
SMT versus Genetic Algorithms: Concrete
Planning in the Planics Framework?

Extended Abstract

Artur Niewiadomski1, Wojciech Penczek1,2, and Jarosław Skaruz1

1 ICS, Siedlce University, 3-Maja 54, 08-110 Siedlce, Poland
artur@ii.uph.edu.pl, jaroslaw.skaruz@uph.edu.pl

2 ICS, Polish Academy of Sciences, Jana Kazimierza 5, 01-248 Warsaw, Poland
penczek@ipipan.waw.pl

Abstract. The paper deals with the concrete planning problem (CPP)
– a stage of the Web Service Composition (WSC) in the PlanICS frame-
work. A novel SMT-based approach to CPP is defined and its perfor-
mance is compared to the standard Genetic Algorithm (GA) in the
framework of the PlanICS system. The discussion of both the approaches
is supported by extensive experimental results.

Keywords: Web Service Composition, SMT, GA, Concrete Planning

1 Introduction

The main concept of Service-Oriented Architecture (SOA) [2] consists in using
independent components available via well-defined interfaces. Typically, a com-
position of web services need to be executed to realize the user objective. The
problem of finding such a composition is hard and known as the WSC problem
[2, 1, 11]. In this paper, we follow the approach of our system PlanICS [5, 6], which
has been inspired by [1].

The main assumption in PlanICS is that all the web services in the domain
of interest as well as the objects that are processed by the services, can be
strictly classified in a hierarchy of classes, organised in an ontology. Another
key idea is to divide the planning into several stages. The first phase deals with
classes of services, where each class represents a set of real-world services, while
the others work in the space of concrete services. The first stage produces an
abstract plan composed of service classes [9]. Next, offers are retrieved by the
offer collector (OC) (a module of PlanICS) and used by in a concrete planning
(CP). As a result of CP a concrete plan is obtained, which is a sequence of
offers satisfying predefined optimization criteria. Such an approach enables to
reduce dramatically the number of web services to be considered, and inquired
for offers. This paper deals with the concrete planning realised by SMT- and
GA-based planners.
? This work has been supported by the National Science Centre under the grant No.

2011/01/B/ST6/01477.

310 A. Niewiadomski, W. Penczek, J. Skaruz

While CPP has been extensively studied in the literature as shown by nu-
merous papers concerning an application of GA, the main contribution of our
paper is an application of an SMT-based planner for finding optimal concrete
plans. Such an approach based on SMT-solvers is quite promising and competi-
tive comparing to applications of GA. The second contribution is a comparison
of SMT-based approach performance with the results obtained from GA. While
dealing with very large state spaces, an SMT-solver may be time demanding, but
its advantage is demonstrated in finding always optimal concrete plans. Since a
planner based on GA, being quite fast, may have difficulties in finding optimal
concrete plans, we find both the approaches complementary.

In the last few years the CPP has been extensively studied in the literature.
In [4] a simple GA was used to obtain a good quality concrete plan. In [12]
CPP was transformed to a multicriteria optimization problem and GA was used
to find a concrete plan. However, the authors present the experiments on a
relatively small search space that could not provide valuable conclusions. Our
paper fills the gap by presenting the results that allow to examine scalability of
the algorithms and their efficiency when the large search space is considered.

Most of the applications of SMT in the domain of WSC is related to the au-
tomatic verification and testing. For example, a message race detection problem
is investigated in [7], [3] deals with a service substitutability problem, while [8]
exploits SMT to verification of WS-BPEL specifications against business rules.
However, to the best of our knowledge, there are no other approaches dealing
with SMT-solvers as an engine to WSC.

The rest of the paper is organized as follows. Sect. 2 deals with CPP in
PlanICS. Sect. 3 presents our SMT-based approach to solve CPP. Sect. 4 discusses
experimental results compared to results of the standard GA, while the last
section summarizes the results.

2 Concrete Planning Problem

This section defines CPP as the third stage of the WSC in PlanICS framework
and provides the basic definitions. We introduce the main ideas behind PlanICS
and define CPP as a constrained optimization problem. PlanICS is a system
implementing our original approach which solves the composition problem in
clearly separated stages. An ontology, managed by the ontology provider, con-
tains a system of classes describing the types of the services as well as the types
of the objects they process [10]. A class consists of a unique name and a set of
the attributes. By an object we mean an instance of a class. Below, we present a
simplified ontology, used further as a running example.

