Semantics driven support for query formulation

Paolo Dongilli, Enrico Franconi, and Sergio Tessaris

Free University of Bozen-Bolzano, Italy
<l astnane>@nf.unibz.it

Abstract

In this paper we describe the principles of the design andldpment of an intelli-
gent query interface, done in the context of the SEWASIE (&ftin Webs and AgentSin
Integrated Economies) European IST project. The SEWASHkept aims at enabling a
uniform access to heterogeneous data sources throughegrnated ontology. The query
interface is meant to support a user in formulating a pregisey — which best captures
her/his information needs — even in the case of complete&e of the vocabulary of
the underlying information system holding the data. Thelligience of the interface is
driven by an ontology describing the domain of the data innf@mation system. The
final purpose of the tool is to generate a conjunctive queaglyd¢o be executed by some
evaluation engine associated to the information system.

1 Introduction

In this paper we describe the principles of the design and developmenirmkiligent query
interface, done in the context of the SEWASIE (SEmantic Webs and Agent8egrated
Economies) European IST project. The SEWASIE project aims at enablimiform access
to heterogeneous data sources through an integrated ontology. Thenjedace is meant to
support a user in formulating a precise query — which best capturdgshieformation needs
— even in the case of complete ignorance of the vocabulary of the undgrhfiormation
system holding the data. The final purpose of the tool is to generate anctimguquery (or
a non nested Select-Project-Join SQL query) ready to be executedieyesaluation engine
associated to the information system.

The intelligence of the interface is driven by an ontology describing the otoofahe
data in the information system. The ontology defines a vocabulary which iriichn the
logical schema of the underlying data, and it is meant to be closer to the tisbocabulary.
The user can exploit the ontology’s vocabulary to formulate the quedyshe/he is guided
by such a richer vocabulary in order to understand how to exprefshmformation needs
more precisely, given the knowledge of the system. This latter task — ¢calgtsional navi-
gation— is the most innovative functional aspect of our proposal. Intensimmagation can
help a less skilled user during the initial step of query formulation, thus owgrg problems
related with the lack of schema comprehension and so enabling her/him to easilydte
meaningful queries. Queries can be specified through an iterativemedim process sup-
ported by the ontology through intensional navigation. The user may ggemithis request

This work has been partially supported by the EU projects Sewasie, Kdgeleb, and Interop.

using generic terms, refine some terms of the query or introduce new tarthigeeate the
process. Moreover, users may explore and discover generamiafion about the domain
without querying the information system, giving instead an explicit meaning teeaycand

to its subparts through classification.

In the literature there are several approaches at providing intelligardhgsiery systems
for relational or object oriented databases (EE@ for an extensive survey). However, to
our knowledge, the work presented in this paper is among the first weltdfmlintelligent
systems for query formulation support in the context of ontology-basedygprocessing.
The strength of our approach derives from the fact that the grdpdaichnatural language
representation of the queries is underpinned by a formal semantics @ddwydan ontology
language. The use of an appropriate ontology language enables tbim ®ygjineers to pre-
cisely describe the data sources, and their implicit data constraints, by mearsy/stem
global ontology (se¢9]). The same ontology is leveraged by the query interface to sup-
port the user in the composition of the query, rather than relying on a Ipsesstve logical
schema. The underlying technology used by the query interface is bagsbé recent work
on query containment under constraints (s2el]).

The paper is organised as follows. Firstly we present the system w.rtviesgoint,
with the functionalities of the interface, then we describe the semantics andabkening
services supporting the query interface. These include the querydgagxpressiveness,
the ontology support to the query formulation, and the natural languabalisation issues.
Finally, we discuss related work and we draw some conclusions.

2 Queryinterface: the user perspective

Initially the user is presented with a choice of different query scenariuishaprovide a
meaningful starting point for the query construction. The interface guikde user in the
construction of a query by means of a diagrammatic interface, which erthelggneration
of precise and unambiguous query expressions.

