, ABoxes)
then L1 is at most as expressive as L3 w.r.t. concepts (resp. positive concepts,
TBoxes, ABoxes).



Lemma 4.4. Let Φ1 and Φ2 be sets of DL-features such that Φ1 ⊆ Φ2. Denote
L1 = LΦ1

and L2 = LΦ2
. Let I, I ′ be interpretations and Z an L1-bisimulation

between I and I ′.

1. If L1 ≤C L2, x ∈ ∆I , x′ ∈ ∆I′ , Z(x, x′) holds, and there exists a concept C
of L2 such that x ∈ CI but x′ 6∈ CI′ , then L1 <C L2.

2. Suppose that U ∈ Φ1 or both I and I ′ are unreachable-objects-free. If
L1 ≤T L2 and there exists a TBox T in L2 such that I is a model of T
but I ′ is not, then L1 <T L2.

3. Suppose O ∈ Φ1. If L1 ≤A L2 and there exists an ABox A in L2 such that
I is a model of A but I ′ is not, then L1 <A L2.

Proof. Consider the first assertion. Suppose L1 ≤C L2, x ∈ ∆I , x′ ∈ ∆I
′
,

Z(x, x′) holds and there exists a concept C of L2 such that x ∈ CI but x′ 6∈ CI′ .
We prove that L2 6≤C L1. For the sake of contradiction, suppose L2 ≤C L1. It
follows that there exists a concept C ′ of L1 that is equivalent to C. Thus, x ∈ C ′I
but x′ 6∈ C ′I′ . Hence, C ′ is not invariant for Z, which contradicts Theorem 3.4(1).
Therefore, L1 <C L2.

Consider the second assertion. Suppose L1 ≤T L2 and there exists a TBox
T in L2 such that I is a model of T but I ′ is not. We prove that L2 6≤T L1. For
the sake of contradiction, suppose L2 ≤T L1. It follows that there exists a TBox
T ′ in L1 that is equivalent to T . Thus, I is a model of T ′ but I ′ is not, which
contradicts Theorem 3.4(2) or Theorem 3.4(3). Therefore, L1 <T L2.

Consider the third assertion. Suppose L1 ≤A L2 and there exists an ABox
A in L2 such that I is a model of A but I ′ is not. We prove that L2 6≤A L1.
For the sake of contradiction, suppose L2 ≤A L1. It follows that there exists an
ABox A′ in L1 that is equivalent to A. Thus, I is a model of A′ but I ′ is not,
which contradicts Theorem 3.4(4). Therefore, L1 <A L2. 2

Lemma 4.5. Let Φ1 and Φ2 be sets of DL-features such that Φ1 ⊆ Φ2. Denote
L1 = LΦ1 and L2 = LΦ2 . Let I, I ′ be interpretations and Z an L1-comparison
between I and I ′. If L1 ≤PC L2, x ∈ ∆I , x′ ∈ ∆I

′
, Z(x, x′) holds, and there

exists a positive concept C of L2 such that x ∈ CI but x′ 6∈ CI′ , then L1 <PC L2.

Proof. Suppose L1 ≤PC L2, x ∈ ∆I , x′ ∈ ∆I′ , Z(x, x′) holds and there exists
a positive concept C of L2 such that x ∈ CI but x′ 6∈ CI

′
. We prove that

L2 6≤PC L1. For the sake of contradiction, suppose L2 ≤PC L1. It follows that
there exists a positive concept C ′ of L1 that is equivalent to C. Thus, x ∈ C ′I
but x′ 6∈ C ′I′ . It follows that C ′ is not preserved by Z, which contradicts Theo-
rem 3.6. Hence, L1 <PC L2. 2

From now on, we assume that ΣC and ΣR are not empty and ΣI contains
at least two individual names. Let {a, b} ⊆ ΣI , A ∈ ΣC and r ∈ ΣR.

Lemma 4.6.

