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Abstract

We present algorithms based on truth-prefixed tableaux to solve both Concept Ab-
duction and Contraction il LN DL. We also analyze the computational complexity of
the problems, showing that the upper bound of our approach meets the complexity lower
bound. The work is motivated by the need to offer a uniform approach to reasoning
services useful in semantic-based matchmaking scenarios.

1 Motivation

In recent papers [16, 15], Description Logics (DLs) have been proposed to model knowledge
domains in Semantic Web scenarios. A challenging issue in such scenarios is the matchmak-
ing problem which is finding an offered resource described by a formalism with an unam-
biguous semantics [21, 8, 17]. Using DLs to describe resources, it is possible to infer which
of them satisfies the request either completety, (subsumes the request) or potentiailg.(

the conjunction of the requested resource and the offered one is satisfiable) or piaetjally(

the conjunction of the requested resource and the offered one is not satisfiable).

In[9, 7] Concept Abduction and Concept Contraction have been proposed as non-standard
inference services in DL, to capture in a logical way the reasons why a resgust@uld be
preferred to another resourSeg for a given requesb, and vice versa. Although efficient rea-
soning methods based on tableaux have been successfully implemented for standard inference
services in DL —satisfiability, subsumption, instance check, etc. [1, Ch.8-9] — non-standard
reasoning services have been usually solved by different methods, such as automata[1, Ch.6],
making a complete system built on heterogeneous technologies. Such an approach leads to
incomparable optimization techniques and partial duplication of servicesgs—a module
computingleast common subsumeomputes also subsumption. This motivates our research
in tableaux-based methods for Concept Abduction and Concept Contraction.

Related work on abduction using tableaux is in [6], where tableaux are used for the multi-
modal logicK, corresponding to the DIALC. However, in that work the purpose was not
to find efficient methods, and contraction was not considered. Here we devise more efficient
methods, for &4 LN logic, which would correspond to a syntactically-restricted modal logic
with graded modalities.



2 Abduction and Contraction in ALN

We start with a few definitions of the problem and then move on to discuss its computational
complexity. We assume the reader is familiar with DLs, and refer to [1] for a thourough
introduction to ALN, TBoxes, satisfiability, subsumption (denotedzgsand subsumption
w.r.t. a TBox7 (denoed a& 7).

Here we deal only with a simple form of axioms in the TBox, where in the left hand
side of inclusions only concept names can appear and with each concept name as at most one
left-hand side of an axiom. Moreover, we admit oalyyclic TBoxes, in the following sense.

Definition 1 (Dependency Graph of a TBox)Let 7 be a TBox. The dependency graph of

7T is a graphGr = (N, V) whose nodes are concept names, and whose arcs are defined as
follows: if A C C' € 7T, and concept namB appears irC, then there is an arc from node

to nodeB.

A TBox 7 is said to beacyclicif G contains no cycles. Even for this simple form of acyclic
TBox, it is known that subsumption is coNP-hard [18] and also satisfiability is coNP-hard
[5, 4]. However, all hardness reductions rely on “deep” TBoxes — TBoxes in which the
length of the longest path @7 is allowed to grow as large &3(|7|). ForALN TBoxes that,

in Nebel's words [18], are “bushy but not deep”, satisfiability and subsumption can be solved
in polynomial time [3].

Definition 2 (Bushy TBox) A sequence of acyclic TBox€sg,. .., 7,,... are bushyif the
size of the longest path i6i7; is bounded by (log |7;|).

In the rest of the paper, we limit our attention to bushy TBoxed V.

2.1 Concept Abduction inALN

We follow the notation in [9, 7], excluding the choice of the DL which in our case is always
ALN.

Definition 3 Let C, D, be two concepts iMdLN, and7 be a set of axioms indLN,
where bothC' and D are satisfiable i7. A Concept Abduction Probleg¢CAP), denoted as
(C,D,T),isfinding a conceptl € ALN suchthaZ [« CMH = 1,and7 = CMNH C D.

We useP as a symbol for a CAP, and we denote Wi LC' AP(P) the set of all solutions
to a CAPP. ForSOLC AP(P) the three following minimality criteria have been proposed.

