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Abstract. A network system is given as a set of Petri net-like struc-
tures called agents. Each agent has a singled out place interpreted as
a communication port with ingoing edges labelled with send(p1, ..., pn)
and receive(q1, ..., qm) commands, where pi, qj are names of ports of its
interlocutors. Every such edge exits a transition emiting a request for
send or receive message. A transmission channel between the agent and
its intelocutors is established when its port holds a send or receive com-
mand, while ports of its interlocutors hold respective (matching) com-
munication commands. This gives rise to communication between the
agent and its interlocutors, after which the channel is disrupted: hence
floating channels. Some behavioural properties of such network system
are examined, their decision complexity, deadlock and fairness in their
number.

1 Introduction

A system of communicating agents here is a collection of Petri net-like struc-
tures [Rei 1985], such that in every net there is a singled out place serving for
communication and called a port. Each arrow entering the agent’s port is la-
belled with a send or receive communication statement with parameters being
names of ports the agent sends a message to, or receives from. Firing a transi-
tion the arrow outgoes, results in putting the arrow’s label in the port. If it is a
send (receive) statement and all ports - its parameters - hold matching receive
(send) statements, then a communication channel between senders and receivers
is set up (”matching” in the sense of ”hand-shaking” [Hoa 1978], [Hoa 1985],
[OCCAM 1984]). The channel is realized as a special transition, called a trans-
mission, with sending and receiving ports as its preset and postset respectively.
Firing such transition represents a message transfer between the ports involved.
After firing, this transition disappears, thus the channel is disrupted. That is
why we say that the channels are floating. Such systems are defined, examples
shown and some behavioural properties investigated. If the 1-safe Petri nets
are taken as the agents, then complexity of a number of decision problems for
systems with floating channels become straightforward conclusions from known
results, collected e.g. in [ESP 1998]. Some problems, namely deadlock and two
kinds of fairness is analysed in the framework of the proposed model and their
set-theoretic characteristics are given.
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2 Communicating Agents

Let A = {Ap1 , Ap2 , ..., Apd} be a set of agents, each agent Api (i = 1, 2, ..., d)
equipped with a single communication port pi, their set P = {p1, p2, ..., pd}. A is
treated as a distributed system whose agents are capable of intercommunicating
through their ports. Suppose that the agents are autonomous, i.e. do not share
any of their constituents. Let !(pk1 , pk2 , ...) and ?(pl1 , pl2 , ...) be a shorter no-
tation of send(pk1 , pk2 , ...) and receive(pl1 , pl2 , ...) operations respectively, i.e.
sending a message by an agent to ports pk1 , pk2 , ... and receiving a message from
ports pl1 , pl2 , .... Here k1, k2... and l1, l2... are subsequences of the sequence
1, 2, ..., d. These communication operations may assume a varying number of
parameters and are executed in the synchronous, i.e. hand-shaking mode. Let
C denote a set of all possible communication operations of all the agents, along
with the empty (no communication) operation Θ. Since apart from communi-
cation, other computational activity of the agents is inessential, such fragments
of their activity are not taken into consideration. That is why we assume that
agent Ap with port p is represented as a single place net with a specific firing
rule (semantics):

Ap = ({p}, Tp, Fp) for p ∈ P where:

Tp is a set of transitions, i.e. actions inserting send or receive operations in the
port p,

Fp : Tp × {p} → Cp is a set of arrows from transitions to place p, each arrow
labelled with a send or receive operation the agent Ap can issue, i.e. Cp ⊆
C − {Θ}. Suppose no agent can send/receive message to/from itself. That is:

Fp(t, p) is either !(pk1 , pk2 , ...) or ?(pl1 , pl2 , ...) with pki 6= p 6= plj (i = 1, 2, ...;
j = 1, 2, ...).

The local communication state (for short: a local state) of the agent Ap is a
function Mp : {p} → Cp ∪ {Θ}.

