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Abstract

We present algorithms based on truth-prefixed tableaux to solve both Concept Ab-
duction and Contraction inALN DL. We also analyze the computational complexity of
the problems, showing that the upper bound of our approach meets the complexity lower
bound. The work is motivated by the need to offer a uniform approach to reasoning
services useful in semantic-based matchmaking scenarios.

1 Motivation

In recent papers [16, 15], Description Logics (DLs) have been proposed to model knowledge
domains in Semantic Web scenarios. A challenging issue in such scenarios is the matchmak-
ing problem which is finding an offered resource described by a formalism with an unam-
biguous semantics [21, 8, 17]. Using DLs to describe resources, it is possible to infer which
of them satisfies the request either completely (i.e., subsumes the request) or potentially (i.e.,
the conjunction of the requested resource and the offered one is satisfiable) or partially(i.e.,
the conjunction of the requested resource and the offered one is not satisfiable).

In [9, 7] Concept Abduction and Concept Contraction have been proposed as non-standard
inference services in DL, to capture in a logical way the reasons why a resourceS1 should be
preferred to another resourceS2 for a given requestD, and vice versa. Although efficient rea-
soning methods based on tableaux have been successfully implemented for standard inference
services in DL —satisfiability, subsumption, instance check, etc. [1, Ch.8-9] — non-standard
reasoning services have been usually solved by different methods, such as automata[1, Ch.6],
making a complete system built on heterogeneous technologies. Such an approach leads to
incomparable optimization techniques and partial duplication of services —e.g., a module
computingleast common subsumercomputes also subsumption. This motivates our research
in tableaux-based methods for Concept Abduction and Concept Contraction.

Related work on abduction using tableaux is in [6], where tableaux are used for the multi-
modal logicK , corresponding to the DLALC. However, in that work the purpose was not
to find efficient methods, and contraction was not considered. Here we devise more efficient
methods, for aALN logic, which would correspond to a syntactically-restricted modal logic
with graded modalities.



2 Abduction and Contraction in ALN

We start with a few definitions of the problem and then move on to discuss its computational
complexity. We assume the reader is familiar with DLs, and refer to [1] for a thourough
introduction toALN , TBoxes, satisfiability, subsumption (denoted asv) and subsumption
w.r.t. a TBoxT (denoed asvT ).

Here we deal only with a simple form of axioms in the TBox, where in the left hand
side of inclusions only concept names can appear and with each concept name as at most one
left-hand side of an axiom. Moreover, we admit onlyacyclicTBoxes, in the following sense.

Definition 1 (Dependency Graph of a TBox)Let T be a TBox. The dependency graph of
T is a graphGT = (N,V ) whose nodes are concept names, and whose arcs are defined as
follows: if A v C ∈ T , and concept nameB appears inC, then there is an arc from nodeA
to nodeB.

A TBox T is said to beacyclic if GT contains no cycles. Even for this simple form of acyclic
TBox, it is known that subsumption is coNP-hard [18] and also satisfiability is coNP-hard
[5, 4]. However, all hardness reductions rely on “deep” TBoxes — TBoxes in which the
length of the longest path inGT is allowed to grow as large asO(|T |). ForALN TBoxes that,
in Nebel’s words [18], are “bushy but not deep”, satisfiability and subsumption can be solved
in polynomial time [3].

Definition 2 (Bushy TBox) A sequence of acyclic TBoxesT1, . . . , Tn, . . . arebushyif the
size of the longest path inGTi is bounded byO(log |Ti|).

In the rest of the paper, we limit our attention to bushy TBoxes inALN .

2.1 Concept Abduction inALN

We follow the notation in [9, 7], excluding the choice of the DL which in our case is always
ALN .

Definition 3 Let C, D, be two concepts inALN , and T be a set of axioms inALN ,
where bothC andD are satisfiable inT . A Concept Abduction Problem(CAP), denoted as
〈C,D, T 〉, is finding a conceptH ∈ ALN such thatT 6|= CuH ≡ ⊥, andT |= CuH v D.

We useP as a symbol for a CAP, and we denote withSOLCAP (P) the set of all solutions
to a CAPP. ForSOLCAP (P) the three following minimality criteria have been proposed.

Definition 4 LetP =〈C,D, T 〉 be a CAP. The setSOLCAPv(P) is the subset ofSOLCAP (P)
whose concepts are maximal undervT . The setSOLCAP≤(P) is the subset ofSOLCAP (P)
whose concepts have minimum length. The setSOLCAPu(P) is the subset ofSOLCAP (P)
whose concepts are minimal conjunctions,i.e., if C ∈ SOLCAPu(P) then no sub-conjunction
of C is in SOLCAP (P). We call such solutionsirreducible abductions.