Example 1 (Ontology). Consider a simple ontology describing a fragment of some
financial market consisting of service types, inheriting from the class Investment,
representing various types of financial instruments, and three object types:Money
having the attribute amount, Transaction having the two attributes amount
and profit, and Charge having the attribute fee. Suppose that each investment

GA vs SMT 311

service takes m - an instance of Money as input, produces t and c - instances
of Transaction and Charge, and updates the amount of money remaining after
the operation, i.e, the attribute m.amount.

Two fundamental concepts of PlanICS are worlds and world transformations.

Definition 1 (World, Abstract World). Let D = Z ∪R ∪A, where Z is the
set of integers, R is the set of real numbers, and A = {set,null} is the set of
abstract values. Let O be the set of all objects, A be the set of all attributes, and
attr : O 7→ 2A be the function returning the attributes of an object. A world is
a pair (O, val), where O ⊆ O is a set of objects and val : O × attr(O) 7→ D is
a valuation function, which to every attribute of the objects from O assigns a
value from a respective domain or null, if the attribute does not have a value. A
world is abstract if all its object attributes have values from A.

Since the main part of this paper deals with an optimization problem, the do-
mains under consideration are the integer and the real numbers3. PlanICS uses
a state-based approach in which the worlds represent ’snapshots’ of the reality,
while the services transform them. A transformation of a world w by a service
of type s into a world w′, denoted by w s−→ w′, consists in processing a subset of
w, by changing values of object attributes and/or adding new objects, according
to the specification of s [10]. Often, a world w can be transformed by s in more
than one way. For example when w contains multiple objects of the same type
and one can designate more than one subset which can be processed by s. Thus,
we define a transformation context cx as a mapping from the objects of the input
and output of s to the objects of w. The transformation of w by s in the context
cx to w′ is denoted by w

s,cx−−→ w′ [9].
The user expresses a goal by a query, referring to objects and their attributes,

and adding constraints while defining initial worlds to start with and expected
worlds to be reached. Composition is thus understood as searching for a set of
services capable to process certain states in a desired way, that is, transforming
a subset of an initial world into a superset of an expected world (called a final
world). This is obtained by executing services according to a plan.

A specification of a user query consists of the following components: three
sets of objects IN , IO, and OU , two boolean formulas Pre (over IN ∪ IO)
and Post (over IN ∪ IO ∪ OU) specifying the initial and the expected worlds,
resp., a set of aggregate conditions and a set of quality expressions, to be defined
later. The objects of IN are read-only, these of IO can change values of their
attributes, and the objects of OU are produced in subsequent transformations.
The Pre and Post formulas define two families of valuation functions VPre and
VPost, determining values of objects from the initial and the expected worlds,
resp. A set of worlds is defined by a pair composed of a set of objects and a
family of valuation functions. In general, there are three main cases, when Pre or
Post formula defines a family of valuation functions instead of a single function.

3 Note that other types of values used in PlanICS framework, like strings, dates, and
Boolean values can be easily coded by integers.

312 A. Niewiadomski, W. Penczek, J. Skaruz

That is, when a formula contains: (i) an alternative, (ii) constraints that can be
satisfied by more than one valuation, or (iii) the formula does not specify values
of some attributes. In order to define a user query in a formal way, we need to
define the aggregate conditions and the quality expressions which, contrary to
the Pre and Post formulas, are evaluated over final worlds, so they can take into
account also objects not foreseen by the user, but created as by-products of the
transformations leading to the final worlds.

Definition 2 (Aggregate conditions, Quality expressions). A quality ex-
pression is a tuple (cl, sel, form, type), where cl is an object type (a class from
the ontology), sel is a boolean formula over attributes belonging to cl, form is a
real valued expression (built using standard arithmetic operators, like addition,
subtraction, multiplication and division) over attributes of class cl, and type ∈
{Sum,Min,Max}. An aggregate condition is a tuple (cl, sel, form, type,∼, lim),
where the first four components are defined as above, ∼ ∈ {<,≤,=, 6=, >,≥} is
a comparison operator, and lim ∈ R. A set of aggregate conditions is denoted by
Aggr, while a set of quality expressions is denoted by Qual.

The purpose of Qual is to specify criteria of the best plan, while Aggr is used in
order to add sophisticated restrictions on the resulting plan. Their interpretation
is the following. In order to evaluate a single aggregate condition or a quality
expression, first we need to separate a subset of a final world containing the
objects of type cl only. Next, we restrict this subset to the objects satisfying
sel condition. Then, for each object from the remaining set we compute the
value of form expression. Finally, the aggregation function type is applied to
the obtained set of values and as a result we get a single (real) value. In the case
of an aggregate condition, the obtained value is compared with lim constant,
using the provided operator ∼, and as a result we get a boolean value.