Query expressions are compositional, and their logical structure is hbtfflaee shaped;
i.e. a node with an arbitrary number of branches connecting to other .ndthés structure
corresponds to the natural linguistic concepts of noun phrases withronere propositional
phrases. The latter can contain nested noun phrases themselves.

A query is composed by a list of terms coming from the ontology (classes)Supplier”
and “Multinational”. Branches are constituted by a property (attributesswaations) with
its value restriction, which is a query expression itself; e.g. “selling on Itafiarket”, where
“selling on” is an association, and “Italian market” is an ontology term.

The focus paradigm is central to the interface user experience: maipuséthe query
is always restricted to a well defined, and visually delimited, subpart of tiderquery (the
focug. The compositional nature of the query language induces a natuiigbtian mecha-
nism for moving the focus across the query expression (nodes of tresponding tree). A
constant feedback of the focus is provided on the interface by medns kihd of operations
which are allowed. The system suggests only the operations which anpéatible” with the
current query expression; in the sense that do not cause the gumrywtesatisfiable. This is
verified against the formal model describing the data sources.

One of the main requirements for the interface is that it must be accesseg biTaIL
browser, even in presence of restrictive firewalls. This constrainitstdesign, which overall
appearance is shown in Figure 1. The interface is composed by th®hal elements. The

first one (top part) shows a natural language representation of ting lopgieg composed, and
the current focus. The second one is the query manipulation pane (bmdtbcontaining a
diagram representing the focus and its terminological context, together wighttcspecialise
the query. Finally, a query result pane containing a table representingsiiéstructure. The
first two components are used to compose the query, while the third onedidaispecify
the data which should be retrieved from the data sources. Becauseafflgpace, in this
paper we concentrate on the query building part. Therefore we wanistishe query result
pane, which allows the user to define the columns of a table which is going daisegthe
data from the query result.

Query textual representation The first component consists of a text box representing the
query expression in a natural language fashion. The user selegarsubf the query for
further refinement. The selection defines the current focus, which silepresented in the
diagrams described in the following sections. The selected subexpressidre modified
(refined or extended) by means of the query manipulation pane.

Although the query verbalisation does not provide accounts of the catrrgture, the
system is aware of the nesting (and so is the user). The system provwdésetiback on
the nesting by means of navigation in the query expression when the ust¢grisstad in
selecting a subpart of the query. When a node is selected, then the systematically
selects the whole subtree rooted at the node selected by the user.

It is important to stress that, although natural language is used as féadb@present
the query, this is used in generation mode only. Since the user does nogueiies directly,
there is no need to parse any natural language sentence or to resolv&itiregubiguities.

Query manipulation pane The elements in the pane represent the current selection, and the
operations allowed in its context. It is organised as a diagram showing thediamc context
of the selection (the central part), and tools enabling the user to build ting exression.

The central part of the interface is occupied by the diagram allowing whaiall substi-
tution by navigationi.e. the possibility of substituting the selected portion of the query with
a more specific or more general terms.

The central part in the diagram shows the main term of the focus. While thausding
terms are either more specific or more general w.r.t. the query exprefssiorthe focus
viewpoint For example, w.r.t. the query showed in Figure 1 with the focus on the firat te
(“Supplier”), the terms “Merchant” and “Agent” are more general terrthimontology, while
“Retailer” and “Wholesaler” are more specific. By selecting one of thasastethe user can
substitute the whole focus with the selected term. The purpose of the substgrtaigm is
twofold: it enables the replacement of the focus and it shows the positidmeddelection
w.r.t. the terms in the ontology.

It can be the case that in the ontology there are terms which are equitataetselected
part. In this case the user is offered to replace the selection with the Emiiterm by the
activation of theRepl ace Equi val ent button.

A different refinement enabled by the interface isdmynpatible termsThese are terms
in the ontology whose overlap with the focus can be non-empty. These gytelions can be
added to the head of the selection by usingAlld Concept pop-up menu. For example,
“Student” is among the compatible terms for the focus “Employee”, but “Texsl@bt. The
compatible terms are automatically suggested to the user by means of appnaasateing
task on the ontology describing the data sources.