The set of all states of the agent Ap is Sp = (Cp ∪ {Θ}){p}

Semantics of transition t ∈ Tp is a relation [[t]] ⊆ Sp×Sp defined by (Mp,M
′

p) ∈
[[t]] iff Mp(p) = Θ ∧M ′

p(p) = Fp(t, p) (M
′

p is the next state following Mp

obtained in effect of firing transition t)

Semantics of agent Ap : [[Ap]] =
⋃
t∈Tp

[[t]]

Fig.1 depicts agent Ap capable of communicating with agents Ap1 , Ap2 , Ap3 , Ap4 ,
Ap5 and passing from the state Mp = {(p,Θ)} to the state M ′p = {(p, !(p1, p4)}
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Fig. 1. Example of agent Ap and result of firing transition t3

as a result of firing transition t3. This means that Ap issued a request for sending
a message to Ap1 and Ap4 .

The global communication state (for short: a global state) of the system A is a
function

M : P → C, their set S = CP , thus the local state Mp is a restriction of M
to {p}. The state (global and local) will be treated as a set of pairs of the form
(p, !(pk1 , pk2 , ...)) and (p, ?(pl1 , pl2 , ...)) for p, pk1 , pk2 , pl1 , pl2 ... ∈ P .

2.1 Transmissions

For n,m ≥ 1, let a1, ..., an and b1, ..., bm, pairwise distinct, be ports of
agents Aa1 , ..., Aan and Ab1 , ..., Abm . Let ai:!(b1, ..., bm) denote the pair
(ai, !(b1, ..., bm)) meaning ”agent Aai sends a message to agents Ab1 , ..., Abm”
and bj :?(a1, ..., an) the pair (bj , ?(a1, ..., an)) meaning ”agent Abj receives a
message from agents Aa1 , ..., Aan”. A transmission (matching send and receive
operations) is a pair t = ( •t ,t•) of sets of the form:
•t = {a1:!(b1, ..., bm), ..., an:!(b1, ..., bm)} (pre-set of transmission t)

t• = {b1:?(a1, ..., an), ..., bm:?(a1, ..., an)} (post-set of transmission t)

Let •t• = •t∪t• and •t• ↓ P be a projection of •t• onto the set P , i.e.
•t• ↓ P = {a1, ..., an, b1, ..., bm}, that is, the set of ports the transmission t is
involved in. Note that •t• is of the same type as the global state M : both are
sets of pairs of the form (x, !(...)) or (x, ?(...)).

Expressions ai:!(b1, ..., bm) and bj :?(a1, ..., an) denote matching labelled com-
munication operations.

Note that a transmission depends on a state: it may come into existence in a
certain global state and disapear in another. Such emerging and disappearing
during system’s activity transmissions are typed in bold letters, to distinguish
them from the static transitions of the agents.
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Let TR denote the set of all possible transmissions in the system. If a transmis-
sion t∈TR exists in a state M (i.e. •t• ⊆ M) then its semantics is a relation
[[t ]] ⊆ S×S defined by (M,M ′) ∈ [[t ]] iff M ′ = M−•t•∪{(x,Θ)| x ∈ •t• ↓ P}.
This means that M ′ is M in which all pairs (x, !(...)) and (x, ?(...)) belonging
to •t• are replaced with pairs (x,Θ), i.e. M ′ is the result of ”firing” transmission
t at the state M . This models the transfer of a message from senders to receivers
and disruption of the communication channel.

In Fig.2 a collection of 6 ports of agents Ap, Ap1 , Ap2 , Ap3 , Ap4 , Ap5 are depicted.
The global state of this system is

M =
p p1 p2 p3 p4 p5

!(p1, p4) ?(p) Θ Θ ?(p) Θ

Transmission t = ({(p:!(p1, p4))}, {(p1:?(p), (p4:?(p))}) transforms M

into M ′ =
p p1 p2 p3 p4 p5
Θ Θ Θ Θ Θ Θ

in effect of sending

simultaneously a message from agent Ap to Ap1 and Ap4

Fig. 2. Transmission of a message from agent Ap to Ap1 and Ap4 through channel =⇒.
Here, • t• ↓ P = {p, p1, p4}