Definition 4 LetP =(C, D, T) be a CAP. The s« OLC AP_(P) is the subset §OLC AP(P)
whose concepts are maximal under. The setSOLC AP<(P) is the subset oafOLC AP(P)
whose concepts have minimum length. Theset.C' AP (P) is the subset 6§ OLC AP(P)
whose concepts are minimal conjunctiois, if C' € SOLC APr(P) then no sub-conjunction
of C'isin SOLC AP(P). We call such solutionsreducible abductions

The three forms of minimality are related by: bW LC AP-(P) andSOLC AP<(P) are
included inSOLC APr(P) [9, Prop.2].



2.2 Concept Contraction in ALN

As defined by @rdenfors’ [12], who formalized the revision of a knowledge biseith a
new piece of knowledgd, is made up ofi) a contractionoperation, which results in a new
knowledge basf&’, such thatC, [~ —A, (ii) the conjunction ofd to IC,.

Definition 5 Let C, D, be two concepts i£LN, and7 be a set of axioms il LN, where
both C and D are satisfiable ir7. A Concept Contraction Problen(CCP), denoted as
(C,D,T), is finding a pair of concept&7, K) (both in ACLN) suchthatl =C =GN K,
and K M D is satisfiable ir/. We call K a contractionof C' according taD and7 .

Also for Concept Contraction, one is interested in a minimal contraction, according to some
form of minimality.

Definition 6 Let Q =(C, D, 7T) be a CCP. The s¢OLCC P-(Q) is the subset of solutions
(G,K) in SOLCCP(Q) such thatG is maximal undefC7. The setSOLCCP<(Q) is
the subset o6OLCCP(Q) such thatG has minimum length. The s&@«OLCCP+(Q) is
the subset oSOLCCP(Q) whose concepts are minimal conjunctions,, if (G, K) €
SOLCC Pr(Q) then no sub-conjunctio@’ of G is such thatG’, K') € SOLCCP(Q) for
any K’. We call such solutionsreducible contractions

We now analyze the complexity of computing a minimum-length concept abductidg.id.
Proposition 3 in [9] yields a trivial polynomial-time lower bound for Concept Abduction in
ALN with a bushy TBox. Using a simple reduction, we show a tighter lower bound, using
an elementary form of Tbox: the problem is NP-hard. It is sufficient to have a constant-depth
concept hierarchy —ke,, a set of inclusions between concept names where the longest path
in G7 has length 1 — to model the set-covering model for abduction [19].

Definition 7 (Set Covering) LetU = {ay,...,a,,} be a set, lety, ..., s, be a collection
of subsets ot/ such thaty;s; = U and letk < n be an integer. Th8et coveringroblem is
deciding whether there exists a subcollection of subsets. . , s;, whose union cover§'.

Theorem 1 Minimal-length Concept Abduction i LN is NP-hard, even wheh is a bushy
concept hierarchy.

Given an instance of Set Covering, we construct a CAR(C, D,7) as follows. Let

Aq,..., A, By,..., B, be2n concept names, where eadhandB; is one-one withu;, and
let Sq, ..., Sm, be also concept names, one-one with subsets dfet the ThoxZ be defined
asfollows:{S; C A;,S; C Bjla; € s;}. Now we prove thag; , ..., s;, isaminimal set cov-

ering iff S;, M- - -MS;, € SOLCAP<(P),whereC = T andD = A1 - -MA,MNB .. .MB,,.
First of all, we prove a property of this construction.

Property 1 Every minimal-length abductiof/ of P contains neither; nor B;, for every
1=1,...,n.

Proof. Let H € SOLCAP(P) and supposels — say — is a conjunct off. If there is a
conceptS in H, such thatS T A3 € 7, then H without A3 is a shorter abduction. Oth-
erwise, sinc€ M H = H C D, alsoBs must be a conjunct off. In this case, lefS be a



concept such thaf C A3, S C Bs € 7. Then the concept without A3, B3 and withS is a
solution one conjunct shorter. The same line of reasoning could be repeated if a cBrisept
a conjunct ofH. Therefore, every minimal-length abduction contains neithenor B;, for
everyi =1,...,n. O