Analogously, the user can add properties to the foassociationge.g. “Industry with
sector”), and/oattributes(e.g. “Employee whose name is”). This can be performed by means
of a Add Property pop-up menu, which presents the possible alternatives. Name and
value restrictions for each property are verbalised using meta informaigmtiated to the
terms in the ontology. For example, the association “with sector” with the restritiextile”
is shown as “belonging to the textile sector”.

Note that the terms and the pro@sess SEWASIE Query Tool —
erties proposed by the system de-* -l 21 Alofl+/el SCETTEED E1
pend on the overall query expres- s
sion, not only on the focus. This
means that subparts of the query
expression, taken in isolation, would

Compose Results

generate different suggestions w.r.t, e cemeen) (e &) Cade Propery:) e o) 7). (Resiace ol) | vhalesler)
those in their actual context in the = e
query. N
Sub-queries can be associated N
to new names by means obef i ne / e

button. This process corresponds

to the definition of a new named (o=
view. These newly introduced names
can be used to shorten the query
expression, or as a simple mech- Figure 1: Query building interface.
anism to extend the ontology to build

a customised user’s viewpoint.

2

3 Query interface: insidethe box

In this section we describe the underpinning technologies and technigabkng the user
interface described in the previous sections. We will start by describingsmaumptions on
the query language, followed by system perspective over the desgcpileey building process.
The whole system is supported by formally defined reasoning servideh atte described in
Section 3.2. Finally, we introduce the verbalisation mechanism which enaklsgstem to
show the queries in a natural language fashion.

3.1 Conjunctive queries

Since the interface is build around the concept of classes and theirrfiesp&ve consider
conjunctive queries composed by unary (classes) and binary (attaibd#ssociations) terms.
The body of a query can be considered as a graph in which variallés¢astants) are
nodes, and binary terms are edges. A query is connected (or acytle) fer the corre-
sponding graph the same property holds. Given the form of quergssions composed by
the interface introduced in Section 2, we restrict ourselves to acycliceotenh queries. This
restriction is dictated by the requirement that the casual user must be tainiowith the
language itself. Note that the query language restrictions do not affect the ontology lan-

1Our technique can deal with disjunction of conjunctive queries, even Withi®d form of negation applied
to single terms. Sek8; 16 for the technical details.

guage, where the terms are defined by a different (in our case maessie) language. The
complexity of the ontology language is left completely hidden to the user, wasnimeed
to know anything about it.

To transform any query expression in a conjunctive query we pdoiceg recursive fash-
ion starting from the top level, and transforming each branch. A new \arislssociated to
each node: the list of ontology terms corresponds to the list of unary t&wngach branch,
it is then added the binary query term corresponding to the propertyit@mestriction is
recursively expanded in the same way.

Let us consider for example the query “Supplier and Multinational catpmr selling on
Italian market located in Europe”, with the meaning that the supplier is locatedrimpE.
Firstly, a new variablea;) is associated to the top level “Supplier and Multinational corpo-
ration”. Assuming that the top level variable is by default part of the diststmd variables,
the conjunctive query becomes

{z1|Supplz), Mult_corp(z;), ...},
where the dots mean that there is still part of the query to be expanded. viltheonsider
the property “selling on”, with its value restriction “ltalian market”: this introdaa new
variablex; ;. The second branch is expanded in the same way generating the caguncti
query
{z1 | Supplz1), Mult_corp(x;), selLon(zy, z1,1), It_marketz; 1), loc.in(z1, z1,2), Eur(z; 2)}.

This transformation is bidirectional, so that a connected acyclic conjungtieey can
be represented as a query expression (in the sense of Section)dpindy the variable
names. As a matter of fact, the system is using this inverse transformatiorttegnicéernal
representation of queries is conjunctive queries.

Since a query is atree, the focus corresponds to a selected suli-s&asly to realise that
each sub-tree is univocally identified by the variable corresponding tale. rTherefore, the
focus is always on variable, and moving the focus corresponds tdisgladifferent variable.
Modifying a query sub-part means operating on the correspondingreebmodifying the
corresponding query tree.