Example 2 (Query specification). Consider the ontology from Example 1. As-
sume that the user would like to invest up to $100 in three financial instru-
ments, but he wants to locate more than $50 in two investments. The above is
expressed by: IN = ∅, IO = {m : Money}, OU = {t1, t2, t3 : Transaction},
Pre = (m.amount ≤ 100), and Post = (t1.amount+ t2.amount > 50). The best
plan is clearly this which is the most profitable, i.e., the user wants to maximize
the sum of profits. Moreover, he wants to use only services of handling fees less
than $3. The above conditions are expressed by the following aggregate condi-
tion and the quality expression: Aggr = {(Charge, true, fee,Max,<, 3)}, and
Qual = {(Transaction, true, profit, Sum)}.

Formally, a user query is defined as follows:

Definition 3 (User query). A user query is a tuple (W I ,WE , Aggr,Qual),
where W I = (IN ∪ IO, VPre) and WE = (IN ∪ IO ∪ OU, VPost) are sets of
initial and expected worlds, respectively, Aggr is a set of aggregate conditions,
and Qual is a set of quality expressions.

In the first stage of composition an abstract planner matches services at the
level of input/output types and the abstract values. The result of this stage is a

GA vs SMT 313

Context Abstract Plan (CAP, for short), to be defined after introducing auxiliary
definitions. At this planning stage it is enough to know if an attribute does have
a value, so we abstract from the concrete values of the object attributes [9], using
the following definition.

Definition 4 (World correspondence). Let w = (O, val) be a world and
w′ = (O, val′) be an abstract world. We say that w′ corresponds to w iff for every

o ∈ O and for every a ∈ attr(o) val′(o, a) =

{
set, for val(o, a) 6= null,

null, for val(o, a) = null.

In order to compose services, we define the transformation sequences.

Definition 5 (Transformation sequence). Let k be a natural number and
seq =

(
(s1, cx1), . . . , (sk, cxk)

)
be a sequence of length k, where si is a service

type and cxi is a transformation context for i = 1, . . . , k. We say that a world
w0 is transformed by seq into a world wk iff there exists a sequence of worlds
(w1, w2, . . . , wk−1) such that ∀1≤i≤k wi−1

si,cxi−−−−→ wi. A sequence seq is called a
transformation sequence, if there are two worlds w,w′ such that w is transformed
by seq into w′. The world w′ is called a final world of seq.

Finally, we are in a position to define the result of the abstract planning phase.

Definition 6 (Abstract solution, CAP). Given a transformation sequence
seq and a user query q = (W I ,WE , Aggr,Qual). We say that seq is an abstract
solution for q iff for some w0 ∈W I , wk ∈WE, there are abstract worlds wI , wF ,
such that wI corresponds to w0 and wF corresponds to wk and wI is transformed
by seq into wF . A CAP for a query q is a pair CAPq = (seq, wF), where seq is
an abstract solution for q and wF is a final world of seq.

Thus, each CAP (seq, wF) contains information on the service types, the context
mappings, and a final world of seq. Note that using CAP, the ontology, and the
user query we are able to reproduce all the worlds of the transformation sequence.
A sequence seq is just a representative of a class of equivalent sequences [9, 10].

Collecting offers. In the second planning stage CAP is used by an offer collector
(OC), i.e., a tool which in cooperation with the service registry queries real-
world services. The service registry keeps an evidence of real-world web services,
registered accordingly to the service type system. During the registration the
service provider defines a mapping between input/output data of the real-world
service and the object attributes processed by the declared service type. OC
communicates with the real-world services of types present in a CAP, sending
the constraints on the data, which can potentially be sent to the service in an
inquiry, and on the data expected to be received in an offer in order to keep
on building a potential plan. Usually, each service type represents a set of real-
world services. Moreover, querying a single service can result in a number of
offers. Thus, we define an offer set as a result of the second planning stage.

314 A. Niewiadomski, W. Penczek, J. Skaruz

Definition 7 (Offer, Offer set). Assume that the n-th instance of a service
type from a CAP processes some number of objects having in total m attributes.
A single offer collected by OC is a vector P = [v1, v2, . . . , vm], where vj is a value
of a single object attribute from the n-th intermediate world of the CAP.

An offer set On is a k ×m matrix, where each row corresponds to a single
offer and k is the number of offers in the set. Thus, the element oni,j is the j-th
value of the i-th offer collected from the n-th service type instance from the CAP.

