
CONCURRENCY SPECIFICATION

AND PROGRAMMING

PROCEEDINGS

OF THE

INTERNATIONAL WORKSHOP

CS&P'2013

Warsaw, 25-27 September 2013

Edited by:

Marcin Szczuka

Ludwik Czaja

Magdalena Kacprzak

ii

Published by Białystok University of Technology 2013

Preface

This volume contains the Proceedings of 22nd Concurrency, Specification and
Programming (CS&P) Workshop held on September 25-27, 2013 in Warsaw.

There were 48 submissions. Each submission was reviewed by two program
committee members. The committee decided to accept 40 papers.

The Workshop was initiated in the mid 1970s by computer scientists and
mathematicians from Warsaw and Humboldt Universities, as Polish-German an-
nual meetings. They were suspended for some years in the 1980s and reactivated
in 1992. Thereafter, the Workshop, organized alternatingly by the Institutes of
Informatics and Mathematics of the University of Warsaw and the Institute of
Informatics of Humboldt University in Berlin on the basis of an exchange pro-
gram, has been given the name CS&P.

It should be mentioned that the CS&P meetings, initially purely bilateral,
since 1992 have developed into events attended by participants from a number of
different countries beside Poland and Germany. The present CS&P’2013 meeting
attracted contributors from: Canada, Egypt, France, Germany, Italy, Nepal, The
Netherlands, Poland, Russia, Serbia, Slovakia, Sweden, Turkey, United Kingdom,
United States, and Vietnam.

The organisation of this year’s CS&P would not be possible without the re-
sources and financing provided by several institutions. We would like to thank
the Faculty of Mathematics, Informatics and Mechanics of the University of War-
saw and the Institute of Informatics of the Humboldt University of Berlin for
the continuing financial and organisational support provided to CS&P over last
twenty-two years. The essential financial backing received from the Warsaw Cen-
ter of Mathematics and Computer Science made the organisation of CS&P 2013
possible. Our thanks go to the Bia lystok University of Technology for providing
the means for publishing this proceedings volume. Last, but not the least, we are
grateful for the significant financial support provided by the Vistula University
in Warsaw.

September 2013
Warsaw, Poland

Marcin Szczuka
Ludwik Czaja

Magdalena Kacprzak

iii

Program Committee

Hans-Dieter Burkhard Humboldt Universität zu Berlin
Ludwik Czaja The University of Warsaw and Vistula University
Anna Gomolińska University of Bia lystok
Monika Heiner Brandenburg University at Cottbus
Magdalena Kacprzak Bia lystok University of Technology
Anh Linh Nguyen The University of Warsaw
Hung Son Nguyen The University of Warsaw
Wojciech Penczek Institute of Computer Science, Polish Academy of

Sciences
Lech Polkowski Polish-Japanese Institute of Information Technology
Louchka Popova-Zeugmann Humboldt Universität zu Berlin
Holger Schlingloff Fraunhofer FIRST and Humboldt Universität zu

Berlin
Serhat Seker Istanbul Technical University and Vistula University
Andrzej Skowron The University of Warsaw
Zbigniew Suraj University of Rzeszów
Marcin Szczuka The University of Warsaw
Matthias Werner TU Chemnitz
Karsten Wolf University of Rostock

Additional Reviewers

The members of the Program Committee want to thank the following persons
for contributing to the review process of CS&P 2013.

Marek Bednarczyk Anna Sawicka
Piotr Chrza̧stowski-Wachtel Martin Schwarick
Mario Haustein Jaros law Skaruz
Andrzej Jankowski Maciej Szreter

Micha l Knapik Dominik Ślȩzak

Irina Lomazova Wojciech Świeboda
Artur Mȩski Józef Winkowski
Christian Rohr Bożena Woźna-Szcześniak
Andrzej Salwicki Olena Yaskorska
Matteo Sammartino

iv

Table of Contents

DNA Tiles, Wang Tiles and Combinators . 1
Marco Bellia and Maria Eugenia Occhiuto

Engineering MAS – A Device Integration Framework for Smart Home
Environments . 15

Jack Betts and Berndt Müller

Experiments with Simulated Humanoid Robots . 27
Hans-Dieter Burkhard and Monika Domańska

Searching for Concepts in Natural Language Part of Fire Service Reports 39
Kamil Ba̧k, Adam Krasuski and Marcin Szczuka

A Rule Format for Rooted Branching Bisimulation . 49
Valentina Castiglioni, Ruggero Lanotte and Simone Tini

A Rewriting Based Monitoring Algorithm for TPTL 61
Ming Chai and Holger Schlingloff

Sound Recoveries of Structural Workflows with Synchronization 73
Piotr Chrza̧stowski-Wachtel, Pawe l Go la̧b and Bartosz Lewiński

Floating Channels Between Communicating Nets . 88
Ludwik Czaja

The Mathematical Model for Interference Simulation and Optimization
in 802.11n Networks . 99

Iwona Dolińska, Antoni Masiukiewicz and Grzegorz Rza̧dkowski

A Domain View of Timed Behaviors . 111
Roman Dubtsov, Elena Oshevskaya and Irina Virbitskaite

A Multi-agent Approach to Unstructured Data Analysis Based on
Domain-specific Onthology . 122

Natalia Garanina, Elena Sidorova and Evgeny Bodin

An Explicit Formula for Sorting and its Application to Sorting in Lattices 133
Jens Gerlach

Rough Inclusion Functions and Similarity Indices . 145
Anna Gomolińska and Marcin Wolski

Efficient Rough Set Theory Merging . 157
Adam Grabowski

Opacity Testing . 169
Damas Gruska

v

Structural and Dynamic Restrictions of Elementary Object Systems 181
Frank Heitmann and Michael Köhler-Bußmeier

Causal Structures for General Concurrent Behaviours 193
Ryszard Janicki, Jetty Kleijn, Maciej Koutny and Lukasz Mikulski

Interactive Complex Granules . 206
Andrzej Jankowski, Andrzej Skowron and Roman Swiniarski

Identification of Formal Fallacies in a Natural Dialogue 219
Magdalena Kacprzak and Anna Sawicka

Discovery of Cancellation Regions within Process Mining Techniques 232
Anna Kalenkova and Irina A. Lomazova

Genetic Algorithm with Path Relinking for the Orienteering Problem
with Time Windows . 245

Joanna Karbowska-Chilinska and Pawe l Zabielski

Parameter Synthesis for Timed Kripke Structures . 259
Micha l Knapik and Wojciech Penczek

Voronoi Based Strategic Positioning for Robot Soccer 271
Heinrich Mellmann, Steffen Kaden, Marcus Scheunemann and Hans-
Dieter Burkhard

Adaptive Grasping for a Small Humanoid Robot Utilizing Force- and
Electric Current Sensors . 283

Heinrich Mellmann, Marcus Scheunemann and Oliver Stadie

Towards a Jason Infrastructure for Soccer Playing Agents 294
Dejan Mitrović, Mirjana Ivanović and Hans-Dieter Burkhard

An ExpTime Tableau Method for Dealing with Nominals and
Quantified Number Restrictions in Deciding the Description Logic SHOQ 296

Linh Anh Nguyen and Joanna Golińska-Pilarek

SMT vs Genetic Algorithms: Concrete Planning in PlanICS Framework . . 309
Artur Niewiadomski, Wojciech Penczek and Jaros law Skaruz

Granular Mereotopology:A First Sketch . 322
Lech Polkowski and Maria Semeniuk-Polkowska

SMT-Based Reachability Checking for Bounded Time Petri Nets 332
Agata Pó lrola, Piotr Cybula and Artur Mȩski

A Bi-objective Optimization Framework for Heterogeneous CPU/GPU
Query Plans . 342

Piotr Przymus, Krzysztof Stencel and Krzysztof Kaczmarski

vi

Analysis of Multilayer Neural Networks with Direct and Cross-Forward
Connection . 355

Stanis law P laczek and Bijaya Adhikari

Fractional Genetic Programming for a More Gradual Evolution 371
Artur Rataj

From EBNF to PEG . 383
Roman Redziejowski

Towards an Object-Oriented Programming Language for Physarum
Polycephalum Computing . 389

Andrew Schumann and Krzysztof Pancerz

About New Version of RSDS System . 398
Zbigniew Suraj and Piotr Grochowalski

Generation of Labelled Transition Systems for Alvis Models using
Haskell Model Representation . 409

Marcin Szpyrka, Piotr Matyasik and Micha l Wypych

Bisimulation-Based Concept Learning in Description Logics 421
Thanh-Luong Tran, Quang-Thuy Ha, Thi-Lan-Giao Hoang, Linh Anh
Nguyen and Hung Son Nguyen

Preprocessing for Network Reconstruction: Feasibility Test and
Handling Infeasibility . 434

Annegret K. Wagler and Jan-Thierry Wegener

A Holistic State Equation for Timed Petri Nets . 448
Matthias Werner, Louchka Popova-Zeugmann, Mario Haustein and
Elisabeth Pelz

Query Rewriting Based on Meta-Granular Aggregation 457
Piotr Wísniewski and Krzysztof Stencel

Checking MTL Properties of Discrete Timed Automata via Bounded
Model Checking . 469

Bożena Woźna-Szcześniak and Andrzej Zbrzezny

On Boolean Encodings of Transition Relation for Parallel Compositions
of Transition Systems . 478

Andrzej Zbrzezny

vii

DNA Tiles, Wang Tiles and
Combinators

Marco Bellia and M. Eugenia Occhiuto

Dipartimento di Informatica, Università di Pisa, Italy
{bellia,occhiuto}@di.unipi.it

Abstract. In this paper we explore the relation between Wang Tiles and
Schonfinkel Combinators in order to investigate Functional Combinators
as an programming language for Self-assembly and DNA computing.
We show: How any combinatorial program can be expressed in terms of
Wang Tiles, and again, how any computation of the program fits into a
grid of tiles of a suitable finite, tile set, and finally, how a program for
Self-assembly DNA computing can be obtained. The result is a general
methodology that, given any computable function, allows to define a
Self-assembly program that can be used to construct the computations
of the function

1 Introduction

In the last decade, one of the emerging approaches [1] to DNA Computing, is
Self-Assembly [2]. It describes a computation in terms of a process in which
small components, autonomously and automatically, assemble into larger, more
complex, structures [3–5]. The assembly is based on the Watson-Crick comple-
mentary law and is effectively governed by various bio-chemical techniques [6].
However, in terms of computable functions, in the Self-Assembly computation
process, it is possible to recognize:

(a) The computed application. The computed application is expressed by the
small components to be assembled. In particular, these components include
a representation for the function arguments, if any, i.e. the inputs of the
application, and a representation for the function to be applied.

(b) The computation. The larger and more complex structures, that result at
the end of the SelfAssembly process, form the effective computations. Each
of such structures can be read as the complete trace of a computation, from
its start to its end.

Various kinds of DNA Tiles has been introduced, in the years, in the various
proposals, to be used as the small components of point (a) [7, 8]. In [9] the
relation between DNA Tiles (TX, triple crossover, molecules) and Wang Tiles
has been used to show how to simulate finite state automata with output, i.e. a
transducers, in Wang Tiles. Moreover, by using compositions of transducers and
the relation with Wang Tiles, [9] shows how the computation of general recursive

2 M. Bellia, M. E. Occhiuto

functions can be expressed using self-assembly. This allow to use the formalism
of general recursive functions as a programming language for DNA computing.
With the same aims, [10] introduced DSL as language for programming with the
DNA Tiles of the aTAM model [11].

In this paper we explore the relation between Wang Tiles [12] and SKI combi-
nators [13, 14] in order to investigate Functional Combinators [15, 16] as an High-
/Intermediate level, programming language for Self-Assembly computations. The
result is the definition of a language for Self-Assembly, SKI-Tiles, and of a general
methodology that, given any computable function, allows to define a program, in
SKI-Tiles, that compute each application of the function, by using Self-Assembly
computations.

2 Wang Tiles

Wang Tiles [12] were introduced in 1961. It is a formal system based on the notion
of tile. A tile may be graphically represented by a unit square with colored sides
from a (possibly, denumerable) set T of distinct colors. Figure 1.a shows the
form of a tile such that: West side has color T1, north has color T2, south has
color T3 and east has color T4. Tiles must be arranged side by side on the plane
(computation grid) in a way that adjacent tiles must have the adjacent side of
the same color, see Figure 5: We will name this operation Wang-arrangement.
The interest is on the set F of all the finite sets of distinct tiles: What tile sets of
F , can cover the infinite plane by using Wang-arrangement on copies of the tiles
of the set, obtained by translation (no rotation, no reflection). In 1963, Wang
showed that to each Turing Machine M corresponds a finite set TM ∈ F such
that the computation of M on a tape D can be emulated by a covering, with the
(copies of) tiles of TM , of a plane containing an initial row of tiles that describes
D. Finally, Wang proved that the halting problem of Turing Machines can be
reduced to the undecidability, for finite tile sets, of covering the infinite plane.

	 	 	 	 	
b.	 DNA	 Tile:	 4	 strands	 of	 DNA,	 T1,	 T2,	 T3,	 T4,	 are	 	 	
kept	 together	 by	 a	 suitable	 DNA	 structure,	 Z.	 	

T2	
T1	
T3	
T4	

a.	 Wang	 Tile:	 A	 unit	 square	 with	 the	
sides	 colored	 	 by	 T1,	 T2,	 T3,	 T4	 	

Fig. 1. Wang Tiles and DNA Tiles

DNA Tiles, Wang Tiles and Combinators 3

3 SKI Combinators

3.1 The monoid SKI

SKI Combinators [14] is a formal system that expresses all the computable func-
tions1 without requiring any (bound) variable and by using only one operation:
the monadic, functional application. Hence, it is the monoid2 Σ, below:

Σ = S|K|I|Π|X|ΣΣ
where the application is represented by juxtaposition of a (left) term, repre-
senting a monadic function, to a the (right) term, representing the argument.
Currying, higher order functions, and left associativity of application are pro-
vided for non-monadic functions. The symbols S,K, I are combinators (but other
ones could be added in [15]), X is a set of (free) variable symbols, Π is a set of
constant symbols. The terms of Σ are also called combinatorial terms, and the
terms built by using the application operator, namely those in ΣΣ, are called
(combinatorial) application term. Combinators obey to the following application
laws, for a, b, c ∈ Σ:

I a == a
K a b == a
S a b c == a c (b c)

3.2 Bracket Abstraction and Bound Variables

The combinators S,K, I express the bracket abstraction in the following way
(other characterizations are in [15]). Let a ∈ Σ be any term, possibly containing
a (free) variable x ∈ X. Then, we define the bracket abstraction of a ∈ Σ with
x, written [x]a, be the term b ∈ Σ such that: b x = a. Such a term3 always exists
in Σ and can be obtained by using the following rules:

[x]x = I
[x]u = Ku, for u ∈ {S,K, I} ∪Π ∪X and u 6= x
[x](a b) = S([x]a)([x]b)

Hence, all the closed terms of the calculus are all the terms of Σ that do not
contain variables.

3.3 Program, Computation, Recursion

Noting that in the application ΣΣ, there is no distinction between the terms that
are functions (driving the computation to be done) and those that are arguments
(forming the values). Any term becomes the function to be applied, when it is
1 in its original formulation, in 1924, by Moses I. Schonfinkel, [13], the combinator

”I”, which could be expressed through SKK, was replaced by the combinator ”U”,
in order to express first order predicates without the use of bound variables.

2 Also Wang Tiles is a monoid, on Tiles as terms, with Wang-arrangement as the only
operation

3 moreover, for all terms c ∈ Σ, we have b c = a[x← c], i.e. b behaves like one λ-
abstraction and when applied to c reduces according to Church’s β-axiom [17]

4 M. Bellia, M. E. Occhiuto

in the left side, whilst it behaves as a value when it is in the right side of the
application. A (combinatorial) program is any term of Σ. A program computes
according according to the application laws of the SKI calculus. In order to
obtain a notion of computation, we can encapsulate the application laws into
the reduction system obtained by the binary relation on combinatorial terms,
→, defined in the following way. Relation → is called combinatorial reduction.

Definition 1 (→∗). Relation →∗ is the reflexive and transitive closure of →∗.

	
	 	
	
	
	

I a == a
I a → a

K a b == a
K a b → a

S a b c == a c (b c)
S a b c → a c (b c)

a → a’
a b → a’ b

b → b’
a b → a b’

Given a program a, a computation of a is any sequence, for n ≥ 04:
a→ a1 → ...→ an

Whenever an is such that for no b ∈ Σ, an → b, then we say that: Program a has
one terminating computation; a→ a1 → ...→ an is a terminating computation
of a; Program a computes an, or equally, an is the ”value” computed by a.
Relation → has Church-Rosser confluence property, since if a → a1 → ... → an

is a terminating computation of a then an ≡ bm for any other terminating
computation a → b1 → ... → bm [18]. However, Σ contains nonterminating
programs. As a matter of the fact consider the term Ψ of Definition2.

Definition 2 (The Kleene fixed-point combinatorial program calcula-
tor, Ψ). Let R ≡ S(S(KS)(S(KK)I))(K(SII)). Then, Ψ ≡ SRR is a combi-
natorial program. Moreover, Ψ is such that, for all pairs of terms G, a ∈ Σ, the
following holds:

(*) Ψ G a ≡ G (Ψ G) a

The proof of (*) is a trivial exercise. Ψ points out the elegance with which Schon-
finkel monoid expresses the computable functions. In particular, Ψ introduces
recursively defined terms on one hand, and computes the least fixed point of
them, on the other hand. However, in Section 6, we use term equations for deal-
ing with recursive definitions, because Self-assembly computation has a notion
of term replacement that already support recursive definitions.

4 The Approach

We start introducing the structures and the properties that the Wang tiles must
have in order to be used for expressing the combinatorial terms and their com-
putation. Then, we show how to use such structures in order to get the definition
and the computation of any combinatorial program.
4 Obviously, n = 0 means that for no b ∈ Σ, a→ b

DNA Tiles, Wang Tiles and Combinators 5

4.1 SKI-Tiles: A formalism of Wang Tiles for combinatorial
programs

The colors that may occur in the tiles, are the combinatorial terms (of Σ):
Different terms are different colors. In addition, a special color ♠ is used for
combining the terms within a tile and for arranging the tiles in the computation
grids. The sides of a tile may be colored with an input (i.e. the right part of an
application term) or with a function (i.e. the left part of an application term)
or with an output (the result of an application) or finally, with a connection
term (which allows to arrange together distinct tiles and distinct parts of the
computation grid). When more different colors occur in a tile, their arrangement
in the tile sides obeys properties based on the combinatorial reduction. According
to how colors are used in the tile sides, the tiles fall in one of the following five
classes, shown in Figure 2.

– Introduction Tiles are the tiles that introduce the components, namely
function and arguments, see Figure 2, of the computation to be made. These
tiles may occur in the top line of a computation grid. No, specific, property
is required to the color used in the tile.

– Terminal Tiles are the tiles that collect the result of a computation, see
Figure 2. These tiles may occur in the bottom line of a computation grid.
No, specific, property is required to the color used in the tile.

– Application Fold-tiles deal with the reduction of applicative terms that
do not require any reduction on their subterms. Color T1 is used for the
function, color T2 for the argument, whilst colors T3 or T4 for the reduced
term: It obeys the properties that are indicated at the bottom of the tile in
Figure 2.

– Application Unfold-tiles deal with the reduction of applicative terms that
require some subterm reduction. Color T1 is used for the function and color
T2, if any, for the argument, exactly as in the fold-tile s, but the reduced term
is an application T3 T4. This tile structure allows to use two distinct tiles,
one for reducing the color T3 and one for reducing the color T4, separately.
Constraints on the colors are indicated at the bottom of the tile in Figure 2.

– Connection Tiles they furnish tiles that are suitable to connect different
parts of the computation grids and in some cases they may involve simple
term reductions. Constraints on the colors are indicated at the bottom of
the tile in Figure 2.

4.2 Soundness of SKI-Tiles

Apart from the introduction and the terminal tiles, all other tiles of SKI-Tiles,
are combinatorial term reductions of→∗. The Wang-arrangement operation cor-
responds to the (reflection and) transitivity of →∗. Hence, computation grids
contain only sound reductions on the combinatorial terms that are involved in
the tiles, and in particular from the terms of the introduction tiles up to the
term of the terminal tile of the grid.

6 M. Bellia, M. E. Occhiuto

♠

♠

T2
T4

♠

♠

T1 T4 ♠ ♠

T2

T4

T2 →* T4 T1 →* T4 T2 →* T4

Introduction Tiles

♠ ♠

♠

T3

Connections Tiles

Terminal Tiles

♠ ♠

♠

T2

Application Fold Tiles

♠

T2
T1

T3 ♠

T2

T4 T1

T1T2 →* T3 T1T2 →* T4

Application Unfold Tiles

♠

T3

T4 T1

T1T2 →* T3T4

T2
T1

T3

T4

T1 →* T3T4

Legenda. T1, T2, T3, T4 are colors for combinatorial terms; →* is the reflexive, transitive closure of
the combinatorial reduction.; The colors must obey the property, if any, that is put below the tile.

♠
♠ T1

T3

T1 →* T3

Fig. 2. The classes of tiles of SKI-Tiles for the Combinatorial Terms

4.3 The Computation Grids of S, K and I in SKI-Tiles

The combinators are completely defined in the Wang Tile formalism by the
computation grids in Figure 3, for I and K, and in Figure 4, for S. The grid for
I consists of only one fold-tile that switches the input on the output. The grid
for K consists of 4 tiles: The tile on the left top corner is a fold-tile that collects
the first argument and has ”a” as output. The tiles on the right top and the left
bottom corners are connection tiles. They are used for connecting the fold-tile
on the bottom right corner of the grid. The latter tile contains, as output, the
output of the grid. Actually, for S we give two grids of 9 tiles: Both are correct.
The two grids differ for the tile on the right bottom corner. Both contains the
same fold-tile on left top corner, and the same 7 connection tiles. The other tile
is a fold-tile in the left grid, whilst it is an unfold-tile in the right one. The choice
of the right grid may depend on the input terms, if a and b do not require any
reduction then the left grid may be the best grid to be used. The grids in Figure

DNA Tiles, Wang Tiles and Combinators 7

	 	 	 	
	 	
	
	
	
	 	

I	 ♠	
a	

a	

Ka	 ♠	
Ka	

♠	

b	

b	
♠	 ♠	

a	

b	
♠	 Ka	

	 K	
Ka	
♠	

a	

I	 a	 =	 a	

K	 a	 b	 =	 a	

Fig. 3. The computations of K and I in the SKI-Tiles formalism

3, and in Figure 4 are defined for being used as grid components, hence do not
contain any introduction or terminal tile.

Theorem 1. The SKI calculus can be expressed in Wang Tiles

Proof. The proof is easily obtained by induction on the pure combinatorial terms
(i.e. Σ−(Π+X)) and by using suitable grid compositions. The extension to the
entire Σ comes immediately since each symbol in Π+X is an uninterpreted
symbol.

The Theorem above is not surprising since Wang’s result [12], but the theo-
rem furnishes a constructive proof and a concrete way to do it. The next section
shows how the approach effectively applies in a computation.

5 Applications and Examples

The section shows how the approach effectively applies in a computation. Con-
sider the function Proj42 that selects the second argument, from a sequence of
four arguments. We write a program that, given four arbitrary terms, c1, c2, c3, c4,
as inputs, computes c2 as output. In combinatorial programming, the program
can be obtained two different ways, according to a use of combinatory program-
ming as an intermediate level or as a higher level programming language. We
consider both view and for each of them we show the corresponding computation
grid in the tile formalism of the previous section.

5.1 Combinatorial programming at an Intermediate Level

This way of programming is widely influenced by the use of combinators in the
implementation of functional languages [19]. In order to obtain a combinatorial
term for Proj42 , we start giving a formulation of Proj42 in a functional language.
In this case, we can express it by the lambda term:

8 M. Bellia, M. E. Occhiuto

	 	 	 	 	 	 	 	 	 	
	

	 S	
Sa	

a	
♠	

Sa	 ♠	
Sa	

♠	

b	

b	
♠	 ♠	

Sab	

b	
♠	 Sa	

c	

c	
♠	 ♠	

c	
♠	

	 ♠	
♠	

♠	
♠	

♠	
♠	

c	
♠	

ac(bc)	

♠	
c	

Sab	
Sab	 Sab	

	 S	
Sa	

a	
♠	

Sa	 ♠	
Sa	

♠	

b	

b	
♠	 ♠	

Sab	

b	
♠	 Sa	

c	

c	
♠	 ♠	

c	
♠	

	 ♠	
♠	

♠	
♠	

♠	
♠	

c	

ac	

♠	
c	

Sab	
Sab	 Sab	 bc	

S	 a	 b	 c	 =	 a	 c	 (b	 c)	

Fig. 4. Two different computations of S in the SKI-Tiles formalism

λ x1.λ x2.λ x3.λ x4. x2.
Then, by using the technique for removing bound variables from lambda terms5,
we obtain the combinatorial term:

K(S(KK)(S(KK)I)).
Eventually, we have the combinatorial term T and its computation grid, in
Figure5.

5.2 Combinatorial programming at an High Level

This way of programming uses the possibility of introducing new combinators
and super combinators [16] in order to obtain a more expressive and neat solu-
tion to a possibly, more general problem than the given one. In this case, the
problem may be solved by using a family, Proj = {fn : Dn → D}, of curried
functions, each function being indexed by the arity. We can express each func-
tion of Proj by the following combinatorial term: Tp = Ki−1(WIKn−i), where
n is the arity of fn, 0 < i ≤ n is the position of the argument to be selected, I
is the corresponding combinator of SKI calculus. Finally, Kmg = K(Km−1g) is
a variant of combinator K (for m > 1), whilst W is an additional combinator
that obeys the following application law: Wabc = b(ac). Then, the combinatorial
program is now expressed by T = (((K(WIK2)c1)c2)c3)c4, and its computation
grid can be obtained by using the same methodology of Section 5.1.

5 it roughly corresponds [15, 19] to the computation of [x1]([x2]([x3]([x4]x2)))

DNA Tiles, Wang Tiles and Combinators 9

6 Self-assembly Computations with SKI-Tiles

This section discusses the formalism of SKI-Tiles in the context of the Self-
Assembly programming and extends the formalism with the notions of program
and of computation of the Self-Assembly programming paradigm.

6.1 Wang Tiles vs. Self-Assembly

Wang Tiles and Self-Assembly share the same fundamental operation for con-
necting the tiles: Wang-arrangement. Nevertheless, there is a subtle but relevant

T = T1c4
T1 = T2c3
T2 = T3c2
T3 = T4c1
T4 = KT5
T5 = ST6T7
T6 = KK
T7 = ST6I

T4

♠ ♠
♠

c1

♠ ♠
♠

c2

♠ ♠

♠

c3

♠ ♠
♠

c4

♠ ♠

♠

T4

♠

♠

T4

c1

♠
T5

T4

c2

♠ ♠

c2

c3

♠

c3

♠

♠

♠

♠
♠

♠

T5

T5 ♠
T6c2

c2

T5 T7c2

c2

♠ Kc2

c4

♠

♠

♠
♠ ♠

♠

♠
♠

♠

♠

♠
♠ ♠

♠

♠
♠ ♠

♠

♠
♠ ♠

♠

♠
♠ ♠

c2

♠
♠

♠

♠

♠
♠

Kc2

♠ K

T8 ♠

♠
♠

♠

T6c2

♠
♠

K

c4 ♠

c4

♠ c4

c4

♠

♠

c2

♠ ♠

c2

c4

c4

♠ ♠

♠

♠

♠
♠

♠ ♠

c3

c3

♠

♠

♠
♠ ♠

T5

T5

♠ c3 ♠

c3

♠ c4

c4

♠ ♠

♠

♠ c3

c3

♠
♠ T7c2

Kc2

♠ ♠

c3

c3 c4

c4

♠ ♠

♠

♠

♠
♠

♠

♠
♠

♠
c4

c4

♠ ♠
♠

♠
♠

♠

♠

♠

T8

T8 ♠

c3

Kc2

T8

♠

Kc2

Kc2 ♠ ♠

♠

♠
♠ ♠

♠

♠
♠

♠

♠

♠
♠

Subterms

T4,c1,c2, c3,c4,
T5,T6c2,T7c2,
Kc2,T8=K(Kc2)

Specific Colors

Fig. 5. The computation grid of T = (((K(S(KK)(S(KK)I))c1)c2)c3)c4

10 M. Bellia, M. E. Occhiuto

difference. The Wang formalism neither has a notion of program nor of com-
putation: The aim is the construction of some computation grid that must be
assembled with the tiles of a given tile set. Differently, Self-assembly is a pro-
gramming paradigm with a notion of program, semantics and computation, that
consider all the grids that can be assembled by applying Wang-arrangement to
the tiles of the program.

6.2 The SKI-Tiles language for Self-Assembly programming

The section formalizes the notions of program and of computation in order to
make SKI-Tiles a language for Self-Assembly programming. Then, it introduces
a (combinatorial) formulation of conditional, booleans and numbers for the use
of programs, for arithmetic programming, in SKI-Tiles.

Chemical Context Let H ≡ {T, g, τ} be triple defining the physics of molec-
ular self-assembly [5] of the programs. We assume that for all programs, the set
of color T , the binding strength function g and the temperature parameter τ are
chosen in a way that Wang-arrangement can apply always and only when the
tiles abut on sides that are colored by a same color.

Programs. A program is a finite sequence of quadruples of the form (T1, T2, T3, T4).
The use of quadruples introduces a convenient, linear notation for tiles [4], in
particular the quadruple (T1, T2, T3, T4) corresponds to the tiles in Figure 1 pro-
vided that T1, T2, T3, T4 are colors of the SKI-Tiles formalism.

Semantics. Let P be a program. The semantics of P is the set of all sound
computation grids that can be obtained from P by τ -stable derivation.

Seed and τ-stable Derivation. Let P be a program. Let s be the seed tile of
A0, i.e. the only tile of the grid A0. Then, A0 →P ... →P An is a computation.
Moreover, →P is the τ -stable Derivation (of P in H) and is such that A→P B
if and only if B is obtained from A by Wang-arrangement, with a (copy of a)
tile of P, which satisfies the chemical context H.

Sound Computation Grid. Unfortunately, the Wang-arrangement does not
always produce meaningful computation grids when unfold tiles are admitted.
Hence, a computation grid is said sound if and only if the property hold:

– The topmost row contains only introduction tiles and only one of them, the
seed, has color T3 6= ♠, and

– The bottom row, if any, contains only terminal tiles and only one of them
has color T2 6= ♠, and

– The leftmost column, if any, contains only tiles with a ♠ as east side, and
– The rightmost column, if any, contains only tiles with a ♠ as west side, and
– No unfold-tile occurs in the grid, or
– The unfold-tiles satisfy the sub-grid property.

DNA Tiles, Wang Tiles and Combinators 11

Definition 3 (Quasi-grids.). A quasi-grid is a n×m grid of tiles with n,m > 1
and such that: The tiles of the first column, exception for the top tile, have a ♠
as west side; The tiles of the first raw, exception for the leftmost one, have a ♠
as north side; The tiles of the last column, exception for the bottom tile, have
a ♠ as east side; Finally, the tiles of last raw, exception for the rightmost one,
have a ♠ as south side.

Definition 4 (Sub-grid Property.). Let G be a computation grid and A be
an unfold-tile of G. Then A satisfies the sub-grid property if A is the left top
corner of a quasi-grid of G.

It is worth noting, that the unfold-tiles involve the reduction of combinatorial
terms of the form a b with the aim of reducing, firstly, a to some a′ and b to some
b′, separately, and then, of reducing a′ b′. Hence, this leads to a sub-computation
that behaves like a quasi-grid. As an example, the tile A ≡ (T5, c2, T6c2, T7c2)
(4th tile from the top, of the 3rd column, from the left) of computation grid in
Figure 5, is an unfold-tile which satisfies the sub-grid property: In particular,
the tile is the left top corner of a quasi-grid of 4 tiles. Moreover, even if the tile
B ≡ (T7c2, c3, c2,♠) was in the program, the sub-grid property would forbid to
put it on the east side of A, i.e. the replacing of (T7c2,♠,Kc2,♠) with B.

Booleans, Conditional, Numbers in Functional Programming. We list
some usefull functional structures for arithmetic calculus, including Barendregt
numbers [17] and use them in writing arithmetic programs in functional pro-
gramming6:

– True ≡ λx.λy. x
– False ≡ λx.λy. y
– Conditional is implicitly expressed by True and False
– Pair ≡ λx.λy.λz. z x y
– The number 0 is [0] = Pair True (Pred [0]) 7

– The successor of n is [n+ 1] = Pair False [n], for n > 0
– Program for Test on 0: Zero = λx. x True
– Program for Predecessor: Pred = λx. x False
– Program for Addition:Add = λx.λy. (Zero x) y (Pair False (Add (Pred x) y))
– Program for Product: Prod = λx.λy. (Zero x) x (Add (Prod (Pred x) y) y)
– Program for Factorial: Fact = λx. (Zero x) [1] (Prod x (Fact (Pred x)))

Additional Combinators for SKI-Tiles This section extends the set of com-
binators, to include some combinators, C, B, P , that are of general use in com-
binatorial programming [15], and some other that are convenient in expressing,
in SKI-Tiles, the programs listed above.
6 We use λ-notation to express the terms: In particular application is term juxta-

position, is left associative, and has precedence on abstraction. Finally, recursive
definitions use equations of the form x = E, where E is an abstraction and x is a
functional variable that cannot occur bound in E

7 In the original formulation [17], [0] is Pair True False. Here, we extend the domain
of the numbers with the undefined value, Pred[0].

12 M. Bellia, M. E. Occhiuto

– Left application combinator is B: B a b c == a c b
– Right application combinator is C: C a b c == a (b c)
– Combinator for Pair is: P a b c == c a b
– Combinator for True is: Tb a b == a
– Combinator for False is: Fb a b == b
– Combinator for Pred is: Pr a == a Fb

– Combinator for test on 0 is: Z a == a Tb

– Combinatorial term for 0 is: [0] = P Tb (Pr[0])
– Combinatorial term for n+ 1 (with n > 0) is: [n+ 1] = P Fb [n]
– Combinatorial Program for Addition:

+ = S(CS(B(CC(CZI))I))(C(C(PFb))(B(CC(C + (CPrI)))I))
– Combinatorial Program for Product:

? = S(BC(S(CZI)I))(B(CS(C(C+)(CC(C ? (CPrI)))))I)
– Combinatorial Program for Factorial: Ft = S(B(CZI)[1])(S(C?I)(CFt(CPrI)))

Let N be the the minimal set such that N = {[0], PFb[n] | [n] ∈ N}. Then, N
is the set of (the combinatorial terms for) numbers, whilst B ≡ {Tb, Fb} is the
set of terms for booleans.

Self-Assembly Programs in SKI-Tiles Programs in SKI-Tile, for the prede-
cessor, the addition, and the factorial, have the listing in Figure 6: The listing
contains only the application tiles. Each program must be completed adding (as
by default) the suitable, connection tiles, introduction tiles, and terminal tiles.
About the connection tiles, each program includes connection tiles of whatever
kind but that involve only one of the program colors (the program colors are
all the colors, but ♠, that occur in the program). For instance, the connection
tile (+(Pr [2])m,♠,+(Pr [2])m,♠) is included, but (+(Pr [2])m,♠,+[1]m,♠)
is not, in the program for +. About the terminal tiles, these programs compute
numbers, hence numbers are the only colors that can be contained in a terminal
tile to be included in the programs. Finally, the introduction tiles must contain
only colors for numbers and for the name of the program.
In SKI-Tiles, the colors are the combinatorial terms that occur in the program
tiles. But the terms occurring in the tiles of the programs in Figure6are not
always combinatorial terms because of the the symbols n,m, b. Symbols n ad m
are variables ranging on a finite subset of N , whilst b is ranging over N , and the
tiles of the programs are in fact, tile schemata.
Finally, note that the program Pr has no computation grid for computing Pr[0].

7 Conclusions

We have investigated three computation formalisms, Wang Tiles, Schonfinkel
Combinators and Self-Assembly Programming, in order to define a high level
programming language for Self-assembly and DNA computing. We have defined
the formalism SKI-Tiles: It states the structures and the properties that the
Wang tiles must have in order to express combinatorial terms and the computa-
tion of combinatorial programs in the Wang Tiles formalism. We have discussed

DNA Tiles, Wang Tiles and Combinators 13

the soundness of SKI-Tiles. We have used the formalism SKI-Tiles as the ker-
nel of a language for Self-Assembly programming. In order to do it we have
revised the notion of computation and introduced the sound computation grid.
We called this language the SKI-Tiles language. We have shown programs for
Self-Assembly programming that are written in the SKI-Tiles language. These
programs compute a partial function for predecessor on naturals, and functions
for addition and factorial.

	
(Pr,	 [0],	 Pr,	 [0])	

(Pr,	 PFb	 n,	 n,	 ♠)	
Pr:	 A	 Program	 for	 Predecessor	 	

(+,	 n,	 T,	 ♠)	

(T,	 m,	 Z	 n	 m,	 T1)	

(Z	 n	 m,	 ♠,	 Z	 n,	 m)	

(Z	 n,	 ♠,	 Z,	 n)	

(Z,	 n,	 b,	 ♠)	

(b,	 m,	 b	 m,	 ♠)	

(Tb	 m,	 T1,	 ♠)	

(Fb	 m,	 T1,	 PFb,	 +(Pr	 n)m)	

(+(Pr	 n)m,	 ♠,	 +(Pr	 n),	 m)	

(+(Pr	 n),	 ♠,	 +,	 Pr	 n)	

(Pr	 n,	 ♠,	 Pr,	 n)	

legenda:	 	 	
T≡S(C(Z	 n)I)(C(PFb)(C(+(Pr	 n))I))	
T1≡	 PFb(+(Pr	 n)m)	
	
+:	 A	 Program	 for	 addition	

(Ft,	 n,	 (Z	 n)[1](*n(Ft(Pr	 n))),	 ♠)	

(Ft,	 n,	 (Z	 n)[1],	 *n(Ft(Pr	 n)))	

(Z	 n	 [1],	 ♠,	 Z	 n,	 [1])	

(Z	 n,	 ♠,	 Z,	 n)	

(Z,	 n,	 b,	 ♠)	

(b,	 [1],	 b	 [1],	 ♠)	

(Tb	 [1],	 *n(Ft(Pr	 n)),	 [1],	 ♠)	

(Fb	 [1],	 m,	 m,	 ♠)	

(*n(Ft(Pr	 n)),	 	 ♠,	 *n,	 Ft(Pr	 n))	

(Pr	 n,	 ♠,	 Pr,	 n)	

Ft	 :	 A	 Program	 for	 factorial	
Legenda:	 The	 Tiles	 are	 schemata	 where	 n,	 m	 are	 ranging	 on	 a	 finite	 subset	 of	 N	 and	 b	 is	 ranging	 on	 B.	
Programs	 specify	 only	 the	 application	 tiles	 (The	 other	 tiles	 may	 be	 added,	 by	 default).	

Fig. 6. Self-Assembly Programs for Predecessor, Addition and Factorial in SKI-Tile

14 M. Bellia, M. E. Occhiuto

References

1. Doty, D.: Theory of Algorithmic Self-Assembly. Comm. ACM 55(12) (2012)
2. Winfree, E.: On the Ccomputational Power of DNA Annealing and Ligation. In:

2th DIMACS Meeting on DNA Based Computers. (June 1996)
3. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and Self-Assembly of

Two-Dimensional DNA Crystals. Nature 394 (1998) 539–544
4. Adleman, L.: Towards a mathematical theory of self-assembly. Technical report

00-722, Department of Computer Science, University of Southern California (2000)
5. Rothemund, P., Winfree, E.: The Program Size Complexity of Self-Assembled

Squares - extended abstract. In: ACM Symposium on Theory of Computing. (2000)
459468

6. Rothemund, P.: Using lateral capillary forces to compute by self-assembly. PNAS
97(3) (2000) 984–989

7. LaBean, T., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J., Seeman, N.: The
construction, analysis, ligation and self-assembly of dna triple crossover complexes.
J. Am. Chem. Soc. 122 (2000) 1848–1860

8. Mao, C., LaBean, T., Reif, J., Seeman, N.: Logical computation using algorithmic
self-assembly of DNA triple-crossover molecules. Nature 407 (2000) 493–496

9. Jonoska, N., Liao, S., Seeman, N.: Transducers with programmable input by dna
self-assembly. In: Molecular Computing. LNCS 2950 (2004) 219240

10. Doty, D., Patitz, M.: A domain-specific language for programming in the tile
assembly model. In: Proceedings of DNA. (2009) 2534

11. Winfree, E.: Simulations of Computing by Self-Assembly. In: 4th DIMACS Meeting
on DNA Based Computer. (June 1998)

12. Robinson, R.M.: The Undecidability and Nonperiodicity for Tilings of the Plane.
Inventiones math. 12 (1972) 177–209

13. Schonfinkel, M.: On the Building Blocks of Mathematical Logic. in From Frege to
Gdel - A Source Book in Mathematical Logic 1879-1931Harvard University Press,
1967 (1924)

14. H.B.Curry, R.Feys: Combinatory Logic. North-Holland Publishing Company, Am-
sterdam (1956)

15. Turner, D.: Another algorithm for bracket abstraction. The Journal of Symbolic
logic 44(2) (1979)

16. Hughes, J.: Graph reductions with super-combinators. Technical monograph
prg-28, Oxford University Computing Laboratory, Programming Research Group
(1982)

17. Barendregt, H.P.: Functional Programming and Lambda Calculus. in Handbook of
Theoretical Computer Science: Formal Models and Semantics, Elsevier-The MIT
Press (1990)

18. Huet, G.: Confluent Reductions: Abstract Properties and Applications to Term
Rewriting Systems: Abstract Properties and Applications to Term Rewriting Sys-
tems. J. ACM 27(4) (1980) 797–821

19. Jones, S.L.P.: The Implementation of Functional Programming Languages. Inter-
national Series in Computer Science, Prentice-Hall (1987)

Engineering MAS – A Device Integration Framework
for Smart Home Environmentss

Jack Betts and Berndt Müller

University of South Wales, United Kingdom
{jack.betts,bertie.muller}@southwales.ac.uk

Abstract. We introduce a layered approach to multi-agent programming and
motivate this with a perspective to smart home environments. Apart from the
core layer, layer components can be updated at runtime to reflect, e.g., attributes
like credibility and the addition of proprietary functionality. The Layered Agent
Framework (LAF) is defined by interfaces and organised into layers. This ap-
proach minimises system fragmentation while allowing developers to create and
maintain meaningful and effective agents. A Petri net model is provided to vi-
sualise and execute prototypes of the agents. Although fully functional, the Petri
nets will later be translated into dedicated programs with a smaller footprint and
more efficient execution.

1 Introduction

The paper discusses a flexible, dynamic, and software-developer friendly framework
for the development of multi-agent systems with the application domain of home au-
tomation and assistance in mind. The resulting framework will be easily adaptable for
other domains, since the smart home encompasses a multitude of technologies and has
many requirements - such as real-time interaction - also found in other areas.

The remainder of this section will give an introduction to the application domain and
the problems we are addressing with our approach. Section 3 presents our approach to
a layered agent-based framework for the integration of devices in the home-automation
domain. Some notes on the implementation can be found in Section 3.3. We close with
an outlook on the next steps and possible further developments in Section 4.

1.1 What is a Smart Home?

When reading about smart devices or smart solutions, usually very little is revealed
about the actual methodology used to make them ‘smart’. In some cases this may be
due to the fact that the developer wants to conceal the fact that they are using agent
technology, in other cases the marketing of a ‘smart’ service may distract from reality
and from the fact that the smartness of the service is just an added timer or a simple
remote control on a mobile phone. When we think of a smart home, we use the term
‘smart’ to denote the use of intelligent solutions that would help organise our everyday
life in and around the home. So, what would be involved? Rather than a timer giving the
illusion of an intelligent system agent technology should be utilised to enable the ‘smart

16 J. Betts, B. Müller

home’ to learn from the user and adapt to better help the user. This learning should be
unobtrusive from the perspective of the user. User interaction will be encouraged but
not enforced in order for the system to learn quicker.1 The following is a (probably not
exhaustive) list of areas affected by smart-home technology:

– energy systems and power consumption
– entertainment systems (audio, video, and text)
– health support systems
– household appliances
– shopping and banking transactions
– education and reference sourcing
– news provision

From this list it becomes clear that a wide range of areas have to be covered and
many different requirements have to be addressed. Our aim is to provide an infras-
tructure to enable reasoning and communication amongst all entities involved in these
areas. This includes stationary and mobile entities situated within the home and mo-
bile entities that may enter and leave the home environment. A change of environments
may require different representation of data or data dependencies [1] and this has to be
supported by the framework.

1.2 The role of AI in a Smart Home

Focussing on smart home applications, we are faced with a variety of AI techniques
that can be employed to assist the user in an unobtrusive, reliable, and helpful way. Our
main focus is on agent orientation and the use of multiple (mobile) agents. To achieve
the level of integration required to address all (or at least most) of the challenges, we
have to allow for different types of communication and different types of actions. Com-
munication and stored data have to be encrypted where necessary and to an appropriate
standard. Access to parts of the system has to be authenticated and regimented.

1.3 Core Areas

The core areas supported by our system architecture are

– cooperation by communication
– fault tolerance
– user experience
– intelligent unobtrusiveness.

Communication is a foundation for all of these core areas. Unobtrusive assistance
can only be achieved if the information to be provided is available everywhere at any
time2, so that the optimal (or near optimal) moment and place can be chosen to convey
this information to the user (or agent). Fault tolerance also requires communication in
order to re-schedule tasks while a device is unavailable. Methods to support the core
functionality are part of a core layer in our design.

1In this paper we are not concerned with the actual learning or the provision of the intelli-
gence, but rather with an architecture to support the development of such systems.

2This is an idealised vision. In practice it will be sufficient to have the possibility of the
information being made available at many locations in the home most of the time.

MAS for Smarter Homes 17

1.4 What is new in our approach?

The methodology introduced in this paper is designed to help the software developer
by supplying familiar concepts from the world of object orientation to that of agent ori-
entation without making everything behave like an agent. We introduce several layers
with notions of inheritance and overriding as known from established object oriented
frameworks. Components and patterns are encouraged for the supply of common agent
functionality. For example, agent or task generation can be accomplished by instantia-
tion from a blueprint, much alike the creation of an object from a class.

The way the architecture is designed has dynamic systems and an excellent user
experience in mind. Adding or changing functionality as necessary within the running
system is provided on layers on top of the agent core. These layers can be modified
dynamically without the need of restarting the system, hence integrating seamlessly
in the user’s workflow. The architecture can support agents can keep previous copies
of protocols, roles, and layer-specific functionality in case an update fails. Hereby, an
immediate rollback to a previous version of a layer is possible and a report the update
as failed can be communicated without making the system inoperative. For the smart
home environment, this means unobtrusive updates and structural changes are possible
without noticeable interruptions of the overall system’s functionality.

2 Summarising the status quo

We briefly summarise some existing work on smart home automation. This is not meant
to be a full account of the literature, but serves as an indication of different approaches.
Section 2.1 discusses AI techniques used in various flavours of home automation. Sec-
tion 2.2 gives an overview of agent-based approaches. In both sections, we point out
which aspects have influenced the design decisions for the model presented in Sec-
tion 3.

2.1 General Approaches

In the past decade, home automation has been discussed at various levels. Some ap-
proaches involve AI techniques [2, 3], others are looking at home integration from
a predominantly (electrical-)engineering perspective (e.g. [4]) or from a sociological
viewpoint (e.g. [5]).

Many approaches tackle only one aspect of home automation, e.g. the heating sys-
tem or power consumption.

2.2 Agent-based Approaches

A multitude of papers discuss energy management or other specific home automation
systems. One of these, [6], makes the point that the home automation market is frag-
mented. Different technologies compete, are incompatible and co-exist, rather than co-
operate. It is argued that interoperation can be achieved by means of an abstraction layer
that would allow access to different home automation devices in a uniform and generic

18 J. Betts, B. Müller

way, independent of the underlying technology. [7] is concerned with resource allo-
cation and optimisation using an abstract negotiation protocol. Agents negotiate near
optimal settings for minimising power consumption to reduce the greenhouse effect by
integrating appliances and heating systems. The paper remains at an academic level in
that no solutions are offered for an implementation in a real-world situation.

Other approaches are more general and in line with the present endeavour, but
remain unspecific. [8] describes a home automation system called HORUS, which is
based on an agent architecture including managers, IO handles, video-camera handlers,
and alarm communicators. The IP-communication-based system remains rather vague
about the format of rules and their interpretation in a setting with existing appliances.

3 Our Approach

The centrepiece of our approach is a component-based and software-developer friendly
system architecture that will allow legacy systems to be integrated into a multi-agent-
based framework built around the requirements of smart home automation. As such it
will allow the developer to dynamiacally incorporate many aspects including learning
of behavioural patterns, handling of sensitive data, unobtrusive conveyance of informa-
tion and general assistance, and monitoring of various sensors.

The software development approach is based on object orientated design, but does
not simply replace objects with agents as some approaches in the past have3. Instead,
we use agents alongside traditional objects to reflect different capabilities of the various
system components. In doing so, we avoid having to discard legacy components and
re-design them for an all-agents system. Also, we avoid unnecessary communications
complexity that an all agents approach would incur.

The main reason for focusing our approach on the smart home environment is that
future real-world use of agent technology will only be of benefit when technologies
and requirements meet and a (more or less) seamless interaction is guaranteed. This is
of foremost importance and means that isolated studies are generally not scalable. By
providing the interfaces for the use of modern agent-based interaction we open up possi-
bilities without restricting the use of more traditional software and hardware paradigms.
For the home environment, this means that new devices and appliances might be con-
structed to include some additional inexpensive hardware/software components to allow
integration with others, while legacy components may be integrated by simple plug-ons
(software and hardware), such as a communications-enabled wall-plug adapter that has
some basic control over an appliance (e.g., switching it on or off or monitoring power
draw and detecting usage patterns of the socket and making this information accessible
this information to the agent network.).

The components introduced in this paper will be part of a home system design con-
sisting of stationary and mobile devices and learning control systems based on software
agents. The stationary devices are in the main part traditional household appliances
whose controls become part of a dynamically learning distributed control system in-
cluding some stationary devices (perceptors, like motion and temperature sensors; con-
trol hubs, acting somewhat like servers on which computationally expensive tasks of

3“Agents can be seen as the successors of objects and classes . . . ”, http://aose.org

MAS for Smarter Homes 19

Fig. 1. Layered Agent Framework

learning and processing of data is done) and mobile devices migrating between en-
vironments and allowing the overall system to learn behavioural patterns as well as
hosting agents themselves to carry out independent tasks.

3.1 Theoretical Model

When creating multi-agent systems a common platform on which the agents are built is
necessary. This may be a common communication protocol to enable all the agents to
talk to each other. This can be a common runtime like a Java Virtual Machine (JVM),
or an operating system (Linux) providing a common platform for all agents. Previous
research has brought about a common intermediate layer (MCAPL) that executes agents
programmed in a variety of agent programming languages after translation [9, 10].

Common communication elements and interfaces are required to enable agents to
work together, however different multi-agent systems developed by different develop-
ment teams generally cannot communicate effectively with each other without specific
adapters. A simple solution would be to use a common open communication protocol
and declare this a standard for all agent communications4. This is a solution only if all
agents on all systems followed this standard, and that the protocol offered everything
that all MAS developers need.

This leads to the question: How is it possible to allow agent developers as much
freedom as possible without imposing too many restrictions on their code? Our ap-
proach is the design of a Layered Agent Framework (LAF, see Figure 1) that provides
developers with a generic agent layer that can be specialised in order to fulfil defined
roles. This specialisation is achieved through the addition of further layers. The system

4http://www.fipa.org

20 J. Betts, B. Müller

is not limited to one role per agent; the Agent Role Layers can be stacked to provide
a multi-role agent system. The ordering of the role layers determines the priorities of
the agent. Any role layers that are packaged with the system are default roles. Default
roles can not be dropped by the system and cannot be superseded in priority by non de-
fault role layers (default role priority set by the developer or the system). This layered
approach loosely couples additional roles to an agent, allowing roles to be changed,
updated or multiplied without requiring the agent to be fully restarted. Not only are
the agent roles loosely coupled but so is the entire agent device. This agent system is
intended to produce a basic prototype agent device which manufacturers can integrate
into an appliance, apply their role layer and then ship it as a single unit. If the manu-
facturer improves a layer, they can issue a new updated layer to devices since the agent
roles are entirely software based. We describe the layers of Figure 1 in some detail in
the following paragraphs.

Device Hardware The Device Hardware is at a basic level the processor, memory,
storage and communications and a Linux operating system to manage it all. Linux
grants the Agent Core Layer access the hardware (Linux handles hardware drivers).
Any specialist hardware API(Application Programming Interface) for example a GPU
or heating element. APIs are defined in either the Agent+ Layer if the special hardware
is attached to the Agent Device Unit or in the Agent Role Layer if the special hardware
is part of the appliance or utility which the agent device is attached to. For example if a
coffee machine has an Agent Device attached to it, the Agent Role Layer would contain
the APIs required for the Agent Core to use the coffee machine functionality. The Agent
Device can be embedded within an appliance or attached to one. The hardware layer
will provide a flag indicating to the agent whether it is embedded or attached.

Agent Core Layer As the name implies this layer is to be considered the core of the
system. This layer will be generic across all implementations to combat system frag-
mentation5 and maintain a high level of agent interoperability. This layer is an adaptable
agent, adaptive in that is must work to complete tasks with any roles assigned to it. An
agent engine will form the main part of this layer along with an array of layer APIs
as well as a dynamic action cache used to formulate plans based on role and available
abilities. The Agent Core Layer is not to be designed for dynamic updates to any func-
tionality. Instead any functionality that requires an update is to be overloaded in the
Agent+ layer. If an update within this layer is absolutely necessary (like security) then
the agent device will require a restart unlike updating in any other layer. The Common
Agent Engine provided by the Agent Core Layer creates by default at least one agent
upon system start. This agent is considered the Master Agent of the system and takes
on any default roles assigned to it. Slave Agents can be created to handle any addition

5System fragmentation refers to parts of a (common) system being incompatible with other
parts. E.g., Apple iOS devices have low levels of fragmentation, since an app written for an
iPhone 3 will work on an iPhone 5 and (mostly) vice versa. Compare this with the Android
platform where there are huge differences, such that apps will generally come with extensive lists
of supported devices/configurations. For our framework, this means that agents should be able to
work together regardless of the developer, manufacturer, or purpose.

MAS for Smarter Homes 21

roles assigned to the agent system. The Master Agent has full control of the system
hardware and Slave Agents. In doing so the Master Agent will have more responsibili-
ties attributed to it compared to the Slave Agents who will only have to satisfy their role
requirements.

Each agent has access to the Agent+ Layer and assigned roles from the Agent Role
Layer. Slave Agents will have access to the hardware but the Master Agent will have
assigned a ‘Hardware Need Value’ to each agent dependant on their role. This value rep-
resents a proportion of system resource usage and on the system adds up to 1. Consider
a TV with access to a GPU and TV Tuner hardware and two agents currently running
on it. One Slave Agent is tasked with recording a user’s favourite shows and this has a
GPU need of 0.2 and a Tuner need of 0.5. The other agent is the Master Agent for the
TV system and is responsible for displaying content, programming recordings, and re-
sponding to user interaction with a GPU need of 0.8 and a Tuner need of 0.5 (assuming
the user is watching live TV). With the TV off, the Master Agent allocates almost all
GPU and Tuner usage to the Slave Agent based of its needs. This is a simplistic view of
how resources could be managed and is intended to demonstrate one of the extra roles
(resource management) the Master Agent will be assigned and how this may work.
Agent+ Layer This is an enhancement layer to the Agent Core designed to provide
dynamic updates and extend core functionality when required. When an update is ap-
plied to the Agent+ Layer the Agent Device does not need to power down. The updating
layer simply becomes locked while the update occurs and then – once successful – re-
turns to an operational state. For instance, assume an Agent Device has a GPU(Graphics
Processing Unit) and this Agent Device is attached to a fridge. The fridge will not have
any need for a GPU so the Agent Role Layer will contain no API’s for a GPU. There-
fore there must be a way in which Agent Device developers can add any functionality
directly to the Agent Device without having to create pseudo role for it. The Agent+
Layer allows for this kind of extension of core functionality.

Agent Role Layer Role specific functionality and APIs are stored here. The Agent
Role Layer and Agent+ Layer are where agent developers will spend their time as these
layers define what the agent is and how it should behave. If the agent role requires a
certain type of hardware or proprietary algorithm to work as intended this would be
implemented in the Agent Role Layer. An agent can have any number n of roles (n ∈ N
can be 0) provided the hardware can support that number of roles. This can allow for
agent-network-wide load balancing as roles can be duplicated to a numerous compatible
Agent Devices. An Agents’ compatibility for a role is dependent on hardware require-
ments for the role. An agent can accept a role if specialist hardware is not available to
it, in this sense the agent takes on a support role. For example a security system might
be trying to identify who is in the house. The Home PC is not in use and neither is
the coffee machine so the security agent asks them to take on a support role and help
process some of the data. The two devices are both in possession of a CPU capable of
processing the data required by the security agent and therefore are compatible for the
support role. Once the support role is no longer required, agents can make the decision
to drop any extra roles6).

6Security agents can force agents to drop certain roles like security roles.

22 J. Betts, B. Müller

Types of Agents using the Layered Agent Framework Agents using the Layered
Agent Framework come in three forms:

Standalone device (Agent Device) The agent is not attached to any appliance or util-
ity. This type of agent acts as an agent controller for a specific area of the agent
network, or a worker agent which can be used by other agents on the network for
data processing much like a server.

Attached to an appliance/utility (Attached Agent Device) The agent is attached to
an appliance and is enabled to use the functionality of the appliance. The actual
agent device is a separate unit to the appliance. This setup is designed to allow
current appliances and utilities to be adapted for agent technology by interfacing the
agent unit with the appliance or utility. This also allows the agent unit to be removed
for repairs or to disable the agent capabilities and control over an appliance.

Embedded in the appliance/utility (Embedded Agent Device) These agent devices
will be part of the appliance/utility and cannot be removed. If a hardware fault
occurs the system will default back to a ‘dumb’ unit until repairs are carried out.

3.2 Executable Model

We introduce a Petri net model based on the nets-within-nets paradigm. It builds on the
MULAN multi-agent architecture and is implemented in the RENEW tool. We give a
brief overview of MULAN in Section 3.2 and then introduce our model in Section 3.2.

Multi-Agent Petri Nets We focus on the MULAN architecture shown in Figure 2 as
introduced in [11]. MULAN separates the multi-agent system into four parts or layers.
The layers are: (a) agent network, (b) agent platform, (c) agent, and (d) protocol.

Each layer is represented by its own Petri net(s). Protocols specify the agent pro-
grams. Agents reside on a platform that provides internal and external communication
facilities and is located in an environment within the multi-agent network of the multi-
agent system. The latter determines the communication structure available to agents.

Because it is unrealistic to assume legacy products to (fully) support agent com-
munication, we generalise parts of the MULAN architecture to reflect this scenario.
In particular, the agent platform will become simply a platform and the multi-agent
network will be referred to as network.

Multi-Agent Petri Net Components The Multi-Agent Petri Net Components (MAP-
NCs) run on a MULAN-based architecture. They constitute the building blocks of
agents and protocols, e.g. for agents created at runtime by other agents. MAPNCs are
presently limited in that their ‘template’ or ‘blueprint’ has to be defined prior to run
time and have to have certain properties discussed below.

The possible templates are stored in a place of the agent net similar to the protocols.
Whenever an instance is required, a copy of one of these templates is initialised accord-
ing to its task and the initialised copy is then moved onto the platform from on which it
operates. As a mobile agent, the generated instance (of an agent) can then traverse the
network to reach other platforms and interact with (agent) nets at remote locations.

MAS for Smarter Homes 23

multi-agent system

communication structure

new destroy

internal communication

external communication

platform

in out

re pro

knowledge base

sendreceive

conversations

protocols

agent

out in

subcall process

stopstart

protocol

Fig. 2. MULAN agent architecture [11]

Figure 3 shows the structure of the extended MULAN architecture that includes the
layer structure introduced in Section 3.1.

The extended MULAN provides the multi-layer support for agent communication
by providing the layer functionality in an additional place regulating the communica-
tion by forcing synchronisation according to the layer information and allowing only
communication based on the specifications therein. Communication can be ‘negotiated’
to take place on different levels according to the different layers.

If a method is overridden, this will result in its protocol becoming unavailable for
execution in the Petri net model.7

3.3 Towards an Implementation

This section discusses some issues related to the implementation of our framework.

Brief Roadmap Designing any system requires an awareness of implementation. With
this in mind any design decisions must made with consideration towards aspects like
available system resources and response times. Our aim is to provide an architecture for
flexible agent-based, object-oriented systems (Layered Agent Framework, LAF). The
Agent Core represents the main component that every system using the LAF will be
based on. Elementary communication features and functionality will be implemented on
the first prototype system. At least one Agent+ layer will have to be created for testing
with the Agent Core. This basic system set up will then be used to test the dynamic
update capability of the framework as well as simple extensions to the Agent Core

7This is easily achieved by removal of a required resource, i.e. an input token to the respective
transition and appropriate transition synchronisation. This is not shown explicitly in the extended
model in Figure3, because it is implemented at a protocol net level and the relevant inscription
detail had to be omitted for brevity and readability.

24 J. Betts, B. Müller

multi-agent system

communication structure

new destroy

internal communication

external communication

platform

in out

re pro

knowledge base

sendreceive

conversations

protocols

agent core agent+

additional
protocols

agent role

role exec

exec

role
attributesmanage

out in

subcall process

stopstart

protocol

Fig. 3. Extended MULAN agent architecture

functionality. Once the Agent+ Layer has been implemented and tested, Agent Role
Layers can be added. An arbitrary number of Agent Role Layers can be developed and
deployed to make full use of the flexible design of the Layered Agent Framework. The
details of what extensions, roles or testing will be done has not yet been determined. The
framework will be supported by a set of development tools that will assist the developer
with the development of bespoke solutions, i.e., Agent+ layers and agent roles. The
tools will include templates and components to assist the construction of agent plans,
for example they will supply action templates and agent creation blueprints.

Manual Override Every system build using LAF must have a manual override in case
of user preference or fault, “open the pod bay doors HAL” 8. This manual override
will place the agent into disabled state in which it has no control over its appliance
or utility. Such agents can still communicate their state on the network and attempt to
assist other agents(assuming no fault). The manual override simply (in software terms)
blocks the agents’ control over its appliance/utility which from then on will need to be
user operated. The agent can be ‘enabled’ by the user flipping a switch or by asking the
agent network to enable the agent again(expressed consent must be given).

The Challenge of Real-Time Responsiveness There are many challenges facing the
final implemented framework and any system based on it. Most importantly, the system
must work in real time. Having a system working in a home environment in which the
user must wait more than a minute for a response is generally unacceptable. A user can
expect delays in response for processing actions such as “What times are the buses to
Cardiff”, “one moment.... 1315 and each hour from then till 2100” this kind of scenario

8Stanley Kubricks’ 2001 A Space Odyssey. HAL is asked to open the pod bay doors, HAL
refuses this request with the response ”I’m sorry Dave, I’m afraid i can’t do that”.

MAS for Smarter Homes 25

is acceptable. However if the user asked for the curtain to be drawn and had a 2 minute
wait before the curtain even started to move is very undesirable. This also poses the
question of user feedback when there are unavoidable delays, but this is outside the
scope of this paper, since it would be the programmer’s duty to supply the feedback.9

Aside from real-time responsiveness the system must have a high fault tolerance and
some form of system crash recovery. A computer crashing is one thing but an entire
home of systems crashing could be disastrous and dangerous. Hence, we need systems
with the ability to recover quickly from a major fault or system-wide disruption. Any
solutions must attempt not to affect the user in a noticeable way. The perfect recovery
solution would be the system completely recovering from a system wide fault without
the user knowing there was ever anything wrong.

The Challenge of Agent Security Security is a major concern in the home, especially
considering the amount of personal data that will be stored on the users’ lives. There
are many ways in which data can be protected, ranging from passwords to strong data
encryption. As security measures placed upon data are increased the less dynamic and
freely available that data becomes and a balance needs to be negotiated such that some
data become accessible without compromising the required level of data protection.
One mechanism could be a relational notion of trust that agents can have with other
agents. The idea is that agents who have proven they are not a threat to the system over
time will become trusted by other agents. An untrusted agents’ request may be rejected,
in contrast trusted agents are more likely to have requests completed by other agents.
Certain agents can be pre-set by developers to have a trust limit for example security
systems should only have complete trust in other home security components with a
certified ID. A private trust value held by every agent on every other agent allows new
devices to use the network without compromising on the security of the network. Trust
levels would range from 0 to 1, representing the range from untrusted to fully trusted.
A new device will usually start on a neutral trust level of 0.5 (unless otherwise pre-set).
Unless the new device was a permanent addition to the smart network (e.g., a cooker)
for which exceptions can be made, if permitted by the security system. Trust values will
be updated dynamically at run time and can be influenced by the security system.

4 Conclusion

We have introduced an agent architecture that supports object-oriented concepts most
software developers are familiar with and that adds component-based agent layers.
These layers provide basic and extended agent reasoning and communications facili-
ties in a maximally flexible way. The architecture is primarily targeted at smart home
automation. For this, it supports dynamic reconfiguration and seamless integration with
non-agent-based systems. This is required because the user experience is of foremost
importance in the smart home application area. Easily configurable components can be
added at runtime to provide additional features and to configure security features as
required by individual sub-systems.

9The tools to be developed for the framework will have templates for a variety of devices and
appliances that can be equipped with basic user feedback functions.

26 J. Betts, B. Müller

A Petri net implementation has been presented in this paper. The next steps will be
to implement the framework on inexpensive hardware that can be integrated into new
appliances or added to existing devices, e.g. in the form of a simple wall-plug adapter.

Also following successful testing of the framework, will be the provision of a tool
kit with components and design patterns to ease the construction of agents, layers, and
roles. Ideally, we would like to link the visual creation of the latter (by means of agent-
based object Petri nets) to the development environment, providing an automated trans-
lation of the Petri-net representation into an agent program. The Petri net model could
then be analysed using existing methods and tools, while the properties are preserved
by a verified translation procedure.

References

1. Köhler, M., Farwer, B.: Modelling global and local name spaces for mobile agents using
object nets. Fundamenta Informaticae 72(1-3) (2006) 109–122

2. Ceccaroni, L., Verdaguer, X.: Agent-oriented, multimedia, interactive services in home au-
tomation

3. Fraile, J., Bajo, J., Lancho, B., Sanz, E.: Hoca home care multi-agent architecture. In Cor-
chado, J., Rodrı́guez, S., Llinas, J., Molina, J., eds.: International Symposium on Distributed
Computing and Artificial Intelligence 2008 (DCAI 2008). Volume 50 of Advances in Soft
Computing. Springer Berlin Heidelberg (2009) 52–61

4. Sriskanthan, N., Tan, F., Karande, A.: Bluetooth based home automation system. Micropro-
cessors and Microsystems 26(6) (2002) 281–289

5. Blackwell, A.F., Rode, J.A., Toye, E.F.: How do we program the home? gender, attention
investment, and the psychology of programming at home. International Journal of Human-
Computer Studies 67(4) (2009) 324 – 341

6. Nunes, R.J.C.: Home automation - a step towards better energy management. IST – Techni-
cal University of Lisbon / INESC-ID R. Alves Redol, 9, 1000-029 Lisboa, Portugal (2003)

7. Abras, S., Ploix, S., Pesty, S., Jacomino, M.: A multi-agent home automation system
for power management. In Andrade-Cetto, J., Ferrier, J.L., Pereira, J.D., Filipe, J., eds.:
ICINCO-ICSO, INSTICC Press (2006) 3–8

8. Giordana, A., Mendola, D., Monfrecola, D., Moio, A.: Horus: an agent system for home
automation. In: 13th Workshop on Objects and Agents (WOA 2012), CEUR Workshop
Proceedings Vol-892 (ISSN 1613-0073) (2012)

9. Dennis, L., Farwer, B., Bordini, R., Fisher, M., Wooldridge, M.: A common semantic ba-
sis for BDI languages. In Dastani, M., Seghrouchni, A.E.F., Ricci, A., Winikoff, M., eds.:
Proceedings of the International Workshop on Programming Multi-Agent Systems (ProMAS
2007). (May 2007) 88–103

10. R. H. Bordini, L. A. Dennis, B.F., Fisher, M.: Directions for agent model checking. In
M. Dastani, K. V. Hindriks, J.J.C.M., ed.: Specification and Verification of Multi-agent Sys-
tems. Springer US (2010) 103–123

11. Köhler, M., Moldt, D., Rölke, H.: Modelling the structure and behaviour of petri net agents.
In Colom, J.M., Koutny, M., eds.: Applications and Theory of Petri Nets 2001. Volume 2075
of Lecture Notes in Computer Science. Springer Berlin Heidelberg (2001) 224–241

Experiments with Simulated Humanoid Robots

Hans-Dieter Burkhard and Monika Domańska

Humboldt University Berlin, Institute of Informatics, Germany
http://www.naoteamhumboldt.de

Abstract. Experimenting with real robots is limited by the available
ressources: Complex hardware is costly, and it needs time and experience
for setup and maintenance. Simulated robots can be used as alternative.
Our RoboNewbie project is a basic framework for experimenting with
simulated robots. It serves as an inspiration for beginners, and it provides
room for many challenging experiments. The RoboNewbie agents run in
the simulation environment of SimSpark RCSS, the official RoboCup 3D
simulator, where the simulated robots are models of the humanoid Robot
NAO of the French Company Aldebaran. Different example agents pro-
vide easily understandable interfaces to simulated sensors and effectors
of the robot as well as simple control structures. The framework has been
successfully used at different courses where the participants needed only
few hours to understand the usage of the framework and to develop own
agents for different tasks.

Keywords: Robotics Tutorials, RoboCup, e-Learning

1 Introduction

Understanding grows with active commitment: to ”do” something, to master it,
provides a deeper understanding. Experiencing with own experiments is of course
an important prerequisite for studies in Robotics and Artificial Intelligence as
well. But experimenting with real robots is difficult not only because of expensive
hardware. Maintaining the robots and set ups for experiments are very time
consuming even for experienced people. Experiments at home as needed for e-
learning require a deep technical understanding by the students, i.e. experiences
that they are just going to learn. So it is not surprising that simple hardware is
still broadly used in robot experiments, hardware which is far behind the recent
technical developments, not to talk about e.g. complex humanoid robots. The
collection of papers in [1] can be understood as an illustration of our statements.

Simulated robots in simulated environments can be used as an alternative
for complex hardware. The RoboCup community has more than 15 years of
experiences with real and simulated robots in the field of soccer playing robots
[2]. Soccer playing robots have been established as a challenging test field for
the progress in scientific research and technical developments. Robots have to
be able to control their bodies and their motions according to soccer play, they
must perceive a dynamically changing environment and they have to choose

28 H-D. Burkhard, M. Domańska

successful actions out of many options in real time. They have to cooperate
with team mates and to pay attention to opponents. Several thousand scientists
and students are participating in the annual RoboCup competitions in different
leagues with different types of real and simulated robots. The humanoid robot
Nao of the French Company Aldebaran [5] is used in the Standard Platform
League, while its simulated version is used in the 3D-Simulation League. The
official SimSpark RoboCup 3D Soccer Simulation (SimSpark RCSS) [3] provides
an excellent environment for experiments with simulated complex robots (see
Section 3). It provides a physical simulation using ODE [7] for the body dynamics
of the robot Nao and the soccer environment.

Our RoboNewbie Project is a basic framework based on JAVA for the devel-
opment of simulated humanoid robots. It provides easy understandable interfaces
to simulated sensors and effectors of the robot as well as a simple control struc-
ture. It runs in the environment of the SimSpark RCSS, thus it can but need
not be used for soccer playing robots. Users can develop their own motions, e.g.
for dancing, gymnastics or kicking a ball.

The RoboNewbie Project implements some kind of ”minimalistic approach”
with respect to Robotics. Users are able to start without special knowledge about
robots. They can learn by their own experiences about the basic concepts of per-
ception, motion, control, synchronization, and integration. All related program
code in RoboNewbie is understandable from simple principles without further
knowledge. That concerns the structure of the code as well as the underlying
computational methods. As soon as users learn more about Robotics, they will
be able to extend the programs accordingly, e.g. concerning complex motions or
world modelling.

Following some hints of the reviewers, we would also like to emphasize the
potential of the framework for the research on foundations. e.g., on computa-
tional models as well as on different problems in cognitive science. It can be
useful in verifying models and in gathering large data sets for experiments in
data mining.

The paper is organized as follows: After an overview about the concept
and the downloadable resources of the RoboNewbie project, we give a short
overview about SimSpark RCSS, and we describe the communication between
the RoboNewbie agents and SimSpark RCSS. The main part of the paper in
Section 5 discusses the details of the RoboNewbie framework, and the paper
ends with results of practical evaluations and our conclusions.

2 The RoboNewbie Project and its Resources

The main goal of the RoboNewbie Project is to provide an uncomplicated start-
ing point to the programming of complex robots with minimal requirements and
pre-knowledge. The users are only supposed to have some programming back-
ground (Java) and some technical/mathematical understanding. More knowledge
about robotics can be provided in parallel to the exercises with RoboNewbie,
e.g. in introductory tutorials (as we already did) or by e-Learning material. At

Experiments with Simulated Humanoid Robots 29

its present stage, RoboNewbie is not prepared as a complete course material on
university level like e.g. the course ”Autonomous Multiagent Systems” at the
University of Texas [8]. But it is planned to integrate it in a e-learning course
on Robotics.

The objectives behind RoboNewbie is the realization of the following require-
ments:

– Holistic view on robots: For beginners and especially for pupils in schools, it is
more appealing to see a robot behave like a human than to test and calibrate
the behavior of a sensor. Of course, when dealing with more complex tasks,
users will experience the need to have better knowledge about the usage of
sensors and actuators, and then they may draw their own conclusions.

– Motivating scenario: Application fields from daily life with known properties
and rules are well suited. Robots which imitate human skills are especially
motivating.

– Scalable tasks: Unexperienced users should have no difficulties to perform
first steps with own experiments and later move to more complex tasks with
unlimited challenges.

– Low requirements: The usability would be restricted if peoples need to have
education on Robotics or if they are supposed to have deep knowledge in
hardware and software. To be usable at schools, basic programming skills
and interests in mathematics and natural sciences should be sufficient.

– Low costs: The costs of a learning system include money and efforts for
purchase, set up, and maintenance, respectively. They should be as low as
possible to permit a broad usage.

The users of the RoboNewbie project can find all materials on the web page
of Berlin United – Nao Team Humboldt [6]. Besides links to RoboCup, Nao
(Aldebaran) and the SimSpark-Wiki, it contains resources for download:

– Description of Installation and first steps.
– Sources of the RoboNewbie Agent programmed in JAVA 7 and prepared for

usage under Netbeans.
– Quick start tutorial: Introduction to the features and the usage of the agent.
– Motion Editor for the design of Keyframe Motions (needs JAVA 3D to be

installed).
– SimSpark RoboCup 3D Soccer Simulation (SimSpark RCSS) for Windows

with an introduction to SimSpark RCSS as far as needed for RoboNewbie.

All provided code is open source. Some parts of the RoboNewbie code use code
of the RoboCup team magmaOffenburg [4].

3 SimSpark RoboCup 3D Soccer Simulation

SimSpark RCSS is developed and used by the RoboCup community in the 3D
simulation league. SimSpark is a generic physical multi agent simulator system
for agents in three-dimensional environments. It uses the Open Dynamics Engine

30 H-D. Burkhard, M. Domańska

(ODE [7]) for detecting collisions and for simulating rigid body dynamics. ODE
allows accurate simulation of the physical properties of objects such as velocity,
inertia and friction.

The Simulator SimSpark RCSS consists of two programs (server for simu-
lation and monitor for visualization and interaction) and configuration files. It
models a soccer field with the player bodies (adapted from the robot hardware
of Nao) and the ball. It also controls the rules of the soccer game, i.e. it controls
the game according to the decisions of a referee.

SimSpark RCSS can be used as open source software. This was also an impor-
tant criteria for its usage. It can be downloaded from [3] for different platforms.
A complete preconfigured version for Windows 7 is provided for RoboNewbie
which can be downloaded from the RoboNewbie web page [6]. Nevertheless, the
RoboNewbie agents run with SimSpark RCSS under other platforms, too. By
some small changes in the configuration files, the soccer rules are simplified for
first usages with RoboNewbie.

The SimSpark RCSS project itself is constantly evolving according to the
progress in the RoboCup initiative. The version (compiled in June 2012) on the
RoboNewbie web pages serves for stable usage and avoids potential incompati-
bility problems by new RoboCup versions.

SimSpark RCSS is documented in a Wiki [3] with download links to the
latest versions as used in the competitions. The Wiki documentation is thought
to represent the actual state of the simulator by continuous updates. But since
different developers are volunteering in parallel on different tasks in the project,
the structure of the Wiki is not always optimal, and occasionally some outdated
information is still present. Moreover, the Wiki is directed to experienced users
which makes it sometimes difficult to understand for novices.

To provide an easy access, the down loads of the RoboNewbie project contain
an introduction to SimSpark RCSS which refers to the provided version (as
described above). It gives the user an overview about

– Simulation using SimSpark RCSS: The SoccerServer and the Monitor.

