
Checking MTL Properties of Discrete Timed
Automata via Bounded Model Checking?

Extended Abstract

Bożena Woźna-Szcześniak and Andrzej Zbrzezny

IMCS, Jan D lugosz University.
Al. Armii Krajowej 13/15, 42-200 Czȩstochowa, Poland.

{b.wozna,a.zbrzezny}@ajd.czest.pl

Abstract. We investigate a SAT-based bounded model checking (BMC)
method for MTL (metric temporal logic) that is interpreted over linear
discrete infinite time models generated by discrete timed automata. In
particular, we translate the existential model checking problem for MTL
to the existential model checking problem for a variant of linear temporal
logic (called HLTL), and we provide a SAT-based BMC technique for
HLTL. We show how to implement the BMC technique for HLTL and
discrete timed automata, and as a case study we apply the technique in
the analysis of TGPP, a Timed Generic Pipeline Paradigm modelled by
a network of discrete timed automata.

1 Introduction

Nowadays the interest in model checking [5] is focused not only on standard
concurrent systems, but also on soft real-time systems, i.e., systems the goal
of which is to ensure a certain subset of deadlines in order to optimize some
application specific criteria. A number of formalisms, which use a discrete time
domain, have been proposed in the literature to model the behaviour of these
systems, e.g. discrete timed automata [2] and discrete timed Petri nets [7]. To
express the requirements of the systems mostly standard temporal logics are
used: computation tree logic (CTL) [4], the soft real-time CTL (RTCTL) [6],
linear temporal logic (LTL) [13], and metric temporal logic (MTL) [8, 10, 14].

Bounded model checking (BMC) [3, 11, 12] is a symbolic verification method
that uses only a portion of the considered model that is truncated up to some
specific depth. It exploits the observation that we can infer some properties
of the model using only its fragments. This approach can be combined with
symbolic techniques based on decision diagrams or with techniques which involve
translation of the verification problem either to the boolean satisfiability problem
(SAT) or to the satisfiability modulo theories (SMT) problem.

The original contributions of the paper are as follows. First, we define a
SAT-based BMC for soft real-time systems, which are modelled by discrete

? Partly supported by National Science Center under the grant No.
2011/01/B/ST6/05317.

470 B. Woźna-Szcześniak, A. Zbrzezny

timed automata, and for properties expressible in MTL. Next, we report on
the implementation of the proposed BMC method as a new module of VerICS
[9]. Finally, we evaluate the BMC method experimentally by means of a timed
generic pipeline paradigm (TGPP), which we model by a network of discrete
timed automata.

The rest of the paper is structured as follows. In Section 2 we brief the
basic notion used through the paper. In Section 3 we define the BMC method
for HLTL. In Section 4 we discuss our experimental results. In Section 5 we
conclude the paper.

2 Preliminaries

We assume familiarity with the notion of discrete timed automaton (DTA) and
their semantics in terms of the Kripke structure (called model). We refer the
reader to the body of the paper [15] for details; note that a discrete timed
automaton is basically a timed automaton with the restriction that clocks are
positive integer variables. Further, we assume the following syntax of MTL. Let
p ∈ PV, and I be an interval in N = {0, 1, 2, . . .} of the form: [a, b) or [a,∞), for
a, b ∈ N and a 6= b; note that the remaining forms of intervals can be defined by
means of [a, b) and [a,∞). The MTL formulae in the negation normal form are
defined by the following grammar:

α := > | ⊥ | p | ¬p | α ∧ α | α ∨ α | αUIα | αRIα

We refer the reader to the body of the paper [15] for the semantics of MTL; note
that to get the discrete time semantics for MTL from the dense time semantics
for MITL, in all the definitions presented in [15] at page 5, it is enough to replace
the set of positive real numbers with the set of positive integer numbers, and to
drop the assumption about single intervals.

Determining whether an MTL formula ϕ is existentially (resp. universally)
valid in a given model is called an existential (resp. universal) model checking
problem.