The three forms of minimality are related by: bothSOLCAPv(P) andSOLCAP≤(P) are
included inSOLCAPu(P) [9, Prop.2].



2.2 Concept Contraction inALN

As defined by G̈ardenfors’ [12], who formalized the revision of a knowledge baseK with a
new piece of knowledgeA, is made up of(i) a contractionoperation, which results in a new
knowledge baseK−

A such thatK−
A 6|= ¬A, (ii) the conjunction ofA toK−

A.

Definition 5 Let C, D, be two concepts inALN , andT be a set of axioms inALN , where
both C and D are satisfiable inT . A Concept Contraction Problem(CCP), denoted as
〈C,D, T 〉, is finding a pair of concepts〈G, K〉 (both inALN ) such thatT |= C ≡ G uK,
andK uD is satisfiable inT . We callK acontractionof C according toD andT .

Also for Concept Contraction, one is interested in a minimal contraction, according to some
form of minimality.

Definition 6 LetQ =〈C,D, T 〉 be a CCP. The setSOLCCPv(Q) is the subset of solutions
〈G, K〉 in SOLCCP (Q) such thatG is maximal undervT . The setSOLCCP≤(Q) is
the subset ofSOLCCP (Q) such thatG has minimum length. The setSOLCCPu(Q) is
the subset ofSOLCCP (Q) whose concepts are minimal conjunctions,i.e., if 〈G, K〉 ∈
SOLCCPu(Q) then no sub-conjunctionG′ of G is such that〈G′,K ′〉 ∈ SOLCCP (Q) for
anyK ′. We call such solutionsirreducible contractions.

We now analyze the complexity of computing a minimum-length concept abduction inALN .
Proposition 3 in [9] yields a trivial polynomial-time lower bound for Concept Abduction in
ALN with a bushy TBox. Using a simple reduction, we show a tighter lower bound, using
an elementary form of Tbox: the problem is NP-hard. It is sufficient to have a constant-depth
concept hierarchy —i.e., a set of inclusions between concept names where the longest path
in GT has length 1 — to model the set-covering model for abduction [19].

Definition 7 (Set Covering) Let U = {a1, . . . , an,} be a set, lets1, . . . , sm, be a collection
of subsets ofU such that∪isi = U and letk ≤ n be an integer. TheSet coveringproblem is
deciding whether there exists a subcollection of subsetssi1 , . . . , sik whose union coversU .

Theorem 1 Minimal-length Concept Abduction inALN is NP-hard, even whenT is a bushy
concept hierarchy.

Given an instance of Set Covering, we construct a CAPP =〈C,D, T 〉 as follows. Let
A1, . . . , An, B1, . . . , Bn be2n concept names, where eachAi andBi is one-one withai, and
let S1, . . . , Sm, be also concept names, one-one with subsets ofU . Let the TboxT be defined
as follows:{Si v Aj , Si v Bj |aj ∈ si}. Now we prove thatsi1 , . . . , sik is a minimal set cov-
ering iff Si1u· · ·uSik ∈ SOLCAP≤(P), whereC = > andD = A1u· · ·uAnuB1u. . .uBn.
First of all, we prove a property of this construction.

Property 1 Every minimal-length abductionH of P contains neitherAi nor Bi, for every
i = 1, . . . , n.

Proof. Let H ∈ SOLCAP (P) and supposeA3 – say – is a conjunct ofH. If there is a
conceptS in H, such thatS v A3 ∈ T , thenH without A3 is a shorter abduction. Oth-
erwise, sinceC u H ≡ H v D, alsoB3 must be a conjunct ofH. In this case, letS be a



concept such thatS v A3, S v B3 ∈ T . Then the conceptH withoutA3, B3 and withS is a
solution one conjunct shorter. The same line of reasoning could be repeated if a conceptB is
a conjunct ofH. Therefore, every minimal-length abduction contains neitherAi nor Bi, for
everyi = 1, . . . , n. 2