– The Nao-Model used by SimSpark RCSS.

– Communication between Agents and SimSpark RCSS (with explanations of
the message formats as background information).

– Synchronization between SimSpark RCSS and the Agents.

– Monitor and User Interface.

– Running a Game.

Actually, our description of SimSpark RCSS provides also some ”background”
information which is not needed for beginners, e.g. details about the message
formats. Since RoboNewbie permits an easy and direct access to the items of
messages like sensor values and motor commands, the syntax of messages must
not be known by users. Nevertheless, we have included the information for deeper
understanding of RoboNewbie in case of interest.

Experiments with Simulated Humanoid Robots 31

4 Communication between Agents and SimSpark RCSS

SimSpark RCSS implements the soccer environment including the bodies of the
Nao robots. It models all physical interactions between players, ball and envi-
ronment. The agents implement the control of the players.

The interface between the physical environment and the control of real robots
is constituted by sensors and actuators: Robots perceive the world by sensory
data (e.g. by vision, accelerometer, force sensors etc.), and influence the world
by their actuators (motors, voice etc.).

In simulation, the sensory data are calculated by the simulator according
to the situation in the simulated world (e.g. observable objects) and sent via
message exchange to the agent. Then, like a real robot, the agent can update
its belief about the situation and decide for actions it wants to perform. A real
robot would then activate its actuators (e.g. motors at the joints) to perform the
intended actions. In simulation, the agent communicates with SimSpark RCSS
again by messages which transmit the actuator commands. Both are synchro-
nized by a communication cycle of 20 milliseconds.

In SimSpark RCSS, the message transfer is optimized for minimizing the
server load: All sensory data are packed in one server message to be sent at the
beginning of a communication cycle. Vice versa, the agent can send all action
commands by a single agent message before the end of a cycle. The message
formats follow a special syntactic scheme based on symbolic expressions (S-
expressions). As a consequence of collecting data into one message, the prepara-
tion of the data in an agent needs more efforts than in a real robot. It is a special
feature of the RoboNewbie agent that this preparation is hidden from the user:
The agent provides special getter- and setter-methods which allow the access to
the sensor (perceptor) data and the setting of actuator (effector) commands in
a similar way as in a real robot.

The interaction between the server and the agent works as follows:

1. At the beginning of a cycle at a time t, the server sends individual server
messages with sensations to the agents.

2. During this cycle, the agents can decide for new actions depending on their
beliefs about the situation.

3. Before the end of this cycle, the agents should send their agent messages to
the server for desired actions.

4. The server collects the agents messages and calculates the resulting new sit-
uation (poses and locations of the players, ball movement etc.) according to
the laws of physics and the rules of the game. This is done during the follow-
ing cycle at time t+1. (Note that the server message sent at the beginning
of this cycle regards the situation calculated in the previous cycle at time t).

5. At the beginning of the subsequent cycle, at time t+2, the sensor data in
the server message is based on the effects of the actions at time t+1 which
were chosen by the agent according the information from time t.

A special feature of SimSpark RCSS is the use of so-called perceptors instead
of sensors. The perceptor data can be regarded as already pre-processed sensor

32 H-D. Burkhard, M. Domańska

data. For example, the image data from the camera are not presented by a pixel
matrix. Instead, the vision perceptor sends a collection of observable objects
with egocentric coordinates relatively to the camera of the observing agent. In
a similar way, actions commands of the agent are encoded as so-called effector
values and sent to the server which translates them to motor control commands.
The calculation of perceptor values and the interpretation of effector values are
part of the simulator, too. On the agent side, a server message has to be parsed
for the contained perceptor values, and the action commands have to be collected
to the agent message. Both constitute a significant burden for a beginner while
it provides only few insights to robotics. The RoboNewbie users need not to care
about that, because the RoboNewbie agent does all this work in the background.

Besides some effectors related to initial connection with SimSpark RCSS,
there are Hinge Joint Effectors for each of the 22 hinge joints and a Say Per-
ceptor (as of a loudspeaker with limited capacity). The following perceptors are
available in SimSpark RCSS (for details see the Wiki or our SimSpark descrip-
tion):

– Vision Perceptor (as of a camera in the center of the head).
– Hinge Joint Perceptors at each of the 22 hinge joints.
– Accelerometer in the centre of the torso.
– GyroRate Perceptor in the centre of the torso.
– Force Resistance Perceptor at each foot.
– Hear Perceptor (as of a directed microphone with limited capacity).
– Game State Perceptor (reporting the actual game state of the soccer match).

5 RoboNewbie Framework

The RoboNewbie framework offers a comfortable interface for agents interacting
with SimSpark RCSS. It includes sample agents which illustrate basic concepts
and methods of Robotics and Artificial Intelligence. Users can start exercises
with these agents and learn how to use RoboNewbie and what the programming
of robots is like. They can make their own experiences with different topics and
algorithm by modifications and extensions.

It was a main goal of the project, to provide easily understandable concepts,
methods and programs. There are no complicated structures, and all code is
documented in detail. As a consequence, some more demanding concepts were
replaced by simplier approaches (e.g. keyframe motions instead of inverse kine-
matics, approximated coordinates of observed objects etc.). Nevertheless, the
clear structure of the project supports extensions for more challenging solutions
if wanted.

5.1 Low Level Interface Functionalities

The framework includes interface functionalities on two levels. The lower one
corresponds to the hardware-near functionalities of robots, while the higher one

Experiments with Simulated Humanoid Robots 33

is concerned with more abstract control functionalities. Especially for the lower
level, parts of the code of the team magmaOffenburg [4] was used by us as
documented in our source files.

The hardware-near layer encapsulates the network protocol for interaction
with SimSpark RCSS and it allows access to the simulated hardware entities
corresponding to sensors and motors. The access is implemented by getter func-
tions for perceptor values of different perceptors which can be used similar to
sensor signal queries of real robots. Related setter functions for effector values
can be used for the control of actuators.

Especially the low level interface functionalities for SimSpark RCSS are a
hurdle for beginners and need time consuming work even for experienced users.
They concern tasks like network connection, synchronisation with the server,
parsing of nested server messages, syntactical analysis of S-expressions, synthe-
sis of agent messages with a lot of technical non-robotics details. The users of
RoboNewbie need not to care about all this details, the framework offers er-
gonomic methods for the interaction with the simulated environment in an easy
understandable way similar to the methods used by the operating systems of
real robots. Users can learn to use these methods after a short training time (cf.
the evaluation in Section 6).

The synchronization protocol was already described in Section 4. The user
needs not to care about the communication, except the delays by the protocol
and the duration of the cycles given by 20 msec. It is necessary to fetch a server
message at each cycle and to send the agent message before the end of the
cycle. The related control structures are already implemented in the examples
and explained by the tutorial. Hence, if the calculations during one cycle do not
exceed the cycle time, there will be no problem. The needed time depends of
course on the used computer, the example agents run without problems even on
less powerful machines.

The first example ”Agent BasicStructure” in the tutorial let the users start
with an agent which already implements all low level communication. The agent
simply rises an arm by setting related effector values. The user can experiment
with other values and other effectors just to understand the basic structures.

5.2 Perception

The available perceptors were already listet in Section 4. All perceptor values
can be queried by related getter methods using the perceptor names instead of
the acronyms of the server messages. This allows a comfortable access to the
perceptor data which corresponds to the access of sensor values by a related
operating system of a real robot.

RoboNewbie has already implemented the necessary conversion from the
nested server messages to the perceptor values. For that, the server message
are parsed for the constituents of a tree like structure (again, thanks to the
code of the team magmaOffenburg [4]). According to the analyzed acronyms in
the expressions of the tree, the corresponding perceptor values are filled in by
RoboNewbie.

34 H-D. Burkhard, M. Domańska

The programs ”Agent TestPerceptorInput” and ”Agent TestLocalFieldView”
illustrate the usage of the related getter methods and the perceptor values. The
examples serve also as an illustration to the usage of the logger functions de-
scribed in Subsection 5.5. As an exercise of the tutorial, the user can implement
an agent, which lifts the robots arm, when it senses another robot and moves the
arm down, when it does not sense any robot. Which arm is lifted should depend
on the side where the other robot is seen.

Special efforts are needed for the vision perceptor. It provides coordinates of
all objects in the vision range of the camera. SimSpark RCCS in its common
version does not communicate image data. Instead, the communicated informa-
tion can be understood as the result of basic image interpretation, it contains
coordinates of the goal posts, the lines, the ball, and the body parts of robots.

The vision perceptor provides values by egocentric coordinates relatively to
the camera in the centre of the head. Further calculations are necessary to get
the coordinates of objects relatively to the body of the robot. Accurate calcula-
tions would need the inspection of the cinematic chain. The necessary data are
available by the hinge joint perceptors. More calculations including self localiza-
tion are necessary for the transformation into alocentric coordinates. RoboNew-
bie does not provide related programs following the intended ”minimalistic”
approach, because they would not be understandable by beginners without pre-
knowledge about Robotics. Instead, the implementation of related methods can
serve as exercises during courses in Robotics.

As a simple substitute, we have decided to provide only approximations for
the conversion from camera coordinates to robot coordinates. They are docu-
mented in the sources and easily to understand. Users can make experiments
according to the accuracy and draw own conclusions on cinematic relations.

Visual information is provided by SimSpark RCSS only at each third cycle,
and the robot would have to act blindly in between when there are no vision
data available. Hence, the vision information should be stored for the following
cycles. Moreover, the vision perceptor is limited by the camera view range of 120
degrees horizontally and vertically. The robot has to move its head to observe
more objects in the world. Again it is useful to store objects seen before in
other directions. In general, such updating and memorizing of observations is
maintained as belief of the robot in a so called world model. Updates may regard
corrections according to robot motion, guesses for movements of invisible objects
and integration of information communicated by other robots.

Again, a fully elaborated world model is far behind the scope of beginners.
Hence, RoboNewbie provides a very simple version, where just the observed
objects are stored in a simple form. The coordinates of those objects are ref-
erenced with respect to the robots coordinates. Turnings of the head are al-
ready regarded by RoboNewbie, but only by the approximate calculations as
described above. Other movements of the robot like turning or walking are not
regarded. Time stamps indicate the last time of observing an object. The example
”Agent TestLocalFieldView” illustrating the perception features of RoboNewbie
is provided for the users.

Experiments with Simulated Humanoid Robots 35

5.3 Motions

All intentional motions are performed by controlling the hinge joints by sending
effector values (speed of motors) to SimSpark RCSS. Then the physical simula-
tion engine calculates the effects of the commands regarding physical laws and
updates the simulated world accordingly.

Simple motions like turning the head or rising the arms can be easily pro-
grammed by the users as in the already mentioned examples. The motions can
be controlled using the feedback of hinge joint perceptors. i.e. by sensor-actor
coupling, where the delay of observing an action has to be regarded as described
in Section 4. There is much room for own experiments of users.

More complicated motions like walking need coordinated movements of dif-
ferent joints, users may learn about these problems after some trials. We have
decided to provide keyframe motions in RoboNewbie because they are easily to
understand and to design. The interpolation mechanism for keyframe motions
in RoboNewbie realizes a linear interpolation - users may implement other in-
terpolation methods like splines if they want. Keyframes are stored as text files
which can be edited by any text processing system. Therewith, users could even
design and change motions while using the programs as a blackbox.

RoboNewbie comes with a set of predefined keyframe motions for walk-
ing, turning, stand up and others. Users can change these motions (by chang-
ing the related text files). New motions need an integration into the program
”keyframeMotion”, details are explained in the tutorial and the source code
documentation.

According to simplicity, there are no concepts implemented for interruption
of motions: Each motion is performed completely until its end, and there are no
cyclic motions, e.g. for walking. Instead, continuous walking can be performed
by subsequent calls of a two-step-walk.

The design of keyframe motions is supported by a graphical Motion Editor.
It can be downloaded from the RoboNewbie Web page as well. It shows the
postures of the robot for selected keyframes. Then the keyframes can be edited
in two ways. In the graphical representation the posture can be kneaded into
the desired posture with the mouse. Alternatively, each joint angle can be set
to specified values which are immediately presented by the graphics. Transitions
between keyframes can be defined with specific transition times resulting in a
keyframe sequence as usual.

The program ”agentKeyframeDeveloper” helps in designing keyframes. A
robot performs the motion of the actually edited keyframe file. After each change,
the new motion is performed immediately. If the robot falls down during such a
motion, it stands up by itself. Another helpful program can be used to mirror
keyframes from one side to the other.

The example ”agentSimpleWalkToBall” illustrates the motion concepts. As
an exercise of the tutorial, the users can change that program to implement
obstacle avoidance (walk around the ball without touching it). They can use
motions for walk, stop and turn. Additionally, the agent must be able to recognize
the ball and to decide for the appropriate motion according to the ball position.

36 H-D. Burkhard, M. Domańska

Another exercise is the design of a new motion for kicking the ball. Users can
furthermore do their own experiments e.g. with dancing robots.

In general, keyframe motions are useful for special motions like standing up,
but they are not so well suited e.g. for walking. Walking is still a challenging
problem in Robotics. The users of RoboNewbie will get some understanding
about the task. Moreover, the framework is well suited as a basis for other im-
plementations and for Machine Learning by more educated users. But according
to our ”minimalistic” approach, related implementations are not provided.

5.4 Control Cycle and Decision Making

The basic control cycle follows the classical deliberation approach, often denoted
as the ”sense–think–act–cycle”, or by related similar names. This corresponds
closely to the cycle given by SimSpark RCSS: At first, sensations are provided
to the agent, then the agent decides for appropriate plans and then it sends the
related action commands back to the server.

Critical remarks may come from the community of Embodied Robotics/AI,
e.g. concerning the centralistic and symbolic computations in the classical ap-
proach. To realize concepts of Embodied Robotics/AI one needs to put more
emphasis on local sensor actor coupling, distributed control, embodiment, situ-
atedness, emergent behaviour etc. The real robot Nao as well as its simulated
counterpart with the central control (i.e. our agent) are not primarily designed
for such purposes. It is possible to design sensor actor couplings and other be-
havioural concepts in the RoboNewbie framework, too. One might even split
the agent into different ”parallel” acting parts (implemented e.g. by threads) to
simulate distributed controls, but some synchronization is unavoidable by the
server cycles of SimSpark RCSS.

At the same time, thinking in terms of the ”sense–think–act–cycle” is quite
natural for beginners because it reflects some causal dependencies. It provides
an intuitive and easily maintainable structure in the design of robots. Therefore,
the control cycle in RoboNewbie adopts the related terms for structuring the
run-methods of the agents by cyclic calls of methods sense, think and act. The
think-method is sometimes omitted in case of simpler (”reactive”) agents.

The sense method is reponsible for receiving and processing the perceptor
data by the related RoboNewbie methods. The act methods calls the transfer
of the agent message with the effector commands. What is left is the further
analysis of the perceptor data (e.g. a more elaborated world model) and the
decision for plans and actions to be performed by the robot now and possibly
in the future. By the given structure of RoboNewbie, all this can be included in
the think method. The think method can of course be split into more dedicated
deliberation methods which may be organized hierarchically if needed. Again,
all this is left to exercises during related courses. RoboNewbie provides just a
simple example for illustration, the Agent SimpleSoccer.

The Agent SimpleSoccer is able to perform a very simple soccer play: As
long as it is behind the ball and sees the opponent goal, it walks forward while
pushing the ball with its feets. If the condition is not fulfilled, it turns around

Experiments with Simulated Humanoid Robots 37

until it sees the ball, walks to the ball, turns around the ball until it sees the
opponents goal, and then it starts walking towards the goal again. The decisions
are made by a simple decision tree whenever the previous motion is completed
(note that motions can not be interrupted as described above).

It is obvious, that the play of Agent SimpleSoccer can be improved in many
ways. This is just what we want: The users can collect many ideas for improve-
ments. Improvements may concern better usage of perception (e.g. by a ball
model guiding the search), improved motions (like faster walk), new motions
(like kick or dribble), better control (like path planning). It is also possible to
have more players on the soccer field such that players can cooperate (e.g. by
positioning and passing). This gives room for simple contests during a course.

5.5 Logger

Runtime debugging of programs may be difficult because it affects synchroniza-
tion with the server. Even simple debug messages printed on System.out may
need too much time such that the agent cannot respond in time. It is possible
to use the so-called sync mode which lets SimSpark RCSS wait until all agents
have sent their messages (see [3]). Alternatively, all debug messages can be col-
lected by the program ”Logger” of RoboNewbie. After the agent has finished,
the collected messages are printed out. The usage is shown by the programs
”Agent TestPerceptorInput” and ”Agent TestLocalFieldView”. Both programs
provide also examples for the usage of the getter methods for perceptors.

6 Evaluations

We have tested the RoboNewbie framework at different places. It was used at
introductory Robotics courses of about 30 hours during 5-8 days at Ohrid, War-
saw, Novi Sad, and Rijeka, respectively. 20 hours were planned for lectures, 10
hours for introduction and first usages of RoboNewbie. Additional 10-20 hours
were used for further experiments by homework.

RoboNewbie served for illustrating experiments and for exercises in connec-
tion with the theoretical instructions. The participants of the courses learned to
use RoboNewbie during short time and they programmed an improved soccer
player at the end. The work with RoboNewbie was helpful to understand the
theory, and the final evaluation of the courses by the participants resulted in
high marks. Especially the competitions with the improved soccer agent at the
end of the courses were motivating.

This was also the case with the participants of a Robotics course at our
university, where the students had more time (two months) for their studies and
exercises. Students used the time to implement more sophisticated methods and
to try out changes of the framework itself (e.g. other interpolation methods for
keyframes). But it also turned out, that efforts for more sophisticated controls
are limited by the available skills, especially for motions.

38 H-D. Burkhard, M. Domańska

7 Conclusion

In contrast to other experiments in Robotics, the RoboNewbie framework can
be used without special hardware. It simply needs a computer for simulation
of the robot soccer scenario, which is more complex than experiments by many
hardware equipments. It is easy to understand and to use after a short introduc-
tion. No special knowledge (except basic programming in Java) is required to
start with own experiments, and while the users acquire more knowledge, they
can work on more challenging tasks.

The ”minimalistic approach” is useful especially for short courses and for
introductions to longer courses. Later on, the disposability of non-minimalistic
more sophisticated methods could be useful for higher level integrative tasks. It
is impossible to let students implement all desirable algorithms in the limited
time of a course. Joint activities of robots, for example, depend heavily on the
available bodily skills and on the capabilities for interaction and coordination.

The practical evaluations have confirmed our expectations on the RoboNew-
bie project. Beginners in Robotics were able to use the framework after short
introductions. They were able to program own methods in parallel to the theo-
retical concepts and methods provided by classes. Participants have attested the
usefulness of own experiences (which again corresponds to our expectations).

Next plans concern the usage of the RoboNewbie framework in Secondary
Schools, and the integration into an e-Learning course on Robotics.

We are thankful to the whole RoboCup community, especially to the develop-
ers of SimSpark RCSS, to the team magmaOffenburg and to our team NaoTeam
Humboldt, and especially to Yuan Xu.

References

1. Taskin Padir and Sonia Chernova (eds.): Special Issue on Robotics Education.
IEEE Transactions on Education, Volume:56, Issue: 1, 2013.
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6423944

2. RoboCup - official web page. http://www.robocup.org/. Visited at 20.8.2013
3. SimSpark RCSS Wiki (Documentation of the Simulator).
http://simspark.sourceforge.net/Wiki. Visited at 20.8.2013

4. Homepage Team magmaOffenburg.
http://robocup.fh-offenburg.de/html/index.htm. Visited at 20.8.2013

5. Aldebaran. http://www.aldebaran-robotics.com/en/. Visited at 20.8.2013
6. RoboNewbie http://www.naoteamhumboldt.de/projects/robonewbie/. Visited at

20.8.2013
7. Russell Smith. Open Dynamic Engine User Guide, 2006. http://www.ode.org. Vis-

ited at 20.8.2013
8. Stone, Peter. RoboCup as an Introduction to CS Research. In Daniel Polani, Brett

Browning, Andrea Bonarini, and Kazuo Yoshida, editors, RoboCup-2003: Robot Soc-
cer World Cup VII, Lecture Notes in Artificial Intelligence, pp. 28495, Springer Ver-
lag, Berlin, 2004. The material of the course ”Autonomous Multiagent Systems” at
the University of Texas. (2012) can be found at
http://www.cs.utexas.edu/∼todd/cs344m/ Visited at 20.8.2013

Searching for Concepts in Natural Language
Part of Fire Service Reports?

Kamil Bąk1, Adam Krasuski1, and Marcin Szczuka2

1 Chair of Computer Science, The Main School of Fire Service, Poland
2 Institute of Mathematics, The University of Warsaw, Poland

krasuski@inf.sgsp.edu.pl,szczuka@mimuw.edu.pl

Abstract. In the article we present the comparison of the information
retrieval approaches focused on a searching of specific concepts in a Nat-
ural Language part of Fire Service reports. The comparison comprise
of searching with use of regular expressions, Latent Semantic Indexing
and pre-defined set of search terms. As a case study we selected three
concepts which may not be explicitly mentioned in reports, have various
meanings (homonymy), or may be replaced by synonyms.
Keywords: natural language processing, information retrieval, search,
fire service.

1 Introduction

The Public Security Services in any country are charged with maintaining public
safety and emergency assistance. In Poland a large part of public security and
safety tasks is the responsibility of the State Fire Service (PSP – from Państwowa
Straż Pożarna in Polish). As a primary emergency response service the PSP
not only deals with fires, but is also charged with technical rescue (e.g., during
road collisions, building collapses), chemical emergency response (chemical spills,
hazardous material handling), natural disaster response (floods, wildfire, storms
and so on) as well as tasks such as removing beehives or inspecting security
measures in buildings.

Every time a fire fighting team is dispatched a report of activity shall be
created by the commander at the scene. These reports are prepared in a par-
ticular, regulated manner and stored in EWID – a computerized incident data
reporting system (IDRS) built for this purpose. Each of approximately 500 Fire
and Rescue Units (JRG) of the PSP conducts around 3 fire & rescue actions a
day. Since after every action a report is created, the total number of reports in
EWID is currently around six million.

? This work was partially supported by the Polish National Science Centre grants
2011/01/B/ST6/03867 and 2012/05/B/ST6/03215, and by the Polish National Cen-
tre for Research and Development (NCBiR) - grant O ROB/0010/03/001 under De-
fence and Security Programmes and Projects: “Modern engineering tools for decision
support for commanders of the State Fire Service of Poland during Fire&Rescue op-
erations in buildings”.

40 K. Bąk, A. Krasuski, M. Szczuka

The EWID reporting system is an unparalleled source of information and
knowledge about fire&rescue (F&R) operations. Ability to process and analyze
this data could help in development of new procedures and protocols as well
as aid the optimization of existing ones [1]. The knowledge derived from EWID
may be also very helpful in firefighters’ training process. For example, if we can
retrieve a reference set of descriptions of similar situations from EWID we can
apply techniques based on Conversational Case Based Reasoning (CCBR, see [2])
to decide the course of actions for the new situation. In order to use information
contained in EWID efficiently and effectively we need to be able to search and
summarize reports according to various, possibly changing requirements.

In this paper we focus on one of the particular tasks associated with identi-
fication of EWID records that fulfill certain criteria. This corresponds to iden-
tification (retrieval) of action reports that describe situation involving a pre-
defined elements (concepts) such as “Hymenoptera insects”,“mini-bus” or “car-
bon monoxide”. An important factor in that the concept we look for may not
be explicitly mentioned in the record. As EWID record comprise of numerical
part and Natural Language (NL) description part, we are particularly interested
in finding records related to a preset concept even though they do not have
corresponding numerical indicators set and the description part is not clearly
listing these concepts. We describe a set of techniques that make it possible to
cleanse and filter EWID records, most importantly their description part, in such
a way that the search/identification is efficient. This involves overcoming typical
problems associated with inconsistencies, vagueness and imprecisions that are
commonplace in EWID records. Yet another type of problems that we have to
overcome is associated with the very nature of NL data. Notions (words) we
are looking for may have various meanings (homonymy) or may be replaced by
synonyms.

While it is possible to obtain good results using classical search techniques,
their application to description part of EWID records is not always viable in
practical applications. In a nutshell, they require a person in front of the com-
puter, who is able to resolve inconsistencies (e.g. homonymy), identify meanings
and tune filters. In order to ease some of this manual load and extend search
scope while retaining acceptable quality of retrieved information we propose
to use a combination of language processing and data analysis tools. In our
approach texts from the description parts of EWID records are converted to dif-
ferent representation with use of a method known as Latent Semantic Analysis
(LSA). Then, a clustering technique is used to find groups of semantically similar
concepts. This grouping is then a basis for constructing search and retrieval algo-
rithm. The quality of retrieved result is compared with straightforward manual
filtering by means of standard measures from the field of Information Retrieval
(IR - see [3]) such as recall, precision, and F-measure3.

3 http://en.wikipedia.org/wiki/F1_score

http://en.wikipedia.org/wiki/F1_score

Searching for Concepts in Natural Language Part of Fire Service Reports 41

In the paper we first introduce the data we work with (Section 2), then we
describe the methodology behind our approach (Section 3). The application of
the proposed method and results obtained this way are presented in the Section
4. We finish with discussion of results and conclusions in Section 5.

2 Description of Data

Our data set consists of 291 683 F&R reports extracted from the EWID system.
They contain information about incidents to which PSP responded in the period
between 1992 and 2011. The data is limited to incidents that happened in the
City of Warsaw and its surroundings. Out of 291,683 cases in this dataset 136,856
reports represent fires, 123,139 local threats, and 31,688 false alarms.

As already mentioned, each report consists of a numerical attribute section
and a natural language description part. The attribute section consists of 506
attributes describing various types of incidents. However, depending on the cat-
egory of incident, the number of attributes that are actually present (have a
non-zero value) varies from 120 to 180 per report. Most of the numerical at-
tributes are boolean (True/False), but there are also some numerical values like
fire area or amount of water used to extinguish the fire.

x

x

x

Number of firefighting jets

x

Fire size
 small medium large

For forest fires

 subsurface

undergrowth

single tree

stand of trees

x

x

Rescue action description

ATTRIBUTE SECTION DESCRIPTIVE SECTION

E W I D

2
After arriving at the fire scene the
undergrowth fire was observed. Two
firefighting jets ware applied and suction
line from the nearby lake was created.
After putting out the fire, appliance crew
came back to fire station

Fig. 1. Representation of a report in EWID database.

The natural language description (NL) part is an extension of the attribute
part. It was designed to store information which cannot be represented in the
form of a predefined set of attributes. Unfortunately, there are neither clear reg-
ulations what should be written in the description part nor any strict guidelines

42 K. Bąk, A. Krasuski, M. Szczuka

regarding the format of this part. Therefore, in this part a full spectrum of infor-
mation can be found. Some descriptions contain detailed information including
the precise timeline of events while others are very brief and general. On average,
the NL part contains approximately three sentences that describe the situation
at the fire ground, actions taken, and weather conditions. Figure 1 depicts the
idea of a report representation in EWID database.

In terms of factual aspects the data stored in the EWID contains information
about persons, objects involved in the incident, and methods used to eliminate
threats that have arisen.

For the purpose of this study we decided to concentrate on three types of
incidents that are of some importance to overall management of Fire Service.
These are:

1. Incidents where carbon monoxide was present. This mostly concerns fires
in residential buildings as carbon monoxide poisoning is one of the major
threats in such incidents and the cause of major part of fatalities.

2. Incidents with insects of the Hymenoptera order such as honeybees, hornets,
bumblebees, wasps. These incidents fall into the local threats category. Even
though they are rarely a major problem, these incidents require relatively
high amount of manpower and involvement of specialized equipment.

3. Road collisions involving mini-buses. This category of road accidents is some-
what special. A mini-bus in the Polish terminology is a vehicle that is reg-
istered to carry between 7 and 12 persons. Such vehicle can be driven by a
person with a regular (non-professional) driving permit. In the recent years
the accidents involving mini-buses became a major issue in Poland. From se-
curity services’ point of view they are important, as they may involve many
more casualties that “regular” road collisions, and hence require much larger
resources to respond to.

In order to perform our experiments we selected from the original data set
a sample of 4 135 reports. The records in our subset consist only of NL descrip-
tion part. We extracted this subset using a two-fold procedure. First, using the
attribute part we selected the reports which we suspected to contain the kinds
of incidents that are of interest to us. Then, using a greedy algorithm based on
searching for regular expressions in NL part, we narrowed down the number of
previously selected reports to 2 135. In the second step, we selected at random
a sample of 2 000 reports, regardless of their kind as a reference sample. Then,
we merged this two subsets into one data set for experiments with 4 135 reports
in it.

We are fully aware that our data subset may not be sufficiently representative
as part of it was not properly, randomly sampled. However, the fully random
sample contains too few interesting reports. Therefore, we opted for a compro-
mise combining the fully random sample with the preselected bunch of reports.

The next phase of data preparation involved inspecting (reading) the selected
reports one by one and labeling them manually. This step is tantamount to in-
jection of the expert knowledge into the system. We assigned the report to a

Searching for Concepts in Natural Language Part of Fire Service Reports 43

category (carbon monoxide, hymenoptera, mini-bus) if it contains the informa-
tion about a corresponding type of incident. Our final, partly labeled data set
contains 82 reports with carbon monoxide intoxication, 167 with road accidents
involving mini-buses, and 1557 incidents with Hymenoptera.

3 Methods

Our methodology involves four approaches. In the first approach we adopt a tra-
ditional search with use of regular expressions. The user inserts a term or terms
which express his information need. He/she defines it using exact or fuzzy search
with wild-cards. For example, while searching for reports which describe inci-
dents with carbon monoxide intoxication the query can be defined as: ”*carbon
monoxide*” or ”\s CO \s”, where CO is a chemical symbol for carbon monoxide.

In the second approach the experts define a set of concepts which are re-
lated to the defined problem. We transformed these concepts into set of lexemes,
i.e., search terms. For example, the problem of finding the reports with carbon
monoxide intoxication was defined by the following set of terms: carbon monox-
ide, CO, oxide, afterdump, choke-dump, asphyxiate, intoxication.

In the third approach we we transformed the reports to Latent Semantic
Space and performed search using the cosine similarity measure between the
query and each of the reports. The fourth approach was similar to the third, but
the transformation to LSA was extended by clustering. LSA representations of
reports were clustered in order to identify groups of similar incidents.

All the approaches were compared using standard information retrieval mea-
sures (recall, precision, and F-measure). In the following subsections we provide
some details of our approaches, except for the first one, as it is quite common
and simple.

3.1 Search with a set of predefined terms

For all three classes of EWID reports (carbon monoxide, Hymenoptera and mini-
buses) we asked domain experts (firefighters) to define the concepts which are
related to these problems. They have created a list of concepts which, in their
opinion, can express the problem, are associated with it, or occur very often
at the emergency scene while responding the particular type of incident. Then,
we transformed these concepts into a set of terms. Namely, for the problem
of searching carbon monoxide intoxication we defined the following set: carbon
monoxide, co, oxide, afterdump, choke-dump, asphyxiate, intoxicate. The infor-
mation need for Hymenoptera-related incidents was defined by the set of terms:
wasp, bee, hornet, bumblebee, insect, cocoon, swarm, ergotizm, gastight cloth-
ing. The terms corresponding to road accidents with mini-buses were: mini-bus,
dostawczy (Polish-specific word), courier.

As Polish is a fusional language we had to deal with problems posed by
inflexion of words. To do that we lemmatized the words in reports from our data

44 K. Bąk, A. Krasuski, M. Szczuka

set, creating the non-inflexed form. The lemmatizations were performed with use
of the Morfologik software [4].

For each of three incident types we ran a query against the data set using all
the terms associated with the given type. The terms were combined in the query
using OR operator. The experimental results with this approach are presented
in Sections 4 and 5.

3.2 Search using LSA space representation

This approach is based on the transformation of the reports using Latent Se-
mantic Analysis (LSA) [5, 6]. The basic idea of LSA is to create the concepts
for the given text corpus and then assign each single word from a document
(report) to a corresponding concept. The result is that reports can be expressed
in Latent Semantic Space as vectors of corresponding concepts’ weights. The
advantages of LSA representation are that it is considerably more compact than
original one and makes it possible to find indirect similarities between reports
or between reports and queries.

The reports were lemmatized and transformed into LSA space with use of
the R system’s [7] library lsa. As a result of the transformation we obtained
three matrices: report – concept matrix (concept in the sense of LSA), term –
concept matrix and eigenvalues matrix. The number of LSA dimensions was es-
tablished experimentally, based on the values of final measures (precision, recall,
F-measure). We found out that the best number of dimensions in this case is 50.

In this approach the search for relevant reports was performed as follows.
First, the query (e.g. carbon monoxide) was converted to vector (bag-of-words)
form and multiplied by the term-concept matrix in order to obtain its LSA repre-
sentation. Then, using the cosine similarity measure we find in the report-concept
matrix the reports which are similar, as vectors, to the query. The threshold for
similarity (cosine between query and report vectors) was established experimen-
tally at 0.7.

3.3 Search using LSA representation and clustering

We have found the results obtained through the usage of the LSA with default
settings to be unsatisfactory. In order to improve the results we resorted to cluster
analysis. The reports were transformed to LSA representation (report-concept
matrix) and then clustered with using the Partitioning Around Medoids (PAM)
algorithm [8]. In order to obtain the number of cluster in PAM clustering, we
used the silhouette index [9] as a primary measure, complemented with our final
performance measures (recall, precision, F-measure). After several repetitions of
experiments we have established the desired number of clusters to be 10.

In order to assess the performance of the approach was proceeded as follows.
First, we inserted the terms which define our information need, for example
“mini-bus”. Then, we obtained the names of the clusters which contain such a
term. Next, reviewing the reports in these clusters we retained only the clusters

Searching for Concepts in Natural Language Part of Fire Service Reports 45

in which the concept (mini-bus) appear in the desired context. In the mini-
bus example the desired context would be “road accident with mini-bus”. This
allows us to eliminate clusters that contain the concept of mini-bus which is
not taking part in a road accidents. For example, mini-buses that were burned
in parking fire. The similar situation was in the case of carbon monoxide. The
clustering helped us in finding the ”CO” in the proper context. With carbon
monoxide searched as “CO” the situation is tricky because of homonymy. The
abbreviation ”CO” (uppercase4) in Polish is commonly used denote a concept
of ”central heating” (Centralne Ogrzewanie).

4 Results

In Table 1 we show a summary of results obtained from experiments. For each
of the methods we calculated the values of three measures: recall precision, and
F-measure. The measures were calculated with use of manually labeled reports
as the reference.

Table 1. Comparison of search methods.

Method Measure Carbon monoxide Mini-buses Hymenoptera

Regular expressions
recall 0.451 0.898 0.402

precision 0.069 0.877 0.987
F-measure 0.120 0.888 0.571

Set of terms
recall 0.671 0.892 0.990

precision 0.671 0.914 0.981
F-measure 0.671 0.903 0.985

LSA
recall 0.021 0.347 0.014

precision 0.011 0.397 0.016
F-measure 0.012 0.371 0.019

LSA with clustering
recall 0.768 0.928 0.974

precision 0.173 0.330 0.557
F-measure 0.282 0.487 0.709

According to Table 1 the best results were achieved by the approach which
used predefined search terms. For each of the classes it obtained the best value
of F-measure. Reasonably good results were obtained using the representation
of reports in LSA space coupled with clustering.

4 The situation is even more complicated with a lowercase word “co”. It is a common
stop word in Polish roughly equivalent – depending of context – to English “what”
or “which/that”.

46 K. Bąk, A. Krasuski, M. Szczuka

5 Discussion and Conclusions

Even though the traditional, term-based search in EWID records returns rea-
sonable results, it is not prefect. In order to get the desired outcome the user of
the system must possess some (expert) knowledge of topics from F&R and asso-
ciated domains. For example, obtaining satisfactory result of search for incidents
that involved Hymenoptera requires setting of several filter conditions. Estab-
lishing such filtering conditions may be complicated and inconvenient. Similar
complications were also symptomatic for other types of searches.

The problems posed by existence of synonyms, homonyms and various ele-
ments of specialized jargon had to be overcame. The first attempt was based
on analysis of hidden semantic groups derived with use of LSA. Two separate
experiments were made. These experiments differ by the operations that were
used to transform the (matrix) LSA representation. First of these attempts was
made using the cosine measure. It measures the angle between the vectors in
LSA representation. In this particular case we were interested in measuring the
angle between vectors that represent the query and the documents (EWID de-
scriptions). During the experimental evaluation we have determined that this
method is inefficient. For most types of queries finding the proper threshold for
the value of cosine was problematic. This threshold is used to decide whether a
document answers the query or not. Only in the case of querying for incidents
involving mini-bus the results were reasonable. In this case we have obtained
value of F-measure at 0.37, but the value of precision was merely 0.35. Moreover,
the retrieved set of records contained quite high number of incidents involving
insects. This may be a result of the two categories (mini-bus-related and insect-
related) being identified as semantically close. This semantical closeness is most
likely a result of existence of several reports involving both kinds of incidents.

As the results obtained with simple cosine approach were far from satisfactory
we had to look for improvements by changing the way the LSA representation
was used. In the next attempt we divided the corpus of texts into a pre-set
number of clusters. After several experiments we have determined that the best
number of clusters in this case is ten. Each cluster was meant to contain reports
that share similar context. It was indeed possible to perform clustering in such a
way that the clusters were semantically consistent. The best cluster was associ-
ated with incidents involving mini-buses and contained 93% of relevant reports.
This was, in fact, the best single result we have obtained with any of the meth-
ods used. Unfortunately, results obtained with use of this cluster were inferior
to manual retrieval attempts since the precision value for this record is only
0.33. This means that a large number of incidents involving types vehicles other
than mini-bus was also present in this cluster. The clustering helped to increase
the quality of searches involving Hymenoptera. In this case, union of four most
prominent clusters contained 97% of all relevant incident reports. The problem
with relatively low precision of this approach still remains. For Hymenoptera
queries the clusters provided precision at the level of 0.56, which yields the value
of F-measure at 0.709. To put this in context, the manual filtering on lemmatized
corpus had value of F-measure at 0.985. Clustering approach provided also some

Searching for Concepts in Natural Language Part of Fire Service Reports 47

results for queries involving carbon monoxide. One of clusters that were found for
this case had the recall 0.768, which is the highest value that we have achieved
in all of our experiments. Nevertheless, this cluster is still only marginally useful,
as it has very low precision, resulting in value of F-measure that is only 0.282.

To sum up, the best overall results w.r.t. precision, recall, and F-measure were
obtained using the semi-manual retrieval with pre-defined set of search terms.
This can be further improved by lemmatization which, combined with removal
of additional stop words (using Morfologik library), significantly reduces data
size and hence the computational effort. The downside of this approach is the
necessity of defining and manually entering several search terms. Experiments
show that entering search terms one-by-one is ineffective. The have to be several
of them in the filter so that they cover a broad range of possible combinations
that may occur in incident descriptions. This requires the user to have a good
overview of the data corpus and some domain knowledge about incidents stored
in EWID.

The problem with requirements for extended users’ expertise can be to some
reasonable extent – as our initial experiments show – addressed with use of
LSA. Conversion of EWID description to LSA representation makes it possible
to group (cluster) similar reports. In order to make the demonstrated approach
usable we would have to prepare tools that allow user to navigate through the
cluster in an intuitive and efficient manner. In particular, the user can be pre-
sented with clusters that are represented by a selection of frequent and relevant
terms that occur in descriptions that belong to such clusters. Yet another pos-
sible extension of our approach could make use of hierarchical clustering. Last,
but not the least, we are considering building a search engine that would make it
possible for user to perform a faceted search (see [10]) for relevant reports with
use of clustering. Facets such as the number and relevance of search terms in aa
given cluster may be then used to discriminate between the valuable information
and noise.

References

1. Krasuski, A., Kreński, K., Łazowy, S.: A Method for Estimating the Efficiency of
Commanding in the State Fire Service of Poland. Fire Technology 48(4) (2012)
795–805

2. Aha, D.W., Breslow, L.A., Muñoz Avila, H.: Conversational case-based reasoning.
Applied Intelligence 14(1) (2001) 9–32

3. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to information retrieval.
Cambridge University Press (2008)

4. Morfologik: About the project. http://morfologik.blogspot.com/2006/05/
about-project.html

5. Deerwester, S., Dumais, S., Furnas, G., Landauer, T., Harshman, R.: Indexing
by Latent Semantic Analysis. Journal of the American Society for Information
Science 41(6) (1990) 391–407

6. Landauer, T., Foltz, P., Laham, D.: An introduction to Latent Semantic Analysis.
Discourse Processes 25(2) (1998) 259–284

http://morfologik.blogspot.com/2006/05/about-project.html
http://morfologik.blogspot.com/2006/05/about-project.html

48 K. Bąk, A. Krasuski, M. Szczuka

7. R Development Core Team: R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria. (2008)

8. Reynolds, A., Richards, G., De La Iglesia, B., Rayward-Smith, V.: Clustering
rules: a comparison of partitioning and hierarchical clustering algorithms. Journal
of Mathematical Modelling and Algorithms 5(4) (2006) 475–504

9. Rousseeuw, P.: Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. Journal of Computational and Applied Mathematics 20 (1987)
53–65

10. Sacco, G.M., Tzitzikas, Y., eds.: Dynamic Taxonomies and Faceted Search. Vol-
ume 25 of The Information Retrieval Series. Springer Berlin Heidelberg (2009)

A Rule Format for Rooted Branching
Bisimulation

Valentina Castiglioni, Ruggero Lanotte, and Simone Tini

Dipartimento di Scienza e Alta Tecnologia, Università dell’Insubria, Como, Italy

Abstract. SOS rule formats are sets of syntactical constraints over SOS
transition rules ensuring semantical properties of the derived LTS. Given
a rule format, our proposal is to try to relax the constraints imposed by
the format on each single transition rule at the price of introducing some
reasonable constraint on the form of the whole set of rules, obtaining
a new format ensuring the same semantical property and being less de-
manding than the original one. We demonstrate that this can be done by
applying such an idea to a well established rule format ensuring the prop-
erty of congruence for the rooted branching bisimulation equivalence.

1 Introduction

Structural operational semantics [1] (SOS) is a standard framework to provide
process description languages with a semantics. The abstract syntax of a lan-
guage is given through a signature, namely a set of operators together with their
arity. The semantics is given through a labeled transition system (LTS), namely
a set of states that represent processes and that are terms over the signature,
together with a set of transitions between states describing computational steps.
An LTS is defined by means of a transition system specification (TSS), namely a
set of transition rules of the form premises

conclusion , which, intuitively, permit to derive
transitions between processes from transitions between other processes.

To abstract away from information carried by an LTS that may be considered
irrelevant in a given application context, several notions of behavioral equivalence
were defined (see [2, 3]). Some of these equivalences, like weak bisimulation [4]
and branching bisimulation [5], equate LTS states that incorporate so called
silent steps representing internal moves by processes that are not observable by
the external environment, and are referred to as weak equivalences. To ensure
compositional modelling and verification, it is crucial that a given behavioral
equivalence be a congruence w.r.t. all operators of the signature.

Since [6] a transition rule format is a set of syntactical constraints on the rules
of the TSS, aiming to ensure a given property of the LTS. Several rule formats
were developed to ensure the property of congruence for a given behavioral
equivalence (see [7] for a survey). The original formats for weak equivalences
were proposed in [8]. At present, the standard formats are those in [9–11].

Sometimes the syntactical constraints imposed by the formats on the premises
of the transition rules are quite strict. For instance, the rule formats in [9–11]

50 V. Castiglioni, R. Lanotte, S. Tini

prohibit the features of lookahead, namely the ability to test for two consecutive
moves by a process, and double testing for running processes, namely the ability
to test for two different moves by a process. Our idea is that in some cases it
is worth to relax the constraints on the single rules, at the price of introducing
some constraints on the form of the whole set of transition rules in the TSS, pro-
vided these are not too heavy. To demonstrate how this can be done, we consider
the format of [9] for rooted branching bisimulation, we relax the constraints of
this format by admitting both lookahead and double testing, and we add the
reasonable constraint that lookahead and double testing come together with the
ability of testing for an arbitrary number of silent steps, which means introduc-
ing a constraint on the set of rules of the TSS since a single rule is required for
each number of silent steps. A natural extension of our work is to apply the same
strategy to the formats of [10].

The paper is organized as follows: in Section 2, we recall some base notions
on SOS, in Section 3 we recall the format of [9], in Section 4 we present our
congruence format for rooted branching bisimulation and we end with some
conclusions and discussion of related work in Section 5.

2 Preliminaries

In this section we recall some definitions that are standard in the SOS framework.
As usual, we assume that the abstract syntax of a process description lan-

guage is given by a signature, namely a structure Σ = (F, r), where (i) F is
a set of function names, also called language operators, and (ii) r : F → N is
a rank function, which gives the arity of a function name. An operator f ∈ F
is called a constant if r(f) = 0. We also assume a set of (process) variables
V disjoint from F , and let x, y, z range over V. Let W ⊆ V be a set of vari-
ables. The set of Σ-terms over W , notation T (Σ,W), is the least set satisfy-
ing: (i) W ⊆ T (Σ,W), and (ii) if f ∈ F and t1, · · · , tr(f) ∈ T (Σ,W), then
f(t1, · · · , tr(f)) ∈ T (Σ,W). T (Σ, ∅) is the set of all closed terms, also called pro-
cesses, and abbreviated as T (Σ). T (Σ,V) is the set of all open terms and abbre-
viated as T(Σ). By ≡ we denote the syntactical equality relation between terms.
Finally, Var(t) ⊆ V denotes the set of variables in term t, namely Var(x) = {x}
and Var(f(t1, . . . , tr(f))) =

⋃r(f)
i=1 Var(ti).

In SOS framework, the semantic model is that of LTSs.

Definition 1 (Labeled Transition System). A Labeled Transition System
(LTS) is a triple (T (Σ),A,−→), where i) Σ is a signature; ii) A is a countable
set of actions; and iii) −→ ⊆ T (Σ)×A× T (Σ) is a transition relation.

Following standard notation, we write t
a−→ t′ for (t, a, t′) ∈ −→. This represents

a computation step of kind a taking process t to process t′.
LTSs are built by means of transition systems specifications, namely sets of

transition rules of the form premises
conclusion . Here we assume that these rules are in

the ntyft-format [12]. This choice is reasonable since ntyft-format is very general
and for transition system specifications that are complete (see Def. 5 below)

A Rule Format for Rooted Branching Bisimulation 51

it guarantees that bisimilarity equivalence relation is a congruence w.r.t. all
operators in F .

Definition 2 (ntyft-rule, [12]). A ntyft-rule is of the form

{tj
aj−−→ yj | j ∈ J} {tk

bk−−→6 | k ∈ K}
f(x1, . . . , xr(f))

a−→ t

with J,K at most countable sets of indexes, tj , tk, t ∈ T(Σ), aj , bk, a ∈ A, yj ∈ V,
f ∈ F , x1, . . . , xr(f) ∈ V, such that:

– the x1, . . . , xr(f) and the yj for j ∈ J are all distinct variables.

The expressions tj
aj−−→ yj (resp. tk

bk−−→6) above the line are called positive (resp.
negative) premises. Given a rule ρ, we denote the set of positive (resp. negative)
premises by pprem(ρ) (resp. nprem(ρ)), and the set of all premises by prem(ρ) =

pprem(ρ) ∪ nprem(ρ). The expression f(x1, . . . , xr(f))
a−→ t below the line is

called conclusion, notation conc(ρ), where f(x1, . . . , xr(f)) is called the source of
ρ, notation src(ρ), the xi are the source variables denoted by xi ∈ src(ρ), and
term t is the target of ρ, notation trgt(ρ). We denote the set of variables in ρ by
Var(ρ), free variables by free(ρ) = Var(ρ) \ ({x1, . . . , xr(f)} ∪ {yj | j ∈ J}), and
bound variables by bound(ρ) = Var(ρ) \ free(ρ).

Definition 3 (ntyft-TSS, [12]). A ntyft-transition system specification, ntyft-
TSS for short, is a set of ntyft-rules.

Assigning an LTS to a TSS having rules with negative premises is not trivial.
See [7] for a deep discussion. Let us describe the approach we adopt here, namely
that of least three-valued stable model, introduced in [13] in logic programming.

An expression t
a−→ t′ (resp. t

a−→6) is called a positive (resp. negative) literal
where t, t′ ∈ T(Σ) and a ∈ A. So, premises and conclusions in rules are literals.

A substitution is a mapping σV : V → T(Σ). A substitution is closed if it
maps each variable to a closed term in T (Σ). A substitution extends to terms

by σV(f(t1, . . . , tr(f))) = f(σV(t1), . . . , σV(tr(f))), to literals by σV(t
a−→ t′) =

σV(t)
a−→ σV(t′) and σV(t

b−→6) = σV(t)
b−→6 , and to ntyft-rules by σV(ρ) =⋃

π∈prem(ρ) σV(π)

σV(conc(ρ)) . A closed substitution instance of a ntyft-rule is called a closed

ntyft-rule. We denote with H
π a closed ntyft-rule, and with N

π a closed ntyft-rule
having only negative premises (i.e. all elements in N are negative literals).

Given a set of closed positive literals P , a collection of closed negative literals

N holds for P , denoted P |= N , iff for each t
b−→6 ∈ N we have that t

b−→ t′ 6∈ P
for any t′ ∈ T (Σ).

Definition 4 (Proof of a closed transition rule). A proof from a TSS T of

a closed transition rule H
π is an upwardly branching tree in which all upwardly

paths are finite, and the nodes are labeled by closed literals such that:

52 V. Castiglioni, R. Lanotte, S. Tini

– the root is labeled by π;
– if K is the set of the labels of the nodes directly above a node labeled l, then:

• either K = ∅ and l ∈ H;
• or K

l is a closed substitution instance of a transition rule in T .

Given a TSS T , we consider a partitioning of the collection of positive literals
to three disjoint sets: i) the set C of positive literals that are certainly true; ii) the
set U of positive literals for which it is unknown whether or not they are true; and
iii) the set of remaining literals that are false. Such a partitioning, determined
by C and U , constitutes a three-valued stable model, denoted 〈C ,U 〉, for T if:

– a positive transition π is in C if and only if T proves a closed transition rule
N
π , where N contains only negative literals and C ∪U |= N ;

– a positive transition π is in C ∪U if and only if T proves a closed transition
rule N

π , where N contains only negative literals and C |= N .

Each TSS T allows an (information-)least three-valued stable model 〈C ,U 〉,
in the sense that the set U is maximal. In [14] two-valued stable models were
studied, which are three-valued stable models for which the set of unknown
positive literals is empty.

Definition 5 (Complete TSS, [15]). A TSS is complete if its least three-
valued stable model is a two-valued stable model.

If a TSS is complete, then it allows only one three-valued stable model, which
is taken as the LTS built from the TSS. Only complete TSSs are considered to
be meaningful. Notice that a TSS that does not contain transition rules with
negative premises is complete for sure.

3 Rooted Branching Bisimulation as a Congruence

Behavioral equivalence relations over processes are usually defined to abstract
away information provided by an LTS which is not considered to be relevant
for a given application context. Here we consider branching bisimulation, one of
those that identify LTS states that incorporate so called silent steps.

In the following we assume that A contains the special silent action τ . The
reflexive and transitive closure of relation

τ−→ is denoted with
ε−→. Finally, let us

introduce notation t
ε−→n t

′ for n ∈ N: we have t
ε−→0 t

′ if t ≡ t′ and t
ε−→n+1 t

′

if t
τ−→ t′′ and t′′

ε−→n t
′ for some t′′ ∈ T (Σ). Hence,

ε−→=
⋃
n∈N

ε−→n.

Definition 6 (Branching bisimulation, [5]). Take a three-valued stable model
〈C ,U 〉. A symmetric relation B over T (Σ) is a branching bisimulation with re-

spect to C if whenever sB t and s
a−→ s′ ∈ C we have:

– either a = τ and s′ B t;
– or t

ε−→ t′′, t′′
a−→ t′ ∈ C for t′, t′′ ∈ T (Σ) such that sB t′′ and s′ B t′.

A Rule Format for Rooted Branching Bisimulation 53

We call s and t branching bisimilar if there exists a branching bisimulation
relation B such that sB t. The union of all branching bisimulations over T (Σ) is
the greatest branching bisimulation over T (Σ), it is called branching bisimilarity
and it is denoted with ↔bb . Branching bisimilarity is an equivalence relation [16].

A crucial property of process description languages to ensure compositional
modelling and verification is the compatibility of process operators with the
behavioral relation chosen for the application context. In algebraic terms the
compatibility of a behavioral equivalence R with operator f ∈ F is a congruence.

Definition 7 (Congruence). An equivalence relation R over T (Σ) is a con-
gruence if for all f ∈ F , f(s1, . . . , sr(f))Rf(t1, . . . , tr(f)) whenever siR ti for
i = 1, . . . , r(f).

Branching bisimulation is not a congruence for the nondeterministic choice

operator + defined by rules x1
a−→y1

x1+x2
a−→y1

and x2
a−→y2

x1+x2
a−→y2

, which is offered by most

of process description languages in the literature. To remedy to this problem the
rootedness condition is usually assumed.

Definition 8 (Rooted branching bisimulation). Take a three-valued stable
model 〈C ,U 〉. A symmetric relation R over T (Σ) is a rooted branching bisim-

ulation with respect to C if whenever sR t and s
a−→ s′ ∈ C we have t

a−→ t′ ∈ C
for t′ such that s′↔bb t

′.

We call s and t rooted branching bisimilar if there exists a rooted branching
bisimulation relation R such that sR t. The union of all rooted branching bisim-
ulations over T (Σ) is the greatest rooted branching bisimulation over T (Σ), it is
called rooted branching bisimilarity and it is denoted with ↔rb . Rooted branch-
ing bisimilarity is clearly an equivalence relation.

In the following we recall the rule format RBB-safe [9], which ensures that
rooted branching bisimulation is a congruence for all operators in the TSS.

A patience rule for the i-th argument of a function symbol f ∈ F is a ntyft-
rule of the form

xi
τ−→ yi

f(x1, . . . , xr(f))
τ−→ f(x1, . . . , xi−1, yi, xi+1, . . . , xr(f))

Following [9], we assume that each argument of each function symbol f ∈ F
is labeled either tame or wild. A context, denoted with C[], is an open term in
T(Σ) with one occurrence of the context symbol [].

Definition 9 (w-nested context, [9]). The collection of w-nested contexts is
defined inductively by:

– [] is w-nested;
– if C[] is w-nested, and argument i of function symbol f is wild, then also
f(t1, . . . , ti−1, C[], ti+1, . . . , tr(f)) is w-nested.

54 V. Castiglioni, R. Lanotte, S. Tini

Definition 10 (RBB safe TSS, [9]). A TSS T is called RBB safe, with respect
to a tame/wild labeling of arguments of function symbols in F , if each of its
transition rules is

1. either a patience rule for a wild argument of a function symbol,
2. or a ntyft-rule ρ with source f(x1, . . . , xr(f)) and right-hand sides of positive

premises {yj | j ∈ J}, such that the following requirements are fulfilled:
(a) Variables yj for j ∈ J do not occur in left-hand sides of premises of ρ;
(b) If argument i of f is wild and does not have a patience rule in T , then

xi does not occur in left-hand sides of premises of ρ;
(c) If argument i of f is wild and has a patience rule in T , then xi occurs in

the left-hand side of no more than one premise of ρ, where this premise
i. is positive,

ii. does not contain the relation
τ−→, and

iii. has left-hand side xi;
(d) Variables yj for j ∈ J and variables xi for i a wild argument of f may

only occur at w-nested positions in the target of ρ.

Theorem 1 (Rooted branching bisimulation as a congruence, [9]). If a
complete TSS is RBB safe, then the rooted branching bisimulation equivalence
that it induces is a congruence.

In [9] several counter-examples are given to show that the syntactic con-
straints of Def. 10 cannot be relaxed in any trivial way. Our aim is to show
that the constraints that prohibit lookahead (constraint 2a) and double testing
for wild arguments of operators (constraint 2c) on the single rules of the TSS
can be relaxed, provided that suitable and reasonable (i.e non too-demanding)
constraints on the whole set of rules of the TSS are introduced. In the following
we assume a TSS T containing the CCS-like sequencing operator · defined by
the rules

a·x
a−→x

for a ∈ A, the CCS-like nondeterministic choice operator +

recalled above, the idle process 0 and the unary operators f1, f2 defined below.
Constraint 2a in Def. 10 prohibits lookahead, namely the ability of testing

for two (or more) subsequent moves by a source argument. An example of rule
violating this constraint is the following rule ρf1 for operator f1:

x1
a−→ y1 y1

b−→ y2

f1(x1)
a−→ 0

Let us consider processes s ≡ a ·b ·0 and t ≡ a ·τ ·b ·0. We have s↔rb t. However,
we have f1(s)

a−→ 0 while f1(t)
a−→6 . Thus f1(s) 6↔rb f1(t). In this example the role

of the silent action τ in the definition of t is crucial. On one side, the capability
of performing τ is not discriminating in the evaluation of branching bisimulation
equivalence of processes (see Def. 6). Hence, processes b · 0 and τ · b · 0, which
are reached through action a by s and t, respectively, are branching bisimilar,
thus implying that s↔rb t. On the other hand, action τ becomes relevant when
we focus on exact process evolution sequences. While process s can immediately
perform b after a, process t cannot, namely after performing a it has to do the

A Rule Format for Rooted Branching Bisimulation 55

action τ to reach a state in which it is able to perform b, and these two different
evolutions are discriminated by the premises of ρf1 . Our proposal is to permit
testing for an a move followed by a b move, provided that this comes together
with the testing for an arbitrary number of τ -moves between these two moves
labeled a and b. This means admitting the following set of rules in the TSS,
provided we introduce the constraint that the TSS contains all of them:{

x1
a−→ y1 y1

ε−→n y2 y2
b−→ y3

f1(x1)
a−→ y3

| n ∈ N

}
Let τn denote the sequence τ · . . . · τ of n actions τ , and sn ≡ a · τn · b · 0 (notice

s ≡ s0 and t ≡ s1). We have that f1(sn)
a−→ 0 for all n ∈ N, thus implying that

f1(sm)↔rb f1(sn) for all m,n ∈ N.
Constraint 2c in Def. 10 prohibits double testing, namely the ability of testing

for two (or more) moves by a source argument, for arguments labeled as wild.
An example of rule violating this constraint is the second of the rules below:

x1
a−→ y1

f2(x1)
a−→ f2(y1)

a ∈ A x1
a−→ y1 x1

b−→ y2

f2(x1)
c−→ 0

where the argument of f2 has to be wild due to constraint 2d of Def. 10 applied
to the first rule. Let us take processes s ≡ a · (a · 0 + b · 0) and t ≡ a · t′, with t′

defined with the classical recursive construct as t′ ≡ a · 0 + τ · (b · 0 + τ · t′). We

have s↔rb t. However, we have f2(s)
a−→ f2(a ·0+b ·0)

c−→ 0 while f2(t)
a−→ f2(t′)

and neither f2(t′) nor any process reachable from f2(t′) through any sequence of
τ -moves can make any c move. Thus f2(s) 6↔rb f2(t). Here the processes a ·0+b ·0
and t′, which are reached through action a by s and t, respectively, are branching
bisimilar. Their difference, sensed by the second rule for f2, is that a ·0+b ·0 can
perform both a and b, whereas t′ is not able to reach (through any sequence of τ
moves) any state in which both a and b are enabled, despite it can reach through
τ actions a state where a is enabled and another state where b is enabled. Our
proposal is to permit double testing for moves a and b, provided that these moves
may follow an arbitrary number of τ steps. This means admitting the following
set of rules in the TSS, provided we add the constraint that the TSS contains
all of them:{

x1
ε−→m y1 y1

a−→ y2 x1
ε−→n y3 y3

b−→ y4

f2(x1)
c−→ 0

| m,n ∈ N

}

Notice that with these rules we get both f2(a · 0 + b · 0)
c−→ 0 and f2(t′)

c−→ 0,
thus implying f2(s)↔rb f2(t).

4 Congruence Format for Rooted Branching Bisimulation

As discussed in the previous section, lookahead and double testing can be admit-
ted in the RBB safe format of [9], provided that sets of rules testing for sequences

56 V. Castiglioni, R. Lanotte, S. Tini

of τ moves of different length are all introduced in the TSS. Below we introduce
the notion of meta transition rule, which denotes a set of transition rules that
test for the ability of performing sequences of τ moves of all possible lengths.

Definition 11 (Positive meta premise). A positive meta premise is an ex-
pression of the form

t =⇒ a−→ y

The meta premise t =⇒ a−→ y represents the set

Jt =⇒ a−→ yK :=
{
{t ε−→n y

′ y′
a−→ y} | n ∈ N

}
of countable many sets of premises. Intuitively, t =⇒ a−→ y holds if there exists an
n ∈ N and a substitution σV such that σV(t) can reach a state able to perform
the action a through a sequence of n τ -actions.

Definition 12 (Meta transition rule). A meta transition rule, notation ρ̃,
is of the form

{tj
aj−−→ yj | j ∈ J} {tk

bk−−→6 | k ∈ K} {zl =⇒ al−−→ yl | l ∈ L}
f(x1, . . . , xr(f))

a−→ t

with J,K,L at most countable sets of indexes, tj , tk, t ∈ T(Σ), aj , bk, al, a ∈ A,
yj , zl, yl ∈ V, f ∈ F , x1, . . . , xr(f) ∈ V, such that:

– the x1, . . . , xr(f), the yj for j ∈ J and the yl for l ∈ L are all distinct
variables.

A meta transition rule ρ̃ like in Def. 12 represents the set Jρ̃K of all the transition
rules of the form

{tj
aj−−→ yj | j ∈ J} {tk

bk−−→6 | k ∈ K} {µl | l ∈ L}
f(x1, . . . , xr(f))

a−→ t

such that µl ∈ Jzl =⇒ al−−→ ylK.

Definition 13 (Meta TSS). A meta TSS is a set of meta transition rules.

The meta TSS T represents the TSS JT K = ∪ρ̃∈T Jρ̃K. Clearly, JT K is a ntyft-TSS.
So all definitions of Section 2 directly lift to meta TSSs.

Now, we are able to extend the RBB safe format of [9] with lookahead and
double testing for running processes.

Definition 14 (Meta RBB safe TSS). A meta TSS T is called meta RBB
safe, with respect to a tame/wild labeling of arguments of function symbols in F ,
if each of its transition rules is

1. either a patience rule for a wild argument of a function symbol;

A Rule Format for Rooted Branching Bisimulation 57

2. or a meta transition rule ρ̃ of the form

{tj
aj−−→ yj | j ∈ J} {tk

bk−−→6 | k ∈ K} {zl =⇒ al−−→ yl | l ∈ L}
f(x1, . . . , xr(f))

a−→ t

with constraints:

(a) actions al, for l ∈ L, are in Ar {τ}, namely they can not be action τ ;

(b) if xi ∈ [
⋃
j∈J var(tj)∪

⋃
k∈K var(tk)] for i = 1, . . . , r(f), then i is a tame

argument for f ;

(c) no yj for j ∈ J and yl for l ∈ L occurs in [
⋃
j∈J var(tj)∪

⋃
k∈K var(tk)];

(d) variables xi for i wild argument of f , yj for j ∈ J and yl for l ∈ L may
occur only at w-nested positions in the target t.

Notice that Def. 14 admits lookahead, since for l ∈ L we may have that zl ≡ yj
for some j ∈ J or zl ≡ yl′ for some l′ ∈ L. Double testing for a wild argument i
of an operation f ∈ F is admitted since we may have zl ≡ zl′ ≡ xi for l, l′ ∈ L.

Let us remark that meta rules have been already used in [10], called GSOS
rules with lookahead, with the purpose of observing a partial form of lookahead,
namely a sequence of τ -moves followed by a non silent move.

Notice that in Def. 14 we do not need the constraint 2b of Def. 10, which
imposes that testing for a move by a wild argument for an operator f requires
that there is a patience rule for it. To explain the reason, let us take the operators

x1
a−→ y1

f(x1)
a−→ g(y1)

x1
b−→ y1

g(x1)
b−→ g(y1)

that do not respect Def. 10 since the patience rule for the argument of g is
missing, and processes a · b · 0 and a · τ · b · 0. We have a · b · 0↔rb a · τ · b · 0
but f(a · b · 0) 6↔rb f(a · τ · b · 0) since f(a · b · 0)

a−→ g(b · 0)
b−→ 0 whereby

f(a · τ · b · 0)
a−→ g(τ · b · 0)

b−→6 . Definition 10 requires the patience rule for the

argument of g, so g(τ ·b·0)
τ−→ g(b·0)

b−→ 0 and, therefore, f(a·b·0)↔rb f(a·τ ·b·0).
By adopting the meta rules as in Def. 14, we can write

x1
a−→ y1

f(x1)
a−→ g(y1)

x1 =⇒ b−→ y1

g(x1)
b−→ g(y1)

and the patience rule for the argument of g is no more needed, since we have

f(a · τ · b · 0)
a−→ g(τ · b · 0)

b−→ 0 and, thus, f(a · b · 0)↔rb f(a · τ · b · 0).

Let us argue that all constraints in Def. 14 cannot be relaxed in any trivial
way. Firstly, let us show why, as in [9], some arguments of functions deserve a
special treatment. These arguments are labeled as wild. The special treatment
consists in constraints 2b and 2d in Def. 14.

58 V. Castiglioni, R. Lanotte, S. Tini

Example 1. Let us consider the transition rules

x1
a−→ y1

f(x1)
a−→ y1

x1
a−→ y1

g(x1)
a−→ f(y1)

and processes a.τ.a.0 and a.a.0. We have a.τ.a.0 ↔rb a.a.0. However, we have
g(a.τ.a.0) 6↔rb g(a.a.0). In fact, g(a.τ.a.0)

a−→ f(τ.a.0) and g(a.a.0)
a−→ f(a.0),

where f(τ.a.0) 6↔bb f(a.0) since f(τ.a.0)
a−→6 and f(a.0)

a−→ 0. The rule for g has

f(y1) as target, where y1 occurs in the target of the premise x1
a−→ y1. This

implies that it may happen that when the argument x1 of g is instantiated by
two processes p and p′ with p ↔rb p

′, we have that the argument y1 of f is
instantiated by two a-derivatives, q and q′ respectively, such that q↔bb q

′ but
q 6↔rb q

′. Arguments of operators that may be instantiated with processes related
by ↔bb but not by ↔rb are labeled wild. This is exactly what is required by
constraint 2d in Def. 14. As required by constraint 2b in Def. 14, they cannot
be tested by premises of the form x

a−→ y since these premises are able to
discriminate them. �

By next example, we show why meta premises cannot test for τ moves (con-
straint 2a, Def. 14).

Example 2. Let us consider the transition rules

x1
a−→ y1

g(x1)
a−→ f(y1)

x1 =⇒ τ−→ y1

f(x1)
τ−→ y1

We have a.τ.a.0 ↔rb a.a.0. However, g(a.τ.a.0) 6↔rb g(a.a.0). In fact we have

g(a.τ.a.0)
a−→ f(τ.a.0)

τ−→ a.0
a−→ 0, whereby g(a.a.0)

a−→ f(a.0)
τ−→6 . �

By next example, we show why in meta premises we cannot have an arbitrary
term in the left side, and we only allow variable zl.

Example 3. Let us consider the transition rules

x1
a−→ y1

g(x1)
a−→ y1

g(x1) =⇒ a−→ y1

f(x1)
a−→ y1

x1
a−→ y1

h(x1)
a−→ f(y1)

We have a.a.0 ↔rb a.τ.a.0. However, h(a.a.0) 6↔rb h(a.τ.a.0). In fact we have

h(a.a.0)
a−→ f(a.0)

a−→ 0, whereby h(a.τ.a.0)
a−→ f(τ.a.0)

a−→6 . �

By next example, we show why we cannot allow variables that are targets of
premises or meta premises to be source of classic premises (constraint 2c, Def.
14).

Example 4. Let us consider the transition rules

x1
a−→ y1 y1

a−→ y2

f(x1)
a−→ y2

x1 =⇒ a−→ y1 y1
a−→ y2

g(x1)
a−→ y2

We have a.τ.a.0↔rb a.a.0. However, we have that f(a.τ.a.0) 6↔rb f(a.a.0) since

f(a.τ.a.0)
a−→6 while f(a.a.0)

a−→ 0. Analogously, g(a.τ.a.0) 6↔rb g(a.a.0) since

g(a.τ.a.0)
a−→6 while g(a.a.0)

a−→ 0. �

A Rule Format for Rooted Branching Bisimulation 59

To prove the congruence result, we have to deal with well-founded rules.

Definition 15 (Well-foundedness). Let H be a set of premises and meta
premises. The variable dependency graph of H is a directed graph GH = (V,E)
given by:

– V =
⋃
h∈H Var(h);

– E = {〈x, y〉 | t a−→ y ∈ H and x ∈ Var(t) or x =⇒ a−→ y ∈ H}.

We say that H is well-founded if any backward chain of edges in GH is finite.
A meta transition rule ρ̃ is called well-founded if the set of all its premises and
meta premises is well-founded. A meta TSS is called well-founded if all its meta
transition rules are well-founded.

Theorem 2. If a complete and well-founded meta TSS T is meta RBB safe,
then the rooted branching bisimulation equivalence that it induces is a congru-
ence.

5 Conclusions

We considered the format of [9], which ensures the congruence property for
rooted branching bisimulation, we relaxed the constraints on the single rules by
allowing both double testing for wild arguments of operators and lookahead, at
the price of constraining these features to come together the testing for an arbi-
trary number of silent steps. We argued that this means introducing a constraint
on the form of the whole set of rules. Our idea can be naturally extended to the
formats in [10,11].

An example of operator that is captured by our format and that is outside the
formats in [9–11] is the copying operator, originally proposed in [17] for languages
that do not consider silent actions, and defined in [11] by the following rules:

x1
a−→ y1

cp(x1)
a−→ cp(y1)

a ∈ A x1
l−→ y1 x1

r−→ y1

cp(x1)
s−→ cp(y1) ‖ cp(y2)

where l, r ∈ A are the left and right forking, respectively, s is the split action,
and ‖ is the parallel composition operator. In [11] this operator is admitted in
the format thanks to the two-tiered approach to SOS proposed in [10, 11]. The
idea is to divide function symbols in F into two classes: principal operators and
abbreviations, where an abbreviation can be obtained by grouping together the
arguments of a principal operator. Proofs are given that abbreviations are syn-
tactic sugar and do not have to obey the syntactic restrictions of a congruence
format, provided they abbreviate principal operators that do so. This is an ad-
vantage since if a given equivalence is a congruence w.r.t. an operator f ∈ F that
is outside from a congruence format, one can find an operator f∗ that is consid-
ered to be principal and abbreviated by f and that obeys the constraints of the
format. In [11] an operator for which cp is an abbreviation is provided that is
captured by the format. Here we do not need to search for such an abbreviation
since cp is already in the format.

60 V. Castiglioni, R. Lanotte, S. Tini

Acknowledgements We are grateful to Wan Fokkink for feedback on a preliminary
version of this paper.

References

1. Plotkin, G.: A structural approach to operational semantics. Report DAIMI FN-
19, Aarhus University (1981)

2. van Glabbeek, R.J.: The linear time - branching time spectrum. In: CONCUR
’90. Volume 458 of LNCS., Springer (1990) 278–297

3. van Glabbeek, R.J.: The linear time - branching time spectrum ii. In: CONCUR
’93. Volume 715 of LNCS., Springer (1993) 66–81

4. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J.
Assoc. Comput. Mach. 32 (1985) 137–161

5. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimula-
tion semantics. J. Assoc. Comput. Mach. 43(3) (1996) 555–600

6. de Simone, R.: Higher-level synchronising devices in meije-sccs. Theoret. Comput.
Sci. 37 (1985) 245–267

7. Aceto, L., Fokkink, W.J., Verhoef, C.: Structural operational semantics. In: Hand-
book of Process Algebra. Elsevier (2001) 197–292

8. Bloom, B.: Structural operational semantics for weak bisimulations. Theoret.
Comput. Sci. 146 (1995) 25–68

9. Fokkink, W.J.: Rooted branching bisimulation as a congruence. J. Comput. Syst.
Sci. 60(1) (2000) 13–37

10. van Glabbeek, R.J.: On cool congruence formats for weak bisimulations. Theoret.
Comput. Sci. 412(28) (2011) 3283–3302

11. Fokkink, W.J., van Glabbeek, R.J., de Wind, P.W.: Divide and congruence: From
decomposition of modal formulas to preservation of branching and η-bisimilarity.
Inf. Comput 214 (2012) 59–85

12. Groote, J.F.: Transition system specifications with negative premises. Theoret.
Comput. Sci. 118(2) (1993) 263–299

13. Przymusinski, T.C.: The well-founded semantics coincides with the three-valued
stable semantics. Fundam. Inform. 13(4) (1990) 445–463

14. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
5th Conference on Logic Programming, MIT Press (1988) 1070–1080

15. van Glabbeek, R.J.: The meaning of negative premises in transition system speci-
fications ii. In: ICALP’96. Volume 1099 of LNCS., Springer (1996) 502–513

16. Basten, T.: Branching bisimilarity is an equivalence indeed! Inform. Proc. Lett.
58(3) (1996) 141–147

17. Bloom, B., Istrail, S., Meyer, A.: Bisimulation can’t be traced. J. Assoc. Comput.
Mach. 42(1) (1995) 232–268

A Rewriting Based Monitoring Algorithm for
TPTL?

Ming Chai and Bernd-Holger Schlingloff

Humboldt University Berlin, Berlin D-10099, Germany
{ming.chai, hs}@informatik.hu-berlin.de

Abstract. In this paper, we present a rewriting based monitoring algo-
rithm for time propositional temporal logic (TPTL), which is a classic
time extension of linear temporal logic (LTL). TPTL has been shown to
be more expressive than other real-time extensions of LTL, e.g., metric
temporal logic (MTL). We first describe the syntax and semantics of
TPTL on finite time-traces. Using Maude, which is an executable envi-
ronment for various logics, we give rewriting clauses to check whether a
finite time-trace satisfies a TPTL formula. We use our algorithm to test
a concrete example from the European Train Control System (ETCS),
and evaluate it on several benchmarks. The results show the feasibility
of our approach.

1 Introduction

Runtime verification is proposed for checking whether a run of a system satisfies
or violates a given correctness property [1]. It is seen as a lightweight verification
technique when compared to model checking and testing. Runtime verification
is able to avoid the following problems of model checking: i) when checking a
high complexity system, model checking could suffer from the so-called state
explosion problem; ii) when checking a black-box system, a model of the system
may not be available for model checking; iii) the object of model checking is a
model of the system, not the system itself.

Runtime verification is performed by using a monitor. This is a device or
a piece of software that reads a behavior of the system under monitoring and
gives a certain verdict (true or false) as the result. A behavior of the system is
presented by its trace, which is an observable execution sequence of the system.
Unlike model checking, runtime verification does not check all executions of
the underlying system, but a finite trace. Hence it does not suffer from the
state explosion problem when dealing with a large system. Furthermore, runtime
verification does not need a model of the system. Therefore, it is well suited to
check black-box systems. Finally, the checking object of runtime verification is
the system itself. Thus, the possibility of introducing additional errors in the
modeling is excluded.
? This work was supported by the State Key Laboratory of Rail Traffic Control and
Safety (Contract No.: RCS2012K001), Beijing Jiaotong University

62 Ming Chai, B.-H. Schlingloff

One of the most interesting problems in runtime verification is how to build
a monitor from a high level specification. Havelund et al. [2] propose a formula
rewriting based runtime verification approach, constituting part of a project
named Java PathExplorer (JPAX). Their work aims at monitoring Java pro-
grams and has been used in Mars Exploration Rover missions. Feng et al. [3]
propose an MOP framework for software development and analysis, in which
the satisfaction/violation of properties can be detected by executing the code.
Barringer et al. [4] propose a rule-based system for trace analysis RuleR. They
also propose the LOGSCOPE system, which is an extension of RuleR with a
simple, user-friendly temporal logic. d’Amorim et al. present a modified Büchi
automata, which is used for monitoring a system [5].

For checking time-relevant properties, real-time logics have been introduced
into runtime verification. Bauer et al. [6] work on TLTL based runtime verifica-
tion for monitoring real-time properties. They define TLTL by introducing two
operators (Ba ∈ I) and (Ca ∈ I) with a being an event, and I being a time in-
terval. They build a monitor for a TLTL property, and use event-clock automata
to detect whether a trace is accepted or rejected.

Metric temporal logic (MTL) [7] is a well studied real-time logic. It is obtained
by extending standard LTL with a time bounded temporal operator U[a, b], where
a, b are natural numbers. Several MTL based monitoring approaches have been
proposed. Thati et al. [8] propose a formula rewriting based monitoring algo-
rithm for MTL. Nickovic et al. propose monitoring algorithms for a restricted
version of MTL, named MITL. Basin et al. [9] propose a monitoring algorithm
for metric first-order logic. Their approach can cope with variables ranging over
infinite domains. They also develop algorithms for MTL with discrete events and
continuous states [10].