(If) Supposes;, , .. ., s;, is aset covering. Thed] = S;, M---MS;, issuchthaCrH is
satisfiable (in fact, every conjunction is satisfiable in this CAP),@nd# C D. Moreover, if
H is not a minimal-length abduction, then I8t € SOLC AP<(P). For the above property,
H' does not contaim’s and B’s. Then it is straightforward to define a shorter set covering
from H',contradicting the fact that,, ..., s; was a minimal set covering. (Only-if) On the
other hand, supposE € SOLCAP<(P). ThenH does not contait!’s and B’s, so it can
be written asS;, M- --11.5;, , which identifies a collection of subsefg; = s;,, ..., s;,. Since
H T D, alsoSy coversU; moreover, if Sy was not minimal, it would define a shorter
solution forP, contradicting the hypothesis. O

We observe that a (more realistic) CAP allows one to put weights and probabilities at-
tached to concepts in order to measure the importance that a user gives to a specified charac-
teristic. Obviously, also this weighted version of CAP is NP-hard.

3 Calculus and Algorithms

In the following we assume the reader be familiar with tableaug,([14]). In this section

two algorithms working on tableaux fod LA concepts are presented. They both use the
same set of rules: the first oneofitrac) computes a solutiofz, K') for a CCP, the second
one @bducé solves a CAP computingy.

Tableaux for DLs use a labeling functighto map an individuak to a set of concepts(z)

such that for every conceft, C' € L(z) stands for the formul&'(x), and similarly for roles

R € L(z,y). Here we distinguish between formulas labeled “true” and formulas labeled
“false” in the tableaux[20], hence we use two labeling functibfisandF(), both going from
individuals to sets of concepts, and from pairs of individuals to sets of roles. A (usual) tableau
branch is now represented by two functidr($ and-(). Moreover, we write in the name of an
individual z its history,i.e., the string identifyinge is made up of integers and role symbols,
such ast = 1R3Q7, which means that individual is used for concepts in a quantification
involving role R, and inside, a quantification involving rot@. Integers in between roles
make sure that such strings are unigue, there can be two individuals with the same role
sequence, but not with the same integer sequence[11].

Given an individualz in a tableau, an interpretatiqal”, -%) satisfies two tableau labels
T(z) andF(z) if, for every conceptC € T(z) and every concepb € F(x), itis 27 € C*
andz? ¢ D? respectively. Similarly(AZ, -7) satisfies two tableau lab€lgz, y) andF(z, y)
if for every role R € T(x,y) and for every roleQ € F(z,y) it holds (z%,y*) € R? and
(z%,y%) ¢ QF. We note that fordACN DL, every roleQ appearing in a labé#(x, ) is of the
form =R, henceQ € F(z,y) means, in fact(z?,4?) € R’ too. An interpretation satisfies
a tableau branch if it satisfi@§x), F(x), T(z,y) andF(z, y) for every individualx, and for
every pair of individuals:, y in the branch.

We assume that concepts are always simplified in Negation Normal Form (NNF, see [1,



ch.2]), so that negations come only in front of concept names. Observe th@tdard LN,

C may not belong te4£N since it is not closed under negation. In what follows, given a
conceptC, we denote withC' the NNF of ~C. Rules come in pairs, first the (usual) version
with a construct in th& -constraints, then the dual construct in theonstraints. However,
groups 2 and 3 have onBrconstraints because the correspondent formulae do not appear in
our tableaux fotALN.

1. conjunctions:

TN) if CND e T(x), then add botk andD to T (z).
Fu) if CU D € F(z), then add botl€ andD to F(x).

2. disjunctions (branching rules):
Fr) if C N D e F(z), then add eithe€ or D to F(x).
3. existential quantifications:

FY) if VR.C € F(xz), then pick up a new individua} = = o R o m (wherem is an
integer such thag is unique), add-R to F(z, y), and letF(y) := {C'}.

4. universal quantifications:
TV) if VR.C € T(z) and there exists an individualsuch that eitheR € T(z,y), or
—R € F(z,y), then add” to T(y).
F3) if 3R.C € F(z), and there exists an individuglsuch that eitheR € T(x,y), or
-R € F(z,y), then add” to F(y).
5. at-least number restrictions:

T>) if >nR € T(x), withn > 0, and for every individual neitherR € T(x,y)
nor—R € F(z,y), then pick up a new individual] = x o R o m (wherem is an
integer such thaj is unique), add? to T(x, y), and letT (y) := 0.