In order to define a SAT-based BMC method for MTL, we first translate the
existential model checking problem for MTL that is interpreted over the region
graph (i.e., a standard finite model defined for (discrete) timed automata) to the
existential model checking problem for HLTL that is also interpreted over the
region graph. For the details on this translation and the semantics of the HLTL
language we refer the reader to [15]; note that the single intervals do not affect
this translation. Here we only provide the syntax of HLTL and the translation
scheme.

Let ϕ be an MTL formula, n the number of intervals in ϕ, p ∈ PV a propo-
sitional variables, and h = 0, . . . , n − 1. The HLTL formulae in release positive
normal form are given by the following grammar:

α :=> | ⊥ | p | ¬p | α ∧ α | α ∨ α | Hhα | αUα | αRα

Checking MTL Properties of Discrete Timed Automata ... 471

where the symbols U and R denote the until and release modalities, respectively.
The indexed symbol Hh denotes the reset modality representing the reset of
the clock number h. In addition, we introduce some useful derived temporal

modalities: Gα
def
= ⊥Rα (always), Fα

def
= >Uα (eventually).

Let ϕ be a MTL formula. We translate the formula ϕ inductively into the
HLTL formula H(ϕ) in the following way:

H(>) = >, H(⊥) = ⊥, H(p) = p, H(¬p) = ¬p, for p ∈ PV,
H(α ∨ β) = H(α) ∨H(β), H(α ∧ β) = H(α) ∧H(β),
H(αUIhβ) = Hh(H(α)U(H(β) ∧ pyh∈Ih ∧ (pnf ∨H(α)))),
H(αRIhβ)) = Hh(H(α)R(¬pyh∈Ih ∨H(β))).

Observe that the translation of literals as well as logical connectives is straight-
forward. The translation of the UIh operator ensures that: (1) the translation of
β holds in the interval I – this is expressed by the requirement H(β) ∧ pyh∈Ih ;
(2) the translation of α holds always before the translation of β; and (3) if the
value of the clock yh belong to the final zone, i.e. the values of all the clocks are
bigger then some maximal value (in this case the proposition pnf is not true),
then the translation of H(α) is taken into account as well. The translation of the
RIh operator makes use of the fact αRIhβ = βUIhα ∧ β ∨GIhβ.

This translation preserves the existential model checking problem, i.e., the
existential model checking of an MTL formula ϕ over the discrete model can be
reduced to the existential model checking of H(ϕ) over the region graph.

The next step in defining a SAT-based BMC method for MTL relies on intro-
ducing a discretisation scheme for the region graph (defined for a given discrete
timed automaton) that will represent zones (i.e. sets of equivalent clock valu-
ations) of the region graph by exactly one specially chosen representative, and
proving that a discretised model based on this scheme preserves the validity of
the HLTL formulae - the discretised model constitutes the base for an imple-
mentation of our BMC method. We do not report on this step here in detail,
since it requires introducing the huge mathematical machinery, but in fact it
can be done in a way similar to the one presented in [16]. However, this will be
provided in the full version of the paper.

The final step in defining a SAT-based BMC method for MTL relies on
defining the BMC method for HLTL. This is described in the next section.

3 Bounded model checking for HLTL

Bounded semantics of a logic in question with existential interpretation is always
used as the theoretical basis for the SAT-based bounded model checking. In
the paper we have decided not to provide this semantics and not to show its
equivalence to the unbounded semantics. This will be presented in the full version
of the paper. Here, we only focus on the core of the BMC method, i.e. on the
translation to SAT.