Alur et al. [11] propose a “more temporal” real-time logic, named time propo-
sitional temporal logic (TPTL). It is obtained from LTL by introducing a freeze
quantifier “x.”. A TPTL formula can “reset” a formula clock at some point by as-
signing variables in the formula to the time value when the formula is evaluated.
The expressiveness of TPTL and MTL is studied in [12, 13]. It has been proven
that TPTL is strictly more expressive than MTL. Although the verification and
model checking problem for TPTL has been studied intensely, the number of
TPTL based runtime verification approaches is quite limited. One example is
Kristoffersen et al. [14], who give a monitoring algorithm for LTLt, which also
extends LTL by a freeze quantifier. The difference between TPTL and LTLt is
that the latter needs an extra clock variable r for expressing time.

In this paper, we propose a formula rewriting based runtime verification
approach for TPTL. The monitor consists of a TPTL formula and a formula
rewriting algorithm, where the formula is generated from a high level specifica-
tion. The monitor receives a time-trace, which is generated from the underlying
system. It detects failures through checking whether this time-trace violates the
formula. The process is shown in Fig. 1. Our algorithm is developed directly
based on the syntax and semantics of TPTL.

A Rewriting Based Monitoring Algorithm for TPTL 63

Fig. 1. The runtime verification process

Our algorithm is based on Maude [15], which is a high performance system for
model checking, theorem proving, and programming. It can be used for runtime
verification implementation. We use the Maude rewriting logic, in the style of
the LTL rewriting program proposed by Havelund [16]. Additionally, we present
a case study of a concrete example in the railway domain. We translate several
properties contained in the specifications of a signaling system to TPTL formu-
lae, and abstract some executions of the system to time-traces. Then we monitor
these time-traces in Maude. The results show that our approach is feasible for
monitoring time-traces.

The rest part of the paper is organized as follows. Section 2 introduces the
definition of TPTL, including the syntax and semantics. Section 3 presents the
Maude-based program for TPTL based monitor. Section 4 shows a case study
with a concrete example from the railway domain. Section 5 contains the con-
clusion and future work.

2 Preliminaries

2.1 Time-events and Time-traces

Given a (finite) set of atomic propositions AP and a (finite) alphabet Σ = 2AP ,
an event is defined as any single element of Σ, i.e. e = {p1, · · · , pm} with p1,
· · · , pm ∈ AP . If e is a singleton, we omit the curly brackets in the denotation.
If we denote the set of natural numbers by N≥0 and t ∈ N≥0, then a time-event
is defined as a pair te = (e, t) from the set Σ × N≥0. The natural number t
in a time-event te is a discrete time stamp, to identify the time of the event
emitted by a running real-time system. Given a time-event te = (e, t), we define
Event(te) , e and Time(te) , t. A time-trace is defined as a (possibly infinite)
sequence of time-events, i. e. tt = (te [0], te [1], · · · , te [n]), where for each i < n
with i ∈ N≥0, it holds that Time (te [i]) < Time (te [i+1]) (strict monotonicity).
The length of tt is denoted by |tt|.

64 Ming Chai, B.-H. Schlingloff

2.2 Syntax and Semantics of TPTL

LTL is a widely-accepted logic for specifying properties of infinite traces. TPTL is
an extension of LTL to express real-time properties. It contains a freeze quantifier
“x.”, which assigns the time value when the formula is evaluated to the variable
x. A TPTL formula x. ϕ(x) is satisfied by a time-trace tt iff ϕ(time(tt[0])) is
satisfied by tt. For instance, a TPTL formula

(� x. (Request → ♦ y. (Ack ∧ y < 5 + x)))

expresses the property “whenever an event Request occurs, then the acknowledg-
ment event Ack must occur within 5 time units”. This formula is satisfied, e.g.,
by the time-trace (· · ·, (Request, 7), · · ·, (Ack, 11), · · ·), since 11 < 5 + 7. More
precisely, TPTL is defined as follows.

Definition 1. (Syntax for TPTL) Given the finite set AP of atomic propo-
sitions and a set V of free variables, the terms π and formulae ϕ of TPTL are
inductively formed according to the following grammar, where x ∈ V , r ∈ N≥0,
p ∈ AP and ∼ ∈ {≤, <, =, >, ≥}:

π ::= x + r | r
ϕ ::= ⊥ | p | (ϕ1 → ϕ2) | (ϕ1 U ϕ2) | π1 ∼ π2 | x. ϕ.

The following shorthands are used in TPTL as in LTL: ♦ ϕ stands for > U ϕ,
� ϕ stands for ¬♦ ¬ϕ, and © ϕ stands for ⊥ U ϕ.

Assume that E is a function E : V → N≥0 for assigning free variables in N≥0
(time value) such that E(x + r) = E(x) + r and E(r) = r. Given a variable x and
a natural number r, we denote E [x := r] for the evaluation E ′ such that E ′(x) =
r, and E ′(y) = E(y) for all y ∈ V \{x}. In runtime verification, the time-traces
to be checked are finite. Hence, we give TPTL finite semantics as follows.

Definition 2. (Semantics for TPTL) Let tt be a finite trace with i ∈ N≥0
being a position, p a proposition, and ϕ1 and ϕ2 any TPTL formulae. The sat-
isfaction relation (tt, i, E) |= ϕ is defined inductively as follows:

(tt, i, E) 2 ⊥;
(tt, i, E) |= p iff p ∈ Event(tt[i]);
(tt, i, E) |= (ϕ1 → ϕ2) iff (tt, i, E) |= ϕ1 implies (tt, i, E) |= ϕ2;
(tt, i, E) |= (ϕ1 U ϕ2) iff there exists i < j < |tt| with (tt, j, E) |= ϕ2 and

for all i < j′ < j it holds that (tt, j′, E) |= ϕ1;
(tt, i, E) |= π1 ∼ π2 iff E(π1) ∼ E(π2);
(tt, i, E) |= x. ϕ iff (tt, i, E [x := Time(tt[i])]) |= ϕ.

As is proven in [13], TPTL is strictly more expressive than MTL. The property
“whenever an a-event occurs, then a b-event will occur in the future and, later a
c-event will occur within 3 time units” can be expressed by a TPTL formula as:
� x. (a → ♦ (b ∧ ♦ y. (c ∧ y < x+ 3))). This property cannot be expressed in
MTL.

A Rewriting Based Monitoring Algorithm for TPTL 65

3 The Rewriting Algorithm for TPTL in Maude

Subsequently, we develop an algorithm for checking whether a finite time-trace
satisfies a TPTL formula. More specifically, when checking the satisfaction rela-
tion between a finite time-trace and a TPTL formula, the formula is continuously
transformed to another formula by consuming the first time-event in the time-
trace. This procedure processes iteratively, until the last time-event is consumed.
It will output a boolean value in B ={true, false}. Our algorithm is implemented
in Maude, which provides an executable environment for various logics. Here we
informally describe some of Maude’s features which are related to the algorithm,
more details can be found in the manual [17].

3.1 Basic Rewriting Operators and Logic Connectives

In Maude, we use the functional modules following the pattern

fmod <name> is <body> emdfm.

The body of a functional module consists of a collection of declarations, of which
we will use sorts (sort and sorts), subsorts (subsort and subsorts), operations
(op and ops), variables (var and vars) and equations (eq).

We first need to define all necessary data types involved in the program,
including atomic proposition (Atom), event (Event), time-event (TimeEvent),
time-trace (TimeTrace) and free variable (FreeV). These types are defined ac-
cording to their definition shown above. The following Maude program defines
operators “__”, “_:-_ ”, “_,_” and “_ of _” for generating an event, a time-
event, a time-trace and a free variable, respectively. Every operator has a priority
feature, which is declared through “[prec n]” with n ∈ N≥0.

op __ : Atom Event -> Event [prec 23] .
op _:-_ : Event Nat -> TimeEvent [prec 23] .
op _,_ : TimeEvent TimeTrace -> TimeTrace [prec 25] .
op _ of _ : Nat Atom -> FreeV [prec 23]. //receive a Nat

(stands for the value of the variable) and an Atom
(stands for the name of the variable), and generate a
FreeV as the result.

op nil : -> Event . //an emptyset is an event

We also define Atom to be a subsort of Event, TimeEvent to be a subsort of
TimeTrace, and FreeV and Nat to be subsorts of Atom.

Based on the syntax and semantics of TPTL described above, we define
several operators, “_{_}”, “_{_}′” and “_|=_”, for checking whether a time-
trace satisfies a formula. The operator “_{_}” receives a formula and an event.
It yields the formula >/⊥ depending on whether the event satisfies the formula
or not. The operator “_{_}′” is defined on basis of “_{_}” for checking the
satisfaction relation between a time-event and a formula. A time-event te satisfies
a formula ϕ iff ϕ{Event(te)} returns >. By extending “_{_}′”, the operator

66 Ming Chai, B.-H. Schlingloff

“_|=_” is defined for checking whether a time-trace satisfies a formula. This
operator receives a time-trace and a formula, and generates a boolean value in
B. Given a formula ϕ and a time-trace (te, tt) consisting of a time-event te and
its suffix tt, then (te, tt) |= ϕ returns true/false iff ϕ{te}′ returns >/⊥ as the
result.

The calculation rules of logic connectives → (implication), ∧ (and), ∨ (or),
++ (exclusive or), ! (negation) and ↔ (equivalence) are declared as usual [16].

In our program, the comparison operators (≤, <, =, > and ≥) and the primi-
tive operator (+) in TPTL are denoted by ≤′, <′, =′, >′, ≥′ and +′ respectively,
to distinguish the original definition of these operators in Maude. See < as an
example of comparison operators, the declaration for <′ is shown as follows.

vars R R’ N N’ : Nat .
vars A A’ : Atom .
op _<’_ : Formula Formula -> Formula [prec 40] .
ceq R <’ R’ = true if R < R’ .
ceq R <’ R’ = false if R > R’ or R == R’ .
ceq (N of A) <’ R = true if N < R .
ceq (N of A) <’ R = false if N > R or N == R .
ceq (N of A) <’ (N’ of A’) = true if N < N’ .
ceq (N of A) <’ (N’ of A’) = false if N > N’ or N == N’ .

3.2 Temporal Operators and Freeze Quantifiers

In this part we describe the Maude program for temporal operators and freeze
quantifiers in TPTL. Let TE be a time-event, TT be a time-trace, X and Y be
formulae, and U’ be an operator, which receives two formulae and generates a
formula. The rewriting rules for the temporal operator U is presented as follows.

eq TE |= X U Y = false .
eq TE, TT |= X U Y = TT |= X U’ Y .
eq TE, TT |= X U’ Y = TE, TT |= Y or TE, TT |= X and TT |= X

U’ Y .
eq TE |= X U’ Y = TE |= Y .

In Maude, we denote the formula x. ϕ by (R of x) @ ϕ with x ∈ AP being
the name of the quantifier, R ∈ N≥0 being the value of the quantifier, and ϕ
being a TPTL formula. In addition, we define an operator “@@” for assigning
free variables in ϕ. The rewriting process of tt |= (R of x) @ ϕ is separated into
two steps as follows.

1. The variable x of x. ϕ is set to the time when the formula is evaluated. Hence,
the formula (R of x) @ ϕ is rewritten to another formula ((Time(tt[0]) of x)
@@ ϕ), where (Time(tt[0]) is the initial time value from the given time-trace;

2. The operator @@ assigns all occurrences of variable x in ϕ to the value
(Time(tt[0]), and proceeds with the tt |= ϕ checking process. The Maude
program is as follows.

A Rewriting Based Monitoring Algorithm for TPTL 67

/* the value of a freeze quantifier (R of A) equals to
T, which is the time of the first time-event in the
time-trace */

eq E :- T, TT |= (R of A) @ X = E :- T , TT |= ((T of A)
@@ X) .

eq E :- T |= (R of A) @ X = E :- T |= (T of A) @@ X .
ceq (M of A) @@ (M’ of A’) = (M of A’) if A == A’ . // a

FreeV (M’ of A’) is assigned to the value of the freeze
quantifier (M of A) if they have the same name

ceq (M of A) @@ (M’ of A’) = (M’ of A’) if A =/= A’ . //
a FreeV (M’ of A’) is not assigned to the value of the
freeze quantifier (M of A) if they have different names

/* the value assignment rule for an algebraic formula. */
ceq (N of A) @@ (N’ of A’ +’ R) = N + R if A == A’ .
ceq (N of A) @@ (N’ of A’ +’ R) = (N’ of A’ +’ R) if A =/=

A’ .

In addition, we introduce the following equivalences into the program for the op-
erator @@. These equivalences are declared in the module FREE-QUAN, where
N , N ′,M andM ′ are natural numbers; A, A′, B and B′ are atomic propositions;
E is an event; and X, Y , true and false are formulae.

eq (N of A) @@ (X /\ Y) = (N of A) @@ X /\ (N of A) @@ Y
eq (N of A) @@ (X ++ Y) = ((N of A) @@ X) ++ ((N of A) @@ Y)
eq (N of A) @@ E = E
eq (N of A) @@ (X <’ Y) = ((N of A) @@ X) <’ ((N of A) @@ Y)
eq (N of A) @@ true = true . eq (N of A) @@ false = false
eq (N of A) @@ ((N’ of A’) @ X) = (N’ of A’) @ ((N of A) @@ X)
eq (N of A) @@ (<> X) = <> ((N of A) @@ X)
eq (N of A) @@ ([] X) = [] ((N of A) @@ X)
eq (N of A) @@ (X U Y) = ((N of A) @@ X) U ((N of A) @@ Y)
eq (N of A) @@ (o X) = o ((N of A) @@ X)

4 Case Study: the RBC/RBC Handover Process

In this section, we apply our TPTL runtime verification implementation to a
concrete example from the European Train Control System (ETCS). ETCS is
a signaling, control and train protection system that is replacing the national,
incompatible safety systems within Europe. ETCS consists of the on-board sub-
system (composed of ERTMS/ETCS on-board equipment, the on-board part of
the GSM-R radio system and specific transmission modules for existing national
train control systems), and the track-side sub-system (composed of balise, line-
side electronic unit, GSM-R, radio block center (RBC), euroloop and radio infill
unit) [18]. In ETCS, the RBC is responsible for providing movement authori-
ties to allow the safe movement of trains. A movement authority is generated
by computing messages to be sent to the trains, where the messages are on the

68 Ming Chai, B.-H. Schlingloff

basis of information received from external track-side systems and information
exchanged with the on-board sub-system. A route is divided into several RBC
supervision areas. Here we consider the RBC/RBC handover specification. When
a train approaches the border of an RBC supervision area, an RBC/RBC han-
dover process takes place (see Fig. 2). The RBC/RBC handover specification
specifies how a train moves from one RBC supervision area to an adjacent one.

Fig. 2. The RBC/RBC handover process

We consider properties on basis of the two different specifications: FIS for
the RBC/RBC Handover [19] and RBC-RBC Safe Communication Interface [20].
An execution of the system refers to the following properties in the FIS for the
RBC/RBC Handover.

– Property 1: “the handing over RBC is responsible to send information about
an approaching train to the accepting RBC area (i.e. pre-announcement)”
(4.2.2.1);

– Property 2: “the handing over RBC must send Acknowledgment after receiv-
ing route related information” (5.2.2.5);

– Property 3: “if the Acknowledgment for route related information is missing,
the accepting RBC must send route related information again” (5.2.3.5).

Based on the specification of the Safe Communication Interface, we assume that
the time to take into account an incoming message and produce an answer is
between 30 and 60 time units. We also assume that the tolerance window for
the messages transition time is between 0 and 50 time units. Table 1 shows the
abbreviations used in our case.

Let Mess be any message. We write “sendMess” for the Mess which is sent
by a component, and “recvMess” for the Mess which is received by a component.
The above properties can be expressed by the following TPTL formulae.

A Rewriting Based Monitoring Algorithm for TPTL 69

Table 1. Abbreviations in case study

Abbreviation Definition
HOVcond Handover condition detected
PreANN Pre-announcement
RRI Route related information
Ackn Acknowledgment
AcknMissing The Acknowledgement is missed
RRIReq Route related information request
MAReq Movement authority request
PosRep Position report
Ann Announcement
TOR Taking Over Responsibility
BPSRE Position report: “Border passed by safe rear end”
BPFE Position report: “Border passed by max safe front end”

– Property 1: ϕ1 = � x.(sendPreANN→ ♦ y. (recvPreANN ∧ (y ≤ x+50))).
– Property 2: ϕ2 = � x.(recvRRI → ♦ y.(sendAckn ∧ (y ≥ x + 30) ∧ (y ≤
x+ 60))).

– Property 3: After an RRI message is sent by the accepting RBC, three time
intervals must be considered: the transition time of RRI (0 < r1 ≤ 50), the
time for producing acknowledgment (30 ≤ r2 ≤ 60) and the transition time
of the message acknowledgment (0 < r3 ≤ 50). Hence, if the accepting RBC
does not receive the acknowledgment between 30 and 160 (= 50 + 60 +
50) time units after sending an RRI, an AcknMissing message should occur.
The accepting RBC should resend an RRI after the AcknMissing message
occurs, within 50 time units. Now property 3 can be expressed by the TPTL
formula ϕ3, :
• ϕ31 = � (x.(sendRRI → ♦ y.(recvAckn ∧ (y ≤ x+160) ∧ (y ≥x+30)))
++ x.(sendRRI → ♦ y.(AcknMissing ∧ (y > x+ 160))));

• ϕ32 = � x.(AcknMissing → ♦ y.(sendRRI ∧ (y < x+ 50)));
• ϕ3 =ϕ31 ∧ ϕ32.

We assume that the handing over RBC and the accepting RBC have a syn-
chronized clock, beginning at time 0. An example of RBC/RBC handover pro-
cess is given in the FIS for the RBC/RBC Handover specification. Based on
the RBC-RBC Safe Communication Interface specification, we design a poten-
tial time stamp for each event, get an example of real-time executions of this
process, shown in Fig. 3. A corresponding time-trace is as follows.

tt1 = (sendPreANN, 0), (sendRRIReq, 20), (recvPreANN, 35), ({sendR-
RIReq, recvRRIReq}, 50), (sendRRI, 90), (recvRRIReq, 97), (recvRRI, 115),
(sendAckn, 157), (sendRRI, 180), (recvAckn, 191), (AcknMissing, 350), (sendRRI,
360), (recvRRI, 373), (sendAckn, 403), (recvAckn, 437), (recvMAReq, 492),
(sendRRIReq, 536), (recvRRIReq, 542), (sendRRI, 583), (recvRRI, 592), (send
Ackn, 639), (recvAckn, 652), (recvBPFE, 700), (sendTOR, 738), (sendAnn, 741),
(recvAnn, 752), (recvTOR, 759), (recvCBPRE, 800).

70 Ming Chai, B.-H. Schlingloff

Fig. 3. An example of message sequence

The calculation results of tt1 |= ϕ1, tt1 |= ϕ2 and tt1 |= ϕ3 in Maude are all
true. It means that this execution satisfies all the three properties.

Time-trace tt2 represents an execution in which some errors occur: i) the
accepting RBC receives the pre-announcement 60 time units after it is sent; ii)
the handing over RBC does not send the acknowledgment after reception of an
RRI; iii) when missing the acknowledgment of an RRI, the accepting RBC does
not resend it.

tt2 = (sendPreANN, 0), (sendRRIReq, 20), (recvPreANN, 60), ({sendR-
RIReq, recvRRIReq}, 65), (sendRRI, 90), (recvRRIReq, 97), (recvRRI, 115),
(sendRRI, 180), (recvMAReq, 492), (sendRRIReq, 536), (recvRRIReq, 542),
(sendRRI, 583), (recvRRI, 592), (sendAckn, 639), (recvAckn, 652), (recvBPFE,
700), (sendTOR, 738), (sendAnn, 741), (recvAnn, 752), (recvTOR, 759), (recv
CBPRE, 800).

The calculation results of tt2 |= ϕ1, tt2 |= ϕ2 and tt2 |= ϕ3 are all false, which
means that this execution of the system violates the properties.

We repeated similar experiments several times with difference traces. The
checking efficiency is shown in Fig. 4. The case study shows that our TPTL
based runtime verification implementation is feasible to detect failures in the
executions of a system.

A Rewriting Based Monitoring Algorithm for TPTL 71

Fig. 4. The monitoring efficiency in Maude

5 Conclusion

In this paper, we have proposed a runtime verification method for TPTL. We
developed a formula rewriting based algorithm, and implemented the algorithm
in Maude. This makes it possible to check the satisfaction relation between a
long time-trace and a complex TPTL formula automatically. Furthermore, we
have presented a case study with a concrete example from the railway domain.
The results show the feasibility of our implementation.

There are several interesting topics for future work. Firstly, as is well known,
LTL with two truth values gives misleading results when checking finite traces.
For this reason, we want to develop a three-valued TPTL, introducing a third
truth value “inconclusive”. This truth value means the satisfaction relation be-
tween a time-trace and a TPTL formula is decided by the potential suffix of
the given initial fragment of the time-trace. Secondly, the clock reset principle
in a TPTL formula x.ϕ is to freeze the variable x in ϕ when the formula is
evaluated. This makes TPTL unintuitive in the cases when a property contains
a “clock-reset” condition. Hence an extension of TPTL with modifying the freeze
quantifier “x.” to “ψ.” is worth to be studied, where ψ is any formula. Last but
not least, to solve the difficulty of writing formal specifications in runtime ver-
ification, we are going to study specification techniques. The long-term goal is
to develop a methodology to semi-automatically translate system specifications
from the railway domain into temporal formulae.

References

1. Leucker, M., Schallhart, C.: A Brief Account of Runtime Verification. Journal of
Logic and Algebraic Programming 78, 293-303 (2009)

2. Havelund, K., Roşu, G.: Monitoring Java Programs with Java PathExplorer. Elec-
tronic Notes in Theoretical Computer Science 55, 200-217 (2001)

3. Chen, F. and G. Roşu.: Mop: an efficient and generic runtime verification frame-
work. ACM SIGPLAN Notices, pp. 569-588 (2007)

4. Barringer, H., Havelund, K., Rydeheard, D., Groce, A.: Rule Systems for Runtime
Verification: A Short Tutorial. In: Runtime Verification, pp. 1-24. Springer, (2009)

72 Ming Chai, B.-H. Schlingloff

5. d’Amorim, M., Roşu, G.: Efficient Monitoring of ω-languages. In: Computer Aided
Verification, pp. 364-378. Springer, (2005)

6. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACMTransactions on Software Engineering and Methodology (TOSEM) 20, (2011)

7. Koymans, R.: Specifying Real-time Properties with Metric Temporal Logic. Real-
time systems 2, 255-299 (1990)

8. Thati, P., Roşu, G.: Monitoring Algorithms for Metric Temporal Logic Specifica-
tions. Electronic Notes in Theoretical Computer Science 113, 145-162 (2005)

9. Basin, D., Klaedtke, F., Müller, S., Pfitzmann, B.: Runtime Monitoring of Met-
ric First-order Temporal Properties. In: IARCS Annual Conference on Founda-
tions of Software Technology and Theoretical Computer Science, pp. 49-60. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, (2008)

10. Basin, D., Klaedtke, F., Zălinescu, E.: Algorithms for Monitoring Real-time Prop-
erties. In: Runtime Verification, pp. 260-275. Springer, (2011)

11. Alur, R., Henzinger, T.A.: A Really Temporal Logic. Journal of the ACM (JACM)
41, 181-203 (1994)

12. Alur, R., Henzinger, T.A.: Real-time Logics: Complexity and Expressiveness. In-
formation and Computation 104, 35-77 (1993)

13. Bouyer, P., Chevalier, F., Markey, N.: On the Expressiveness of TPTL and MTL.
Information and Computation 208, 97-116 (2010)

14. Kristoffersen, K.J., Pedersen, C., Andersen, H.R.: Runtime Verification of Timed
LTL Using Disjunctive Normalized Equation Systems. Electronic Notes in Theo-
retical Computer Science 89, 210-225 (2003)

15. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Que-
sada, J.F.: Maude: Specification and Programming in Rewriting Logic. Theoretical
Computer Science 285, 187-243 (2002)

16. Havelund, K., Rosu, G.: Monitoring Programs Using Rewriting. In: Automated
Software Engineering, 2001.(ASE 2001). Proceedings. 16th Annual International
Conference on, pp. 135-143. IEEE, (2001)

17. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott,
C.: Maude Manual (version 2.6). University of Illinois, Urbana-Champaign 1, 4.6
(2011)

18. UNISIG: SUBSET-026: System Requirements Specification. (2008)
19. UNISIG: SUBSET-039: FIS for the RBC/RBC Handover. (2005)
20. UNISIG: SUBSET-098: RBC-RBC Safe Communication Interface. (2007)

Sound Recoveries of Structural Workflows with
Synchronization

Piotr Chrza̧stowski-Wachtel, Pawe l Go la̧b, and Bartosz Lewiński

Institute of Informatics, Warsaw University,
Banacha 2, PL 02-097 Warszawa, Poland

pch@mimuw.edu.pl, pawel.golab@mimuw.edu.pl, bartosz.lewinski@mimuw.edu.pl

Abstract. We consider communication places in workflow nets, where
the connected transitions lie in parallel threads. When a workflow Petri
net is constructed structurally, by means of refinements, such places can-
not be modeled structurally. They are added after the net is constructed.
Workflow nets constructed in a structural manner are sound, but addition
of such communication places can result in losing the desired soundness
property. However, there is a method to avoid such misplacement of com-
munication places. We should limit the pairs of connected transitions to
the ones that lie in truly parallel threads and to avoid cycles introduced
by communication places.

Recovery transitions — special kind of transitions used as a powerful
tool in dynamic workflow modeling — allow the manager to move to-
kens arbitrarily, when some unexpected situation happens. They were
extensively studied and proved to be a useful tool in the workflow man-
agement [HA00]. They can be modeled as a kind of reset transitions with
additional feature of depositing tokens taken from a specified region to
particular places in this region, like it was proposed in [Ch06]. Mov-
ing tokens arbitrarily by the manager requires a lot of attention, since
soundness of the net can easily be destroyed. In this paper we present a
sufficient and necessary condition of soundness for a marking in a struc-
tured net with communication places. Verifying the condition turns out
to be fast. The cost is linear with respect to the total number of places
and transitions.

1 Introduction

Workflow management is an area, where workflow designers can prove correct-
ness and flexibility of their models. It has been studied in numerous papers,
like [WS09], [BPS09]. One of the major problems is how to organize commu-
nication between parallel tasks performed by communicating agents [BPM05].
Making communication pattern wrongly can easily lead to deadlocks, mutual
waiting or leaving messages as trash, when they are deposited somewhere, and
not consumed by anyone. The danger of bad design increases, when we talk
about management that lasts in time and needs rearrangement due to some
unexpected situations.

74 P. Chrza̧stowski-Wachtel, P. Go la̧b, B. Lewiński

Composing workflow nets in a structural way was proposed in [ChBHO03]. A
number of basic node refinement rules has been introduced. These rules include
sequential split, parallel split, choice and loop splits. They reflect typical pro-
gramming constructs like sequence of actions, an invocation of parallel threads,
instruction of choice and a loop statement. The control of the workflow runs can
be hence guarded by these constructs. Restricting the nets to the nets obtained
from a single node by these structural constructs was proven in to guarantee
soundness, as defined by [vdAtH00].

As it was already recognized in [ChBHO03], these constructs are not sufficient
for typical needs of a workflow designer. In the cited paper a number of non-
structural synchronization rules were proposed. By non-structural we mean here
adding of new nodes and edges, which do not result as a refinement of existing
nodes. Among them the most important was the synchronization of two parallel
actions. When in two parallel threads A and B we want an action b from B to
wait until an action a from A has been executed, we can model it by introducing
a new communication place s with arcs leading from a to s and from s to b. Such
construct we call a synchronization or communication, depending on whether we
emphasize the fact that b must wait for a or that a has something important
to communicate to b. Introducing such synchronization places can result in a
possible deadlock or other unsound constructs, like trash tokens generation. In
order to avoid misintroduction of such places, a criterion was proposed, which
is a sufficient condition for soundness. The condition was based on the idea of
the refinement tree, reflecting the history of refinements. It has been proven that
refinement trees are unique up to an isomorphism for a given structural WF-
net. In other words, if a WF-net is constructed structurally, then all the histories
creating this net differ only in unimportant details (like the order of refinements
in disjoint areas), resulting in the same refinement tree.

t1 t2

t3 t4 t6

t8

t7

t5 t9

p1

p2 p3

p4 p5

p6

p7

p8

p9 t3p2 p4 t4p3 p5

t1 t5

p1 p9

t6p6 p7 p8

t2 t9

t7 t8

Fig. 1. Example WF -net and an corresponding refinement tree

Sound Recoveries of Structural Workflows with Synchronization 75

In dynamical workflows it is often desired that the control is being changed
during the lifetime of the workflow execution. Such situations are quite normal,
especially when workflows describe processes that last for a long time (months
or even years). Sometimes the manager decides to detour from the anticipated
control flow and would like to “correct” the flow manually moving tokens around.
Situations of this kind can happen in particular, when for instance under some
time pressure we decide to skip several actions or when we decide that some part
of the workflow should be repeated due to unexpected failures, which were not
foreseen during the design. In such cases we would like to support the workflow
management by allowing the manager to perform only sound rearrangements of
the flow. When no such restriction would be set, the manager, quite possibly
without understanding side effects, could make undesirable changes. This can
lead to unwanted behavior, making the net unsound.

One of the main problems with such on-the-fly changes of the markings is
to determine the impact area, which is the least part of the net, called region,
which is affected by the rearrangement of tokens. The refinement tree gives us
precise information — in order to define the impact area caused by any changes
in the net, it suffices to find the latest common predecessor of the nodes, where
the changes were made. The nodes which are not descendants of this node are
not affected by these changes.

The changes we consider are of two kinds. First of them is the addition
of places or transitions in an unstructured manner. An example of such useful
addition is the introduction of a place joining two transitions, which are in (dif-
ferent) parallel threads. If such a place connects transition t with transition r,
then the intention is to suspend the execution of r until t is executed. Clearly the
introduction of such a place can result in a deadlock. In [ChBHO03] a strong suf-
ficient condition was presented guaranteeing net soundness after such insertion
of a communication place. It turns out that if an inserted place connects such
two transittion-type leaves t and r in the refinement tree that no choice-split or
loop-split node is found on the path from t to r and if no cycle can be detected
in the net after such insertion, then the resulting net is sound.

The second kind of change is of dynamical matter. We allow the manager to
modify the marking by arbitrary moving tokens around some region. A region is
understood as the net unfolded from a single place-type node in the refinement
tree. Inside a region we consider the so-called recovery transitions, which remove
tokens from the whole area and restore them in arbitrarily chosen places. Our
goal is to find conditions, which would protect the manager from depositing
tokens on such places, that the resulting marking would be unsound, hence not
properly terminating.

2 Refinement Rules

This section is a short reminder of WF -nets refinement rules introduced in
[ChBHO03]. The idea behind is that having defined the refinement rules preserv-
ing certain network properties, we are able to analyse WF -networks that were

76 P. Chrza̧stowski-Wachtel, P. Go la̧b, B. Lewiński

t1 t2

t3 t4 t6

t8

t7

t5 t9

p1

p2 p3

p4 p5

p6

p7

p8

p9

s

t3p2 p4 t4p3 p5

t1 t5

p1 p9

t6p6 p7 p8

t2 t9

t7 t8

s

Fig. 2. Example of net synchronization with corresponding refinement tree

constructed by using those rules. To construct such network one starts with a
single place, and then repeatedly applies context-free rules on network elements.
One of biggest advantages of using refinement rules approach is construction
trace called refinement tree that contains much information about the network
structure. An example of such tree and corresponding network can be found on
figure 1. The rest of this section covers basic rules presented in [ChBHO03]. All
described rules are depicted on figure 3.

The first two rules are called sequential splits. They are used to create linear
sequence of places and transitions, like p2→ t3→ p4 on figure 1. It’s an example
of splitting a single place. There are two kinds of sequential splits depending
on the node type they are applied to. We call them sequential place split and
sequential transition split respectively. Splits of this type introduce partial order
of transitions in sound transition firing sequences. Splits replace the chosen node
with three other nodes: the first and the last are of the same type and have either
the same inputs or outputs as the original node, respectively. The third node is
the one in the middle that connects two other nodes, so is of opposite type.

The next two rules are equivalent to logical AND and OR gates respectively.
The first of them applies to places and the second one to transitions and both
are replacing node with two copies of it.

The first split called parallel split introduces two parallel threads that will be
executed simultaneously. In sound transition firing sequences transitions from
different parallel paths can be safely swapped (if partial order defined by other
splits is preserved). Examples of such paths are p2→ t3→ p4 and p3→ t4→ p5
on figure 1.

The second split, called choice split, defines two alternative paths that the
process can follow. During a single process run, transitions of only one of the

Sound Recoveries of Structural Workflows with Synchronization 77

Fig. 3. Basic WF -nets refinement rules. Starting from top: sequential place split, se-
quential transition split, parallel split, choice split and loop split.

paths can be enabled. Examples of such paths are t1→ . . .→ t5 and t2→ . . .→
t9 on figure 1.

The last split type introduces loops and therefore is called a loop split. A
loop example with nodes later splitted by sequential split rules can be found on
figure 1.

3 Definitions

In this section we’ll present some definitions and notation conventions that will
be used in the rest of the article.

Siblings. For the node v that is a child of sequential split type node p, let
right siblings be defined as siblings that occur after v in p’s children order. The
definition of left siblings of v is analogous.

78 P. Chrza̧stowski-Wachtel, P. Go la̧b, B. Lewiński

Prenodes. We define Prenodes (v) set as follows. Let pi be the i-th node on
the path from root to v. Then for each pi of sequential split type, Prenodes (v)
includes pi, left siblings of pi+1 and their subtrees.

This definition corresponds to the original refinement tree, without using
additional edges provided by synchronisations.

Existential marking function. Below we present notation and definition for ex-
istential marking function which returns information if in a given set of nodes
any places are marked.

M?(V) =

{
0 if M (v) = 0 for each v ∈ V

1 otherwise

Structured SWF -net (Synchronised WorkFlow network) is an extension of
WF -net defined as a 7-tuple 〈P, T, F, s, e, S, C〉, where

1. 〈P, T, F, s, e〉 is a standard structured WF -net with the set of places P ,
transitions T , flow function F the source place s, and the exit place e.

2. S — the set of synchronisation places (semaphores)
3. C — the set of edges joining semaphores and synchronised transitions. It is

easy to see that C ∩ F = ∅

When two transitions t1 and t2 are synchronised via place s, we denote
t1 as in(s) and t2 as out(s).

4 Soundness Characterisation

The main goal of this chapter is to find properties of marking M in SWF -net
that guarantee soundness. Before introducing these properties we’ll define two
auxiliary sets Before and After, that will help us in those properties formulation
and we’ll explore some important properties of them.

4.1 Before and After sets

Intuitively, Before (v) and After (v) sets include places and transitions, that are
over or under vertex v in WF -net graph respectively. In the case of SWF -nets
we consider only such nodes that are not synchronisation places during Before
and After sets construction.

We define Before (v) set as follows. A leaf l is in Before (v) if and only if there
exists a predecessor q of l being a left-sibling of some node lying on the path
from the root to v inclusively. Similarly for After(v) we consider right siblings
instead. We ignore the synchronisation places.

An important feature of Before and After sets is that Before (v) and After (v)
sets are not containing v itself, so immediate conclusion from Before and After
sets definitions is that Before (v) ∩After (v) = ∅ for each node v.

Sound Recoveries of Structural Workflows with Synchronization 79

It is worth to explore, how Before and After sets are constructed in the case
of loops. We can distinguish two cases depending on whether loop contains the
node for which these sets are constructed or not.

Let us consider loops from the first case. Let l be the loop that was created
by splitting place pl and transition tl. In this case Before and After sets will
either contain leaves only from pl subtree or only from tl subtree.

In the second case the Before and After sets can either contain all the leaves
of the given loop or none of its nodes.

In the forthcoming text it is important to have clarity about Before and After
sets containment rules. Let v, vb, va be the vertices such that vb ∈ Before (v) and
va ∈ After (v). Clearly, Before (vb) ⊂ Before (v) and After (va) ⊂ After (v). We
also have v ∈ After (vb) and v ∈ Before (va). And so, finally, After (v) ⊂ After (vb)
and Before (v) ⊂ Before (va).

The Before and After sets have some interesting properties in the context of
sound marking, that we will formulate in the following proposition. We say that
a node (place or transition) x in a Petri net is reachable from a given marking
M if it is not dead in the case x is a transition or it can be marked by some
marking reachable from M , in the case x is a place.

Proposition 1 Let M be a sound marking of WF-net with synchronisations.
For each place or transition x we have:

1. M (x) ≥ 1 implies M (After (x)) = 0
2. M (Before (x)) > 0 implies M (After (x)) = 0
3. M (Before (x)) > 0 implies M (x) = 0 and x is reachable.

Proof. Let 〈P, T, F, s, e, S, C〉 be a structured SWF -net and M a sound marking
on this network.

We begin the proof with some observations. When constructing the Before
and After sets, we take into account only subtrees related with nodes that are of
sequential split type. The sequential split type nodes determine the partial order
of transitions in possible transition sequences transforming any sound marking
M (in particular M1

s) into M1
e. Some transitions are incomparable in this order

because of different types of nodes, for example AND nodes that introduce
concurrency in nets. This partial order results in important properties of Before
and After sets.

For a transition t ∈ T that is not a part of any loop, the set After (t) con-
tains all transitions that can fire after t occurs in a sequence transforming a
sound marking M into M1

e and that this firing is directly dependent on t. If the
transition t is in a loop, the same condition holds, except for some other transi-
tions from this loop — not all of them are included in After (t) set. But still, all
transitions from the loop that belong to the After (t) set in order to fire, need
transition t to fire before them.

It is important to stress out here, that we only consider transition sequences
that contain t when writing about firing dependences. In the case of transitions
that come after AND nodes, there are at least two independent paths which
can lead to those transitions firing, so there are possible situations, when t won’t

80 P. Chrza̧stowski-Wachtel, P. Go la̧b, B. Lewiński

occur in such sequences but the considered transitions will still fire. Neverthe-
less, if t occurs in such a sequence, it determines the path that the process went
through and we know that t firing is necessary in order to make the next transi-
tions firings possible. We have a similar situation in the case when t results from
loop main transition fragmentation (as t7 and t8 on figure 1).

With this observation, we can move to the main part of the proof.
1. The first step is a direct result of our observation. If x = e then this point

is obvious. If x 6= e then M (x) ≥ 1 means that x is a place and x is an input for
some transitions Tx ⊂ T .

Firstly, let’s consider nets that contain no loops. Each transition in any se-
quence transforming M1

s into M can occur only once. Since x isn’t empty, we
know that none of the Tx transitions will occur in possible transition sequences
transforming M1

s into M. Taking into account our observation this also means
that none of the transitions from After sets of Tx transitions will occur in such
sequences. It means that none of outputs of Tx transitions or outputs of transi-
tions from their After sets is marked. We also know, that all the transitions from
Tx, all their outputs and their After sets are in After (x). Moreover it is easy to
find that these are the only items in After (x). So we have M (After (x)) = 0.

The case of loops is very similar. The only problem is that x can be a loop
element. It is possible in this case, that not all of Tx transitions will be in After (x)
set — some of them can be transitions starting new loop iteration. However, it
is easy to recognize that this makes no problem, and reasoning for transitions
from Tx that are in After (x) is still valid.

2. This property is a simple consequence of 1. We know that for all places from
Before (x) that marking M is greater than zero and their After sets markings
is zero too. We also know that After (x) set is a subset of those After sets, so
M (After (n)) = 0.

3. First part of this property is also a consequence of point 1. We know, that
for all places from Before (x) for which the marking M is greater than zero, their
After sets markings equal zero. We also know that x is an element of those places
After sets, so M (x) = 0.

The fact that x is reachable is a result of our observation. Let ty be such a
transition that is in After set of some place from Before (x) that the marking M
is greater than zero, and for which this place in an input. We know that x is in
ty’s After set, so there exists a transition tx for which x is an output and either
tx ∈ After (ty) or simply tx = ty. Because marking M is sound, it is possible for
ty to fire. In the case when tx 6= ty, we know from the observation and from the
fact that the marking M is sound [ChBHO03], that it is also possible for tx to
fire, so x is reachable.

4.2 Properties of sound SWF -net markings

In this section we’ll give a characterisation of SWF -net sound markings in the
form of a short lemma. Before formulating the lemma, it is worth noticing, that
as in the case of standard WF -nets, if M is a sound marking of WF -net with
synchronisations, then M is 1-bounded (there can’t be two tokens at a one place).

Sound Recoveries of Structural Workflows with Synchronization 81

Lemma 1 Let N = 〈P, T, F, f, e〉 be an WF-net and Ns =
〈
P, T, F, f, e, {s}, C

〉
be the same net with added synchronisation place s. Given Ns marking M is
sound if and only if:

1. M|N is sound in N
2. Exactly one of following holds:

(a) M (Before (in(s))) > 0
(b) s is marked
(c) M (After (out(s))) > 0
(d) Synchronisation was skipped, so M (Before (in(s)) ∪After (in(s))) = 0

and M (Before (out(s)) ∪After (out(s))) = 0

Basically, the lemma describes intuitions about how synchronisation place
should work. It says, that we have four different states, that our process can be
in. First three cases are straightforward: it can be either before synchronisation,
during synchronisation or after synchronisation. The last one is the case, when
the synchronisation occurs in one of the branches that resulted from an choice
split, and an active branch is not the synchronised one. An example of such
situation is depicted below on figure 4.

t1 t2

t3 t4 t6

t8

t7

t5 t9

p1

p2 p3

p4 p5

p6

p7

p8

p9

s

Fig. 4. Example of synchronisation skipping marking

Therefore, for the sake of precision, we can describe the first three states
as: synchronisation place is active, process is during synchronisation and syn-
chronisation is inactive, but either synchronisation has occurred, or the process
branch without synchronisation is at the evaluation point, when marked places
are in After (out(s)) set. The last one describes situation when process finished
considered fragment with alternative). Nevertheless it is more convenient to use
definitions presented in the previous paragraph.

82 P. Chrza̧stowski-Wachtel, P. Go la̧b, B. Lewiński

To show that the above intuitions are right, we will now prove our lemma.

Proof. It is important to remember that synchronization of items in loops is not
allowed, so in every valid transition sequence in(s) and out(s) can occur only
once.

Firstly let us assume that a marking M is sound in Ns =
〈
P, T, F, f, e, {s}, C

〉
net.

What synchronisation point does, is prohibiting certain transition sequences
that allow obtaining marking M|N from M1

s inN , by enforcing firings of one tran-
sition group before another. It is important that synchronisation is not adding
any new possible transition sequences. This means, that any transition sequence
that leads to the marking M in Ns is also valid in N , leading to the marking
M|N . This means that M|N is sound in N , so 1. holds.

For the case when there exists such OR place that allows to skip synchroni-
sation, let pin be the place before such fork, and pout first place after it. From
the rules of synchronization we know that in this case pin is in Before (in(s))
and pout is in After (out(s)).

It is easy to see, that each of the conditions a), b) and c) exclude d) and vice
versa. Now we’ll show that a), b) and c) exclude each other. If M (Before (in(s))) >
0, then we know from the proven proposition, that there is no transition sequence
that leads to a marking M containing in(s), so s will be empty for each valid
subsequence of those transitions, which means that there was no possibility for
out(s) to fire, so again from the proposition, M (After (out(s))) = 0.

If s is marked, than in(s) has already fired. We know that M |N is valid
so, Before (in(s)) marking must be empty. Again from the proposition we have
M (After (out(s))) = 0, because there was no possibility for out(s) to fire.

If M (After (out(s))) > 0 then it means that transitions in(s) and out(s) have
already fired, so s is empty and from the validity of M|N , either M (Before (in(s)))
is empty or the process was run following a path where no synchronisation occurs.
In the second case we have M (pout ∪After (pout)) > 0, we have that M (s) = 0
and M (Before (in(s))) = 0, because M (pin ∪ Before (pin)) = 0 according to the
proposition.

If none of the conditions a), b) or c) holds, we have M (Before (in(s))) = 0,
M (s) = 0 and M (After (out(s))) = 0. There are two possibilities. Firstly, we
may consider situation when M (After (in(s))) > 0 and M (Before (out(s))) > 0,
but in this case s can’t be empty, because it would make impossible for out(s)
to fire and we know from the proposition that it has to fire in order to clean up
tokens from Before (out(s)).

The only valid option is M (After (in(s))) = 0 and M (Before (out(s))) = 0,
which means that all tokens are in After (pin) ∩ Before (pout) on process path
disjoint with the synchronisation. There are no other options because of the
synchronisation rules, which allow to synchronize only these transitions, which
are not separated by choice or loop split nodes in the refinement tree. So we
know now that a), b), c) and d) exclude each other and in each case one of them
must hold, so soundness of Ns means that 1. and 2. hold.

Now lets assume that 1. and 2. from the lemma hold.

Sound Recoveries of Structural Workflows with Synchronization 83

M|N is sound, so let 〈xi〉 be a sequence of events leading to M1
e in N . It’s

easy to see, that in case when one of b), c) or d) holds, the same sequence can
be fired in Ns. In the case when s is not empty, this sequence will clean s. A bit
harder is the case when a) holds, but one can easily see, that it is possible to
rearrange 〈xi〉 so that in(s) will occur before out(s) and still all transitions from
Before (in(s)) will be before in(s) and all transitions from After (out(s)) will be
after out(s). Rules of synchronisation guarantee that such operations will lead
to valid transition sequence, which will also be valid in Ns and will lead to the
same result as the original sequence.

This proves that if 1. and 2. from the lemma hold for a given marking M
that the marking is sound.

We have proved implications in both directions, so the lemma is valid.

5 Soundness Checking

The algorithm for checking the soundness of a marking will be a modification
of the soundness checking algorithm (theorem) from presented in previous work
[Ch06].

As a reminder, two functions w and W were defined as follows:

w(v) =

1 if v = root

w(parent (v)) if v is a child of a node which is not a parallel
split node

w′(parent(v))
c if v is a child of a node of the parallel split node,

with c children

W (v) =

M (v)w′(v) for each place-leaf v∑

y∈Ch(v) W (y) for all internal nodes x

0 for each transition-leaf t

The theorem stated that a marking is sound if and only if for each tree node
x either W s(w)(x) = 0 or W s(w)(x) = w(s). We will now define new functions
ws, W s and S such that W s and S will have the same signature as W and
ws will have the same signature as w. Note that the values in W and S are
determined only by leaves — for the internal nodes we take sum of the values of
their children. For both in(s) and out(s), we will add additional weight to the
path from the node to the root, and propagate this change downwards for the
pre-nodes (nodes occurring to the left of it). Let cs be a constant such that for
every node x the condition w(x) > cs is satisfied.

We will apply the following transformation two times to W presented in
[Ch06] for both in(s), out(s), with c equal to cs, −cs respectively.

For every node v on the path from t to root we add the weight c

w′(v) = w(v) + c

84 P. Chrza̧stowski-Wachtel, P. Go la̧b, B. Lewiński

For every node v ∈ Prenode (in(s)) (nodes on the left of the path from in(s)
to root)

ws(v) =

1 if v = root

ws(parent (v)) if v is a child of a node which is not a parallel
split node

ws(parent(v))
c if v is a child of a node being a parallel split

node, with c children

For the remaining nodes ws(v) = w(v). The function W remains unchanged,
except for the fact that now it depends on ws.

S(M)(t) =

cs · (M (s) + M?(After (out(s)))) if t = in(s)

−cs · (M?(After (out(s)))) if t = out(s)

0 for every other case

We will use this transformation two times to nodes in(s), out(s) with c being
inverses of each other. Notice that this pair of transformations together changes
nodes only inside the smallest subtree containing them.

t1 t2

t3 t4 t6

t8

t7

t5 t9

p1

p2 p3

p4 p5

p6

p7

p8

p9

s

1

3/4 1/4

1 1

1

1 1

1

1
1

11

1

-1/4

1/21/2

+1/4

1/4

t1 t2

t3 t4 t6

t8

t7

t5 t9

p1

p2 p3

p4 p5

p6

p7

p8

p9

s

1

3/4 1/4

1 1

1

1 1

1

1
1

11

1

-1/4

1/21/2

+1/4

1/4

Fig. 5. Example of SWF -net with marked weights defined by functions from the the-
orem. The marking on the left is sound, while the marking on the right isn’t, which
results in weight explosion in t1.

Theorem 1 A marking M of the SWF-net N is sound if and only if for each
node v in the refinement tree either W s

M (v) + S(v) = w(v) or W s
M (v) = 0

Sound Recoveries of Structural Workflows with Synchronization 85

Proof. We will prove it by using the sound characterisation lemma.

Let M be a sound marking. By the above lemma, exactly one of following
holds:

1. M (Before (in(s))) > 0

2. s is marked.

3. M (After (out(s))) > 0

4. Synchronisation was skipped, so M (After (in(s)) ∪ Before (in(s))) = 0 and
M (Before(out(s) = 0) ∪After (out(s)))

t3p2 p4 t4p3 p5

t1 t5

p1 p9

t6p6 p7 p8

t2 t9

t7 t8

s

Fig. 6. Derivation Tree with paths highlighted

Lets reason case by case, we will prove that in each of these cases our algo-
rithm will correctly verify the marking:

1. If M (Before (in(s))) > 0: Both in(s) and out(s) are inactive (which means
S(in(s)) = S(out(s)) = 0). The marking M is sound, so M(After (out(s))) = 0
and M(After (in(s))) = 0. This means that all the marked nodes are in modified
left sides (“Before”) of trees, so the verification behaves just as in the W without
synchronisation, because all the weights were just decreased by some amount.

2. If synchronization place s is marked: in(s) is active and out(s) is inactive.
Since M(After (in(s)) ∪ Before (in(s))) > 0 and M (Before (in(s))) = 0, we have
M (After (in(s))) > 0 and because the marking is sound, it meets S(in(s)) in
some node in the path to root, and then S(in) modifies it to the correct amount

86 P. Chrza̧stowski-Wachtel, P. Go la̧b, B. Lewiński

3. If M (After (out(s))) > 0: both in(s) and out(s) are active. Of course in this
situation M(After (in(s))∪Before (in(s))) > 0 and M (Before (in(s))) = 0, so we
have M (After (in(s)))) > 0 The marking is sound, so it meets the S(in(s) in some
node in the path to root, and then S(in(s)) modifies it to the correct amount.
Similarly, since M (After (out(s))) > 0 and marking is sound, the verification
succeeds until it meets at the path from in to root and here it is corrected by S
from in(s)

4. If synchronisation was skipped, so M (After (in(s)) ∪ Before (in(s))) = 0
and M (Before(out(s) = 0) ∪After (out(s))): The modifications to weights we
made apply only to nodes in the path from in(s) to out(s) and they are all
empty in this case.

This proves that in every case, our verification succeeds.

Let us prove the opposite implication now. Let M be such a marking that for
each node v in the refinement tree either W s

M (v) + S(v) = w(v) or W s
M (v) = 0.

We will show that the cases from the lemma are exclusive:

1. excludes (2. or 3.) Let’s assume M (Before (in(s))) > 0. Then if 2. or 3.
then in(s) is active, but since M (Before (in(s))) > 0, there is an active node
that is on the left hand side from the path from in(s) to root, but it was already
modified by c, so when S will meets, there will be c added two times.

2. and 3. Easy case, W (in(s)) = ws(in(s)) ·
(

M (s) + M?(After (out(s)))
)

=

2ws(in(s)) > ws(in(s))

It is easy to see that 4. is disjoint from the other cases too. We need only
to distinguish 4. from 2.: If M (s) > 0 then W (in(s)) > 0, and since 4. holds,
W (out(s)) = 0, so in the place where paths from in(s) to root and out(s) to root
meet there will be an unbalance.

Hence the cases from the lemma are disjoint. We need to prove now that
at least one of them holds. Let’s assume none of them holds. Then in(s) and
out(s) are not active. Assume that M (Before (out(s))) isn’t empty. Because of
1., M (Before (in(s))) = 0, so there are nodes enabled to the right from the path
from out(s) to the root node, that are below least common ancestor of in(s)
and out(s). When the weight of those active nodes gets passed to the path, they
need S to have W s

M (v) + S(v) = w(v), but in(s) is inactive, so we came to a
contradiction.

Similarly, assume M (After (in(s))) > 0. Because of 1., M (After (out(s))) = 0,
so there are enabled nodes to the left from path from out(s) to the root node, that
are below least common ancestor of in(s) and out(s). When the weight of those
enabled nodes get passed to the path, they need S to have W s

M (v)+S(v) = w(v),
but in(s) is disabled, so we came to a contradiction.

These two arguments imply that 4., M (After (in(s)) ∪ Before (in(s))) = 0
and M (Before(out(s) = 0) ∪After (out(s))), so at least one of the cases from
the lemma holds.

Now we need to prove the first part of the lemma, that M|N is sound in N .
The proof of this fact is identical to first part of this proof. We show that if one
of 1., 2. or 3. occurs, the rest of checking behaves identical to checking done in w.

Sound Recoveries of Structural Workflows with Synchronization 87

6 Conclusion

We have proven that the important construction of creating a channel between
two transitions (like links in BPEL4WS) can be done in a semi-structured man-
ner with the preservation of soundness. We have discovered a condition that
is sufficient and necessary for a marking to preserve soundness. The condition,
based on the structure of the refinement tree is fast to verify; in fact it is linear
with respect to the number of nodes of the net (so even better than the size
of the net: the edges, with possible quadratic number of them, do not count).
This condition allows us to determine soundness of an arbitrary marking and
allow on-the fly changes of markings during the execution of a workflow. Such
changes are considered a powerful tool for a manager to change a marking in
an arbitrary manner in case of an unexpected detour from the normal workflow
run. Support by automatic verification, if such changes can cause an undesired
behavior (like deadlock or creation of trash tokens) is an important improvement
of the technology.

References

[vdAtH00] W.M.P.van der Aalst, A.H.M. ter Hofstede, Verification of Workflow Task
Structures: A Petri-net-based Approach, Information Systems, 25(1): 43-69, March
2000.

[ChBHO03] Piotr Chrza̧stowski-Wachtel, Boualem Benatallah, Rachid Hamadi, Mil-
ton O’Dell, Adi Susanto, Top-down Petri Net Based Approach to Dynamic Workflow
Modelling, Lecture Note in Computer Science. v2678. 336-353., 2003.

[Ch06] P.Chrza̧stowski-Wachtel, Determining Sound Markings in Structured Nets,
Fundamenta Informaticae, 72, 2006.

[BPM05] M. Laugna, J. Marklund. Business Process Modeling, Simulation, and De-
sign. Prentice Hall, Upper Saddle River, New Jersey, 2005.

[HA00] C.Hagen, G.Alonso, Exception Handling in Workflow Management Systems,
IEEE Trans. of Soft. Eng. vol. 26 No 10, Oct 2000.

[BPS09] W.M.P. van der Aalst, J. Nakatumba, A. Rozinat, and N. Russell. Business
Process Simulation: How to get it right? In J. vom Brocke and M. Rosemann, editors,
International Handbook on Business Process Management, Springer-Verlag, Berlin,
2009.

[WS09] A. Rozinat, M. Wynn, W.M.P. van der Aalst, A.H.M. ter Hofstede, and C.
Fidge., Workflow Simulation for Operational Decision Support., Data and Knowl-
edge Engineering, 68(9):834-850, 2009.

Floating Channels between Communicating Nets

Ludwik Czaja1,2

1 Academy of Finance and Business Vistula, Warsaw
2 Institute of Informatics, The University of Warsaw, Poland

lczaja@mimuw.edu.pl

Abstract. A network system is given as a set of Petri net-like struc-
tures called agents. Each agent has a singled out place interpreted as
a communication port with ingoing edges labelled with send(p1, ..., pn)
and receive(q1, ..., qm) commands, where pi, qj are names of ports of its
interlocutors. Every such edge exits a transition emiting a request for
send or receive message. A transmission channel between the agent and
its intelocutors is established when its port holds a send or receive com-
mand, while ports of its interlocutors hold respective (matching) com-
munication commands. This gives rise to communication between the
agent and its interlocutors, after which the channel is disrupted: hence
floating channels. Some behavioural properties of such network system
are examined, their decision complexity, deadlock and fairness in their
number.

1 Introduction

A system of communicating agents here is a collection of Petri net-like struc-
tures [Rei 1985], such that in every net there is a singled out place serving for
communication and called a port. Each arrow entering the agent’s port is la-
belled with a send or receive communication statement with parameters being
names of ports the agent sends a message to, or receives from. Firing a transi-
tion the arrow outgoes, results in putting the arrow’s label in the port. If it is a
send (receive) statement and all ports - its parameters - hold matching receive
(send) statements, then a communication channel between senders and receivers
is set up (”matching” in the sense of ”hand-shaking” [Hoa 1978], [Hoa 1985],
[OCCAM 1984]). The channel is realized as a special transition, called a trans-
mission, with sending and receiving ports as its preset and postset respectively.
Firing such transition represents a message transfer between the ports involved.
After firing, this transition disappears, thus the channel is disrupted. That is
why we say that the channels are floating. Such systems are defined, examples
shown and some behavioural properties investigated. If the 1-safe Petri nets
are taken as the agents, then complexity of a number of decision problems for
systems with floating channels become straightforward conclusions from known
results, collected e.g. in [ESP 1998]. Some problems, namely deadlock and two
kinds of fairness is analysed in the framework of the proposed model and their
set-theoretic characteristics are given.

Floating Channels between Communicating Nets 89

2 Communicating Agents

Let A = {Ap1 , Ap2 , ..., Apd} be a set of agents, each agent Api (i = 1, 2, ..., d)
equipped with a single communication port pi, their set P = {p1, p2, ..., pd}. A is
treated as a distributed system whose agents are capable of intercommunicating
through their ports. Suppose that the agents are autonomous, i.e. do not share
any of their constituents. Let !(pk1 , pk2 , ...) and ?(pl1 , pl2 , ...) be a shorter no-
tation of send(pk1 , pk2 , ...) and receive(pl1 , pl2 , ...) operations respectively, i.e.
sending a message by an agent to ports pk1 , pk2 , ... and receiving a message from
ports pl1 , pl2 , Here k1, k2... and l1, l2... are subsequences of the sequence
1, 2, ..., d. These communication operations may assume a varying number of
parameters and are executed in the synchronous, i.e. hand-shaking mode. Let
C denote a set of all possible communication operations of all the agents, along
with the empty (no communication) operation Θ. Since apart from communi-
cation, other computational activity of the agents is inessential, such fragments
of their activity are not taken into consideration. That is why we assume that
agent Ap with port p is represented as a single place net with a specific firing
rule (semantics):

Ap = ({p}, Tp, Fp) for p ∈ P where:

Tp is a set of transitions, i.e. actions inserting send or receive operations in the
port p,

Fp : Tp × {p} → Cp is a set of arrows from transitions to place p, each arrow
labelled with a send or receive operation the agent Ap can issue, i.e. Cp ⊆
C − {Θ}. Suppose no agent can send/receive message to/from itself. That is:

Fp(t, p) is either !(pk1 , pk2 , ...) or ?(pl1 , pl2 , ...) with pki 6= p 6= plj (i = 1, 2, ...;
j = 1, 2, ...).

The local communication state (for short: a local state) of the agent Ap is a
function Mp : {p} → Cp ∪ {Θ}.

The set of all states of the agent Ap is Sp = (Cp ∪ {Θ}){p}

Semantics of transition t ∈ Tp is a relation [[t]] ⊆ Sp×Sp defined by (Mp,M
′

p) ∈
[[t]] iff Mp(p) = Θ ∧M ′

p(p) = Fp(t, p) (M
′

p is the next state following Mp

obtained in effect of firing transition t)

Semantics of agent Ap : [[Ap]] =
⋃
t∈Tp

[[t]]

Fig.1 depicts agent Ap capable of communicating with agents Ap1 , Ap2 , Ap3 , Ap4 ,
Ap5 and passing from the state Mp = {(p,Θ)} to the state M ′p = {(p, !(p1, p4)}

90 L. Czaja

Fig. 1. Example of agent Ap and result of firing transition t3

as a result of firing transition t3. This means that Ap issued a request for sending
a message to Ap1 and Ap4 .

The global communication state (for short: a global state) of the system A is a
function

M : P → C, their set S = CP , thus the local state Mp is a restriction of M
to {p}. The state (global and local) will be treated as a set of pairs of the form
(p, !(pk1 , pk2 , ...)) and (p, ?(pl1 , pl2 , ...)) for p, pk1 , pk2 , pl1 , pl2 ... ∈ P .

2.1 Transmissions

For n,m ≥ 1, let a1, ..., an and b1, ..., bm, pairwise distinct, be ports of
agents Aa1 , ..., Aan and Ab1 , ..., Abm . Let ai:!(b1, ..., bm) denote the pair
(ai, !(b1, ..., bm)) meaning ”agent Aai sends a message to agents Ab1 , ..., Abm”
and bj :?(a1, ..., an) the pair (bj , ?(a1, ..., an)) meaning ”agent Abj receives a
message from agents Aa1 , ..., Aan”. A transmission (matching send and receive
operations) is a pair t = (•t ,t•) of sets of the form:
•t = {a1:!(b1, ..., bm), ..., an:!(b1, ..., bm)} (pre-set of transmission t)

t• = {b1:?(a1, ..., an), ..., bm:?(a1, ..., an)} (post-set of transmission t)

Let •t• = •t∪t• and •t• ↓ P be a projection of •t• onto the set P , i.e.
•t• ↓ P = {a1, ..., an, b1, ..., bm}, that is, the set of ports the transmission t is
involved in. Note that •t• is of the same type as the global state M : both are
sets of pairs of the form (x, !(...)) or (x, ?(...)).

Expressions ai:!(b1, ..., bm) and bj :?(a1, ..., an) denote matching labelled com-
munication operations.

Note that a transmission depends on a state: it may come into existence in a
certain global state and disapear in another. Such emerging and disappearing
during system’s activity transmissions are typed in bold letters, to distinguish
them from the static transitions of the agents.

Floating Channels between Communicating Nets 91

Let TR denote the set of all possible transmissions in the system. If a transmis-
sion t∈TR exists in a state M (i.e. •t• ⊆ M) then its semantics is a relation
[[t]] ⊆ S×S defined by (M,M ′) ∈ [[t]] iff M ′ = M−•t•∪{(x,Θ)| x ∈ •t• ↓ P}.
This means that M ′ is M in which all pairs (x, !(...)) and (x, ?(...)) belonging
to •t• are replaced with pairs (x,Θ), i.e. M ′ is the result of ”firing” transmission
t at the state M . This models the transfer of a message from senders to receivers
and disruption of the communication channel.

In Fig.2 a collection of 6 ports of agents Ap, Ap1 , Ap2 , Ap3 , Ap4 , Ap5 are depicted.
The global state of this system is

M =
p p1 p2 p3 p4 p5

!(p1, p4) ?(p) Θ Θ ?(p) Θ

Transmission t = ({(p:!(p1, p4))}, {(p1:?(p), (p4:?(p))}) transforms M

into M ′ =
p p1 p2 p3 p4 p5
Θ Θ Θ Θ Θ Θ

in effect of sending

simultaneously a message from agent Ap to Ap1 and Ap4

Fig. 2. Transmission of a message from agent Ap to Ap1 and Ap4 through channel =⇒.
Here, • t• ↓ P = {p, p1, p4}

2.2 Existence of transmissions

A transmission t∈TR exists in a global state M of the system A iff •t• ⊆M .
Given a global state M0 and a transmission t , the realizability of t starting
computation from M0 is expressed as: does there exist a state M reachable
from M0 such that •t• ⊆ M ? Thus, the existence problem for t reduces to
some versions of state reachability and inclusion problems. Their solution in the

92 L. Czaja

form of yes/no decision and, possibly, their complexity, depends obviously on
the formal description of agents. For example, let us assume that agents are
described as 1-safe finite Petri nets (places are valued in the set {0,1}) obtained
by replacing labels of arrows entering ports by weights 1. Then, the existence of t
reduces to the problem ”For a given marking M0 and place p, is there a reachable
from M0 marking with a token in p?”, which is known to be the PSPACE-hard
(PSPACE - the set of all decision problems solvable by a Turing machine with a
polynomial amount of space), see e.g. [ESP 1998]. Indeed, after the replacement
of arrow labels, the whole system becomes one disconnected 1-safe Petri net.
Denote by m0 the marking of it, such that each place (port) x ∈ •t• ↓ P holds
a token (i.e. m0(x) = 1) iff M0(x) 6= Θ. In such system net each x ∈ •t• ↓ P
has no outgoing arrow, thus, if a token enters this place at a certain marking
reachable from m0, then it will stay there indefinitely. Now, decide if there is a
marking m reachable from m0 and satisfying m(x) = 1 for all x ∈ •t• ↓ P . If
yes (and only if), then in the original system (before replacement of the labels of
arrows entering ports) there exists the transmission t , because •t• ⊆M , where
M is m restricted to ports x ∈ •t• ↓ P holding communication operations
!(...) and ?(...) instead of tokens.

Note that the assumption on agents’ internal (i.e. without communication)
activity as specified by Petri nets, corresponds to the concept of self-modifying
nets ([B-D 1997], [Val 1978], [Val 1981], [Cza 2013]). Indeed, transmissions are
in fact a special kind of transitions appearing and disappearing, so the system
changes its structure in the course of its performance.

3 Semantics of the System A and some PSPACE-hard
Decision Problems of its Behaviour

Let T =
⋃
p∈P

Tp and F =
⋃
p∈P

Fp i.e. the set of all transitions and arrows in

the system A respectively. The triple A = (P, T, F), denoted also by A, is a
net representation of the system. Its semantics is the union of semantics of the
transitions t ∈ T and message transmissions t∈TR: [[A]] =

⋃
τ∈T∪TR

[[τ]]. If

(M,M ′) ∈ [[A]] then M ′ is the next to M state evoked by a transition t ∈ T or a

transmission t∈TR. For τ ∈ V = T ∪TR denote M
τ−→M ′ iff (M,M ′) ∈

[[τ]]. A run starting at M0 is a chain M0
τ1−→ M1

τ2−→ M2
τ3−→ ..., finite or

infinite, but if finite M0
τ1−→M1

τ2−→M2
τ3−→ ...

τn−→Mn then none M satisfies
(Mn,M) ∈ [[A]]. A finite or infinite word v = τ1τ2τ3... ∈ V ω = V ∗ ∪ V∞
occurring at this run is a path starting at M0. If finite v = τ1τ2τ3...τn ∈
V ∗ then M

v−→ M ′ denotes M
τ1−→ M1

τ2−→ M2
τ3−→ ...

τn−→ M ′. The
set of all finite and infinite runs starting at M is RUN∗(M) and RUN∞(M)
respectively and RUN(M) = RUN∗(M) ∪ RUN∞(M). The set of respective
paths is PATH(M) = PATH∗(M) ∪ PATH∞(M), thus PATH(M) ⊆ V ω.

Assuming, as above, that agents are described by 1-safe Petri nets obtained by
replacing labels of arrows entering ports by weights 1, one can simulate behaviour

Floating Channels between Communicating Nets 93

of the system by a 1-safe net as follows. Let a state M be given. For each
transmission t∈TR create a transition t /∈ T defined as t = (•t, t•) with
•t = •t • ↓ P , t• = ∅, and make arrows from ports p ∈ •t • ↓ P to t.
The extended net is a triple A = (P, T , F), where T = T∪ set of newly
created transitions, and F = F∪ set of newly created arrows weighted with 1. A
marking of A is obtained from marking of A by replacing operations !(...), ?(...)
with tokens wherever such operations are in some ports and removing Θ from
remaining ports. Fig.3 depicts a simulation of transmission t from Fig.2 by the
newly created transition t and result of its firing. Remember: while t appears
and disapears in the course of the system activity, the transition t ∈ T is the
ordinary transition of the Petri net A simulating system A, thus a unchangeable
member of the A’s static structure.

Fig. 3. Transition t = ({p, p1, p4}, ∅) with empty post-set simulates behaviour of
message transmission t in Fig.2

Some problems concerning behaviour of the system A may be reduced to
problems concerning behaviour of the Petri net A. To mention a few (suppose
runs start from a given marking):

a. Existence of run with a given message transmission occurrence
b. Existence of reachable dead marking (no transition can fire at it)
c. Existence of finite run (equivalent to b)
d. Existence of infinite run
e. Existence of run with infinite number of a given message transmission occur-

rence
f. Existence of run with never accomplished a given request for communication

All these problems are PSPACE-hard for 1-safe Petri nets ([ESP 1998]) and A is
such net. Therefore, by virtue of the obviously polynomial simulation procedure
described above, the problems for systems specified like A in this paper, are
PSPACE-hard provided that internal activity of agents is specified by 1-safe
Petri nets.

94 L. Czaja

4 Deadlock and Fairness: Emptiness and Finiteness of
Sets of Paths

Out of several concepts and kinds of deadlock and fairness found in diverse mod-
els of distributed computing, let us consider those arising from communication
and described in terms of the model pursued here.

4.1 Deadlock

System A is deadlock-free at a state M if for each agent requesting for communi-
cation there is a finite path starting at M , such that the agent will be permitted
to accomplish the request on this path. A deadlock is a negation of this property.
For an agent Ap ∈ A = (P, T, F), with port p and for a state M ∈ S define:

Dp(M)
def⇐⇒ ¬[∃M ′.∃v.(M v−→M ′ ∧ ∃t .(t

∗
∈ v ∧ p:M(p) ∈ •t•))]

where t
∗
∈ v means ”transmission t∈TR occurs on the path v” and p:M(p) ∈

•t• means ”t accomplishes request for communication issued by agent Ap and
pending at the state M”.
In words: never agent Ap requesting for communication at the state M will
be permitted to accomplish the request by a certain transmission occurring on
whichever finite path starting at M .
The system is subject to a deadlock at the state M iff:
∃p.M(p) 6= Θ ∧Dp(M).

Proposition 4.1.1 (set-theoretic characterization)

Dp(M) if and only if PATH(M)∩V ∗tV ∗ = ∅ for each t satisfying p:M(p) ∈
•t•

Proof
Dp(M)⇐⇒
¬∃M ′.∃v.(M v−→M ′ ∧ ∃t .(t

∗
∈ v ∧ p:M(p) ∈ •t•))⇐⇒ (swapping quantifiers)

¬∃v.∃M ′.(M v−→M ′ ∧ ∃t .(t
∗
∈ v ∧ p:M(p) ∈ •t•))⇐⇒ (De Morgan law)

∀v.¬∃M ′.(M v−→M ′ ∧ ∃t .(t
∗
∈ v ∧ p:M(p) ∈ •t•))︸ ︷︷ ︸

no M ′ in this formula

⇐⇒

∀v.¬((∃M ′.M v−→M ′) ∧ ∃t .(t
∗
∈ v ∧ p:M(p) ∈ •t•))⇐⇒ (De Morgan law)

∀v.(¬(∃M ′.M v−→M ′) ∨ ¬∃t .(t
∗
∈ v ∧ p:M(p) ∈ •t•))⇐⇒

∀v.((∃M ′.M v−→M ′)⇒ ¬∃t .(t
∗
∈ v ∧ p:M(p) ∈ •t•))⇐⇒

∀v.(v ∈ {u| ∃M ′.M u−→ M ′} ⇒ ¬∃t .(t
∗
∈ v ∧ p:M(p) ∈ •t•)) ⇐⇒ (definition of

PATH(M))

∀v.(v ∈ PATH(M)⇒ ¬∃t .(t
∗
∈ v ∧ p:M(p) ∈ •t•))⇐⇒

{v| v ∈ PATH(M)} ⊆ {v| ¬∃t .(t
∗
∈ v ∧ p:M(p) ∈ •t•)} ⇐⇒

Floating Channels between Communicating Nets 95

PATH(M) ⊆ {v| ¬∃t .(t
∗
∈ v ∧ p:M(p) ∈ •t•)} ⇐⇒

PATH(M) ⊆ V ∗ − {v| ∃t .(t
∗
∈ v ∧ p:M(p) ∈ •t•)}

Therefore:

PATH(M) ⊆ V ∗ − V ∗tV ∗ for each t satisfying p:M(p) ∈ •t• where V ∗tV ∗

is the set of all finite words over V where t occurs. Thus:

if p:M(p) ∈ •t• then PATH(M)− (V ∗ − V ∗tV ∗) = ∅.
Since X − (Y − Z) = (X − Y) ∪ (X ∩ Z) for any sets X,Y, Z then

PATH(M)− (V ∗ − V ∗tV ∗) = (PATH(M)− V ∗)∪ (PATH(M)∩ V ∗tV ∗) = ∅
(Because PATH(M)− V ∗ = ∅). Finally:

Dp(M) iff ∀t .(p:M(p) ∈ •t• ⇒ PATH(M) ∩ V ∗tV ∗ = ∅) 2

Theorem 4.1.1

A deadlock at a state M occurs iff:

∃p.[M(p) 6= Θ ∧ (∀t .(p:M(p) ∈ •t• ⇒ PATH(M) ∩ V ∗tV ∗ = ∅))] 2

Thus decidability of such deadlocks reduces to deciding whether transmission t
does not occur on any path starting from M (provided that there are a finite
number of agents, thus also transmissions), which depends on algebraic structure
of the set PATH(M).

4.2 Weak fairness

System A is weakly fair at a state M if each agent requesting for communication
at M will be permitted to accomplish the request on every infinite path starting
from M . This is expressed by the formula:

∀p.[M(p) 6= Θ ⇒ ∀v.(v ∈ PATH∞(M)⇒ ∃t .(t
∗
∈ v ∧ p:M(p) ∈ •t•))]

Theorem 4.2.1

System A is weakly fair at a state M iff

∀p.[M(p) 6= Θ ⇒ (∀t .(p:M(p) ∈ •t• ⇒ PATH∞(M)− V ∗tV∞ = ∅))]

Proof

∀v.(v ∈ PATH∞(M)⇒ ∃t .(t
∗
∈ v ∧ p:M(p) ∈ •t•))⇐⇒

{v| v ∈ PATH∞(M)} ⊆ {v| ∃t .(t
∗
∈ v ∧ p:M(p) ∈ •t•)} ⇐⇒

PATH∞(M) ⊆ V ∗tV∞ for each t satisfying p:M(p) ∈ •t•. Thus

∀t .(p:M(p) ∈ •t• ⇒ PATH∞(M)− V ∗tV∞ = ∅) 2

96 L. Czaja

4.3 Strong fairness

System A is strongly fair at a state M if each agent requesting for communication
at M will be permitted to accomplish the request on every finite path starting
at M if all these paths are ”sufficiently long”, i.e. of the length at least k, for a
certain k. So, all these paths may be jointly (”uniformly”) bounded in lentgh.
This is expressed by the formula:
∀p.[M(p) 6= Θ ⇒ ∃k.Fp(M,k)] where

Fp(M,k)
def⇐⇒ ∀v.((v ∈ PATH∗(M) ∧ |v| ≥ k)⇒ ∃t .(t

∗
∈ v ∧ p:M(p) ∈ •t•)

Theorem 4.3.1

System A is strongly fair at a state M iff

∀p.[M(p) 6= Θ ⇒ (∀t .(p:M(p) ∈ •t• ⇒ |PATH∗(M)− V ∗tV ∗)| <∞)]

Proof
Fp(M,k)⇐⇒
{v| v ∈ PATH∗(M)} ∩ {v| |v| ≥ k} ⊆ {v| ∃t .(t

∗
∈ v ∧ p:M(p) ∈ •t•)} ⇐⇒

PATH∗(M) ∩ V kV ∗ ⊆ V ∗tV ∗ for each t satisfying p:M(p) ∈ •t•
where V kV ∗ is the set of finite words of the length at least k and V ∗tV ∗ the set
of finite words where t occurs. Thus:
∀t .(p:M(p) ∈ •t• ⇒ PATH∗(M) ∩ V kV ∗ − V ∗tV ∗ = ∅).
Now, let Hp(M,k) = PATH∗(M) ∩ V kV ∗ − V ∗tV ∗ for each t satisfying
p:M(p) ∈ •t•.
We show that |Hp(M, 0)| <∞ if and only if ∃k.Hp(M,k) = ∅
(|X| is cardinality of the set X).
(⇒) Let ∀k.Hp(M,k) 6= ∅. Then λ(Hp(M,k)) < λ(Hp(M,k+ 1)) where λ(L)
is the length of a shortest word in the set L.
Thus lim

k→∞
λ(Hp(M,k)) =∞, which implies

(since Hp(M,k) ⊃ Hp(M,k + 1)) that Hp(M, 0) contains words of arbitrary
length, hence |Hp(M, 0)| =∞.
(⇐) Let |Hp(M, 0)| = ∞. Then Hp(M, 0) contains words of arbitrary length,
thus, for any k it contains a word w with |v| ≥ k. Because v ∈ V kV ∗ and
Hp(M,k) = Hp(M, 0) ∩ V kV ∗ we have v ∈ Hp(M,k) hence Hp(M,k) 6= ∅. 2

4.4 Equivalence of weak and strong fairness

To demonstrate the equivalence between the two kinds of fairness in the model
considered here, let us recall a version of the:

König’s Lemma [Kön 1927]:
Let Σ be a set and Υ a tree of the properties:

– the number of sons of every node in Υ is finite;
– for any k ≥ 0 there is a finite branch b in Υ with |b| ≥ k and b ⊆ Σ.

Floating Channels between Communicating Nets 97

Then there exixts a infinite branch B in Υ with |B| ⊆ Σ.

Theorem 4.4.1
The weak and strong fairness are equivalent.