Example 3 (Offer, Offer sets). Consider the user query from Example 2 and
an exemplary CAP consisting of three instances of Investment service type. A
single offer collected by OC is a vector [v1, v2, v3, v4, v5], where v1 corresponds to
m.amount, v2 to t.amount, v3 to t.profit, and v4 to c.fee. Since the attribute
m.amount is updated during the transformation, the offers should contain values
from the world before and after the transformation. Thus v5 stands for the value
of m.amount after modification. Assuming that instances of Investment return
k1, k2, and k3 offers in response to subsequent inquiries, we obtain three offer
sets: O1, O2, and O3, where Oi is a ki × 5 matrix of offer values.

At the moment we develop two implementations of OC realizing the “simple”,
and the “intelligent” concept. The goal of the first approach is to rule out the
offers violating simple constraints from the user query. An intelligent OC, taking
advantage of an inference mechanism, a symbolic computation engine, and the
semantic knowledge from the ontology, aims at discovering more sophisticated
dependencies between offers and use them while collecting offers. Regardless of
the approach chosen, every implementation of OC should satisfy some common
requirements: a) the ability of a reconstruction of the intermediate worlds from a
CAP, b) returning offer sets corresponding to the objects processed by the service
types instances from a CAP, filled with the values acquired from real-world
services, c) propagating the values and constraints present in the user query
and returning them as expressions over offer sets, d) capturing the dependencies
between the values of object attributes from the worlds of a CAP and returning
them as expressions over offer sets, e) translating the set of quality expressions
specified as a part of the query to a scalar function defined over offer sets, being
the sum of all quality constraints.

In the third planning stage, the offers are searched by a concrete planner in
order to find the best solution satisfying all constraints and maximising a quality
function. Thus, we can formulate CPP as a constrained optimization problem.

Definition 8 (CPP). Let n be the length of CAP and let O = (O1, . . . , On) be
the vector of offer sets collected by OC such that for every i = 1, . . . , n

Oi =

 o
i
1,1 . . . o

i
1,mi

...
. . .

...
oiki,1

. . . oiki,mi

 , and the j-th row of Oi is denoted by P i
j . Let P denote

the set of all possible sequences (P 1
j1
, . . . , Pn

jn
), such that ji ∈ {1, . . . , ki} and

i ∈ {1, . . . , n}. The Concrete Planning Problem is defined as:

max{Q(S) | S ∈ P} subject to C(S), (1)

GA vs SMT 315

where Q : P 7→ R is an objective function defined as the sum of all quality
constraints and C(S) = {Cj(S) | j = 1, . . . , c for c ∈ N}, where S ∈ P, is a set
of constraints to be satisfied.

A solution of CPP consists in selecting one offer from each offer set such that all
constraints are satisfied and the value of the objective function is maximized.

Theorem 1. The concrete planning problem (CPP) is NP-hard.

Proof. See Appendix.

3 Concrete Planning using SMT

This section deals with our novel application of SMT to CPP viewed as a con-
strained optimization problem. The idea is to encode CPP as an SMT formula
such that there is a solution to CPP iff the formula is satisfiable. First, a set V
of all necessary SMT-variables (for simplicity called just variables) is allocated:

– q - for storing the subsequent values of the quality function found,
– oidi, where i = 1 . . . n and n is the length of the abstract plan. These

variables are needed to store the identifiers of offers constituting a solution.
A single oidi variable takes a value between 1 and ki.

– oi
j , where i = 1 . . . n, j = 1 . . .mi, and mi is the number of offer values in the
i-th offer set. We use them to encode the values of S, i.e., the values from
the offers chosen as a solution. From each offer set Oi we extract the subset
Ri of offer values which are present in the constraint set and in the quality
function, and we allocate only the variables relevant for the plan.

Next, using the variables from V, the offer values from the offer sets O =
(O1, . . . , On) are encoded as the formula

ofr(O,V) =
n∧

i=1

ki∨
d=1

(
oidi = d ∧

∧
oid,j∈Ri

oi
j = oid,j

)
. (2)

Then, the conjunction of all constraints is encoded as the formula ctr
(
C(S),V

)
,

and the objective function as the formula qual
(
Q(S),V

)
. For convenience its

value is bound with the variable q by q = qual
(
Q(S),V

)
. Thus, the formula

encoding the solutions of CPP is as follows:

cpp
(
O, Q(S),C(S),V

)
= ofr

(
O,V

)
∧ ctr

(
C(S),V

)
∧ q = qual

(
Q(S),V

)
(3)