Let A be a discrete timed automaton, ϕ an MTL formula, ψ = H(ϕ) the
corresponding HLTL formula, M a discretized model for Aϕ (this an extension

472 B. Woźna-Szcześniak, A. Zbrzezny

ofA – for the exact construction we refer to [15]), and k ≥ 0 a bound. We propose
a BMC method for HLTL, which is based on the BMC technique presented in
[17]. More precisely, we construct a propositional formula

[M, ψ]k := [Mψ,ι]k ∧ [ψ]M,k (1)

that is satisfiable if and only if the underlying model M is a genuine model for
ψ. The constructed Formula (1) is given to a satisfiability solving program (a
SAT-solver), and if a satisfying assignment is found, that assignment is a witness
for the checked property. If a witness cannot be found at a given depth, k, then
the search is continued for larger k.

The definition of the formula [M, ψ]k requires, among other, states of the
model M to be encoded in a symbolic way. This encoding is possible, since
the set of states of M is finite. In particular, we represent each state s by
a vector w = (w1, . . . , wr) (called a symbolic state) of propositional variables
(called state variables), whose length r depends on the number of locations
and clocks in Aϕ. Further, we need to represent finite prefixes of paths in a
symbolic way. We call this representation a j-th symbolic k-path πj and define
it as a pair ((w0,j , . . . , wk,j), uj), where wi,j are symbolic states for 0 ≤ j <
fk(ψ) and 0 ≤ i ≤ k, and uj is a symbolic number for 0 ≤ j < fk(ψ). The
symbolic number uj is a vector uj = (u1,j , . . . , ut,j) of propositional variables
(called natural variables), whose length t equals to max(1, dlog2(k+ 1)e), and it

is used to encode the looping conditions. Next, we need an auxiliary function f̂k :
HLTL→ N that gives a bound on the number of k-paths sufficient for validating
a given HLTL formula. The function is defined as f̂k(ψ) = fk(ψ) + 1, where
fk(>) = fk(⊥) = fk(p) = fk(¬p) = 0 for p ∈ PV; fk(α ∧ β) = fk(α) + fk(β);
fk(α∨β) = max{fk(α), fk(β)}; fk(Hhα) = fk(α)+1; fk(αUβ) = k·fk(α)+fk(β);
fk(αRβ) = (k + 1) · fk(β) + fk(α).

The formula [Mψ,ι]k – the 1st conjunct of Formula (1) – encodes f̂k(ψ)-times
unrolled transition relation, and it is defined in the following way:

[Mψ,ι]k := Iι(w0,0)∧
f̂k(ϕ)∨
j=1

H(w0,0, w0,j)∧
f̂k(ψ)∧
j=1

k−1∧
i=0

T (wi,j , wi+1,j)∧
f̂k(ψ)∧
j=0

k∨
l=0

B=
l (uj)

(2)
where wi,j are symbolic states, uj is a symbolic number, Iι(w0,0) and B=l (uj) are
formulae encoding the initial state, and the value l, respectively. H(w,w′) is a
formula that encodes equality of two global states. The formula T (wi,j , wi+1,j) is
disjunction of three formulas: T (wi,j , wi+1,j), TA(wi,j , wi+1,j), andA(wi,j , wi+1,j)
that encode respectively the time, time-action, and action successors of M.

The formula [ψ]M,k := [ψ]
[0,1,Fk(ψ)]
k – the 2nd conjunct of Formula (1) – en-

codes the translation of a HLTL formula ψ along a k-path, whose number belongs
to the set Fk(ψ) = {j ∈ N | 1 ≤ j ≤ f̂k(ψ)}. The main idea of this translation
consists in translating every subformula α of ψ using only fk(α) k-paths. More
precisely, given a formula ψ and a set Fk(ψ) of indices of k-paths, following [17],
we divide the set Fk(ψ) into subsets needed for translating the subformulae of

Checking MTL Properties of Discrete Timed Automata ... 473

ψ. We assume that the reader is familiar with this division process, and here
we only recall definitions of the functions we use in the definition of the formula