FL) if <nR € F(x) and for every individualy neitherR € T(x,y) nor =R €
F(z,y), then pick up a new individual = x o R o m (wherem is an integer such
thaty is unique), adé-R to F(z, y), and letF(y) := 0.

6. at-most number restrictions:

TS) if <1R € T(«x), and there ar€ individualsy;, y» such that fori € 1,2 it is
eltherR € T(z,y;) or =R € F(z,y;), then letT(y1) := T(y1) U T(y2), let

F(y1) := F(y1) U F(y2), and eliminatey, in the branch.

F>) if >2R € F(z) and there are individualsy;, y2 such that fori € 1,2 it is
eitherR € T(z,y;) or =R € F(z,y;), then letT(y;) := T(y1) U T(yg), let
F(y1) := F(y1) U F(y2), and eliminatey, in the branch.

7. axioms in7:



FO) if x is an individual such that eithet € T(x) or -A € F(z) in the branch, and
ALC CeT,thenaddd nC toF(z).

F=1) if z is an individual such that eithet € T(x) or —A € F(z) in the branch, and
A=CeT,thenadddnC.

F=») if z is an individual such that eitherA € T(z) or A € F(z) in the branch, and
A=CeT7,thenaddC Nn-AtoF(z).

When more than one rule can be applied, we always lpuwestprecedence to RuleB>)
and F<), while other rules can be applied in any order. In group 7 (axioms)ira lazy
unfoldingof the TBox is taken into account [2, 13]. Following this strategy, axioms @re
dealt in a deterministic manner avoiding the exponential increase in the search space due to
the non-deterministic choices in a pure-tableau approach.

We now split the definition of clash (an explicit inconsistency) between clashes involving
the same truth prefix (homogeneous clashes) and those involving both prefixes (heterogeneous
clashes).

Definition 8 (Clash) A branch contains diomogeneous clashit contains one of the follow-
ing:

1. eitherL € T(z) or T € F(x), for some individuak;

2. eitherA,—A € T(x) or A,—A € F(z) for some individualz and some concept name
4

3. either=n R, <mR € T(z)withm <n,or<nR,>mR € F(z)withm—1 < n+1,
for some individualr, and some role nama.

A branch contains &eterogeneous claghit contains one of the following:
1. T(z) NF(x) contains eitherd or —A for some individuak: and some concept namg

2. either>nR € T(x) and>mR € F(z) withm —1 < n, or <nR € T(x) and
<m R € F(x) withn < m + 1, for some individuak, and some role?

A branch iscompleteaf no new rule application is possible to labels in the branch. A complete
branch isopenif it contains no clash, otherwise it dosed A complete tableau is open if it
contains at least one open branch, otherwise itis closed. We call a branch with a homogeneous
clashas good as completeSoundness and completeness of the calculus follow from the
version without prefixes [10].

Theorem 2 Let C, D be two concepts itdLAN, and7 an acyclic TBox inALN. Then
C C Din T iff the tableau starting fromd' € T(z), D € F(x) is closed.

Moreover, with prefixed tableaux we can distinguish between “real’subsumption, and sub-
sumption stemming from inner contradiction in concepts.

Theorem 3 Let C, D be two concepts itdALAN/, and7 an acyclic TBox inALN. If every
branch of the tableau starting frofhe T(1), D € F(1) contains a homogeneous clash, then
eitherC=1lorD=Tin7.



We now present the two algorithms for Concept Contraction and Concept Abduction, that
need some preliminary definitions.

Both algorithms use a functiomles(x), that given an individuat (as a sequence of inte-
gers and roles) returns the sequence of rolegwithout integers). For examplegles(1R3Q7) =
RQ. We letroles(k) = ¢, i.e, whenz is just one integeryoles(z) returns the empty se-
quence. For a given concept and a sequence of roleswe definevo.C asvR,.(- - -(VR,,.C) - - -)
if o = Ry --- Ry, andVo.C = C'in the special case in which= ¢.