1. For any pair 〈L1,L2〉 among 〈LI ,LOQUSelf〉, 〈LQ,LIOUSelf〉, 〈LSelf,LIOQU 〉,
we have that: L1 6≤C L2, L1 6≤PC L2, L1 6≤T L2, L1 6≤A L2.
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Fig. 2. An illustration for Lemma 4.6.

2. LO 6≤C LIQUSelf, LO 6≤PC LIQUSelf, LO 6≤T LIQUSelf.

3. LU 6≤C LIOQSelf, LU 6≤PC LIOQSelf, LU 6≤A LIOQSelf.



Proof. Let us compare LI with LOQUSelf. Consider the interpretations I, I ′ and
the relation Z shown in the first part of Figure 2. The arrows denote the instances
of r in I and I ′. The instances of A in I and I ′ are explicitly indicated in the
figure. Let BI = BI

′
= ∅ for all B ∈ ΣC \{A}, sI = sI

′
= ∅ for all s ∈ ΣR \{r},

and cI = aI , cI
′

= aI
′

for all c ∈ ΣI \ {a, b}. The dotted lines in the figure
indicate the instances of a binary relation Z ⊆ ∆I ×∆I′ . It can be checked that
Z is an LOQUSelf-bisimulation between I and I ′. Consider the positive concept

C = ∀r∀r−1.A of LI . Clearly, aI ∈ CI but aI
′ 6∈ CI′ . By Theorem 3.4(1), C does

not have any equivalent concept in LOQUSelf. Hence, LI 6≤C LOQUSelf. As Z is
also an LOQUSelf-comparison between I and I ′, by Theorem 3.6, C does not have
any equivalent positive concept in LOQUSelf either. Hence, LI 6≤PC LOQUSelf.
Consider the TBox T = {A v C}. Since I |= T but I ′ 6|= T , by Theorem 3.4(3),
T does not have any equivalent TBox in LOQUSelf. Hence LI 6≤T LOQUSelf.
Consider the ABox A = {C(a)}. Since I |= A but I ′ 6|= A, by Theorem 3.4(4),
A does not have any equivalent ABox in LOQUSelf. Hence LI 6≤A LOQUSelf.

The proofs for the other pairs of logics can be done similarly, using I, I ′, C
specified in the next parts of Figure 2. For the parts without the presence of b,
let bI = aI and bI

′
= aI

′
. 2

Theorem 4.7. Let Φ and Φ′ be subsets of {I,O,Q,U, Self}.

1. If Φ ⊂ Φ′ then LΦ <C LΦ′ and LΦ <PC LΦ′ .
2. If Φ 6⊆ Φ′ then LΦ 6≤C LΦ′ and LΦ 6≤PC LΦ′ .
3. If Φ ⊂ Φ′ and Φ′ \ Φ 6= {U} then LΦ <T LΦ′ .
4. If Φ 6⊆ Φ′ and Φ \ Φ′ 6= {U} then LΦ 6≤T LΦ′ .
5. If Φ ⊂ Φ′ and Φ′ \ Φ 6= {O} then LΦ <A LΦ′ .
6. If Φ 6⊆ Φ′ and Φ \ Φ′ 6= {O} then LΦ 6≤A LΦ′ .

Proof. Consider the first assertion and suppose Φ ⊂ Φ′. Since every concept
(resp. positive concept) of LΦ is also a concept (resp. positive concept) of LΦ′ ,
we have that LΦ ≤C LΦ′ (resp. LΦ ≤PC LΦ′). Since Φ′ \ Φ 6= ∅, at least one
feature among I, O, Q, U , Self belongs to Φ′ \ Φ. Consider the case I ∈ Φ′ \ Φ.
The cases of other features are similar and omitted. For the sake of contradiction,
suppose LΦ′ ≤C LΦ (resp. LΦ′ ≤PC LΦ). Since LI ≤C LΦ′ (resp. LI ≤PC LΦ′)
and LΦ ≤C LOQUSelf (resp. LΦ ≤PC LOQUSelf), it follows that LI ≤C LOQUSelf