[ψ]
[0,1,Fk(ψ)]
k .
First, we recall the relation ≺ that is defined on the power set of N as: A ≺ B

iff for all natural numbers x and y, if x ∈ A and y ∈ B, then x < y. Now, let
A ⊂ N be a finite nonempty set, and n, d ∈ N, where d ≤ |A|. Then,
• gl(A, d) denotes the subset B of A such that |B| = d and B ≺ A \B.
• gr(A, d) denotes the subset C of A such that |C| = d and A \ C ≺ C.
• gs(A) denotes the set A \ {min(A)}.
• if n divides |A| − d, then hp(A, d, n) denotes the sequence (B0, . . . , Bn) of

subsets of A such that
⋃n
j=0Bj = A, |B0| = . . . = |Bn−1|, |Bn| = d, and

Bi ≺ Bj for every 0 ≤ i < j ≤ n.

Now let hUk (A, d)
df
= hp(A, d, k) and hRk (A, d)

df
= hp(A, d, k + 1). Note that if

hUk (A, d) = (B0, . . . , Bk), then hUk (A, d)(j) denotes the set Bj , for every 0 ≤ j ≤
k. Similarly, if hRk (A, d) = (B0, . . . , Bk+1), then hRk (A, d)(j) denotes the set Bj ,
for every 0 ≤ j ≤ k + 1. Further, the function gs is used in the translation of
subformulae of the form Hhα, if a set A is used to translate this formula, then
the path of the number min(A) is used to translate the operator Hh and the set
gs(A) is used to translate the subformula α. For more details on the remaining
functions we refer to [17].

Now we are ready to define the formula [ψ]
[0,1,Fk(ψ)]
k . Let ψ be a HLTL

formula, and k ≥ 0 a bound. We can define inductively the translation [ψ]
[m,n,A]
k

of ψ along the n-th symbolic k−path πn (n ∈ Fk(ψ)) with starting point m
by using the set A as shown below. Let cl(wm,n, h) denote the fragment of the
symbolic state wm,n that encodes the h-th clock from the set Y, n′ = min(A),
hUk = hUk (gs(A), fk(β)), and hRk = hRk (gs(A), fk(α)). Then,

[>]
[m,n,A]
k := >, [⊥]

[m,n,A]
k := ⊥, [p]

[m,n,A]
k := p(wm,n), [¬p][m,n,A]

k := ¬p(wm,n),

[α ∧ β]
[m,n,A]
k := [α]

[m,n,gl(A,fk(α))]
k ∧ [β]

[m,n,gr(A,fk(β))]
k ,

[α ∨ β]
[m,n,A]
k := [α]

[m,n,gl(A,fk(α))]
k ∨ [β]

[m,n,gl(A,fk(β))]
k ,

[Hh(αUβ)]
[m,n,A]
k :=

∧m−1
j=0 H(wj,n, wj,n′) ∧Hh=0(wm,n, wm,n′)∧ ∧kj=m+1H6=h

(wj,n, wj,n′) ∧
(∨k

j=m([β]
[j,n′,hU

k (k)]
k ∧ ∧j−1i=m[α]

[i,n′,hU
k (i)]

k)
)
∨∧k

j=m+1H 6=h(wj,n, wj,n′) ∧Hh=0(wm,n, wm,n′)∧(∨m−1
l=0 (Llk(πn′) ∧∧l−1j=0H(wj,n, wj,n′) ∧H(wl,n′ , wk,n′)∧∧m−1

j=l+1H 6=h(wj,n, wj,n′))
)
∧
(∨m−1

j=0 (B>j (un′) ∧ [β]
[j,n′,hU

k (k)]
k

∧∧j−1i=0 (B>i (un′)→ [α]
[i,n′,hU

k (i)]
k))

)
∧∧ki=m[α]

[i,n′,hU
k (i)]

k ,

[Hh(αRβ)]
[m,n,A]
k :=

∧m−1
j=0 H(wj,n, wj,n′) ∧Hh=0(wm,n, wm,n′) ∧∧kj=m+1H6=h

(wj,n, wj,n′) ∧
(∨k

j=m([α]
[j,n′,hR

k (k+1)]
k ∧∧ji=m[β]