2.2 Existence of transmissions

A transmission t∈TR exists in a global state M of the system A iff •t• ⊆M .
Given a global state M0 and a transmission t , the realizability of t starting
computation from M0 is expressed as: does there exist a state M reachable
from M0 such that •t• ⊆ M ? Thus, the existence problem for t reduces to
some versions of state reachability and inclusion problems. Their solution in the
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form of yes/no decision and, possibly, their complexity, depends obviously on
the formal description of agents. For example, let us assume that agents are
described as 1-safe finite Petri nets (places are valued in the set {0,1}) obtained
by replacing labels of arrows entering ports by weights 1. Then, the existence of t
reduces to the problem ”For a given marking M0 and place p, is there a reachable
from M0 marking with a token in p?”, which is known to be the PSPACE-hard
(PSPACE - the set of all decision problems solvable by a Turing machine with a
polynomial amount of space), see e.g. [ESP 1998]. Indeed, after the replacement
of arrow labels, the whole system becomes one disconnected 1-safe Petri net.
Denote by m0 the marking of it, such that each place (port) x ∈ •t• ↓ P holds
a token (i.e. m0(x) = 1) iff M0(x) 6= Θ. In such system net each x ∈ •t• ↓ P
has no outgoing arrow, thus, if a token enters this place at a certain marking
reachable from m0, then it will stay there indefinitely. Now, decide if there is a
marking m reachable from m0 and satisfying m(x) = 1 for all x ∈ •t• ↓ P . If
yes (and only if), then in the original system (before replacement of the labels of
arrows entering ports) there exists the transmission t , because •t• ⊆M , where
M is m restricted to ports x ∈ •t• ↓ P holding communication operations
!(...) and ?(...) instead of tokens.

Note that the assumption on agents’ internal (i.e. without communication)
activity as specified by Petri nets, corresponds to the concept of self-modifying
nets ([B-D 1997], [Val 1978], [Val 1981], [Cza 2013]). Indeed, transmissions are
in fact a special kind of transitions appearing and disappearing, so the system
changes its structure in the course of its performance.

3 Semantics of the System A and some PSPACE-hard
Decision Problems of its Behaviour

Let T =
⋃
p∈P

Tp and F =
⋃
p∈P

Fp i.e. the set of all transitions and arrows in

the system A respectively. The triple A = (P, T, F ), denoted also by A, is a
net representation of the system. Its semantics is the union of semantics of the
transitions t ∈ T and message transmissions t∈TR: [[A]] =

⋃
τ∈T∪TR

[[τ ]]. If

(M,M ′) ∈ [[A]] then M ′ is the next to M state evoked by a transition t ∈ T or a

transmission t∈TR. For τ ∈ V = T ∪TR denote M
τ−→M ′ iff (M,M ′) ∈

[[τ ]]. A run starting at M0 is a chain M0
τ1−→ M1

τ2−→ M2
τ3−→ ..., finite or

infinite, but if finite M0
τ1−→M1

τ2−→M2
τ3−→ ...

τn−→Mn then none M satisfies
(Mn,M) ∈ [[A]]. A finite or infinite word v = τ1τ2τ3... ∈ V ω = V ∗ ∪ V∞
occurring at this run is a path starting at M0. If finite v = τ1τ2τ3...τn ∈
V ∗ then M

v−→ M ′ denotes M
τ1−→ M1

τ2−→ M2
τ3−→ ...

τn−→ M ′. The
set of all finite and infinite runs starting at M is RUN∗(M) and RUN∞(M)
respectively and RUN(M) = RUN∗(M) ∪ RUN∞(M). The set of respective
paths is PATH(M) = PATH∗(M) ∪ PATH∞(M), thus PATH(M) ⊆ V ω.

Assuming, as above, that agents are described by 1-safe Petri nets obtained by
replacing labels of arrows entering ports by weights 1, one can simulate behaviour
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of the system by a 1-safe net as follows. Let a state M be given. For each
transmission t∈TR create a transition t /∈ T defined as t = (•t, t•) with
•t = •t • ↓ P , t• = ∅, and make arrows from ports p ∈ •t • ↓ P to t.
The extended net is a triple A = (P, T , F ), where T = T∪ set of newly
created transitions, and F = F∪ set of newly created arrows weighted with 1. A
marking of A is obtained from marking of A by replacing operations !(...), ?(...)
with tokens wherever such operations are in some ports and removing Θ from
remaining ports. Fig.3 depicts a simulation of transmission t from Fig.2 by the
newly created transition t and result of its firing. Remember: while t appears
and disapears in the course of the system activity, the transition t ∈ T is the
ordinary transition of the Petri net A simulating system A, thus a unchangeable
member of the A’s static structure.