Substitution by navigationorresponds to substitute the whole sub-tree with the chosen
ontology term. The result would be a tree composed by a single node, wihguiranch,
whose unary term is the given ontology term. In teinement by compatible termthe
selected terms are simply added to the root node as unary query terms. efooplrty
extension adding an attribute or associations corresponds to the creation of aragahb
This operation introduces a new variable (i.e. node) with the corresporehtriction. When
an attribute is selected, and a constant (or an expression) is specifiadhib is added as
restriction for the value of the variable.

3.2 Reasoning servicesand query interface

Reasoning services w.r.t. the ontology are used by the system to drivadheigterface. In
particular, they are used to discover the terms and properties (with theictieas) which
are proposed to the user to manipulate the query.

Our aim is to be as less restrictive as possible on the requirements for thegyrism-
guage. In this way, the same technology can be adopted for diffeeaneworks, while the
user is never exposed to the complexity (and peculiarities) of a particuiaiogg language.

In our context, an ontology is composed bget of predicategunary, binary), together
with a set of constraintsestricting the set of valid interpretations (i.e. databases) for the

predicates. The kind of constraints which can be expressed definesghessiveness of the
ontology language. Note that these assumptions are general enough actakint of widely
used modelling formalisms, like UML for example.

We do not impose general restrictions on the expressiveness of tHegyntanguage;
however, we require the availability of twibecidablereasoning services: satisfiability of
a conjunctive queryand containment test of two conjunctive queries, both w.r.t. the con-
straints. If the query language includes tmmptyquery (i.e. a query whose extension is
always empty), then query containment is enough (a query is satisfiallis iffot contained
in the empty query). As described in Section 2, the query building interigmesents the
available operations on the query w.r.t. the current focus; i.e. the varidtitd is currently
selected. Therefore, we need a way of describing a conjunctive fjeen the point of view
of a single variable. The expression describing such a viewpoint is stilhgiactive query;
which we callfocused This new query is equal to the original one, with the exception of the
distinguished (i.e. free) variables: the only distinguished variable of thestd query is the
variable representing the focus. In the following we represegt dee queryg focused on
the variablex. For example, the query
q = {x1, 12| Mult_corp(z), selLon(z1, z1 1), lt_marketz; 1), loc_in(x1, z1 2), Eur(z1 2) },
focused in the variable; ; would simply be
¢*tt = {z11 | Mult_corp(xy), sellon(z, x1.1), It-marketx; 1), loc_in(z1, 1 2), Eur(z1 2) }.

The operations on the query expression require two different typagarmation: hi-
erarchical (e.g. substitution by navigation), and eompatibility (e.g. refinement and new
properties).

Let us consider the substitution by navigation with the more specific terms (Hes ca
with more general and equivalent terms are analogous). Given theefdcuery®, we are
interested to the unary atomic terffis.t. the queryy | 7'(y)} is contained irg” and it is most
general (i.e. there is no other query of that form contained jrand containindy | 7'(y) }).

Refinement by compatible terms and the addition of a new property to the qeprye
the list of terms “compatible” with the given query. In terms of conjunctiverigse this
corresponds to add a new term to the query. The term to be added slminldwith the
guery by means of the focused variable, and must be compatible in thetkatite resulting
query should be satisfiable. This leads to the use of satisfiability reasominges® check
which predicates in the ontology are compatible with the current focus. Wittydarms this
check corresponds simply to the addition of the t&te) to the focused query®, and verify
that the resulting query is satisfiable.

The addition of a property requires the discovery of both a binary terhitamestriction:
the terms to be added are of the fofm| R(z,y), T (y)} if the focused variable is. As for
the refinement by compatible terms, the system should check all the diffareny pred-
icates from the ontology for their compatibility. This is practically performed esifying
the satisfiability of the query” < {z | R(x,y)}, for all atomic binary predicater in the
signature and wherg is a variable not appearing in?> Once a binary predicat® is found
to be compatible with the focused query, the restriction is selected as the mesaigenary
predicatel” such that the query” < {z | R(z,y), T (y)} is satisfiable.