(If) Supposesi1 , . . . , sik is a set covering. Then,H
.= Si1 u· · ·uSik is such thatCuH is

satisfiable (in fact, every conjunction is satisfiable in this CAP), andCuH v D. Moreover, if
H is not a minimal-length abduction, then letH ′ ∈ SOLCAP≤(P). For the above property,
H ′ does not containA’s andB’s. Then it is straightforward to define a shorter set covering
from H ′,contradicting the fact thatsi1 , . . . , sik was a minimal set covering. (Only-if) On the
other hand, supposeH ∈ SOLCAP≤(P). ThenH does not containA’s andB’s, so it can
be written asSi1 u · · ·uSik , which identifies a collection of subsetsSH = si1 , . . . , sik . Since
H v D, alsoSH coversU ; moreover, ifSH was not minimal, it would define a shorter
solution forP, contradicting the hypothesis. 2

We observe that a (more realistic) CAP allows one to put weights and probabilities at-
tached to concepts in order to measure the importance that a user gives to a specified charac-
teristic. Obviously, also this weighted version of CAP is NP-hard.

3 Calculus and Algorithms

In the following we assume the reader be familiar with tableaux (e.g., [14]). In this section
two algorithms working on tableaux forALN concepts are presented. They both use the
same set of rules: the first one (contract) computes a solution〈G, K〉 for a CCP, the second
one (abduce) solves a CAP computingH.
Tableaux for DLs use a labeling functionL to map an individualx to a set of conceptsL(x)
such that for every conceptC, C ∈ L(x) stands for the formulaC(x), and similarly for roles
R ∈ L(x, y). Here we distinguish between formulas labeled “true” and formulas labeled
“false” in the tableaux[20], hence we use two labeling functionsT() andF(), both going from
individuals to sets of concepts, and from pairs of individuals to sets of roles. A (usual) tableau
branch is now represented by two functionsT() andF(). Moreover, we write in the name of an
individual x its history,i.e., the string identifyingx is made up of integers and role symbols,
such asx = 1R3Q7, which means that individualx is used for concepts in a quantification
involving role R, and inside, a quantification involving roleQ. Integers in between roles
make sure that such strings are unique,i.e., there can be two individuals with the same role
sequence, but not with the same integer sequence[11].

Given an individualx in a tableau, an interpretation(∆I , ·I) satisfies two tableau labels
T(x) andF(x) if, for every conceptC ∈ T(x) and every conceptD ∈ F(x), it is xI ∈ CI

andxI 6∈ DI respectively. Similarly,(∆I , ·I) satisfies two tableau labelsT(x, y) andF(x, y)
if for every roleR ∈ T(x, y) and for every roleQ ∈ F(x, y) it holds (xI , yI) ∈ RI and
(xI , yI) 6∈ QI . We note that forALN DL, every roleQ appearing in a labelF(x, y) is of the
form ¬R, henceQ ∈ F(x, y) means, in fact,(xI , yI) ∈ RI too. An interpretation satisfies
a tableau branch if it satisfiesT(x), F(x), T(x, y) andF(x, y) for every individualx, and for
every pair of individualsx, y in the branch.

We assume that concepts are always simplified in Negation Normal Form (NNF, see [1,



ch.2]), so that negations come only in front of concept names. Observe that forC ∈ ALN ,
C may not belong toALN since it is not closed under negation. In what follows, given a
conceptC, we denote withC the NNF of¬C. Rules come in pairs, first the (usual) version
with a construct in theT-constraints, then the dual construct in theF-constraints. However,
groups 2 and 3 have onlyF-constraints because the correspondent formulae do not appear in
our tableaux forALN .

1. conjunctions:

Tu) if C uD ∈ T(x), then add bothC andD to T(x).

Ft) if C tD ∈ F(x), then add bothC andD to F(x).

2. disjunctions (branching rules):

Fu) if C uD ∈ F(x), then add eitherC or D to F(x).

3. existential quantifications:

F∀) if ∀R.C ∈ F(x), then pick up a new individualy = x ◦ R ◦ m (wherem is an
integer such thaty is unique), add¬R to F(x, y), and letF(y) := {C}.

4. universal quantifications:

T∀) if ∀R.C ∈ T(x) and there exists an individualy such that eitherR ∈ T(x, y), or
¬R ∈ F(x, y), then addC to T(y).

F∃) if ∃R.C ∈ F(x), and there exists an individualy such that eitherR ∈ T(x, y), or
¬R ∈ F(x, y), then addC to F(y).

5. at-least number restrictions:

T>) if >n R ∈ T(x), with n > 0, and for every individualy neitherR ∈ T(x, y)
nor¬R ∈ F(x, y), then pick up a new individualy = x ◦ R ◦m (wherem is an
integer such thaty is unique), addR to T(x, y), and letT(y) := ∅.