Proof
By the Theorem 4.2.1 and 4.3.1 it suffices to demonstrate that
|PATH∗(M) − V ∗tV ∗| < ∞ ⇐⇒ PATH∞(M) − V ∗tV∞ = ∅ for each
transmission t such that p:M(p) ∈ •t• for every port p with M(p) 6= Θ.
Implication ”⇒” is evident, it remains to show ”⇐”. Suppose
|PATH∗(M)− V ∗tV ∗| =∞. Note that the set of paths starting at M is prefix-
closed: each prefix of v ∈ PATH(M) belongs to PATH(M). To each v assign
a unique element node(v) in this way that v1 6= v2 ⇒ node(v1) 6= node(v2)
and let NODE(M) = {node(v)| v ∈ PATH∗(M)}. This set with internodal
relation defined by ”node(u) is father of node(v) iff v = uτ for a certain τ ∈ V ”
is a tree Υ with node(ε) as the root (ε is the empty path) and finitely many sons
of each father. So, every path v ∈ PATH∗(M) is a branch in Υ . By assumption
|PATH∗(M)−V ∗tV ∗| =∞ there are infinitely many finite paths, thus branches
in Υ on which no t exists. Therefore there must be an arbitrarily long branch in
the tree. Setting Σ = PATH∗(M) and applying the König’s Lemma, we come
to contradition. 2

Summing up the results obtained above, the set-theoretic characteristics of the
deadlock and fairness at a state M are in the following table:

Deadlock PATH(M) ∩ V ∗tV ∗ = ∅
Weak fairness PATH∞(M)− V ∗tV∞ = ∅
Strong fairness |PATH∗(M)− V ∗tV ∗| <∞

for every transmission t .

5 Counting States

If the agents do not send and receive messages to/from themselves then the total
number of (global) states of n-agent system is (2n−1)n. Indeed, each agent may
issue 2n

2 − 1 send !(...) requests and the same number of receive ?(...) requests,
that is 2n−2 requests for communication. Since the agent may assume Θ as its
local state, the number of local states it may assume is 2n−1. The set of global
states is the Cartesian product of sets of the local states of all agents. Therefore
the number of global states is (2n − 1) · ... · (2n − 1)︸ ︷︷ ︸

n times

= (2n−1)n. For instance,

for agents p1, p2, p3:
the set of local states of p1 = {Θ, !(p2), ?(p2), !(p3), ?(p3), !(p2, p3), ?(p2, p3)}
the set of local states of p2 = {Θ, !(p1), ?(p1), !(p3), ?(p3), !(p1, p3), ?(p1, p3)}
the set of local states of p3 = {Θ, !(p1), ?(p1), !(p2), ?(p2), !(p1, p2), ?(p1, p2)}
Thus, the system of three agents has 73 = 343 global states.

98 L. Czaja

References

[B-D 1997] Badouel E., Darondeau P., Stratified Petri Nets, FCT’97, Lecture
Notes in Computer Science vol. 1279 (1979), pp. 117-128

[Cza 2013] Czaja L., Self-Modifying Nets for Synchronous, Connection-Oriented,
Multicast Communication, Fundamenta Informaticae, to appear

[ESP 1998] Esparza J., Decidability and Complexity of Petri Net Problems - An
Introduction, Lecture Notes in Computer Science, Vol. 1491, 1998, pp. 374-428

[Hoa 1978] Hoare C.A.R., Communicating Sequential Processes, Comm. of the
ACM, Vol 21, pp. 666-677, 1978

[Hoa 1985] Hoare C.A.R., Communicating Sequential Processes, Prentice-Hall,
1985

[Kön 1927] König D., Über eine Schlussweise aus dem Endlichen in Umendliche,
Acta Litt. Ac. Sci. Hung. Fran. Josep. 3 (1927), pp. 121-130

[OCCAM 1984] INMOS Limited: OCCAM Programming Manual, Prentice-Hall,
1984

[Rei 1985] Reisig W., Petri Nets, An Introduction, EATC Monographs on The-
oretical Computer Science, Springer-Verlag, 1985

[Val 1978] Valk R., Self-Modifying Nets, a Natural Extension of Petri Nets,
Icalp’78, Lecture Notes in Computer Science vol. 62 (1978), pp. 464-476

[Val 1981] Valk R., Generalization of Petri Nets, MFCS’81 Lecture Notes in
Computer Science vol. 118 (1981), pp. 140-155

The Mathematical Model
for Interference Simulation and Optimization

in 802.11n Networks

Iwona Dolińska, Antoni Masiukiewicz, and Grzegorz Rza̧dkowski

Vistula University, Warsaw, Poland, http://www.vistula.edu.pl

Abstract. One of the key problems in 802.11 standard networks are
interferences. It is not possible to avoid the influence of other wireless
systems. One can only minimize the power level of unwanted signals.
Typically the designer should find the best localization of access points
(AP), but there is no planning and coordination between different private
networks. To reduce the level of interferences, the transmitting power
reduction is applied. The mathematical model was built to analyze the
relationship between the coverage and the level of interferences. The
results of these simulations are presented in this article.

Keywords: Wi-Fi, interferences, 802.11n standard, WLAN, throughput

1 Introduction

The 802.11 standard networks are the most popular solution of wireless commu-
nication today, besides the mobile telephony networks. One of the key problems
in such networks is the issue of interferences (see [6]). The main sources of in-
terferences are various radio systems or devices, which operate on the same or
similar frequency range. These networks produce both, adjacent and inter chan-
nel interferences. The reduction of internal system interferences is crucial for
obtaining the proper QoS of the transmissions (see [1]). Basic methods of the
interference limitation implement proper planning, which means the proper ar-
rangement of the access point localizations. The next step is a selection of the
transmission frequency dedicated for each channel. Such planning is not possible
in any network. One of the important features of the 802.11 networks is the fact,
that they operate at the public free frequency range (ISM Industrial, Scientific,
Medical), so the high number of different devices can operate at the same time
on a similar area. These devices could be elements of home or office networks.
There is no coordination between such networks.

Another method of interference reduction is the diminish of the transmitted
power (see [7]). In the authors opinion this method is not very efficient especially,
if the coverage is an important issue. The authors built the theoretical model
and carried out several calculations to show both advantages and disadvantages
of such solution.

100 I. Dolińska, A. Masiukiewicz, G. Rza̧dkowski

2 The Structure of 802.11n Physical Layer

The structure of the Physical Layer has a great influence on the internal system
interference level. For 2.4 GHz transmission frequency range, only three channels
(numbered 1, 6 and 11) are the so called not overlapping channels (see [9]). The
standard deviation between the central frequencies of these three channels is
25 MHz. The level of signal within a channel is limited by the mask. The mask
is a filter with specially developed characteristic. The characteristics of filters for
1, 6 and 11 channels in the 802.11n standard are presented in Fig. 1.

Fig. 1. Filter’s (masks) characteristics for 1, 6, 11 channels in the 802.11n standard.
Source: own preparation.

The channel masks overlap partly, even for non overlapping channels. Some
interchannel interferences are always present in the system, when more than one
network is operating on the same area. The final level of the interference signal
power depends strongly on many parameters. The distance plays an important
role, because the level of the received power decreases while increasing the dis-
tance between Wi-Fi stations. Two disadvantages are produced by interferences
(see [2]). The first is the diminish of signal to noise ratio, because the interference
power is treated as noise within the transmission channel. The thermal noise and
the interference power are produced by uncorrelated sources, so we can calculate
the summarized noise as the sum of power density of the thermal noise and the
interference power (see [8]):

Pnoise = Pint + Pwhite noise . (1)

The noise power diminishes the channel throughput. The throughput is the most
important parameter determining the QoS of the transmission. The channel
throughput could be described by the following formula (see [3]):

C = B ln

(
1 +

Psignal

Pnoise

)
, (2)

The Mathematical Interference Model in 802.11n Network 101

where B represents the bandwidth of the transmission channel. The second dis-
advantage of interferences especially, when their signal power is relatively high,
is the effect of the spurious carrier detection. The high level of interference power
blocks the transmission channel. Some methods of interference level reduction
are discussed in the next section.

3 The Methods of Interference Level Reduction

A high level of interference power could be reduced by a proper arrangement of
access points (see [4]). It is possible only in some networks eg. private networks,
company networks. On the other hand, in some networks, the access points are
arranged in a totally chaotic way. There is no coordination of AP localization
and no coordination of utilized channels. An example of a set of private networks
is shown in Fig. 2. Such a situation happens very frequently, especially in the
multi-family or office buildings.

Fig. 2. The sample set of private 802.11 networks. Source: own measurement (Card
WLAN Monitor–Dell Wireless 1450).

Many devices use the same channel (5 devices - channel nr 11), some devices
use channels other then 1, 6, 11, so the choice of a channel is random. Network
planning let us achieve capacity, range and QoS (see [7], [4], [5]). There are several
methods of WiFi network planning described in the literaturte, e.g. Neldeare-
Mead direct planning (see [4]). This method enables the optimal determination
of localization of AP stations. The coefficient of channel frequency reuse could be
calculated (co channel interference reduction factor). This factor is the function
of the number of available channels/frequencies especially those not overlapping
and could be expressed by following formula:

Q =
√
3N, (3)

where the N is the number of available channels.
The second solution suggests [7] reduction of transmitted power, but as a

side effect a decrease of coverage occurs. This solution reduces the interference

102 I. Dolińska, A. Masiukiewicz, G. Rza̧dkowski

power level, but on the other hand leads to dead areas with no coverage, what
is shown in Fig. 3.

Fig. 3. Effects of transmitted power reduction. Source: own preparation.

The smaller is the coverage of one cell, the more cells we have to produce
to obtain the full coverage. This means more APs and in the end, more trans-
missions at the same time, but it does not mean that we reduce the interference
power level. The authors present some proof in Sec. 5 and Sec. 6.

4 Correlation Between Coverage, Transmitted Power and
the Interference Power Level

The basic equation, which describes the radio wave distribution in a free space
is the Friis formula (see[3]):

Prx (r) =
PtxGrxGtxλ

2

(4πr)
2 =

PtxGrxGtxc
2

(4πr)
2
f2

. (4)

This formula allows us to calculate the received power (Prx) depending on the
transmitted power (Ptx), the gains of receiving and transmitting antennas (Gtx,
Grx), the channel frequency f and the distance between the transmitter and
receiver (in so called free space, the r power is equal 2):

Prx(r) =
k

f2r2
. (5)

Using the formula (4) we can calculate the attenuation of radio signal in a free
space:

Podb (r) = PtxGrxGtxLfspl, (6)

Lfspl =
c2

(4πr)
2
f2

=

(
3 · 108

)2(
4πr · 103

)2
f2 ·

(
106

)2 =

(
40πfr

3

)−2

. (7)

Lfspl could be presented in the logarithmic scale:

Lfspl[dB] = −10 logLfspl, (8)

The Mathematical Interference Model in 802.11n Network 103

and finally we obtain the following formula [6]:

Lfspl[dB] = 32, 44 + 20 log r[km] + 20 log f [MHz], (9)

where r is in [km] and f in [MHz]. The more general formula takes the following
form (see [6]):

Lfspl =
c2

16π2rαf2
(10)

This formula for frequencies f in [Hz] or [MHz] can be rewritten respectively as:

Lfspl[dB] = −147.6 + 10α log r[m] + 20 log f [Hz], (11)

Lfspl[dB] = −27.56 + 10α log r[m] + 20 log f [MHz]. (12)

The α coefficient is rather unstable in time and very sensitive to the environment
e.g. it changes strongly in rooms.

The coverage in the 802.11n standard is determined by the minimal received
power (received signal sensitivity), which is necessary for obtaining required level
of throughput. The set of minimal received power in the case of a single spatial
transmission in 802.11n standard is presented in Table 1.

Table 1. Minimal received signal sensitivity for the station operating in SISO mode

MCS Index Modulation/coding Data Rate [Mbit/s] Received signal
20MHz channel sensitivity [dBm]

0 BPSK/1:2 6.5 -82

1 QPSK/1:2 13.0 -79

2 QPSK/3:4 19.5 -77

3 16QAM/1:2 26.0 -74

4 16QAM/3:4 39.0 -70

5 64QAM/2:3 52.0 -66

6 64QAM/3:4 58.5 -65

7 64QAM/5:6 65.0 -64

The minimal sensitivity is respectively -82 dBm for throughput of 6.5 Mbit/s
and -64 dBm for 65 Mbit/s. It is difficult to correlate these values with a specific
distance, because in practice this distance could vary in a broad range due to a
lot of factors.

5 The Analysis Assumptions

The authors tried to verify the assumption that the decreasing of transmission
power and reduction of coverage help to diminish the internal interferences in

104 I. Dolińska, A. Masiukiewicz, G. Rza̧dkowski

802.11n networks (see [7]). The analysis was reduced to a model with one spatial
stream in 802.11n standard. One spatial stream means the use of the SISO
(Single Input Single Output) antenna solution. The isotropic characteristic of
transmission power is also the assumption. The analysis was carried out for
three non overlapping channels 1, 6 and 11. The Tx and Rx configurations are
presented in Fig. 4.

Fig. 4. Station configurationw, where the S station is disturbed by S1 or S2 or both
the stations at the same time. Source: own preparation.

The Table 2 includes the channel allocation, which is used in simulation.

Table 2. Channel number allocation for stations S, S1 and S2

Channel Number

S1 S S2

11 6 -

11 6 11

6 6 11

6 6 6

- 6 6

1 6 1

We assume that all stations are the transmitters. The localization of a station
within the cell (coverage area) could vary from the center of the area to its edge.
We analyze the 802.11n standard with 20 MHz channel bandwidth. The center
frequencies for channels 1, 6, 11 are shown in Table 3.

The interference power level was calculated as the sum of interferences from
stations S1 and S2 and white noise and the noise figure representing the noise

The Mathematical Interference Model in 802.11n Network 105

Table 3. Center frequencies for channels 1, 6, 11

Channel number Center frequency [GHz]

1 2.412

6 2.437

11 2.462

of electronic circuits (mainly electronic amplifiers).

Pint =
2∑

x=1

Pintx + (Pwhite noise + PNF) . (13)

White noise or thermal noise [3] within the channel bandwidth could be described
as:

Pwhite noise(f) = kT [W/Hz] , (14)

T denotes the environment temperature in K degree, while k is a Boltzman
constant. Threshold of white noise in 1 Hz bandwidth at 0 Kelvin degree is
-228.6 dBW. White noise in B bandwidth can be calculated as:

Pwhite noise[dBm] = 10 log(kTB) . (15)

The white noise in 20 MHz channel at 17 C degree could reach the following
level:
Pwhite noise(T = 17◦C,B = 20MHz) = −174 + 10logB = −131dBm .
The following formula was developed by the authors to calculate the received
power:

Preceived(r) = M(f − 2412− 5(K − 1)) + Ptransmitted

−(−27, 56 + 10α log r[m] + 20 log f [MHz]) +Gsum. (16)

We will denote Preceived and Ptransmitted by Prx and Ptx respectively. The M(f)
function represents the mask (filter) of the relevant channel. The signal outside
the mask is eliminated while the one below the mask characteristics passes. The
authors assume that the mask characteristic determines the maximal internal
level of interferences. Gsum is equivalent to the additional gain of the system
including the influence of the antennas of the receiver and the transmitter and
respectively the gain connected with modulation, coding and different types of
signal dispersions. Ptx, α and Gsum are the parameters of the simulation and
their values are presented in Table 4.

The parameters ofm(f) function correspond to the mask of 802.11n standard.
We assume that the function (for f in MHz) is continuous, piecewise linear and

106 I. Dolińska, A. Masiukiewicz, G. Rza̧dkowski

Table 4. Simulation parameters values range

Transmitted Alpha Additional
power [dBm] parameter gain [dB]

-10 to 20 2 to 8 0 to 15

is described by the following formula:

m(f) =

0 for f ∈ (−∞,−30]
2f + 60 for f ∈ [−30,−20]
5

9
f +

280

9
for f ∈ [−20,−11]

10f + 135 for f ∈ [−11,−9]
45 for f ∈ [−9, 9]

−10f + 135 for f ∈ [9, 11]

−5

9
f +

280

9
for f ∈ [11, 20]

−2f + 60 for f ∈ [20, 30]
0 for f ∈ [30,∞)

(17)

The stations are placed on Cartesian plane. The S transmitter has the (x, y)
coordinates and S1 respectively (x1, y1). The distance d1 between the above
stations is equal:

d1 =
√

(x− x1)2 + (y − y1)2 . (18)

The practical formula for interference power level, which influences the S sta-
tion (operating on channel 6) in d1 distance from the station S1, producing
interferences while operating on channel 11, will be as follows:

Prx(d1) = M(f − 2462) + Ptx − (−27.56 + 10α log d1[m] + 20 log 2462) +Gsum.
(19)

The average interference power within the whole channel is the integral from
Prx over f within the proper channel (6th in our case):

Prx(d1)average =

∫ 2.447

2.427

Prxdf . (20)

The authors correlate the distance d1 with the minimal received signal sensitivity
(see Table 3).

6 The Simulation Results

In the first simulation the station S, operating on channel 6, was disturbed by
S1 station, operating on channel 11. The transmitting power distribution was
firstly simulated. The figure 5 shows the distribution of points correlated with

The Mathematical Interference Model in 802.11n Network 107

Fig. 5. Change of coverage in channel 6 versus Prx, α and Gsum. Source: own prepa-
ration.

respectively -64 dBm and -82 dBm of received power (upper and lower lines).
This analysis concerns the transmission in channel 6. We assume that the power
transmitted by the S station is equal to receiver sensitivity.

The points corresponding to the -64dBm received signal are within the range
from single meters to about 25 meters, while these corresponding with -82 dBm
are within the range from a few meters to more than 200 meters. The coverage
diminishes especially for the higher value of α. Figure 6 presents the character-
istics of the diminish of transmitted power with distance for different values of
Prx, α and Gsum. The critical parameter is the α. The highest slope is for α = 8.

Fig. 6. The characteristics of received power in channel 6 versus Prx, α and Gsum.
Source: own preparation.

108 I. Dolińska, A. Masiukiewicz, G. Rza̧dkowski

The characteristics of the interference power for the fixed distance beetwen
S and S1 are presented in Fig. 7. The Pint characteristics are versus the level
of the disturbances source power. The following assumptions are made: the S is
transmiiting in the channel nr 6, Ptx is 10 dBm, Gsum is 0 [dBm] and α = 3;
while the S1 station (disturbing) is transmitting in the channel nr 11, Gsum is 0
[dBm], α is 3 and the Ptx change in the range from -10 to 20 dBm. The point of
the interference level calculation coresponds with the maximum coverage of the
S station, where the Prx is -82dBm. This distance is 53,38 m while the distance
between stations is 106.76m. The results are shown in Fig. 7.

Fig. 7. The characteristics of the interferences power level for d1=53.38 m versus Prx.
Source: own preparation.

The interference power level diminishes, when the Ptx of S1 diminish, but
at the same time the coverage area is reduced, so the dead zone arises with no
possibility of transmission. The white noise could have higher level than interfer-
ence power for low Ptx of disturbing station and for non convenient transmission
conditions (high value of the α coefficient- eg. rooms, halls etc.).

The characteristics of interference level with another assumption is presented
in fig. 8. In this case together with the change of the Ptx we change the point of
S1 localization (x1,y1) to reduce the dead zone. The point of the interference level
calculation (distance from S) is constant and its value is 53.38 m, but the distance
between S and S1 stations (d1) diminishes relatively to Ptx (S1) reduction. The
dead zone is minimized. The level of interference power is constant versus Ptx

and α values (Fig. 8). The next simulation concern the situation when the Ptx

power is increased for both S and S1 and the interference power level is calculated
for maximum coverage points corresponds with received power equal -82 dBm
(Fig. 9). The results of the simulation are the same as previously. The inteference
power level is higher than the thermal noise, but if we take into account the the
electronic circuits noise figure, then the total noise could be above interference
power level.

The Mathematical Interference Model in 802.11n Network 109

Fig. 8. The interferences level characteristics, where the distance from S is constant
(53.38 m) while S1 changes its position (r). The r distance each time corresponds to
-82 dBm power level. Source: own preparation.

Fig. 9. The interferences power level versus changes of Ptx, Pint = f(Ptransmitted) for
r [m] relative to Preceived =-82 [dBm], with the assumption that both the Ptx and the
distance between stations is reduced. Source: own preparation.

7 Conclusions

The model for interference power level simulations from one or two disturbing
sources (S1 /S2) was developed. The model includes the efects of the mask
and several other parameters such as antennas gain, modulation coding and
dispersion gain (Gsum coefficient). The following simulations based on this model
were carried out :

1. the characteristic of interference power level, when the Ptx of source of dis-
turbances is reduced, but the localisation remains the same (see Fig. 7) ,

110 I. Dolińska, A. Masiukiewicz, G. Rza̧dkowski

2. the characteristic of interference power level, when the Ptx of source of dis-
turbances is reduced, but the localisation is changed to avoid the dead zone
(see Fig. 8),

3. the characteristic of interference power level, when the Ptx of source of dis-
turbances is changed as well as the power of disturbed station S and the
localisation of both stations is also changed to avoid the dead zone (see
Fig. 9).

Taking into account the mentioned above simulations, we can conclude:

1. for the 1st simulation: the power level of interferences decrease, but the
coverage diminishes at the same time,

2. for the 2nd simulation: the interference level is constatnt,
3. for the 3rd simulation: the interference level is constatnt.

The achieved results let us make a conclusion, that reduction of Ptx could re-
duce the interference power level, but at the same time cause the dead zone
to arise. This solution may be applied, if the station is close to AP, so we can
temporary (for one or more sessions) reduce transmission power, keeping reason-
able throughput. This solution requires communication between different APs
to establish the most efficient transmission power level. Such solutions are not
available nowadays.

References

1. Dolińska I., Masiukiewicz A.: Quality of service providing in WLAN networks,
possibilities, challenges and perspectives. In: Information Systems in Management,
Wydawnictwo SGGW, Warsaw (2012)

2. Fuxjager P., Valerio D., Ricciato F.: The Myth of Non-Overlapping Channels:
Interference Measurements in IEEE 802.11. IEEE (2007)

3. Freeman R.L.: Radio system design for telecommunication, Wiley (2007)
4. Gajewski P., Wszelak S.: Optymalizacja wyboru punktow dostepowych w sieciach

WLAN metoda bezposredniego poszukiwania. Przeglad Telekomunikacyjny nr 8-9,
Warsaw (2007)

5. Hereman F., Joseph W., Tanghe E., Plets D. and Martens L.: Prediction of
Range, Power Consumption and Throughput for IEEE 802.11n in Large Confer-
ence Rooms. In: Proceedings of the 5th European Conference on Antennas and
Propagation (EUCAP) (2011)

6. Hotgkinson T.G.: Wireless communication–the fundamentals. In: BT Technology
Journal, Vol 25 No 2 (2007)

7. Juniper Networks White Paper, Coverage or Capacity–Making the Best Use of
802.11n. (2011)

8. Masiukiewicz A., Analysis and optimization of quartz crystal oscillators for mini-
mal phase noise. PhD Thesis, Warsaw University of Technology (1997)

9. Roshan P., Leary J.: Bezprzewodowe sieci LAN 802.11–Podstawy. PWN, Warsaw
(2007)

A Domain View of Timed Behaviors ?

Roman Dubtsov1, Elena Oshevskaya2, and Irina Virbitskaite2

1 Institute of Informatics System SB RAS,
6, Acad. Lavrentiev av., 630090, Novosibirsk, Russia;

2 Institute of Mathematics SB RAS,
4, Acad. Koptyug av., 630090, Novosibirsk, Russia;

dubtsov,eso,virb@iis.nsk.su

Abstract. The intention of this paper is to introduce a timed extension
of transition systems with independence, and to study its categorical
interrelations with other timed ”true-concurrent” models. In particular,
we show the existence of a chain of coreflections leading from a category
of the model of timed transition systems with independence to a category
of a specially defined model of marked Scott domains. As an intermediate
semantics we use a model of timed event structures, able to properly
capture causality, conflict, and concurrency among events which arise in
the presence of time delays of the events.

1 Introduction

The behaviour of concurrent systems is often specified in terms of states and
transitions between states, the labels on the transitions represent the observable
part of system’s behaviour. The simplest formal model of computation able to
express naturally this idea is that of labelled transition systems. However, they
are a representative of the interleaving approach to concurrency and hence do
not allow one to draw a natural distinction between interleaved and concurrent
executions of system’s actions. Two most popular ”true concurrent” extensions of
transition systems, aiming to overcome limitations of the interleaving approach,
are asynchronous transition systems, introduced independently by Bednarczyk
[1] and Shields [2], and transitions systems with independence, proposed by
Winskel and Nielsen [3].

Category theory [4] has been successfully exploited to structure the tangled
world of models for concurrency. Within this framework, objects of categories
represent processes and morphisms correspond to behavioural relations between
the processes, i.e. to simulations. The category-theoretic approach allows for
natural formalization of the fact that one model is more expressive than another
in terms of an ”embedding”, most often taking the form of a coreflection, i.e. an
adjunction in which the unit is an isomorphism. For example, Hildenbrandt and

? The second author is supported in part by the RFBR (grant 12-01-00873-a), by the
President Program ”Leading Scientific Schools” (grant NSh-7256.2010.1), and by the
Federal Program ”Research and educational personnel for innovative Russia” (grant
8206).

112 R. Dubtsov, E. Oshevskaya, I. Virbitskaite

Sassone [5] have constructed a full subcategory of a category of asynchronous
transition systems and have shown the existence of a coreflection between the
subcategory and a category of transition systems with independence. In their
next paper [6], the authors have enriched the model of transition systems with
independence by adding multi-arcs and have yielded a precise characterization
of the model in terms of (event-maximal, diamond-extensional) labeled asyn-
chronous transition systems, by constructing functors between categories of the
models.

It is generally acknowledged that time plays an important role in many con-
current and distributed systems. This has motivated the lifting of the theory
of untimed systems to the real-time setting. Timed transition system like mod-
els have been studied thoroughly within the two last decades (see [7,8] among
others), while timed ”true concurrent” extensions have hitherto received scant
attention.

The aim of this paper is to introduce a timed extension of transition systems
with independence, and to study its categorical interrelations with other timed
”true-concurrent” models. In particular, we show the existence of a chain of
coreflections leading from a category of the model of timed transition systems
with independence to a category of a specially defined model of marked Scott
domains. As an intermediate semantics we use a model of timed event structures,
able to properly capture causality, concurrency, and conflict among events which
arise in the presence of time delays of the events.

The paper is organized as follows. In Section 2, the notions and notations
concerning the structure and behaviour of timed transition systems with in-
dependence are described. Also, an unfolding of timed transition systems with
independence is constructed, and it is shown that together with the inclusion
functor the unfolding functor defines a coreflection. Section 3 establishes the in-
terrelations in terms of the existence of a coreflection between timed occurrence
transition systems with independence and timed event structures. In Section 4,
using the equivalence of the categories of timed event structures and marked
Scott domains, stated in [9], functors between the categories of timed transition
systems with independence and marked Scott domains are constructed to consti-
tute a coreflection. Section 5 provides a direct translation from timed transition
systems with independence to marked Scott domains, established in the categor-
ical setting. In section 6, we conclude with a short summary of the discovered
relationships.

2 Timed Transition Systems with Independence

In this section, we first describe the basic notions and notations concerning the
structure and behaviour of timed transition systems with independence.

We start with untimed case. A transition system with independence is a
tuple TI = (S, sI , L, Tran, I), where S is a countable set of states, sI ∈ S is the
initial state, L is a countable set of labels, Tran ⊆ S × L × S is the transition
relation, and I⊆ Tran×Tran is the irreflexive, symmetric independence relation,

A Domain View of Timed Behaviors 113

such that, using ≺ to denote the following relation on transitions (s, a, s′) ≺
(s′′, a, u) ⇐⇒ ∃(s, b, s′′), (s′, b, u) ∈ Tran s.t. (s, a, s′) I (s, b, s′′) ∧ (s, a, s′) I
(s′, b, u)∧(s, b, s′′) I (s′′, a, u), and ∼ for the least equivalence relation containing
≺, we have:

1. (s, a, s′) ∼ (s, a, s′′)⇒ s = s′′,
2. (s, a, s′) I (s, b, s′′) ⇒ ∃(s′, b, u), (s′′, a, u) ∈ Tran � (s, a, s′) I (s′, b, u) ∧

(s, b, s′′) I (s′′, a, u),
3. (s, a, s′) I (s′, b, u) ⇒ ∃(s, b, s′′), (s′′, a, u) ∈ Tran � (s, a, s′) I (s, b, s′′) ∧

(s, b, s′′) I (s′′, a, u),
4. (s, a, s′) ∼ (s′′, a, u) I (w, b, w′)⇒ (s, a, s′) I (w, b, w′).

Let Diama,b(s, s
′, s′′, u) ⇐⇒ ∃(s, a, s′), (s, b, s′′), (s′, b, u), (s′′, a, u) ∈ Tran �

(s, a, s′) I (s, b, s′′) ∧ (s, a, s′) I (s′, b, u) ∧ (s, b, s′′) I (s′′, a, u). We say that the
transitions above form an independence diamond, and denote the ∼-equivalence
class of a transition t ∈ Tran as [t].

A transition system with independence functions by executing transitions
from one state to another. A possibly infinite sequence π = t0 t1 . . . with ti =
(si, ai, si+1) ∈ Tran (i ≥ 0) is called a path. The starting state of π is denoted
as dom(π), and the ending state as cod(π) if π is a finite path. A computation is
a path π such that dom(π) = sI . Let Comp(TI) (Comp0(TI)) be the set of all
(finite) computations of TI. A transition t is said to be reachable, if there exists a
computation π ∈ Comp0(TI) such that t appears in π. From now on, we consider
only those transition systems with independence in which all transitions are
reachable. Let '⊆ Comp(TI)×Comp(TI) be the least equivalence relation such
that πs(s, a, s

′)(s′, b, u)πv ' πs(s, b, s
′′)(s′′, a, u)πv ⇐⇒ Diama,b(s, s

′, s′′, u),
and let [π] stand for the '-equivalence class of a computation π.

We now incorporate time into the model of transition systems with indepen-
dence. By analogy with the paper [8], we assume a global, fictitious clock, whose
actions advance time by nonuniform amounts and whose value is set to zero at
the beginning of system’s functioning. All transitions are associated with timing
constraints represented as minimal and maximal time delays, and happen ”in-
stantaneously”, while timing constraints restrict the times at which transitions
may be executed. Unlike the paper [8], in our timed model the time domain is
changed to the integers, and the maximal delays associated with transitions are
always equal to ∞, therefore they are not specified explicitly.

Let N be the set of non-negative integers.

Definition 1. A timed transition system with independence is a tuple TTI =
(S, sI , L, Tran, I, δ), where JTTIK = (S, sI , L, Tran, I) is the underlying transi-
tion system with independence, and δ : Tran → N is the delay function such
that δ(t) = δ(t′) for any t, t′ ∈ Tran such that t ∼ t′.

A timed computation of a timed transition system with independence TTI =
(S, sI , L, Tran, I, δ) is a pair Π = (π, τ) ∈ (Comp((S, sI , L, Tran, I)) × (N ∪
{∞})) with τ ≥ δ(π) = sup{δ(t) | t ∈ π}. Define dom(Π) = dom(π) and
cod(Π) = cod(π). We denote the set of all (finite) timed computations of TTI as

114 R. Dubtsov, E. Oshevskaya, I. Virbitskaite

TComp(TTI) (TComp0(TTI)), and write Π 'τ Π ′ iff π ' π′ and τ = τ ′. It is
easy to see that 'τ is an equivalence relation; the 'τ -equivalence class of a timed
computation Π is denoted as [Π]τ . Let TComp'τ (TTI) (TComp0

'τ (TTI)) be
the sets of 'τ -equivalence classes of all (finite) timed computations of TTI.

For timed transition systems with independence TTI = (S, sI , L, Tran, I, δ)
and TTI ′ = (S′, s′I , L′, T ran′, I ′, δ′), a morphism h : TTI → TTI ′ is a pair of
mappings h = (σ : S → S′, λ : L→∗ L′)3 such that:

1. σ(sI) = s′I ,

2. (s, a, s′) ∈ Tran ⇒ (σ(s), α(a), σ(s′) ∈ Tran′ if a ∈ domλ, and σ(s) =
σ(s′), otherwise,

3. (s, a, s′)I(s̄, ā, s̄′) and a, ā ∈ domλ ⇒ (σ(s), α(a), σ(s′)I ′(σ(s̄), α(ā), σ(s̄′),

4. δ′((σ(s), α(a), σ(s′))) ≤ δ((s, a, s′)).

Timed transition systems with independence and morphisms between them
form a category TTSI with unit morphisms 1TTI = (1S ,1L) : TTI → TTI for
any TTI = (S, sI , L, Tran, I, δ), and with composition defined in a component-
wise manner.

We next aim at unfolding of timed transition systems with independence. To
that end, we first define a subclass of timed transition systems with indepen-
dence that serves as a target of unfolding. After that, we construct an unfolding
mapping and show that together with the inclusion functor the unfolding functor
defines a coreflection.

Definition 2. A timed occurrence transition system with independenceToTI =
(S, s0, L, Tran, I, δ) is an acyclic timed transition system with independence such
that (s′′, a, u) 6= (s′, b, u) ∈ Tran ⇒ ∃s ∈ S s.t. Diama,b(s, s

′, s′′, u), for all
(s′′, a, u), (s′, b, u) ∈ Tran.

Let ToTSI be the full subcategory of the category TTSI.

Define an unfolding mapping ttsi .totsi : TTSI → ToTSI as follows. For a
timed transition system with independence TTI = (S, sI , L, Tran, I, δ), specify
ttsi .totsi(TTI) as (S'τ , [(s

I , 0)]τ , L, Tran'τ , I'τ , δ'τ), where

– S'τ = {[Π = (π, δ(π))]τ ∈ TComp0
'τ (TTI)},

– ([Π = (π, δ(π))]τ , a, [Π
′ = (π′, δ(π′))]τ) ∈ Tran'τ ⇐⇒ ∃tπ,π′ = (s, a, s′) ∈

Tran � Π
′ 'τ (πtπ,π′ ,max{δ(π), δ(π′)}),

– ([Π]τ , a, [Π
′]τ)I'τ ([Π̄]τ , b, [Π̄

′]τ) ⇐⇒ tπ,π′Itπ̄,π̄′ ,

– δ'τ ([Π]τ , a, [Π
′]τ) = δ(tπ,π′).

Lemma 1. Given a timed transition system with independence TTI,
ttsi .totsi(TTI) is a timed occurrence transition system with independence.

3 A partial mapping from a set A into a set B is denoted as f : A →∗ B. Let
dom f = {a ∈ A | f(a) is defined}. For a subset A′ ⊆ A, define fA′ = {f(a′) | a′ ∈
A′ ∩ dom f}.

A Domain View of Timed Behaviors 115

In order to demonstrate that the mapping ttsi .totsi is adjoint to the inclusion
functor ToTSI ↪→ TTSI, we define a mapping and prove that it is the unit of
this adjunction. For a transition system with independence TTI, let εTTI =
(σε, 1L) : ttsi .totsi(TTI) → TTI, where σε([Π]τ) = cod(Π) for all [Π]τ ∈ S'τ .
It is easy to see that εTTI is a morphism of TTSI.

Lemma 2 (εTTI is couniversal). For any object TTI of TTSI, any object
ToTI of ToTSI and any morphism h : ToTI → TTI of TTSI, there exists a
unique morphism h′ : ToTI → ttsi .totsi(TTI) of ToTSI such that h = εTTI ◦h′.

The next theorem presents a categorical characterization of the unfolding.

Theorem 1 (↪→a ttsi .totsi). The unfolding mapping ttsi .totsi extends to a
functor from TTSI→ ToTSI which is right adjoint to the functor ↪→: ToTSI→
TTSI. Moreover, this adjunction is a coreflection.

3 Timed Event Structures

In this section we relate timed occurrence transition systems with independence
and timed event structures, establishing the close relationships between cate-
gories of the models.

We start with the definition of an untimed variant of event structures. An
event structure is a triple E = (E,≤,#), where E is a countable set of events;
≤⊆ E × E is a partial order (the causality relation) such that ↓e = {e′ ∈ E |
e′ ≤ e} is a finite set for each e ∈ E, #⊆ E × E is the symmetric irreflexive
conflict relation such that e # e′ ≤ e′′ ⇒ e # e′′. A set of events C ⊆ E is
said to be a configuration of an event structure E if ∀e ∈ C � ↓e ⊆ C, and
∀e, e′ ∈ C � ¬(e # e′). We say that events e, e′ ∈ E are concurrent and write
e ^ e′ if ¬(e ≤ e′ ∨ e′ ≤ e′ ∨ e # e′). Introduce the concept of a reflexive conflict
as follows: e ∨∨ e′ ⇐⇒ e # e′ ∨ e = e′.

We now recall the definition of timed event structures from [9]. Similarly to
the model of timed transition systems with independence, there is a global non-
negative integer-valued clock. Each event in the structure is associated with a
time delay with respect to the initial time moment; i.e., if an event e is associated
with a time delay t, then e may not occur earlier than all the predecessors of
the event occur and the clock shows time t. In this case, the event itself occurs
instantaneously.

Definition 3. A timed event structure is a tuple T E = (E,≤,#, ∆), where
(E,≤,#) is an event structure and ∆ : E → N is the delay function such that
e′ ≤ e ⇒ ∆(e′) ≤ ∆(e).

A timed configuration of T E is a pair (C, τ), where C is a configuration of
(E,≤,#) and τ ∈ N ∪ {∞} such that τ ≥ ∆(C) = sup{∆(e) | e ∈ C}. The
set of all (finite) timed configurations of a timed event structure T E is denoted
as TConf(T E) (TConf0(T E)). We define a transition relation −→ on the set

116 R. Dubtsov, E. Oshevskaya, I. Virbitskaite

TConf(T E) as follows: (C, t) −→ (C ′, t′) if C ⊆ C ′ and t ≤ t′. Clearly, the
relation −→ specifies a partial order on the set TConf(T E).

Let T E = (E,≤,#, ∆) and T E ′ = (E′,≤′,#′, ∆′) be timed event structures.
A partial mapping θ : E →∗ E′ is a morphism if ↓θ(e) ⊆ θ ↓e; θ(e) ∨∨ θ(e′) ⇒
e ∨∨ e′, for all e, e′ ∈ dom θ; ∆′(θ(e)) ≤ ∆(e), for all e ∈ dom θ. Timed event
structures with their morphisms define a category TES with unit morphisms

1TS = 1E : TS → TS for all TS = (E,≤,#, ∆) and the composition being a
usual composition of partial functions.

We now establish the relationships between the categories of timed event
structures and timed occurrence transition systems with independence. For this
purpose, we first define a mapping tpes.totsi : TPES → ToTSI extending the
mapping pes.otsi from [3] to the timed case. For a timed event structure T E =
(E,≤,#,∆), let tpes.totsi(T E) be (ST E , s

I
T E , LT E , T ranT E , IT E , δT E), where

– ST E =
{

(C,∆(C)) ∈ TConf0(T E)
}

;
– sIT E = (∅, 0);
– LT E = E;
–
(
(C,∆(C)), e, (C ′, ∆(C ′))

)
∈ TranT E ⇐⇒ C ′ \ C = {e};

–
(
(C,∆(C)), e, (C ′, ∆(C ′))

)
IT E

(
(C̄,∆(C̄)), ē, (C̄ ′, ∆(C̄ ′))

)
⇐⇒ e ^ ē;

– δT E((C,∆(C)), e, (C ′, ∆(C ′))) = ∆(e).

It is easy to see that the above definition is correct, i.e. tpes.totsi maps timed
event structures to timed occurrence transition systems with independence.

Next, we construct a mapping totsi .tpes : ToTSI → TPES. For a timed
occurrence transition system with independence ToTI = (S, sI , L, Tran, I, δ),
let totsi .tpes(ToTI) be (Tran∼,≤,#,∆), where

– Tran∼ = {[t] | t ∈ Tran},
– [t] < [t′] ⇐⇒
∀(πt̄′, τ) ∈ TComp0(ToTI) � t̄

′ ∼ t′ ⇒ (∃t̄ ∈ π � t̄ ∼ t); ≤=< ∪ =,
– [t] # [t′] ⇐⇒
∀(π, τ) ∈ TComp0(ToTI), ∀t̄ ∈ [t], ∀t̄′ ∈ [t′] � t̄ ∈ π ⇒ t̄′ /∈ π,

– ∆([t]) = max{δ(t′) | [t′] ≤ [t]}.

On morphisms h = (σ, λ) : ToTI → ToTI ′ in ToTSI, the mapping totsi .tpes
acts as follows: totsi .tpes(h) = θ, where θ([(s, a, s′)]) = [(σ(s), λ(a), σ(s′)], if
a ∈ domλ, and θ([(s, a, s′)]) is undefined, otherwise.

Proposition 1. totsi .tpes : ToTSI→ TPES is a functor.

Finally, we define the unit of the adjunction. For a timed event structure
T E , let ηT E : ET E → Etotsi.tpes◦tpes.totsi(T E) be a mapping such that ηT E(e) =
[(C,∆(C)), e, (C ∪{e}, ∆(C ∪{e}))]. It is straightforward to show that ηT E is an
isomorphism in TPES. In order to demonstrate the existence of the adjunction,
we need to check that ηT E is indeed a unit, i.e. it is universal.

Lemma 3 (ηT E is universal).
For any object T E of TPES, any object ToTI of ToTSI, and any mor-

phism θ : T E → totsi .tpes(ToTI) in TPES, there exists a unique morphism
h : tpes.totsi(T E)→ ToTI in ToTSI such that θ = totsi .tpes(h) ◦ ηT E .

A Domain View of Timed Behaviors 117

The next theorem establishes the existence of a coreflection between the
categories of timed event structures and timed occurrence transition systems
with independence.

Theorem 2 (tpes.totsi a totsi .tpes). The map tpes.totsi can be extended to
a functor tpes.totsi : TPES → ToTSI, which is left adjoint to the functor
totsi .tpes. Moreover, this adjunction is a coreflection.

4 Marked Scott Domains

In this section, we extend the established chain of coreflections to marked Scott
domains. To that end, we first recall related notions and notations.

Let (D,v) be a partial order, d ∈ D and X ⊆ D. Then,

– ↑d = {d′ ∈ D | d v d′} is an upper cone of element d, ↓d = {d′ ∈ D | d′ v d}
is a lower cone of element d,

– X is downward (upward) closed if ↓d ⊆ X (↑d ⊆ X) for every d ∈ X,
– X is a compatible set (denoted as X↑), if the following assertion is true:
∃d ∈ D∀x ∈ X � x v d, i.e., X has an upper bound. If X = {x, y}, we write
x ↑ y instead of {x, y}↑. The least upper bound of the set X is denoted
as
⊔
X (if it exists), and the greatest lower bound is denoted as

d
X (if it

exists). The least upper bound of two elements x and y is denoted as x t y,
and the greatest lower bound, as x u y.

– X is a finitely compatible set if any finite subset of it X ′ ⊆ X is compatible.
– X is a (upper) directed set if any finite subset of it X ′ ⊆ X has an upper

bound belonging to the set X (thus, X is a finitely compatible and nonempty
set).

– (D,v) is a directed-complete partial order (dcpo for short) if every directed
subset X ⊆ D has

⊔
X.

– d is a finite (compact) element of a dcpo (D,v) if, for any directed subset
X ⊆ D, the following assertion is true: d v

⊔
X ⇒ ∃x ∈ X � d v x. The set

of finite elements is denoted as C(D).
– A dcpo (D,v) is said to be algebraic if, for any d ∈ D, d =

⊔
{e v d | e ∈

C(D)}. It is said to be ω-algebraic if C(D) is countable.
– (D,v) is a consistently complete partial order (ccpo) if any finitely compat-

ible subset X ⊆ D has
⊔
X. Clearly, a ccpo has the least element ⊥ =

⊔
∅,

and is also a dcpo.
– An ω-algebraic ccpo is called a Scott domain. A Scott domain (D,v) is said

to be finitary if ↓d is finite for every d ∈ C(D).

Describe some properties of Scott domains. An element p of a Scott domain
(D,v) is said to be prime if, for any compatible subsetX ⊆ D � p v

⊔
X ⇒ ∃x ∈

X � p v x. The set of the prime elements is denoted as P (D). A Scott domain
(D,v) is called prime algebraic if, for any d ∈ D, d =

⊔
{p v d | p ∈ P (D)} and

coherent if all subsets X ⊆ D satisfying the condition ∀d′, d′′ ∈ X � d
′ ↑ d′′ have⊔

X.

118 R. Dubtsov, E. Oshevskaya, I. Virbitskaite

Let (D,v) be a Scott domain and ≺ = @ \ @2 be a covering relation. For
elements d, d′ ∈ D such that d ≺ d′, the pair [d, d′] is called a prime interval. The
set of all prime intervals is denoted as I(D). We write [c, c′] ≤ [d, d′] if and only
if c = c′ u d∨ d′ = c′ t d. The relation ∼ is defined to be a transitive symmetric
closure of the relation ≤. Note that ∼-equivalent prime intervals model one and
the same action. Let [d, d′]∼ denote the ∼-equivalence class of the prime interval
[d, d′].

Now we are ready to present the definition of marked Scott domains. Infor-
mally, a marked Scott domain is meant to be a prime algebraic, finitary, and
coherent Scott domain with the prime intervals modeling two – instantaneous
and delayed – types of system actions. The former actions do not require time
and are marked by zero, and the latter take one unit of time and are marked by
one. It is natural to require that the ∼-equivalent prime intervals corresponding
to one and the same system action are marked identically.

Definition 4. A marked domain is a triple (D,v,m), where (D,v) is a prime
algebraic, finitary, and coherent Scott domain and m : I(D) −→ {0, 1} is a
marking such that [c, c′] ∼ [d, d′]⇒ m([c, c′]) = m([d, d′]).

Introduce auxiliary notions and notations. For d, d′ ∈ D and i ∈ {0, 1}, we
write d ≺i d′, if d ≺ d′ ∧ m([d, d′]) = i, and d 4i d′, if d ≺i d′ ∨ d = d′;
vi= (≺i)∗; ↓id = {d′ | d′ vi d}, and ↑id = {d′ | d vi d′}; P i(D) = {p ∈
P (D) | ∃d ∈ D � m([d, p]) = i}. For a finite element d ∈ D and a covering
chain σ having the form ⊥ = d0 ≺k1 d1 · · · dn−1 ≺kn dn = d (the chain is
finite as (D,v) is finitary), define the norm of d along σ by ‖d‖σ =

∑n
i=1 ki.

Since (D,v) is a prime algebraic Scott domain and m respects ∼, the value of
‖d‖σ does not depend on σ. Therefore, we shall use ‖d‖ to denote the norm of a
finite element d. For a non-finite element d ∈ D, its norm is defined as follows:
‖d‖ = sup{‖d′‖ | d′ ∈ ↓d ∩ C(D)}. A marked domain (D,v,m) is said to be
linear if for any d ∈ D such that ‖d‖ <∞, (↑1d,v1) ∼= (N,≤); regular if for any
d, d′ ∈ D, d ↑ d′ ⇒ ∀d1 ∈ ↑1d, ∀d′1 ∈ ↑1d′ � (d1 ↑ d′1).

It is not difficult to see that linear regular marked domains, together with the
additive stable mappings [10] preserving 40 and ≺1, form the category MDom.

As shown in [9], marked Scott domains are related with timed event struc-
tures via a pair of functors tpes.mdom : TPES → MDom and mdom.tpes :
MDom→ TPES defined as follows4.

For a timed event structure T E = (E,≤,#, ∆), let tpes.mdom(T E) be
(TConf(T E),−→,mT E), where

m(
[
(C, τ), (C ′, τ ′)

]
) =

{
0, if C ′ \ C = {e} ∧ τ ′ = τ,
1, if C ′ = C ∧ τ ′ = τ + 1.

For a marked Scott domain MD = (D,v,m) ∈ MDom, define
mdom.tpes(MD) to be (E,≤,#, ∆), where E = P 0(D), p ≤ p′ ⇐⇒ p v p,
p # p′ ⇐⇒ p 6↑ p′, and ∆(p) = ‖p‖.
4 We do not specify how tpes.mdom and mdom.tpes act on morphisms since it is not

essential to this paper.

A Domain View of Timed Behaviors 119

Theorem 3. [9]. The functors tpes.mdom and mdom.tpes constitute an equiv-
alence between the categories TPES and MDom.

Theorems 1, 2 and 3 yield the following corollary.

Theorem 4. The functor ↪→ ◦tpes.totsi ◦ mdom.tpes : MDom → TTSI is
left adjoint to the functor tpes.mdom ◦ totsi .tpes ◦ ttsi .totsi : TTSI→MDom.
Moreover, this adjunction is a coreflection.

5 Direct Characterization

In this section, we establish some relationships between timed transition systems
with independence and marked Scott domains in a direct way.

We start with introducing auxiliary notations. For a transition system with
independence TI = (S, sI , L, Tran, I) and computations π, π′ ∈ Comp0(TI), we
write π E π′ iff there exists a path π′′ such that ππ′′ ' π′:

•

•

π′′
;;

'

sI

π′

\\

π

PP

For possibly infinite computations π, π′ ∈ Comp(TI), let π E π′ iff for every
finite prefix π̄ of π there exists a finite prefix π̄′ of π′ such that π̄ E π̄. It
is straightforward to check that E is a partial order on Comp(TI). Specify a
partial order on timed computations as follows: Π = (π, τ) Eτ Π ′ = (π′, τ ′) iff
π E π′ ∧ τ ≤ τ ′. Define a partial order v on the 'τ -equivalence classes of timed
computations as follows: [Π]τ v [Π ′]τ iff Π Eτ Π ′.

Lemma 4. (TComp'τ (TTI),v) is a finitary ω-algebraic dcpo. Moreover,

C((TComp'τ (TTI),v)) = TComp0
'τ (TTI).

In order to directly relate timed transition systems with independence and
marked Scott domains, we construct a mapping ttsi .mdom ′ : TTSI→MDom.
Before doing so, consider a prime interval

[
[Π = (π, τ)]τ , [Π

′ = (π′, τ ′)]τ
]

in
(TComp'τ (TTI),v). It is not difficult to check that either π′ ' π∧τ ′ = τ+1 or
π′ ' πt∧ τ ′ = τ for some transition t. Define a map mTTI : I((TComp'τ (TTI),
v))→ {0, 1} as follows:

mTTI(
[
[Π]τ , [Π

′]τ
]
) =

{
0, if τ = τ ′,
1, otherwise.

Let ttsi .mdom ′(TTI) = (TComp'τ (TTI),v, mTTI), for any timed transition
system with independence TTI.

120 R. Dubtsov, E. Oshevskaya, I. Virbitskaite

Proposition 2. ttsi .mdom ′ can be extended to a functor ttsi .mdom ′ : TTSI→
MDom isomorphic to ttsi .mdom = tpes.mdom ◦ ottsi .tpes ◦ ttsi .ottsi .

At last, we are ready to state the fact which is the last main result of this
paper and that provides a direct characterisation.

Theorem 5. ttsi .mdom ′ is right adjoint to mdom.ttsi = tpes.mdom◦ottsi .tpes◦
ttsi .ottsi . Moreover, this adjunction is a coreflection.

6 Conclusion

We have defined and studied a timed extension of a well-known ”true concurrent”
model of transition systems with independence and have shown that there exists
a chain of coreflections between a category of the model and a category of marked
Scott domains as well as a direct translation. The diagram below summarises
the established relationships:

TTSI
ttsi.totsi //
> ? _oo ToTSI

totsi.tpes //
>

tpes.totsi
oo TPES

MDom

??

m
do
m
.t
pe
s

∼=

��

tp
es
.m
do
m

__

m
dom

.ttsi

>

��

ttsi.m
dom

⊥

))

ttsi.m
dom ′

References

1. Bednarczyk, M.: Categories of asynchronous systems. PhD thesis, University of
Sussex, UK (1987)

2. Shields, M.: Concurrent Machines. The Computer Journal 28(5) (1985) 449–465
3. Sassone, V., Nielsen, M., Winskel, G.: Models for concurrency: towards a classifi-

cation. Theoretical Computer Science 170(1-2) (1996) 297–348
4. McLane, S.: Categories for the working mathematician. Graduate Texts in Math-

ematics. Springer, Berlin (1971)
5. Hildebrandt, T., Sassone, V.: Comparing Transition Systems with Independence

and Asynchronous Transition Systems. International Conference on Concurrency
Theory (1996) 84–97

6. Hildebrandt, T., Sassone, V.: Transition Systems with Independence and Multi-
Arcs. BRICS Report Series RS-97-10, BRICS, Department of Computer Science,
University of Aarhus, April (1997)

7. Alur, R., Dill, D.: A theory of timed automat. Theoretical computer science 126(2)
(1994) 183–235

8. Henzinger, T., Manna, Z., Pnueli, A.: Timed transition systems. In: Real-Time:
Theory in Practice, Springer (1992) 226–251

A Domain View of Timed Behaviors 121

9. Virbitskaite, I.B., Dubtsov, R.S.: Semantic domains of timed event structures.
Programming and Computer Software 34(3) (2008) 125–137

10. Winskel, G.: Event structures. Lecture Notes in Computer Science 255 (1987)
325–392

Appendix A: Elements of Category Theory

Here we briefly recall notions from category theory [4] important to this paper.
Let G : B→ A be a functor between categories A and B, and let, for each object
A of A, there exist an object F (A) of B and a morphism ηA : A→ G ◦F (A) in
A that is universal in the following sense: for any morphism h : A → G(B) in
A, where B is an object of B, there exists a unique morphism h′ : F (A) → B
in B such that G(h′) ◦ ηA = h; i.e., the following diagram commutes.

A

∀h ��

F (A)

∃!h′
��

A
ηA //

h ��

G ◦ F (A)

G(h′)ww
G(B) B G(B)

In this case, we say that there exists an adjunction from A to B, and the family
of morphisms {ηA | A ∈ A} is said to be a unit of this adjunction. Then, F can
be extended to a functor by assuming that, for any morphism h : A→ A′ in A,
F (h) : F (A)→ F (A′) is a unique morphism in B such that G◦F (h)◦ηA = ηA′◦h.
In this case, F is said to be left adjoint to G (denoted as F ` G), and G right
adjoint to F (denoted as G a F). In addition, if ηA is an isomorphism for
each A, then the adjunction is called a coreflection. Categories A and B are
equivalent if F is adjoint to G and both the unit and counit of the adjunction
are isomorphisms.

A Multi-agent Approach to Unstructured Data
Analysis Based on Domain-specific Onthology ?

Natalia O. Garanina, Elena A. Sidorova, and Evgeny V. Bodin

A.P. Ershov Institute of Informatics Systems,
Lavrent’ev av., 6, Novosibirsk 630090, Russia,

{garanina,lena,bodin}@iis.nsk.su

Abstract. The paper presents a multi-agent algorithm implementing
semantic analysis of unstructured data based on ontology. In this multi-
agent model agents of two kinds interact: the instance agents correspond
to meaningful units of the information being retrieved, and the rule
agents implement rules of a given ontology. An original solution for the
termination detection of this multi-agent algorithm is suggested.

1 Introduction

At present most organizations deal with large quantity of documents, licenses,
manuals, emails, business letters, financial and technical reports etc. It is already
impossible to process all these documents by hand, without automatic assistance.
Ontological knowledge bases are a good solution for storing information from
these documents, and automatical completing the ontology is necessary.

The essence of an ontological approach to information retrieval is to use
knowledge represented by an ontology for extraction of data interpreted as the
ontology instances. For example, semantic-oriented approach to text analysis
without complete linguistic analysis can be used for ontological data generation.
The standard productional approach to semantic-oriented analysis is to sequen-
tially apply given rules of instance retrieval to data. This process takes a long
time and causes such specific problems as information duplication, variability of
results, etc. Using the multi-agent approach allows to create good alternatives
to the data analysis systems with the sequential architecture. The main feature
of the approach is that the system being developed is considered to be a set of
autonomous entities (the agents) where the agents have the abilities to interact
with the environment and with other agents. By means of this interaction the
system works. The traditional benefits of the multi-agent approach is that the
operations of the system are parallelized, due to independent agents and their
ability to interact with each other, so that some system tasks are solved locally
and therefore the result is obtained significantly faster. Besides, our multi-agent
approach handles some of the above difficulties of productional approaches.

? The research has been supported by Siberian Branch of Russian Academy of Science
(Integration Grant n.15/10 “Mathematical and Methodological Aspects of Intellec-
tual Information Systems”).

A Multi-agent Approach to Unstructured Data Analysis ... 123

The proposed approach is in the framework of modern investigations of auto-
matic processing and analyzing huge amount of unstructured data. Multi-agent
approach for information retrieval from heterogeneous data source for completing
ontology is widespread, in particular, it is used for natural language processing
[1, 2, 11, 6] and web processing [3–5]. Agents in these works have different behav-
ior. Usually in web processing, agents are high-level agents that manage rather
data flows, using standard algorithm for knowledge retrieval, than data itself.
In natural language processing, agents are either associated with conventional
linguistic levels (morphological, syntactic, semantic) or targeted to recognize
specific linguistic phenomena such as ellipsis, anaphora, parataxis, homonymy.
These agents do not use ontological knowledge substantially. Thus they are com-
puting processes which may speed up information retrieval due to their parallel
work but they do not affect the retrieval qualitatively.

Unlike all the above works, in our approach we use two kinds of agents, collec-
tively possessing complete information about both the data being investigated
and the domain-specific ontology. Agents of one kind can analyze ontological
(and linguistic) features. They do not use data directly, but they process infor-
mation provided by requesting agents of the other kind. The latter agents are
the most close to the ones from [10]. In cited paper every agent representing
some word from a text has to determine correspondence between its word and
an element of a given ontology. The authors do not use special agents for on-
tological (and linguistic) properties. Instead, they exploit statistical methods of
text clustering.

Our variant of ontology-based approach for processing unstructured data
contains the following stages. First, a proper domain ontology has to be selected.
We suppose that rules for completing the ontology are defined formally. Then
initial ontology instances (their classes and some attributes) have to be identified
by some preliminary algorithm. Then other instances’ attributes are evaluated
by the ontology rules using our algorithm.

The idea of multi-agent aspect of the our approach is that a set of different
data items is aggregated into an agent considered as an ontology instance. This
process is assisted by special support agents corresponding the ontology. First,
objects significant for the ontology are recognized preliminary in given data.
We call these objects instance agents. Belonging to an ontology, the instance
agents have attributes. The values of some of these attributes are evaluated as
the result of the preliminary analysis. Non-evaluated attributes can be specified
as a result of communication of instance agents and the support rule agents.
In the process of interaction, the agents establish a correspondence between the
ontology concepts and the instance units, and thus complete the ontology with
specific instances of concepts and relationships.

This paper presents a multi-agent algorithm for arbitrary unstructured data
processing. This algorithm improves and generalizes the algorithm for informa-
tion retrieval from natural language text suggested in [7]. We estimate the time
upper bound of the algorithm and prove the properties of termination and cor-
rectness of the termination controller agent.

124 N. O. Garanina, E. A. Sidorova, E. V. Bodin

The rest of the paper is organized as follows. The next section 2 describes the
main agents in our systems and gives a simple example. The following section
3 presents protocols for the instance, rule and controller agents and sketches
some properties of the systems. Finally, we conclude in the last section 4 with a
discussion of further research topics.

2 Agent Model

Outline of the approach and multi-agent system follows. There is an ontology, a
set of rules for completing it, and a finite set of data to extract the information for
the ontology. The preliminary phase partially assigns values to instance agents
attributes. The rule agents implementing the ontology rules (the rules depend
on the ontology only, but not on the data), according to data received from
various instance agents, generate new attribute values of the instances, send the
obtained result to all agents interested in it, or generate new instance agents.
Eventually, the instance agents assign values to all their attributes that can be
evaluated with the information from the data, and the system stops. A special
controller agent keeps track of system stopping.

Let the result of data pre-processing be the set IA of instance agents, where
each I ∈ IA is a tuple I = (id;Cl;RO0; a1(RI1;RO1), ..., ak(RIk;ROk)), where

– id is a unique agent identifier;
– Cl is an ontological class of the agent;
– RO0 is set of rule agents that use this instance agent as an argument;
– for each i ∈ [1..k], ai is the attribute of the agent, which value is determined

by some rule agent from RIi, every rule in set of rule agents ROi requires
the value of attribute ai to get the result; let us denote the set of rule agents
for incoming values as RI = ∪i=1..kRIi, the set of rule agents for outcoming
values as RO = ∪i=1..kROi.

The values of attributes of an instance agent are usually only partially deter-
mined before the algorithm starts. When the algorithm terminates, the initially
unvalued attributes should be provided values with help of rule agents.

Let us define the set of rule agents RA, where each R ∈ RA is a tuple
R = (id; arg1(Cl1), . . . , args(Cls);make res(args), ares), where

– id is a unique agent identifier;
– for each i ∈ [1..s]: argi is a set of argument values determined by the corre-

sponding instance agent from ontological class Cli; let us denote the set of
vectors of argument values as args, where each value is provided with the
identifier of the defining instance agent, the set of these agents is args.Ag;
let us consider the argument values vector non-empty, if all its values are
non-empty;

– make res(args) is a function for computing the result from argument vector
args;

– ares is the result of function make res(args) which can be

A Multi-agent Approach to Unstructured Data Analysis ... 125

• null, if the argument vector is inconsistent;
• a new value of some attribute1 for instance agents;
• a new instance agent (there should not be an agent with the same at-

tribute values in the system).

As a simple example let us consider the following multi-agent system for
natural language text processing. Let the given ontology includes classes Person,
Organization, and relation Employee. The corresponding instance agents have
the following form:

• A1 = (id;Person; {CWork,CPersonDeg, . . .};
surname({CPerson,CPersonIni}; ∅), first name({CPerson}; ∅),

degree({CPersonDeg}; ∅), ...;Employee({CWork,CWorkPos}).
Person has the following attributes: surname, first name, (academic) deg-
ree which can be used and evaluated by the corresponding rule agents
CPerson, CPersonIni, CPersonDeg.
• A2 = (id;Organization; {CWork,CPersonDeg, . . .};

name(COrg; ∅), type(COrg,COrgType;CWork), . . . ;
Employee(CWork,CWorkPos);

Organization has attributes name and type, and the corresponding input-
output rule agents COrg and COrgType.
• A3 = (id, Employee; {CWork,CWorkPos};

arg1(CWork; ∅), arg2(CWork; ∅), pos(CWorkPos; ∅)).
Relation Employee can be evaluated by rule agent CWork directly connect-
ing Person and Organization, or by rule agent CWorkPos which connects
them using a position.

As an example of an ontology rule agent let us consider agent CWork:
CWork = (id, arg1(A1), arg2(A2);

{Sentence({arg1, arg2}), BracketSegment({arg2}),
P reposition(arg1, arg2), Contact(arg1, arg2)};

Employee.arg1 = CWork.arg1, Employee.arg2 = CWork.arg2;
A3 = newEmployee()).

This agent recognizes sentences where an organization is enclosed in brackets
after a person. For example:

Academician Genrikh Aleksandrovich Tolstikov (Novosibirsk Institute
of Organic Chemistry) is a prominent chemist, recognized authority in
synthetic organic chemistry.

The following evaluation of attributes of the above agents is the result of analysis
of the given text fragment:
A1 = Person(id = 1, surname = Tolstikov, first name = Genrikh,

degree = Academician);
A2 = Organization(id = 2, name = Institute of Organic Chemistry,

1 This attribute is defined a priory.

126 N. O. Garanina, E. A. Sidorova, E. V. Bodin

type = Institute);
A3 = Employee(id = 3, arg1 = A1, arg2 = A2, pos = ∅).

In the next section, the algorithms of the instance, rule and controller agents
are described in pseudocode.

3 Multi-agent Algorithm for Data Analysis

Let IA = {I1, . . . , In, . . .} be an instance agents set, and RA = {R1, . . . , Rm}, be
a rule agents set. The result of executing of the following algorithm is data anal-
ysis, when the instance agents determine the possible values of their attributes.
Let Ii be a protocol of actions of instance agent Ii, and Rj, be the protocol of
actions of rule agent Rj , C be the protocol of actions of an agent-controller C.
Then the multi-agent data analysis algorithm MDA can be presented in pseu-
docode as follows:
MDA::

begin

parallel {I1} ...{In} ...{R1} ...{Rm} {C}
end.

Here we assume that the parallel operator means that all execution flows
(threads) in the set of braces are working in parallel. That is, all agents act
in parallel until either all attributes of the instance agents are evaluated or it
happens that none of the rule agent can proceed. These events are determined
by the controller agent. The system is dynamic because rule agents can create
new instance agents. Let N be the maximal number of instance agents that can
be obtained from a given data.

The agents are connected by duplex channels. The controller agent is con-
nected with all agents, and every instance agent is connected with several rule
agents (and vise versa). Messages are transmitted asynchronously and stored
in FIFO channels until being read. The messages are transmitted in a fast and
reliable medium.

We consider an agent active iff it does not complete its work (is not at the
label “end” of the algorithms below) and either it processes some message or its
queue of input messages is not empty. Otherwise, the agent is passive. We say
that a multi-agent system terminates iff every system agent (possibly) except
the agent-controller is passive.

In the agent protocols below the function get head(queue) removes the first
element from the queue and returns that element.

3.1 Protocol of Instance Agents

Let us comment a notation of the instance agent protocol. A message for an
instance agent has two fields: name of sender (name ∈ [1..m] ∪ C)2 and ai with
value of attribute i. The pseudocode of the protocol follows.

2 The agent receives messages only from the controller agent and from the rule agents.

A Multi-agent Approach to Unstructured Data Analysis ... 127

Protocol of instance agents.
I::

C: Controller Agent;

R,Rij: Rule Agent;

RI, RO: set of Rule Agents;

data wait: set of Rule Agents = ∅;
ai: Attribute;

mess: message;

In: queue of incoming messages;

begin

1. send |RI ∪RO|+ 1 to C;

2. forall R ∈ RI ∪RO send evaluated data to R;
3. forall ai ∈ Atr forall Rij ∈ RIi {
4. send request(ai) to Rij; add (ij) to data wait;}
5. send −1 to C;

6. while (true){
7. if In 6= ∅ then {
8. mess = get head(In);
9. if mess.name = C then break;

10. if mess.name ∈ RIi then {
11. if ai = ∅ then {
12. upd(ai);
13. forall Rij ∈ RIi {
14. send cancel(ai) to Rij; remove (ij) from data wait;}
15. forall Rij ∈ ROi

16. send data(ai) to Rij;

17. send |ROi| − 1 to C;}
18. if ai 6= ∅ then send −1 to C;} }
19. if data wait = ∅ then break;}
end.

Let us informally describe the protocol of an instance agent. First, the agent
(1) notifies the controller agent that it started working and the number of rule
agents that will process its data (line 1), (2) sends the available data (line 2),
(3) sends the requests for evaluating and adds the corresponding rule agents to
its waiting list (lines 3-4), and then (4) tells the controller agents that it is now
passive. From the beginning of the work of the agent, its channel is open for
incoming messages. As soon as a message arrives, it begins processing it (line
8). If it is from the controller agent, the agent terminates (line 9). If it is from
a rule agent (line 10) then if the corresponding attribute is empty (line 11) the
agent evaluates it with the obtained data (line 12) and notifies other rule agents
related to this attribute that a value of this attribute is no more required from
them, and then the instance agent deletes these agents from its waiting list (lines
13-14). Then the obtained attribute value is sent to those agents that require
it (lines 15-16), and the controller agents is notified about the agent finishing
its work and about the number of rule agents that will process sent attribute

128 N. O. Garanina, E. A. Sidorova, E. V. Bodin

value (line 17). If the message contains the value of an attribute that is already
evaluated, the agent does not handle it and notifies the controller agent about
it (line 18). If it turns out that all attributes are evaluated, the agent finishes its
work (line 19).

Let us estimate the time upper bound of the instance agent protocol. In
the first phase of its activities (line 2) the instance agent sends the evaluated
data to all rules agents interested in this data. The complexity of this phase
CIA

1 = O(|RI| + |RO|) = O(m). Sending the activation messages to rule agent
from RI (lines 3-4) is estimated as CIA

2 = O(k×m) and the size of the queue of
incoming messages In is the same. The agent processes the received data (lines
8-19). It takes time CIA

4 = O(|In| × (|RI| + |RO|)) = O(k × m2). Thus, the
upper bound of the protocol actions of each instance agent is CIA = O(k×m2).

3.2 Protocol of Rule Agents

In the algorithm of the rule agent’s actions protocol, the following functions and
notation are used. The rule agents receive messages only from instance agents
and from the controller agent. The messages have (1) the name of the sender,
(2) the type ∈ {data, request, cancel} that means that it has received an
attribute, a request for a result, or a cancelation request, respectively, and (3) the
value of the attribute. The function make arg(a, I) creates vectors of arguments
with received values of attributes at the positions corresponding to ontology
classes. The function make res(args) creates the output result: (1) the values
of attributes that have sent a request to the rule agent, (2) a new instance agent
which starts working immediately, or (3) the null result in a case of inconsistency
of the argument vector. The pseudocode of the protocol follows.
Protocol of rule agents.
R::

C: Controller Agent;

I: Instance Agent;

a: Attribute;

args: vector of Argument = ∅;
Arg: queue of vector of Argument = ∅; // set of tuples

res send: set of Instance Agents = ∅;
In: queue of incoming messages;

begin

1. parallel

2. { while (true) {
3. if In 6= ∅ then {
4. mess = get head(In);
5. if mess.name=C then goto end;

6. if mess.name=I then {
7. if mess.type=request then add I to res send;

8. if mess.type=cancel then remove I from res send;

9. if mess.type=data then {
10. a = mess.val; Arg = Arg ∪ make arg(a, I);

A Multi-agent Approach to Unstructured Data Analysis ... 129

11. send −1 to C; }}}}}
12. { while (true) {
13. if Arg 6= ∅ then {
14. send 1 to C;

15. args = get head(Arg);
16. ares = make res(args);
17. if ares.type = attr then {
18. forall I ∈ args.Ag ∩ res send{
19. send ares to I; remove I from res send;}
20. send |args.Ag ∩ res send| − 1 to C;}
21. if ares.type = new agent then send ares.val to ares.name;
22. if ares.type = null then send −1 to C;} } }
end.

Let us informally describe the protocol of a rule agent. The agent can perform
in parallel both processing of incoming messages(lines 2-10) and the generating
of the outcome (lines 12-21). If it has received a message from the controller
agent, it finishes the work (line 5). If the agent receives a request from the agent
I for a result (line 7), it adds I to the recipients list; and it removes I from this
list if it was the cancelation request (line 8). If it receives a value of the attribute
a from the agent I, then using the procedure make arg it tries to create a
vector of arguments (set of vectors) (line 10). In such vectors the received value
of the attribute is one of the elements and other elements are values of attributes
received earlier. Then the agent tells the controller agent about becoming passive
(line 11). If the vector (or the set of vectors) is formed, the agent immediately
begins to process it/them (line 13). The result of processing is obtained using
the function make res. It may be (1) an attribute which is later sent to those
agents that have requested it (lines 16-18), then the controller agent is informed
about the number of the agents to process the data and about this agent has
completed processing the vector of arguments, (2) a new instance agent, that
starts working immediately as soon as it gets the attribute values from the rule
agent, (3) no result, due to the vector of arguments is not consistent, and the
controller agent is notified that the argument vector processing is finished.

Let us estimate the time upper bound of the rule agent’s protocol. The
time complexity depends on the time bounds of the parallel actions of the
rule agents. Let Ag be the set of agents have sent attributes and Arg be the
set of arguments of the rule agent. The complexity of requests and cancels is
CRA

2 = O(|Ag|) = O(N) (lines 7-8). Retrieving and storing data from the in-
stance agents (lines 9-11) is a very time-consuming process with the estimate
CRA

1 = O(|Ag||Arg|) = O(Ns), since the obtained data generate a set of vectors
of the argument values. The complexity of parallel data processing (lines 13-22)
is CRA

3 = O(CRA
1 × (||make res||+ |Ag|) = O(Ns× (s+N)), where ||make res||

is the time complexity of the function, which is linear with respect to the size
of the argument. Thus, the overall time upper bound of the actions of each rule
agent is CRA = O(CRA

3) = O(Ns × (s + N)).

130 N. O. Garanina, E. A. Sidorova, E. V. Bodin

3.3 Protocol of the Controller Agent

A special agent-controller handles the Distributed Termination Detection prob-
lem [8]. We suggest an algorithm for the problem which fits to our multi-agent
system more than known termination detection algorithms, the credit/recovery
algorithms in particular [9, 12]. The main feature of this agent-controller is to
sequentially calculate other agents’ activities by using variable Act. Instance and
rule agents send information about their activities to the agent-controller. After
system termination the agent informs others about this fact.
Protocol of agent-controller C.
C ::

Act, num: integer;

messages: queue of integer;

begin

1. Act = 0;

2. while(true){
3. if messages 6= ∅ then { num =get head(messages); Act=Act+num;}
4. if messages = ∅ and Act = 0 then break; }
5. send STOP to all;

end.

Let us estimate the time upper bound of the controller agent’s protocol. The
size of the queue of incoming messages for the controller agent CCA is less then
N +

∑
i∈[1..N] |ki|+

∑
j∈[1..m](N + Ns

j), where ki is the number of attributes of
instance agent i and sj is the number of attributes of instance agent j.

3.4 MDA Protocol Properties

The time complexity of the multi-agent analysis algorithm MDA follows from
the above estimations: CMDA = O(max{CIA

1 , ..., CIA
N , CRA

1 , ..., CRA
m , CCA}),

where CIA
i and CRA

j are the complexities of the protocols of the instance and
rule agents, respectively, for all i ∈ [1..N], j ∈ [1..m].

Correctness (completeness and soundness)3 of information retrieval algo-
rithms is rather a notion of data analysis theory than the theory of multi-agent
algorithms, thus it is out of the scope of this paper. But this multi-agent algo-
rithm has some properties to be proved.

Proposition 1. Multi-agent system MDA terminates and the agent-controller
determines the termination moment correctly.

Sketch of the proof. First, an analyzed data contains a finite number of infor-
mation objects for a given ontology. Hence the number of corresponding agents
and their attributes is finite. Hence (1) every instance agent determines values
of all its attributes and goes to a passive state or (2) some attributes can not
be evaluated because there is no appropriate information in the data and after

3 Completeness means that all relevant information has been retrieved from data.
Soundness mans that this information has been retrieved correctly.

A Multi-agent Approach to Unstructured Data Analysis ... 131

determining evaluable attributes an instance agents goes to a passive state also.
Every rule agent (1) gets enough information from instance agents to process
received data and goes to a passive state after that or (2) goes to a passive state
after receiving messages and never processes data. After processing data, the
generation of new instance agents does not duplicate agents. Hence, there is no
infinite loop because the number of information objects in the data is finite.

Second statement of the proposition follows from the fact that the value of
variable Act becomes 0 no earlier than the termination moment. Let active(t)
be the number of active agents. For every time moment t the following holds:∑

i≤|mess(t)|mess(i, t) + Act = active(t), because agents influence (1) increase
of Act when after their local termination they send to the controller the number
of meaningful messages sent to instance/rule agents (lines 1,17/20), and (2)
decrease of Act when they informs about their passive state (lines 5,18/11,22).�

4 Conclusion

The proposed approach aims at taking advantage of the agent-based approach to
knowledge representation and processing. Thus, using the agent-based technol-
ogy allows to avoid unnecessary information retrieval, since at any given time,
only information required for an agent is being searched for. Furthermore, due
to the agents working in parallel, the speed of data processing significantly in-
creases.

Note that this paper presents only a basic formal model of agents’ interaction
that implements a simplified model of data analysis, which does not yet take into
account specific problems related to ambiguity of input data. For example, let
us consider a case of data ambiguity when the different ontology instance agents
correspond to the same data (“toast” as “fried bread” and as “a tribute or
proposal of health”). In order to handle such ambiguities competitive instance
agents acquire points which characterize their connections with other instance
agents. These connections are defined by agents’ attributes that could be the
linked agents themselves or their attributes. The more links some agent has and
the more points its linked agents have, it becomes more probable that this agent
is the most accurate data based instance of a given ontology.

These problems can be solved by increasing the expressive power of the pro-
posed agent-based models by giving the agent the ability to work cooperatively,
to compete (as above), to keep the history of its creation and development, etc.

Acknowledgments. We would like to thank Dr. I.S. Anureev for discus-
sions.

References

1. Aref, M.M. A Multi-Agent System for Natural Language Understanding Inter-
national Conference on Integration of Knowledge Intensive Multi-Agent Systems,
2003, 36

132 N. O. Garanina, E. A. Sidorova, E. V. Bodin

2. Ariadne Maria B.R. Carvalho, Daniel S. de Paiva, Jaime S. Sichman,
João Lúıs T. da Silva, Raul S. Wazlawick & Vera Lúcia S. de Lima Multi-
Agent Systems for Natural Language Processing In Francisco J. Garijo & Cristian
Lemaitre (eds.), Multi Agent Systems Models Architecture and Appications, Pro-
ceedings of the II Iberoamerican Workshop on D.A.I. and M.A.S(Toledo, Spain,
October 1-2 1998), pp. 61-69.