(resp. LI ≤PC LOQUSelf), which contradicts Lemma 4.6. Therefore, LΦ <C LΦ′

(resp. LΦ <PC LΦ′).
Consider the second assertion and suppose Φ 6⊆ Φ′. Since Φ \ Φ′ 6= ∅, at

least one feature among I, O, Q, U , Self belongs to Φ \ Φ′. Consider the case
I ∈ Φ \ Φ′. The cases of other features are similar and omitted. For the sake
of contradiction, suppose LΦ ≤C LΦ′ (resp. LΦ ≤PC LΦ′). Since LI ≤C LΦ
(resp. LI ≤PC LΦ) and LΦ′ ≤C LOQUSelf (resp. LΦ′ ≤PC LOQUSelf), it follows
that LI ≤C LOQUSelf (resp. LI ≤PC LOQUSelf), which contradicts Lemma 4.6.
Therefore, LΦ 6≤C LΦ′ (resp. LΦ 6≤PC LΦ′).

Consider the third assertion and suppose Φ ⊂ Φ′ and Φ′ \ Φ 6= {U}. At
least one feature among I, O, Q, Self belongs to Φ′ \ Φ. Consider the case
I ∈ Φ′ \ Φ. The cases of other features are similar and omitted. Since Φ ⊂ Φ′,



LΦ ≤T LΦ′ . For the sake of contradiction, suppose LΦ′ ≤T LΦ. Since LI ≤T LΦ′

and LΦ ≤T LOQUSelf, it follows that LI ≤T LOQUSelf, which contradicts
Lemma 4.6. Therefore, LΦ <T LΦ′ .

Consider the fourth assertion and suppose Φ 6⊆ Φ′ and Φ\Φ′ 6= {U}. At least
one feature among I, O, Q, Self belongs to Φ \Φ′. Consider the case I ∈ Φ \Φ′.
The cases of other features are similar and omitted. For the sake of contradiction,
suppose LΦ ≤T LΦ′ . Since LI ≤T LΦ and LΦ′ ≤T LOQUSelf, it follows that
LI ≤T LOQUSelf, which contradicts Lemma 4.6. Therefore, LΦ 6≤T LΦ′ .

Consider the fifth assertion and suppose Φ ⊂ Φ′ and Φ′ \ Φ 6= {O}. At
least one feature among I, Q, U , Self belongs to Φ′ \ Φ. Consider the case
I ∈ Φ′ \ Φ. The cases of other features are similar and omitted. Since Φ ⊂ Φ′,
LΦ ≤A LΦ′ . For the sake of contradiction, suppose LΦ′ ≤A LΦ. Since LI ≤A LΦ′

and LΦ ≤A LOQUSelf, it follows that LI ≤A LOQUSelf, which contradicts
Lemma 4.6. Therefore, LΦ <A LΦ′ .

Consider the last assertion and suppose Φ 6⊆ Φ′ and Φ\Φ′ 6= {O}. At least one
feature among I, Q, U , Self belongs to Φ\Φ′. Consider the case I ∈ Φ\Φ′. The
cases of other features are similar and omitted. For the sake of contradiction,
suppose LΦ ≤A LΦ′ . Since LI ≤A LΦ and LΦ′ ≤A LOQUSelf, it follows that
LI ≤A LOQUSelf, which contradicts Lemma 4.6. Therefore, LΦ 6≤A LΦ′ . 2

Definition 4.8. We define ALC to be the sublogic of ALCreg such that the
role constructors ε, R ◦ S, R t S, R∗ and C? are disallowed. We say that L
is a sublogic of ALCreg that extends ALC, denoted ALC ≤ L ≤ ALCreg, if it
extends ALC with some of those role constructors. For Φ ⊆ {I,O,Q,U, Self}
and ALC ≤ L ≤ ALCreg, let LΦ and Lpos

Φ be defined as usual in the spirit of
Definitions 2.1 and 2.2. 2

Corollary 4.9. Let L be any sublogic of ALCreg that extends ALC and let Φ
and Φ′ be subsets of {I,O,Q,U, Self}.