F6) if 6 n R ∈ F(x) and for every individualy neitherR ∈ T(x, y) nor ¬R ∈
F(x, y), then pick up a new individualy = x ◦R ◦m (wherem is an integer such
thaty is unique), add¬R to F(x, y), and letF(y) := ∅.

6. at-most number restrictions:

T6) if 6 1 R ∈ T(x), and there are2 individualsy1, y2 such that fori ∈ 1, 2 it is
eitherR ∈ T(x, yi) or ¬R ∈ F(x, yi), then letT(y1) := T(y1) ∪ T(y2), let
F(y1) := F(y1) ∪ F(y2), and eliminatey2 in the branch.

F>) if > 2 R ∈ F(x) and there are2 individualsy1, y2 such that fori ∈ 1, 2 it is
eitherR ∈ T(x, yi) or ¬R ∈ F(x, yi), then letT(y1) := T(y1) ∪ T(y2), let
F(y1) := F(y1) ∪ F(y2), and eliminatey2 in the branch.

7. axioms inT :



Fv) if x is an individual such that eitherA ∈ T(x) or ¬A ∈ F(x) in the branch, and
A v C ∈ T , then addA u C to F(x).

F .=1) if x is an individual such that eitherA ∈ T(x) or ¬A ∈ F(x) in the branch, and
A

.= C ∈ T , then addA u C.

F .=2) if x is an individual such that either¬A ∈ T(x) or A ∈ F(x) in the branch, and
A

.= C ∈ T , then addC u ¬A to F(x).

When more than one rule can be applied, we always givelowestprecedence to RulesT>)
and F6), while other rules can be applied in any order. In group 7 (axioms inT ) a lazy
unfoldingof the TBox is taken into account [2, 13]. Following this strategy, axioms inT are
dealt in a deterministic manner avoiding the exponential increase in the search space due to
the non-deterministic choices in a pure-tableau approach.

We now split the definition of clash (an explicit inconsistency) between clashes involving
the same truth prefix (homogeneous clashes) and those involving both prefixes (heterogeneous
clashes).

Definition 8 (Clash) A branch contains ahomogeneous clashif it contains one of the follow-
ing:

1. either⊥ ∈ T(x) or > ∈ F(x), for some individualx;

2. eitherA,¬A ∈ T(x) or A,¬A ∈ F(x) for some individualx and some concept name
A;

3. either>n R,6m R ∈ T(x) withm < n, or 6n R,>m R ∈ F(x) withm−1 < n+1,
for some individualx, and some role nameR.

A branch contains aheterogeneous clashif it contains one of the following:

1. T(x)∩F(x) contains eitherA or ¬A for some individualx and some concept nameA;

2. either>n R ∈ T(x) and >m R ∈ F(x) with m − 1 < n, or 6n R ∈ T(x) and
6m R ∈ F(x) with n < m + 1, for some individualx, and some roleR

A branch iscompleteif no new rule application is possible to labels in the branch. A complete
branch isopenif it contains no clash, otherwise it isclosed. A complete tableau is open if it
contains at least one open branch, otherwise it is closed. We call a branch with a homogeneous
clashas good as complete. Soundness and completeness of the calculus follow from the
version without prefixes [10].

Theorem 2 Let C,D be two concepts inALN , andT an acyclic TBox inALN . Then
C v D in T iff the tableau starting fromC ∈ T(x), D ∈ F(x) is closed.

Moreover, with prefixed tableaux we can distinguish between “real”subsumption, and sub-
sumption stemming from inner contradiction in concepts.

Theorem 3 Let C,D be two concepts inALN , andT an acyclic TBox inALN . If every
branch of the tableau starting fromC ∈ T(1), D ∈ F(1) contains a homogeneous clash, then
eitherC ≡ ⊥ or D ≡ > in T .



We now present the two algorithms for Concept Contraction and Concept Abduction, that
need some preliminary definitions.

Both algorithms use a functionroles(x), that given an individualx (as a sequence of inte-
gers and roles) returns the sequence of roles inx (without integers). For example,roles(1R3Q7) =
RQ. We letroles(k) = ε, i.e., whenx is just one integer,roles(x) returns the empty se-
quence. For a given conceptC, and a sequence of rolesσ, we define∀σ.C as∀R1.(· · ·(∀Rn.C) · · ·)
if σ = R1 · · ·Rn, and∀σ.C .= C in the special case in whichσ = ε.