The maximal value of q is searched using the SMTsearch procedure pre-
sented in Alg. 1 adapting the binary search method. The assumptions mechanism
of an SMT-solver is exploited, which consists in checking satisfiability of an SMT-
formula assuming that a set of boolean conditions are satisfied. In every iteration
the searched interval is divided in half and, since the objective function is to be

316 A. Niewiadomski, W. Penczek, J. Skaruz

Procedure SMTsearch(cpp
(
O, Q(S),C(S),V

)
, δ, min, max)

Input: encoded formula, accuracy, estimated min. and max. value of Q(S)
Result: the maximal value of q with an accuracy of δ

begin
pivot← (min+max)/2; a1 ← (q > pivot); i← 1; result← null;
A← {a1} ; // a single assumption a1 in the assumption set A
while (|max−min| > δ) do

if checkSat(cpp
(
O, Q(S),C(S),V

)
, A) then

i← i+ 1; result← q; min← q; pivot← (min+max)/2;
else

A← (A \ {ai}) ∪ {¬ai} ; // replace ai by ¬ai in A
max← pivot; pivot← (min+max)/2; i← i+ 1;

end
ai ← (q > pivot); A← A ∪ {ai};

end
return result

end
Algorithm 1: Pseudocode of the SMT-based CPP algorithm

maximized, a solution of value greater than a half (pivot) is searched. To this end
the whole formula is checked for satisfiability under the assumption (q > pivot).
If there is a solution, then its value becomes min. Otherwise, the searched value
is less or equal pivot, the last assumption is replaced by its negation, and pivot
value is assigned to max. Then, a new pivot value is computed and the algorithm
iterates again, while the length of the searched interval is greater than δ.

4 Experimental Results

In this section we present the results of the experiments performed using the Z3
SMT-solver running on a standard PC equipped with 2GHz CPU and 8GB RAM.
Since Genetic Algorithms are widely used in many optimization problems, we
compare the efficiency of our new SMT-based approach with the results obtained
using the standard GA, which we have implemented to this aim.

Implementation of GA. The only non-standard elements of our GA are the
concrete plan encoding scheme and the computation of the fitness function. An
individual is a sequence of indices of the offers chosen from the consecutive offer
sets. The fitness value of an individual is the sum of the optimization objective
and the ratio of the number of the satisfied constraints to the number of all
constraints (see Def. 8), multiplied by some constant β:

fitness(Ind) = Q(SInd) + β ·
|sat(C

(
SInd)

)
|

c
, (4)

where Ind stands for an individual, SInd is a sequence of the offer values corre-
sponding to Ind, sat

(
C(SInd)

)
is a set of the constraints satisfied by a candidate

GA vs SMT 317

solution represented by Ind, and c is the number of all constraints. The role of
β is to reduce both of the sum components to the same order of magnitude and
to control the impact of the components on the final result.

Experiments. In each of the experiments we use different optimization objec-
tives and constraints, and compare the obtained results. Equation 5 presents
the objectives Q1, Q2, Q3 used in the experiments 1-5, while the constraints are
combinations of C1,C2,C3 defined by Equation 6. In the experiments 6 and 7,
we use the constraints and the objective function of our working example.

Q1 =

n∑
i=1

oiji,1, Q2 =

n∑
i=1

oiji,2, Q3 =

n∑
i=1

(oiji,1 + oiji,2), (5)

C1 = {(oiji,1 < oi+1
ji+1,1

)}, C2 = {(oiji,2 < oi+1
ji+1,2

)}, C3 = {(oiji,2 = oi+1
ji+1,2

)}(6)

for i = 1, . . . , n− 1.

In all the experiments sets of offers generated randomly by our Offer Gen-
erator (OG) have been used. The values have been uniformly distributed in the
range between 0 and 100, but the α parameter has been introduced, which spec-
ifies a percentage of values below 33.3, in order to get different distributions of
high quality concrete plans. The following values of the GA parameters have
been used: the number of the individuals equals to 1000, the probability of mu-
tation equals to 0.5%, the probability of the one-point crossover operator equals
to 95%, and the algorithm was run 100 times for each setup. As to the SMT-
based algorithm, the 500 sec. time-out has been set. Each experiment has been
repeated only 10 times as the run-times obtained have been very similar, and
the quality values have been the same each time.