Fig. 3. Transition t = ({p, p1, p4}, ∅) with empty post-set simulates behaviour of
message transmission t in Fig.2

Some problems concerning behaviour of the system A may be reduced to
problems concerning behaviour of the Petri net A. To mention a few (suppose
runs start from a given marking):

a. Existence of run with a given message transmission occurrence
b. Existence of reachable dead marking (no transition can fire at it)
c. Existence of finite run (equivalent to b)
d. Existence of infinite run
e. Existence of run with infinite number of a given message transmission occur-

rence
f. Existence of run with never accomplished a given request for communication

All these problems are PSPACE-hard for 1-safe Petri nets ([ESP 1998]) and A is
such net. Therefore, by virtue of the obviously polynomial simulation procedure
described above, the problems for systems specified like A in this paper, are
PSPACE-hard provided that internal activity of agents is specified by 1-safe
Petri nets.
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4 Deadlock and Fairness: Emptiness and Finiteness of
Sets of Paths

Out of several concepts and kinds of deadlock and fairness found in diverse mod-
els of distributed computing, let us consider those arising from communication
and described in terms of the model pursued here.

4.1 Deadlock

System A is deadlock-free at a state M if for each agent requesting for communi-
cation there is a finite path starting at M , such that the agent will be permitted
to accomplish the request on this path. A deadlock is a negation of this property.
For an agent Ap ∈ A = (P, T, F ), with port p and for a state M ∈ S define:

Dp(M)
def⇐⇒ ¬[∃M ′.∃v.(M v−→M ′ ∧ ∃t .(t

∗
∈ v ∧ p:M(p) ∈ •t•))]

where t
∗
∈ v means ”transmission t∈TR occurs on the path v” and p:M(p) ∈

•t• means ”t accomplishes request for communication issued by agent Ap and
pending at the state M”.
In words: never agent Ap requesting for communication at the state M will
be permitted to accomplish the request by a certain transmission occurring on
whichever finite path starting at M .
The system is subject to a deadlock at the state M iff:
∃p.M(p) 6= Θ ∧Dp(M).

Proposition 4.1.1 (set-theoretic characterization)

Dp(M) if and only if PATH(M)∩V ∗tV ∗ = ∅ for each t satisfying p:M(p) ∈
•t•

Proof
Dp(M)⇐⇒
¬∃M ′.∃v.(M v−→M ′ ∧ ∃t .(t

∗
∈ v ∧ p:M(p) ∈ •t•))⇐⇒ (swapping quantifiers)

¬∃v.∃M ′.(M v−→M ′ ∧ ∃t .(t
∗
∈ v ∧ p:M(p) ∈ •t•))⇐⇒ (De Morgan law)

∀v.¬∃M ′.(M v−→M ′ ∧ ∃t .(t
∗
∈ v ∧ p:M(p) ∈ •t•))︸ ︷︷ ︸

no M ′ in this formula

⇐⇒

∀v.¬((∃M ′.M v−→M ′) ∧ ∃t .(t
∗
∈ v ∧ p:M(p) ∈ •t•))⇐⇒ (De Morgan law)

∀v.(¬(∃M ′.M v−→M ′) ∨ ¬∃t .(t
∗
∈ v ∧ p:M(p) ∈ •t•))⇐⇒

∀v.((∃M ′.M v−→M ′)⇒ ¬∃t .(t
∗
∈ v ∧ p:M(p) ∈ •t•))⇐⇒

∀v.(v ∈ {u| ∃M ′.M u−→ M ′} ⇒ ¬∃t .(t
∗
∈ v ∧ p:M(p) ∈ •t•)) ⇐⇒ (definition of

PATH(M))

∀v.(v ∈ PATH(M)⇒ ¬∃t .(t
∗
∈ v ∧ p:M(p) ∈ •t•))⇐⇒

{v| v ∈ PATH(M)} ⊆ {v| ¬∃t .(t
∗
∈ v ∧ p:M(p) ∈ •t•)} ⇐⇒
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PATH(M) ⊆ {v| ¬∃t .(t
∗
∈ v ∧ p:M(p) ∈ •t•)} ⇐⇒

PATH(M) ⊆ V ∗ − {v| ∃t .(t
∗
∈ v ∧ p:M(p) ∈ •t•)}

Therefore:

PATH(M) ⊆ V ∗ − V ∗tV ∗ for each t satisfying p:M(p) ∈ •t• where V ∗tV ∗

is the set of all finite words over V where t occurs. Thus:

if p:M(p) ∈ •t• then PATH(M)− (V ∗ − V ∗tV ∗) = ∅.
Since X − (Y − Z) = (X − Y ) ∪ (X ∩ Z) for any sets X,Y, Z then

PATH(M)− (V ∗ − V ∗tV ∗) = (PATH(M)− V ∗)∪ (PATH(M)∩ V ∗tV ∗) = ∅
(Because PATH(M)− V ∗ = ∅). Finally:

Dp(M) iff ∀t .(p:M(p) ∈ •t• ⇒ PATH(M) ∩ V ∗tV ∗ = ∅) 2

Theorem 4.1.1

A deadlock at a state M occurs iff:

∃p.[M(p) 6= Θ ∧ (∀t .(p:M(p) ∈ •t• ⇒ PATH(M) ∩ V ∗tV ∗ = ∅))] 2

Thus decidability of such deadlocks reduces to deciding whether transmission t
does not occur on any path starting from M (provided that there are a finite
number of agents, thus also transmissions), which depends on algebraic structure
of the set PATH(M).

4.2 Weak fairness

System A is weakly fair at a state M if each agent requesting for communication
at M will be permitted to accomplish the request on every infinite path starting
from M . This is expressed by the formula:

∀p.[M(p) 6= Θ ⇒ ∀v.(v ∈ PATH∞(M)⇒ ∃t .(t
∗
∈ v ∧ p:M(p) ∈ •t•))]

Theorem 4.2.1

System A is weakly fair at a state M iff

∀p.[M(p) 6= Θ ⇒ (∀t .(p:M(p) ∈ •t• ⇒ PATH∞(M)− V ∗tV∞ = ∅))]

Proof

∀v.(v ∈ PATH∞(M)⇒ ∃t .(t
∗
∈ v ∧ p:M(p) ∈ •t•))⇐⇒

{v| v ∈ PATH∞(M)} ⊆ {v| ∃t .(t
∗
∈ v ∧ p:M(p) ∈ •t•)} ⇐⇒

PATH∞(M) ⊆ V ∗tV∞ for each t satisfying p:M(p) ∈ •t•. Thus

∀t .(p:M(p) ∈ •t• ⇒ PATH∞(M)− V ∗tV∞ = ∅) 2
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4.3 Strong fairness

System A is strongly fair at a state M if each agent requesting for communication
at M will be permitted to accomplish the request on every finite path starting
at M if all these paths are ”sufficiently long”, i.e. of the length at least k, for a
certain k. So, all these paths may be jointly (”uniformly”) bounded in lentgh.
This is expressed by the formula:
∀p.[M(p) 6= Θ ⇒ ∃k.Fp(M,k)] where

Fp(M,k)
def⇐⇒ ∀v.((v ∈ PATH∗(M) ∧ |v| ≥ k)⇒ ∃t .(t

∗
∈ v ∧ p:M(p) ∈ •t•)

Theorem 4.3.1

System A is strongly fair at a state M iff

∀p.[M(p) 6= Θ ⇒ (∀t .(p:M(p) ∈ •t• ⇒ |PATH∗(M)− V ∗tV ∗)| <∞)]

Proof
Fp(M,k)⇐⇒
{v| v ∈ PATH∗(M)} ∩ {v| |v| ≥ k} ⊆ {v| ∃t .(t

∗
∈ v ∧ p:M(p) ∈ •t•)} ⇐⇒

PATH∗(M) ∩ V kV ∗ ⊆ V ∗tV ∗ for each t satisfying p:M(p) ∈ •t•
where V kV ∗ is the set of finite words of the length at least k and V ∗tV ∗ the set
of finite words where t occurs. Thus:
∀t .(p:M(p) ∈ •t• ⇒ PATH∗(M) ∩ V kV ∗ − V ∗tV ∗ = ∅).
Now, let Hp(M,k) = PATH∗(M) ∩ V kV ∗ − V ∗tV ∗ for each t satisfying
p:M(p) ∈ •t•.
We show that |Hp(M, 0)| <∞ if and only if ∃k.Hp(M,k) = ∅
(|X| is cardinality of the set X).
(⇒) Let ∀k.Hp(M,k) 6= ∅. Then λ(Hp(M,k)) < λ(Hp(M,k+ 1)) where λ(L)
is the length of a shortest word in the set L.
Thus lim