Moreover, we assume that atomic concepts (names and number restrictions) can be given
a unique index, as inA1 u ∀R.((6 1 Q)2 u A3). Hence the substitution of anoccurenceof
a concept can be defined: we letD[C → >] denote the substitution of an occurrence of an
indexed atomic conceptC with the concept>, inside a conceptD. For example, ifD is
the concept above, thenD[A1 → >] = > u ∀R.((6 1 Q)2 u A3), while D[A3 → >] =
A1 u ∀R.((6 1 Q)2 u >). Multiple substitutions are denoted by a set of concepts,e.g., if
G = {A,B} thenD[C → >]C∈G means(D[A → >])[B → >]. Observe that since we
substitute only atomic concepts, the order of substitutions is ininfluent. For both algorithms,
we assume that concepts are indexed, so that substitutions are unambiguous.

Algorithm contract
input: ALN conceptsC, D, acyclic TBoxT
output: conceptsK (keep),G (giveup)
begin

compute a complete tableauτ for T , D ∈ T(x), C ∈ F(x)
if τ is openthen

/* no contraction needed */
return G := >,K := D

else ifevery branch inτ contains a homogeneous clashthen
/* eitherC or D is unsatisfiable inT */
return fail

else
choose(*) a branchβ containing only heterogeneous clashes;
let G := {〈Ci, xi〉|Ci ∈ T(xi), Ci ∈ F(xi) is a clash inβ}
let G := u〈Ci,xi〉∈G∀roles(xi).Ci

let K := D[Ci → >]〈Ci,xi〉∈G
return G, K

end

Observe that the algorithmcontractcontains a choice in step (*). This choice is needed
to select the contraction according to some minimality criterion. Only branches without ho-
mogeneous clashes need to be completely expanded, even after the first clash has been found.
Observe also that substituting an occurrence of a conceptC with > corresponds, inALN ,
to eliminating the occurrence. We preferred this notation instead of eliminating occurrences,
since it appears more concise.

Theorem 4 The conceptsG, K returned by the Algorithmcontract are a Contraction ofD
w.r.t. C andT .



Proof. First, note thatK u C is satisfiable by definition ofK; in fact, the tableau forK u C
is the same as the tableau forD u C, but it has now at least one open branchβ, in which all
clashes have been removed. Secondly,D ≡ G uK by construction. 2

Note that Algorithmcontract proves that Concept Contraction inALN with bushy TBoxes
is solvable in polynomial time.
We now present the algorithm for Concept Abduction, which also uses the tableaux rules
previously defined.

Algorithm abduce
input: ALN conceptsC, D, acyclic TBoxT
output: concept H (hypotheses)
begin

compute a complete tableauτ for T , C ∈ T(x), D ∈ F(x)
if τ is closedthen

/* no abduction needed */
return H := >

else
choose(*) a set of pairsH := {〈Ci, xi〉} and
let H := u〈Ci,xi〉∈H∀roles(xi).Ci

such that (1) every open branch inτ contains at least
one constraintCi ∈ F(xi) fromH
(2) C uH is satisfiable inT

return H
end

Theorem 5 The conceptH returned by the Algorithmabduce is a solution of the CAP
〈C,D, T 〉.

Proof. Let τ be the tableau built byabduce. The tableau starting fromC uH ∈ T(1), D ∈
F(1) is τ , plus the constraints signedT from H. Hence, it is closed. Hence,T |= CuH v D.
Regarding the conditionC uH satisfiable inT , it is enforced by Condition (2) in the choice
of H. 2

Condition (2) is necessary inabduce, since heterogeneous clashes could be formed also by
contradicting an axiom inT . In that case, although it still holdsC u H v D in T , the
subsumption trivially holds sinceC uH ≡ ⊥. We conclude the section by showing that our
Algorithm abduce puts an upper bound to Concept Abduction that meets the lower bound
proved in the previous section.

Theorem 6 Let P = 〈C,D, T 〉 a Concept Abduction Problem, whereC,D are concepts
in ALN , T is a bushy TBox inALN and k is an integer. Deciding whether there exists a
solution of lengthk in SOLCAP≤(P) is NP-complete.

Proof. Hardness was shown in Thm. 1. Membership in NP is proved by the correctness of
Algorithm abduce, since it is sufficient to run the algorithm, and guessing in the nondeter-
ministic step (*) a setH that defines a conceptH of lengthk. 2



4 Conclusion

We have shown how Concept Abduction and Concept Contraction for DLALN can be per-
formed using prefixed-tableaux. For such DL, we proved optimality of the methods by show-
ing that they meet lower bounds obtained by a complexity analysis. Although devised for a
simple DL, we believe that the proposed approach could be easily extended to more expressive
DLs.
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