3. Banares-Alcantara R., Jimenez R., Aldea L. Multi-agent systems for
ontology-based information retrieval // European Symposium on Computer-Aided
Chemical Engineering-15 (ESCAPE-15),2005, Barcelona, Espaa

4. Cheng X., Xie Y., Yang T. Study of Multi-Agent Information Retrieval Model
in Semantic Web // In Proc. of the 2008 International Workshop on Education
Technology and Training and 2008 International Workshop on Geoscience and
Remote Sensing (ETTANDGRS’08), 2008, Vol. 02, P. 636-639.

5. Clark K.L., Lazarou V.S. A Multi-Agent System for Distributed Information
Retrieval on the World Wide Web // In Proc. of the 6th Workshop on Enabling
Technologies on Infrastructure for Collaborative Enterprises (WET-ICE ’97), 1997,
P. 87-93.

6. Danilo Fum, Giovanni Guida, Carlo Tasso A Distributed Multi-Agent Ar-
chitecture for Natural Language Processing // In Proc. of the 12th conference on
Computational linguistics (COLING ’88), 1988, Vol. 2, P. 812-814.

7. Garanina N., Sidorova E., Zagorulko Yu. Multi-agent algorithm of text anal-
ysis based on domain-specific onthology. // Proc. of The 13th Russian Conference
on Artificial Intelligence (CAI-2012), October 16-20, 2012, Belgorod, Vol.1, P. 219-
226. (In Russian)

8. Matocha J., Camp T. A taxonomy of distributed termination detection algo-
rithms // The Journal of Systems and Software, 1998, Vol. 43, P. 207-221

9. Mattern, F. Global quiescence detection based on credit distribution and recovery
// Inform. Process. Lett. 30 (4), 1989, P. 195-200.

10. Minakov I., Rzevski G., Skobelev P., Volman S. Creating Contract Templates
for Car Insurance Using Multi-agent Based Text Understanding and Clustering//
In Proc. Holonic and Multi-Agent Systems for Manufacturing, Third International
Conference on Industrial Applications of Holonic and Multi-Agent Systems, Holo-
MAS 2007, Regensburg, Germany, September 3-5, 2007. Springer, Lecture Notes
in Computer Science, 2007, Vol. 4659, P. 361-370.

11. Cássia Trojhan dos Santos, Paulo Quaresma, Irene Rodrigues, Renata
Vieira A Multi-Agent Approach to Question Answering // In Renata Vieira, Paulo
Quaresma, Maria da Graça Volpes Nunes, Nuno J. Mamede, Cláudia Oliveira &
Maria Carmelita Dias (eds.), Computational Processing of the Portuguese Lan-
guage: 7th International Workshop, PROPOR 2006. Itatiaia, Brazil, May 2006
(PROPOR’2006) LNAI 3960, 13-17 de Maio de 2006, Berlin/Heidelberg: Springer
Verlag, pp. 131-139.

12. Rokusawa, K., Iciyoshi, N., Chikayama, T., Nakashima, H. An ecient termi-
nation detection and abortion algorithm for distributed processing systems // In:
Proceedings of the International Conference on Parallel Processing, pp. 18-22.

13. Zagorulko Yu.A., Sidorova E.A. Document analysis technology in informa-
tion systems for supporting research and commercial activities // Optoelectronics,
Instrumentation and Data Processing, 2009. Volume 45, Number 6. -pp. 520-525.

An Explicit Formula for Sorting and its Application to
Sorting in Lattices

Jens Gerlach

Fraunhofer FOKUS
jens.gerlach@fokus.fraunhofer.de

Abstract In a totally ordered set the notion of sorting a finite sequence is de-
fined through the existence of a suitable permutation of the sequence’s indices. A
drawback of this definition is that it only implicitly expresses how the elements
of a sequence are related to those of its sorted counterpart. To alleviate this situa-
tion we prove a simple formula that explicitly describes how the kth element of a
sorted sequence can be computed from the elements of the original sequence. As
this formula relies only on the minimum and maximum operations we use it to
define the notion of sorting for lattices. A major difference of sorting in lattices
is that it does not guarantee that sequence elements are only rearranged. To the
contrary, sorting in general lattices may introduce new values into a sequence or
completely remove values from it. We can show, however, that other fundamental
properties that are associated with sorting are preserved. Furthermore, we address
the problem that the direct application of our explicit formula for sorting leads to
an algorithm with exponential complexity. We present therefore for distributive
lattices a recursive formulation to compute the sort of a sequence. This alterna-
tive formulation, which is inspired by the identity

(
n
k

)
=

(
n−1
k−1

)
+

(
n−1

k

)
that underlies

Pascal’s triangle, allows for sorting in lattices with quadratic complexity and is in
fact a generalization of insertion sort for lattices.

1 Introduction

In this paper we present the results of two preprints [1,2] where we outline basic prin-
ciples of a theory of sorting in lattices.

Sorting a sequence in a total order (X,≤) is typically defined through the existence
of a suitable permutation (cf. [3, p. 4]). There exists for each sequence x of length n in
a totally ordered set a permutation ϕ of [1, n] = {1, . . . , n} such that x ◦ ϕ is a increasing
sequence. If x is injective, then ϕ is uniquely determined, and vice versa. However,
regardless whether there is exactly one permutation, the rearrangement x↑ = x ◦ ϕ is
uniquely determined and we thus refer to it as the increasing sort of x.

Sorting defines a map x 7→ x↑ from Xn to the subset of increasing sequences. This
map has several interesting properties. First of all, it is idempotent(

x↑
)
↑ = x↑ (1)

and thus a projection. Secondly, for each permutation ψ of [1, n] we have

(x ◦ ψ)↑ = x↑ (2)

134 J. Gerlach

The definition of sorting through the existence of a suitable permutation only pro-
vides an implicit relationship between the elements of x and x↑. However, sometimes
we prefer explicit relationships.

If, for example, someone asked whether there is for the numbers a and b and the
exponent n a general relationship between the value (a + b)n and the powers an and bn,
then the (obvious) answer is that this relationship is captured by the Binomial Theorem

(a + b)n =

n∑
k=0

(
n
k

)
an−kbk (3)

which also shows that other powers of a and b are involved.
When looking for an explicit relationship between the elements of x and the ele-

ments of its increasingly sorted counterpart x↑ =
(
x↑1, . . . , x

↑
n

)
, one can provide an easy

answer for the first and last elements of x↑. In fact, we know that x↑1 is the least element
of {x1, . . . , xn}

x↑1 = x1 ∧ . . . ∧ xn =

n∧
k=1

xk, (4)

whereas x↑n is the greatest element of x

x↑n = x1 ∨ . . . ∨ xn =

n∨
k=1

xk. (5)

In Section 2 we prove Identity (7) that explicitly states how the elements x↑1, . . . , x
↑
n

are related to x1, . . . , xn. This formula only uses the minimum and maximum operations
on finite sets. Based on this observation, we define in Section 3 the notion of sorting of
sequences in a lattice through simply replacing the minimum/maximum operations by
the infimum/supremum operations, respectively. We also show that sorting in lattices in
general not just reorders the elements of a sequence but really changes them. However,
we are able to prove that our definition satisfies various properties that are associated
with sorting.

The direct application of Identity (7) leads to an algorithm with exponential com-
plexity (cf. Section 4). In order to address this problem, we prove the recursive Iden-
tity (19) for the case of bounded distributive lattices. This identity is closely related to
the well-known fact that the binomial coefficient(

n
k

)
=

n!
k! · (n − k)!

can be efficiently computed through the recursion(
n
k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
which underlies Pascal’s triangle.

Furthermore, we prove that a lattice, in which the recursive Identity (19) holds, is
necessarily distributive. The main advantage of our recursive identity is that it allows
for an algorithm for sorting in lattices with quadratic complexity. In fact, this algorithm
is a generalization of insertion sort for lattices (cf. Section 5).

An Explicit Formula for Sorting and its Application to Sorting in Lattices 135

2 A formula for sorting

Let (X,≤) be a totally ordered set, then each nonempty finite subset A of X contains a
least and a greatest element [4, R. 6.5]. We also speak of the minimum and maximum
of A and refer to these special elements as

∧
A and

∨
A, respectively. The following

inequalities hold for all a ∈ A ∧
A ≤ a ≤

∨
A (6)

For A = {x, y} we use the notation x∧ y and x∨ y to denote the minimum and maximum
of x and y, respectively.
The main results of this paper depend on a particular family of finite sets.

Definition 1. For k ∈ [1, n] we denote with N
(

n
k

)
B

{
A ⊂ [1, n]

∣∣∣ |A| = k
}

the set of

subsets of [1, n] that contain exactly k elements. The set N
(

n
k

)
consists of

(
n
k

)
elements.

Proposition 1. Let (x1, . . . , xn) be a sequence in a totally ordered set, then the following
identity holds for the elements of the sequence

(
x↑1, . . . , x

↑
n

)
x↑k =

∧
I∈N(n

k)

∨
i∈I

xi. (7)

Before we prove Proposition 1 we introduce an abbreviation for the right hand side
of Identity (7). For a sequence x of length n we define for 1 ≤ k ≤ n

xMk B
∧

I∈N(n
k)

∨
i∈I

xi. (8)

With this notation Proposition 1 reads

x↑ = xM. (9)

We remark that because (X,≤) is a total order, we know that each element of xM is also
an element of x. When applying Identity (8) it is sometimes convenient to use a slightly
more explicit way to write the elements of xM.

xMk =
∧

1≤i1<...<ik≤n

xi1 ∨ . . . ∨ xik (10)

We see then that xM1 is the least element of x and thus equals x↑1 (cf. Identity (4)), whereas
xMn is the greatest element of x and thus equals x↑n (cf. Identity (5)). This means that
Identity (7) is satisfied for k = 1 and k = n.

Lemma 1. If x is a sequence of length n in a totally ordered set (X,≤), then xM is a
increasing sequence.

136 J. Gerlach

Proof. Let 1 ≤ k < n and I be an arbitrary subset of [1, n] with k + 1 elements. If J is a
subset of I with k elements, then we have by Inequality (6) and J ⊂ I

xMk =
∧

L∈N(n
k)

∨
l∈L

xl ≤
∨
j∈J

x j ≤
∨
i∈I

xi.

Since I is an arbitrary set of k + 1 elements we obtain from here

xMk ≤
∧

I∈N(n
k+1)

∨
i∈I

xi = xMk+1,

which shows that xM is increasing. ut

Note that in the proof of Lemma 1 we have only used the fact that the minimum of a set
is a lower bound for all elements of that set (cf. Inequality (6)).

Proof (Proposition 1). We will show that for each k with 1 ≤ k ≤ n both xMk ≤ x↑k and
x↑k ≤ xMk hold. Let ϕ be a permutation of [1, n] with

x↑ = x ◦ ϕ (11)

and let J ⊂ [1, n] be the subset for which

J = ϕ ([1, k]) (12)

holds. From the fact that J contains exactly k elements we conclude

xMk =
∧

I∈N(n
k)

∨
i∈I

xi ≤
∨
j∈J

x j by Inequality (6)

=
∨
j∈J

x↑
(
ϕ−1(j)

)
by Identity (11)

=
∨

i∈[1,k]

x↑i by Identity (12)

= x↑k by monotonicity of x↑.

This finishes the first part of the proof.
Conversely, we conclude from the fact that (X,≤) is a total order and Identity (11) that
there exists a subset B of [1, n] with exactly k elements such that

xMk =
∧

I∈N(n
k)

∨
i∈I

xi =
∨
i∈B

xi =
∨
i∈B

x↑
(
ϕ−1(i)

)
=

∨
j∈ϕ−1(B)

x↑j

holds. Since x↑ is increasing we have
∨

j∈ϕ−1(B)

x↑j = x↑m where m =
∨

(ϕ−1(B)) is the

greatest element of ϕ−1(B). We have, thus,

xMk = x↑m. (13)

However, since
∨

(ϕ−1(B)) is a subset of [1, n] that contains exactly k elements we ob-
tain k ≤ m. Since x↑ is increasing we conclude x↑k ≤ x↑m. This inequality and Identity (13)
imply x↑k ≤ xMk , which completes the proof. ut

An Explicit Formula for Sorting and its Application to Sorting in Lattices 137

3 Sorting in lattices

Let (X,≤) be a partially ordered set that is also a lattice (X,∧,∨), then for each x, y ∈ X
there exists the infimum x ∧ y and the supremum x ∨ y (cf. [5, Chapter 3]). These
operations are commutative and associative and they satisfy for all x, y ∈ X the so-
called absorption properties x∨ (x∧ y) = x and x∧ (x∨ y) = x. If (X,≤) is a total order,
then ∧ and ∨ are the minimum and maximum operations of Section 2.

In a lattice, the infimum and supremum exist for every finite subset A and are de-
noted by

∧
A and

∨
A, respectively (cf. [5, p. 49]). We therefore know that for a se-

quence x of length n the value

xMk =
∧

I∈N(n
k)

∨
i∈I

xi

from Identity (8) is well-defined in a lattice. This motivates the following definition.

Definition 2. If x is a sequence of length n in a lattice (X,∧,∨), then we refer to xM as
defined by Identity (8) as the increasing sort of x with respect to the lattice (X,∧,∨).

Before we start to investigate which properties that are traditionally associated with
sorting are maintained by our definition we want to point out a major difference: In a
lattice the value xMk might be different from the original values x1, . . . , xn. The reason
for this is the following: While in a lattice the inequalities x∧ y ≤ x, y ≤ x∨ y generally
hold, there might be also the case that the set {x∧ y, x∨ y} is different from the set {x, y}.
In a total order these two sets are always equal.

Examples of sorting in lattices As a first example we consider the finite set X =

{x, y, z}. Figure 1 shows the lattice of all subsets of X. Let x be the sequence a =(
{x}, {y}, {z}

)
, then aM =

(
∅, ∅, X

)
. Thus, aM is a increasing sequence that consists of

elements that are completely different from those of a.

{x} {y} {z}

{x,y} {x,z} {y,z}

{x,y,z}

∅

Figure 1. The lattice of {x, y, z}

x xM

(1) (1)
(1, 2) (1, 2)

(1, 2, 3) (1, 1, 6)
(1, 2, 3, 4) (1, 1, 2, 12)

(1, 2, 3, 4, 5) (1, 1, 1, 2, 60)
(1, 2, 3, 4, 5, 6) (1, 1, 1, 2, 6, 60)

(1, 2, 3, 4, 5, 6, 7) (1, 1, 1, 1, 2, 6, 420)
(1, 2, 3, 4, 5, 6, 7, 8) (1, 1, 1, 1, 2, 2, 12, 840)

Table 1. Sorting in the lattice (N, gcd, lcm)

As a second example we consider the lattice (N, gcd, lcm) where gcd(x, y) and
lcm(x, y) denote the greatest common divisor and least common multiple of x and y,

138 J. Gerlach

respectively. The associated partial order of this lattices is defined by divisibility of
natural numbers. Table 1 shows some examples of our definition of sorting for differ-
ent sequences in (N, gcd, lcm). Again we see that sorting in a lattice may change the
elements in a sequence.

Elementary properties of sorting in lattices The following lemma states that xM is in-
deed a increasing sequence with respect to the partial order (X,≤) of the lattice (X,∧,∨).

Lemma 2. If x is a finite sequence in a lattice (X,∧,∨) with associated partial order
(X,≤), then Identity (8) defines a increasing sequence xM.

Proof. In order to prove this lemma we can proceed exactly as in the proof of Lemma 1
where (X,≤) is a total order. As remarked on Page 2, we have used only the fact that∧

A is a lower bound of A which by definition also holds for lattices. ut

A simple consequence of Lemma 2 is the following Lemma 3 which states that sorting
in lattices respects lower and upper bounds of the original sequence.

Lemma 3. Let x be a sequence of length n in a lattice (X,∧,∨) with associated partial
order (X,≤). If for 1 ≤ i ≤ n holds a ≤ xi ≤ b, then a ≤ xMi ≤ b holds as well.

Proof. From Identity (10) follows that xMn is the supremum of the elements x1, . . . , xn.
Thus, we have xMn ≤ b. Lemma 2 ensures that xMn is the largest element of xM. Thus we
have xMi ≤ b for 1 ≤ i ≤ n. The case for the lower bound a is treated analogously. ut

The following lemma restates the idempotence of sorting for the case of lattices (cf. Iden-
tity (1)).

Lemma 4. If x is a finite sequence in a lattice (X,∧,∨), then
(
xM

) M = xM.

Proof. We know from Lemma 2 that xM is a increasing sequence in the partial order
(X,≤). Thus, the relation ≤ is a total order on the set

{
xM1 , . . . , x

M
n

}
⊂ X. In other words

we can sort xM in the classical sense. From this follows by Identity (7)

xM =
(
xM

)↑
=

(
xM

) M.
ut

We can also show the invariance of sorting in lattices under permutations (cf. Iden-
tity (2)).

Lemma 5. If x is a sequence of length n in a lattice and ψ a permutation of [1, n], then
(x ◦ ψ)M = xM holds.

Proof. We have for 1 ≤ k ≤ n

(x ◦ ψ)Mk =
∧

A∈N(n
k)

∨
i∈A

(x ◦ ψ)i =
∧

A∈N(n
k)

∨
j∈ψ(A)

x j =
∧

B∈ψ(N(n
k))

∨
j∈B

x j

Because ψ is a permutation of [1, n] we find that ψ
(
N
(

n
k

))
= N

(
n
k

)
and conclude

(x ◦ ψ)Mk =
∧

B∈N(n
k)

∨
j∈B

x(j) = xMk .

ut

An Explicit Formula for Sorting and its Application to Sorting in Lattices 139

4 Recursive sorting in lattices

The definition of xM through Identity (8) is nice and succinct, but it is also quite imprac-
tical to use in computations. Table 2 shows simple performance measurements (con-
ducted on a notebook computer) for computing (1, . . . , n)M in (N, gcd, lcm). The reason
for this dramatic slowdown is of course the exponential complexity inherent in Iden-
tity (8): In order to compute xM from x it is necessary to consider all 2n − 1 nonempty
subsets of [1, n].

sequence length 20 21 22 23 24 25 26
time in s 0.6 1.3 2.7 5.8 11.8 25.5 51.6

Table 2. Wall-clock time for computing (1, . . . , n)M according to Identity (8)

For the remainder of this paper we assume that (X,∧,∨,⊥,>) is a bounded lattice.
Here ⊥ is the least element of X and the neutral element of join, that is,

x = ⊥ ∨ x = x ∨ ⊥ ∀x ∈ X (14)

whereas > is the greatest element of X and the neutral element of meet, that is,

x = > ∧ x = x ∧ > ∀x ∈ X. (15)

We now introduce a notation that allows us to concisely refer to individual elements
of both (x1, . . . , xn)M and (x1, . . . , xn−1)M. Here again, it is convenient to employ the no-
tation for the binomial coefficient

(
n
k

)
in the context of sorting in lattices. For a sequence

x of length n we define for 0 ≤ m ≤ n

xM
(

m
k

)
B

⊥ k = 0
(x1, . . . , xm)M(k) k ∈ [1,m]
> k = m + 1

(16)

We know from Identity (8) that (x1, . . . , xm)M(k) =
∧

I∈N(m
k)

∨
i∈I

xi holds for 1 ≤ k ≤ m.

We therefore have

xM
(

m
k

)
=

∧
I∈N(m

k)

∨
i∈I

xi. (17)

In particular, the following identity holds for 1 ≤ k ≤ n

xM
(

n
k

)
= xMk . (18)

The main result of this section is Proposition 2, which states in Identity (19), how
the kth element of (x1, . . . , xn)M can be computed from (x1, . . . , xn−1)M and xn by simply
applying one join and one meet. The proof of Proposition 2 relies on the fact that the
lattice under consideration is both bounded and distributive.

140 J. Gerlach

Proposition 2. If (X,∧,∨,⊥,>) is a bounded distributive lattice and if x is a sequence
of length n, then for 1 ≤ k ≤ n holds

xM
(

n
k

)
= xM

(
n−1

k

)
∧

(
xM

(
n−1
k−1

)
∨ xn

)
(19)

Proof. For k = 1, we have

xM
(

n
1

)
=

n∧
i=1

xi by Identity (17)

=

n−1∧
i=1

xi

 ∧ xn by associativity

= xM
(

n−1
1

)
∧ xn by Identity (17)

= xM
(

n−1
1

)
∧

(
⊥ ∨ xn

)
by Identity (14)

= xM
(

n−1
1

)
∧

(
xM

(
n−1

0

)
∨ xn

)
by Identity (16).

We deal similarly with the case k = n (cf. [2, p. 5]). In the general case of 1 < k < n,
we first remark that if A is a subset of [1, n], which consists of k elements, then there
are two cases possible:

1. If n does not belong to A, then A is a subset of N
(

n−1
k

)
.

2. If n is an element of A, then the set B B A \ {n} belongs to N
(

n−1
k−1

)
.

In other words, N
(

n
k

)
can be represented as the following (disjoint) union

N
(

n
k

)
= N

(
n−1

k

)
∪

{
B ∪ {n}

∣∣∣ B ∈ N
(

n−1
k−1

)}
. (20)

We obtain therefore

xM
(

n
k

)
=

∧
I∈N(n

k)

∨
i∈I

xi by Identity (17)

=
∧

I∈N(n−1
k)

∨
i∈I

xi ∧
∧

I∈N(n−1
k−1)

∨
i∈I∪{n}

xi by Identity (20)

= xM
(

n−1
k

)
∧

∧
I∈N(n−1

k−1)

∨
i∈I∪{n}

xi by Identity (17)

= xM
(

n−1
k

)
∧

∧
I∈N(n−1

k−1)

∨
i∈I

xi ∨ xn

 by associativity

= xM
(

n−1
k

)
∧

 ∧

I∈N(n−1
k−1)

∨
i∈I

xi

 ∨ xn

 by distributivity

= xM
(

n−1
k

)
∧

(
xM

(
n−1
k−1

)
∨ xn

)
by Identity (17)

which completes the proof. ut

An Explicit Formula for Sorting and its Application to Sorting in Lattices 141

The following Proposition 3 states that the converse of Proposition 2 also holds.

Proposition 3. Let (X,∧,∨,⊥,>) be a bounded lattice which is not distributive. Then
there exists a sequence x = (x1, x2, x3) in X such that Identity (19) is not satisfied.

Proof. According to a standard result on distributive lattices [5, Theorem 4.7], a lattice
is not distributive, if and only if it contains a sublattice which is isomorphic to either N5
or M3 (cf. Figure 2).

e

a

b

c

d

a

b c d

e

M3N5

Figure 2. The non-distributive lattices N5 and M3

From Identity (10) follows for the elements of xM =
(
xM1 , x

M
2 , x

M
3

)
xM1 = x1 ∧ x2 ∧ x3 (21a)
xM2 = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x2 ∨ x3) (21b)
xM3 = x1 ∨ x2 ∨ x3. (21c)

If X contains the sublattice N5, then we consider the sequence x = (c, d, b) and its
subsequence (c, d). From Identity (21) then follows

(c, d, b)M = (a, d, e) and (c, d)M = (a, e).

Thus, we have

xM
(

3
2

)
= d xM

(
2
2

)
= e xM

(
2
1

)
= a.

However, applying Identity (19) we obtain

xM
(

3
2

)
= xM

(
2
2

)
∧

(
xM

(
2
1

)
∨ x3

)
= e ∧ (a ∨ b) = e ∧ b = b

instead of d.
If X contains the sublattice M3, then we consider the sequence x = (b, c, d) and its

subsequence (b, c). From Identity (21) then follows

(b, c, d)M = (a, e, e) and (b, c)M = (a, e).

142 J. Gerlach

We therefore have

xM
(

3
2

)
= e xM

(
2
2

)
= e xM

(
2
1

)
= a.

Again, applying Identity (19) we obtain

xM
(

3
2

)
= xM

(
2
2

)
∧

(
xM

(
2
1

)
∨ x3

)
= e ∧ (a ∨ d) = e ∧ d = d

instead of e. ut

Using Identity (19), we can prove the following Lemma 6, which generalizes a
known fact known from sorting in a total order: If one knows that xn is greater or equal
that the preceding elements x1, . . . , xn−1 then sorting the sequence (x1, . . . , xn) can be
accomplished by sorting (x1, . . . , xn−1) and simply appending xn.

Lemma 6. Let (X,∧,∨,⊥,>) be a bounded distributive lattice and x be a sequence of
length n. If the condition xi ≤ xn holds for 1 ≤ i ≤ n − 1, then the identities

xM
(

n
i

)
= xM

(
n−1

i

)
xM

(
n
n

)
= xn

hold.

Proof. The first equation follows directly from the fact that xMn is the supremum of the
values x1, . . . , xn. Regarding the second equation, we know from Lemma 2 that if for
1 ≤ i ≤ n − 1 the inequality xi ≤ xn holds, then

xM
(

n−1
i

)
≤ xn.

This inequality is also valid for i = 0 because xM
(

n−1
0

)
= ⊥ holds by Identity (16). From

general properties of meet and join then follows that

xM
(

n−1
i

)
∨ xn = xn

xM
(

n−1
i

)
∧ xn = xM

(
n−1

i

)
holds for 0 ≤ i ≤ n − 1. We can therefore simplify Identity (19) as follows

xM
(

n
i

)
= xM

(
n−1

i

)
∧

(
xM

(
n−1
i−1

)
∨ xn

)
= xM

(
n−1

i

)
∧ xn

= xM
(

n−1
i

)
.

ut

An Explicit Formula for Sorting and its Application to Sorting in Lattices 143

xM
✓
2

2

◆
xM

✓
2

1

◆

xM
✓
1

1

◆

?

?

>
x1

x2

xM
✓
3

1

◆
xM

✓
3

2

◆
xM

✓
3

3

◆
? >x3

↙

↙

↙ ↙

↙

↙

↙ ↙

↙↙

>

Figure 3. Graphical representation of Identity (19)

5 Insertion sort in lattices

Figure 3 graphically represents Identity (19) in a form that emphasizes its close rela-
tionship to Pascal’s triangle. Whenever an arrow↘ and and arrow↙ meet, the values
are combined by a meet. In the case of an arrow↘, however, first the value at the origin
of the arrow is combined with the sequence value xn through a join.

Formula (22) outlines an algorithm that is based on Identity (19). The algorithm
starts from x1 = (x1)M and successively computes

(x1, . . . , xi−1)M, xi 7→ (x1, . . . , xi−1, xi)M. (22)

From Identity (19) follows that in step i exactly i joins and i meets must be performed.
Thus, altogether there are

n∑
i=2

2 ∗ i = n(n + 1) − 2

applications of join and meet. In other words, such an implementation has quadratic
complexity. This algorithm can be considered as insertion sort [3, § 5.2.1] for lattices
because one element at a time is added to an already “sorted” sequence. Table 3 shows
some performance measurements for this algorithm in the bounded and distributive
lattice (N, gcd, lcm, 1, 0).

sequence length 100 1000 10000 100000
time in s 0 0 3.4 420

Table 3. Wall-clock time for computing (1, . . . , n)M according to Identity (19)

These results show that sorting in lattices can now be applied to much larger se-
quences than those shown in Table 2 before the limitations of an algorithm with quadratic
complexity become noticeable.

144 J. Gerlach

6 Conclusions

Proposition 1 states through Identity (7) a simple explicit relationship between the ele-
ments of a finite sequence in a totally ordered sets to its sorted counterpart.

A sorting algorithm that directly uses Identity (7) would have exponential complex-
ity. Thus, Identity (7) appears not relevant for implementing computationally efficient
algorithms. The reader should bear in mind, however, that this is also true for the Bi-
nomial Theorem. In fact, directly computing (x + y)n is normally more efficient than
computing the expansion

xn + nxn−1y +
n(n − 1)

2
xn−2y2 + . . . + yn

A more interesting aspect of Identity (7) is therefore that it allows to generalize the
notion of sorting finite sequences to lattices. Compared to sorting in a totally ordered
set, sorting in lattices is a more invasive procedure because it may change sequence
elements. While this may be considered as a major drawback one should bear in mind
that generalizations often lead to surprising properties. The real criterion for accepting
a generalization is whether it provides new insights or has useful applications. With
respect to sorting in lattices, the latter question has not been addressed in this paper and
remains a topic of future research.

We are able to show that our definition of sorting in lattices maintains many proper-
ties that are associated with sorting. Another important results of this paper are Propo-
sition 2, which proves Identity (19) for bounded distributive lattices, and Proposition 3,
which shows that the distributivity is necessary for Identity (19) to hold. The remarkable
points of Identity (19) are that it

– exhibits a strong analogy between sorting and Pascal’s triangle,
– allows to sort in lattices with quadratic complexity, and that it
– is in fact a generalization of insertion sort for lattices.

I would like to thank the reviewers for their comments. I am also very grateful for
the many corrections and valuable suggestions of my colleagues Jochen Burghardt and
Hans Werner Pohl: Jochen Burghardt’s suggestion to investigate whether the distributiv-
ity in Proposition 2 is really necessary led to Proposition 3. Hans Werner Pohl pointed
out the analogy of the algorithm in Equation 22 to insertion sort.

References

1. J. Gerlach. Sorting in Lattices. ArXiv e-prints, March 2013.
http://arxiv.org/abs/1303.5560.

2. J. Gerlach. Recursive Sorting in Lattices. ArXiv e-prints, May 2013
http://arxiv.org/abs/1306.0019.

3. Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting and Searching.
Addison-Wesley, 1973.

4. Bourbaki, N., Elements of Mathematics, Theory of Sets, Addison-Wesley, Reading, MA,
1968.

5. S. Roman. Lattices and Ordered Sets. Springer-Verlag New York, 2008.

Rough Inclusion Functions and Similarity
Indices?

Anna Gomolińska1 and Marcin Wolski2

1 Bia lystok University, Computer Science Institute,
Sosnowa 64, 15-887 Bia lystok, Poland,

anna.gom@math.uwb.edu.pl
2 Maria Curie-Sk lodowska University, Dept. of Logic and Philosophy of Science,

Pl. Marii Curie-Sk lodowskiej 4, 20-031 Lublin, Poland,
marcin.wolski@umcs.lublin.pl

Abstract. Rough inclusion functions are mappings considered in the
rough set theory with which one can measure the degree of inclusion of a
set in a set (and in particular, the degree of inclusion of an information
granule in an information granule) in line with rough mereology. On the
other hand, similarity indices are mappings in cluster analysis with which
one can compare clusterings, and clustering methods with respect to
similarity. In this article we investigate the relationships between rough
inclusion functions and similarity indices.

Keywords: rough inclusion function, rough mereology, similarity index,
cluster analysis, granular computing.

1 Introduction

In 1994, L. Polkowski and A. Skowron introduced the formal notion of a rough
inclusion, making it a fundamental concept of rough mereology (see, e.g. [1–4]).3

Rough inclusion may be interpreted as a ternary relation with which one can
express the fact that a set of objects is to some degree included in the same or an-
other set of objects. Rough mereology is a theory extending the Leśniewski mere-
ology [6, 7] from a theory of being-a-part to a theory of being-a-part-to-degree.
Rough inclusion functions (RIFs) are mappings with which one can measure the
degree of inclusion of sets in sets and which comply with the axioms of rough
inclusion. Since according to L. A. Zadeh’s definition [8], an information granule
is a clump of objects drawn together on the basis of indistinguishability, simi-
larity or functionality, RIFs can be used in particular to measure the degree of
inclusion of information granules in information granules. Hence, the concept of
a RIF is fundamental not only for the rough set theory [5, 9] but also for the
foundations and the development of granular computing [10, 11].

? Many thanks to the anonymous referees for interesting comments on the paper. All
errors left are our sole responsibility.

3 It is worthy to note that some ideas on rough inclusion were presented by Z. Pawlak
in [5].

146 A. Gomolińska, M. Wolski

RIFs can be useful in the rough set theory and, more generally, in granular
computing in many ways. First, they can be applied to compare sets (and infor-
mation granules) with respect to inclusion. Secondly, they can be used to define
rough membership functions [12] and various approximation operators as those
in the Skowron – Stepaniuk approach (see, e.g. [13, 14] and other papers by the
same authors), in the Ziarko variable-precision rough set model (see, e.g. [15, 16]
and more recent papers), or in the decision-theoretic rough set model [17, 18].
RIFs can also be used to estimate the confidence (known as accuracy as well)
and the coverage of decision rules and association rules (see, e.g. [19]). Another
application of RIFs is graded semantics of formulas (see, e.g. [20]). An important
application of RIFs is obviously their usage to compute the degree of similarity
(nearness, closeness) between sets of objects and, in particular, between infor-
mation granules. Some steps into this direction have already been made (see,
e.g. [21, 4, 14]).

The similarity indices we are going to speak about are used in cluster analy-
sis [22–24] to compare clusterings, and clustering methods with respect to how
they are similar to (or dissimilar from) one another. Many of these similarity
indices were originally designed to compare species with respect to their mutual
similarity, given information about presence and/or absence of some features.
A. N. Albatineh, M. Niewiadomska-Bugaj, and D. Michalko thoroughly exam-
ined 28 similarity indices known from the literature on classification and cluster
analysis, from which 22 turned out to be different.4 The results of their re-
search on correction for chance agreement for similarity indices can be found,
e.g. in [25]. In the present article we continue our earlier works [26, 27], where
among other things, three similarity indices out of those 22 were derived from
RIFs. Our actual goal is to show that all 22 similarity indices investigated in [25]
can be obtained starting with the RIFs κ£, κ1, and κ2 only. This reveals one
more connection between the rough set theory and cluster analysis.

The rest of the paper is organized as follows. In Sect. 2 we recall the notion
of a rough inclusion function and the three particular RIFs mentioned above.
In Sect. 3 we present the 22 similarity indices known from the literature and
discussed in [25], and we characterize them one by one by means of the standard
RIF κ£ or two other RIFs, viz. κ1 and κ2. The last section contains final remarks.

2 Rough Inclusion Functions

Rough inclusion functions (RIFs for short) are supposed to be mappings to
measure the degree of inclusion of sets in sets and to comply with the axioms of
rough inclusion. In detail, a rough inclusion function upon a non-empty set of
objects U (in short, a RIF upon U or simply, a RIF) is a mapping κ : ℘U×℘U 7→
[0, 1], assigning to any pair of sets (X,Y) of elements of U , a number κ(X,Y)
from the unit interval [0, 1] interpreted as the degree to which X is included in

4 Some similarity indices were introduced more than once, under different names.

Rough Inclusion Functions and Similarity Indices 147

Y , and such that the conditions rif1(κ) and rif∗2(κ) are satisfied, where

rif1(κ)
def⇔ ∀X,Y ⊆ U.(κ(X,Y) = 1 ⇔ X ⊆ Y),

rif∗2(κ)
def⇔ ∀X,Y, Z ⊆ U.(κ(Y,Z) = 1 ⇒ κ(X,Y) ≤ κ(X,Z)).

Condition rif1(κ) expresses the fact that the set-theoretical inclusion of sets is
the most perfect case of rough inclusion. When rif1(κ) holds, condition rif∗2(κ)
will be equivalent with condition rif2(κ) below:

rif2(κ)
def⇔ ∀X,Y, Z ⊆ U.(Y ⊆ Z ⇒ κ(X,Y) ≤ κ(X,Z))

expressing monotonicity of κ in the second variable. In the literature, weaker
versions of RIFs are considered as well, where rif1(κ) is replaced by “a half of
it”. Then, rif∗2(κ) and rif2(κ) will define different classes of inclusion mappings
(see, e.g. [28]).

In summary, any RIF κ upon U should satisfy rif1(κ) and rif∗2(κ) or, equiv-
alently, rif1(κ) and rif2(κ). Among RIFs, various subclasses of mappings can
be distinguished by adding new postulates to be satisfied. These can be, for
instance,

rif3(κ)
def⇔ ∀∅ 6= X ⊆ U.κ(X, ∅) = 0,

rif4(κ)
def⇔ ∀X,Y ⊆ U.(κ(X,Y) = 0 ⇒ X ∩ Y = ∅),

rif−14 (κ)
def⇔ ∀∅ 6= X ⊆ U.∀Y ⊆ U.(X ∩ Y = ∅ ⇒ κ(X,Y) = 0),

rif5(κ)
def⇔ ∀∅ 6= X ⊆ U.∀Y ⊆ U.(κ(X,Y) = 0 ⇔ X ∩ Y = ∅),

rif6(κ)
def⇔ ∀∅ 6= X ⊆ U.∀Y ⊆ U.κ(X,Y) + κ(X,Y c) = 1,

rif7(κ)
def⇔ ∀X,Y, Z ⊆ U.(Z ⊆ Y ⊆ X ⇒ κ(X,Z) ≤ κ(Y,Z)),

where Y c denotes the set-theoretical complement of Y .5 Obviously, rif5(κ) if and
only if rif4(κ) and rif−14 (κ). Apart from that

rif−14 (κ) ⇒ rif3(κ),

rif1(κ) & rif6(κ) ⇒ rif5(κ). (1)

The standard RIF, denoted by κ£ here, is the most famous and frequently
used by the rough set community. The idea underlying this notion is closely
related to the conditional probability. In logic, J. Lukasiewicz was the first who
employed this idea when calculating the probability of truth associated with
implicative formulas [31, 32]. Let us recall that κ£ is only defined for a finite U
by putting

κ£(X,Y)
def
=

{
#(X∩Y)

#X if X 6= ∅,
1 otherwise,

(2)

5 The last condition was mentioned in [29, 30]. There, rough inclusion is understood
in a different way than in our paper.

148 A. Gomolińska, M. Wolski

where X,Y are any subsets of U and #X denotes the number of elements of
X. In words, the standard RIF measures the fraction of the elements having
the property described by the second argument (Y) among the elements with
the property described by the first argument (X). Apart from being a true RIF,
κ£ has a number of interesting properties recalled, e.g. in [27]. For instance, it
satisfies rifi(κ) (i = 3, . . . , 7) and rif−14 (κ).

Examples of other RIFs are mappings κ1 and κ2 such that for any X,Y ⊆ U ,

κ1(X,Y)
def
=

{ #Y
#(X∪Y) if X ∪ Y 6= ∅,
1 otherwise,

κ2(X,Y)
def
=

#(Xc ∪ Y)

#U
. (3)

Also in this case, U has to be finite. While κ1 was introduced in [26], κ2 had
already been mentioned in [33]. The both RIFs were investigated in detail in [27].
The RIFs κ£, κ1, and κ2 are different from one another. Below we recall a few
other properties of these mappings.

Proposition 1. For any X,Y ⊆ U , we have:

(i) X 6= ∅ ⇒ (κ1(X,Y) = 0 ⇔ Y = ∅),
(ii) κ2(X,Y) = 0 ⇔ X = U & Y = ∅,
(iii) rif4(κ1) & rif4(κ2),

(iv) κ£(X,Y) ≤ κ1(X,Y) ≤ κ2(X,Y),

(v) κ1(X,Y) = κ£(X ∪ Y, Y) & κ£(X,Y) = κ1(X,X ∩ Y),

(vi) κ2(X,Y) = κ£(U,Xc ∪ Y).

Let us also note that due to (i), rif3(κ1) holds. The same cannot be however said
about κ2 (compare (ii)).

3 Similarity Indices in Terms of RIFs

In this section we reformulate the similarity indices studied in [25] in terms of
the RIFs κ£, κ1, or κ2. The proofs that the indices can really be expressed in
this way will be given in the full version of this paper.

Consider a set U0 of m > 0 data points to be grouped by some clustering
methods A1 and A2. Let U (our universe) be the set of all unordered pairs
of data points {x, y} ⊆ U0 to be compared in order to obtain clusterings, i.e.
partitions of U0 generated by A1 and by A2, and denoted by C1 and C2 here.
Thus, #U = M =

(
m
2

)
= m(m − 1)/2. The similarity between the clusterings

C1 and C2 (and the clustering methods A1 and A2) is usually assessed on the
basis of the number of pairs of data points that are put into the same cluster or
are put into different clusters by each of the grouping methods considered. For
i = 1, 2, let us define

Xi = {{x, y} ∈ U | x, y are clustered by Ai}. (4)

Rough Inclusion Functions and Similarity Indices 149

Additionally, let

a = #(X1 ∩X2),

b = #(X1 ∩Xc
2),

c = #(Xc
1 ∩X2),

d = #(Xc
1 ∩Xc

2). (5)

In words, a is the number of pairs of data points {x, y} such that x and y are
placed in the same cluster according to both A1 and A2; b (respectively, c) is
the number of pairs of data points {x, y} such that x and y are placed in the
same cluster by A1 (resp., A2), but they are placed in different clusters by A2

(resp., A1); finally, d is the number of pairs of data points {x, y} such that x
and y are placed in different clusters according to both A1 and A2. We also have
#X1 = a+b, #X2 = a+c, #Xc

1 = c+d, #Xc
2 = b+d, and #U = a+b+c+d = M .

For simplicity assume that a, b, c, d > 0. Then, we will have that

κ£(X1, X2) =
a

a+ b
,

κ1(X1, X2) =
a+ c

a+ b+ c
,

κ2(X1, X2) =
a+ c+ d

M
. (6)

In what follows we will present similarity indices one by one and their new
formulation in terms of κ£, κ1, or κ2.

Wallace (1983). The similarity indices W1,W2 with range [0, 1] were intro-
duced by D. L. Wallace:

W1(C1, C2)
def
=

a

a+ b
,

W2(C1, C2)
def
=

a

a+ c
. (7)

It is easy to see that

W1(C1, C2) = κ£(X1, X2),

W2(C1, C2) = κ£(X2, X1). (8)

Kulczyński (1927). The similarity index K with range [0, 1] was proposed by
S. Kulczyński in 1927:

K(C1, C2)
def
=

1

2

(
a

a+ b
+

a

a+ c

)
(9)

K can be rewritten to the following form:

K(C1, C2) =
1

2

(
κ£(X1, X2) + κ£(X2, X1)

)
(10)

In words, K(C1, C2) is the arithmetical mean of κ£(X1, X2) and κ£(X2, X1).

150 A. Gomolińska, M. Wolski

McConnaughey (1964). The similarity index MC with range [−1, 1] goes
back to B. H. McConnaughey:

MC(C1, C2)
def
=

a2 − bc
(a+ b)(a+ c)

(11)

This index can be expressed by the following equation:

MC(C1, C2) = κ£(X1, X2) + κ£(X2, X1)− 1 (12)

Peirce (1884). The similarity index PE with range [−1, 1] is attributed to
C. S. Peirce:

PE(C1, C2)
def
=

ad− bc
(a+ c)(b+ d)

(13)

The index PE can be characterized as follows:

PE(C1, C2) =
1

2

(
κ£(X2, X1) + κ£(Xc

2 , X
c
1)− κ£(X2, X

c
1)− κ£(Xc

2 , X1)
)
(14)

The Gamma index. The similarity index Γ with range [−1, 1] is given by

Γ (C1, C2)
def
=

ad− bc√
(a+ b)(a+ c)(b+ d)(c+ d)

. (15)

In this case, the following characterization can be obtained:

Γ (C1, C2) =

√
1

2
(κ£(X2, X1) + κ£(Xc

2 , X
c
1)− κ£(X2, Xc

1)− κ£(Xc
2 , X1))

·
√
κ£(X1, X2)− κ£(Xc

1 , X2) (16)

Ochiai (1957), Fowlkes and Mallows (1983). The similarity index OFM
ranges over [0, 1]. It was introduced by A. Ochiai in 1957 and again by E. B. Fowlkes
and C. L. Mallows in 1983:

OFM(C1, C2)
def
=

a√
(a+ b)(a+ c)

(17)

After rewriting we get

OFM(C1, C2) =
√
κ£(X1, X2)κ£(X2, X1). (18)

That is, OFM(C1, C2) is the geometrical mean of κ£(X1, X2) and κ£(X2, X1).

Rough Inclusion Functions and Similarity Indices 151

The Pearson index. The similarity index P named after C. Pearson ranges
over [−1, 1]. It is given by

P (C1, C2)
def
=

ad− bc
(a+ b)(a+ c)(b+ d)(c+ d)

. (19)

The index P can be expressed in the following ways:

P (C1, C2) =

∣∣∣∣a bc d
∣∣∣∣−1 · Γ 2(C1, C2)

= (κ£(X1, X2)− κ£(Xc
1 , X2))κ£(X2, {u})κ£(Xc

2 , {u′}) (20)

for arbitrary u ∈ X2 and u′ 6∈ X2.

Sokal and Sneath (1963). The similarity indices SS1, SS2, SS3 with range
[0, 1] were introduced by R. R. Sokal and P. H. Sneath in 1963. The third index
is also attributed to A. Ochiai (1957):

SS1(C1, C2)
def
=

1

4

(
a

a+ b
+

a

a+ c
+

d

b+ d
+

d

c+ d

)
,

SS2(C1, C2)
def
=

a

a+ 2(b+ c)
,

SS3(C1, C2)
def
=

ad√
(a+ b)(a+ c)(b+ d)(c+ d)

. (21)

One can prove the following:

SS1(C1, C2) =
1

4

(
κ£(X1, X2) + κ£(X2, X1) + κ£(Xc

1 , X
c
2) + κ£(Xc

2 , X
c
1)
)
,

SS2(C1, C2) =
κ1(X1, X2) + κ1(X2, X1)− 1

3− (κ1(X1, X2) + κ1(X2, X1))
,

SS3(C1, C2) =
√
κ£(X1, X2)κ£(X2, X1)κ£(Xc

1 , X
c
2)κ£(Xc

2 , X
c
1). (22)

Thus, SS1(C1, C2) (resp., SS3(C1, C2)) is the arithmetical (geometrical) mean
of κ£(X1, X2), κ£(X2, X1), κ£(Xc

1 , X
c
2), and κ£(Xc

2 , X
c
1).

Jaccard (1908). The similarity index J with range [0, 1] goes back to P. Jac-
card:

J(C1, C2)
def
=

a

a+ b+ c
(23)

It can be shown that

J(C1, C2) = κ1(X1, X2) + κ1(X2, X1)− 1. (24)

152 A. Gomolińska, M. Wolski

Sokal and Michener (1958), Rand (1971). The similarity index R with
range [0, 1] was introduced by R. R. Sokal and C. D. Michener, and later inde-
pendently by W. Rand:

R(C1, C2)
def
=

a+ d

M
(25)

The index R can be rewritten to

R(C1, C2) = κ2(X1, X2) + κ2(X2, X1)− 1. (26)

Hamann (1961), Hubert (1977). The similarity index H, ranging over
[−1, 1], was proposed by U. Hamann and independently by L. J. Hubert:

H(C1, C2)
def
=

(a+ d)− (b+ c)

M
(27)

By certain transformations we obtain

H(C1, C2) = 2(κ2(X1, X2) + κ2(X2, X1))− 3. (28)

Czekanowski (1932), Dice (1945), Gower and Legendre (1986). The
similarity index CZ ranges over [0, 1]. It was proposed by J. Czekanowski in
1932, L. R. Dice in 1945, and by J. C. Gower and P. Legendre in 1986:

CZ(C1, C2)
def
=

2a

2a+ b+ c
(29)

On can prove the following:

CZ(C1, C2) =
2(κ1(X1, X2) + κ1(X2, X1)− 1)

κ1(X1, X2) + κ1(X2, X1)
(30)

Russel and Rao (1940). The similarity index RR ranges over [0, 1] and is
attributed to P. F. Russel and T. R. Rao:

RR(C1, C2)
def
=

a

M
(31)

In this case we obtain that

RR(C1, C2) = κ£(U,X1 ∩X2) = κ2(U,X1 ∩X2). (32)

Fager and McGowan (1963). The similarity index FMG with range [−1/2, 1)
goes back to E. W. Fager and J. A. McGowan :

FMG(C1, C2)
def
=

a√
(a+ b)(a+ c)

− 1

2
√
a+ b

(33)

The above formula can be expressed in the following way:

FMG(C1, C2) =
√
κ£(X1, X2)κ£(X2, X1)− 1

2

√
κ£(X1, {u}) (34)

for an arbitrary u ∈ X1.

Rough Inclusion Functions and Similarity Indices 153

Sokal and Sneath (1963), Gower and Legendre (1986). The similarity
index GL with range [0, 1] was introduced by R. R. Sokal and P. H. Sneath in
1963, and again by J. C. Gower and P. Legendre in 1986:

GL(C1, C2)
def
=

a+ d

a+ 1
2 (b+ c) + d

(35)

A characterization of GL in terms of κ2 is the following:

GL(C1, C2) =
2(κ2(X1, X2) + κ2(X2, X1)− 1)

κ2(X1, X2) + κ2(X2, X1)
(36)

Rogers and Tanimoto (1960). The similarity index RT with range [0, 1] is
attributed to D. J. Rogers and T. T. Tanimoto:

RT (C1, C2)
def
=

a+ d

a+ 2(b+ c) + d
(37)

This index can be rewritten to the following form:

RT (C1, C2) =
κ2(X1, X2) + κ2(X2, X1)− 1

3− (κ2(X1, X2) + κ2(X2, X1))
(38)

Yule (1927), Goodman and Kruskal (1954). The similarity index GK
ranges over [−1, 1]. It was proposed by G. U. Yule in 1927, and again by
L. A. Goodman and W. H. Kruskal in 1954:

GK(C1, C2)
def
=

ad− bc
ad+ bc

(39)

This index can be expressed in terms of the standard RIF as follows:

GK(C1, C2) =
κ£(X2, X1)κ£(Xc

2 , X
c
1)− κ£(X2, X

c
1)κ£(Xc

2 , X1)

κ£(X2, X1)κ£(Xc
2 , X

c
1) + κ£(X2, Xc

1)κ£(Xc
2 , X1)

(40)

Baulieu (1989). The similarity indicesB1 andB2 range over [0, 1] and [−1/4, 1/4],
respectively. They were introduced by F. B. Baulieu in 1989:

B1(C1, C2)
def
=

M2 −M(b+ c) + (b− c)2

M2
,

B2(C1, C2)
def
=

ad− bc
M2

. (41)

As in all previous cases, a RIF (precisely, κ2 here) underlies the definitions of
these similarity indices, viz.,

B1(C1, C2) = κ2(X1, X2) + κ2(X2, X1)− 1 + (κ2(U,X1)− κ2(U,X2))2,

B2(C1, C2) = (1− κ2(X1, X
c
2))κ2(U,Xc

1)− (1− κ2(Xc
1 , X

c
2))κ2(U,X1). (42)

154 A. Gomolińska, M. Wolski

4 Final Remarks

The main goal realized in this paper was to show that a pretty vast number
of various similarity indices known from the literature can be formulated in
terms of some rough inclusion functions. Rough inclusion functions (RIFs) are
mappings, inspired by the notion of a rough inclusion introduced by L. Polkowski
and A. Skowron as a basic concept of rough mereology, by means of which
one can measure the degree of inclusion of a set of objects in a set of objects.
Since information granules can be viewed as particular sets of objects, RIFs are
important not only for the rough set theory but also for granular computing.

Starting with the standard RIF κ£ and two other RIFs of a similar origin,
denoted by κ1 and κ2, we have obtained all 22 similarity indices discussed in [25].
In the paper just mentioned it is proved that the indices K and MC are equivalent
after some correction known as the correction for agreement due to chance,
and the same holds for R, H, and CZ. We have not referred to this question
because we are interested in other aspects concerning similarity indices. For
example, we think about a usage of similarity indices in granular computing to
calculate the degree of similarity between compound information granules such
as indistinguishability relations and tolerance relations on a set of elementary
objects considered. Let us note that similarity indices can also be used in granular
computing in a more general setting, viz. to compute the degree of similarity
between arbitrary sets of objects.

In the full version of this article we will give an illustrating example and proofs
of the formulas characterizing the similarity indices considered. In the future
research we will generalize our results, viz. we will propose general schemata
for generation of similarity indices from an arbitrary RIF. Another question,
also suggested by the referee, is the discovery of relationships among RIFs and
quality measures for clusters.

References

1. Polkowski, L.: Reasoning by Parts: An Outline of Rough Mereology, Warszawa
(2011)

2. Polkowski, L., Skowron, A.: Rough mereology. Lecture Notes in Artificial Intelli-
gence 869 (1994) 85–94

3. Polkowski, L., Skowron, A.: Rough mereology: A new paradigm for approximate
reasoning. Int. J. Approximated Reasoning 15(4) (1996) 333–365

4. Polkowski, L., Skowron, A.: Rough mereological calculi of granules: A rough set
approach to computation. Computational Intelligence 17(3) (2001) 472–492

5. Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning About Data. Kluwer,
Dordrecht (1991)

6. Leśniewski, S.: Foundations of the General Set Theory 1 (in Polish). Volume 2 of
Works of the Polish Scientific Circle., Moscow (1916) Also in [7], pages 128–173.

7. Surma, S.J., Srzednicki, J.T., Barnett, J.D., eds.: Stanis law Leśniewski Collected
Works. Kluwer/Polish Scientific Publ., Dordrecht/Warsaw (1992)

8. Zadeh, L.A.: Outline of a new approach to the analysis of complex system and
decision processes. IEEE Trans. on Systems, Man, and Cybernetics 3 (1973) 28–44

Rough Inclusion Functions and Similarity Indices 155

9. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177(1)
(2007) 3–27

10. Pedrycz, W., Skowron, A., Kreinovich, V., eds.: Handbook of Granular Computing.
John Wiley & Sons, Chichester (2008)

11. Stepaniuk, J.: Rough-Granular Computing in Knowledge Discovery and Data
Mining. Springer-V., Berlin Heidelberg (2008)

12. Pawlak, Z., Skowron, A.: Rough membership functions. In Fedrizzi, M., Kacprzyk,
J., Yager, R.R., eds.: Fuzzy Logic for the Management of Uncertainty. John Wiley
& Sons, New York (1994) 251–271

13. Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Infor-
maticae 27(2–3) (1996) 245–253

14. Stepaniuk, J.: Knowledge discovery by application of rough set models. In: [34].
(2001) 137–233

15. Ziarko, W.: Variable precision rough set model. J. Computer and System Sciences
46(1) (1993) 39–59

16. Ziarko, W.: Probabilistic decision tables in the variable precision rough set model.
Computational Intelligence 17(3) (2001) 593–603

17. Yao, Y.Y.: Decision-theoretic rough set models. Lecture Notes in Artificial Intel-
ligence 4481 (2007) 1–12

18. Yao, Y.Y., Wong, S.K.M.: A decision theoretic framework for approximating con-
cepts. Int. J. of Man–Machine Studies 37(6) (1992) 793–809

19. Tsumoto, S.: Modelling medical diagnostic rules based on rough sets. Lecture
Notes in Artificial Intelligence 1424 (1998) 475–482

20. Gomolińska, A.: Satisfiability and meaning of formulas and sets of formulas in
approximation spaces. Fundamenta Informaticae 67(1–3) (2005) 77–92

21. Nguyen, H.S., Skowron, A., Stepaniuk, J.: Granular computing: A rough set ap-
proach. Computational Intelligence 17(3) (2001) 514–544

22. Cios, K.J., Pedrycz, W., Swiniarski, R.W., Kurgan, L.A.: Data Mining: A Knowl-
edge Discovery Approach. Springer Science + Business Media, LLC, New York
(2007)

23. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM Computing
Surveys 31(3) (1999) 264–323

24. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster
Analysis. John Wiley & Sons, Chichester (1990)

25. Albatineh, A.N., Niewiadomska-Bugaj, M., Mihalko, D.: On similarity indices and
correction for chance agreement. J. of Classification 23 (2006) 301–313

26. Gomolińska, A.: On three closely related rough inclusion functions. Lecture Notes
in Artificial Intelligence 4585 (2007) 142–151

27. Gomolińska, A.: On certain rough inclusion functions. Transactions on Rough Sets
IX: journal subline of LNCS 5390 (2008) 35–55

28. Gomolińska, A.: Rough approximation based on weak q-RIFs. Transactions on
Rough Sets X: journal subline of LNCS 5656 (2009) 117–135

29. Xu, Z.B., Liang, J.Y., Dang, C.Y., Chin, K.S.: Inclusion degree: A perspective on
measures for rough set data analysis. Information Sciences 141 (2002) 227–236

30. Zhang, W.X., Leung, Y.: Theory of including degrees and its applications to
uncertainty inference. In: Proc. of 1996 Asian Fuzzy System Symposium. (1996)
496–501

31. Borkowski, L., ed.: Jan Lukasiewicz – Selected Works. North Holland/Polish
Scientific Publ., Amsterdam/Warsaw (1970)

32. Lukasiewicz, J.: Die logischen Grundlagen der Wahrscheinlichkeitsrechnung,
Kraków (1913) English translation in [31], pages 16-63.

156 A. Gomolińska, M. Wolski

33. Drwal, G., Mrózek, A.: System RClass – software implementation of a rough
classifier. In K lopotek, M.A., Michalewicz, M., Raś, Z.W., eds.: Proc. 7th Int.
Symp. Intelligent Information Systems (IIS’1998), Malbork, Poland, June 1998.
(1998) 392–395

34. Polkowski, L., Tsumoto, S., Lin, T.Y., eds.: Rough Set Methods and Applications:
New Developments in Knowledge Discovery in Information Systems. Physica V.,
Heidelberg New York (2001)

Efficient Rough Set Theory Merging

Adam Grabowski

Institute of Informatics
University of Bia lystok

ul. Akademicka 2
15-267 Bia lystok, Poland
adam@math.uwb.edu.pl

Abstract. Theory exploration is a term describing the development of
a formal (i.e. with the help of an automated proof-assistant) approach
to selected topic, usually within mathematics or computer science. This
activity however usually doesn’t reflect the view of science considered as a
whole, not as separated islands of knowledge. Merging theories essentially
has its primary aim of bridging these gaps between specific disciplines.

As we provided formal apparatus for basic notions within rough set the-
ory (as e.g. approximation operators and membership functions), we try
to reuse the knowledge which is already contained in available repos-
itories of computer-checked mathematical knowledge, or which can be
obtained in a relatively easy way. We can point out at least three top-
ics here: topological aspects of rough sets – as approximation operators
have properties of the topological interior and closure; lattice-theoretic
approach giving the algebraic viewpoint (e.g. Stone algebras); possible
connections with formal concept analysis.

In such a way we can give the formal characterization of rough sets in
terms of topologies or orders. Although fully formal, still the approach
can be revised to keep the uniformity all the time.

Keywords: rough sets, knowledge management, formal mathematics.

1 Introduction

The era of extensive use of computers brought also an evolution of the mathe-
maticians’ work. Among new possibilities offered by computers we can point out
the better transfer of knowledge between researchers via repositories of knowl-
edge. Such computer algebra tools as Mathematica or MathCAD are very pop-
ular nowadays; researchers can also develop their own specialized software for
computing relatively easier than before. The possibility of enhancing human work
using automated proof assistants should be also underlined. We try to disscuss
some issues concerned with the latter activity, concentrating on formalizing not
only selected fields; but viewing specific disciplines from a wider perspective.

As we provided formal apparatus for basic notions within rough set theory
(as e.g. approximation operators and membership functions), we try to reuse

158 A. Grabowski

the knowledge which is already contained in available repositories of computer-
checked mathematical knowledge, or which can be obtained in a relatively easy
way. We can point out at least three topics here: topological aspects of rough
sets – as approximation operators have properties of the topological interior
and closure; possible connections with formal concept analysis; lattice-theoretic
approach giving the algebraic viewpoint (e.g. Stone algebras).

Our main aim is to develop (i.e. to describe in the formal computer language
to be used within the repository of the existing mathematical knowledge) con-
crete examples of such formal knowledge reuse on the area of rough set theory.
We also discuss some issues concerned with our implementation, but as we offer
more than purely theoretical considerations (actual implementation is given),
hence the word ‘efficient’ in the paper’s title.

The structure of the paper is as follows: in the next section we present the
overall methodological background for our work while in the third we focus on
the activity of putting formal things together, called merging theories. Then
we describe briefly the formal approach to rough sets we developed and some
examples of successful, although not yet fully reused, bridging between various
fields of formal mathematics.

2 Mathematical Knowledge Management

“Computer certification” is a relatively new term describing the process of the
formalization via rewriting the text in a specific manner, usually in a rigorous
language. Now this idea, although rather old (taking Peano, Whitehead and
Russell as protagonists), gradually obtains a new life. As the tools evolved, the
new paradigm was established: computers can potentially serve as a kind of
oracle to check if the text is really correct. And then, the formalization is not
l’art pour l’art, but it extends perspectives of knowledge reusing. The problem
with computer-driven formalization is that it draws the attention of researchers
somewhere at the intersection of mathematics and computer science, and if the
complexity of the tools will be too high, only software engineers will be attracted
and all the usefulness for an ordinary mathematician will be lost. But here, at
this border, where there are the origins of MKM – Mathematical Knowledge
Management, the place of fuzzy sets can be also. To give more or less formal
definition, according to Wiedijk [26], the formalization can be seen presently as
“the translation into a formal (i.e. rigorous) language so computers check this
for correctness.”

In this era of digital information anyone is free to choose his own way; to
quote Vladimir Voevodsky, Fields Medal winner’s words: “Eventually I became
convinced that the most interesting and important directions in current mathe-
matics are the ones related to the transition into a new era which will be char-
acterized by the widespread use of automated tools for proof construction and
verification”. However he is focused as of now on the constructive Martin-Löf
type theory many ordinary mathematicians aren’t really familiar with. On the
other hand, if we take into account famous Four Colour Theorem, automated

Efficient Rough Set Theory Merging 159

tools can really enable making some significant part of proofs, so hard to discuss
with this opinion.

Among many available systems which serve as a proof-assistant we have cho-
sen Mizar. The Mizar system [11] consists of three parts – the formal language,
the software, and the database. The latter, called Mizar Mathematical Library
(MML for short) established in 1989 is considered one of the largest repositories
of computer checked mathematical knowledge. The basic item in the MML is
called a Mizar article. It reflects roughly a structure of an ordinary paper, being
considered at two main layers – the declarative one, where definitions and theo-
rems are stated and the other one – proofs. Naturally, although the latter is the
larger, the earlier needs some additional care.

As lattice theory (steered by Trybulec, Bia lystok, Poland) and functional
analysis (led by Shidama, Nagano, Japan) are the most developed disciplines
within the MML, further codification of rough sets, especially including their
lattice-theoretic flavour, looks very promising. As a by-product, apart of read-
ability of the Mizar language, we obtain also the presentation of the source
accessible to ordinary mathematicians: pure HTML form with clickable links to
corresponding notions and theorems.

3 Merging Theories

Theory exploration is a term describing the development of a formal (i.e. with
the help of an automated proof-assistant) approach to selected topic, usually
within mathematics or computer science. This activity however usually doesn’t
reflect the view of science considered as a whole, not as separated islands of
knowledge. Merging theories essentially has its primary aim of bridging these
gaps between specific disciplines. Of course, even digging deep in the area of
selected discipline, eventually one have to use the apparatus from another field
(usually category theory sheds some light), but this touches the informal layer,
where interpretations can be somehat flexible.

In our CS&P 2012 paper [9] we have shown our translation of Zhu’s paper
about connections between ordinary properties of binary relations and underly-
ing properties of rough approximation operators which proves some usefulness
of proof assistants within a single area of research (essentially just the field of
binary relations), but it is known that e.g., category theory gives nice inter-
pretations for various questions; the same goes for modal logics. From another
viewpoint, lattices can deliver similarly useful interpretations. Many fields can
be reused depending on the author’s preferred selected approach. Even in rough
approach one can prefer either P-sets or I-sets (equivalence classes or just pairs)
reflecting in the chosen language – either of ordinary sets (partitions) or subsets
of Cartesian product.

We can consider merging on two levels:

Structures – when we inherit the overall signature of the object (as we can
tell that groups are predecessors of rings or fields);

160 A. Grabowski

1-sorted

LattStr RelStr ContextStr

LattRelStr RoughContextStr

RoughContextLattStr

✿②
✻

✸ ❦❦ ✸

✸ ❦

Fig. 1. The net of structures for chosen theories

Adjectives – when the hierarchy of axioms is described; here the example is
that all Boolean algebras are Stone algebras.

Although from the informal point of view both given examples seem to be just
the correspondence between axiom sets, formally this issue should be considered
more deeply.

First of all, there are automatic theorem provers operating on the form of
an equational characterization (collection of identities) of the theory. Hence the
formula binding distinct items from a given signature gives more possibilities
than the axiom postulating the existence of an object (even if we don’t take into
account Birkhoff variety theorem; equationally definable classes of mathematical
structures are hereditary, admit homomorphic images and admit products –
they form a variety). Good illustrative example here is the treatment of Boolean
rings and Boolean algebras; we can see them as subvarieties of each other but
formallywe should cope somehow with different signatures both are defined on.
The same problem apears in the case of lattices viewed on the one hand as
structures with join and meet operations or posets, otherwise. One can freely
define lattices as posets with the existence of binary joins and meets; hence we
obtain the algebraic interpretation of a lattice used, e.g. in universal algebra.
Obviously both definitions are equivalent, buth they are definitely not the same
as the order-theoretic one uses the signature

〈L,≤〉

while the algebraic one takes
〈L,⊔,⊓〉

Efficient Rough Set Theory Merging 161

with binary operations: join ⊔ and meet ⊓.

Taking into account the aforementioned two stages of merging – on the level
of structures both have really little in common as only the carrier L can be
identical (we can call it a kind of syntactical point of view). But the latter
viewpoint (of universal algebra) can give a path to semilattices 〈L,⊔〉 and 〈L,⊓〉
and here the second level of merging (semantical) really makes sense. Namely,
on the signature of lower semilattice we can give an axiom of ⊓-commutativity
or ⊓-associativity which can be then used on all its descendants. Both identities
can be expressed as adjectives binded with appropriate structures.

The extensive use of identities in the form of attributes is really close to
standard manipulation of axioms, so the example of the connection between
Boolean and Stone lattices is really illlustrative here: as we work on the common
signature 〈L,⊔,⊓,′ , 0, 1〉, there is no need to extend the corresponding structures
and the work really depends on the deductive power of proof assistant (and
computers do some computations which is quite natural).

Of course, the term ‘formal’ or ‘formally’ is used in this paper in two threads:
on the one hand, ‘formal’ means the strict description of the rules governing the
theory – in common use, it is ‘rigorous’ method. But hence all mathematics
should be called formal in this sense, and this adjective should not then be
used at all. There is also another interpretation of this attribute, which stems
from Hilbert’s formalism. In the latter view, computer assistance is the recent
emerging trend which can be really controversial from the pen-and-paper math-
ematician viewpoint as the mathematics developed without machines for ages.
Many computer scientists and mathematical intuitionists really advocate this
approach, as Voevodsky who was quoted before.1

4 Rough Sets

Originally, we dealt with the more often used and methodologically simpler ap-
proach, i.e. equivalence relations-based rough sets. One of the key issues was also
the possibility of further reusing, but soon this was automatically generalized.
The concept of an information system can be also formalized as the descendant of
the approximation space in a natural way. At the first sight, the underlying Mizar
structure is RelStr, which has two fields: the carrier and the InternalRel,
that is a binary relation of the carrier. The theory of relational structures has
been developed and improved mainly during formalization of the Compendium
of Continuous Lattices (which is described in [1] in detail). While in this context
RelStr was used with attributes reflexive transitive and antisymmetric

to establish posets, we decided to reuse it in our own way. First, we defined
two new attributes: with_equivalence and with_tolerance which state that
the InternalRel of the underlying RelStr is an equivalence resp. a tolerance
relation (where a tolerance relation is a total reflexive symmetric relation, see
[20]). With such defined notions, the basic definitions are as follows:

1 Thanks go the anonymous referee for pointing out this inconsequence.

162 A. Grabowski

definition

mode Approximation_Space is with_equivalence non empty RelStr;

mode Tolerance_Space is with_tolerance non empty RelStr;

end;

Formalized theories can be treated as objects (axioms, definitions, theorems)
clustered by certain relations based on information flow. The more atomic the
notions are, the more is their usefulness. Driven by this idea we tried to drop
selected properties of the equivalence relations. Our first choice was transitivity
– therefore the use of tolerance spaces – as it seemed to be less substantial than
the other two. The generalization work went rather smoothly. As we discovered
soon, similar investigations, but without any machine-motivations, were done by
Järvinen [14].

5 Formal Concept Analysis

Formal context analysis (FCA for short) has been introduced by Wille [27] as
a formal tool for the representation and analysis of data. The main idea is to
consider not only data objects, but to take into account properties (attributes)
of the objects also. This leads to the notion of a concept which is a pair of a
set of objects and a set of properties. In a concept all objects possess all the
properties of the concept and vice versa. Thus the building blocks in FCA are
given by both objects and their properties following the idea that we distinguish
sets of objects by a common set of properties.

In the framework of FCA the set of all concepts (for given sets of objects and
properties) constitutes a complete lattice. Thus based on the lattice structure
the given data – that is its concepts and concept hierarchies – can be computed,
visualized, and analyzed. In the area of software engineering FCA has been
successfully used to build intelligent search tools as well as to analyze and reor-
ganize the structure of software modules and software libraries. In the literature
a number of extensions of the original approach can be found. So, for example,
multi-valued concept analysis where the value of features is not restricted to
two values (true and false). Also more involved models have been proposed tak-
ing into account additional aspects of knowledge representation such as different
sources of data or the inclusion of rule-based knowledge in the form of ontologies.

Being basically an application of lattice theory FCA is a well-suited topic
for machine-oriented formalization. On the one hand it allows to investigate the
possibilities of reusing an already formalized lattice theory. On the other hand
it can be the starting point for the formalization of the extensions mentioned
above. In the following we briefly present the Mizar formalization of the basic
FCA notions. The starting point is a formal context giving the objects and
attributes of concern. Formally such a context consists of two sets of objects
O and attributes A, respectively. Objects and attributes are connected by an
incidence relation I ⊆ O × A. The intension is that object o ∈ O has property
a ∈ A if and only if (o, a) ∈ I. In Mizar [23] this has been modelled by the
following structure definitions.

Efficient Rough Set Theory Merging 163

definition

struct 2-sorted (# Objects, Attributes -> set #);

end;

definition

struct (2-sorted) ContextStr

(# Objects, Attributes -> set,

Information -> Relation of the Objects,the Attributes #);

end;

Now a formal context is a non-empty ContextStr. To define formal concepts in
a given formal context C two derivation operators ObjectDerivation(C) and
AttributeDerivation(C) are used. For a set O of objects (A of attributes) the
derived set consists of all attributes a (objects o) such that (o, a) ∈ I for all
o ∈ O (for all a ∈ A). The Mizar definition of these operators is straightforward
and omitted here.

A formal concept FC is a pair (O,A) where O and A respect the derivation
operators: the derivation of O contains exactly the attributes of A, and vice
versa. O is called the extent of FC, A the intent of FC. In Mizar this gives
rise to a structure introducing the extent and the intent and an attribute
concept-like.

definition let C be 2-sorted;

struct ConceptStr over C

(# Extent -> Subset of the Objects of C,

Intent -> Subset of the Attributes of C #);

end;

definition let C be FormalContext;

let CP be ConceptStr over C;

attr CP is concept-like means :: CONLAT_1:def 13

(ObjectDerivation(C)).(the Extent of CP) = the Intent of CP &

(AttributeDerivation(C)).(the Intent of CP) = the Extent of CP;

end;

definition let C be FormalContext;

mode FormalConcept of C is concept-like non empty ConceptStr over C;

end;

Formal concepts over a given formal context can be easily ordered: a formal
concept FC1 is more specialized (and less general) than a formal concept FC2

iff the extent of FC1 is included in the extent of FC2 (or equivalently iff the
intent of FC2 is included in the intent of FC1). With respect to this order the
set of all concepts over a given formal context C forms a complete lattice, the
concept lattice of C.

theorem

for C being FormalContext holds ConceptLattice(C) is complete Lattice;

164 A. Grabowski

This theorem, among others, has been proven in [23]. The formalization of FCA
in Mizar went rather smoothly, the main reason being that lattice theory has
already been well developed. Given objects, attributes and an incidence relation
between them, this data can now be analyzed by inspecting the structure of the
(concept) lattice; see [27, 7] for more details and techniques of formal concept
analysis.

6 Rough Concept Analysis

In this section we present issues concerning the merging of concrete theories
in the Mizar system. We will illustrate them by living examples from Rough
Concept Analysis done in Mizar and skipping most technical details (this part
is an extension of [12]). For details of used type system, see [11, 2]. We like
to mention that in the course of FCA formalization the formal apparatus yet
existing in the Mizar Mathematical Library also had to be improved and cleaned
up.

A basic structure for the merged theory should inherit fields from its an-
cestors, which would be hard to implement if structures were implemented as
ordered tuples (multiple copies of the same selector, inadequate ordering of fields
in the result). The more feasible realization is by partial functions rather, and
that is the way Mizar structures work.

definition

struct (ContextStr, RelStr) RoughContextStr

(# carrier, carrier2 -> set,

Information -> Relation of the carrier, the carrier2,

InternalRel -> Relation of the carrier #);

end;

As it often happens, an extension of the theory to another need not be
unique. There are at least three different methods of adding roughness to formal
concepts [15, 22]. The question which approach to choose depends on the author.
The notion of a free structure in a class of descendant type conservative with
respect to the original object is very useful.

definition let C be ContextStr;

mode RoughExtension of C -> RoughContextStr means

the ContextStr of it = the ContextStr of C;

end;

Now, if C is a given context, we can introduce roughness in many different
ways by adjectives.

Up to now, we described only mechanisms of independent inheritance of no-
tions. Within the merged theory it is necessary to define connections between its
source ingredients. Here the attributes describing mutual interferences between
selectors from originally disjoint theories proved their enormous value. They may
determine the set of properties of a free extension.

Efficient Rough Set Theory Merging 165

definition let C be RoughFormalContext;

attr C is naturally_ordered means

for x, y being Element of C holds

[x,y] in the InternalRel of C iff

(ObjectDerivation C).{x} = (ObjectDerivation C).{y};

end;

Since the relation from the definiens above is an equivalence relation on the
objects of C and hence determines a partition of the set of objects of C into the
so-called elementary sets, it is a constructor of an approximation space induced
by given formal context.

Theory merging makes no sense, if proving the same theorem would be nec-
essary within both source and target theory. Since a new Mizar type called
RoughFormalContext is defined analogously to the notion of FormalContext,
as non quasi-empty RoughContextStr, the following Fundamental Theorem
of RCA is justified only by the Fundamental Theorem of FCA. Even more, clus-
ters providing automatic acceptance of the original theorems do it analogously
within target theory. That is also a workplace for clusters rough and exact from
the core rough set theory.

for C being RoughFormalContext holds

ConceptLattice(C) is complete Lattice by CONLAT_1:48;

7 Topological Spaces and Partitions

Of course, there are cases we shouldn’t even change the language when switch-
ing between various fields of mathematics. An illustrative example here is again
the notion of rough sets in its primal setting. When we see at the approxima-
tion space given by an equivalence relation, it is quite natural to consider just
classes of abstractions forgetting about original relation. Hence, the lattice of
such objects can be defined:

definition

let X be set;

func EqRelLatt X -> strict Lattice means

:: MSUALG_5:def 2

the carrier of it = { x where x is Relation of X,X :

x is Equivalence_Relation of X } &

for x,y being Equivalence_Relation of X holds

(the L_meet of it).(x,y) = x /\ y &

(the L_join of it).(x,y) = x "\/" y;

end;

Among many interesting properties which were proven about this structure
we can quote its completeness, for example:

166 A. Grabowski

registration

let A be set;

cluster EqRelLATT A -> complete;

end;

The natural definition of the topological space is that we have a family of
open sets called the topology, τ . Then a topological space can be considered as
a pair consisting of the universe X and the topology τ defined on the subsets
of X if τ satisfies the axioms of topology. As they are widely known, informally,
we quote below only a formal counterpart of it:

definition

struct (1-sorted) TopStruct

(# carrier -> set,

topology -> Subset-Family of the carrier

#);

end;

reflecting the bare 〈X, τ〉 tuple and

definition

let IT be TopStruct;

attr IT is TopSpace-like means

:: PRE_TOPC:def 1

the carrier of IT in the topology of IT &

(for a being Subset-Family of IT st a c= the topology of IT holds

union a in the topology of IT) &

for a,b being Subset of IT st

a in the topology of IT & b in the topology of IT holds

a /\ b in the topology of IT;

end;

as axiomatic description of τ.
Then a topological space is just the structure TopStruct to which the ad-

jective TopSpace-like can be added. As usual, with every such object we can
associate the closure and the interior operators, with axioms in Kuratowski style
and then the existing apparatus of topological spaces (Cl and Int for the closure
and interior, respectively) can be reused.

8 Conclusions

Even if we are aware that this paper is really an emerging work and most tech-
nicalities were really skipped (but they can of course tracked in corresponding
Mizar source files freely available from the project homepage), there are some its
clear advantages – considering the repository of formalized mathematical knowl-
edge as a whole extends our knowledge. Some of the ideas contained in this paper

Efficient Rough Set Theory Merging 167

are dated back to 2004 and our paper [12] presented at the International Con-
ference in Mathematical Knowledge Management where some of the problems
were only identified, but until now many new tools were developed and many
interesting new topics were formalized.

Quoting Pawlak’s own words about the role of computers (or mathematical
machines as they were called):

“One can formulate a risky opinion that almost all contemporary math-
ematical theories in their current state cannot be automatically treated.
Reformulating them is not an easy task. So, the question arises, to which
extent the amount of work done can be justified by the importance of ob-
tained results. (...) Automated discovery of new important results seems
to us rather unlikely.”

Even if Pawlak’s doubts about finding new theorems were clearly expressed,
he was convinced that computers can help in a bit different way:

“(...) the view for theories which are already known, but from another
viewpoint can shed some new light for the structure of mathematical the-
ories and improve human creativity.”
([18], p. 142, translation ours).