k→∞
λ(Hp(M,k)) =∞, which implies

(since Hp(M,k) ⊃ Hp(M,k + 1)) that Hp(M, 0) contains words of arbitrary
length, hence |Hp(M, 0)| =∞.
(⇐) Let |Hp(M, 0)| = ∞. Then Hp(M, 0) contains words of arbitrary length,
thus, for any k it contains a word w with |v| ≥ k. Because v ∈ V kV ∗ and
Hp(M,k) = Hp(M, 0) ∩ V kV ∗ we have v ∈ Hp(M,k) hence Hp(M,k) 6= ∅. 2

4.4 Equivalence of weak and strong fairness

To demonstrate the equivalence between the two kinds of fairness in the model
considered here, let us recall a version of the:

König’s Lemma [Kön 1927]:
Let Σ be a set and Υ a tree of the properties:

– the number of sons of every node in Υ is finite;
– for any k ≥ 0 there is a finite branch b in Υ with |b| ≥ k and b ⊆ Σ.
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Then there exixts a infinite branch B in Υ with |B| ⊆ Σ.

Theorem 4.4.1
The weak and strong fairness are equivalent.

Proof
By the Theorem 4.2.1 and 4.3.1 it suffices to demonstrate that
|PATH∗(M) − V ∗tV ∗| < ∞ ⇐⇒ PATH∞(M) − V ∗tV∞ = ∅ for each
transmission t such that p:M(p) ∈ •t• for every port p with M(p) 6= Θ.
Implication ”⇒” is evident, it remains to show ”⇐”. Suppose
|PATH∗(M)− V ∗tV ∗| =∞. Note that the set of paths starting at M is prefix-
closed: each prefix of v ∈ PATH(M) belongs to PATH(M). To each v assign
a unique element node(v) in this way that v1 6= v2 ⇒ node(v1) 6= node(v2)
and let NODE(M) = {node(v)| v ∈ PATH∗(M)}. This set with internodal
relation defined by ”node(u) is father of node(v) iff v = uτ for a certain τ ∈ V ”
is a tree Υ with node(ε) as the root (ε is the empty path) and finitely many sons
of each father. So, every path v ∈ PATH∗(M) is a branch in Υ . By assumption
|PATH∗(M)−V ∗tV ∗| =∞ there are infinitely many finite paths, thus branches
in Υ on which no t exists. Therefore there must be an arbitrarily long branch in
the tree. Setting Σ = PATH∗(M) and applying the König’s Lemma, we come
to contradition. 2

Summing up the results obtained above, the set-theoretic characteristics of the
deadlock and fairness at a state M are in the following table:

Deadlock PATH(M) ∩ V ∗tV ∗ = ∅
Weak fairness PATH∞(M)− V ∗tV∞ = ∅
Strong fairness |PATH∗(M)− V ∗tV ∗| <∞

for every transmission t .

5 Counting States

If the agents do not send and receive messages to/from themselves then the total
number of (global) states of n-agent system is (2n−1)n. Indeed, each agent may
issue 2n

2 − 1 send !(...) requests and the same number of receive ?(...) requests,
that is 2n−2 requests for communication. Since the agent may assume Θ as its
local state, the number of local states it may assume is 2n−1. The set of global
states is the Cartesian product of sets of the local states of all agents. Therefore
the number of global states is (2n − 1) · ... · (2n − 1)︸ ︷︷ ︸

n times

= (2n−1)n. For instance,

for agents p1, p2, p3:
the set of local states of p1 = {Θ, !(p2), ?(p2), !(p3), ?(p3), !(p2, p3), ?(p2, p3)}
the set of local states of p2 = {Θ, !(p1), ?(p1), !(p3), ?(p3), !(p1, p3), ?(p1, p3)}
the set of local states of p3 = {Θ, !(p1), ?(p1), !(p2), ?(p2), !(p1, p2), ?(p1, p2)}
Thus, the system of three agents has 73 = 343 global states.
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