[i,n′,hR
k (i)]

k)
)

∨∧kj=m+1H 6=h(wj,n, wj,n′) ∧Hh=0(wm,n, wm,n′)∧(∨m−1
l=0 (Llk(πn′) ∧∧l−1j=0H(wj,n, wj,n′) ∧H(wl,n′ , wk,n′)∧∧m−1

j=l+1H 6=h(wj,n, wj,n′))
)
∧
(∨m

j=0(B>j (u′n) ∧ [α]
[j,n′,hR

k (k+1)]
k

474 B. Woźna-Szcześniak, A. Zbrzezny

∧∧j−1i=0 (B>i (un′)→ [β]
[i,n′,hR

k (i)]
k))

)
∧∧ki=m[β]

[i,n′,hR
k (i)]

k

∨∧m−1j=0 H(wj,n, wj,n′) ∧Hh=0(wm,n, wm,n′) ∧∧kj=m+1

H6=h(wj,n, wj,n′) ∧∧kj=m[β]
[j,n′,hR

k (j)]
k ∧ B≤right(h)(cl(wk,n′ , h))

∨B>right(h)(cl(wk,n′ , h)) ∧∧m−1j=0 H(wj,n, wj,n′) ∧Hh=0

(wm,n, wm,n′) ∧∧kj=m+1H 6=h(wj,n, wj,n′) ∧∧kj=m[β]
[j,n′,hR

k (j)]
k

∧(
∨k−1
l=m(Llk(πn′))∨ B>right(h)(cl(wk,n′ , h)) ∧Hh=0(wm,n, wm,n′)

∧∧kj=m+1H 6=h(wj,n, wj,n′) ∧∧kj=m[β]
[j,n′,hR

k (j)]
k ∧(∨m−1

l=0 (Llk(πn′) ∧∧l−1j=0H(wj,n, wj,n′) ∧H(wl,n′ , wk,n′)∧∧m−1
j=l+1H 6=h(wj,n, wj,n′) ∧∧m−1j=l+1[β]

[j,n′,hR
k (j)]

k)
)
.

where p(w) is a formula that encodes a set of states of M in which p ∈ PV holds;
H(w,w′) is a formula that encodes equality of two global states; Hh=0(w,w′) is
a formula that for two global states encodes the equality of their locations, the
equality of values of the original clocks (i.e., clocks from X), and the equality
of values of the new clocks (i.e., clocks from Y) but the value of clock yh. For
clock yh the formula guarantees that its value in the 2nd global state is equal
to zero; H6=h(w,w′) is a formula that for two global states encodes the equality
of their locations, the equality of values of the original clocks, and the equality
of the values of the new clocks with the potential exception of clock yh. For
clock yh the formula guarantees that its value in the 2nd global state is greater
than zero; HX(w,w′) is a formula that encodes equality of two global states on
locations and values of the original clocks; B∼j (v) is a formula that encodes that
the value represented by the vector of propositional variables v is in arithmetic
relation ∼ with the value j, where ∼ ∈ {<, 6, =, >, >}; Llk(πj) := B>k (uj) ∧
HX(wk,j , wl,j).

The following theorem, whose proof will be provided in the full version of the
paper, guarantees that the bounded model checking problem can be reduced to
the SAT-problem.

Theorem 1. LetM be a discrete abstract model, and ψ a HLTL formula. Then
for every k ∈ N, ψ is existentially valid in M with the bound k if, and only if,
the propositional formula [M, ψ]k is satisfiable.

4 Experimental results

Our SAT-based BMC method for MTL, interpreted over the discrete time mod-
els, and discrete timed automata is, to our best knowledge, the first one formally
presented in the literature, and moreover there is no any other model checking
technique for the considered MTL language. Further, our implementation of the
presented BMC method uses Reduced Boolean Circuits (RBC) [1] to represent
the propositional formula [M, ψ]k. An RBC represents subformulae of [M, ψ]k
by fresh propositions such that each two identical subformulae correspond to the
same proposition.