We try to argue that the formalization (still having in mind the discussion on
the (over)use of the word ‘formal’ from the end of the third section) of knowledge
in the way accessible by computers is not the question of the sense; it is the
question of time. Real efficiency of this activity will be shown by much more
examples, much more work, and definitely by much more automation many
proof assistants offer. We implemented in Mizar already three paths of rough set
theory merging: with topology, formal concepts and lattices (including interval
sets, which is formalized in [10]). Hence preliminary steps were already done and
as this work makes no sense in the island of isolated knowledge, anyone is invited
to contribute.

References

1. G. Bancerek, Development of the theory of continuous lattices in Mizar, in: M. Ker-
ber and M. Kohlhase (eds.), The Calculemus-2000 Symposium Proceedings, pp.
65–80, 2001.

2. G. Bancerek, On the structure of Mizar types, in: H. Geuvers and F. Kamareddine
(eds.), Proc. of MLC 2003, ENTCS 85(7), 2003.

3. B. Buchberger, Mathematical Knowledge Management in Theorema, in: B. Buch-
berger and O. Caprotti (eds.), Proc. of MKM 2001, Linz, Austria, 2001.

4. L. Cruz-Filipe, H. Geuvers, and F. Wiedijk, C-CoRN, the Constructive Coq Repos-
itory at Nijmegen, http://www.cs.kun.nl/~freek/notes/.

5. D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, International Journal
of General Systems, 17(2–3), 191–209, 1990.

6. W. Farmer, J. Guttman, and F. Thayer, Little theories, in: D. Kapur (ed.), Auto-
mated Deduction – CADE-11, LNCS 607, pp. 567–581, 1992.

168 A. Grabowski

7. B. Ganter and R. Wille, Formal concept analysis – mathematical foundations,

Springer Verlag, 1998.
8. A. Grabowski, Basic properties of rough sets and rough membership function,

Formalized Mathematics, 12(1), 21–28, 2004; can be tracked also under http://

mizar.org/version/current/html/roughs_1.html.
9. A. Grabowski, Automated discovery of properties of rough sets, to appear in Fun-

damenta Informaticae, 2013.
10. A. Grabowski, M. Jastrzȩbska, On the lattice of intervals and rough sets, Formal-

ized Mathematics, 17(4), 237–244, 2009.
11. A. Grabowski, A. Korni lowicz, A. Naumowicz, Mizar in a nutshell, Journal of

Formalized Reasoning, 3(2), 153–245, 2010.
12. A. Grabowski, Ch. Schwarzweller, Rough Concept Analysis – theory development

in the Mizar system, MKM 2004 Proceedings, LNCS, 3119, pp. 130–144, 2004.
13. A. Grabowski, Ch. Schwarzweller, Towards automatically categorizing mathemat-

ical knowledge, M. Ganzha, L. Maciaszek, and M. Paprzycki (Eds.), FedCSIS 2012
Proceedings, 63–68, 2012.

14. J. Järvinen, Approximations and rough sets based on tolerances, in: W. Ziarko and
Y. Yao (eds.), Proc. of RSCTC 2000, LNAI 2005, pp. 182–189, 2001.

15. R.E. Kent, Rough Concept Analysis: a synthesis of rough sets and formal concept
analysis, Fundamenta Informaticae 27(2–3), pp. 169–181, 1996.

16. T. Nipkow, L. Paulson, and M. Wenzel, Isabelle/HOL – a proof assistant for higher-
order logic, LNCS 2283, 2002.

17. S. Owre and N. Shankar, Theory interpretations in PVS, Technical Report,
NASA/CR-2001-211024, 2001.

18. Z. Pawlak: Automatyczne dowodzenie twierdzeń, Warsaw, PZWS, 1965 (Eng. Au-
tomated theorem proving, in Polish).

19. Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning about Data, Kluwer, Dor-
drecht, 1991.

20. K. Raczkowski and P. Sadowski, Equivalence relations and classes of abstraction,
Formalized Mathematics, 1(3), pp. 441–444, 1990.

21. P. Rudnicki and A. Trybulec, Mathematical Knowledge Management in Mizar, in:
B. Buchberger and O. Caprotti (eds.), Proc. of MKM 2001, Linz, Austria, 2001.

22. J. Saquer and J.S. Deogun, Concept approximations based on rough sets and sim-
ilarity measures, International Journal on Applications of Mathematics in Com-

puter Science, 11(3), pp. 655–674, 2001.
23. C. Schwarzweller, Introduction to concept lattices, Formalized Mathematics, 7(2),

pp. 233–242, 1998.
24. M. Strecker, Formal verification of a Java compiler in Isabelle, Lecture Notes in

Computer Science, 2392, 63–77, 2002.
25. J. Urban, G. Sutcliffe, Automated reasoning and presentation support for formal-

izing mathematics in Mizar, Lecture Notes in Computer Science, 6167, 132–146,
2010.

26. F. Wiedijk, Formal proof – getting started, Notices of the American Mathematical

Society, 55(11), 1408–1414, 2008.
27. R. Wille, Restructuring lattice theory: an approach based on hierarchies of con-

cepts, in: I. Rival (ed.), Ordered Sets, Reidel, Dordrecht-Boston, 1982.
28. Y.Y. Yao, A comparative study of fuzzy sets and rough sets, Information Sciences,

109(1-4), 227–242, 1998.

Opacity Testing ?

Damas P. Gruska

Institute of Informatics, Comenius University,
Mlynska dolina, 842 48 Bratislava, Slovakia,

gruska@fmph.uniba.sk.

Abstract. Opacity testing is formalized and studied. We specify opacity
testers as well as tested systems by (timed) process algebras. We model
various testers according to how sophisticated observations of tested sys-
tem they can make and which kind of conclusions they can obtain. We use
this technique to define several realistic security properties. The proper-
ties are studied and compared with other security concepts.

Keywords: opacity, process algebras, information flow, security

1 Introduction

Several formulations of system security can be found in the literature. Many
of them are based on non-interference (see [GM82]) which assumes an absence
of any information flow between private and public systems activities. More
precisely, systems are considered to be secure if from observations of their public
activities no information about private activities can be deduced. This approach
has found many reformulations for different formalisms, computational models
and nature or “quality” of observations.

One of the most general notion is opacity (see [BKR04,BKMR06]) and many
security properties can be viewed as its special cases (see, for example, [Gru07]).
A predicate is opaque if for any trace of a system for which it holds there exists
another trace for which it does not hold and both traces are indistinguishable
for an observer. Opacity is widely studied also in process algebras framework.
Here, as well as later in this paper, we mention those ones which are close to
the the presented work. For example, in [Gru07,Gru12] opacity for very simple
observations is studied for timed process algebra. In [Gru09] a quantification
of opacity by means of the information theory is studied. In [Gru10,Gru12a]
we defined security properties which could be described by specific relations
on contexts. In general, opacity is an undecidable property even for very simple
observation functions or predicates. On the other side, opacity is based on traces
and hence inadequate for any finer ”attacker” who is capable not only observe
traces but also interact with systems.

The aim of this paper is twofold. On the one side, we weaken opacity by
modeling both predicate and observations by processes (particularly, finite state

? Work supported by the grant VEGA 1/1333/12.

170 D. P. Gruska

processes) and hence we obtain (polynomial time) decidable properties. On the
other side, we strength opacity by defining simulation opacity which is not re-
stricted to trace observations and which is stronger than opacity. While opacity
of predicate is defined for a given process (and an observation function), simula-
tion opacity requires (roygly speaking) that it is opaque also for every successor
of the process. Moreover, our formalism of timed process algebra, allows us to
express various types of timed attacks.

The paper is organized as follows. In Section 2 we describe the timed process
algebra TPA which will be used as a basic formalism. In Section 3 we present
opacity and in the next section simulation opacity is defined and studied.

2 Timed Process Algebra

In this section we define Timed Process Algebra, TPA for short. TPA is based on
Milner’s CCS but the special time action t which expresses elapsing of (discrete)
time is added. The presented language is a slight simplification of Timed Security
Process Algebra introduced in [FGM00]. We omit an explicit idling operator ι
used in tSPA and instead of this we allow implicit idling of processes. Hence
processes can perform either ”enforced idling” by performing t actions which are
explicitly expressed in their descriptions or ”voluntary idling”. But in the both
cases internal communications have priority to action t in the case of the parallel
operator. Moreover we do not divide actions into private and public ones as it is
in tSPA. TPA differs also from the tCryptoSPA (see [GM04]). TPA does not use
value passing and strictly preserves time determinacy in case of choice operator
+ what is not the case of tCryptoSPA.

To define the language TPA, we first assume a set of atomic action symbols A
not containing symbols τ and t, and such that for every a ∈ A there exists a ∈ A
and a = a. We define Act = A ∪ {τ}, Actt = Act ∪ {t}. We assume that a, b, . . .
range over A, u, v, . . . range over Act, and x, y . . . range over Actt. Assume the
signature Σ =

⋃
n∈{0,1,2}Σn, where

Σ0 = {Nil}
Σ1 = {x. | x ∈ A ∪ {t}} ∪ {[S] | S is a relabeling function}

∪{\M |M ⊆ A}
Σ2 = {|,+}

with the agreement to write unary action operators in prefix form, the unary
operators [S], \M in postfix form, and the rest of operators in infix form. Rela-
beling functions, S : Actt→ Actt are such that S(a) = S(ā) for a ∈ A,S(τ) = τ
and S(t) = t.

The set of TPA terms over the signature Σ is defined by the following BNF
notation:

P ::= X | op(P1, P2, . . . Pn) | µXP

Opacity Testing 171

where X ∈ V ar, V ar is a set of process variables, P, P1, . . . Pn are TPA terms,
µX− is the binding construct, op ∈ Σ.

The set of CCS terms consists of TPA terms without t action. We will use
an usual definition of opened and closed terms where µX is the only binding
operator. Closed terms which are t-guarded (each occurrence of X is within
some subexpression t.A i.e. between any two t actions only finitely many non
timed actions can be performed) are called TPA processes. Note that Nil will
be often omitted from processes descriptions and hence, for example, instead of
a.b.Nil we will write just a.b.

We give a structural operational semantics of terms by means of labeled
transition systems. The set of terms represents a set of states, labels are actions
from Actt. The transition relation→ is a subset of TPA×Actt×TPA. We write
P

x→ P ′ instead of (P, x, P ′) ∈ → and P 6 x→ if there is no P ′ such that P
x→ P ′.

The meaning of the expression P
x→ P ′ is that the term P can evolve to P ′ by

performing action x, by P
x→ we will denote that there exists a term P ′ such

that P
x→ P ′. We define the transition relation as the least relation satisfying

the inference rules for CCS plus the following inference rules:

Nil
t→ Nil

A1
u.P

t→ u.P
A2

P
t→ P ′, Q

t→ Q′, P | Q 6 τ→
P | Q t→ P ′ | Q′

Pa
P

t→ P ′, Q
t→ Q′

P +Q
t→ P ′ +Q′

S

Here we mention the rules that are new with respect to CCS. Axioms A1, A2
allow arbitrary idling. Concurrent processes can idle only if there is no possibility
of an internal communication (Pa). A run of time is deterministic (S). In the
definition of the labeled transition system we have used negative premises (see
Pa). In general this may lead to problems, for example with consistency of the
defined system. We avoid these dangers by making derivations of τ independent
of derivations of t. For an explanation and details see [Gro90]. Regarding behav-
ioral relations we will work with the timed version of weak trace equivalence.
Note that here we will use also a concept of observations which contain complete
information which includes also τ actions and not just actions from A and t ac-
tion as it is in [FGM00]. For s = x1.x2.xn, xi ∈ Actt we write P

s→ instead

of P
x1→x2→ . . .

xn→ and we say that s is a trace of P . By ε we will denote the empty
sequence of actions, by Succ(P) we will denote the set of all successors of P . If
the set Succ(P) is finite we say that P is finite state.

Let s ∈ Actt?. By |s| we will denote the length of s i.e. a number of ac-
tion contained in s. By s|B we will denote the sequence obtained from s by
removing all actions not belonging to B. For example, |s|{t}| denote a number
of occurrences of t in s, i.e. time length of s.

To express what an observer can see from system behaviour we will define
modified transitions

x⇒M which hide actions from M (as well as τ action). For-

mally, we will write P
x⇒M P ′ for M ⊆ A iff P

s1→ x→ s2→ P ′ for s1, s2 ∈ (M ∪{τ})?

172 D. P. Gruska

and P
s⇒M instead of P

x1⇒M
x2⇒M . . .

xn⇒M . Instead of ⇒∅ we will write ⇒ and
instead of ⇒{h} we will write ⇒h. We will write P

x⇒M if there exists P ′ such

that P
x⇒M P ′. We will write P

x̂⇒M P ′ instead of P
ε⇒M P ′ if x ∈M .

We conclude this section with definitions of variants of weak simulation and
weak bisimulation.

Definition 1. Let (TOA, Actt,→) be a labelled transition system (LTS). A
relation < ⊆ CCS× CCS is called a weak M-bisimulation if it is symmetric and
it satisfies the following condition: if (P,Q) ∈ < and P

x→ P ′, x ∈ Actt then

there exists a process Q′ such that Q
x̂⇒M Q′ and (P ′, Q′) ∈ <. Two processes

P,Q are M-bisimilar, abbreviated P ≈M Q, if there exists a strong bisimulation
relating P and Q. If it is not required that relation < is symmetric we call it M-
simulation and we say that process P simulates process Q, abbreviated P ≺M Q,
if there exists a simulation relating P and Q.

We will write ≈ and ≺ instead of ≈M and ≺M , respectively, if M = ∅.

3 Opacity

To formalize an information flow we do not divide actions into public and private
ones at the system description level, as it is done for example in [GM04,BG04],
but we use a more general concept of observation and opacity. This concept was
exploited in [BKR04] and [BKMR06] in a framework of Petri Nets and transition
systems, respectively.

First we define observation function on sequences from Actt?.

Definition 2 (Observation). Let Θ be a set of elements called observables.
Any function O : Actt? → Θ? is an observation function. It is called static
/dynamic /orwellian / m-orwellian (m ≥ 1) if the following conditions hold
respectively (below we assume w = x1 . . . xn):

– static if there is a mapping O′ : Actt→ Θ∪{ε} such that for every w ∈ Actt?
it holds O(w) = O′(x1) . . .O′(xn),

– dynamic if there is a mapping O′ : Actt? → Θ ∪ {ε} such that for every
w ∈ Actt? it holds O(w) = O′(x1).O′(x1.x2) . . .O′(x1 . . . xn),

– orwellian if there is a mapping O′ : Actt × Actt? → Θ ∪ {ε} such that for
every w ∈ Actt? it holds O(w) = O′(x1, w).O′(x2, w) . . .O′(xn, w),

– m-orwellian if there is a mapping O′ : Actt×Actt? → Θ ∪ {ε} such that for
every w ∈ Actt? it holds O(w) = O′(x1, w1).O′(x2, w2) . . .O′(xn, wn) where
wi = xmax{1,i−m+1}.xmax{1,i−m+1}+1 . . . xmin{n,i+m−1}.

In the case of the static observation function each action is observed inde-
pendently from its context. In the case of the dynamic observation function
an observation of an action depends on the previous ones, in the case of the
orwellian and m-orwellian observation function an observation of an action de-
pends on the all and on m previous actions in the sequence, respectively. The

Opacity Testing 173

static observation function is the special case of m-orwellian one for m = 1. Note
that from the practical point of view the m-orwellian observation functions are
the most interesting ones. An observation expresses what an observer - eaves-
dropper can see from a system behavior and we will alternatively use both the
terms (observation - observer) with the same meaning.

Now suppose that we have some security property. This might be an execution
of one or more classified actions, an execution of actions in a particular classified
order which should be kept hidden, etc. Suppose that this property is expressed
by predicate φ over process traces. We would like to know whether an observer
can deduce the validity of the property φ just by observing sequences of actions
from Actt? performed by given process.

The observer cannot deduce the validity of φ if there are two traces w,w′ ∈
Actt? such that φ(w),¬φ(w′) and the traces cannot be distinguished by the
observer i.e. O(w) = O(w′). We formalize this concept by opacity.

Definition 3 (Opacity). Given process P , a predicate φ over Actt? is opaque
w.r.t. the observation function O if for every sequence w, w ∈ Tr(P) such that
φ(w) holds and O(w) 6= ε, there exists a sequence w′, w′ ∈ Tr(P) such that
¬φ(w′) holds and O(w) = O(w′). The set of processes for which the predicate φ

is opaque with respect to O will be denoted by OpφO.

The definition of opacity (see Definition 3) of predicate φ is asymmetric in
the sense that if φ(w) does not hold than it is not required that there exists

another trace for which it holds (in general OpφO 6= Op¬φO). This means that
opacity says something to an intruder which tries to detect only validity of φ
(if it is opaque, than validity cannot be detected) but not its non-validity i.e. it
says nothing about predicate ¬φ. Hence we define strong variant of opacity.

Definition 4 (Strong Opacity). Given process P , a predicate φ over Actt? is
strongly opaque w.r.t. the observation function O if for every sequence w, w ∈
Tr(P) such that φ(w) holds and O(w) 6= ε, there exists a sequence w′, w′ ∈ Tr(P)
such that ¬φ(w′) holds and O(w) = O(w′). Moreover, for for every sequence
w, w ∈ Tr(P) such that ¬φ(w) holds and O(w) 6= ε, there exists a sequence
w′, w′ ∈ Tr(P) such that φ(w′) holds and O(w) = O(w′). The set of processes

for which the predicate φ is opaque with respect to O will be denoted by sOpφO.

Lemma 1. sOpφO ⊆ OpφO for every φ and O. Moreover, there exist φ and O
such that sOpφO ⊂ Op

φ
O.

Proof. Main idea. Let P ∈ sOpφO. Then for every trace of P for which φ holds
there exists a trace indistinguishable by observation function O for which φ does
not hold and hence P ∈ OpφO. Let us consider process P = h.l.Nil+l.Nil+l′.Nil
and let φ holds for tracecs which contain action h and observation function O
which hide h action. Then we have P ∈ OpφO but P 6∈ sOpφO and hence the

inclusion is proper, i.e sOpφO ⊂ Op
φ
O for such φ and O.

174 D. P. Gruska

4 Simulation Opacity

We start with a motivation example. Let us consider process P = l.h.l′.Nil +
l.(h.l′.Nil + l′.Nil), an observation function which does not see action h and
a predicate which holds for sequences containing h action. It is easy to check
that this predicate is opaque in this setting. That means than an attacker which
can observe traces of P cannot deduce whether action h has occurred or nor.
On the other side for a ”simulation attacker” i.e. the attacker which can not
only observe traces but can interact with systems, the predicate is not ”opaque”
anymore. This is a natural consequence of simulation being more powerful then
just a trace inclusion. Now we will extend the notion of opacity to reflect more
powerful attackers than those ones which just observe traces or alternatively,
predicate should be opaque not only for a given process P but also for every its
successor.

Definition 5 (Simulation Opacity). Given a set of processes <, predicate
φ over Actt? is simulation opaque for < w.r.t. the observation function O if
for every P ∈ < if P

s−→ P ′ for such s that φ(s) holds and o(s) 6= ε then

there exists s′ such that ¬φ(s′) holds, O(s) = O(s′) and P
s′−→ and moreover

P ′ ∈ <. Predicate φ is simulation opaque for process P with respect to O (denoted

P ∈ SOpφO) if P ∈ < for some simulation opaque < with respect to φ and O.

Now let us return to process P and the predicate and the observation function
from the beginning of this section. Now we can check that P is not simulation
opaque in this setting. This is also the proof that an inclusion from the next
proposition is proper.

Proposition 1. SOpφO ⊆ Op
φ
O for every φ and O. Moreover, there exist φ and

O such that SOpφO ⊂ Op
φ
O.

Proof. The main idea. Let P ∈ SOpφO. Then we have that for every trace s of
P for which φ holds there exists another trace s′ for which φ does not hold and
both traces cannot be distinguished by O. Hence P ∈ OpφO. The example from
of this section we see that the inclusion can be proper.

The simulation opacity is defined for arbitrary predicates and observation
functions. Now we we will reformulate it for those ones which can be expressed
by process algebras. Now we will model simulation opacity in a process algebra
setting. Suppose that Actt ∩ Θ = {t} and hence we extend the set of actions
A by Θ. We combine a process which checks validity of φ with a process which
computes observation function O into two process Oφ and O¬φ. Now we define
process Oφ.

Definition 6. Process Oφ is called process definition of predicate φ and obser-

vation function O over sequences of actions if for every P it holds (P |Oφ)\A o⇒
(P ′|Oφ) \A iff P

s−→ P ′ such that φ(s) and O(s) = o.

Opacity Testing 175

Note that we expect that process Oφ makes some computation resulting on
observable o and then it returns to the initial state (actually, to be more precise,
we should write to the process bisimilar with it). Now we will define simulation
opacity with respect to Oφ and O¬φ (see Fig. 1). Its definition is a reformulation
of Definition 5 in process algebra setting.

Oφ

o o

≺
�

-
sP O¬φ

�
-
s′P

Fig. 1. Testing scenario

Definition 7. We say that process P is simulation opaque with respect to Oφ
and O¬φ (denoted P ∈ SO(Oφ, O¬φ) iff (P |Oφ) \A ≺ (P |O¬φ) \A.

In fact, from the following proposition we see that both types of simulation
opacity coincide for those predicated and observation functions which can be
expressed by processes.

Proposition 2. Let Oφ and O¬φ are process definitions of observation function

O and predicates φ and ¬φ, respectively. Then SOpφO = SO(Oφ, O¬φ).

Proof. The main idea. Process definition Oφ and O¬φ mimic both observations
and predicates validity (see Definition 7). Moreover, the simulation ≺ reflects
the fact that after each ”step” the resulting process is again opaque and hence
similation opaque.

Many trace based security properties can be viewed as special cases of opacity
(see for example [Gru07]) but not those ones which are based on more powerful
equivalences. Now we show how we can express by simulation opacity a stronger
security property. We define an absence-of-information-flow property - Bisimula-
tion Strong Nondeterministic Non-Interference (BSNNI, for short, see [FGM00]).
Suppose that all actions are divided in two groups, namely public (low level) ac-
tions L and private. Process P has BSNNI property (we will write P ∈ BSNNI)
if P \H behaves like P for which all high level actions are hidden for an observer.
To express this hiding we introduce hiding operator P/M,M ⊆ A, for which it

holds if P
a→ P ′ then P/M

a→ P ′/M whenever a 6∈ M ∪ M̄ and P/M
τ→ P ′/M

whenever a ∈M ∪ M̄ . Formal definition of BSNNI follows.

Definition 8. Let P ∈ TPA. We say that P has BSNNI property, and we write
P ∈ BSNNI iff P \H ≈ P/H.

Example 1. Let φ(s) holds iff s contains actions from H and let θ = {ox|x ∈ L,
O(s) = o such that o = ol1 . . . oln where s|L = l1.l2 . . . ln.

Then the following process

176 D. P. Gruska

Oφ = µX.(
∑
x∈L

x.ox̄.X +
∑
x∈H

x.µY.(
∑
x∈L

x.ox̄.Y +
∑
x∈H

x.Y))

is the process definition of predicate φ and observation function O.

Moreover process

O¬φ = µX.(
∑
x∈L

x.ox.X)

is the process definition of predicate ¬φ and observation function O.

Proposition 3. P ∈ BSNNI iff P ∈ SO(Oφ, O¬φ) for Oφ, O¬φ defined in the
previous example.

Proof. Sketch. Process Oφ outputs ox for every low level action which can be
performed by P and switches to ”accepting” state after the first high level ac-
tion occurs. Similarly for O¬φ. In definition of BSNNI the weak bisimulation
is exploited but clearly, everything which can be performed by P \ H can be
performed by P/H and hence no more then simulation is needed.

Now we can return to the strong opacity. First we define its simulation ver-
sion.

Definition 9 (Strong Simulation Opacity). Given a set of processes <,
predicate φ over Actt? is strongly simulation opaque for < w.r.t. the observa-
tion function O if for every P ∈ < if P

s−→ P ′ for such s that φ(s) holds and

o(s) 6= ε then there exists s′ such that ¬φ(s′) holds , O(s) = O(s′) and P
s′−→,

and P ′ ∈ < and, moreover, P
s−→ P ′′ for such s that ¬φ(s) holds and o(s) 6= ε

then there exists s′ such that φ(s′) holds , O(s) = O(s′) and P
s′−→, and P ′′ ∈ <.

Predicate φ is strongly simulation opaque for process P with respect to O (de-

noted P ∈ sSOpφO) if P ∈ < for some strongly simulation opaque < with respect
to φ and O.

Similarly to the opacity, its stronger version is really different as it is stated
by the following proposition.

Proposition 4. sSOpφO ⊆ SOpφO for every φ and O. Moreover, there exist φ

and O such that sSOpφO ⊂ SOp
φ
O.

Proof. The proof is just a variation of the proof of Proposition 1.

Definition 10. We say that process P is strongly simulation opaque with respect
to Oφ and O¬φ (denoted P ∈ sSO(Oφ, O¬φ) iff (P |Oφ) \A ≈ (P |O¬φ) \A.

Proposition 5. Let Oφ and O¬φ are process definitions of observation function

O and predicates φ and ¬φ, respectively. Then sSOpφO = sSO(Oφ, O¬φ).

Proof. Again, the proof is similar as the proof of Proposition 2.

Opacity Testing 177

t

@
@

@
@

�
�

�
� @

@
@
@

t
t

t
�

�
�
�

sOpφO

sSOpφO

SOpφO

OpφO

Fig. 2.

To complete a relationship between proposed opacity concepts we have the
following proposition.

Proposition 6. The relation between proposed opacities is depicted on Fig. 2.

Proof. First we prove that sSOpφO ⊂ sOpφO. Let P ∈ sSOpφO. Since for every
sequence for which φ holds there exists observationally equal one, for which it
does not hold and vice versa, we have P ∈ sOpφO. Now let us consider process
P = l.l′.Nil + l.(h.l′.Nil + l′.Nil), an observation function which does not see
action h and a predicate which holds for sequences containing h action. It easy
to check that P ∈ SOpφO but P 6∈ sOpφO. For process P ′ = l.l′.Nil + l.h.l′.Nil

we have P ′ 6∈ SOpφO but P ′ ∈ sOpφO. The rest of the proof follows from Lemma
1, Propositions 1 and 4.

As it was mentioned, the opacity properties could be undecidable even for
very simple observation functions or predicates (depending on their mutual com-
bination). Here we can obtain its decidability by restrictions put on Oφ and O¬φ,
respectively. Note that existence of O¬φ for given Oφ is not guaranteed in gen-
eral due to Turing power of TPA. As regards observation function, m-orwellian
ones are the most interesting, since for their computations we do not need in-
finite memory and still the most of real attacks are based on them. As regards
predicates, again those ones, which can be associated with finite automata are
the most useful and frequent ones. If a combination of an observation function
and predicates results in finite state process algebra the resulting properties are
decidable. We elaborate this more precisely now.

We say that process E emulates an observational function O if it produces the
corresponding output after receiving input traces. Formally, for every w ∈ Actt∗
it holds O(w) = o iff (E|w.Nil) \A ≈ o.

Lemma 2. For every m-orwellian observation function there exists finite state
process which emulates it.

Proof. Sketch. Emulating process has to record the previous m inputs from em-
ulated trace to produce an output. Emulation is straightforward. If |A| = n then
process which emulates given m-orwellian function has O(mn) states.

178 D. P. Gruska

We call predicate φ finitely definable, if there exist finite state process T such
that for every w ∈ Actt∗ φ(w) holds iff (T |w.Nil)\A ≈

√
.Nil where

√
is a new

symbol indicating the successful termination.

Proposition 7. Let φ and ¬φ are finitely definable. Then opacity properties
SOpφO and sSOpφO could be decided in time O((n.m.k.|A|)6) and O((n.m.k.|A|)3)
for finite state processes and every m-orwellian observation function O, where
n,m, k are numbers of states of P , process emulating O and maximum of number
of states of processes corresponding to φ,¬φ, respectively.

Proof. Sketch. We combine processes φ,¬φ and O. First we need a special pro-
cess which duplicates all action and one copy is send to process corresponding
to the predicate and to proces for observation function. The size of this auxil-
iary process is O(|A|). Hence the overall size of the process is n.m.k.|A|. The
rest of the proof follows from complexity results for weak simulation and weak
bisimulation (see [CPS90,KS83]).

If we have a process which does not belong to SOpφO for some φ and O then
this means that the process could be jeopardize by an attacker which can react
to process by means of O and is interested in validity of φ. But there are attacks
which are not covered by our framework. For example, timing attacks, which have
a particular position among attacks against systems security. They represent a
powerful tool for “breaking” “unbreakable” systems, algorithms, protocols, etc.
For example, by carefully measuring the amount of time required to perform
private key operations, attackers may be able to find fixed Diffie-Hellman expo-
nents, factor RSA keys, and break other cryptosystems (see [Ko96]). This idea
was developed in [DKL98] where a timing attack against smart card implemen-
tation of RSA was conducted.

We can extend our framework so that we can model also timing attacks and
we can distinguish them from ordinary attacks. Here we formulate the prop-
erty for simulation opacity but the same can be done also for strong simulation
opacity.

Definition 11. We say that process P is jeopardized by timing attack on validity
of φ with a given observation function iff (P |Oφ)\A 6≺ (P |O¬φ)\A and (P |Oφ)\
A ≺{t} (P |O¬φ) \A.

Example 2. Let φn,m(s) for 1 < n < m holds iff s = s1.h.s2.h
′.s3, h, h

′ ∈ H
such that n ≤ |s2|{t}| ≤ m and s1, s2, s3 ∈ (L ∪ {t})∗, i.e. φn,m(s) holds if s
contains two private actions from H and time elapsing between their occurrences
is between n and m time units and observation function see just low level actions
and elapsing of time. Then the following process

OφµX.(
∑
x∈L

x.ox.X +
∑
x∈H

x.F ′)

where

Opacity Testing 179

F ′ = µX.(
∑
x∈L

x.ox.X + t.F1),

Fi = µX.(
∑
x∈L

x.ox.X + t.Fi+1)

for i < n and

Fi = µX.(
∑
x∈L

x.ox.X + t.F ′i+1)

for i = n,

F ′i = µX.(
∑
x∈L

x.ox.X +
∑
x∈H

x.xg.F ′′ + t.F ′i+1)

for i < m and

F ′′ = µX.(
∑
x∈L

x.ox.X +
∑
x∈H

x.o.X +
∑
x∈L

x.ox.Oφ +
∑
x∈H

x.o.Oφ)

is the process definition of predicate φn,m. Similarly, for predicate ¬φn,m
we can construct an appropriate finite state process. Clearly, timed proces are
jeopardize by timing attacks on validity of φn,m.

5 Conclusions

We have presented generalization of opacity called simulation opacity and we
have elaborated it in timed process algebra setting. This concept offers not only
an uniform framework for security theory but can be used to model more elabo-
rated security properties than traditional ones and moreover, by careful choice of
processes expressing predicated and observations we can obtain properties which
can be effectively checked (note that in general, opacity is undecidable). By this
concept we can also naturally model security with respect to limited time length
of an attack, with a limited number of attempts to perform an attack and so on.

The presented approach allows us to use also other types of process algebras
enriched by operators expressing also other properties (space, distribution, net-
working architecture, processor or power consumption and so on) and in this way
also other types of attacks which exploit these information to detect information
flow through various covert channels can be described.

Our approach limits us to predicates and observation functions (i.e. ob-
servers) which can be expressed by process algebra processes. In fact, this re-
striction does not represent any real limitation. Practically, all predicates and
observation function of interest (used in known attacks) can be described by
finite state processes and there is even no need to exploit full universal power
of process algebras. In other words, it has no practical meaning to consider
predicates and observation functions which cannot be effectively computed.

180 D. P. Gruska

References

[BKR04] Bryans J., M. Koutny and P. Ryan: Modelling non-deducibility using Petri
Nets. Proc. of the 2nd International Workshop on Security Issues with Petri
Nets and other Computational Models, 2004.

[BKMR06] Bryans J., M. Koutny, L. Mazare and P. Ryan: Opacity Generalised to
Transition Systems. In Proceedings of the Formal Aspects in Security and
Trust, LNCS 3866, Springer, Berlin, 2006.

[BG04] Busi N. and R. Gorrieri: Positive Non-interference in Elementary and Trace
Nets. Proc. of Application and Theory of Petri Nets 2004, LNCS 3099,
Springer, Berlin, 2004.

[CPS90] Cleaveland R, J. Parrow and B. Steffen: A semantics-based verification
tool for finite-state systems. Proc of Protocol specification, testong and
verification, Elsevier Science Publishers, 1990.

[DKL98] Dhem J.-F., F. Koeune, P.-A. Leroux, P. Mestre, J.-J. Quisquater and J.-
L. Willems: A practical implementation of the timing attack. Proc. of the
Third Working Conference on Smart Card Research and Advanced Appli-
cations (CARDIS 1998), LNCS 1820, Springer, Berlin, 1998.

[FGM00] Focardi, R., R. Gorrieri, and F. Martinelli: Information flow analysis in
a discrete-time process algebra. Proc. 13th Computer Security Foundation
Workshop, IEEE Computer Society Press, 2000.

[GM04] Gorrieri R. and F. Martinelli: A simple framework for real-time crypto-
graphic protocol analysis with compositional proof rules. Science of Com-
puter Programing, Volume 50, Issues 13, 2004.

[GM82] Goguen J.A. and J. Meseguer: Security Policies and Security Models. Proc.
of IEEE Symposium on Security and Privacy, 1982.

[Gro90] Groote, J. F.: “Transition Systems Specification with Negative Premises”.
Baeten, J.C.M. and Klop, J.W. (eds.), CONCUR’90, Springer Verlag,
Berlin, LNCS 458, 1990.

[Gru12] Gruska D.P.: Informational analysis of security and integrity. Fundamenta
Informaticae, vol. 120, Numbers 3-4, 2012.

[Gru12a] Test based security. Concurrency, Specification and Verification CS&P 2012,
Vol. 1, Berlin, 2012.

[Gru11] Gruska D.P.: Gained and Excluded Private Actions by Process Observa-
tions. Fundamenta Informaticae, Vol. 109, Number 3, 2011.

[Gru10] Gruska D.P.: Process algebra contexts and security properties. Fundamenta
Informaticae, vol. 102, Number 1, 2010.

[Gru09] Gruska D.P.: Quantifying Security for Timed Process Algebras. Funda-
menta Informaticae, vol. 93, Numbers 1-3, 2009.

[Gru08] Gruska D.P.: Probabilistic Information Flow Security. Fundamenta Infor-
maticae, vol. 85, Numbers 1-4, 2008.

[Gru07] Gruska D.P.: Observation Based System Security. Fundamenta Informati-
cae, vol. 79, Numbers 3-4, 2007.

[KS83] Kanellakis, P. C. and S.A. Smolka: CCS expressions, finite state processes,
and three problems of equivalence. Proc. of the second annual ACM sym-
posium on Principles of distributed computing, ACM, 1983.

[Ko96] Kocher P.C.: Timing attacks on implementations of Diffie-Hellman, RSA,
DSS and other systems. Proc. Advances in Cryptology - CRYPTO’96,
LNCS 1109, Springer, Berlin, 1996.

[Mil89] Milner, R.: Communication and concurrency. Prentice-Hall International,
New York,1989.

Structural and Dynamic Restrictions
of

Elementary Object Systems

Frank Heitmann and Michael Köhler-Bußmeier

University of Hamburg, Department for Informatics
Vogt-Kölln-Straße 30, D-22527 Hamburg

{heitmann,koehler}@informatik.uni-hamburg.de

Abstract. Elementary object systems (Eos for short) are Petri nets in
which tokens may be Petri nets again. Originally proposed by Valk for a
two levelled structure, the formalism was later generalised for arbitrary
nesting structures.

However, even if restricted to a nesting depth of two, Eos are Turing-
complete and thus many problems like reachability and liveness are un-
decidable for them. Nonetheless, since they are useful to model many
practical applications a natural question is how to restrict the formal-
ism in such a way, that the resulting restricted formalism is still helpful
in a modelling context, but so that important verification problems like
reachability become quickly decidable.

In the last years several structural and dynamic restrictions for Eos have
therefore been investigated. These investigations have been central to the
first author’s recent PhD thesis and have been published in past CS&P
conferences. In this paper we add several new results and present them
together with the old in a unified fashion highlighting the central message
of these investigations.

1 Introduction

Object Petri Nets are Petri Nets whose tokens may be Petri Nets again and
thus may have an inner structure and activity. This approach is useful to model
mobile systems and other systems arising in Computer Science which enjoy a
certain nesting of structures (cf. [13] and [14]).

This approach, which is also called the nets-within-nets paradigm, was pro-
posed by Valk [27, 28] for a two levelled structure and generalised in [15, 16]
for arbitrary nesting structures. By now many related approaches like recur-
sive nets [6], nested nets [24], adaptive workflow nets [25], AHO systems [11],
PN2 [10], Mobile Systems [23], and many others are known. Another line of re-
search also dealing with nesting, but not in the field of Petri nets, is concerned
with process calculi. Arguably most prominently there are the Ambient Calculus
of Gordon and Cardelli [1] and the Seal Calculus [2] among many others. See [18]
and [7] for a detailed discussion.

182 F. Heitmann, M. Köhler-Bußmeier

Unfortunately even if restricted to a two level structure as in elementary
object systems, the formalism is Turing-complete. A natural question is how to
restrict the formalism in such a way, that the resulting restricted formalism is
still helpful in a modelling context, but so that important verification problems
like reachability become quickly decidable. This “borderline” between modelling
power and fast algorithms is in the case of p/t nets usually drawn at free choice
Petri nets.

In the following we survey several structural restrictions for Eos and give re-
sults concerning the complexity of the reachability problem. Since we conclude,
that even in very restricted cases the reachability problem becomes practically
hard to decide, we then survey dynamic restrictions of Eos, most notably a safe-
ness notion. Here, too, we focus on the complexity on the reachability problem.

The following section gives fundamental definitions of Eos. In Section 3 we
survey results on structural restrictions and in Section 4 we survey results on
dynamic restrictions. The paper ends with a summary of these results and a
conclusion.

In the following we assume basic knowledge of Petri nets, see e.g. [26] and
of Eos, see e.g. [18]. We do not define all notions rigorously here due to space
restrictions, but all notions and an in-depth study can be found in [7].

2 Fundamentals

An elementary object system (Eos) is composed of a system net and a set of
object nets where each of these nets is a p/t net. While the object nets use the
usual black tokens, the system net’s places are marked with either black tokens
or object nets. For this each place of the system net is typed with an object
net with the meaning the only object nets of these type may rest on that place.
Additionally each transition may be labelled with a channel. The meaning here
is that transitions with the same label may only fire synchronously.

Definition 1 (EOS). An elementary object system (Eos) is a tuple OS =

(N̂ ,N , d, l) such that:

1. N̂ is a p/t net, called the system net.
2. N is a finite set of disjoint p/t nets, called object nets.

3. d : P̂ → N is the typing of the system net places.
4. l = (l̂, (lN)N∈N) is the labelling.

An Eos with initial marking is a tuple OS = (N̂ ,N , d, l, µ0) where µ0 ∈ M
is the initial marking.

A system net transition may be labelled with a channel for each object net.
Where an object net transition is only labelled with one channel. If for example a
system net transition t̂ is labelled with channel c1 for the object net N1 and with
channel c2 for object netN2, then t̂may only fire, if it is possible to synchronously
fire a transition in N1 which is labelled with channel c1 and if it is possible to

Restricting Eos 183

synchronously fire a transition in N2 which is labelled with channel c2. Firing
may also happen system-autonomously (an unlabelled system net transition fires
independently from any object net transition) or object-autonomously (firing of
an unlabelled object net transition)

A formal treatment can be found in e.g. [9]. We only give an example here
to illustrate the main points of the firing rule.

Example 1. Figure 1 shows an Eos with the system net N̂ and the object nets
N = {N1, N2}. The system has four net-tokens: two on place p1 and one on p2
and p3 each. The net-tokens on p1 and p2 share the same net structure, but have
independent markings.

Fig. 1. An Elementary Object Net System

Formally we have the system net N̂ = (P̂ , T̂ ,pre,post) with the places

and transitions given by P̂ = {p1, . . . , p6} and T̂ = {t}, the object net N1 =
(P1, T1,pre1,post1) with P1 = {a1, b1} and T1 = {t1} and the the object net
N2 = (P2, T2,pre2,post2) with P2 = {a2, b2, c2} and T2 = {t2}. The typing is
given by d(p1) = d(p2) = d(p4) = N1 and d(p3) = d(p5) = d(p6) = N2.

We have two channels ch1 and ch2. The labelling function l̂ of the system
net is defined by l̂(t)(N1) = ch1 and l̂(t)(N2) = ch2. The labelling lN1 of the
first object net is defined by setting lN1

(t1) = ch1. Similarly, lN2
is defined by

lN2(t2) = ch2.
There is only one (synchronous) event: Θ = Θl = {t[N1 7→ t1, N2 7→ t2]}.

The event is also written shortly as t[t1, t2].
The initial marking µ has two net-tokens on p1, one on p2, and one on p3:

µ = p1[a1 + b1] + p1[0] + p2[a1] + p3[a2 + b2]

Note that for Figure 1 the structure is the same for the three net-tokens on p1
and p2 but the net-tokens’ markings are different.

The marking µ enables t[N1 7→ t1, N2 7→ t2] in the mode (λ, ρ), where

µ = p1[0] + p1[a1 + b1] + p2[a1] + p3[a2 + b2] = p1[0] + λ
λ = p1[a1 + b1] + p2[a1] + p3[a2 + b2]
ρ = p4[a1 + b1 + b1] + p5[0] + p6[c2]

184 F. Heitmann, M. Köhler-Bußmeier

Fig. 2. The EOS of Figure 1 illustrating the projections Π2
N (λ) and Π2

N (ρ)

The net-tokens’ markings are added by the projections Π2
N resulting in the

markings Π2
N (λ). The sub-synchronisation generate Π2

N (ρ). (The results are
shown above and below the transition t in Figure 2.) After the synchronisa-
tion we obtain the successor marking µ′ with net-tokens on p4, p5, and p6 as
shown in Figure 2:

µ′ = (µ− λ) + ρ = p1[0] + ρ
= p1[0] + p4[a1 + b1 + b1] + p5[0] + p6[c2]

For general Eos the following theorem holds due to Köhler-Bußmeier [12].

Theorem 1 (Köhler 2007). Eos can simulate 2-counter machines. Important
problems like reachability and liveness are thus undecidable.

In the following two sections we focus on introducing structural and dynamic
restrictions that result in a decidable reachability problem.

3 Structural Restrictions

The main reason why Eos are Turing-complete is a null-test that is possible due
to the firing rule. In Figure 3 the system net transition t̂1 is not able to fire: the
object net in the preset has a token on place a1. This token would have to be
distributed among the places of the same object net type in the postset of t̂1,
but there is no such place. The transition t̂2 to the right may fire. The object
net’s marking is 0 and so there are no tokens that need to be distributed.

Conservative Eos avoid this by demanding that each object net type that
appears in the preset of a system net transition also appears in the postset of
that transition.

Definition 2 (Conservative Eos). A typing is called conservative iff

(d(•t̂) ∪ {•}) ⊆ (d(t̂•) ∪ {•}),

i.e. each object net type that appears in the preset of t̂ also appears in its postset.
An Eos is conservative iff its typing d is.

Restricting Eos 185

Fig. 3. The transition t̂1 is disabled, t̂2 is enabled.

While boundedness and coverability become decidable for conservative Eos,
reachability and liveness remain undecidable. This was proven in [12] and [21].

Theorem 2. For conservative Eos boundedness and coverability are decidable,
while reachability and liveness are undecidable.

The idea in the definition of conservative Eos can be strengthen further by
demanding that each object net type appears exactly once in the preset and
the postset of a system net transition or does not appear at all. This leads to
generalised state machines (GSM) which are suitable to model many practical
applications, since each object net can be seen as a physical entity.

Definition 3 (Generalised State Machines). Let G = (N̂ ,N , d, l, µ0) be an
Eos. G is a generalised state machine (GSM) iff for all N ∈ N \ {N•}

1. ∀t̂ ∈ T̂ : |{p̂ ∈ •t̂ | d(p̂) = N}| = |{p̂ ∈ t̂• | d(p̂) = N}| ≤ 1
2.

∑
p̂∈P̂ ,d(p̂)=N Π1(µ0)(p̂) ≤ 1

holds.

In [17]) it was shown that for each GSM a p/t net, called reference net, can
be easily constructed from which decidability results follow (see [12] and [17]).

Theorem 3. The reachability problem is decidable for generalised state ma-
chines.

While this is a first positive result, the set of transitions is defined by the set
of events of the GSM and the size of this set can become exponential in the size
of the GSM.

Lemma 1 ([8], [9]). Let |T | := max{|TN | | N ∈ N} then |Θ| ≤ |T̂ | · |T ||N |.

Given a GSM it might thus be very expensive to construct its reference
net. This exponential blow up stems from the fact that in a GSM a m : n-
synchronisation between the system net and the object nets exists, i.e. if there
are m system net transitions labelled with channel c for object net N1 and if
in N1 n transitions are labelled with channel c then each of the m system net
transitions may fire synchronously with each of the n object net transitions,
resulting in m · n different events.

To prevent this, we introduced deterministic GSMs and Eos in [8] (see
also [9]).

186 F. Heitmann, M. Köhler-Bußmeier

Definition 4 (Deterministic and Strongly Deterministic Eos). A Eos
OS is called deterministic if for each N ∈ N and every two transitions t, t′ ∈ TN ,
t ̸= t′ with lN (t) ̸= τ ̸= lN (t′), lN (t) ̸= lN (t′) holds, i.e. if the labels for all all
t ∈ TN with lN (t) ̸= τ are pairwise different.

OS is strongly deterministic if OS is deterministic and additionally for all
t̂ and N with l̂(t̂)(N) ̸= τ the labels l̂(t̂)(N) are pairwise different.

Thus, in a deterministic Eos or GSM each channel is used at most once in
each object net (resulting in a m : 1-synchronisation). In a strongly deterministic
Eos or GSM each channel is additionally used at most once in the system net
(resulting in a 1 : 1-synchronisation).

For Eos the definition of determinism does not significantly reduce the power
of the formalisms introduced so far, namely of Eos or conservative Eos.

Theorem 4 ([7]). The reachability problem for strongly deterministic, deter-
ministic and general Eos is undecidable - even if the Eosis conservative.

However, for GSMs the size of the events and thus the size of the reference
net is reduced considerably.

Lemma 2 ([7]). Let G = (N̂ ,N , d, l, µ0) be a deterministic or strongly deter-

ministic GSM, then |Θ| is bounded above by |T̂ |+
∑

N∈N |TN |.

However, strongly deterministic GSMs can still simulate p/t nets and thus
the reachability problem remains ExpSpace-hard.

Theorem 5 ([7]). Every p/t net system N can be simulated by a strongly de-
terministic GSM GN .

Corollary 1 ([7]). The reachability problem for strongly deterministic, deter-
ministic and general GSMs is ExpSpace-hard.

Due to this results further structural restrictions are necessary to reduce the
complexity of the reachability problem. Several structural restrictions known
from p/t nets are carried over to GSMs and investigated in [8], [9], [21], and [7].

The results are summarised in Table 1. ttGSMs, ppGSMs, ptGSMs, and
tpGSMs are GSMs where the system net and/or the object nets are restricted
to be T-nets or P-nets. In ptGSMs the system net is a P-net and the object nets
are T-nets and in tpGSMs the system net is a T-net and the object nets are P-
nets. Despite being rather simple in the case of p/t nets, it is evident in Table 1,
that the reachability problem becomes hard in the case of object nets due to the
synchronisation between the system net and the object nets. Most notably in
the case of ppGSMs where all participating nets are P-nets and thus similar to
finite automata, the reachability problem is already PSpace-complete.

acGSMs are GSMs where all nets are acylic and fcGSMs are GSMs where all
nets are free-choice nets. For cfGSMs the definition of conflict-freedom has to be
adapted, because it is not enough to demand a similar structural restrictions as
for p/t nets if one wants to structurally rule out conflicts (cf. [8] and [7]).

Restricting Eos 187

Table 1. Complexity of the reachability problem for various formalisms.

strongly deterministic deterministic general

ttGSM P ? ?

ppGSM PSpace-complete PSpace-complete PSpace-complete

ptGSM NP-hard PSpace-hard PSpace-hard

tpGSM ? ? ?

acGSM NP-hard NP-hard NP-hard

cfGSM NP-complete NP-hard NP-hard

fcGSM ExpSpace-hard ExpSpace-hard ExpSpace-hard

GSM ExpSpace-hard ExpSpace-hard ExpSpace-hard

cEos undecidable undecidable undecidable

Eos undecidable undecidable undecidable

Definition 5 (Conflict-Free GSMs ([8])). A GSM OS = (N̂ ,N , d, l, µ0) is
conflict-free if

1. ∀N ∈ N ∪ {N̂} ∀p ∈ P̂ ∪ PN : |p•| > 1 ⇒ p• ⊆ •p

2. ∀N ∈ N ∀p ∈ PN : (∃t ∈ p• ∃t̂1, t̂2 ∈ T̂ ∃p̂ ∈ P̂ ∃c ∈ C : t̂1 ̸= t̂2 ∧ p̂ ∈
•t̂1 ∩ •t̂2 ∧ d(p̂) = N ∧ lN (t) = l̂(t̂1)(N) = l̂(t̂2)(N) = c) ⇒ p ∈ t•

holds. We also say that OS is a cfGSM.

Proofs for the results in Table 1 can be found in [7] with pointers to the
literature where the results where first proven.

Most notably in Table 1 are the results for ppGSMs and for fcGSMs. They
show that even very strong structural restrictions as in the case of ppGSMs lead
to an already hard to solve reachability problem and that more openly structural
restrictions as in the case of fcGSMs where the formalism would be suitable for
modelling purposes lead to complexity results that render algorithms practically
unusable. Thus other restrictions than structural restrictions are necessary if one
aims at solving the reachability problem quickly.

4 Dynamics Restrictions

In [7] unary and persistent Eos are introduced where in unary Eos in each reach-
able marking at most one event is enabled and in persistent Eos conflicts are
dynamically ruled out. For both formalisms, however, the reachability problem
remains undecidable. These dynamical restrictions are thus not strong enough
for our purpose.

In general, the state space of an Eos is of infinite size which is a source for
undecidability results or strong lower complexity bounds. In [19] we therefore
introduced four different notions of safeness for Eos, safe(1), safe(2), safe(3),
and safe(4), to adapt the notion of safeness for p/t nets to Eos. For p/t nets
1-safeness guarantees not only finiteness of the state space size but also that
each reachable marking can be seen as a set. This set idea is adapted in [19].
Furthermore, a safe(4) Eos is also a safe(3) Eos which is in turn a safe2 Eos

188 F. Heitmann, M. Köhler-Bußmeier

and so on. Positive results concerning the solvability of the reachability problem
thus carry over from safe(i) to safe(i + 1) and negative results carry over from
safe(i+ 1) to safe(i).

However, despite the fact that the markings are sets, safe(1) and safe(2)
Eosstill have an infinite state space and the reachability problem remains un-
decidable for them even if the Eos is additionally structurally restricted.

Theorem 6 ([19], [7]). The reachability problem is undecidable for safe(1) or
safe(2) Eos - even in the case of strongly deterministic and conservative Eos.

In the following we concentrate on safe(3) Eos which have a finite state
space.

Definition 6 (Safeness). An Eos OS is safe(3) or simply safe iff for all reach-
able markings there is at most one token on each system net place and each
net-token is safe:

∀µ ∈ RS (OS) : ∀p̂ ∈ P̂ : Π1(µ)(p̂) ≤ 1 ∧
∀N ∈ N : ∀p ∈ PN : ∀p̂[M] ≤ µ : M(p) ≤ 1

Theorem 7 ([19], [7]). If an Eos is safe(3) or safe(4), then its set of reachable
markings is finite.

Indeed, an upper bound for the state space size if given in [7]. Let k := |P̂ |
and l := max{|PN | | N ∈ N}, then there are at most (1+2l)k different markings.

For safe Eos two very strong result can be shown. Not only are reachability
and liveness decidable, but every property that can be expressed in the temporal
logics LTL or CTL can be decided in polynomial space in the size of the Eos and
the formula. The the problems are PSpace-hard follows directly from similar
results for safe p/t nets (see e.g. [5]). It is thus surprising that this bound can
also be met from above in the case of safe Eos despite their quite huge state
space.

Theorem 8 ([19], [7]). Given a safe(3) or safe(4) Eos OS and an LTL for-
mula ϕ, checking whether OS satisfies ϕ can be done in polynomial space in the
size of OS and ϕ, that is, there is a polynomial p, independent of OS and ϕ,
such that the algorithm uses O(p(|OS |+ |ϕ|)) space.

Corollary 2. The reachability problem for safe Eos is PSpace-complete.

Theorem 9 ([20], [7]). Given a safe(3) or safe(4) Eos OS and a CTL formula
ϕ checking whether OS satisfies ϕ can be done in O(|OS |4 · |ϕ|) space.

Corollary 3. The liveness problem for safe Eos is PSpace-complete.

Both model checking algorithms are an adaption of a technique from Esparza
for 1-safe p/t nets [5]. The LTL model checking algorithms additionally uses
techniques from Vardi from automata theory [29].

The proofs of the above theorems are very involved. Detailed discussions and
proofs can be found in [19], [20], and [7].

In addition to the results above it can also be decided in polynomial space if
an Eos is safe(3), which is helpful from a modelling point of view.

Restricting Eos 189

Theorem 10 ([7]). Given an Eos OS it is PSpace-complete to decide if OS
is safe.

Safe Eos can in addition be structurally restricted. In some cases as in the
case of conflict-free Eos this reduces the complexity of the reachability prob-
lem (cf. Table 2). However, the formalisms where this happens seem to be too
restricted to be useful in a modelling context.

Table 2. Complexity of the reachability problem for safe Eos with further structural
restrictions.

strongly deterministic deterministic general

ttGSM P PSpace PSpace

ppGSM PSpace-complete PSpace-complete PSpace-complete

ptGSM NP-hard, PSpace PSpace-complete PSpace-complete

tpGSM PSpace PSpace PSpace

acGSM PSpace PSpace PSpace

cfGSM P PSpace PSpace

fcGSM PSpace-complete PSpace-complete PSpace-complete

GSM PSpace-complete PSpace-complete PSpace-complete

cEos PSpace-complete PSpace-complete PSpace-complete

Eos PSpace-complete PSpace-complete PSpace-complete

A discussion of structural restrictions of safe(1) and safe(2) Eos can be found
in [7].

5 Conclusion and Outlook

In summary we have investigated formalisms which are useful to model mobil-
ity, interaction, and nesting of structures. We then focused on object nets, but
it is possible to adapt these results for other formalisms mentioned in the intro-
duction. Since in their general form object nets are Turing-complete it was our
goal to restrict the formalism of elementary object systems such that modelling
capabilities mostly remain and interesting applications can still be conveniently
modelled, and also such that properties can be automatically and quickly veri-
fied.

To achieve this goal we have restricted the formalism structurally and dy-
namical. We introduced restrictions natural for object nets like determinism and
strong determinism and carried over restrictions known from p/t nets to object
nets. We then focused on the complexity of the reachability problem to evaluate
the formalisms. The results are summarised in Table 1 and 2.

As a conclusion structural restrictions alone are not enough even if the
possibility to synchronise is additionally restricted. The restriction to safe(3)
Eos,however, allows for a quick verification of important properties and is also
still useful from a modelling point of view.

190 F. Heitmann, M. Köhler-Bußmeier

In [7] Eos and GSMs are furthermore generalised to an arbitrary but fixed
nesting depth k > 2. In this case a safeness definition can also be introduced
which allows to carry over the results for CTL and LTL model checking. These
problems are then solvable in polynomial space, too, albeit the polynomial wors-
ens.

Also in [7] object net systems are introduced, which allow a vertical transport
of net tokens, i.e. a transport of net tokens between nesting levels. For this
systems different safeness definitions are introduced in [7]. In particular, it is not
enough to demand that on each place resides at most one (net) token. Due to
the arbitrary nesting depth, the state space might still be infinite. However, for
the strongest safeness definition for object net systems in [7], which among other
things does not allow the creation and destruction of net tokens, again PSpace-
completeness results for LTL- and CTL-model-checking can be established.

Open question in the context presented here are, obviously, to match upper
and lower bounds in the tables above. While this might be interesting from a
theoretical point of view, the effect for the question tackled here are limited. The
open cases are for formalisms which are structurally restricted in such a way,
that using them in a modelling context is doubtful. Thus even if the reachabil-
ity problem is solvable more quickly than PSpace the formalisms will not be
practically useful.

Another open question concerns the borderline between safe(1) and safe(2)
Eos and the borderline between safe(3) and safe(4) Eos. While it is known that
e.g. for safe(3) and safe(4) Eos the reachability problem is PSpace-complete,
the polynomial will almost surely be smaller for safe(4) Eos. Again this question
is more from a theoretical nature.

A question with much practical relevance is how to improve the LTL- and
CTL-model-checking algorithms uses so far in this context. In [7] the algorithm
are rather direct and not optimised. It is to be expected that these algorithms
can be improved. Afterwards, it would be nice to implement these algorithms in
a tool which can then be used by modellers. We believe that such a tool might be
very useful in practice, since many applications can be modelled more intuitively
with object nets and such a tool would allow to verify properties of the model
automatically and with modest time and space requirements.

Questions not tackled so far which would open up whole new directions are
compositionality and adaptivity. The goal in compositionality is to find properties
and restrictions such that properties of the whole system can than be deduced
from properties of components treated in isolation. This might reduce the com-
plexity considerably. First results concerning compositionality with regard to
nested nets are published in [3] and [4].

Adaptivity means to introduce formalisms which do not only allow a trans-
port of net tokens as presented here, but also to manipulated these net to-
kens during run-time. First formalisms which allow this are adaptive workflow
nets [25] and higher order nets [22].

This two questions, how to introduce compositionality and adaptivity for
object nets, are the questions we want to tackle in the future. We believe that

Restricting Eos 191

they will be of high practical relevance for run-time analysis of systems in general
and workflows in particular.

References

1. Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theoretical Computer
Science, 240:177–213, 2000.

2. G. Castagna, J. Vitek, and F. Zappa Nardelli. The seal calculus. Information and
Computation, 201:1–54, 2005.

3. Leonid W. Dworzański and Irina A. Lomazova. On compositionality of bounded-
ness and liveness for nested Petri nets. In Marcin Szczuka, Ludwik Czaja, Andrzej
Skowron, and Magdalena Kacprzak, editors, Concurrency, Specification and Pro-
gramming (CS&P 2011), Proceedings, Pu ltusk, Poland, 2011. Bia lystok University
of Technology.

4. Leonid W. Dworzański and Irina A. Lomazova. On compositionality of bounded-
ness and liveness for nested Petri nets. Fundamenta Informaticae, 120(3–4):275–
293, 2012.

5. Javier Esparza. Decidability and complexity of petri net problems – an intro-
duction. In Wolfgang Reisig and Grzegorz Rozenberg, editors, Lectures on Petri
Nets I: Basic Models, Advances in Petri Nets, volume 1491 of Lecture Notes in
Computer Science, pages 374–428. Springer-Verlag, 1998.

6. Serge Haddad and Denis Poitrenaud. Theoretical aspects of recursive Petri nets.
In S. Donatelli and J. Kleijn, editors, Application and Theory of Petri Nets, volume
1639 of Lecture Notes in Computer Science, pages 228–247. Springer-Verlag, 1999.

7. Frank Heitmann. Algorithms and Hardness Results for Object Nets. PhD thesis,
University of Hamburg, 2013.

8. Frank Heitmann and Michael Köhler-Bußmeier. On defining conflict-freedom for
object nets. In B. Farwer and M. Köhler-Bußmeier, editors, Proceedings of the
Second International Workshop on Logic, Agents, and Mobility (LAM 2011), 2011.

9. Frank Heitmann and Michael Köhler-Bußmeier. P- and t-systems in the nets-
within-nets-formalism. In Serge Haddad and Lucia Pomello, editors, Application
and Theory of Petri Nets. 33rd International Conference, PETRI NETS 2012.
Hamburg, Germany, June 2012. Proceedings, volume 7347 of Lecture Notes in
Computer Science, pages 368–387. Springer-Verlag, 2012.

10. Kunihiko Hiraishi. PN2: An elementary model for design and analysis of multi-
agent systems. In Farhad Arbab and Carolyn L. Talcott, editors, Coordination
Models and Languages, COORDINATION 2002, volume 2315 of Lecture Notes in
Computer Science, pages 220–235. Springer-Verlag, 2002.

11. Kathrin Hoffmann, Hartmut Ehrig, and Till Mossakowski. High-level nets with
nets and rules as tokens. In Application and Theory of Petri Nets and Other
Models of Concurrency, volume 3536 of Lecture Notes in Computer Science, pages
268 – 288. Springer-Verlag, 2005.

12. Michael Köhler. The reachability problem for object nets. Fundamenta Informat-
icae, 79(3-4):401 – 413, 2007.

13. Michael Köhler, Daniel Moldt, and Heiko Rölke. Modeling the behaviour of Petri
net agents. In J. M. Colom and M. Koutny, editors, Application and Theory of
Petri Nets, volume 2075 of Lecture Notes in Computer Science, pages 224–241.
Springer-Verlag, 2001.

192 F. Heitmann, M. Köhler-Bußmeier

14. Michael Köhler, Daniel Moldt, and Heiko Rölke. Modelling mobility and mobile
agents using nets within nets. In W. v. d. Aalst and E. Best, editors, Application
and Theory of Petri Nets, volume 2679 of Lecture Notes in Computer Science,
pages 121–140. Springer-Verlag, 2003.

15. Michael Köhler and Heiko Rölke. Concurrency for mobile object-net systems.
Fundamenta Informaticae, 54(2-3), 2003.

16. Michael Köhler and Heiko Rölke. Properties of Object Petri Nets. In J. Cortadella
and W. Reisig, editors, Application and Theory of Petri Nets, volume 3099 of
Lecture Notes in Computer Science, pages 278–297. Springer-Verlag, 2004.

17. Michael Köhler and Heiko Rölke. Reference and value semantics are equivalent for
ordinary object petri nets. In G. Ciardo and P. Darondeau, editors, Application
and Theory of Petri Nets, volume 3536 of Lecture Notes in Computer Science,
pages 309–328. Springer-Verlag, 2005.

18. Michael Köhler-Bußmeier. Decidability results for elementary object systems. Re-
port of the department of informatics, Universität Hamburg, Fachbereich Infor-
matik, 2011.

19. Michael Köhler-Bußmeier and Frank Heitmann. Safeness for object nets. Funda-
menta Informaticae, 101(1-2):29–43, 2010.

20. Michael Köhler-Bußmeier and Frank Heitmann. Liveness of safe object nets. Fun-
damenta Informaticae, 112(1):73–87, 2011.

21. Michael Köhler-Bußmeier and Frank Heitmann. Conservative elementary object
systems. Fundamenta Informaticae, 120(3–4):325–339, 2012.

22. Michael Köhler-Bußmeier and Frank Heitmann. Complexity results for elementary
hornets. In José-Manuel Colom and Jörg Desel, editors, Application and Theory of
Petri Nets and Concurrency. 34th International Conference, PETRI NETS 2013.
Milan, Italy, June 24-28, 2013. Proceedings, volume 7927 of Lecture Notes in Com-
puter Science, pages 150–169. Springer-Verlag, 2013.

23. Charles Lakos. A Petri net view of mobility. In Formal Techniques for Networked
and Distributed Systems (FORTE 2005), volume 3731 of Lecture Notes in Com-
puter Science, pages 174–188. Springer-Verlag, 2005.

24. Irina A. Lomazova. Nested Petri nets – a formalism for specification of multi-agent
distributed systems. Fundamenta Informaticae, 43(1-4):195–214, 2000.

25. Irina A. Lomazova, Kees M. van Hee, Olivia Oanea, Alexander Serebrenik, Natalia
Sidorova, and Marc Voorhoeve. Nested nets for adaptive systems. In Petri Nets and
Other Models of Concurrency - ICATPN 2006. 27th International Conference on
Applications and Theory of Petri Nets and Other Models of Concurrency, Turku,
Finland, June 26-30, 2006. Proceedings, volume 4024 of Lecture Notes in Computer
Science, pages 241–260. Springer-Verlag, 2006.

26. Wolfgang Reisig and Grzegorz Rozenberg, editors. Lectures on Petri Nets I: Basic
Models, volume 1491 of Lecture Notes in Computer Science. Springer-Verlag, 1998.

27. Rüdiger Valk. Modelling concurrency by task/flow EN systems. In 3rd Workshop
on Concurrency and Compositionality, number 191 in GMD-Studien, St. Augustin,
Bonn, 1991. Gesellschaft für Mathematik und Datenverarbeitung.

28. Rüdiger Valk. Object Petri nets: Using the nets-within-nets paradigm. In Jörg
Desel, Wolfgang Reisig, and Grzegorz Rozenberg, editors, Advanced Course on
Petri Nets 2003, volume 3098 of Lecture Notes in Computer Science, pages 819–
848. Springer-Verlag, 2003.

29. Moshe Vardi. An automata-theoretic approach to linear temporal logic. In
F. Moller and G. Birtwistle, editors, Logics for Concurrency: Structure versus
Automata, volume 1043 of Lecture Notes in Computer Science, pages 238–266.
Springer-Verlag, 1996.

Causal Structures for General Concurrent
Behaviours

Ryszard Janicki1, Jetty Kleijn2, Maciej Koutny3, and Łukasz Mikulski3,4

1 McMaster University, Canada
2 LIACS, Leiden University, The Netherlands

3 Newcastle University, U.K.
4 Nicolaus Copernicus University, Poland

Abstract. Non-interleaving semantics of concurrent systems is often
expressed using posets, where causally related events are ordered and
concurrent events are unordered. Each causal poset describes a unique
concurrent history, i.e., a set of executions, expressed as sequences or
step sequences, that are consistent with it. Moreover, a poset captures
all precedence-based invariant relationships between the events in the
executions belonging to its concurrent history. However, concurrent his-
tories in general may be too intricate to be described solely in terms
of causal posets. In this paper, we introduce and investigate generalised
mutex order structures which can capture the invariant causal relation-
ships in any concurrent history consisting of step sequence executions.
Each such structure comprises two relations, viz. interleaving/mutex and
weak causality. As our main result we prove that each generalised mutex
order structure is the intersection of the step sequence executions which
are consistent with it.
Keywords: concurrent history, causal poset, weak causal order, mutex
relation, interleaving, step sequence, causality semantics.

1 Introduction

In order to design and validate complex concurrent systems, it is essential to
understand the fundamental relationships between events occurring in their ex-
ecutions. However, looking at sequential descriptions of executions in the form
of sequences or step sequences is insufficient when it comes to providing faith-
ful information about causality and independence between events. To address
this drawback, one may resort to using partially ordered sets of events provid-
ing explicit representation of causality in the executions of a concurrent system.
In particular, the order in which independent events are observed may be ac-
cidental and those executions which only differ in the order of occurrences of
independent events may be regarded as belonging to the same concurrent his-
tory, underpinned by a causal poset [1, 13, 16, 17, 21].

In general, concurrent behaviours can be investigated at the level of individual
executions as well as at the level of order structures, like causal posets, capturing
the essential invariant dependencies between events. The key link between these

194 R. Janicki, J. Kleijn, M. Koutny, Ł. Mikulski

a b

c d

(a)

a b

c d

(b)

a b

c d

(c)

Fig. 1. A safe Petri net (a), extended with an inhibitor arc implying that when c is
executed the output place of d must be empty (b), and extended with a mutex arc
implying that c and d cannot be executed simultaneously (c).

two levels is the notion of a concurrent history [6], an invariant closed set ∆ of
executions. The latter means that∆ is fully determined by invariant relationships
over X, its set of events: causality (e ≺∆ f if, in all executions of ∆, e precedes
f); weak causality (e @∆ f if, in all executions of ∆, e either precedes or is
simultaneous with f); and interleaving/mutex (e
∆ f if, in all executions of
∆, e is not simultaneous with f). In the case of safe Petri nets with sequential
executions, ≺∆ is the only invariant we need (as then, e.g., ≺∆ = @∆ and

∆ = ≺∆ ∪ ≺−1∆). In particular, ∆ is the set of all sequential executions
corresponding to the linearisations of ≺∆. The soundness of this approach is
validated by Szpilrajn’s Theorem [20] which states that each poset is equal to
the intersection of its linearisations.

In this paper, executions are observed as step sequences, i.e., sequences of
finite sets (steps) of simultaneously executed events. As an example, consider
the safe Petri net depicted in Figure 1(a) which generates three step sequences
involving a, c and d, viz. σ = {a}{c, d}, σ′ = {a}{c}{d} and σ′′ = {a}{d}{c}.
They can be seen as forming a single concurrent history ∆ = {σ, σ′, σ′′} under-
pinned by a causal poset ≺∆ satisfying a ≺∆ c and a ≺∆ d . Moreover, such a
∆ adheres to the following true concurrency paradigm:

Given two events (c and d in ∆), they can be observed as simultaneous
(in σ) ⇐⇒ they can be observed in both orders (c before d in σ′, and d
before c in σ′′). (TrueCon)

Concurrent histories adhering to TrueCon are underpinned by causal partial
orders, in the sense that each such history comprises all step sequence executions
consistent with a unique causal poset on events involved in the history.

In [6] fundamental concurrency paradigms are identified, including (TrueCon).
Another paradigm is characterised by (TrueCon) with ⇐⇒ replaced by ⇐=.
This paradigm has a natural system model interpretation provided by safe Petri
nets with inhibitor arcs. Figure 1(b) depicts such a net generating two step se-
quences involving a, c and d, viz. σ = {a}{c, d} and σ′ = {a}{c}{d}. They form

Causal Structures for General Concurrent Behaviours 195

a concurrent history ∆′ = {σ, σ′} adhering to the paradigm that unorderedness
implies simultaneity, but not to the true concurrency paradigm as ∆′ has no
step sequence in which d precedes c although in σ, c and d occur in a single step.

As a result, histories adhering to the weaker paradigm are not underpinned
by causal partial orders, but rather by causality structures (X,≺,@) introduced
in [7] — called stratified order structures (so-structures) — based on causal-
ity and an additional weak causality (‘not later than’) relation. A version of
Szpilrajn’s Theorem can be shown to hold also for so-structures and the con-
current histories they generate. Stratified order structures were independently
introduced in [3] (as ‘prossets’). Their comprehensive theory was developed in
e.g. [8, 9, 12, 15]. As shown in this paper, so-structures can be represented in
a one-to-one manner by mutex order structures, or mo-structures, (X,
,@)
based on interleaving/mutex and weak causality. The first, symmetric, relation
defines the events that never occur simultaneously. Hence strict event precedence
(causality) can be captured as a combination of mutex and weak causality.

This paper focuses on the least restrictive paradigm. i.e., there are no con-
straints imposed on concurrent histories. It admits all (invariant closed) con-
current histories comprising step sequence executions. As shown in [6], it is now
sufficient to consider only two invariant relations, viz. mutex and weak causality.
Figure 1(c) depicts a safe Petri net with mutex arcs (see [11]) generating two
step sequences involving a, c and d, viz. σ′ = {a}{c}{d} and σ′′ = {a}{d}{c}.
We first observe that they form a concurrent history ∆′′ = {σ′, σ′′} in which the
executions of c and d interleave, and are both preceded by a; in other words,
c
∆′′ d, a @∆′′ c, a @∆′′ d and c
∆′′ a
∆′′ d. That ∆′′ is a concurrent
history then follows from the observation that ∆′′ contains all step sequences
involving a, c and d which obey these invariant relationships. However, ∆′′ does
not conform to the two earlier considered paradigms as there is no step sequence
in ∆′′ in which c and d occur simultaneously. To summarise, a nonempty set
∆ of step sequence executions over a common set of events X, is a concurrent
history iff ∆ consists of all step sequences σ over X such that for all e, f ∈ X:
e
∆ f implies that e and f are not simultaneous in σ, and e @∆ f implies that
e precedes or is simultaneous with f in σ.

The aim of this paper is to provide a structural characterisation of general
concurrent histories (consisting of step sequence executions). An early attempt to
describe structures of this kind was made in [4]. The there proposed generalised
stratified order structures (or gso-structures) do however not always capture all
implied invariant relationships involving the mutex relation. Here, we will show
that generalised mutex order structures (or gmo-structures) describe exactly all
general concurrent histories. The main result is a version of Szpilrajn’s Theorem,
formulated and proven to hold for gmo-structures and concurrent histories. For
this we develop a notion of gmo-closure which is the gmo-structure counterpart
of transitive closure of an acyclic relation.
First, we recall key notions and notations used throughout the paper. In Sec-
tion 3, we introduce mo-structures and establish their relationship with strat-
ified order structures. Then, Section 4 introduces gmo-structures and proves

196 R. Janicki, J. Kleijn, M. Koutny, Ł. Mikulski

their main properties, including gmo-closure and the gmo-structure version of
Szpilrajn’s Theorem. Section 5 presents concluding remarks.
Proofs of all the results can be found in the Technical Report available at
http://www.cs.ncl.ac.uk/publications/trs/papers/1378.pdf.

2 Preliminary Definitions

Throughout the paper we use the standard notions of set theory and formal
language theory. In particular,

⊎
denotes disjoint set union. The identity relation

on a set X is defined as IdX = {〈a, a〉 | x ∈ X}, the index X may be omitted if
it is clear from the context.

Composing relations. The composition of two binary relations, R and Q, over
X is given by R ◦Q = {〈a, b〉 | ∃x ∈ X : aRx ∧ xQb}. Moreover, if P ⊆ X ×X,
then we define R◦P Q = {〈a, b〉 | ∃〈x, y〉 ∈ P : aRxQb ∧ aRyQb} (see Figure 2).

〈a, b〉 ∈ R ◦P Q:
a

x

y
b

R :

Q :

P :

Fig. 2. A visualisation of ◦P composition.

Note that ◦ = ◦Id , and the associativity of relation composition holds for the
extended notion. We will also denote a1 . . . akRb1 . . . bm whenever aiRbj , for all
i, j. For example, aRbcQd means that aRbQd and aRcQd.

Given a relation R ⊆ X × X, R0 = Id and Rn = Rn−1 ◦ R, for all n ≥ 1.
Then: (i) the reflexive closure of R is defined by R∪Id ; (ii) the transitive closure
by R+ =

⋃
i≥1R

i; (iii) the reflexive transitive closure by R∗ = Id ∪ R+; and
(iv) the irreflexive transitive closure by R� = R+ \ Id = R∗ \ Id . Moreover, the
inverse of R is given by R−1 = {〈a, b〉 | 〈b, a〉 ∈ R}, and the symmetric closure
by Rsym = R ∪R−1.

Order relations. A relation R ⊆ X × X is: (i) symmetric if R = R−1; (ii)
antisymmetric if R ∩ R−1 ⊆ Id ; (iii) reflexive if Id ⊆ R; (iv) irreflexive if
Id ∩R = ∅; (v) transitive if R ◦R ⊆ R∪ Id ; and (vi) total if R∪R−1 = X ×X.

A relation R ⊆ X × X is: (i) an equivalence relation if it is symmetric,
transitive and reflexive; (ii) a pre-order if it is transitive and irreflexive; (iii) a
partial order if it is an antisymmetric pre-order; and (iv) a total order if it is a
partial order and R∪ Id is total; (v) a stratified order if it is a partial order such
that X ×X \Rsym is an equivalence relation.

Every irreflexive relation R ⊆ X × X induces a least pre-order containing
R defined by R�. Following E. Schröder [19], we define the largest equivalence
relation contained in R∗ as R~ = R∗ ∩ (R∗)−1 = (R� ∩ (R�)−1)] Id .

Causal Structures for General Concurrent Behaviours 197

For a stratified order R ⊆ X ×X we define two relations, @R and
R, such
that, for all distinct a, b ∈ X:

a @R b ⇐⇒ ¬(bRa) and a
R b ⇐⇒ ¬(a @~R b) ⇐⇒ aRb ∨ bRa .

Intuitively, if R represents a stratified order execution, aRb means ‘a occurred
earlier than b’. In such a case a @R b means ‘a occurred not later than b’, a
R b
means ‘a did not occur simultaneously with b’, and a @~R b means ‘a occurred
simultaneously with b’.

Relational structures. A tuple S = (X,R1, R2, . . . , Rn), where n ≥ 1 and each
Ri ⊆ X × X is a binary relation on X, is an (n-ary) relational structure. By
the domain of a relational structure S we mean the set X. An extension of S
is any relational structure S′ = (X,R′1, R

′
2 . . . , R

′
n) satisfying Ri ⊆ R′i, for every

1 ≤ i ≤ n. We denote this by S ⊆ S′. The intersection of a nonempty family
R = {(X,Ri1, . . . , Rin) | i ∈ I} of relational structures with the same domain and
arity is given by

⋂
R = (X,

⋂
i∈I R

i
1, . . . ,

⋂
i∈I R

i
n). In what follows, we consider

only relational structures that contain two relations, while the set X is finite.
A relational structure S = (X,Q,R) is: (i) separable if Q ∩ R~ = ∅, Q is

symmetric and R is irreflexive; and (ii) saturated in a family of relational struc-
tures X if it belongs to X and for every extension S′ ∈ X of S, we have
S = S′. It is easily seen that an intersection of separable relational structures is
also separable. Intuitively, if Q represents ‘mutex’ and R ‘weak precedence’, then
separability means that simultaneous events cannot be in the mutex relation.