1. If Φ ⊂ Φ′ then LΦ <C LΦ′ and LΦ <PC LΦ′ .
2. If Φ 6⊆ Φ′ then LΦ 6≤C LΦ′ and LΦ 6≤PC LΦ′ .
3. If Φ ⊂ Φ′ and Φ′ \ Φ 6= {U} then LΦ <T LΦ′ .
4. If Φ 6⊆ Φ′ and Φ \ Φ′ 6= {U} then LΦ 6≤T LΦ′ .
5. If Φ ⊂ Φ′ and Φ′ \ Φ 6= {O} then LΦ <A LΦ′ .
6. If Φ 6⊆ Φ′ and Φ \ Φ′ 6= {O} then LΦ 6≤A LΦ′ .

Proof. Just observe that the concepts C listed in Figure 2 do not use any of the
role constructors ε, R ◦S, RtS, R∗, C?. All the lemmas and theorems given in
this paper hold for the case when LΦ is a sublogic of ALCreg that extends ALC.
Their proofs do not require any change. 2

Figure 3 illustrates the relationship between the expressiveness of all the DLs
that extend L, where ALC ≤ L ≤ ALCreg, with any non-empty combination of
the features I, O, Q, U , Self. Note that the problems whether LΦ <T LΦ′ when
Φ′ \ Φ = {U} and whether LΦ <A LΦ′ when Φ′ \ Φ = {O} remain open.
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Fig. 3. Comparing the expressiveness of description logics, where ALC ≤ L ≤ ALCreg.
If there is a path from a logic L2 down to a logic L1 that contains either a normal
edge or at least two edges then L2 is more expressive than L1 w.r.t. concepts, positive
concepts, TBoxes and ABoxes. If the path is a dotted edge then L2 is more expressive
than L1 w.r.t. concepts, positive concepts and TBoxes. If the path is a dashed edge
then L2 is more expressive than L1 w.r.t. concepts, positive concepts and ABoxes.

5 Conclusions

Analyzing the expressiveness of logics is a theoretical topic that has attracted
a lot of logicians. In this paper we have studied the expressiveness of large classes
of DLs. Namely, we have provided results about separating the expressiveness of
the DLs that extend L, where ALC ≤ L ≤ ALCreg, with any combination of the
features I, O, Q, U , Self. Our separation results are w.r.t. concepts, positive
concepts, TBoxes and ABoxes. Our work differs significantly from all of [2, 5, 6,
19, 20], as the class of considered DLs is much larger than the ones considered
in those works and our results about separating the expressiveness of DLs are
obtained not only w.r.t. concepts and TBoxes but also w.r.t. positive concepts
and ABoxes.

Acknowledgements

This work was supported by the Polish National Science Centre (NCN) under
Grant No. 2011/01/B/ST6/02759. I am grateful to my supervisor, dr hab. Linh
Anh Nguyen, for his guidance. I would also like to thank the anonymous reviewers
for comments and suggestions.



References

1. Abiteboul, S., Vianu, V.: Expressive power of query languages. In: Theoretical
Studies in Computer Science. pp. 207–251 (1992)

2. Baader, F.: A formal definition for the expressive power of terminological knowl-
edge representation languages. J. Log. Comput. 6(1), 33–54 (1996)

3. van Benthem, J.: Modal Logic and Classical Logic. Bibliopolis, Naples (1983)

4. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. No. 53 in Cambridge Tracts
in Theoretical Computer Science, Cambridge University Press (2001)

5. Borgida, A.: On the relative expressiveness of description logics and predicate
logics. Artif. Intell. 82(1-2), 353–367 (1996)

6. Cadoli, M., Palopoli, L., Lenzerini, M.: Datalog and description logics: Expressive
power. In: Proceedings of APPIA-GULP-PRODE’1997. pp. 333–344 (1997)

7. Divroodi, A., Ha, Q.T., Nguyen, L., Nguyen, H.: On C-learnability in description
logics. In: Proceedings of ICCCI’2012 (1). LNCS, vol. 7653, pp. 230–238. Springer
(2012)