Checking MTL Properties of Discrete Timed Automata ... 475

For the tests we have used a computer with Intel Core i3-2125 processor,
8 GB of RAM, and running Linux 2.6. We set the time limit to 900 seconds, and
memory limit to 8GB, and we used the state of the art SAT-solver MiniSat 2.
The specifications for the described benchmark are given in the universal form,
for which we verify the corresponding counterexample formula, i.e., the formula
which is negated and interpreted existentially.

To evaluate the performance of our SAT-based BMC algorithms for the ver-
ification of several properties expressed in MTL, we have analysed a Timed
Generic Pipeline Paradigm (TGPP) discrete timed automata model shown in
Figure 1. It consists of Producer producing data (ProdReady) or being inactive,
Consumer receiving data (ConsReady) or being inactive, and a chain of n inter-
mediate Nodes which can be ready for receiving data (NodeiReady), processing
data (NodeiProc), or sending data (NodeiSend). The example can be scaled
by adding intermediate nodes or by changing the length of intervals (i.e., the
parameters a, b, c, d, e, f , g, h) that are used to adjust the time properties of
Producer, Consumer, and of the intermediate Nodes.

ProdReady
x0 ≤ b

start

ProdSend

Send1
x0 := 0

Produce
x0 ≥ a
x1 := 0

Node1Ready
x1 ≤ d

start

Node1Proc
x1 ≤ f

Send1
x1 ≥ c
x1 := 0

Node1Send

Proc1
x1 ≥ e
x2 := 0

Send2
x1 := 0

· · · NodenReady
xn ≤ d

start

NodenProc
xn ≤ f

Sendn
xn ≥ c
xn := 0

NodenSend

Procn
xn ≥ e
xn+1 := 0

Sendn+1

xn := 0

ConsReady
xn+1 ≤ d

start

ConsFree
xn+1 ≤ h

out
xn+1 ≥ g
xn+1 := 0

Sendn+1

xn+1 ≥ c
xn+1 := 0

Fig. 1. A Generic Timed Pipeline Paradigm discrete timed automata model

We have tested the TGPP discrete timed automata model, scaled in the
number of intermediate nodes and with all the intervals set to [1, 3], on the
following MTL formulae:

ϕ1 = G[0,∞)(ProdSend ⇒ F[2n+1,2n+2)ConsFree), where n is the number of
nodes. It expresses that each time Producer produces data, then Consumer
receives this data in 2n+ 1 time units.

ϕ2 = G[0,∞)(ProdSend⇒ F[2n+1,2n+2)(ConsFree ∧ F[1,2)ConsReady)), where
n is the number of nodes. It expresses that each time Producer produces
data, then Consumer receives this data in 2n + 1 time units and one unit
after that it will be ready to receive another data.

Since there is no model checker that supports the MTL properties of systems
modelled by discrete timed automata, we were not able to compare results of
the application of our method to a TGPP system with others.

We provide a preliminary evaluation of our method by means of the running
time and the consumed memory. We have observed that for both formulae ϕ1 and

476 B. Woźna-Szcześniak, A. Zbrzezny

ϕ2, we managed to compute the results for 5 nodes in the time of 900 seconds.
The exact data for the mentioned maximal number of nodes are the following:
ϕ1: k = 20, fk(ϕ1) = 3, bmcT is 6.50, bmcM is 19.54, satT is 25.24, satM is

43.00, bmcT+satT is 31.74, max(bmcM,satM) is 43.00;
ϕ2: k = 20, fk(ϕ2) = 24, bmcT is 89.96, bmcM is 163.40, satT is 610.23, satM

is 310.00, bmcT+satT is 700.19, max(bmcM,satM) is 310.00;
where k is the bound, fk(ϕ) is the number of symbolic k-paths, bmcT is the en-
coding time, bmcM is memory use for encoding, satT is the satisfiability checking
time, satM is memory use for the satisfiability checking.