A stratified order structure (or so-structure) is defined as a relational struc-
ture sos = (X,≺,@), where ≺ and @ are binary relations on X such that, for
all a, b, c ∈ X:

S1 : a 6@ a S3 : a @ b @ c ∧ a 6= c =⇒ a @ c
S2 : a ≺ b =⇒ a @ b S4 : a @ b ≺ c ∨ a ≺ b @ c =⇒ a ≺ c .

A generalized stratified order structure [4] (or gso-structure) is a relational
structure gsos = (X,
,@) such that @ is irreflexive,
 is irreflexive and sym-
metric, and (X,
 ∩ @,@) is an so-structure. A comprehensive treatment of
gso-structures can be found in [5].

Properties. For every binary relation R ⊆ X ×X and all a, b ∈ X, we have:

(R ∪ 〈a, b〉)∗ = R∗ ∪ {〈c, d〉 | cR∗a ∧ bR∗d} . (1)

¬(bR∗a) =⇒ (R ∪ 〈a, b〉)~ = R~ (2)

R~ = (R~)−1 ⊆ R∗ (3)

(R�)� = R� (R�)∗ = R∗ (R∗)∗ = R∗ (R�)~ = R~ (4)

R~ ◦R~ = R~ R∗ ◦R~ = R~ ◦R∗ = R∗ ◦R∗ = R∗ (5)

If R ⊆ X ×X is a stratified order, then
R is irreflexive and symmetric, while
@R is a pre-order such that:

@R = @+
R \Id = @�

R and @~R \Id = @R ∩ @−1R . (6)

198 R. Janicki, J. Kleijn, M. Koutny, Ł. Mikulski

Moreover, for all distinct a, b ∈ X, we have:

¬(a
R b) ⇐⇒ a @R b ∧ b @R a (7)
¬(a @R b) =⇒ b @R a (8)

aRb ⇐⇒ a
R b ∧ a @R b . (9)

and exactly one of the following holds:

a
 b
 a @ b 6@ a
a
 b
 a 6@ b @ a
a 6
 b 6
 a @ b @ a .

(10)

Intuitively, (9) means that ‘a occurred earlier than b’ iff ‘a and b were not
simultaneous’ and ‘a occurred not later than b’.

3 Separable Order Structures

In this section we take another look at the stratified order structures, substan-
tially different from that of, e.g., [8, 12, 15]. We provide for them a new represen-
tation more suitable for further generalisation. The new representation replaces
causal orders by mutex relations between events. While so-structures allow for
more compact representation (strict precedence involves fewer pairs of events
than mutex), the new order structures are easier to generalise to cater for gen-
eral interleaving/mutex requirements and their properties.

In the rest of this paper, we will be concerned with order structures of the
form S = (X,
,@). Intuitively, X is a set of events involved in some history of
a concurrent system,
 is a ‘mutex’ (or ‘interleaving’) relation which identifies
pairs of events which cannot occur simultaneously, and @ is a ‘weak precedence’
relation between events. The latter means, in particular, that if a @ b @ a then
a and b must occur simultaneously in any execution belonging to the history
represented by S; in other words, S must be separable (i.e.,
 ∩ @~= ∅).

Mutex order structures The definition of the first class of order structures based
on mutex and weak precedence relations is motivated by the observation that the
‘precedence’ (or ‘causality’) relation is nothing but ‘mutex’+‘weak precedence’,
c.f. (9). Therefore, the axioms defining stratified order structures can easily be
rendered in terms of the latter relations.

Definition 1 (mutex order structure). A mutex order structure (mo-struc-
ture) is a relational structure mos = (X,
,@), where
 and @ are binary
relations on X such that, for all a, b, c ∈ X:

M1 : a
 b =⇒ b
 a
M2 : a 6@ a
M3 : a
 b =⇒ a @ b ∨ b @ a
M4 : a @ b @ c ∧ a 6= c =⇒ a @ c
M5 : a @ b @ c ∧ (a
 b ∨ b
 c) =⇒ a
 c .

Causal Structures for General Concurrent Behaviours 199

a b
a b

a b

a b c

a 6= c a b c

a b c

a b c

a b c

a b c @:

:

M3

M4

M5

Fig. 3. A visualisation of axioms M3 −M5 .

Axioms M3 −M5 are illustrated in Figure 3, and some relevant properties
of mo-structures are given below.

Proposition 1. Let mos = (X,
,@) be an mo-structure. Then mos is sepa-
rable and, for all a, b, c, d ∈ X, we have:

a 6
 a (11)
a @ b @ a ∧ a
 c =⇒ b
 c (12)

a @ c @ b ∧ a @ d @ b ∧ c
 d =⇒ a
 b . (13)

The next results demonstrate that mo-structures are in a one-to-one rela-
tionship with so-structures. Below, we use two mappings between these two
classes of order structures. For every so-structure sos = (X,≺,@), we define
so2mo(sos) = (X,≺sym ,@), and for every mo-structure mos = (X,
,@), we
define mo2so(mos) = (X,
 ∩ @,@).

Theorem 1. The mappings mo2so and so2mo are inverse bijections.

Layered order structures In general, order structures like mo-structures are not
saturated, and may capture histories comprising several executions (like a single
causal partial order may have numerous total order linearisations). However,
there is also a class of order structures which correspond in a one-to-one way to
step sequences.

Definition 2. Let R ⊆ X ×X be a stratified order. Then los = (X,
R,@R) is
the layered order structure (or lo-structure) induced by R.

For a separable relational structure sr = (X,
,@), we will denote by sr2los(sr)
the set of all lo-structures los extending sr , i.e., sr ⊆ los. With this nota-
tion, a nonempty set LOS of lo-structures is a concurrent history if LOS =
sr2los

(⋂
LOS

)
.

200 R. Janicki, J. Kleijn, M. Koutny, Ł. Mikulski

Proposition 2. Every layered order structure is separable and saturated in the
set of all separable order structures.

Proposition 3. Every lo-structure is an mo-structure.

An mo-structure is linked with lo-structures (step sequences) through the set
sr2los(mos) of all lo-structures extending mos. Similarly, for every so-structure
sos we can define so2los(sos) = sr2los(so2mo(sos)). It can then be seen ([8]) that
so2los(sos) is a nonempty set and (in the notation used in this paper):

sos =
⋂

mo2so(so2los(sos)) . (14)

That result corresponds to Szpilrajn’s Theorem that any partial order is the
intersection of its linearisations (c.f. [5, 8]). Such a result extends to mo-struc-
tures and we obtain

Theorem 2. For every mo-structure mo, sr2los(mo) 6=∅ and mo=
⋂
sr2los(mo).

We can therefore conclude that the saturated extensions of an mo-structure
mos form a concurrent history represented by mos. It is then important to ask
which concurrent histories can be derived in this way; in other words, which
concurrent histories can be represented by mo-structures.

Consider now a nonempty set LOS = {(X,
i,@i) | i ∈ I} of lo-structures
forming a concurrent history, and their intersection S =

⋂
LOS = (X,
,@).

Since every lo-structure is also an mo-structure, we immediately obtain that S
is an order structure satisfying axioms M1 , M2 , M4 and M5 . However, M3 in
general does not hold although it holds for histories in which the possibility of
executing two events in either order always implies also simultaneous execution,
meaning that, for all distinct a, b ∈ X,

∃i ∈ I : 〈a, b〉 ∈
i ∩ @i
∃j ∈ I : 〈b, a〉 ∈
j ∩ @j

}
=⇒ ∃k ∈ I : 〈a, b〉 ∈ @sym

j .

One might now wonder what happens if we do not assume any special proper-
ties of a concurrent history. As we will show in the rest of the paper, Proposition 1
in combination with the observation that it always holds for S =

⋂
LOS , yields

axioms for order structures underpinning general concurrent histories.

4 Generalised Order Structures

In this section, we provide a complete characterisation of general concurrent
histories where executions are represented by layered order structures; in other
words, histories comprising step sequence executions. We achieve this by retain-
ing all those mo-structure axioms which hold in general, and then replacing the
only dropped axiom M3 by Proposition 1.

Causal Structures for General Concurrent Behaviours 201

a

b

c

a

b

c

a

c

d

b a

c

d

b
@:

:

G5

G6

Fig. 4. A visualisation of axioms G5 and G6 .

Definition 3 (generalised mutex order structure). A generalised mutex
order structure (or gmo-structure) is a relational structure gmos = (X,
,@),
where
 and @ are binary relations on X such that, for all a, b, c, d ∈ X:

G1 : a
 b =⇒ b
 a M1
G2 : a 6@ a ∧ a 6
 a M2 & (11)
G3 : a @ b @ c ∧ a 6= c =⇒ a @ c M4
G4 : a @ b @ c ∧ (a
 b ∨ b
 c) =⇒ a
 c M5
G5 : a @ b @ a ∧ a
 c =⇒ b
 c (12)
G6 : a @ c @ b ∧ a @ d @ b ∧ c
 d =⇒ a
 b (13)

The set of axioms in Definition 3 is minimal (see Figure 5). Moreover, gmo-
structures enjoy a number of useful properties.

Proposition 4. Let gmos = (X,
,@) be a gmo-structure. Then gmos is sep-
arable and, for all a, b ∈ X, we have:

a @� b =⇒ a @ b a @ b @ a =⇒ a 6
 b .

Proposition 5. Each mo-structure is a gmo-structure.

The converse of Proposition 5 does not hold; for example, as M3 does not
hold, ({a, b}, {〈a, b〉, 〈b, a〉},∅) is a gmo-structure but not an mo-structure.

Proposition 6. If gmos = (X,
,@) is a gmo-structure, then (X,
 ∩ @,@)
is an so-structure.

Proposition 6 states that every gmo-structure is a gso-structure. We observe
that the converse is not true, with suitable counterexamples provided by the
gso-structures SG5 and SG6 in Figure 5.

Closure operator for generalised mutex order structures We will now provide a
method for deriving valid gmo-structures from other relational structures.

202 R. Janicki, J. Kleijn, M. Koutny, Ł. Mikulski

SG1 : a b SG2 : a
SG3 : a b c

SG4 : a b c
SG5 : a

b

c

SG6 :
a

c

d

b
@:

:

Fig. 5. Examples showing that the set of axioms in Definition 3 is minimal. Each
relational structure SGi satisfies all axioms except for Gi.

Definition 4 (gmo-closure). Let S = (X,Q,R) be a relational structure and
Q[R] = R~ ◦

(
Q∪ (R∗ ◦Q R∗)sym

)
◦R~. Then the gmo-closure of S is given by:

S� =
(
X , Q[R] , R�) .

The gmo-closure operator introduced here can be seen as related to two
different closure operators: (i) the transitive closure operator for acyclic reflexive
binary relations; and (ii) the ♦-operator for ♦-acyclic order structures introduced
in [7] in order to obtain so-structures. It is also be seen as a generalisation of
the gso-closure introduced in [10] for gso-acyclic structures in order to obtain
gso-structures.

The main property we want from the notion of gmo-closure is that whenever
S = (X,Q,R) is a separable relational structure, S� is a gmo-structure. Fur-
thermore, if S is already a gmo-structure, then we want S� = S. The form of
Q[R] follows from the requirement that S� should be a gmo-structure and the
axioms for gmo-structures. In particular the factor (R∗ ◦Q R∗)sym follows from
axioms G4 and G6 , while the factor R~ ◦Q R~ corresponds to G5 .

a • • b

a •
•

•
• b

a •
•

•
• b R∗ :

Q :

Fig. 6. A visualisation of the three cases of 〈a, b〉 ∈ Q[R].

Causal Structures for General Concurrent Behaviours 203

The next four results respectively correspond to saying that: (i) the transitive
closure of an acyclic relation is also acyclic; (ii) gmo-closure is a closure operation
in the usual sense; (iii) the transitive closure of an acyclic relation yields a poset;
and (iv) posets are transitively closed.

Proposition 7. If S is a separable relational structure, then S� is also separa-
ble, S ⊆ S� and (S�)� = S�. Moreover, S� is a gmo-structure.

Proposition 8. If gmos is a gmo-structure, then gmos� = gmos.

As layered order structures and mutex order structures are special cases of
generalised mutex order structures, we obtain an immediate

Corollary 1. Let los be an lo-structure and mos be an mo-structure. Then
los� = los and mos� = mos.

The following technical lemma describes a single stage of the saturation pro-
cess for a gmo-structure leading to a los-structure. In such a process, we may
add an arbitrary link between two elements that do not yet satisfy (10). We only
need to remember that in the case of extending the relation Q, together with
〈a, b〉 we have to add 〈b, a〉. After such an addition, we get a separable order
structure that may be closed. As a result, we obtain one of possible extensions
of an initial gmos. The above process terminates after obtaining an lo-structure
and it is central to the proof of the main Theorem 3.

In what follows, we denote Rxy = R∪{〈x, y〉} and Qxyx = Q∪{〈x, y〉, 〈y, x〉}.

Lemma 1. Let gmos = (X,Q,R) be a gmo-structure, a, b ∈ X and a 6= b.

〈a, b〉 /∈ R ∧ 〈b, a〉 /∈ R =⇒ (X,Q,Rab)
� is a gmo-structure

〈a, b〉 /∈ R ∧ 〈a, b〉 /∈ Q =⇒ (X,Q,Rab)
� is a gmo-structure

〈a, b〉 /∈ R ∧ 〈a, b〉 /∈ Q =⇒ (X,Qaba, R)
� is a gmo-structure .

To complete the properties of the saturation process described in Lemma 1
and used in the proof of Theorem 3, we formulate the following

Lemma 2. Let gmos = (X,Q,R) be a gmo-structure such that a, b ∈ X, a 6= b,
〈a, b〉 /∈ R and 〈a, b〉 /∈ Q and S′ = (X,Q,Rab)

� = (X,Q′, R�
ab). Then 〈a, b〉 /∈ Q′.

In Lemmas 1 and 2 we have captured a method of saturating gmo-structures
that are not lo-structures. It moreover allows us to formulate an immediate

Corollary 2. Every relational structure saturated among all separable relational
structures is a layered order structure.

General concurrent histories We now return to our original goal which was to
provide a structural characterisation of all histories comprising step sequence
executions. Recall that sr2los(gmos) is the set of all lo-structures associated
with a gmo-structure gmos. Then we obtain a result corresponding to Szpilrajn’s
Theorem:

204 R. Janicki, J. Kleijn, M. Koutny, Ł. Mikulski

Theorem 3. For every gmo-structure gmos,

sr2los(gmos) 6= ∅ and gmos =
⋂

sr2los(gmos) .

Together with the fact that, for every nonempty set LOS of lo-structures
with the same domain,

⋂
LOS is a gmos-structure, this leads to the conclusion

that all concurrent histories are represented by gmo-structures.

5 Concluding Remarks

We can finally clarify the relationship between gso-structures and gmo-struc-
tures. In general, in order to accept an order structure os = (X,
,@) as an
invariant representation of a concurrent history, we require that

sr2los(os) 6= ∅ and os =
⋂

sr2los(os) .

We demonstrated that this property holds whenever os is a gmo-structure,
and that it may fail to hold for a gso-structure. We have further shown that gmo-
structures are gso-structures, but that the converse does not hold. However,
what is the case is that each gso-structure gsos is separable, and so its gmo-
closure gsos� is a gmo-structure satisfying sr2los(gsos�) = sr2los(gsos). In other
words, concurrent histories described by separable order structures and their
gmo-closures are the same. The importance of gso-structures comes from the
fact that they paved the way for gmo-structures, by exposing the fundamental
property that causal ordering is a combination of mutex and weak ordering.

A key motivation for the research presented in this paper comes from concur-
rent behaviours as exhibited by safe Petri nets with mutex arcs. The resulting se-
mantical approach — which has been meticulously worked out above — is based
on gmo-structures which characterise all concurrent histories comprising step
sequence executions. A natural direction for further work is to provide a com-
patible language-theoretic representation of concurrent histories, by generalising
Mazurkiewicz traces [13] which correspond to causal posets, and comtraces [7]
which correspond to so-structures (or mo-structures). This development would
also allow to link the dynamic notions of mutex and weak causality with the
static properties of Petri nets with mutex arcs. The resulting semantics can also
support efficient verification techniques [2, 14, 18].

Acknowledgements

We would like to thank the anonymous reviewers for useful comments and sug-
gestions. This research was supported by a fellowship funded by the “Enhancing
Educational Potential of Nicolaus Copernicus University in the Disciplines of
Mathematical and Natural Sciences” Project Pokl.04.01.01-00-081/10, the Ep-
src Gaels and Uncover projects, and by an Nserc of Canada grant.

Causal Structures for General Concurrent Behaviours 205

References

1. Best, E., Devillers, R.: Sequential and concurrent behaviour in Petri net theory.
TCS 55(1), 87–136 (1987)

2. Esparza, J., Heljanko, K.: Unfoldings: A Partial-Order Approach to Model Check-
ing. Monographs in Theoretical Computer Science, Springer (2008)

3. Gaifman, H., Pratt, V.R.: Partial order models of concurrency and the computation
of functions. In: LICS. pp. 72–85 (1987)

4. Guo, G., Janicki, R.: Modelling concurrent behaviours by commutativity and weak
causality relations. In: AMAST. pp. 178–191 (2002)

5. Janicki, R.: Relational structures model of concurrency. Act. Inf. 45, 279–320 (2008)
6. Janicki, R., Koutny, M.: Structure of concurrency. TCS 112(1), 5–52 (1993)
7. Janicki, R., Koutny, M.: Semantics of inhibitor nets. Inf.&Comp. 123(1), 1 – 16

(1995)
8. Janicki, R., Koutny, M.: Fundamentals of modelling concurrency using discrete

relational structures. Acta Inf. 34, 367–388 (1997)
9. Juhás, G., Lorenz, R., Mauser, S.: Causal semantics of algebraic Petri nets distin-

guishing concurrency and synchronicity. Fundam. Inf. 86(3), 255–298 (2008)
10. Kleijn, J., Koutny, M.: The mutex paradigm of concurrency. In: Petri Nets. pp.

228–247 (2011)
11. Kleijn, J., Koutny, M.: Mutex causality in processes and traces. Fundam. Inf. 122,

119–146 (2013)
12. Le, D.T.M.: On three alternative characterizations of combined traces. Fundam.

Inf. 113(3), 265–293 (2011)
13. Mazurkiewicz, A.: Concurrent program schemes and their interpretations. DAIMI

Rep. PB 78, Aarhus University (1977)
14. McMillan, K.L.: Using unfoldings to avoid the state explosion problem in the ver-

ification of asynchronous circuits. In: CAVC. pp. 164–177 (1992)
15. Mikulski, Ł., Koutny, M.: Hasse diagrams of combined traces. In: Brandt, J., Hel-

janko, K. (eds.) ACSD. pp. 92–101 (2012)
16. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains,

Part I. TCS 13, 85–108 (1981)
17. Pratt, V.R.: Some constructions for order-theoretic models of concurrency. In:

Logic of Programs. pp. 269–283 (1985)
18. Rodriguez, C., Schwoon, S., Khomenko, V.: Contextual merged processes. In: Petri

Nets. LNCS, vol. 7927, pp. 29–48 (2013)
19. Schröder, E.: Vorlesungen über die Algebra der Logik (Exakte Logik). Dritter

Band: Algebra und Logik der Relative. B. G. Teubner (1895)
20. Szpilrajn, E.: Sur l’extension de l’ordre partiel. Fundam. Math. 16, 386–389 (1930)
21. Winkowski, J., Maggiolo-Schettini, A.: An algebra of processes. Journal of Com-

puter and System Sciences 35(2), 206–228 (1987)

Interactive Complex Granules

Andrzej Jankowski1, Andrzej Skowron2, and Roman Swiniarski3?

1 Institute of Computer Science, Warsaw University of Technology
Nowowiejska 15/19, 00-665 Warsaw, Poland

a.jankowski@ii.pw.edu.pl
2 Institute of Mathematics, The University of Warsaw

Banacha 2, 02-097 Warsaw, Poland
skowron@mimuw.edu.pl

3 Department of Computer Science, San Diego State University
5500 Campanile Drive San Diego, CA 92182, USA

and
Institute of Computer Science Polish Academy of Sciences

Jana Kazimierza 5, 01-248 Warsaw, Poland
rswiniarski@mail.sdsu.edu

As far as the laws of mathematics refer to reality,

they are not certain; and as far as they are certain,

they do not refer to reality.

– Albert Einstein ([2])

Constructing the physical part of the theory and unifying it

with the mathematical part should be considered as one of

the main goals of statistical learning theory

– Vladimir Vapnik

([24], Epilogue: Inference from sparse data, p. 721)

Abstract. Information granules (infogranules, for short) are widely dis-
cussed in the literature. In particular, let us mention here the rough
granular computing approach based on the rough set approach and its
combination with other approaches to soft computing. However, the is-
sues related to interactions of infogranules with the physical world and
to perception of interactions in the physical world by infogranules are

? This work was supported by the Polish National Science Centre grants 2011/01/B/
ST6/03867, 2011/01/D/ST6/06981, and 2012/05/B/ST6/03215 as well as by the
Polish National Centre for Research and Development (NCBiR) under the grant
SYNAT No. SP/I/1/77065/10 in frame of the strategic scientific research and ex-
perimental development program: “Interdisciplinary System for Interactive Scientific
and Scientific-Technical Information” and the grant No. O ROB/0010/ 03/001 in
frame of the Defence and Security Programmes and Projects: “Modern engineering
tools for decision support for commanders of the State Fire Service of Poland during
Fire & Rescue operations in the buildings”

Interactive Complex Granules 207

not well elaborated yet. On the other hand the understanding of inter-
actions is the critical issue of complex systems. We propose to model
complex systems by interactive computational systems (ICS) created by
societies of agents. Computations in ICS are based on complex granules
(c-granules, for short). In the paper we concentrate on some basic issues
related to interactive computations based on c-granules performed by
agents in the physical world.

Key words: granular computing, rough set, interaction, information
granule, physical object, complex granule, interactive computational sys-
tem

1 Introduction

Granular Computing (GC) is now an active area of research (see, e.g., [16]).
Objects we are dealing with in GC are information granules (or infogranules, for
short). Such granules are obtained as the result of information granulation [26,
28]:

Information granulation can be viewed as a human way of achieving
data compression and it plays a key role in implementation of the strategy
of divide-and-conquer in human problem-solving.

The concept of granulation is rooted in the concept of a linguistic variable intro-
duced by Lotfi Zadeh in 1973 [25]. Information granules are constructed starting
from some elementary ones. More compound granules are composed of finer gran-
ules that are drawn together by indistinguishability, similarity, or functionality
[27].

Computations on granules should be interactive. This requirement is funda-
mental for modeling of complex systems [3]. For example, in [13] this is expressed
as follows

[...] interaction is a critical issue in the understanding of complex
systems of any sorts: as such, it has emerged in several well-established
scientific areas other than computer science, like biology, physics, social
and organizational sciences.

Interactive Rough Granular Computing (IRGC) is an approach for model-
ing interactive computations (see, e.g., [17, 19–23]). Computations in IRGC are
progressing by interactions represented by interactive information granules. In
particular, interactive information systems (IIS) are dynamic granules used for
representing the results of the agent interaction with the environments. IIS can
be also applied in modeling of more advanced forms of interactions such as hi-
erarchical interactions in layered granular networks or generally in hierarchical
modeling. The proposed approach [17, 19–23] is based on rough sets but it can
be combined with other soft computing paradigms such as fuzzy sets or evolu-
tionary computing, and also with machine learning and data mining techniques.

208 A. Jankowski, A. Skowron, R. Swiniarski

The notion of the highly interactive granular system is clarified as the system
in which intrastep interactions [4] with the external as well as with the internal
environments take place. Two kinds of interactive attributes are distinguished:
perception attributes, including sensory ones and action attributes.

In this paper we extend the existing approach by introducing complex gran-
ules (c-granules) making it possible to model interactive computations performed
by agents. Any c-granule consists of three components, namely soft suit, link suit
and hard suit. These components are making it possible to deal with such ab-
stract objects from soft suit as infogranules as well as with physical objects from
hard suit. The link suit of a given c-granule is used as a kind of c-granule inter-
face for expressing interaction between soft suit and and hard suit. Any agent
operates in a local world of c-granules. The agent control is aiming to control
computations performed by c-granules from this local world for achieving the
target goals. Actions (sensors or plans) from link suits of c-granules are used
by the agent control in exploration and/or exploitation of the environment on
the way to achieve their targets. C-granules are also used for representation of
perception by agents of interactions in the physical world. Due to the bounds
of the agent perception abilities usually only a partial information about the in-
teractions from physical world may be available for agents. Hence, in particular
the results of performed actions by agents can not be predicted with certainty.

In Section 2 a general structure of c-granules is described and some illus-
trative examples are included. Moreover, some preliminary concepts related to
agents performing computations on c-granules are discussed. In Section 3 the
agent architecture is outlined. Societies of agents and communication languages
are discussed shortly in Section 4.

This paper is a step in the realization of the Wisdom Technology (WisTech)
programme [6–8].

2 Complex Granules and Physical World

We define the basic concepts related to c-granule relative to a given agent ag.
We assume that the agent ag has access to a local clock making it possible to
use the local time scale. In this paper we consider discrete linear time scale.

We distinguish several kinds of objects in the environment in which the agent
ag operates:

– physical objects (called also as hunks of matter, or hunks, for short) [5] such
as physical parts of agents or robots, specific media for transmitting infor-
mation; we distinguish hunks called as artifacts used for labeling other hunks
or stigmergic markers used for indirect coordination between agents or ac-
tions [9]; note that hunks may change in time and are perceived by the agent
ag as dynamic (systems) processes; any hunk h at the local time t of ag is
represented by the state sth(t); the results of perception of hunk states by
agent ag are represented by value vector of relevant attributes (features);

– complex granules (c-granules, for short) consisting of three parts: soft suit,
link suit, and hard suit (see Figure 1); c-granule at the local time t of ag is

Interactive Complex Granules 209

denoted by G; G receives some inputs and produces some outputs; inputs
and outputs of c-granule G are c-granules of the specified admissible types;
input admissible type is defined by some input preconditions and the output
admissible type is defined by some output postconditions, there are distin-
guished inputs (outputs) admissible types which receive (send) c-granules
from (to) the agent ag control;
• G soft suit consists of

1. G name, describing the behavioral pattern description of the agent
ag corresponding to the name used by agent for identification of the
granule,

2. G type consisting of the types of inputs and outputs of G c-granule,
3. G status (e.g., active, passive),
4. G information granules (infogranules, for short) in mental imagi-

nation of the agent consisting, in particular of G specification, G
implementation and manipulation method(s); any implementation
distinguished in infogranule is a description in the agent ag language
of transformation of input c-granules of relevant types into output
c-granules of relevant types, i.e., any implementation defines an inter-
active computation which takes as input c-granules (of some types)
and produces some c-granules (of some types); inputs for c-granules
can be delivered by the agent ag control (or by other c-granules), we
also assume that the outputs produced by a given c-granule depend
also on interactions of hunks pointed out by link suite as well as
some other hunks from the environment - in this way the semantics
of c-granules is established;

• G link suit consists of
1. a representation of configuration of hunks at time t (e.g., mereologies

of parts in the physical configurations perceived by the agent ag);
2. links from different parts of the configuration to hunks;
3. G links and G representations of elementary actions; using these links

the agent ag may perform sensory measurement or/and actions on
hunks; in particular, links are pointing to the sensors or effectors in
the physical world used by the considered c-granule; using links the
agent ag may, e.g., fix some parameters of sensors or/and actions,
initiate sensory measurements or/and action performance; we also
assume that using these links the agent ag may encode some infor-
mation about the current states of the observed hunks by relevant
information granules;

• G hard suit is created by the environment of interacting hunks encoding
G soft suit, G link suit and implementing G computations;

• soft suit and link suit of G are linked by G links for interactions between
the G hunk configuration representation and G infogranules;

• link suit and hard suit are linked by G links for interactions between the
G hunk configuration representation and hunks in the environment.

The interactive processes during transforming inputs of c-granules into out-
puts of c-granules is influenced by

210 A. Jankowski, A. Skowron, R. Swiniarski

1. interaction of hunks pointed out by link suit;
2. interaction of pointed hunks with relevant parts of configuration in link suit.

Agent can establish, remember, recognize, process and modify relations be-
tween c-granules or/and hunks.

A general structure of c-granules is illustrated in Figure 1.

name, i-o types, expected semantics
specification, operational semantics

specification

G soft_suit

G hard_suit

agent behavioral pattern
description used by agent for

c-granule identification

input type defined
by acceptance
preconditions

G links between G hunk
configuration representation

and G infogranules

environment of interacting hunks
encoding G soft_suit, G link_suit and

implementing G computations

 operational semantics: implementation and manipulation method(s) of admisssible
 cases of interpretation (implementation) of interactive computations with goals specified by

specification (abstract semantics), i.e., procedures for performing interactive computations by the agent
ag control; this includes checking the expected properties of I/O/C c-granules and other conditions,

e.g., after sensory measurements and/or action realisation using links to hunk configuration(s) with the
structure defined by G link_suit;

possible cases of interpretation are often defined relative to different universes of c-granules and hunks)

c-GRANULE G
(at the local agent ag time)

G infogranules (e.g., G specification, G
implementation and manipulation method(s))

G name

input c-granule
of admissible

input type

input/output c-granules (of control type)

output c-granule
of admissible
output type

G interactions with environments

G link_ suit

G infogranular representation of hunk
configurations + G links +

representations of G elementary actions

type defined by
acceptance

postconditions

G links between hunks

and their configurations)

G type G status

Fig. 1. General structure of c-granules

In Figure 2 we illustrate how the abstract definition of operation from soft link
interacts with other suits of c-granule. It is necessary to distinguish two cases.
In the first case, the results of operation ⊗ realized by interaction of hunks are
consistent with the specification in the suit link. In the second case, the result
specified in the soft suit can be treated only as an estimation of the real one
which may be different due to the unpredictable interactions in the hard suit.
Figure 3 illustrates c-granules corresponding to sensory measurement. Note that
in this case, the parameters fixed by the agent control may concern sensor selec-
tion, selection of the object under measurement by sensor and selection of sensor
parameters. They are interpreted as actions selected from the link suit. In the
perception of configuration of hunks of c-granule are distinguished infogranules
representing sensor, object under measurement and the configuration itself. The
links selected by the agent control represent relations between states of hunks
and infogranules corresponding to them in the link suit.

Interactive Complex Granules 211

G1

G2 G1 G2

soft_suit

‘G1’

‘G2’
‘G1 G2’

link_suit

h1

h2
h

hard_suit

links for storing
infogranules G1
and G2 in hunks

links for reading a
representation of

G1 G2 from h

representation
of configuration of hunks for
consisting of representations of

arguments of , programs for
computing , etc.

…

…

programs, actions or
plans implementing

infogranues
in soft_suit

corresponding
to specification and

implementation
of operation

Fig. 2. Explanation of roles of different suits of a c-granule for operation ⊗

Figure 4 illustrates how an interactive information (decision) system is cre-
ated and updated during running of c-granule implementation according to sce-
nario(s) defined in the soft suit and related G links. Such information (decision)
systems are used for recording information about the computation steps during
c-granule implementation run. Note that the structure of this information sys-
tem is different from the classical definition [14, 15, 18]. In particular, this system
is open because of links to physical objects as well as interactions are changing
(often in unpredictable way) in time. In our approach, the agent can be also
interpreted as c-granule. However, this is a c-granule of higher order with em-
bedded control. One can also consider another situation when the c-granules are
autonomous but this is out of scope of this article. Instead of this one can con-
sider interactions in societies of agents. We assume that for any agent ag there is
distinguished a family of elementary c-granules and constructions on c-granules
leading to more compound c-granules. The agent ag is using the constructed
granules for modeling attention and interaction with the environment. Note that
for any new construction on elementary granules (such as network of c-granules)
should be defined the corresponding c-granule. This c-granule should have ap-
propriate soft suit, link suit and hard suit so that the constructed c-granule will
satisfy the conditions of the new c-granule construction specification. Note that
one of the constraints on such construction may follow from the interactions
which the agent ag will have at the disposal in the uncertain environment.

212 A. Jankowski, A. Skowron, R. Swiniarski

specification given by input

output:
information system
representing the

sensory measurement
process by sensor s

input:
perform the sensory

measurement by sensor s in
the hunk configuration h

hard_suit: dynamic hunk
configuration h in the
environment with the

physical sensor s

soft_suit

s

specification
implementation scenario

c-granule

(i) establish links with the
sensor and the hunk
under measurement,

(ii) in interaction with
link_suit select the
relevant action ac and
parameters p for the
action relevant for
initiation the sensory
measurement,

(iii) record in the
corresponding
information system the
results of sensory
measurements on the
basis of the properties of
the states of sensor
during the measurement
process.

link_suit:
 with the representation of the
dynamic hunk configuration h

and links from sensor
representation to the physical
sensor s labeled by selected

ac(p) (action ac with relevant
parameters p) initiating the

sensory measurement and the
hunk on which the

measurement is performed

Fig. 3. Interactions caused by sensors

3 Agent Architecture Framework

Agents may be treated as generalized c-granules with embedded control struc-
ture.

Any agent ag is defined over several classes of c-granules. Among them are:

– senbot (sensory bot) - class of c-granules representing possible states of the
agent sensory measurements with at most one distinguished c-granule at the
local time moment t of agent ag;

– imbot (imagination bot)- class of all possible c-granules which can be con-
structed by the agent ag from sensory measurements with at most one dis-
tinguished c-granule at the local time moment t of agent ag;

– embot (emotional bot)- subclass of imbot class representing emotional con-
cepts of the agent ag;

– nebot (needs bot)- subclass of imbot class representing concepts of the agent
ag needs;

– enabot (environment action bot) - subclass of imbot class specifying the
agent ag elementary actions in the environment;

– imobot (imagination operation bot) - subclass of imbot class specifying the
agent ag elementary operations (different from elementary actions) on c-
granules from imbot;

Interactive Complex Granules 213

link_suit consisting of hunk configuration representation at time t together
 with links to hunks (labeled by elementary actions or /and plans);

 input c-granules for the considered c-granule are defined, e.g., by
 some parts of the configuration representation or values of
 control paremeters

decisions

S(t)
values of
control

parameters
at time t

for
conditional
attributes

values of decision
attributes at time

t’’>t’
corresponding to
output c-granules

for the
considered c-

granule

links (labeled by actions or /and plans) at time t represent relations between
infogranules and hunks defined by representation of hunk configuration of the

global state S(t) defined by the agent control system

row of decision system corresponding to implementation of c-granule

values of
conditional

(hierarchical)
attributes

at time t‘ >t
representing

curent results of
measurements

Fig. 4. Example: Row of interactive information (decision) system corresponding to
registration of computation of c-granule according to implementation scenario

– abot (attention bot) - subclass of imbot class representing c-granules cur-
rently under attention by the agent ag;

– activebot - subclass of imbot class representing c-granules currently active;
– passivebot - subclass of imbot class representing c-granules currently passive;
– metbot (method bot) - subclass of imbot representing methods of manipu-

lation on c-granules (construction, destruction, modification, join, classifiers
construction);

– metabot (method adaptation bot) subclass of imbot representing c-granules
used for adaptation or/and modification of the given methods of manipula-
tion on c-granules.

The language of c-granule names consists of

– set of names of existing c-granules;
– set of names of new generated c-granules.

Types of objects relative to c-granules in imbot:

– set of types of existing c-granules;
– set of types of new generated c-granules.

There are some distinguished c-granules of the agent ag:

– Meaning relation (Mean) - a distinguished c-granule representing a relation
between c-granules and their names.

214 A. Jankowski, A. Skowron, R. Swiniarski

– Type relation (TypeMean) - a distinguished c-granule representing a relation
between c-granules and their types.

– Reference relation (Ref) - a distinguished c-granule representing a relation
between c-granules and ’related’ names.

– Jbot (Judgment bot) - a distinguished c-granule representing actual collec-
tion of strategies of approximate reasoning used by the agent ag for judgment
and risk assessment in the current environment and agent situation.

– Cobot (control bot) - a distinguished c-granule representing actual collection
of strategies of approximate reasoning used by the agent ag for control,
adaptation, and modification of all the agent ag c-granules.

– Metacobot (meta-control bot) - a distinguished c-granule representing actual
collection of strategies of approximate reasoning used by the agent ag for
cobot control, adaptation, and modification.

The generalized c-granules corresponding to agents are defined using also the
above classes of c-granules for defining corresponding suits of such generalized
c-granules. The details of such construction will be presented in our next papers.
Here, we would like to note only that there is a quite general approach for defining
new c-granules from the simpler already defined.

Figure 5 illustrates an idea of transition relation related to a given agent ag.
The relation is defined between configurations of ag at time t and the measure-
ment time next to t. A configuration of ag at time t consists of all configurations
of c-granules existing at time t. A configuration of c-granule G at time t consists
of G itself as well as all c-granules selected on the basis of links in the link suit of
G at time t. These are, in particular all c-granules pointed by links correspond-
ing to the c-granules stored in the computer memory during the computation
process realised by c-granule as well as c-granules corresponding to perception
at time t of the configuration of hunks at time t.

agent configuration at
time t

(with a predicted
granule’s structure at

the time unit next to t)

agent configuration at
the time unit next to t

(not necessarily
satisfying the

predicted results):
the result of

interactions caused
by undertaken actions

and unpredicted
interactions with the

environment

(parallel) realization by the
agent of selected actions,
sensory measurements,
new information granule
construction/destruction,

etc.

Fig. 5. Transiton relation of the agent ag

Interactive Complex Granules 215

4 Societies of Agents and Communication Languages

We assume that the agents can perceive behavioral patterns of other agents of
their groups and based on this they can try to exchange some messages [10].
It is worthwhile to mention that at the beginning agents do not have common
understanding of the meaning of such messages. In the consequence, this leads
to misunderstanding, not comfortable situation for agents (in terms of hierarchy
of their needs represented by nebot). However, after series of trials they have a
chance to set up common meaning of some behavioral patterns. In other words,
they start to create common c-granules which use agreed links to other hunks
or infogranules and also descriptions of some details about actions related to
meaning or methods of implementation of the infogranule contents. For exam-
ple, at the beginning the messages could be linked to warning situations or to
identifications of some sources for satisfiability of some agent needs. This kind
of simple messages could be passed by very simple behavioral pattern. Next,
based on these very simple behavioral patterns the agents can develop more
compound messages related to c-granules corresponding to common plans of co-
operation of group of agents or/and competition with other groups of agents.
This very general framework could be implemented in many ways using differ-
ent AI paradigms. Especially, many models from Natural Computing could be
quite helpful (e.g., modification of cellular automata or evolutionary program-
ming). However, our proposal is to implement this general scheme by agents
having soft suit and link suit built up on the hierarchies of interactive infor-
mation (decision) systems linked to configurations of hunks. Starting from the
simplest case when we have just one attribute and one message to be passed up
to quite complex system this approach based on rough sets is quite convenient
for implementation by computers well prepared for manipulation on tables of
data.

It has to be underlined that the behavioral patterns are complex vague con-
cepts. Hence, some advanced methods for approximation of these concepts should
be used. Usually these methods are based on hierarchical learning (see, e.g., [11,
1]). Note that often in satisfiability checking for vague concept, actions or/and
plans are used. In the rough set approach it is important to remember that
the attribute values are given only for some examples from reality. Moreover, if
we use a large number of attributes or/ and hierarchical learning this will not
guarantee the exact description of reality in terms of perceived vague concepts.

Languages of agents consist of partial descriptions of situations (or their
indiscernibility or similarity classes) perceived by agents as well as description of
approximate reasoning schemes about the situations and their changes by actions
and /or plans. The situations may be represented in hierarchical modeling by
structured objects (e.g., relational structures over attribute value vectors or/and
indiscernibility (similarity classes) of such structures). In reasoning about the
situation changes one should take into account that the predicted actions or/and
planes may depend not only on the changes of past situations but also on the
performed actions and plane in the past. This is strongly related to the idea of
perception pointed out in [12]:

216 A. Jankowski, A. Skowron, R. Swiniarski

The main idea of this book is that perceiving is a way of acting. It
is something we do. Think of a blind person tap-tapping his or her way
around a cluttered space, perceiving that space by touch, not all at once,
but through time, by skillful probing and movement. This is or ought to
be, our paradigm of what perceiving is.

Figure 6 illustrates this idea.

features

of

histories

higher

level

action

…

…
time a1 … ac1 …

x1 1

x2 2

… …

history of sensory
measurements and
selected lower level

actions over a period of
time

Fig. 6. Action in perception.

Note that the expression of the language may be used without its ’support’ in
corresponding link suit and hard suit of c-granules under the assumption that
there are fixed coding methods between expressions and hunks by the agent.
However, the languages should contain more general expressions for communi-
cation usually requiring the usage of expressions representing classes of hunks
rather than single hunks. This follows from the fact that the agents have bounded
abilities for discernibility of perceived objects. In our approach the situations and
reasoning schemes about situations are represented by c-granules.

Note that different behavioral patterns may be indiscernible relative to the set
of attributes used by the agent. Hence, it follows that the agents perceive objects
belonging to the same indiscernibility or/and similarity class in the same way.
This is an important feature making it possible to use generalization by agents.
For example, the situations classified by a given set of characteristic functions
of induced classifiers (used as attributes) may be indiscernible. On the other
hand, a new situation unseen so far may be classified to indiscernibility classes
which allows agents to make generalizations. The new names created by agents
are names of new structured objets or their indiscernibility (similarity) classes.

Agents should be equipped with adaptation strategies for discovery of new
structured objects and their features (attributes). This is the consequence of the
fact that the agents are dealing with vague concepts. Hence, the approximations
of these concepts represented by the induced classifiers evolve with changes in
uncertain data and imperfect knowledge.

Interactive Complex Granules 217

5 Conclusions and Future Research

The outlined research on the nature of interactive computations is crucial for
understanding complex systems. Our approach is based on complex granules
(c-granules) performing computations through interaction with physical objects
(hunks). Computations of c-granules are controlled by the agent control. More
compound c-granules create agents and societies of agents. Other issues outlined
in this paper such as interactive computations performed by societies for agents,
especially communication language evolution and risk management in interactive
computations will be discussed in more detail in our next papers.

References

1. J. Bazan. Hierarchical classifiers for complex spatio-temporal concepts. Transac-
tions on Rough Sets IX: Journal Subline LNCS 5390 (2008) 474–750.

2. A. Einstein. Geometrie und Erfahrung (Geometry and Experience). Julius Sprin-
ger, Berlin, 1921.

3. D. Goldin, S. Smolka, P. Wegner (Eds.). Interactive Computation: The New
Paradigm. Springer, 2006.

4. Y. Gurevich. Interactive algorithms 2005. In: Goldin et al. [3], pp. 165–181.
5. M. Heller. The Ontology of Physical Objects. Four Dimensional Hunks of Matter.

Cambridge Studies in Philosophy, Cambridge University Press, Cambridge, UK,
1990.

6. A. Jankowski, A. Skowron. A wistech paradigm for intelligent systems. Transac-
tions on Rough Sets VI: Journal Subline LNCS 4374 (2007) 94–132.

7. A. Jankowski, A. Skowron. Wisdom technology: A rough-granular approach. In:
M. Marciniak, A. Mykowiecka (Eds.), Bolc Festschrift, Springer, Heidelberg, Lec-
tures Notes in Computer Science, vol. 5070. 2009, pp. 3–41.

8. A. Jankowski, A. Skowron. Practical Issues of Complex Systems Engineering:
Wisdom Technology Approach. Springer, Heidelberg, 2014. (in preparation).

9. L. Marsh. Stigmergic epistemology, stigmergic cognition. Journal Cognitive Sys-
tems 9 (2008) 136–149.

10. M. Minsky. Emotion Machine: Commonsense Thinking, Artificial Intelligence, and
the Future of the Mind. Simon & Schuster, New York, 2006.

11. S. H. Nguyen, J. Bazan, A. Skowron, H. S. Nguyen. Layered learning for concept
synthesis. Transactions on Rough Sets I: Journal Subline LNCS 3100 (2004) 187–
208.

12. A. Noë. Action in Perception. MIT Press, 2004.
13. A. Omicini, A. Ricci, M. Viroli. The multidisciplinary patterns of interaction from

sciences to computer science. In: Goldin et al. [3], pp. 395–414.
14. Z. Pawlak. Information systems - theoretical foundations. Information Systems 6

(1981) 205–218.
15. Z. Pawlak. Rough Sets: Theoretical Aspects of Reasoning about Data, System

Theory, Knowledge Engineering and Problem Solving, vol. 9. Kluwer Academic
Publishers, Dordrecht, The Netherlands, 1991.

16. W. Pedrycz, S. Skowron, V. Kreinovich (Eds.). Handbook of Granular Computing.
John Wiley & Sons, Hoboken, NJ, 2008.

17. A. Skowron, J. Stepaniuk, R. Swiniarski. Modeling rough granular computing
based on approximation spaces. Information Sciences 184 (2012) 20–43.

218 A. Jankowski, A. Skowron, R. Swiniarski

18. A. Skowron, Z. Suraj (Eds.). Rough Sets and Intelligent Systems. Professor Zdzis-
law Pawlak in Memoriam. Series Intelligent Systems Reference Library, Springer,
2013.

19. A. Skowron, M. Szczuka. Toward interactive computations: A rough-granular ap-
proach. In: J. Koronacki, Z. Raś, S. Wierzchoń, J. Kacprzyk (Eds.), Advances in
Machine Learning II: Dedicated to the Memory of Professor Ryszard S. Michalski,
Springer, Heidelberg, Studies in Computational Intelligence, vol. 263. 2009, pp.
23–42.

20. A. Skowron, P. Wasilewski. Information systems in modeling interactive compu-
tations on granules. In: M. Szczuka, M. Kryszkiewicz, S. Ramanna, R. Jensen,
Q. Hu (Eds.), Proceedings of RSCTC 2010, Springer, Heidelberg, Lectures Notes
in Computer Science, vol. 6086. 2010, pp. 730–739.

21. A. Skowron, P. Wasilewski. Information systems in modeling interactive compu-
tations on granules. Theoretical Computer Science 412(42) (2011) 5939–5959.

22. A. Skowron, P. Wasilewski. Toward interactive rough-granular computing. Control
& Cybernetics 40(2) (2011) 1–23.

23. A. Skowron, P. Wasilewski. Interactive information systems: Toward perception
based computing. Theoretical Computer Science 454 (2012) 240–260.

24. V. Vapnik. Statistical Learning Theory. John Wiley & Sons, New York, NY, 1998.
25. L. A. Zadeh. Outline of a new approach to the analysis of complex systems and

decision processes. IEEE Trans. on Systems, Man and Cybernetics SMC-3 (1973)
28–44.

26. L. A. Zadeh. Fuzzy sets and information granularity. In: Advances in Fuzzy Set
Theory and Applications, North-Holland, Amsterdam. 1979, pp. 3–18.

27. L. A. Zadeh. Toward a theory of fuzzy information granulation and its centrality
in human reasoning and fuzzy logic. Fuzzy Sets and Systems 90 (1997) 111–127.

28. L. A. Zadeh. A new direction in AI: Toward a computational theory of perceptions.
AI Magazine 22(1) (2001) 73–84.

Identification of Formal Fallacies in a Natural
Dialogue

Magdalena Kacprzak1 and Anna Sawicka2

1 Faculty of Computer Science, Bia lystok University of Technology, Poland
2 Faculty of Computer Science, Polish-Japanese Institute of Information Technology,

Warsaw, Poland

Abstract. This paper is a continuation of the work presented at CS&P
2012 where the LND dialogue system was proposed. It brings together
and unifies two traditions in studying dialogue as a game: the dialogical
logic introduced by Lorenzen and persuasion dialogue games as specified
by Prakken. The aim of the system LND is to recognize and verify formal
fallacies in dialogues. Now we extend this system with a new protocol
which allows for reconstruction of natural dialogues in which parties can
be committed to formal fallacies. Finally, we show the implementation
of the applied protocols.

Keywords: protocol for dialogue games, natural dialogue, formal fal-
lacy, Lorenzen Natural Dialogue

1 Introduction

In [19], Yaskorska, Budzynska and Kacprzak proposed a protocol, called LND, for
verifying during a dialogue whether a propositional formula is a tautology. This
protocol is based on Lorenzen’s dialogical logic [7, 8, 15]. The aim of this protocol
is to use it in a game simulating natural dialogue as an inference scheme valida-
tor. Participants of dialogues perform a variety of actions. Some of them can be
recognized as justification of player’s standpoint. Such an argumentation may
refer to argumentation schemes based on propositional tautologies. The LND
game tests propositional formulas and thereby decides whether a corresponding
inference is correct. The contribution of the present work is to introduce a dia-
logue system, called PND, in which players are allowed to make formal fallacies,
that is, those that use schemes which are not equivalent to a valid formulas of the
underlying logic. In our approach, we limit ourselves to propositional calculus
and use as a departing point the general framework for dialogues for argumen-
tation proposed by Prakken [13, 14]. We also define rules which determine how
LND games can be nested in PND games. The result is a dialogue system in
which players can be committed to formal fallacies, and can identify, verify and
debug them.

In many of initially studied dialogue systems like for example the one pro-
posed by Hamblin [6] as well as currently defined systems, arguments can be

220 M. Kacprzak, A. Sawicka

constructed only in accordance with the assumed logical base. As a result, play-
ers do not have the possibilities of making a formal error in contrast to the
participants of natural, real-life dialogues. This work complements the gap. The
idea of combining Lorenzen’s games with natural persuasion dialogues was also
studied by Walton and Krabbe [17]. They proposed Complex Persuasion Dia-
logue (CPD) which embeds Lorenzen-like dialogue into Hamblin-like dialogue.
However, their motivation was to allow players to help their opponents to in-
fer conclusions logically following from their commitments rather then identify
formal fallacies.

The study of the argumentation dialogues is of particular interest in areas
such as artificial intelligence and multi-agent systems [1, 11]. The research pro-
gram that combines dialogue theory and argumentation theory with the new
four-valued approach to modeling multi-agent inter-actions is guided by a Polish
group of scientists. Their discussion on an implementation of four speech acts:
assert, concede, request and challenge in a paraconsistent framework is presented
in [4]. In the paper [3], they show how speech acts and agents’ reasoning rules
naturally combine in the framework of 4QL [16], leading to intuitive conclu-
sions while maintaining tractability. Thereby they justify that this four-valued
approach can be applied to modelling complex dialogues and argumentations
between agents, reasoning in uncertain and dynamic environments. The seman-
tics of speech acts which are applied in deliberation dialogues and thereby are
used for modelling communication in teamwork is studied in [5].

The rest of the article is organized as follows. Section 2 presents Prakken’s
general framework for argumentation dialogue games. In Sect. 3 the extension of
this framework, called PND, is introduced. It allows for modelling dialogues in
which inference rules used by players are publicly declared and can be challenged.
In Sect. 4 the LND system for testing propositional tautologies during a dialogue
is described. In Sect. 5 the rules for embedding LND into PND are defined.
Finally, in Sect. 6 and 7 the implementation of our protocols and conclusion
remarks, respectively, are discussed. The Appendix provides locution, protocol
and effect rules for LND games.

2 Formal Framework for Dialogue Games

In [13], Prakken proposes a dialogue game which defines principles of argumen-
tation dialogues, i.e., rules governing the meaning and the use of speech acts.
In this system, dialogue utterances are treated as moves in a game and rules
of their appropriateness are formulated as rules of the game. Prakken’s system
provides a basis for our new argumentation dialogue system. The reason why we
choose this system from other dialog systems [10, 12, 17] is that it covers a class
of argumentation dialogues rather then one selected kind of a dialogue. Moreover
this system is flexible with respect to the applied underlying logics, alternative
sets of locutions and more or less strict locution rules. Thereby, it offers a nice
basis for further research and extensions.

Identification of Formal Fallacies in a Natural Dialogue 221

Below, the main terms and definitions of a formal framework of dialogue
games for argumentation, introduced by Prakken in [13], are quoted. In the next
section, the modification of this system is shown.

All dialogues of the system are assumed to be for two parties arguing about
a single dialogue topic t, the proponent P who defeats t and the opponent O
who challenges t. Both proponent and opponent are equipped with a set of com-
mitments that are understood as publicly incurred standpoints. Commitments
are expected to be defended upon a challenge.

Definition 1. A dialogue system for argumentation is a pair (L,D), where L
is a logic for argumentation and D is a dialogue system proper.

The elements of the above top level definition are in turn defined as follows.

Definition 2. A logic for argumentation L is a tuple (Lt, R,Args,→), where
Lt is a logical language called the topic language, R is a set of inference rules
over Lt, Args is a set of arguments, and → is a binary relation of defeat defined
on Args.

For any argument A ∈ Args, prem(A) is the set of premises of A and conc(A)
is the conclusion of A.

Definition 3. An argumentation theory TF within L (where F ⊂ Lt) is a pair
(A,→/A) where A consists of all arguments in Args with only premises and
conclusions from F and →/A is → restricted to A × A. TF is called finitary if
none of its arguments has an infinite number of defeaters.

The idea of an argumentation theory is that it contains all arguments that
are constructible on the basis of a certain theory.

Definition 4. A dialogue system proper is a triple D = (Lc, P r, C) where Lc is
a communication language, Pr is a protocol for Lc, and C is a set of effect rules
of locutions in Lc.

Below the elements of a dialogue system proper are specified.

Definition 5. A communicating language Lc is a set of locutions.

The most frequently considered locutions are: claim(α) – the speaker asserts
that α is the case, why(α) – the speaker challenges α and asks for reasons why it
would be the case, concede(α) – the speaker admits that α is the case, retract(α)
– the speaker declares that he is not committed (any more) to α, argue(A) –
the speaker provides an argument A, where α ∈ Lt and A ∈ Args.

The protocol for Lc is defined in terms of the notion of a dialogue, which
in turn is defined with the notion of a move. The set M of moves is defined
as N × {P,O} × Lc × N, where the four elements of a move m are respectively
denoted by: id(m) - the identifier of the move, pl(m) - the player of the move,
s(m) - the speech act (locution) performed in m, t(m) - the target of m.

222 M. Kacprzak, A. Sawicka

The set of dialogues, denoted byM≤∞, is the set of all sequencesm1, . . . ,mi, . . .
from M such that each ith element in the sequence has identifier i, t(m1) = 0,
for all i > 1 it holds that t(mi) = j for some mj preceding mi in the sequence.
The set of finite dialogues, denoted by M<∞, is the set of all finite sequences
that satisfy these conditions. When d is a dialogue and m a move, then (d,m)
will denote the continuation of d with m.

A protocol also assumes a turntaking rule. A turntaking function T is a
function T : M<∞ → 2{P,O} such that T (∅) = {P}. A turn of a dialogue is a
maximal sequence of stages in the dialogue where the same player moves. This
definition allows that more than one speaker has the right to speak next.

The key notion for the dialogue system is the protocol.

Definition 6. A protocol on the set of moves M is a set Pr ⊆M<∞ satisfying
the condition that whenever d is in Pr, so are all initial sequences that d starts
with.

A partial function Pr : M<∞ → 2M is derived from Pr as follows: Pr(d) =
undefined whenever d 6∈ Pr; Pr(d) = {m : (d,m) ∈ Pr} otherwise. The elements
of the domain dom(Pr) are called the legal finite dialogues. The elements of Pr(d)
are called the moves allowed after d. If d is a legal dialogue and Pr(d) = ∅, then
d is said to be a terminated dialogue.

All protocols of Prakken’s system are assumed to satisfy the following con-
ditions for all moves m and all legal finite dialogues d. If m ∈ Pr(d), then:

PP1 pl(m) ∈ T (d),

PP2 If d 6= d0 and m 6= m1, then s(m) is a reply to s(t(m)) according to Lc,

PP3 If m replies to m′, then pl(m) 6= pl(m′),

PP4 If there is an m′ in d such that t(m) = t(m′), then s(m) 6= s(m′),

PP5 For any m′ ∈ d that surrenders to t(m), m′ is not an attacking counterpart
of m.

Rule PP1 says that a move is legal only if moved by the player-to-move.
PP2 says that a replying move must be a reply to its target according to Lc.
PP3 says that one cannot reply to one’s own moves. Rule PP4 states that if the
player backtracks, the new move must be different from the first one. Finally,
PP5 says that surrenders should not be ‘revoked’.

Every utterance from Lc can influence participants’ commitments. Results
of utterances are determined by commitment rules which are specified as a com-
mitment function.

Definition 7. A commitment function is a function: C : M<∞×{P,O} → 2Lt ,
such that C(∅, i) = ∅ for i ∈ {P,O}.

C(d, i), for a participant i ∈ {P,O} and a stage of a dialogue d ∈ M<∞,
denotes a player i’s commitments at the stage of a dialogue d.

Identification of Formal Fallacies in a Natural Dialogue 223

3 Prakken Natural Dialogue

The framework for dialogue games proposed by Prakken implements the in-
tention of all argumentation dialogue games, that is, to define rules that allow
participants to play the dialogue in a way that could lead to an agreement.
In a persuasion dialogue game it is understood as an opportunity to convince
the opponent to change its position, and consequently resolve a conflict of opin-
ion. Therefore, much attention has been devoted to establishing conditions under
which such an agreement can be achieved. In Prakken’s system it is assumed that
all participants agree to the topic language and the set of rules under which valid
arguments are defined. What is more, all the rules are correct in the assumed
logic. Unquestionably, this is the basis for the agreement. Observe, however, that
participants of real life dialogues very rarely determine among themselves their
knowledge base or rules they use. Moreover, they are often committed to wrong
inferences. The case when the participants apply different, not necessarily cor-
rect, inference schemes cannot be modelled in Prakken’s system. This is why
we propose some modifications of his system. In Prakken’s general framework,
players can argue using one of the possible arguments. All the arguments are
constructed over inference rules of the assumed logical system. Thereby they
are correct. Our proposition is to allow players to perform locutions in which
incorrect argumentation is provided.

The new dialogue system, is called Prakken Natural Dialogue (PND) and is
a pair (L,D). A logic for argumentation L is a tuple (Lt, R,Args,→) where Lt is
a propositional logic and R is as set of inference rules of Lt. To realize our goal,
we need to distinguish in the topic language two sentences: (a) “The formula
θ is a propositional tautology” and (b) “The formula θ is obtained from the
formula ψ by some substitution”. For convenience, we introduce the following
abbreviations. Let Taut(θ) will be short for “θ is a propositional tautology”.
This sentence should be true or false. We do not state here that actually θ
is a tautology. Moreover, if θ(q1, . . . , qn) is a propositional formula build under
propositions q1, . . . , qn and α1, . . . , αn are propositional formulas, we write θ(α1/
q1, . . . , αn/qn) for a formula θ in which the proposition qi is replaced with the
formula αi for i = 1, . . . , n. It is obvious that if Taut(θ(q1, . . . , qn)) is true (i.e.
θ(q1, . . . , qn) is a tautology), then Taut(θ(α1/q1, . . . , αn/qn)) is also true (i.e.
θ(α1/q1, . . . , αn/qn) is a tautology too). We will also write θ(α1(p1, . . . , pk)/
q1, . . . , αn(p1, . . . , pk)/qn) = ψ(p1, . . . , pk) if the formula ψ is obtained from θ by
substitution qi for αi (i = 1, . . . , n).

The set of arguments Args is a set of pairs A = (Prem(A), Conc(A)) where
prem(A) is a set of premises (a finite set of propositional formulas) and conc(A)
is a conclusion (a propositional formula) such that the formula

∧
a∈prem(A) ⇒

conc(A) is a propositional tautology. Since in this paper we do not focus on
attacks and counterattacks on arguments, we omit here the specification of the
defeat relation.

A dialogue system proper for PND, D = (Lc, P, CP , CO) is defined by lo-
cution, protocol, and effect rules presented in the next subsections. Taking into
account the structural properties [9], the protocol for PND is:

224 M. Kacprzak, A. Sawicka

– unique-move, i.e., the turn switches after each move,
– multi-reply, i.e., players can return to earlier choices and try alternative

moves to the other player’s moves,
– immediate-reply, i.e., each player must immediately respond to the move of

the other player.

3.1 Locution rules

The communication language of PND assumes the following locutions:

PL1 Claim claim(ϕ) is performed when a player asserts that sentence ϕ is true
and his antagonist does not have this sentence in his commitment base.

PL2 Concession concede(ϕ) is performed when a player asserts that sentence
ϕ is true and his antagonist has this sentence in his commitment base.

PL3 Challenge why(ϕ) is performed when a player asks about a proof for ϕ.
PL4 Argumentation (ϕ) since (ψ1, . . . , ψn, Taut(θ)) is performed when a player

justifies statement ϕ with a set of premises ψ1, . . . , ψn and the inference rule
corresponding to the formula θ. A player can use in this locution a rule which
is not correct and does not correspond to a tautology.

PL5 Retraction retract(ϕ) is performed when a player resigns from the state-
ment that sentence ϕ is true.

3.2 Protocol rules

The protocol for PND satisfies the protocol rules PP1-PP5 of Prakken’s general
framework and adds the following, where s ∈ {P,O}, d ∈ Pr, m ∈ Pr(d),
ϕ,ψ1, . . . , ψn, Θ ∈ Lt:

PP6 if d = ∅, then s(m) is of the form
(a) claim(ϕ) or
(b) (ϕ) since (ψ1, . . . , ψn, Taut(θ)),

PP7 if m concedes the conclusion of an argument moved in m′, then m′ does
not reply to a why move,

PP8 if s(m) is claim(ϕ), then s(m′) for m′ ∈ Pr((d,m)) is of the form
(a) why(ϕ) (attack) or
(b) concede(ϕ) (surrender),

PP9 if s(m) is why(ϕ), then s(m′) for m′ ∈ Pr((d,m)) is of the form
(a) (ϕ) since (ψ1, . . . , ψn, Taut(ψ1 ∧ . . . ∧ ψn ⇒ ϕ)) (attack) or
(b) (ϕ) since (Taut(θ(q1, . . . , qn)),Taut(θ(α1/q1, . . . , αn/qn)) = β) for some

formulas α1, . . . , αn if ϕ = Taut(β) (attack) or
(c) retract(ϕ) (surrender),

PP10 if s(m) is (ϕ) since (ψ1, . . . , ψn, Taut(θ)), then s(m′) for m′ ∈ Pr((d,m))
is of the form
(a) why(α) where α ∈ {ψ1, . . . , ψn, Taut(θ)} (attack) or
(b) (¬ϕ) since (β1, . . . , βn, Taut(β1 ∧ . . . ∧ βn ⇒ ¬ϕ))
(c) concede(α) where α ∈ {ϕ,ψ1, . . . , ψn, Taut(θ)} (surrender),

Identification of Formal Fallacies in a Natural Dialogue 225

PP11 if s(m) is concede(ϕ) or retract(ϕ), then s(m′) for m′ ∈ Pr((d,m)) is

(a) a reply (attack or surrender) to some earlier move of the other player or

(b) Pr((d,m)) = ∅.

Rules PP6 and PP7 are inspired by liberal dialogues (see [13]). PP6 says
that each dialogue begins with either a claim or an argument. The initial claim
or, if a dialogue starts with an argument, its conclusion is the topic of the
dialogue. PP7 restricts concessions of an argument conclusion to conclusions
of counterarguments. Rules PP8-PP11 describe possible moves after specific
locution. Observe that every move replies to some earlier move of the antagonist
and it is either attack or surrender.

3.3 Effect rules

In PND there are two participants. Therefore, we need to define a commitment
functions for both of them:

Cs : M<∞ × {P,O} → 2Lt

where s ∈ {P,O}. However, locution rules do not depend on the role which the
performer of the locution plays. Effects on the commitment sets after execution
specific moves are described below, where s denotes the speaker, (m0, . . . ,mn)
is a legal dialogue, and ϕ,ψ1, . . . , ψn, Taut(Θ)) ∈ Lt.

PE1 if s(mn) = claim(ϕ), then Cs(m0,m1, . . . ,mn) = Cs(m0,m1, . . . ,mn−1)∪
{ϕ}, i.e. after claim(ϕ) the formula ϕ is added to the s’s commitment set,

PE2 if s(mn) = concede(ϕ), then Cs(m0, . . . ,mn) = Cs(m0, . . . ,mn−1) ∪ {ϕ},
i.e., after concede(ϕ) the formula ϕ is added to the s’s commitment set,

PE3 if s(mn) = why(ϕ), then Cs(m0,m1, . . . ,mn) = Cs(m0,m1, . . . ,mn−1),
i.e., after why(ϕ) the s’s commitment set does not change,

PE4 if s(mn) = (ϕ) since (ψ1, . . . , ψn, Taut(θ)), then Cs(m0,m1, . . . ,mn) =
Cs(m0,m1, . . . ,mn−1)∪{ϕ,ψ1, . . . , ψn, Taut(θ)}, i.e., after this locution the
formulas ϕ,ψ1, . . . , ψn, Taut(θ) are added to s’s commitment set,

PE5 if s(mn) = retract(ϕ), then Cs(m0,m1, . . . ,mn) = Cs(m0,m1, . . . ,mn−1)\{ϕ},
i.e., after retract(ϕ) the formula ϕ is deleted from the s’s commitment set.

3.4 Turntaking

In a PND game, P makes the first move, then O and P take turns in performing
moves. Thus the turntaking function is defined as follows:

T (m0,m1, . . . ,mn) =

{
P iff n is even
O iff n is odd

.

226 M. Kacprzak, A. Sawicka

4 Lorenzen Natural Dialogue

In [18], Yaskorska, Budzynska, and Kacprzak proposed a dialogue system, LND,
that allows communicating agents to prove that a formula used in an argument is
a classical propositional tautology, and, as a result, to identify and eliminate clas-
sical propositional formal fallacies committed during a natural dialogue. This is
achieved through a combination of a system for representing natural dialogues
with a system for representing formal dialogues. In the first case, the framework
proposed by Prakken [14] was used, since it provides a generic and formal spec-
ification of the main elements of dialogue systems for persuasion. For handling
formal fallacies in a dialogue, the dialogical logic introduced by Lorenzen [7, 8,
15] was applied. Lorenzen’s dialogue games allow the players to prove that a
formula is a tautology of classical propositional logic, if the proponent has a
winning strategy in a given game. The aim of this system is not to jointly built
an argument: ϕ, therefore ψ, as in inquiry dialogues (see e.g. [2]), but to allow
the participants to play against each other starting with opposing viewpoints on
an argument validity and determining which player wins.

The dialogical logic communication language and structure are different from
systems for natural dialogues. For example, in Lorenzen’s system the only moves
available to speakers are: X attacks ϕ and X defends ϕ, while, according to
Prakken’s specification, in systems for natural dialogues the legal locutions can
be: claim ϕ, why ϕ, concede ϕ, retract ϕ, ϕ since S, question ϕ. Therefore the
main challenge was to introduce a new description of the dialogical logic which
meets the requirements of Prakken’s generic specification. The correspondence
result between the original and the new version of the dialogical logic is presented
in [19] where it is proved that a winning strategy for a proponent in the original
version of the dialogical logic means a winning strategy for a proponent in the
new one, and conversely.

The locution, protocol and effect rules of the LND system are presented in
the Appendix.

5 Embedding Dialogues

The aim of dialogical logic introduced by Lorenzen is to define logical connectives
in terms of attacks and defences, and then determined whether the formula under
discussion is valid in the given logical system. The goal of argumentation dialogue
systems is to define rules of the game in which participants can challenge and
provide reasons for their claims and positions. Our intention is to combine these
two approaches. This object is achieved by proposing the system LND and the
system PND and by defining rules for their embedding. The main advantage
of combining the systems LND and PND is to obtain a uniform system that
allows modelling of dialogues in which participants can be committed to formal
fallacies and may discuss the patterns of inferences, in terms of their correctness,
according to a given logical framework. In this work it is propositional logic.

In the new dialogue system which is a combination of LND with PND, we
take the following assumptions:

Identification of Formal Fallacies in a Natural Dialogue 227

– in the PND (LND) part of the game, players use the same topic and com-
munication languages,

– players have different commitment sets in PND game and hypothetical com-
mitment sets in LND game,

– players can use correct and incorrect inference rules and correct and incorrect
arguments constructed under these rules,

– players can challenge claims and inference rules of the other player,
– a correct rule is a rule which corresponds to some propositional tautology,
– correctness of inference rules is examining during Lorenzen’s game, i.e., if a

player challenges some rule, its antagonist starts Lorenzen’s game and takes
the role of the proponent,

– if the proponent of Lorenzen’s game looses, then he must retract from the
commitment which says that the inference rule under discussion is correct.

Below the rules for embedding LND into PND are given. Two new locutions
are introduced: InitLor and EndLor.

PL6 Initialization The locution InitLor(θ) breaks the natural dialogue and
initializes the DL-like dialogue for formula θ. The player who performed
InitLor(θ) becomes the proponent for θ in the embedded DL-like dialogue.

PL7 Ending The locution EndLor(θ) ends the DL-like dialogue for θ and re-
sumes the broken natural dialogue.

In the approach it is assumed that DL-like dialogue for a formula θ starts
when one of the players challenges this formula. Then, the players examine θ
in accordance with the rules of DL-like games. Protocol rules for embedding a
formal dialogue into a natural one is described in PP12 - PP15.

PP12 The locution InitLor(θ) can be performed as a reply to the locution
why(Taut(θ)) or the locution claim(¬Taut(θ)) executed in a PND game.

PP13 After the locution InitLor(θ) players can perform the same actions which
are allowed to execute after claim(θ) according to the protocol rules P1-P8
of the system LND (see Appendix).

PP14 The locution EndLor(θ) can be performed by a player X if X has no
legal move according to the protocol rules P1-P8 of the system LND (see
Appendix).

PP15 After the locution EndLor(θ), (1) if P is the performer, then P executes
retract(Taut(θ)) in the broken PND game, (2) if O is the performer, then O
executes concede(Taut(θ)) in the broken PND game.

6 Implementation

The implementation consists of two applications: LNDGame and PNDGame.
The program LNDGame is intended to implement the dialogue construction
based on the LND game. All the basic notions are modelled in the program in
a direct way. According to the adopted formal definitions, a dialogue D(θ), for

228 M. Kacprzak, A. Sawicka

a formula θ, is a set of dialogue games consisting of sequences of moves. The
initial move is performed by the proponent, which claims formula θ. During the
dialogue game, each participant makes moves, one after the other, according to
the rules of the protocol.

In the program, a move is defined by locution type and the formula, it also
has a reference to the locution it responds to. A formula is represented as a
tree of subformulas, even though for the user it appears rather as a sequence of
symbols. Initial formula proposed by the proponent can be given in two ways:
by providing a sequence of symbols or by recursively constructing subformulas
using GUI. A hypothetical commitment set is associated with each participant.
It is an increasing set of formulas previously committed.

The application enables two modes. In the first, interactive mode, the user
has a possibility to choose each move on the behalf of one of the participants. The
move can be chosen from the list of possible moves updated after each move. The
result is a sequence of moves chosen by a participant at each step of one of the
dialogue games, and the result of the game, i.e., whether the proponent wins the
game or not. In the second, auto mode, program can scan all possible dialogue
games for the specified initial formula θ. The result contains a sequences of moves,
one for each theoretically possible dialogue game, with information about the
other available moves at each step. If a proponent wins all the possible dialogue
games, it wins the dialogue D(θ) (in this case formula θ is a tautology). Certainly,
we have to take into account the complexity of such a scan for more complex
formulas. The current version is adapted to handle real-life size formulas and
illustrates that even for small formulas used in short dialogues D(θ) can be very
large.

The second application, PNDGame, is intended to implement the dialogue
games based on PND. During the dialogue game, understood in the same way as
above, each of the participants can use different inference schemes, some of them
can be even incorrect. Each participant can also challenge another participant’s
rule of inference using Lorenzen-style Natural Dialogue (and the same mecha-
nism as proposed in LNDGame application). To prove that the rule is incorrect,
challenging participant has to start a Lorenzen game and to win it. Then, the
proponent of the rule has to withdraw this rule from his set of inference rules.

The implementation was made in Java language, which will facilitate further
development of application, and also software portability. This choice helps us
to avoid from the restrictions of other protocols than analyzed in this paper.
The participants of the dialog, as well as game manager, are implemented as a
separated, eventually distributed over the network classes. The aim of this im-
plementation is dialogue game simulation and a decision making support during
such a game. It allows to verify the validity of formulas used in dialogues as tau-
tologies and to identify formal fallacies. It also enables recording of conducted
dialogues games, which makes later analysis possible. Subsequent versions of the
application prepared by the authors will correspond to the efforts to combine
several formal systems for modelling natural dialogues in terms of games and
analyzing properties of such dialogue games.

Identification of Formal Fallacies in a Natural Dialogue 229

7 Conclusions

This work provides a unified dialogue system for argumentation which com-
bines two approaches: Lorenzen’s dialogical logic (DL) with a modified Prakken’s
framework for dialogue games for argumentation. The idea of dialogical logic was
applied in Lorenzen Natural Dialogue (LND) where the structural and particle
rules of DL were reconstructed and defined in terms of locution, commitment
and protocol rules of dialogue games [19]. Prakken’s system was extended with
specific locutions which allows players to use incorrect arguments, to show di-
rectly the inferences on which these arguments are based and to challenge them.
The result is a Prakken Natural Dialogue. Finally, the rules for embedding LND
into PND are defined.

The main advantage of the new system is that in the course of a dialogue the
participants can verify their sets of rules and create new arguments. Thereby, this
idea allows a study argumentation systems in which participants have the ability
to learn. The dynamic nature of dialogues and frequent change of information
may be reflected not only in revising beliefs and commitments of players but
also in changing the way in which they argue and reason.

The proposed system can be used both as a simulation of natural dialogues
conducted in artificial intelligence systems, and as a tool for argumentation and
persuasion communication in multi-agent systems.