In Experiment 1 Q1 has been used as an optimization objective and C1 as
a set of constraints. In all experiments we have tested instances with 5, 10,
and 15 offer sets, containing 256, 512, and 1024 offers each. Two sets of offers
with α = 5% and α = 40% have been generated. The results are presented
in Table 1. The SMT-based planner always returns optimum, while GA, as a
non-deterministic algorithm, finds optimum in at most 20% cases, for instances
with 5 service types. All solutions are obtained within 0.25 to nearly 3 seconds.
Comparing quality we can observe that the difference between the SMT-solver
and GA ranges from 0.5% up to about 31% for instances with 15 service types.

In Experiment 2 the constraints remain the same (C1), the objective function
is similar (Q2), but we maximize the sum of other values than these used in the
constraints. Table 2 presents the impact of these changes on the SMT-based
planner. In comparison to the results of Exp. 1, the runtime of SMT-solver
increases.The biggest difference can be noticed for plans of length 15, however,
as it follows from the probability results, these are also hard to find for GA.
On the other hand, the power of SMT is in the ability to take advantage of the
constraints in order to reduce the search space. The results suggest that working
with constraints related to different variables than these used in the objective
function leads to longer runtimes of the SMT-solver.

318 A. Niewiadomski, W. Penczek, J. Skaruz

Table 1. The results of Experiment 1: left α = 40%, right α = 5%.
SMT GA SMT GA

Sp. n Offs t[s] Q t[s] AvgQ Bs. Pr. t[s] Q t[s] AvgQ Bs. Pr.
245

5
512 0.28 485 0.41 479.23 18 100 0.36 490 0.42 484.95 13 100

250 1024 0.52 490 0.86 481.95 4 100 0.52 490 0.76 484.9 9 100
280

10
256 0.51 920 0.47 720.21

0

92 0.47 955 0.47 794.64

0

91
290 512 0.68 955 0.83 797.97 91 0.72 955 0.83 824.96 97
2100 1024 1.27 955 1.59 802.44 100 1.33 955 1.59 853.56 98
2120

15
256 0.73 1350 0.9 929.3 10 0.95 1388 0.76 1102.07 14

2135 512 1.49 1377 1.47 998.8 15 1.28 1395 1.35 1092.33 12
2150 1024 2.06 1395 2.78 1027.43 16 2.09 1395 2.53 1086.85 14

Table 2. The results of Experiment 2: left α = 40%, right α = 5%.
SMT GA SMT GA

Sp. n Offs t[s] Q t[s] AvgQ Bs. Pr. t[s] Q t[s] AvgQ Bs. Pr.
245

5
512 0.87 499 0.37 493.62 4 100 0.50 499 0.39 498 17 100

250 1024 1.55 499 0.72 495.91 9 100 0.65 499 0.67 498.72 28 100
280

10
256 4.47 979 0.46 934.69 2 89 2.19 994 0.45 957.78 1 88

290 512 3.44 992 0.83 923.62 1 89 2.76 996 0.83 967.37

0

90
2100 1024 6.02 995 1.53 949.09

0

93 3.34 998 1.57 959.55 98
2120

15
256 249.46 1443 0.74 1269.87 8 100.26 1475 0.73 1416 9

2135 512 425.32 1467 1.5 1322.92 12 97.20 1489 1.35 1362.28 7
2150 1024 57.74 1493 2.67 1300.58 12 63.94 1495 2.49 1398.38 18

Table 3. The results of Experiment 3 (left) and Experiment 4 (right).
SMT GA SMT GA

Sp. n Offs t[s] Q t[s] AvgQ Pr. t[s] Q t[s] AvgQ Pr.
245

5
512 7.73 924 0.36 865.8 100 1.59 841 0.32 754.51 100

250 1024 3.95 947 0.61 892.13 100 1.41 904 0.62 781.3 100
280

10
256 > 500 1633* 0.4 1464.64 93 150.58 1207 0.4 1025.5 2

290 512 215.13 1803 0.7 1479.98 86 24.09 1562 0.69 1187.25 4
2100 1024 243.24 1862 1.29 1535.52 96 345.57 1655 1.34 1211.72 11
2120

15
256

> 500
2448* 0.64 2067.45 11

> 500
1550*

— 02135 512 2291* 1.15 2148.08 12 1567*
2150 1024 2630* 2.11 2134.35 17 2270*

Table 4. The results of Exp. 5 (left), Exp. 6 (center), and Exp. 7 (right).
SMT GA SMT GA SMT