8. Divroodi, A., Nguyen, L.: On bisimulations for description logics. http://arxiv.
org/abs/1104.1964 (2011)

9. Divroodi, A., Nguyen, L.: On bisimulations for description logics. In: Proceedings
of CS&P’2011. pp. 99–110 (2011)

10. Divroodi, A., Nguyen, L.: Bisimulation-based comparisons for interpretations in
description logics. In: Proceedings of DL’2013. CEUR Workshop Proceedings, vol.
1014, pp. 652–669. CEUR-WS.org (2013)

11. Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets.
In: SIAM-AMS Proceedings. vol. 7 (1974)

12. Fagin, R.: Monadic generalized spectra. Zeitschr. f. math. Logik und Grundlagen
d. Math. 21, 89–96 (1975)

13. Gabbay, D.: Expressive functional completeness in tense logic. In: Monnich, U.
(ed.) Aspects of Philosophical Logic, pp. 91–117. Reidel, Dordrecht (1981)

14. Ha, Q.T., Hoang, T.L.G., Nguyen, L., Nguyen, H., Sza las, A., Tran, T.L.: A
bisimulation-based method of concept learning for knowledge bases in description
logics. In: Proceedings of SoICT’2012. pp. 241–249. ACM (2012)

15. Immerman, N.: Upper and lower bounds for first order expressibility. J. Comput.
Syst. Sci. 25(1), 76–98 (1982)

16. Immerman, N.: Relational queries computable in polynomial time. Information
and Control 68(1-3), 86–104 (1986)

17. Immerman, N., Kozen, D.: Definability with bounded number of bound variables.
In: Proceedings of LICS’1987. pp. 236–244. IEEE Computer Society (1987)

18. Janin, D., Walukiewicz, I.: On the expressive completeness of the propositional
mu-calculus with respect to monadic second order logic. In: Proceedings of CON-
CUR’1996. LNCS, vol. 1119, pp. 263–277. Springer (1996)

19. Kurtonina, N., de Rijke, M.: Expressiveness of concept expressions in first-order
description logics. Artif. Intell. 107(2), 303–333 (1999)

20. Lutz, C., Piro, R., Wolter, F.: Description logic TBoxes: Model-theoretic charac-
terizations and rewritability. In: Walsh, T. (ed.) Proceedings of IJCAI’2011. pp.
983–988 (2011)

21. Nguyen, L., Sza las, A.: Logic-based roughification. In: Skowron, A., Suraj, Z. (eds.)
Rough Sets and Intelligent Systems (To the Memory of Professor Zdzis law Pawlak),
Vol. 1, pp. 529–556. Springer (2012)



22. Stewart, I.: Comparing the expressibility of languages formed using NP-complete
operators. J. Log. Comput. 1(3), 305–330 (1991)

23. Toman, D., Niwinski, D.: First-order queries over temporal databases inexpressible
in temporal logic. In: Proceedings of EDBT’1996. LNCS, vol. 1057, pp. 307–324.
Springer (1996)

24. Tran, T.L., Ha, Q.T., Hoang, T.L.G., Nguyen, L., Nguyen, H.: Bisimulation-based
concept learning in description logics. In: Proceedings of CS&P’2013. CEUR Work-
shop Proceedings, vol. 1032, pp. 421–433. CEUR-WS.org (2013)

25. Tran, T.L., Ha, Q.T., Hoang, T.L.G., Nguyen, L., Nguyen, H., Sza las, A.: Con-
cept learning for description logic-based information systems. In: Proceedings of
KSE’2012. pp. 65–73. IEEE Computer Society (2012)

26. Tran, T.L., Nguyen, L., Hoang, T.L.G.: A domain partitioning method for
bisimulation-based concept learning in description logics. In: Proceedings of ICC-
SAMA’2014. Advances in Intelligent Systems and Computing, vol. 282, pp. 297–
312. Springer (2014)