The preliminary results are very promising and indicate that the method is
worthy of further investigation for which purpose especially designed benchmarks
will be developed.

5 Conclusions

We have introduced a SAT-based approach to bounded model checking of dis-
crete timed automata and properties expressed in MTL with discrete semantics.
The method is based on a translation of the existential model checking for MTL
to the existential model checking for HLTL, and then on the translation of the
existential model checking for HLTL to the propositional satisfiability problem.
The two translations have been implemented and tested on the benchmark,
which has been carefully selected in such a way as to reveal the advantages and
disadvantages of the presented approaches.

References

1. P. A. Abdulla, P. Bjesse, and N. Eén. Symbolic reachability analysis based on SAT-
solvers. In Proceedings of the 6th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’00), volume 1785 of LNCS,
pages 411–425. Springer-Verlag, 2000.

2. R. Alur and D. Dill. A theory of Timed Automata. Theoretical Computer Science,
126(2):183–235, 1994.

3. A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model
checking. In Highly Dependable Software, volume 58 of Advances in Computers,
pages 118–149. Academic Press, 2003.

4. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using Branching Time Temporal Logic. In Proceedings of the Workshop on Logics
of Programs, volume 131 of LNCS, pages 52–71. Springer, 1981.

5. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts, 1999.

6. E. A. Emerson, A.K. Mok, A. P. Sistla, and J. Srinivasan. Quantitative temporal
reasoning. Real-Time Systems, 4(4):331–352, December 1992.

7. M. Felder, D. Mandrioli, and A. Morzenti. Proving Properties of Real-Time Sys-
tems Through Logical Specifications and Petri Net Models. IEEE Transaction on
Software Engineering, 20(2):127–141, 1994.

Checking MTL Properties of Discrete Timed Automata ... 477

8. C. A. Furia and P. Spoletini. Tomorrow and all our yesterdays: MTL satisfiability
over the integers. In Proceedings of the Theoretical Aspects of Computing - ICTAC
2008, volume 5160 of LNCS, pages 253–264. Springer-Verlag, 2008.

9. M. Kacprzak, W. Nabialek, A. Niewiadomski, W. Penczek, A. Pólrola, M.Szreter,
B. Woźna, and A. Zbrzezny. VerICS 2007 - a model checker for knowledge and
real-time. Fundamenta Informaticae, 85(1-4):313–328, 2008.

10. R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time
Systems, 2(4):255–299, 1990.

11. A. Lomuscio, W. Penczek, and B. Woźna. Bounded model checking for knowledge
and real time. Artificial Intelligence, 171:1011–1038, 2007.

12. W. Penczek, B. Woźna, and A. Zbrzezny. Bounded model checking for the universal
fragment of CTL. Fundamenta Informaticae, 51(1-2):135–156, 2002.

13. A. Pnueli. The Temporal Logic of Programs. In Proceedings of the 18th IEEE
International Symposium on Foundations of Computer Science (FOCS’77), pages
46–57. IEEE Computer Society Presss, 1977.

14. M. Pradella, A. Morzenti, and P. San Pietro. A metric encoding for bounded
model checking. In Proceedings of the 2nd World Congress on Formal Methods
(FM 2009), volume 5850 of LNCS, pages 741–756. Springer-Verlag, 2009.

15. B. Woźna-Szcześniak and A. Zbrzezny. A translation of the existential model
checking problem from MITL to HLTL. Fundamenta Informaticae, 122(4):401–
420, 2013.

16. A. Zbrzezny. A new discretization for timed automata. In Proceedings of the Inter-
national Workshop on Concurrency, Specification and Programming (CS&P’04),
volume 170 of Informatik-Berichte, pages 178–189. Humboldt University, 2004.

17. A. Zbrzezny. A new translation from ECTL∗ to SAT. Fundamenta Informaticae,
120(3–4):377–397, 2012.