Sp. n Offs t[s] Q t[s] AvgQ Pr. t[s] Q t[s] AvgQ Pr. t[s] Q
245

5
512 0.54 752 0.34 356.6 14 3.63 393 0.32 266.26 30 0.41 5

250 1024 0.85 866 0.64 420.2 10 3.48 469 0.6 274.86 30 0.68 10
280

10
256 0.73 noSol

— 0

35.24 683 0.4 289 8 0.32 noSol
290 512 5.01 780 159.09 753 0.68 399.22 18 1.18 12
2100 1024 3.51 1508 143.07 888 1.3 378.5 24 2.78 20
2120

15
256 1.10 noSol

>500
942* 0.64 446 1 1.00 noSol

2135 512 10.43 1164 767* 1.14 536 2 5.54 18
2150 1024 40.82 1287 755* 2.08 481 5 16.97 29

GA vs SMT 319

In order to discover the limitations of both the planners, in Experiments 3, 4,
and 5 we use the harder set of data, i.e., the offers generated with α = 40%. We
examine how the approaches deal with the “sum of sums” in the optimization
function, and thus in Exp. 3 we use Q3 as the optimization objective and C1

as the set of constraints. Moreover, we aim at confirming our conjecture on
behaviour of the SMT-solver in presence of a larger number of constraints. Thus,
in Exp. 4 we use Q3 as the optimization objective and C1 ∪ C2 as the set of
constraints. Table 3 presents the results.

Comparing the results of Exp. 2 and 3 one can notice that the more compli-
cated objective function has almost no influence on the runtime and the prob-
ability of finding solutions by GA. On the other hand, the instances from Exp.
3 seem to be a bit harder for GA because the quality difference between SMT
and GA is greater and ranges from 3.4% up to about 19%, and furthermore,
GA could not find an optimal solution. The results of our SMT-based approach
indicate that the constraints used in Exp. 3 are too weak to significantly bound
the search space. We were unable to find the optimal solution in four cases.

In Exp. 4 we use two times more constraints than in Exp. 3. Firstly, we
found the limit beyond which an application of GA is pointless. In Exp. 4 we
use 2 · (n − 1) constraints. For plans of length 10 and for 18 constraints GA
barely finds a few solutions quality of which differ from optimum by 12% to
almost 27%. Secondly, adding more constraints improves slightly the efficiency
of an SMT-solver. However, not only the number of constraints is important,
but also their influence on the number of existing solutions in the search space.
We prove it by choosing C1 ∪ C3 as the set of constraints (i.e., we change the
half of constraints from “less than” to “equal”) and running Exp. 5. The results
are in Table 4. The SMT-runtime decreases tremendously, as well as quality and
the probability of finding a solution by GA. Now, GA barely finds solutions of
length 5 quality of which differ from optimum by 13.7% up to almost 53%.

Experiments 6 and 7 are based on our working example and have been per-
formed on datasets with α = 90%. In Exp. 6 we used 6, 11, and 14 constraints for
plans of length 5, 10, and 15, respectively. The quality of solutions found by GA
is worse by about 30% to almost 58% than the ones found by the SMT-solver.
Moreover, the solutions have been found with a low probability. Unfortunately,
the runtimes of SMT-based planner are quite long in this case. However, using
a set of 11, 21, and 29 constraints for plans of length 5, 10, and 15, respectively,
which significantly reduces the number of solutions existing in the search space,
we obtain a very nice behaviour of our SMT-based planner in Exp. 7. Table 4
presents the results, where noSol means that there is no solution at all.

5 Conclusions

In the paper we have presented the concrete planning in the PlanICS framework,
its reduction to the constrained optimization problem, and a new SMT-based
approach to solve it. The experimental results, compared with results of the
standard GA, present advantages and disadvantages of both the approaches. The

320 A. Niewiadomski, W. Penczek, J. Skaruz

most important feature of the SMT-based planner is its ability of finding always
the optimal solution, provided that it is enough time and memory. In contrast,
GA finds sometimes the optimal solution of length at most 5, but it consumes
less time and memory. The ability of GA to find a concrete plan depends on the
number of constraints. The more optimization constraints the smaller probability
of finding a concrete plan. These drawbacks of GA are not common to our
SMT-based approach. Moreover, our experiments show that a large number of
constraints helps the SMT-solver to reduce the search space and to find the
optimal solution faster. Our experimental results show that an application of
the SMT-based method to solve CPP is promising and valuable against the well
known GA-based approach. Overall, both the approaches are complementary
and behave differently depending upon a particular problem instance.

References

1. S. Ambroszkiewicz. Entish: A language for describing data processing in open
distributed systems. Fundam. Inform., 60(1-4):41–66, 2004.