Moreover, we assume that atomic concepts (names and number restrictions) can be given
a unique index, as ! MVR.((<1Q)% 1 A3). Hence the substitution of arccurenceof
a concept can be defined: we B{C' — T| denote the substitution of an occurrence of an
indexed atomic concepf’ with the concepfT, inside a concepD. For example, ifD is
the concept above, theR[A! — T] = T NVR.((L1Q)% 1 A3), while D[A3 — T] =
A'MVR.((£1Q)?> N T). Multiple substitutions are denoted by a set of concepig, if
G = {A,B} thenD[C — T]ceg means(D[A — T|)[B — T]. Observe that since we
substitute only atomic concepts, the order of substitutions is ininfluent. For both algorithms,
we assume that concepts are indexed, so that substitutions are unambiguous.

Algorithm contract
input: ALN concept<”, D, acyclic TBox7
output: conceptsK (keep),G (giveup)
begin
compute a complete tableaifor 7, D € T(x),C € F(x)
if 7 is openthen
/* no contraction needed */
return G :=T,K :=D
else ifevery branch in- contains a homogeneous clabien
[* either C' or D is unsatisfiable iry” */
return fail
else
choose(*) a brancl¥ containing only heterogeneous clashes;
let G := {(C;, ;)|C; € T(x;),C; € F(x;) is a clash in3}
let G := Mg, 2,)egVroles(z;).C;
let K .= D[Cz — T](Ci,meg
return G, K
end

Observe that the algorithigontractcontains a choice in step (*). This choice is heeded
to select the contraction according to some minimality criterion. Only branches without ho-
mogeneous clashes need to be completely expanded, even after the first clash has been found.
Observe also that substituting an occurrence of a conCepith T corresponds, iALN,
to eliminating the occurrence. We preferred this notation instead of eliminating occurrences,
since it appears more concise.

Theorem 4 The conceptss, K returned by the Algorithnzontract are a Contraction ob
w.r.t. C and7.



Proof. First, note that M C' is satisfiable by definition of; in fact, the tableau foK M C

is the same as the tableau fOrr1 C, but it has now at least one open brarithn which all
clashes have been removed. SeconBly= G M K by construction. O

Note that Algorithmcontract proves that Concept Contraction N with bushy TBoxes

is solvable in polynomial time.

We now present the algorithm for Concept Abduction, which also uses the tableaux rules
previously defined.

Algorithm abduce
input: ALN concept<”, D, acyclic TBoxT
output: concept H (hypotheses)
begin
compute a complete tableadfor 7, C € T(x), D € F(x)
if 7 is closedthen
/* no abduction needed */
return H :=T
else
choose(*) a set of pair& := {(C;, z;) } and
let H := Myc, 2,yenVroles(z;).C;
such that (1) every open branchrrcontains at least
one constrain€; € F(x;) from H
(2) C'1 H is satisfiable ir”
return H
end

Theorem 5 The conceptH returned by the Algorithmubduce is a solution of the CAP
(C,D,T).

Proof. Let T be the tableau built bgbduce The tableau starting fro@ M H € T(1),D €

F(1) is 7, plus the constraints signddfrom H. Hence, itis closed. Henc&, = CMH C D.
Regarding the conditio&’ M H satisfiable in7Z, it is enforced by Condition (2) in the choice

of H. O
Condition (2) is necessary ibduce, since heterogeneous clashes could be formed also by
contradicting an axiom ir¥. In that case, although it still holdS M 4 T D in 7, the
subsumption trivially holds sinc€ M H = 1. We conclude the section by showing that our
Algorithm abduce puts an upper bound to Concept Abduction that meets the lower bound
proved in the previous section.

Theorem 6 Let P = (C, D, 7) a Concept Abduction Problem, whete D are concepts
in ACN, T is a bushy TBox inALA and k is an integer. Deciding whether there exists a
solution of lengthk in SOLC AP<(P) is NP-complete.

Proof. Hardness was shown in Thm. 1. Membership in NP is proved by the correctness of
Algorithm abduce, since it is sufficient to run the algorithm, and guessing in the nondeter-
ministic step (*) a set that defines a concept of lengthk. O



4 Conclusion

We have shown how Concept Abduction and Concept Contraction fadDI\ can be per-
formed using prefixed-tableaux. For such DL, we proved optimality of the methods by show-
ing that they meet lower bounds obtained by a complexity analysis. Although devised for a
simple DL, we believe that the proposed approach could be easily extended to more expressive
DLs.
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