2Here represents a natural join.

3.3 Using a Description L ogics Reasoner

Although our approach is not tight to any ontology language, in the test impkatien of
our system we are using Description Logics (DLs). The reasons fochbise lie in the facts
that DLs can capture a wide range of widespread modelling framewaréigha availability
of efficient and complete DL reasoners.

We adopted the Description Logic¥HZ Q (see[15]); which is expressive enough for
our purposes, and for which there are state of the art reasonets. tiha the adoption of
SHZQ allow us to use ontologies written in standard Web Ontology languages like OWL—
DL (see[14)]).

For space limitations we are not going to describe in detail the underl§yigQ DL,
the reader is referred to the above mentioned bibliographic referéeRlee@ntology contains
unary (concepts) and binary (roles) predicates, and the constreerdég@ressed by means of
inclusion axioms between concept or role expressions. One of the &yde ofSHZQ is
the possibility of expressing the inverse of a role; which is extremely u$afidonverting
tree—shaped queries into DL concept expressions.

Given the restriction to tree—shaped conjunctive query expressiogsthtr with the
availability of inverse roles, a focused query (see Section 3.2) camespto a concept ex-
pression (se&l7]). Therefore, all the reasoning tasks described in Section 3.2 conésp
standard DL reasoning services. Again, this is not a restriction imposdaebynderlying
technology, since general conjunctive queries can be dealt with tessdpscribed if8;
16].

The idea behind the transformation of a query expression into a singleohescription
is very simple, and it is based on the fact that a concept expressiorecseeh as a query
with a single distinguished variable. To focus the query on a variable, wefsian the
variable itself, then we traverse the query graph by encoding binary tetonBL existential
restrictions and dropping the variable names. The fact that queriesaresiraped ensures
that variable names can be safely ignored. Let us consider for exarepdei¢ny expression

{Mult_corp(z), Italian(z1), selLon(z1, 1,1), lt_marketz; 1)}
The DL expression corresponding to the query focuseghanis
(It_market1 3selLon™ (Mult_corpr Italian));
where sellon™ corresponds to the inverse of selh role.

As explained in Section 3.2, we need two kinds of information: hierarchivdlcmm-
patibility. These, in the DL framework, are provided by the standard réagservices of
satisfiability and taxonomy position of a concept expression respectivélg. first service
verifies the satisfiability w.r.t. a knowledge base; while the second classd@msapt expres-
sion (i.e., provides it w.r.t. the ISA taxonomy of concept nanigRpasoning tasks described
in Section 3.2 can be straightforwardly mapped into satisfiability and classificatio

For example, checking the compatibility of the term Italian with the query

{Mult_corp(z), sellon(z1, z1,1), It_markefz 1)},
is performed by checking the satisfiability of the concept
Italian™ Mult_corpr dsellLonlt market
Compatibility of binary terms is performed analogously by using an existens#iagon;
e.g.,3selLonT.* To discover the restriction of a property we use classification instead of

3DL systems usually provide an efficient way of obtaining the taxonomiitipnf a given concept expres-
sion.
“Note the use of th& concept representing the whole domain (any possible concept).

repeated satisfiability. The idea is to classify the query focused on thdheaitdroduced by

the property. For example, to discover the restriction of gelapplied to the query expression
{z1 | Mult_corp(x;), Italian(z1)},

we classify the expressiatselLon™ (Mult_corpitalian)). The DL reasoner returns the list of

concept names more general and equivalent to the range of the re&dtion svhen restricted

to the domainMult_corpr Italian). This is exactly the information we need to discover the

least general predicate(s) which can be applied to the property in the gbntext.

Our implementation uses the DL reasoner Racer [$€B; which fully supports the
SHZQ DL. The interaction with the DL reasoner is based on the DIG 1.0 interfade AP
(seel1]), a standard to communicate with DL reasoners developed among diff2lresyts-
tems implementors. This choice makes our system independent from a paficutasoner,
which can be substituted with any DIG based one.