2. M. Bell. Introduction to Service-Oriented Modeling. John Wiley & Sons, 2008.
3. M. M. Bersani, L. Cavallaro, A. Frigeri, M. Pradella, and M. Rossi. SMT-based

verification of LTL specification with integer constraints and its application to
runtime checking of service substitutability. In SEFM, pages 244–254, 2010.

4. G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani. An approach for qos-
aware service composition based on genetic algorithms. In Proceedings of the 2005
Conference on Genetic and Evolutionary Computation, pages 1069–1075, 2005.

5. D. Doliwa, W. Horzelski, M. Jarocki, A. Niewiadomski, W. Penczek, A. Półrola,
and J. Skaruz. HarmonICS - a tool for composing medical services. In ZEUS,
pages 25–33, 2012.

6. D. Doliwa, W. Horzelski, M. Jarocki, A. Niewiadomski, W. Penczek, A. Półrola,
M. Szreter, and A. Zbrzezny. PlanICS - a web service compositon toolset. Fundam.
Inform., 112(1):47–71, 2011.

7. M. Elwakil, Z. Yang, L. Wang, and Q. Chen. Message race detection for web ser-
vices by an SMT-based analysis. In Proc. of the 7th Int. Conference on Autonomic
and Trusted Computing, ATC’10, pages 182–194. Springer, 2010.

8. G. Monakova, O. Kopp, F. Leymann, S. Moser, and K. Schäfers. Verifying business
rules using an SMT solver for BPEL processes. In BPSC, pages 81–94, 2009.

9. A. Niewiadomski and W. Penczek. Towards SMT-based Abstract Planning in Plan-
ICS Ontology. In Proc. of KEOD 2013 – International Conference on Knowledge
Engineering and Ontology Development, 2013 (to appear).

10. A. Niewiadomski, W. Penczek, and A. Półrola. Abstract Planning in PlanICS
Ontology. An SMT-based Approach. Technical Report 1027, ICS PAS, 2012.

11. J. Rao and X. Su. A survey of automated web service composition methods. In
Proc. of SWSWPC’04, volume 3387 of LNCS, pages 43–54. Springer, 2004.

12. Y. Wu and X. Wang. Applying multi-objective genetic algorithms to qos-aware web
service global selection. Advances in Information Sciences and Service Sciences,
3(11):134–144, 2011.

GA vs SMT 321

Appendix

Proof (NP-hardness of CPP). We show that concrete planning problem is NP-
hard by showing the linear reduction of 3-SAT problem to CPP. Consider a set
of propositional variables PV and 3-CNF formula ϕ = c1 ∧ c2 ∧ · · · ∧ cn, where
ci = (x1i ∨ x2i ∨ x3i), x

j
i = p or xji = ¬p, for every p ∈ PV, i = 1 . . . n and

j = 1 . . . 3. We encode the satisfiability problem of ϕ as a Concrete Planning
Problem CPP as follows.

We take a Context Abstract Plan (CAP) of length n, and n offer sets. Each
offer contains 3 values from the set {0, 1}, and each value corresponds to a single
propositional variable used in i-th clause. Each offer set contains all the possible
combinations of offer values (8 offers per set), that is, each offer set is an 8 × 3
matrix. Thus, P is the set of all possible binary sequences of length 3n.

We transform the formula ϕ to a set of constraints C in such a way that every
clause ci became a single constraint, where xji = p is encoded as oiki,j

= 1 and

xji = ¬p as oiki,j
= 0, for ki = 1 . . . 8 and p ∈ PV. Moreover, for every proposi-

tional variable p occurring in ϕ we take two subsets of offer variables Pp and Np,
which encode p and ¬p, respectively: Pp = {oiki,j

| for every i, j such that xji =

p} and Np = {oiki,j
| for every i, j such that xji = ¬p}. Now, for each non-

empty set Xp, where X ∈ {P,N} and p ∈ PV, we order the elements of
Xp according to increasing values of their indices and we build the sequence
Xp = (a1, a2, . . . , a|Xp|), where ai ∈ Xp. Next, we add the following constraints
to our constraint set: {(ai = ai+1) | for ai ∈ Xp and i = 1, . . . , (|Xp| − 1)}, that
is, we require the neighbouring elements of the sequence to be equal. Moreover,
for every pair of non-empty sequences (Pp, Np), where Pp = (a1, . . . , a|Pp|) and
Np = (b1, . . . , b|Np|), we add a single constraint: (a1 6= b1).

Finally, we take the constant objective function (e.g. Q(S) = 1, for S ∈ P).
Then, CPP has a solution iff ϕ is satisfiable.