3.4 Query verbalisation

The system always presents the user with a natural language translitefatie conjunctive
qguery. This is performed in an automatic way by using meta information assbeigtte
the ontology terms, both classes and properties. The verbalisation of thlegynterms
must be provided in advance by the ontology engineers. For the vetlmlisee use an
approach similar to the one adopted by the Object Role Modelling framewdti(Ged 13;

19)).

Each class name in the ontology has associated a short noun phraaéy (oise or two
words), which represents the term in a natural language fashion.xkorpte, to the class
PStudents associated “Postgraduate student” The user will see only the assasatedce,
while PStudents just used in the internal ontology representation.

For (binary) associations the ontology engineer has to provide twoeliffgerbalisations
for the two directions. For example, let assume that the ontology states thegsbeiation
occroom links the two classe®Studentand Room Then the engineer associates to the
association the verbalisation “occupies” for the direction frB8tudento Room and the
verbalisation “is occupied by” for the other direction.

Attributes need one direction only, since they are never used from thegieiiew of the
basic data type. In this case, the engineer is only required to provide tbeatattrerbalisation
from the point of view of the class.

4 Discussion

The work proposed in this paper deals with a relatively new problem, namealding the
user with a visual interface to query heterogeneous data sourceghhaalntegrated ontol-
ogy (that is, a set of constraints), and a specific literature does natyexisBy looking at
the extensive survey on Visual Query System (VQS) presentedjrit easy to see that only
little work has been done in the specific context we are dealing with. Some pratymwirork
was done by one research grol4p 11; 6; 9. Similar work from the point of view of the
visual interface paradigm, but without the well founded support of &ibgsed semantics
was carried out in the context of the Tambis projd&; 2. Also[3] contains some interesting
approach from the point of view of the visual interface, but again tistesy has a different
background semantics.

In fact, only recently research has started to have a serious interesringrocessing and
information access supported by ontologies. Recent work has come upnafibr seman-
tics and with advanced reasoning techniques for query evaluation ariting using views
under the constraints given by the ontology — also called view-baseg guaressing 20;
7]. This means that the notion of accessing information through the navigatéonasftology
modelling the information domain has its formal foundations.

This paper has presented the first well-founded intelligent user inéeféaaquery for-
mulation support in the context of ontology-based query processing petper hopefully
proved that our work has been done in a rigorous way both at the levgedace design and
at the level of ontology-based support with latest generation logiocdbas®logy languages
such as description logics, DAML+OIL and OWL. However, there arenoproblems and
refinements which have still to be considered in our future work.

The system uses the verbalisations described in Section 3.4 to transfoconjbactive
guery into a natural language expression closer to the user undéngtama the course of
the SEWASIE project some effort will be dedicated to explore semi-automataigues to
rephrase the expressions in more succinct ways without loosing theinserstaucture.

Another important aspect to be worked out is the understanding of thetigéf method-
ologies for query formulation in the framework of this tool, a task that neestsoag coop-
eration of the users in its validation. This will go in parallel with the interface esalua-
tion, which is just starting at the time of writing this pageThe other crucial aspect is the
efficiency and the scalability of the ontology reasoning for queries. \Wewarently experi-
menting the tool with various ontologies in order to identify possible bottlenecks.

We would like to thank Tiziana Catarci, Tania Di Mascio, and Giuseppe Sanfactheir
valuable suggestions and discussions on the user interface. Mqrédweupport of Ralf
Moller and Volker Haarslev with the Racer reasoner has been essentiéfdevelopment
of our system prototype.

References

[1] Sean Bechhofer, Ralf Mller, and Peter Crowther. The digigtsen logic interface. IrProceed-
ings of the 2003 International Workshop on Description lcsgiDL2003) volume 81 ofCEUR
Workshop Proceeding2003.

[2] Sean Bechhofer, Robert Stevens, Gary Ng, Alex Jacoby, araleCA. Goble. Guiding the user:
An ontology driven interface. [WIDIS 1999 pages 158-161, 1999.

[3] Francesca Benzi, Dario Maio, and Stefano Rizzi. VISIONAR¥iewpoint-based visual lan-
guage for querying relational databasésVis. Lang. Comput10(2):117-145, 1999.

[4] P. Bresciani and E. Franconi. Description logics for infatimn access. IProceedings of the
Al*IA 1996 Workshop on Access, Extraction and IntegratibiKoowledge Napoli, September
1996.

[5] Paolo Bresciani and Paolo Fontana. A knowledge-based gystgm for biological databases.
In Proceedings of FQAS 2002olume 2522 of ecture Notes in Computer Scienpages 86—89.
Springer Verlag, 2002.

5An on-line prototypical version of the query building tool, with a toy ontologighaut lexicalisation, is
available atthe URIht t p: / / dev. eur ac. edu: 8090/ sewasi e/ .

[6] Paolo Bresciani, Michele Nori, and Nicola Pedot. A knowledmsed paradigm for querying
databases. IDatabase and Expert Systems Applicatieolume 1873 of_ecture Notes in Com-
puter Sciencegpages 794—-804. Springer Verlag, 2000.

[7]1 D. Calvanese, G. De Giacomo, and M. Lenzerini. Answeringigeeusing views over descrip-
tion logics knowledge bases. Proc. of the 16th Nat. Conf. on Artificial Intelligence (AAAI
2000) 2000.

[8] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lemizédin the decidability of query
containment under constraints. Pmoc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on
Principles of Database Systems (PODS;98)ges 149-158, 1998.

[9] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzebaipiele Nardi, and Riccardo
Rosati. Information integration: Conceptual modeling aeasoning support. IRroc. of the
6th Int. Conf. on Cooperative Information Systems (Cod&8%pages 280-291, 1998.

[10] Tiziana Catarci, Maria Francesca Costabile, Stefano ldiyiand Carlo Batini. Visual query
systems for databases: A survejournal of Visual Languages and Computirgf2):215-260,
1997.

[11] Enrico Franconi. Knowledge representation meets digitaaties. InProc. of the 1st DELOS
(Network of Excellence on Digital Libraries) workshop omférmation Seeking, Searching and
Querying in Digital Libraries”, 2000.

[12] Volker Haarslev and Ralf Mller. Racer system description. Automated Reasoning: First In-
ternational Joint Conference, IJCAR 2Q0blume 2083 of_ecture Notes in Computer Science
Springer-Verlag Heidelberg, 2001.

[13] Terry A. Halpin. Augmenting UML with fact orientation. IHICSS 2001.

[14] lan Horrocks and Peter F. Patel-Schneider. Reducing OWlilexetat to description logic sat-
isfiability. In Dieter Fensel, Katia Sycara, and John Mylojos, editorsProc. of the 2003 In-
ternational Semantic Web Conference (ISWC 20038nber 2870 in Lecture Notes in Computer
Science, pages 17-29. Springer, 2003.

[15] lan Horrocks and Ulrike Sattler. Optimised reasoning$@tZ Q. In Proc. of the 15th Eur. Conf.
on Artificial Intelligence (ECAI 2002)pages 277-281, July 2002.

[16] lan Horrocks, Ulrike Sattler, Sergio Tessaris, and Stepfabies. How to decide query con-
tainment under constraints using a description logicLdgic for Programming and Automated
Reasoning (LPAR 2000yolume 1955 of_ecture Notes in Computer Sciengages 326—343.
Springer, 2000.

[17] lan Horrocks and Sergio Tessaris. Querying the semantic eétrmal approach. In lan Hor-
rocks and James Hendler, editoRpc. of the 2002 International Semantic Web Conference
(ISWC 2002)number 2342 in Lecture Notes in Computer Science. Sprikgdag, 2002.

[18] Norman Murray, Carole Goble, and Norman Paton. A frameworkléscribing visual interfaces
to databasesl. Vis. Lang. Comput9(4):429-456, 1998.

[19 http://ww. or m net, 2003.

[20] J. D. Ullman. Information integration using logical viewsn Proc. of the 6th Int. Conf on
Database Theory (ICDT'97pages 19-40, 1997.