References

1. Amgoud, L., Maudet, N., Parsons, S.: Modelling dialogues using argumentation. In:
Proc. of the Fourth Int. Conf. on Mulit-Agent Systems (2000) 31–38

2. Black, E., Hunter, A.: An inquiry dialogue system. Autonomous Agent Multi-Agent
Systems 18 (2009) 173–209

3. Dunin-Kȩplicz, B., Strachocka, A., Sza las, A., Verbrugge, R.: A paraconsistent ap-
proach to speech acts. In: Proc. of ArgMAS (2012) 59–78

4. Dunin-Kȩplicz, B., Strachocka, A., Sza las, A., Verbrugge, R.: Perceiving speech acts
under incomplete and inconsistent information. Frontiers in Artificial Intelligence and
Applications 252 (2013) 255 – 264

5. Dunin-Kȩplicz, B., Strachocka, A., Verbrugge, R.: Deliberation dialogues during
multiagent planning. LNCS 6804 (2011) 170–181

6. Hamblin, C.: Fallacies. Methuen, London (1970)
7. Keiff, L.: Dialogical logic. The Stanford Encyclopedia of Philosophy (2011)
8. Lorenz, K., Lorenzen, P.: Dialogische logik. WBG. Darmstadt (1978)
9. Loui, R.: Process and policy: resource-bounded non-demonstrative reasoning. Com-

putational Intelligence 14 (1998) 1–38
10. Mackenzie, J.D.: Question begging in non-cumulative systems. Journal of Philo-

sophical Logic 8 (1979) 117–133
11. McBurney, P., Parsons, S.: Games that agents play: A formal framework for dia-

logues between autonomous agents. Journal of Logic, Language and Information 13
(2002) 315–343

12. Parsons, S., Wooldridge, M., Amgoud, L.: Properties ans complexity of some formal
inter-agent dialogues. Journal of Logic and Computation 13 (2003) 347–376

230 M. Kacprzak, A. Sawicka

13. Prakken, H.: Coherence and flexibility in dialogue games for argumentation. Jour-
nal of Logic and Computation 15 (2005) 1009–1040

14. Prakken, H.: Formal systems for persuasion dialogue. The Knowledge Engineering
Review 21 (2006) 163–188

15. Rahman, S., Tulenheimo, T.: From games to dialogues and back: towards a general
frame for validity. Games: Unifying Logic, Language, and Philosophy (2006)

16. Sza las, A.: How an agent might think. Logic J. IGPL 21(3) (2013) 515–535
17. Walton, D.N., Krabbe, E.C.W.: Commitment in Dialogue: Basic Concepts of In-

terpersonal Reasoning. State University of N.Y. Press (1995)
18. Yaskorska, O., Budzynska, K., Kacprzak, M.: Rules for formal and natural dia-

logues in agent communication. In: Proc. of CS&P (2012) 416-427
19. Yaskorska, O., Budzynska, K., Kacprzak, M.: Proving propositional tautologies in

a natural dialogue. Fundamenta Informaticae (2013)

Appendix

In LND game the set of players consists of two elements {O,P}. Topic language Lt

is assumed to be that of classical propositional logic. The dialogue system proper is
specified by the locution, protocol and effect rules.
Locution rules. The locution rules for LND are specified as follows: [L1] Claim claim
ϕ is performed when a player: (1) attacks ¬A, then ϕ is a formula A, (2) defends A∧B,
then ϕ is a formula A or a formula B, (3) attacks A → B, then ϕ is a formula A, (4)
defends A→ B, then ϕ is a formula B; [L2] Concession concede ϕ can be performed
only by a proponent P, and this locution is performed when ϕ is an atomic formula
and the performer: (1) attacks ¬A, then ϕ is a formula A, (2) defends A ∧ B, then ϕ
is a formula A or a formula B, (3) attacks A→ B, then ϕ is a formula A, (4) defends
A → B, then ϕ is a formula B; [L3] Argumentation ϕ since ψ is performed when
a player defends A ∨ B, then ϕ is a formula A ∨ B and ψ is a set which includes the
formula A or the formula B; [L4] Challenge The challenge why ϕ is performed when a
player attacks A∨B, then ϕ is a formula A∨B; [L5] Question The question question
ϕ is performed when a player attacks A ∧B, then ϕ is a formula A or a formula B.
Protocol rules. The LND protocol descries a formal dialogue game 4 = m0, . . . ,mn

on a topic A, which is called a DL-like game. Let D’(A) be DL-like dialogue for A, i.e.
a set of DL-like games for A. The protocol is specified as follows: [P1] In the first move
P performs claim ϕ where ϕ is the topic A; next players perform one locution at each
turn; [P2] A player P cannot perform claim ϕ where ϕ is a proposition; he can state
that ϕ is true executing concede ϕ but this move can be performed only if O claimed
ϕ in some previous move; [P3] After claim ϕ a player can perform: (1)cclaim ψ, if (a)
ϕ is a negation of the formula and ψ is a contradiction to ϕ, (b) ϕ is the implication
and ψ is the antecedent of ϕ, (c) ϕ is the antecedent of an implication under the attack
and ψ is the consequent of this implication (in P3.1, P has to follow the restriction
described in P2), (2) concede ψ, if P is the player and ψ is a proposition, and (a) ϕ
is a negation of the formula and ψ is a contradiction to ϕ, (b) if ϕ is the implication
under the attack and ψ is its consequent, (3) question ψ, if ϕ is a conjunction and ψ
is one of its operands, (4) why ϕ, if ϕ is a disjunction, (5) attack or defence of any
formula uttered before, if P is the player, (6) no move, if (a) claim ϕ is an attack
on negation and ϕ is a proposition, (b) claim ϕ is a defence executed by P, and O
has attacked this defence before; [P4] After concede ϕ performed by P, where ϕ is
a proposition, O has no move; [P5] After ϕ since Ψ , where Ψ = {ψ} the player can

Identification of Formal Fallacies in a Natural Dialogue 231

perform: (1) claim ϕ, if (a) ψ is a negation of the formula and ϕ is a contradiction to
ψ, (b) if ψ is the implication ϕ is its antecedent (in P5.1, P has to follow the restriction
described in P2), (2) concede ϕ, if P is the player and ϕ is a proposition, and (a) ψ is a
negation of the formula and ϕ is a contradiction to ψ, (b) if ψ is the implication under
the attack and ϕ is its consequent, (3) question ϕ, if ψ is a conjunction and ϕ is one
of its operands, (4) why ψ, if ψ is a disjunction, (5) attack or defence of any formula
uttered before, if P is the player, (6) no move, if ϕ since Ψ is a defence executed by P,
and O has attacked this defence before; [P6] After why ϕ a player can perform: (1)cϕ
since ψ (P has to follow the restriction described in P2), (2) attack or defence of any
formula uttered before, if P is the player; [P7] After question ϕ a player can perform:
(1)cclaim ϕ (P has to follow the restriction described in P2), (2) concede ϕ, if P is the
player and ϕ is a proposition, (3) attack or defence of any formula uttered before, if P
is the player; [P8] If O loses a game 4 which involves the propositional choice made
by O (see DL-rule SR-2), then O can start a sub-game 4′. There are three types of
sub-games 4′ possible: (I) Assume that P executes claim ϕ in 4, where ϕ is ψ ∧ ψ′,
and O attacks the conjunction by stating: question ψ (the propositional choice step).
If they continue to play the game 4 according to the LND rules and P makes the last
available move, then O can extend 4 with a sub-game 4′ by attacking the conjunction
one more time using the locution: question ψ′. (II) Assume that O executes claim ϕ in
4, where ϕ is ψ ∨ ψ′. In the next moves, P attacks the disjunction by stating: why ϕ,
and O defends it by stating: ϕ since ψ (the propositional choice step). If they continue
to play the game 4 according to the LND rules and P makes the last available move,
then O can extend 4 with a sub-game 4′ by defending the disjunction one more time
with the locution: ϕ since ψ′. (III) Assume that in a game 4, O executes claim ϕ,
where ϕ is ψ → ψ′, and P attacks the implication by stating: claim ψ. There are
two possible sub-cases: (1) Let O respond to this attack by defending the implication,
i.e., he performs: claim ψ′ (the propositional choice step). If they continue to play the
game 4 according to the LND rules and P makes the last available move, then O
can extend 4 with a sub-game 4′ by responding to P’s attack one more time and
attacking the propositional content of P’s attack, ψ, accordingly to its logical form.
(2) Let O respond to P’s attack by attacking its content, ψ, accordingly to its logical
form (the propositional choice step). If they continue to play the game 4 according to
the LND rules and P makes the last available move, O can extend 4 with a sub-game
4′ by responding to P’s attack one more time and defend the implication using the
locution: claim ψ′. In all cases P8.I-P8.III, during 4′ the players may use all the
LND rules with a limitation on the P2 rule such that P cannot perform concede φ if
O did not introduce a proposition φ in 4 before the propositional choice step and did
not introduce a proposition φ in 4′.
Effect rules The dynamics of participants’ commitments in LND formal games is
showed by a hypothetical commitment base. During the game, new formulas are
added to this base and no formulas are deleted. For a formal game 4 = m0, . . . ,mn ∈
D’(A), the rules for hypothetical commitment base C′s of a player s ∈ {O,P} are spec-
ified below, where s(m) denotes a move of a player s and ϕ,ψ ∈ Lt are propositional
formulas: [E1] if s(mn) = claim(ϕ), then C′s(m0, . . . ,mn) = C′s(m0, . . . ,mn−1) ∪ {ϕ},
i.e. after claim(ϕ) the formula ϕ is added to the hypothetical commitment base, [E2]
if s(mn) = why(ϕ), then C′s(m0, . . . ,mn) = C′s(m0, . . . ,mn−1), [E3] if s(mn) =
concede(ϕ), then C′s(m0, . . . ,mn) = C′s(m0, . . . ,mn−1)∪ {ϕ}, [E4] if s(mn) = (ϕ∨ψ)
since ϕ, then C′s(m0, . . . ,mn) = C′s(m0, . . . ,mn−1)∪{ϕ}, i.e. after (ϕ∨ψ) since ϕ the
formula ϕ is added to s’s hypothetical commitment base, [E5] if s(mn) = question(ϕ),
then C′s(m0, . . . ,mn) = C′s(m0, . . . ,mn−1).

Discovery of Cancellation Regions within
Process Mining Techniques?

A. A. Kalenkova and I. A. Lomazova

1 National Research University Higher School of Economics, Moscow, Russia
{akalenkova, ilomazova}@hse.ru

2 Program Systems Institute of the Russian Academy of Sciences,
Pereslavl-Zalessky, Russia

Abstract. Process mining is a relatively new field of computer science
which deals with process discovery and analysis based on event logs. In
this work we consider the problem of discovering workflow nets with can-
cellation regions from event logs. Cancellations occur in the majority of
real-life event logs. In spite of huge amount of process mining techniques
little has been done on cancellation regions discovery. We show that
the state-based region algorithm gives labeled Petri nets with overcom-
plicated control flow structure for logs with cancellations. We propose a
novel method to discover cancellation regions from the transition systems
built on event logs and show the way to construct equivalent workflow
net with reset arcs to simplify the control flow structure.

1 Introduction

Process mining technology [1] provides us with a variety of methods for discover-
ing business processes from event logs. These methods are commonly used when
formal process description is not available or description does not correspond to
the real-life process behavior. One of the goals of the process discovery is the
retrieving of readable process models. The majority of real-life event logs con-
tain information about cancellations which occur during the process execution.
These cancellations can be expressed by means of workflow languages (BPMN
[2], YAWL [3]) and formal models such as Reset workflow nets (RWF-net) [4]. In
[5] an approach for discovery of cancellations from event log has been presented.
This approach constructs a workflow net (WF-net) with the state-based region
algorithm [6]. After that it replays the log on this model, for all remaining tokens
reset arcs are added to the WF-net, as a result RWF-net is produced.

State-based region algorithm [6] used within process mining techniques was
developed on the basis of well-known algorithms for the construction of a Petri
net (PN) from a transition system (TS) [7–9], taking into account that minor
transformations of TS will allow to retrieve WF-net instead of arbitrary PN. An
algorithm was given by [7] to synthesize a PN from the elementary transition

? This study was carried out within the National Research University Higher School
of Economics’ Academic Fund.

Discovery of Cancellation Regions within Process Mining Techniques 233

system (ETS) in such a manner that reachability graph (RG) of the PN is
isomorphic to the TS (or the minimized TS if it is not minimal). Algorithm
proposed in [8, 9] generate a labeled PN for an arbitrary TS such that RG of
the PN is isomorphic or split-isomorphic [8] to the TS or its minimization. This
algorithm effectively checks whether TS is elementary (by verifyng the excitation
closure property [8]), if TS is not elementary then TS and target PN are splitted.

In this paper we propose a method which not just adds reset arcs, but makes
a target model more compact and readable. We prove that the straightforward
applying of a state-based region algorithm to an event logs with cancellations
leads to the generation of a labeled Petri net with overcomplicated control flow
structure. Then we present an algorithm for discovering cancellations and con-
structing an RWF-net with a more compact and transparent structure. We prove
correctness of the proposed algorithm.

The paper is organized as follows. In Section 2 a motivating example of
the booking process with cancellations is presented, it gives a ground for the
development of a novel cancellation discovery method. Section 3 contains some
basic definitions and notions, including logs, Petri nets and transition systems.
In Section 4 we formally prove that cancellations in a log in the presence of
parallel branches lead to the generation of labeled Petri nets with complicate
control-flow structure. We also present an algorithm for construction of a RWF-
net from TS and give the proof of the algorithm correctness. Section 5 contains
some conclusions.

pay

book_flight

book_car

book_hotel

register

Fig. 1. A WF-net for a regualer booking process (no cancellations)

2 Motivating example

Let us consider a simple model of booking the trips process from [5]. One needs
to book a hotel, a car and a flight (Fig. 1). This model formalizes the booking
process which can’t be canceled, while a real-life process might be canceled in
consequence of internal booking errors. If we take a look at a log of some real-
life booking process, we may notice that it contains traces of process execution

234 A. A. Kalenkova and I. A. Lomazova

failures along with traces of standard booking process executions. A sample of
such a real-life log L is presented in Fig. 2.

L = { < register, book flight, book hotel, book car, pay >,

< register, book flight, book car, book hotel, pay >,

< register, book car, book flight, book hotel, pay >,

< register, book car, book hotel, book flight, pay >,

< register, book hotel, book car, book flight, pay >,

< register, book hotel, book flight, book car, pay >,

< register, book flight, book hotel NOK, cancel >,

< register, book flight, book car, book hotel NOK, cancel >,

< register, book car, book flight, book hotel NOK, cancel >,

< register, book car, book hotel NOK, cancel >,

< register, book hotel NOK, cancel >}.

Fig. 2. An event log for booking process with cancellations

register

book_car

book_flight

book_hotel_NOK

book_hotel_NOK

book_hotel_NOK

book_hotel_NOK

book_hotel

cancel

pay

Fig. 3. A WF-net for booking process with cancellations discovered from event log in
Fig. 2 by the standard region-based method.

In this log an additional event with the label ‘book hotel NOK’ occurs and
denotes the situation when the booking hotel step failures. The ‘book hotel NOK’
event causes cancellation of parallel branches of booking a car and a flight and
execution of a catching task (which is represented in the log as an event with the

Discovery of Cancellation Regions within Process Mining Techniques 235

label ‘cancel’). Applying the state-based regions method for process discovery
to this sample log gives us a labeled WF-net with a complicated control-flow
structure (Fig. 3). This model is rather confounded. The clear structure of the
core process (Fig. 1) can be hardly recognized. So, it is very important to find a
method for discovering clear and readable workflow net with cancellations.

3 Logs, Petri nets and Transition systems. Definitions

Let S be a finite set. A multiset m over a set S is a mapping m : S → Nat, where
Nat is the set of natural numbers (including zero), i.e. a multiset may contain
several copies of the same element.

For two multisets m,m′ we write m ⊆ m′ iff ∀s ∈ S : m(s) ≤ m′(s) (the
inclusion relation). The sum of two multisets m and m′ is defined as usual:
∀s ∈ S : (m + m′)(s) = m(s) + m′(s), the difference is a partial function:
∀s ∈ S such that m(s) ≥ m(s′) : (m − m′)(s) = m(s) − m′(s). By M(S) we
denote the set of all finite multisets over S. Non-negative integer vectors are
often used to encode multisets. Actually, the set of all multisets over finite S is
a homomorphic image of Nat|S|.

Definition 1 (Event log). Let A be a set activities. A trace σ can be described
as a sequence of activities, i.e., σ ∈ A∗. An event log L is a multiset of traces,
i.e., L ∈M(A∗).

Definition 2 (Petri net). Let P and T be disjoint sets of places and transi-
tions and F : (P × T) ∪ (T × P)→ Nat. Then N = (P, T, F) is a Petri net.

Let Σ be a finite alphabet. A labeled PN is a PN with a labeling function
λ : T → Σ which maps every transition to a symbol (called a label) from Σ.

A marking in a Petri net is a function m : P → Nat, mapping each place to
some natural number (possibly zero). Thus a marking may be considered as a
multiset over the set of places. Pictorially, P -elements are represented by circles,
T -elements by boxes, and the flow relation F by directed arcs. Places may carry
tokens represented by filled circles. A current marking m is designated by putting
m(p) tokens into each place p ∈ P .

For a transition t ∈ T an arc (x, t) is called an input arc, and an arc (t, x) —
an output arc; the preset •t and the postset t• are defined as the multisets over
P such that •t(p) = F (p, t) and t•(p) = F (t, p) for each p ∈ P .

A transition t ∈ T is enabled in a marking m iff ∀p ∈ P m(p) ≥ F (p, t). An
enabled transition t may fire yielding a new marking m′ =def m − •t + t•, i. e.

m′(p) = m(p)−F (p, t) +F (t, p) for each p ∈ P (denoted m
t→ m′, m

λ(t)→ m′, or
just m→ m′). We say that m′ is reachable from m iff there is a (possibly empty)

sequence of firings m = m1 → · · · → mn = m′ and denote it by m
∗→ m′.

Workflow nets (WF-nets) is a special subclass of Petri nets designed for
modeling workflow processes. A workflow net has one initial and one final place,
and every place or transition in it is on a directed path from the initial to the
final place.

236 A. A. Kalenkova and I. A. Lomazova

Definition 3 ((Labeled) workflow net). A (labeled) Petri net N is called a
(labeled) workflow net (WF-net) iff

1. There is one source place i ∈ P and one sink place f ∈ P s. t. •i = f• = ∅;
2. Every node from P ∪ T is on a path from i to f .
3. The initial marking in N contains the only token in its source place.

By abuse of notation we denote by i both the source place and the initial
marking in a WF-net. Similarly, we use f to denote the final marking in a WF-
net N , defined as a marking containing the only token in the sink place f . Fig. 1
gives an example of a WF-net.

Definition 4 (Reachability graph). A reachability graph (RG) for a PN N
is a graph with vertices corresponding to markings in N and with arcs defined
as follows: (m1,m2) is an arc in the RG iff m1 → m2 in N .

For a labeled PN its RG has arcs labeled with the corresponding transitions
labels.

Definition 5 (Transition system). A transition system (TS) is a tuple TS =
(S,E, T, sin), where S is a finite non-empty set of states, E is a set of events,
T ⊂ S × E × S is a transition relation, and sin is an initial state. Elements of
T are called transitions and (by abuse of notation) will be denoted by s

e→ s′.
A state s is reachable from a state s′ iff there is a possibly empty sequence of
transitions leading from s to s′ (denoted by s

∗→ s′). Each TS must satisfy the
following basic axioms:

1. No self-loops: ∀(s e→ s′) ∈ T : s 6= s′;

2. No multiple arcs between a pair of states: ∀(s e1→ s1), (s
e2→ s2) ∈ T : [s1 =

s2 implies e1 = e2];

3. Every event has an occurrence: ∀e ∈ E : ∃(s e→ s′) ∈ T ;

4. Every state is reachable from the initial state: ∀s ∈ S : sin
∗→ s.

We write s
e→, or

e→ s iff ∃s′ : s
e→ s′, or ∃s′ : s′

e→ s correspondingly.
Now we define the notion of a region.

Definition 6 (Region). Let TS = (S,E, T, sin) be a transition system and
S′ ⊆ S be a subset of states. S′ is a region iff for each event e ∈ E one of the
following conditions hods:

– all the transitions s1
e→ s2 enter S′, i.e. s1 /∈ S′ and s2 ∈ S′,

– all the transitions s1
e→ s2 exit S′, i.e. s1 ∈ S′ and s2 /∈ S′,

– all the transitions s1
e→ s2 do not cross S′, i.e. s1, s2 ∈ S′ or s1, s2 /∈ S′.

Each TS has two trivial regions: the set of all states, and the empty set. For
each state s ∈ S we define the set of non-trivial regions, containing s (denoted
by Rs). A region r′ is said to be a subregion of a region r iff r′ ⊆ r. A region r
is called a minimal region iff it does not have any other subregions. A region r
is a pre-region of an event e iff there is a transition labeled with e which exits r.

Now we define a notion of elementary transition system [8, 9].

Discovery of Cancellation Regions within Process Mining Techniques 237

Definition 7 (Elementary transition system(ETS)). A TS = (S,E, T, sin)
is called elementary iff in addition to 1-4 it satisfies the following two axioms:

5. State separation property: two different states must belong to different sets
of regions:
∀s, s′ ∈ S : [(Rs = Rs′) implies (s = s′)];

6. Forward closure property: if state s is included in all pre-regions of event e,
then e must be enabled by s:
∀s ∈ S∀e ∈ E : [(oe ⊆ Rs) implies (s

e→)].

A set S of states is called a generalized excitation region for an event a (denoted
by GER(a)) iff S is a maximal (a maximal connected) set of states such that

for every state s ∈ S there is a transition s
a→. An excitation closure condition

is satisfied iff for each event a :
⋂
r∈oa = GER(a).

4 Discovering a WF-net with cancellation regions

In this section we present a new method for process discovering, which allows
constructing clear and readable process models with cancellations. To increase
transparency and readability of process models with cancellations many lan-
guages for modeling business processes (such as BPMN, YAWL and others) use
so called cancellation regions. A cancellation region is a subset of places in a
model associated with a transition. Firing of this transition empties the region,
i.e. removes all tokens happen to remain in its places.

In WF-nets cancellation regions can be naturally represented with the help
of reset arcs. Now we define Petri nets with reset arcs and workflow nets with
reset arcs (RWF-nets).

Definition 8 (Reset net). A reset net is a tuple (P, T, F,R), where

– (P, T, F) is a classical PN with places P , transitions T , and flow relation F ,
– R : T → 2P is a function mapping transitions to (possibly empty) subsets of

places.

For a transition t ∈ T , R(t) is a subset of places, emptied by firing of t. When
p ∈ R(t), we say that (p, t) is a reset arc.

As in classical Petri nets a transition t ∈ T is enabled in a marking m
iff ∀p ∈ P m(p) ≥ F (p, t). An enabled transition t may fire yielding a new
marking m′(p) = πP\R(t)(m(p)− F (p, t)) + F (t, p) for each p ∈ P . Here πP\R(t):

Nat|P | → Nat|P | is a ’projection’ function, which maps markings to markings by
removing all tokens in reset places R(t).

Definition 9 (Reset workflow net). A reset net N is called a reset workflow
net (RWF-net) iff

1. There is one source place i ∈ P and one sink place f ∈ P s. t. •i = f• = ∅;
2. Every node from P ∪ T is on a path from i to f .

238 A. A. Kalenkova and I. A. Lomazova

3. The initial marking in N contains the only token in its source place.
4. There is no reset arc connected to the sink place, i.e., ∀t ∈ T : o /∈ R(t).

An example of a RWF-net is shown in Fig. 7, reset arcs are denoted by
double-headed arrows.

Given a log we construct a TS, states of which are formed on the basis of
event sets. This can be done a standard way. After that we execute the procedure
of merging the states with identical outflow. An example of a TS with states
merged by outflow is presented in Fig. 4. Note that there might be situations
when some dummy states and transitions should be added to a TS in order to
derive a WF-net which has one source and one sink place [5].

S1

S2

register

S5S4S3

S6 S7 S8

S10

S9

book_car

book_flight

book_hotel

book_flight
book_hotel

book_car

book_car

book_hotel
book_flight

book_hotel book_flight book_car

pay
cancel

book_hotel_NOK

book_hotel_NOK

book_hotel_NOK

book_hotel_NOK

S11

Fig. 4. Transition system for the log in Fig. 2

The state-based region algorithm [7–9] constructs a target PN in such a way
that a TS is covered by its minimal regions and after that every minimal region
is transformed to a place in a PN.

Our approach is based on the following assumption: failure events are always
followed by some catching event in a log. In our example ‘book hotel NOK’ is
such a failure event, and ‘cancel’ is a catching event.

Failure events inform us about errors during the process execution. A can-
cellation state is a state reached by a process after an occurrence of some failure
event. Catching events inform about the work of a handler. And a cancellation
set is a set of states which might be canceled in consequence of some error. To
formalize these heuristics we now give the following definition.

Definition 10 (Cancellation state). Let TS = (S,E, T, sin) be a transition
system. A state sc ∈ S is a cancellation state iff the following conditions hold:

Discovery of Cancellation Regions within Process Mining Techniques 239

1. ∀e ∈ E s.t. (
e→ sc) we have (∀s ∈ S : [

e→ s implies (s = sc)];

2. ∀e ∈ E s.t. (sc
e→) we have (∀s ∈ S : [s

e→ implies (s = sc)];

3. ∀e ∈ E s.t.
e→ sc we have (∃s1, s2 ∈ S : [((s1, e, s), (s2, e, s) ∈ T) ∧ (s1 6=

s2)]);

4. ∃!e : [sc
e→].

Definition 11 (Catching event). Let TS = (S,E, T, sin) be a transition sys-

tem. An event e ∈ E is a catching event iff (sc
e→) for some cancellation state

sc ∈ S.

Definition 12 (Failure event). Let TS = (S,E, T, sin) be a transition system,
a state sc ∈ S is a cancellation state, ef is a failure event. A set of states S is

a cancellation set for ef (denoted by CS(ef)) iff ∀s ∈ S: (s
e→ sc).

All incoming and, correspondingly, outgoing transitions of a cancellation state
are labeled with some separated events in TS. Events which label incoming
transitions are called failure events. There is only one event which labels all
outgoing transitions — a catching event. There are not less than two transitions
for each failure event. The set of states which have outgoing transitions labeled
with some failure event ef is called a cancellation set, and is denoted by CS(ef).

In our example s9 is a cancellation state, {s2, s3, s4, s6} is a cancellation set,
‘book hotel NOK’ is a failure event and ‘cancel’ is a catching event (Fig. 4).

Note, that in our example each process terminates after the completion of
the transition ‘cancel’, but in a general case ‘cancel’ may be followed by some
other transitions.

Now we show that occurrence of cancellations in a log frequently leads to a
complicated WF-net. This is also valid for our example (Fig. 3).

There could be such a situation when one of events occurs independently
of the potential failures. See for example an event ‘book flight’, booking flight
procedure may start before the failure (and therefor can be interrupted) or after
the successful completion of the booking hotel procedure without any possibility
of being interrupted. The transitions labeled with ‘book flight’ event connect
states in the cancellation set and states which are not in the cancellation set
at the same time. We now prove that if a TS contains a cancellation state as
well as an event, which occurs independently of potential failures (independent
parallel branches), then the generated labeled WF-net will contain transitions
with identical labels.

Theorem 1. Let TS = (S,E, T, sin) be a transition system. A state sc ∈ S is
a cancellation state, ef ∈ E is a failure event and CS(ef) is a corresponding
cancellation set. Let e ∈ E be an event for which the following conditions hold:

– e 6= ef ;

– ∃s1 ∈ CS(ef) : [(s1
e→)] – there is a state from the cancellation set with an

outgoing transition labeled by e;
– ∃s2 ∈ CS(ef) : [¬(s2

e→)] – the cancellation set contains a state that does
not have outgoing transitions labeled by e;

240 A. A. Kalenkova and I. A. Lomazova

– ∃s3 ∈ S, s3 /∈ CS(ef) : [(s3
e→)] – there is a state not from the cancellation

set which has outgoing transition labeled by e.

Then the excitation closure condition for the event e is not satisfied.

The theorem conditions are illustrated by Fig. 5.

e

S
1

S
2

e
CS(ef)

S
3

eef
ef

Sc

Fig. 5. Transition system for which excitation closure condition is not satisfied

Proof. We have to prove that
⋂
r∈oe = GER(e) is not satisfied. Let us consider

an arbitrary pre-region of e - r. According to the definition of a pre-region there
is an exit transition labeled by e, that means that r contains all states with
outgoing transitions labeled by e: s1, s3 ∈ r. Let ef be a label for transitions
which ’do not cross‘ the region r. Then sc ∈ r, and hence s2 ∈ r. If a transition
ef exits r, then we also have s2 ∈ r. It means that every pre-region of e contains
s2 which does not have any outgoing transition labeled with e. In this case the
excitation closure property

⋂
r∈oe = GER(e) is not satisfied. �

By now we have proved that it is impossible to construct an equivalent labeled
WF-net with transitions having unique labels in the presence of cancellation state
and an event which occurs independently of the potential failures (existence
of independent parallel branches), because in this case the excitation closure
condition is not satisfied. If the excitation closure condition is not satisfied, then
TS is not elementary and the target PN is splitted [8, 9]. It means that almost
always an overcomplicated WF-net is obtained from logs with cancellations.

To overcome this problem we propose a new method of discovering a RWF-net
from an event log. We start with discovering a regular structure of the process.
For that we first construct a TS based on given event log. Then we delete all
cancellation states together with their incident arcs from the TS (Fig. 6) and
apply one of existing discovery algorithms to obtain a WF-net, representing the
regular (without cancellations) behavior. The WF-net generated from this TS
presented in Fig. 1. Then we add places, transitions and reset arcs needed for
representing cancellations.

One may notice that according to the definition, the cancellation state forms
a region itself, and hence it is transformed to a place of the target PN. So, this

Discovery of Cancellation Regions within Process Mining Techniques 241

place should be added to the target WF-net and connected by outgoing flows in
a way it was connected in a WF-net generated from the TS with cancellation.
The question remains, how to connect this place by incoming flows with other
WF-net elements to achieve control flow simplicity and preserve semantics of the
initial TS.

S1

S2

register

S5S4
S3

S6 S7 S8

S10

book_car

book_flight

book_hotel

book_flight

book_hotel

book_car

book_car

book_hotel
book_flight

book_hotel book_flight book_car

pay

S11

Fig. 6. Transition system without cancellations

We use an assumption that after deleting of the cancellation state each cor-
responding cancellation set is a minimal region. As we can see from the example
above (Fig. 6) the case when cancellation set forms a minimal region might be
rather common, especially when a process contains an exit transition labeled
by a ‘normal flow’ event. Herein our example ‘booking hotel’ is such a ‘normal
flow’ event, which specifies the case when the booking hotel procedure has been
terminated without failures.

Let us formalize the approach and prove its correctness under the assumption
that after the deletion of the cancellation state each corresponding cancellation
set is a minimal region.
Algorithm 1. (Constructing a RWF-net from the TS with cancellations).
Let TS = (S,E, T, sin) be a transition system. Let sc ∈ S be a cancella-
tion state, ef1 , ..., efn ∈ E — failure events, ec ∈ E — a catching event and
CS(ef1), ..., CS(efn) — the corresponding cancellation sets.

1. Construct a TS TS′ = (S′, E′, T ′, sin) from TS by deleting the cancellation
state and its incident arcs.

242 A. A. Kalenkova and I. A. Lomazova

pay

book_flight

book_car

book_hotel

cancel book_hotel_NOK

register

Fig. 7. Reset WF-net for booking process

2. Verify that CS(ef1), ..., CS(efn) are minimal regions in TS′, otherwise return
a message that RWF-net cannot be constructed.

3. Construct WF ′ as a WF-net derived from TS′ according to the state-based
region algorithm. TS′ is covered by its minimal regions and after that every
minimal region is transformed to a place in WF ′ [7–9].

4. Perform the transformation of WF ′ by adding transitions corresponding to
the failure events ef1 , ..., efn and transition corresponding to the catching
event ec ∈ E (Fig. 8).

5. Add outgoing control flow to the transition labeled by ec, as if the state-based
region algorithm was applied to the initial transition system TS.

6. For each failure event efi a place corresponding to the minimal region
CS(efi) is connected by an outgoing arc with the transition denoting this
failure event ; all such transitions are connected by outgoing arcs with an
additional place, which in turn is connected with the transition labeled by
the catching event (Fig. 8). If there is only one failure event (see Fig. 7), it
is connected directly with the transition labeled with the catching event.

7. All other places corresponding to the minimal regions, which contain states
from CS(efi), should be connected with the transition labeled by the failure
event efi by reset arcs.

The RWF-net which is manually constructed from the log (Fig. 2) according to
Algorithm 1 is presented in Fig. 7. This RFW-net is structurally similar to the
initial regular WF-net (Fig. 1) and the core process structure could be easily
retrieved from the RWF-net. Let us prove the correctness of Algorithm 1.

Theorem 2. Let TS = (S,E, T, sin) be a transition system. Construct a RWF-
net WF using an Algorithm 1. Then the labeled RG of WF is isomorphic (or
split-isomorphic) to the minimized TS.

Proof. The labeled RG of the intermediate WF-net WF ′ is safe and isomorphic
(or split-isomorphic) to the minimized initial TS′ according to the principles of
the state-based region algorithm [6]. TS differs from TS′ only in addition of the
cancellation state sc ∈ S and its incident arcs (transitions). Let us consider an

Discovery of Cancellation Regions within Process Mining Techniques 243

ef1

efn

...

...

ec

...

Fig. 8. Construction of the target RWF-net

arbitrary additional transition efi which connects a state from the cancellation
set s ∈ S with the cancellation state sc ∈ S. The presence of such a transition
labeled by failure event efi means that the target net can change its state having
tokens in a place which corresponds to the cancellation set and other places
which correspond to the minimal regions containing state s (these places have
appropriate reset arcs in the target reset WF-net). Note that every minimal
region in a TS corresponds to the place in the target WF-net [7–9]. And vice
versa addition of new transitions, arcs and reset-arcs to the WF-netWF ′ will add
necessary transitions to the TS. Also the outgoing flow of the transition labeled
by catching event will be added according to the state-based region algorithm,
taking into account that the cancellation state sc ∈ S forms a minimal region
itself. All these arguments lead us to the conclusion that labeled RG of the target
reset WF-net WF is isomorphic (or split-isomorphic) to the minimized initial
TS.�

5 Conclusion

Construction of readable process models is an important requirement for process
discovery techniques. Since cancellations occur in the majority of real-life event
logs, it is necessary to construct an appropriate algorithm to deal with cancel-
lations and synthesize simple and clear process models. In this work we have
proved that occurrence of cancellations in a log frequently leads to process mod-
els with the overcomplicated control flow. We also described an algorithm, which
discovers readable RWF-net models with clear regular structure from event logs.
We have proved the correctness of this algorithm. In the future, we plan to
implement this approach and apply it to real-life event logs.

244 A. A. Kalenkova and I. A. Lomazova

References

1. W.M.P. van der Aalst Discovery, Conformance and Enhancement of Business
Processes. Springer-Verlag, Berlin, 2011.

2. Object Management Group Business Process Modeling Notation (BPMN) Version
2.0, OMG Final Adopted Specification. Object Management Group, 2011.

3. W.M.P. van der Aalst and A.H.M. ter Hofstede YAWL: Yet another workflow
language. Information Systems. Vol. 30, Nr. 4, pages 245-275. 2005.

4. W.M.P. van der Aalst, K.M. van Hee, A.H.M. ter Hofstede, N. Sidorova, H.M.W.
Verbeek, MVoorhoeve, M.T. Wynn Soundness of Workflow Nets with Reset Arcs.
Transactions on Petri Nets and Other Models of Concurrency. Vol. 3, pages 50-70.
2005.

5. W.M.P. van der Aalst Discovery, Verification and Conformance of Workflows with
Cancellation. In 4th International Conference, ICGT 2008, Vol. 5214 of Lecture
Notes in Computer Science, pages 18-37. Springer, 2008.

6. W.M.P. van der Aalst, V. Rubin, B.F. van Dongen, E. Kindler, and C.W. G?unther.
Process Mining: A Two-Step Approach using Transition Systems and Regions.
BPM Center Report BPM-06-30, BPMcenter.org, 2006.

7. M. Nielsen, G. Rozenberg, and P.S. Thiagarajan. Elementary transition systems.
Theoretical computer science. Vol. 96, pages 3-33. 1992.

8. J. Cortadella,M.Kishinevsky,L. Lavagno, and A.Yakovlev. Synthesizing Petri nets
from state-based models. Technical Report RR 95/09 UPC/DAC, Universitat
Politecnica de Catalunya, April 1995.

9. J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Deriving Petri Nets
from Finite Transition Systems. IEEE Transactions on Computers. Vol. 47, Nr.
8, pages 859-882. 1998.

10. B.F. van Dongen, A.K. Alves de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters,
and W.M.P. van der Aalst. The ProM framework: A New Era in Process Mining
Tool Support. In G. Ciardo and P. Darondeau, editors, Application and Theory
of Petri Nets, Vol. 3536 of Lecture Notes in Computer Science, pages 444-454.
Springer-Verlag, Berlin, 2005.

Genetic Algorithm with Path Relinking for the
Orienteering Problem with Time Windows

Joanna Karbowska-Chilinska and Pawel Zabielski

Faculty of Computer Science
Bialystok University of Technology, Poland

Abstract. The Orienteering Problem with Time Windows (OPTW) is
an optimisation NP-hard problem. This paper proposes a hybrid genetic
algorithm (GAPR) for approximating a solution to the OPTW. Instead
of the usual crossover we use a path relinking (PR) strategy as a form
of intensification solution. This approach generates a new solution by
exploring trajectories between two random solutions: genes not present
in one solution are included in the other one. Experiments performed
on popular benchmark instances show that the proposed GAPR outper-
forms our previously published version of GA and yields better results
than the well-known iterated local search method (ILS) as well.

Keywords: orienteering problem with time windows, genetic algorithm,
path relinking

1 Introduction

The Orienteering Problem with Time Windows (OPTW) is a type of optimisa-
tion routing problem first introduced by Kantor et al. [7]. The OPTW can be
modelled as a weighted graph with a positive score/profit associated with each
vertex. Let G be a graph with n vertices, in which each vertex i has a profit
pi, a service time Ti and a time window [Oi, Ci], where Oi and Ci denote the
opening and closing times of a vertex i. Each edge between vertices i and j has a
fixed cost tij associated with it. The value tij is interpreted as the time or length
needed to travel between vertices. The objective is to determine a single route,
from a starting point s to a fixed ending point e, that visits some of the vertices
within the fixed time windows and maximises the total profit. In addition, the
total cost of the edges on the path must be less than the given constraint tmax

and each vertex on the route is visited only once. It is possible to wait at a vertex
for service before its time windows opens.

The OPTW is derived from the more general Orienteering Problem (OP)
[23], [14]. In the OP each vertex inserted into the route could be visited in any
time interval (there is no restriction in the form of time windows). The OP is
seen as a combination of the Knapsack Problem and the Travelling Salesperson
Problem, because in the OP the selected route limited in length contains the
most profitable vertices. Both the OP and the OPTW are NP-hard [7].

246 J. Karbowska-Chilinska, P. Zabielski

Numerous applications can be found for the OPTW, e.g. in logistics for plan-
ning optimal routes, such as profitable delivery routes, as well as in optimisation
of production scheduling [20]. The OPTW successfully models problems related
to tourism [24]. Tourists visiting a city are usually unable to visit all points
of interests (POI) because they are limited by time or money. The most effec-
tive heuristics for the OPTW are applied in electronic devices known as mobile
tourist guides [24], [2] which make it possible to visit the most valuable POIs
(taking into account their opening and closing times) within a fixed time limit.
The Team Orienteering Problem with Time Windows (TOPTW) [12], which is
an extension of the OPTW, is used to model multiple tours, with each tour
satisfying the same fixed travel length or time constraint.

In this paper we present an improved version of the genetic algorithm for the
OPTW described in [10]. We use hybridization of our genetic algorithm with a
path relinking method (PR) instead of the crossover operator. In the PR ap-
proach two random solutions are chosen and routes combining these solutions
are explored to provide better solutions: genes not present in one solution are
included in the other one. Path relinking was originally described by Glover [5]
and Laguna [6] for intensification and diversification of the tabu search method.
Moreover, the PR significantly improves the results of the Greedy Randomised
Adaptive Search Procedure (GRASP) for the general version of OP [21], [1].
This led us to use this method in combination with the previously developed
genetic algorithm for solving the OPTW [10].

The remainder of the paper is organised as follows. The mathematical for-
mulation of the problem is presented in Section 2. An overview of the main
approaches in the literature is presented in Section 3. In section 4, we describe
the concept of the hybrid genetic algorithm with path relinking. The results of
computational experiments illustrating the effectiveness of our approach in com-
parison with other methods are discussed in Section 5. Concluding remarks and
plans for further research are given in Section 6.

2 Mathematical formulation

Based on the notation introduced in the previous section the OPTW can be
formulated as an mixed integer problem as follows [26]:

max

n−1∑
i=1

n∑
j=2

pixij (1)

n∑
j=2

x1j =
n−1∑
i=1

xin = 1 (2)

n−1∑
i=1

xik =

n∑
j=2

xkj 6 1 ∀k ∈ {2, ..., n− 1} (3)

Genetic Algorithm with Path Relinking for the Orienteering Problem ... 247

n−1∑
i=1

n∑
j=2

tijxij 6 tmax (4)

starti + Ti + tij − startj 6 M · (1− xij) (5)

Oi 6 starti 6 Ci ∀i = 1, ..., n (6)

where xij are binary variables, such that xij = 1 if the edge between i and j is
included in a solution, and xij = 0 otherwise. Moreover, we assume that s=1
and e = n. Let starti denote the start of service time at vertex i and M be a
large constant. The objective function (1) maximises the total collected profit of
the route. The constraint in (2) guarantees that the path starts at vertex 1 and
ends at vertex n. Constraint (3) requires that there may be at most one visit to
any vertex. The constraint in (4) ensures that the time of the route is limited by
tmax. Constraint (5) ensures the timeline of the route. The start of the service
is restricted by a time window as in (6).

3 Literature review

It can be easily observed that the OPTW is a special case of the TOPTW: in the
OPTW one route is constructed, while in TOPTW several routes are generated.
Methods for the TOPTW could also be applied to the OPTW. Therefore, in
this section we present solution approaches described in the literature for the
OPTW as well as the TOPTW.

The Orienteering Problem with TimeWindows has been studied since Kantor
and Rosenweins article [7]. Their insertion heuristic constructs a route by itera-
tively inserting the vertex with the highest ratio score/T imeInsertion without
violating time windows and tmax constraints. In the second method proposed,
they developed what is known as a tree heuristic, in which a depth-search algo-
rithm constructs routes that begin in a given vertex. If a route is infeasible or
unlikely to yield a better result, the route is abandoned. In this case the algo-
rithm backtracks to the previous level of the tree and attempts to insert another
vertex.

Righini et al. [18] developed an exact optimisation algorithm for the OPTW
based on bi-directional dynamic programming. This technique requires extension
of non-dominated states from both sides of the route: forward from the start ver-
tex and backward from the end vertex. The decremental state relaxation method
was also introduced for this algorithm with the idea of iteratively reducing the
number of explored states [19].

Mansini et al. [17] introduced the Granular Variable Neighbour Search ap-
proach for TOPTW based on the idea of exploring a reduced neighbourhood
instead of a complete one and not including arcs that are not promising. The

248 J. Karbowska-Chilinska, P. Zabielski

method improved algorithm efficiency with no loss of effectiveness. A more gen-
eral concept of granularity was described in [11]. The cost of an arc was identified
by the formula (tij +wij)/(pi + pj), where wij is the maximum possible waiting
time at j provided that the service at i is assumed to start at the fixed time.
Promising arcs were identified as follows: the lower the reduced cost associated
with the arc, the higher the probability it will belong to a good solution.

Montemanni et al. [15] proposed a solution model using hierarchical gener-
alization of TOPTW based on an Ant Colony System (ACS) algorithm. Two
improvements to the ASC method were included in the ACS [16]: the construc-
tive phase was sped up by considering the best solution computed so far, and
the local search procedure was applied only to those solutions to which it had
not been applied in the previous iteration (the same route was not optimised
too often).

Tricoire et al. [22] adapted a solution to the Multi-Period Orienteering Prob-
lem with Multiple Time Windows for the TOPTW. They proposed an exact
algorithm for the path feasibility sub-problems, and embedded it in a variable
neighbourhood search (VNS) approach to solve the whole problem.

Vansteenwegen et al. proposed the Iterated Local Search approach (ILS) [25]
to tackle the TOPTW. Because it is the fastest known heuristic, ILS is applied,
for example, in electronic devices such as mobile tourist guides [4], [24]. The ILS
method iteratively builds and improves one route by combining an insertion step
and deletion of some consecutive locations (a shake step) to escape from a local
maximum.

Lambadie et al. [12] developed a method for solving TOPTW which combines
a greedy randomised adaptive search procedure (GRASP) with an evolutionary
local search (ELS). In the ELS phase deletion and insertion mutations are per-
formed for multiple child solutions. Child solutions are further improved by a
variable neighbourhood descent procedure. The GRASP ELS method gives the
best results on benchmark instances in comparison with the other methods men-
tioned [11]

4 Genetic Algorithm

The proposed method, called GAPR, is an extended version of the genetic algo-
rithm GA proposed in [10]. The individuals (routes) are encoded as a sequence
of vertices (genes). The GAPR starts by generating an initial population of
Psize routes. Next, each individual is evaluated by means of the fitness function
F . We use F as in [10], [8], [9], which is equal to TotalProfit3/TravelT ime.
TotalProfit and TravelT ime denote the sum of the profits assigned to the
vertices on the route and the total travel time from the starting point to the
ending point. In subsequent iterations of the GAPR the population is evolved
by applying genetic operators selection, recombination and mutation in order
to create new, better routes. The optimisation strategy, in contrast with the
method proposed in [10], involves a recombination stage (crossover) performed
on two random routes: instead of randomly choosing a crossing point between

Genetic Algorithm with Path Relinking for the Orienteering Problem ... 249

vertices with similar time windows and starting and ending time of service [10],
we used a path relinking process. In this process routes in the graph solution
space connecting two random solutions are explored in order to find better solu-
tions [5], [6]. To generate new solutions between selected random routes, genes
not present in one route are included in the other. The solution generated by the
path relinking process corresponds to the best individuals that could be obtained
by applying the crossover operator to the same random parents.

The GAPR terminates after a fixed number of generations (denoted by Ng),
or earlier if it converges. The GAPR result is the route in the final population
with the highest profit value. The basic structure of the GAPR is as follows:

compute initial population;

algLoop=0;

while algLoop< Ng do

algLoop++;

tournament grouping selection;

path relinking;

mutation;

if no improvements in last 100 iterations then break;

end;

return the route with the highest profit value;

Due to randomization, the GAPR is run several times during the tests. Each
successive repetition of the GAPR is independent of the others, so this is a prime
target for parallelisation. OpenMP [13], which is an API, is used in the algorithm
for parallel computations, which substantially reduce its execution time.
The application of genetic operators for selection, recombination and creation of
new individuals is described in more detail below.

4.1 Initialisation

In the approach presented a route is coded as a sequence of vertices. A population
of Psize routes is generated as follows. First the chromosome is initialized by
the s and e vertices. Then the following values are assigned sequentially to the
initialized vertices: arrivei - arrival time at vertex i, waiti - waiting time, if the
arrival at the vertex i is before opening time, starti and endi - starting and
ending service time at vertex i. Moreover, the maximum time the service of a
visit i can be delayed without making other visits infeasible is calculated for each
location in the route as follows [25]:

MaxShifti = Min(Ci − starti − Ti, waiti+1 +MaxShifti+1) (7)

Let l be the predecessor of vertex e in the route. In the subsequent steps a
set of vertices is prepared. Each vertex v from this set is adjacent to vertex l
and vertex e and will satisfy the following conditions after insertion: (a) startv
and endv are within the range [Ov, Cv]; (b) the locations after v could be visited

250 J. Karbowska-Chilinska, P. Zabielski

in the route; and (c) the current travel length does not exceed the given tmax

(including consumption time to insert the vertex v between l and e). A random
vertex v is chosen from this set. The values arrivev, waitv, startv and endv are
calculated and the vertex v is inserted. After the insertion, the values arrivee,
waite, starte and ende are updated. Moreover, for each vertex in the tour (from
vertex e to s) the MaxShift value is updated as well. The tour generation is
continued for as long as locations that have not been included are present and
tmax is not exceeded.

4.2 Selection

We use tournament grouping selection, which yields better adapted individuals
than standard tournament selection [9]. In this method a set of Psize individuals
is divided into k groups and the tournaments are carried out sequentially in each
of the groups. tsize random individuals are removed from the group, the chromo-
some with the highest value for the fitness function TotalProfit3/TravelT ime
is copied to the next population, and the tsize previously chosen individuals are
returned to the old group. After selection from the group currently analysed has
been repeated Psize/k times, Psize/k individuals are chosen for a new popula-
tion. Finally, when this step has been repeated in each of the remaining groups,
a new population is created, containing Psize routes.

4.3 Path relinking

First two random routes R1 and R2 are selected from the new population chosen
in the selection step. Let VR1−R2 be the set of vertices present in R1 and not
in R2 , and let VR2−R1 denote the set of vertices present in R2 and not in R1.
During PR(R1, R2) we attempt to insert vertices from VR2−R1 into R1 in the best
possible position. The total consumption time associated with inserting a vertex
j between vertex i and k is calculated as follows [25]: Shiftj = tij + waitj +
Tj + tjk − tik. In addition, we check whether the shift resulting from the new
insertion exceeds the constraints associated with the previously calculated wait
and MaxShift values for the vertices located directly after the newly inserted
one. If the shift exceeds the constraints the vertices from VR1−R2 are removed to
restore the possibility of inserting new locations. For each vertex u from this set
a ratio is calculated as follows: RemovalRatio = (pu)

2
/(endu − arriveu), with

the power 2 having been determined experimentally. After this computation
the vertex with the smallest value for RemovalRatio is removed. This removal
is repeated until we can insert some vertices into the path. Finally the vertex
u with the highest value for (pu)

2
/Shift(u) and not exceeded the mentioned

constrains is selected for insertion. After u is inserted the values of arriveu,
waitu, startu and endu are calculated. For each location after u the arrival time,
waiting time, and start and end of service are updated. MaxShift values are
also updated for the vertices from the starting point to the ending point of the
route. As we can see, the insertion of one vertex from VR2−R1 into R1 is a multi-
stage process. The process is repeated for as long as tmax is not exceeded and

Genetic Algorithm with Path Relinking for the Orienteering Problem ... 251

the set VR2−R1 is not empty. In addition, we perform PR(R2, R1) by inserting
vertices from VR1−R2 into R2. Two new routes are created as a result of PR(R1,
R2) and PR(R2, R1). If the fitness values of the new routes are higher than the
fitness value of R1 and R2, they replace them.

4.4 Mutation

In this phase a random route is selected from Psize individuals. Two types of
mutation are possible a gene insertion or gene removal (the probability of each
is 0.5). The mutation process is repeated on the selected route Nm times, where
Nm is the parameter. During the insertion mutation, all possibilities for inclusion
of each new vertex (not present in the route) are considered in the same way as
in the path relinking process. The locations before and after the inserted vertex
should be updated as in the case of the insertion process in the path relinking.
In the deletion mutation we remove a randomly selected gene (excluding the
first and last genes) in order to shorten the travel length. After the gene is
removed, all locations after the removed gene are shifted towards the beginning
of the route. Furthermore, the locations before and after the removed gene are
updated as in the insertion mutation.

5 Experimental Results

The GAPR was coded in C++ and run on an Intel Core i7, 1.73 GHz CPU (turbo
boost to 2.93 GHz). The algorithm was tested on Solomon [20] and Cordeau [3]
test instances for the OPTW. The number of vertices in the Solomon instances
is equal to 100 and different layouts for the vertices are considered: cluster (c),
random (r) and random-clustered (rc) classes. The Solomon benchmarks c200,
r200, rc200 and c100, r100, rc100 have the same coordinates of vertices, profits
and visiting times, but the c\r \rc200 instances have approximately three times
higher values of tmax and larger time windows than the c \ r \ rc100 instances.
The Cordeau instances vary between 48 and 288 vertices.

The parameters of the GAPR were determined by performing several tests
on a selected subset of Solomon and Cordeau instances. Preliminary tests identi-
fied the following as good performing parameters: 150 for the initial population
size, 3 for the number of individuals chosen from the group in the tournament
selection, and 15 for the number of groups in the tournament selection. Based on
the tests described in [10], the Nm number of mutations repeated on the selected
route was set to 15.

Detailed results obtained by the GAPR on benchmark instances in compar-
ison with other methods are given in Tables 2 - 4. There are two columns for
the GAPR, denoted GAPR(I) and GAPR(II). The first reports the results ob-
tained by considering only PR(R1, R2) in the path relinking (in each iteration
of the algorithm). The second shows the results of the use of both PR(R1, R2)
and PR(R2, R1) during the path relinking. For comparison of the results, the
best known solution value (BK) (solutions obtained by GRASP ELS and ACS

252 J. Karbowska-Chilinska, P. Zabielski

algorithm [12], [16]), the GA (with crossover) [10] and ILS [25] are also reported.
In the BK columns the optimal values when are known are marked in italic. The
GAPR was tested by performing sixteen runs concurrently two runs each on
eight processor cores. The results of the GA were obtained with sixteen runs
of the algorithm (without concurrency) on the same computer used to run the
GAPR. The total time of the sixteen runs (expressed in seconds) and the min-
imum, average, and maximum solutions are given in the tables for the GA and
the GAPR. The ILS (deterministic algorithm) results were obtained with one
run [25]. Tables 2 - 4 also show the average percentage gap between the best
known solution (BK) values and the average value of the GAPR, and for com-
parison, the gaps between BK and the other methods mentioned. An empty cell
denotes a gap equal to 0.

The results presented in Tables 2 - 4 indicate that the GAPR outperforms
the ILS results on c \ r \ rc100, c \ rc200 and the Cordeau instances. Only in the
case of r200 does the ILS perform slightly better than the GAPR (the ILS has a
smaller gap than the GAPR, by about 0.4%). The average gap between the BK
and the ILS results for all these instances is 3.6%, while the gaps between BK
and GAPR(I) and GAPR(II) are 2.4% and 2.5%, respectively. Because the use
of PR(R1, R2) and PR(R2, R1) results in faster convergence of the algorithm,
in some cases (e.g. rc200) the creation of two new routes in each iteration of
GAPR(II) yields worse results than calculation of only one route as in GAPR(I).
For comparison, the average gap between BK and the previous genetic algorithm
GA is 5.6%. The application of the path relinking stage in place of the crossover
significantly improves the GAPR results by about 6% in comparison to the GA.
As a result of the parallel computing, the GAPR is on average 22 times faster
than the GA and its execution time is comparable with the ILS. Moreover, the
GAPR provides several new best solutions on Cordeau instances p11, p15, p17
and p19, whose improved values are given in bold in Table 4. There are not an
known optimal values for these instances [11]. Examples of the best-generated
routes by GAPR for pr17 and pr15 are presented in Figure 2. Comparison the
GAPR with the GA and the ILS results for these benchmarks is presented in
Table 1.
The number of generations in the GAPR was experimentally set to 500 as the
stopping criterion. As seen in Figure 1 in the case of the pr11-20 the best routes
were generated earlier than 500 generations (the exception is the pr20, where
the result was only better about 2% after 620 generations). Therefore, for the
optimisation of the execution time, the algorithm was stopped earlier if were not
any improvements in the lengths of the routes by 100 generations.

6 Conclusions and Further Work

This paper presents the application of the genetic algorithm hybridised with
the path relinking method to the Orienteering Problem with Time Windows.
Using path relinking instead of crossover improves the results on benchmark
instances by about 6%. Moreover, the proposed GAPR algorithm outperforms

Genetic Algorithm with Path Relinking for the Orienteering Problem ... 253

Fig. 1. Convergence of the GAPR for pr11-20 instances.

Fig. 2. Examples of the best-generated routes by GAPR for pr17 and pr15.

the results of the ILS heuristic, while the execution times of the two algorithms
are comparable. The ILS is very fast and is applied, for example, in mobile
tourist guide applications [25]. The proposed heuristic can also be adapted to
solve problems related to planning tourist routes.

Further research directions include improving the GAPR results by applying
path relinking operators between pairs of elite solutions (known as evolutionary
path relinking) and conducting tests on a realistic database. Moreover, we intend
to focus our research on developing effective heuristics for the Team Orienteering
Problem with Time Windows, which is an extension of the OPTW.

254 J. Karbowska-Chilinska, P. Zabielski

Table 1. Comparison the GAPR with the GA and the ILS routes for pr15 and pr17.

method length of profit route
the route

0-165-158-91-11-81-102-29-64-
ILS 69643 630 -62-136-77-198-182-85-153-18-238-123-204-43-237-179-

-26-144-119-67-129-154-193-142-203-55-187-161-5-0
p15 0-150-11-29-235-165-173-67-88-

GA 60801 653 -164-71-119-144-26-179-34-204-123-43-72-18-153-85-
-182-136-62-77-198-212-79-203-142-187-161-193-0

0-150-11-235-29-165-173-67-71-88-164-176-
GAPR 68775 701 -40-216-47-215-27-26-179-237-43-204-123-18-153-85-

-182-136-62-77-198-212-79-187-203-142-161-193-5-0

0-35-32-54-22-44-34-8-4-
ILS 70696 346 -21-48-66-30-60-9-19-42-58-61-37-69-0

p17 0-29-63-5-15-56-54-8-44-
GA 70324 353 -34-22-32-6-9-19-42-58-37-69-0

0-29-72-15-8-34-44-22-5-3-
GAPR 70955 360 -56-32-25-60-9-19-42-58-37-69-0

Acknowledgements

The authors gratefully acknowledge support from the Polish Ministry of Sci-
ence and Higher Education at the Bialystok University of Technology (grant
S/WI/1/2011 and W/WI/2/2013).

References

[1] Campos, V., Marti, R.,Sanchez-Oro, J., Duarte, A.: Grasp with Path Relinking for
the Orienteering Problem. Technical Raport, 116 (2012)

[2] http://www.citytripplanner.com/en/home . Last access: June 29, 2013
[3] Cordeau, J.F., Gendreau, M., Laporte, G.: A tabu search heuristic for periodic and

multi-depot vehicle routing problems. Networks 30(2)(1997) 105-119
[4] Garcia, A., Vansteenwegen, P., Arbelaitz, O., Souffriau, W., Linaz, M.: Integrat-

ing Public Transportation in Personalised Electronic Tourist Guides. Computers &
Operations Research. 40 (2013) 758–774

[5] Glover, F.: A Template For Scatter Search And Path Relinking. Lecture Notes in
Computer Science. 1363 (1997) 13-54

[6] Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers. Boston (1997)
[7] Kantor, M., Rosenwein, M .: The Orienteering Problem with Time Windows. Jour-

nal of the Operational Research Society. 43 (1992) 629–635
[8] Karbowska-Chilinska, J., Koszelew, J., Ostrowski, K., Zabielski, P.: Genetic algo-

rithm solving orienteering problem in large networks. Frontiers in Artificial Intelli-
gence and Applications. 243 (2012) 28–38

Genetic Algorithm with Path Relinking for the Orienteering Problem ... 255

[9] Karbowska-Chilinska, J., Koszelew, J., Ostrowski, K., Zabielski, P.: A Genetic Al-
gorithm with Grouping Selection and Searching Operators for the Orienteering Prob-
lem. (under review)

[10] Karbowska-Chilinska, J., Zabielski, P.:A Genetic Algorithm Solving Orienteering
Problem with Time Windows. (accepted for publication in Springer series: Advances
in Intelligent Systems and Computing)

[11] Labadie, N., Mansini, R., Melechovsky, J., Wolfler Calvo, R.: The Team Orien-
teering Problem with Time Windows: An LP-based Granular Variable Neighborhood
Search. European Journal of Operational Research. 220(1) (2012) 15-27

[12] Labadie, N., Melechovsk, J., Wolfler Calvo, R.: Hybridized evolutionary local
search algorithm for the team orienteering problem with time windows. Journal of
Heuristics. 17(6) (2011) 729-753

[13] http://openmp.org/wp/ . Last access: June 29, 2013
[14] Ostrowski, K., Koszelew, J.: The comparison of genetic algorithm which solve

Orienteering Problem using complete an incomplete graph. Zeszyty Naukowe, Po-
litechnika Bialostocka. Informatyka 8 (2011), 61–77

[15] Montemanni, R., Gambardella, L.M.: Ant colony system for team orienteering
problems with time windows. Foundations of Computing and Decision Sciences. 34
(2009)

[16] Montemanni, R., Weyland, D., Gambardella L. M.: An Enhanced Ant Colony
System for the Team Orienteering Problem with Time Windows. Proceedings of
IEEE ISCCS 2011 The 2011 International Symposium on Computer Science and
Society, Kota Kinabalu, Malaysia 381-384 (2011)

[17] Mansini, R., Pelizzari, M. Wolfler, R.: A Granular Variable Neighborhood Search
for the Tour Orienteering Problem with Time Windows, Technical Report of the
Department of Electronics for Automation, University of Brescia (2006)

[18] Righini, G., Salani, M.: New dynamic programming algorithms for the resource
constrained elementary shortest path. Networks. 51(3) (2008) 155 –170

[19] Righini, G., Salani, M.: Decremental state space relaxation strategies and initial-
ization heuristics for solving the Orienteering Problem with Time Windows with
dynamic programming. Computers & Operations Research. 36 (2009) 1191 – 1203

[20] Solomon, M.: Algorithms for the Vehicle Routing and Scheduling Problems with
Time Window Constraints. Operations Research 35(2) (1987) 254-265

[21] Souffriau, W.,Vansteenwegen, P., Vanden Berghe, G., Van Oudheusden, D.: A
Path Relinking approach for the Team Orienteering Problem, Computers & Opera-
tions Research, 37(11) (2010) 1853-1859

[22] Tricoire, F., Romauch, M., Doerner, K. F., Hartl, R. F. Heuristics for the multi-
period orienteering problem with multiple time windows. Comput. Oper. Res. 34(2)
(2010) 351–367

[23] Tsiligirides, T.: Heuristic methods applied to orienteering. Journal of the Opera-
tional Research Society. 35(9) (1984) 797–809

[24] Vansteenwegen, P., Souffriau, W., Vanden Berghe, G., Van Oudheusden, D.: The
City Trip Planner: An expert system for tourists. Expert Systems with Applications.
38(6) (2011) 6540–6546

[25] Vansteenwegen, P., Souffriau, W., Vanden Berghe, G., Van Oudheusden, D.: Iter-
ated local search for the team orienteering problem with time windows. Computers
O.R. 36 (2009) 3281–3290

[26] Vansteenwegen, P., Souffriau, W., Van Oudheusden, D.. The Orienteering Prob-
lem: A survey. European Journal of Operational Research. 209(1) (2011) 1–10.

256 J. Karbowska-Chilinska, P. Zabielski

T
a
b
le

2
.

R
es

u
lt

s
fo

r
S

o
lo

m
o
n

’s
te

st
p

ro
b

le
m

s
(n

=
1
0
0
).

B
K

IL
S

G
A

G
A
P
R
(I
)

G
A
P
R
(I
I)

%
g
a
p

B
K

w
it
h

n
a
m
e

sc
o
re

sc
o
re

ti
m
e

m
in

a
v
g
.

m
a
x

ti
m
e

m
in

a
v
g
.

m
a
x

ti
m
e

m
in

a
v
g
.

m
a
x

ti
m
e

IL
S

G
A

G
A
P
R
(I
)
G
A
P
R
(I
I)

c
1
0
1

3
2
0

3
2
0

0
.4

3
1
0

3
1
7

3
2
0

4
.2

3
2
0

3
2
0

3
2
0

0
.2

3
2
0

3
2
0

3
2
0

0
.2

1
.0

c
1
0
2

3
6
0

3
6
0

0
.3

3
6
0

3
6
0

3
6
0

4
.4

3
6
0

3
6
0

3
6
0

0
.2

3
6
0

3
6
0

3
6
0

0
.3

c
1
0
3

4
0
0

3
9
0

0
.5

3
8
0

3
8
9

4
0
0

6
.3

4
0
0

4
0
0

4
0
0

0
.3

4
0
0

4
0
0

4
0
0

0
.3

2
.5

2
.8

c
1
0
4

4
2
0

4
0
0

0
.3

4
0
0

4
0
3

4
2
0

6
.3

4
2
0

4
2
0

4
2
0

0
.3

4
0
0

4
0
9

4
1
0

0
.4

4
.8

4
.2

2
.6

c
1
0
5

3
4
0

3
4
0

0
.3

3
4
0

3
4
0

3
4
0

4
.3

3
4
0

3
4
0

3
4
0

0
.2

3
4
0

3
4
0

3
4
0

0
.2

c
1
0
6

3
4
0

3
4
0

0
.3

3
4
0

3
4
0

3
4
0

4
.0

3
4
0

3
4
0

3
4
0

0
.2

3
4
0

3
4
0

3
4
0

0
.2

c
1
0
7

3
7
0

3
6
0

0
.3

3
6
0

3
6
2

3
7
0

4
.5

3
6
0

3
6
0

3
6
0

0
.2

3
6
0

3
6
0

3
6
0

0
.2

2
.7

2
.2

2
.7

2
.7

c
1
0
8

3
7
0

3
7
0

0
.3

3
7
0

3
7
0

3
7
0

5
.1

3
7
0

3
7
0

3
7
0

0
.3

3
7
0

3
7
0

3
7
0

0
.2

c
1
0
9

3
8
0

3
8
0

0
.3

3
8
0

3
8
0

3
8
0

4
.9

3
8
0

3
8
0

3
8
0

0
.3

3
8
0

3
8
0

3
8
0

0
.2

s
u
m

:
3
3
0
0

3
2
6
0

3
.0

3
2
4
0

3
2
6
0

3
3
0
0

4
4

3
2
9
0

3
2
9
0

3
2
9
0

2
.2

3
2
7
0

3
2
7
9

3
2
8
0

2
.2

a
v
g
.:

1
.2

1
.2

0
.3

0
.6

r1
0
1

1
9
8

1
8
2

0
.1

1
8
2

1
8
9

1
9
8

3
.2

1
9
7

1
9
7

1
9
7

0
.2

1
9
8

1
9
8

1
9
8

0
.2

8
.1

4
.8

0
.5

r1
0
2

2
8
6

2
8
6

0
.2

2
8
1

2
8
6

2
8
6

5
.4

2
8
6

2
8
6

2
8
6

0
.2

2
8
6

2
8
6

2
8
6

0
.2

0
.1

r1
0
3

2
9
3

2
8
6

0
.2

2
8
6

2
9
0

2
9
3

5
.3

2
9
3

2
9
3

2
9
3

0
.3

2
9
3

2
9
3

2
9
3

0
.3

2
.4

1
.1

r1
0
4

3
0
3

2
9
7

0
.2

2
9
7

2
9
7

2
9
8

4
.9

3
0
3

3
0
3

3
0
3

0
.3

2
9
7

2
9
8

2
9
8

0
.3

2
.0

2
.0

1
.7

r1
0
5

2
4
7

2
4
7

0
.1

2
4
0

2
4
4

2
4
7

3
.9

2
4
7

2
4
7

2
4
7

0
.2

2
4
7

2
4
7

2
4
7

0
.2

1
.2

r1
0
6

2
9
3

2
9
3

0
.2

2
8
1

2
9
2

2
9
3

4
.7

2
9
3

2
9
3

2
9
3

0
.2

2
9
3

2
9
3

2
9
3

0
.2

0
.3

r1
0
7

2
9
9

2
8
8

0
.2

2
8
6

2
9
2

2
9
7

6
.1

2
9
9

2
9
9

2
9
9

0
.3

2
9
9

2
9
9

2
9
9

0
.3

3
.7

2
.3

r1
0
8

3
0
8

2
9
7

0
.2

2
9
7

3
0
0

3
0
8

5
.5

3
0
8

3
0
8

3
0
8

0
.4

3
0
3

3
0
8

3
0
8

0
.4

3
.6

2
.5

r1
0
9

2
7
7

2
7
6

0
.2

2
5
8

2
7
0

2
7
4

4
.6

2
7
0

2
7
2

2
7
4

0
.2

2
7
0

2
7
3

2
7
4

0
.3

0
.4

2
.5

1
.7

1
.4

r1
1
0

2
8
4

2
8
1

0
.3

2
7
4

2
7
7

2
8
1

4
.7

2
8
3

2
8
3

2
8
3

0
.3

2
8
1

2
8
1

2
8
1

0
.2

1
.1

2
.4

0
.4

1
.1

r1
1
1

2
9
7

2
9
5

0
.2

2
7
5

2
9
3

2
9
5

5
.8

2
9
7

2
9
7

2
9
7

0
.3

2
9
7

2
9
7

2
9
7

0
.3

0
.7

1
.3

r1
1
2

2
9
8

2
9
5

0
.2

2
9
0

2
9
3

2
9
5

6
.2

2
9
2

2
9
2

2
9
2

0
.2

2
9
5

2
9
5

2
9
5

0
.3

1
.0

1
.6

2
.0

1
.0

s
u
m

.
3
3
8
3

3
3
2
3

2
.3

3
2
4
7

3
3
2
3

3
3
6
5

6
0
.4

3
3
6
8

3
3
7
0

3
3
7
2

3
.0

3
3
5
9

3
3
6
8

3
3
6
9

3
.2

a
v
g
.:

1
.8

1
.8

0
.4

0
.4

rc
1
0
1

2
1
9

2
1
9

0
.2

2
1
0

2
1
6

2
1
9

3
.5

2
1
6

2
1
6

2
1
6

0
.2

2
1
6

2
1
6

2
1
6

0
.2

1
.4

1
.4

1
.4

rc
1
0
2

2
6
6

2
5
9

0
.2

2
5
5

2
6
1

2
6
6

4
.8

2
6
6

2
6
6

2
6
6

0
.3

2
6
6

2
6
6

2
6
6

0
.2

2
.6

1
.9

rc
1
0
3

2
6
6

2
6
5

0
.3

2
5
3

2
6
2

2
6
6

5
.3

2
5
9

2
6
5

2
6
6

0
.3

2
6
5

2
6
5

2
6
6

0
.3

0
.4

1
.5

0
.5

0
.4

rc
1
0
4

3
0
1

2
9
7

0
.3

2
7
6

2
9
4

3
0
1

6
.1

3
0
1

3
0
1

3
0
1

0
.2

2
9
7

3
0
1

3
0
1

0
.3

1
.3

2
.3

rc
1
0
5

2
4
4

2
2
1

0
.2

2
3
0

2
3
6

2
4
1

4
.5

2
4
1

2
4
1

2
4
1

0
.2

2
4
1

2
4
1

2
4
1

0
.2

9
.4

3
.3

1
.2

1
.2

rc
1
0
6

2
5
2

2
3
9

0
.2

2
3
3

2
4
5

2
5
0

4
.8

1
2
8

2
4
2

2
5
0

0
.2

2
4
9

2
5
0

2
5
0

0
.3

5
.2

2
.8

3
.8

0
.8

rc
1
0
7

2
7
7

2
7
4

0
.2

2
6
4

2
6
9

2
7
4

5
.0

1
2
2

2
5
8

2
7
7

0
.2

2
7
1

2
7
3

2
7
7

0
.3

1
.1

2
.9

6
.9

1
.4

rc
1
0
8

2
9
8

2
8
8

0
.2

2
7
8

2
8
9

2
9
8

4
.9

2
9
8

2
9
8

2
9
8

0
.2

2
8
8

2
9
7

2
9
8

0
.3

3
.4

3
.0

0
.3

s
u
m

.
2
1
2
3

2
0
6
2

1
.8

1
8
0
9

2
0
7
2

2
1
1
5

3
9
.1

1
8
3
1

2
0
8
7

2
1
1
5

1
.8

2
0
9
3

2
1
0
9

2
1
1
5

2
.1

a
v
g
.:

2
.9

2
.4

1
.7

0
.7

Genetic Algorithm with Path Relinking for the Orienteering Problem ... 257

T
a
b
le

3
.

R
es

u
lt

s
fo

r
S

o
lo

m
o
n

’s
te

st
p

ro
b

le
m

s,
co

n
t.

(n
=

1
0
0
).

B
K

IL
S

G
A

G
A
P
R
(I
)

G
A
P
R
(I
I)

%
g
a
p

B
K

w
it
h

n
a
m
e

sc
o
re

sc
o
re

ti
m
e

m
in

a
v
g
.

m
a
x

ti
m
e

m
in

a
v
g
.

m
a
x

ti
m
e

m
in

a
v
g
.

m
a
x

ti
m
e

IL
S

G
A

G
A
P
R
(I
)
G
A
P
R
(I
I)

c
2
0
1

8
7
0

8
4
0

1
.1

8
4
0

8
4
8

8
6
0

1
3
.2

8
6
0

8
6
0

8
6
0

0
.4

8
6
0

8
6
0

8
6
0

0
.6

3
.4

2
.5

1
.1

1
.1

c
2
0
2

9
3
0

9
1
0

2
.8

8
9
0

9
0
1

9
2
0

1
5
.9

9
2
0

9
2
0

9
2
0

0
.5

9
2
0

9
2
4

9
3
0

0
.7

2
.2

3
.1

1
.1

0
.6

c
2
0
3

9
6
0

9
4
0

1
.7

9
1
0

9
3
1

9
4
0

1
7
.8

9
5
0

9
5
7

9
6
0

0
.7

9
6
0

9
6
0

9
6
0

0
.7

2
.1

3
.0

0
.3

c
2
0
4

9
8
0

9
5
0

1
.6

9
4
0

9
5
2

9
7
0

2
4
.2

9
6
0

9
6
8

9
7
0

0
.8

9
7
0

9
7
0

9
7
0

0
.8

3
.1

2
.9

1
.3

1
.0

c
2
0
5

9
1
0

9
0
0

1
.2

8
8
0

8
9
3

9
0
0

1
6

9
0
0

9
0
0

9
0
0

0
.4

9
0
0

9
0
0

9
0
0

0
.5

1
.1

1
.9

1
.1

1
.1

c
2
0
6

9
3
0

9
1
0

1
.6

8
9
0

9
0
5

9
1
0

1
5
.6

9
0
0

9
1
9

9
2
0

0
.5

8
5
0

9
0
6

9
1
0

0
.5

2
.2

2
.7

1
.2

2
.6

c
2
0
7

9
3
0

9
1
0

2
.1

8
9
0

9
1
0

9
3
0

1
6
.1

9
3
0

9
3
0

9
3
0

0
.7

9
2
0

9
2
0

9
2
0

0
.5

2
.2

2
.2

1
.1

c
2
0
8

9
5
0

9
3
0

1
.6

9
2
0

9
3
1

9
4
0

1
5
.3

9
4
0

9
4
0

9
4
0

0
.5

9
5
0

9
5
0

9
5
0

0
.5

2
.1

2
.0

1
.1

s
u
m

:
7
4
6
0

7
2
9
0

1
3
.7

7
1
6
0

7
2
7
1

7
3
7
0

1
3
4
.2

7
3
6
0

7
3
9
4

7
4
0
0

4
.5

7
3
3
0

7
3
9
0

7
4
0
0

4
.8

a
v
g
.:

2
.3

2
.5

0
.9

0
.9

r2
0
1

7
9
7

7
8
8

1
.2

7
3
3

7
6
0

7
8
2

1
8
.9

7
7
2

7
7
6

7
7
8

0
.6

7
8
7

7
8
9

7
8
9

0
.8

1
.1

4
.6

2
.6

1
.0

r2
0
2

9
2
9

8
8
0

1
.4

8
3
4

8
6
7

8
9
2

2
8
.3

8
8
3

8
8
5

8
9
1

1
.1

8
8
8

8
9
0

8
9
2

0
.8

5
.3

6
.7

4
.8

4
.2

r2
0
3

1
0
2
1

9
8
0

1
.6

9
2
5

9
5
4

9
8
0

3
5
.1

9
6
5

9
6
9

9
7
4

1
.2

9
6
1

9
6
8

9
7
9

1
.2

4
.0

6
.6

5
.1

5
.2

r2
0
4

1
0
8
6

1
0
7
3

1
.7

9
6
8

1
0
1
8

1
0
5
1

4
0
.4

1
0
3
1

1
0
3
1

1
0
3
1

1
.0

1
0
4
2

1
0
4
2

1
0
4
2

0
.8

1
.2

6
.4

5
.1

4
.1

r2
0
5

9
5
3

9
3
1

1
.4

8
5
1

8
7
6

9
2
5

2
5
.7

9
0
0

9
2
5

9
3
3

1
.3

8
9
4

8
9
5

8
9
7

0
.9

2
.3

8
.1

3
.0

6
.1

r2
0
6

1
0
2
9

9
9
6

1
.5

9
3
0

9
5
4

9
8
7

3
2
.3

9
9
6

1
0
0
7

1
0
1
1

1
.1

9
9
9

1
0
0
5

1
0
0
9

1
.2

3
.2

7
.4

2
.1

2
.3

r2
0
7

1
0
7
2

1
0
3
8

2
.0

9
3
9

9
8
6

1
0
2
2

3
3
.1

1
0
2
3

1
0
4
1

1
0
5
1

1
.3

1
0
2
3

1
0
3
1

1
0
3
5

1
.5

3
.2

8
.0

2
.9

3
.9

r2
0
8

1
1
1
2

1
0
6
9

1
.6

1
0
0
2

1
0
4
2

1
0
8
6

3
8
.7

1
0
5
7

1
0
7
4

1
0
7
5

1
.4

1
0
8
0

1
0
9
8

1
0
9
9

1
.4

3
.9

6
.3

3
.4

1
.3

r2
0
9

9
5
0

9
2
6

2
.4

8
6
6

8
9
7

9
2
7

2
7
.1

9
0
3

9
2
7

9
4
3

1
.0

9
2
0

9
2
3

9
3
0

1
.2

2
.5

5
.6

2
.4

2
.8

r2
1
0

9
8
7

9
5
8

1
.9

8
7
0

9
1
5

9
4
4

2
8
.2

9
3
3

9
4
4

9
4
6

1
.0

9
6
0

9
6
0

9
6
0

0
.8

2
.9

7
.3

4
.4

2
.7

r2
1
1

1
0
4
6

1
0
2
3

1
.6

9
3
4

9
6
7

1
0
0
7

3
7
.6

1
0
0
2

1
0
0
3

1
0
0
3

0
.8

1
0
1
9

1
0
1
9

1
0
1
9

1
.1

2
.2

7
.5

4
.2

2
.6

s
u
m

:
1
0
9
8
2

1
0
6
6
2

1
8
.3

9
8
5
2

1
0
2
3
5

1
0
6
0
3

3
4
5
.8

1
0
4
6
5

1
0
5
8
1

1
0
6
3
6

1
1
.9

1
0
5
7
3

1
0
6
1
9

1
0
6
5
1

1
1
.7

a
v
g
.:

2
.9

6
.8

3
.7

3
.3

rc
2
0
1

7
9
5

7
8
0

1
.0

6
7
0

7
6
8

7
9
4

2
1
.3

7
8
7

7
8
9

7
9
0

0
.6

7
6
8

7
7
0

7
7
1

0
.6

1
.9

3
.4

0
.7

3
.1

rc
2
0
2

9
3
6

8
8
2

1
.3

8
2
2

8
6
6

9
3
2

2
0
.8

9
1
9

9
1
9

9
1
9

0
.7

8
8
7

9
0
0

9
0
5

0
.8

5
.8

7
.5

1
.8

3
.9

rc
2
0
3

1
0
0
3

9
6
0

2
.7

8
2
2

8
6
6

9
3
2

2
0
.8

9
5
3

9
5
6

9
5
6

1
.0

9
4
8

9
6
3

9
7
3

1
.2

4
.3

7
.1

4
.7

1
3
.9

rc
2
0
4

1
1
3
6

1
1
1
7

2
.3

9
7
8

1
0
4
4

1
1
0
7

3
2
.2

1
1
2
3

1
1
2
3

1
1
2
3

0
.9

1
0
7
7

1
0
7
9

1
0
7
9

1
.3

1
.7

8
.1

1
.1

5
.1

rc
2
0
5

8
5
9

8
4
0

1
.0

7
5
1

8
0
8

8
3
7

2
0
.8

8
4
2

8
4
2

8
4
2

0
.7

8
3
8

8
4
2

8
4
9

0
.9

2
.2

5
.9

2
.0

1
.9

rc
2
0
6

8
9
5

8
6
0

1
.1

8
1
9

8
5
0

8
6
5

2
0
.8

8
5
7

8
5
9

8
6
0

0
.7

8
5
6

8
5
6

8
5
6

0
.8

3
.9

5
.0

4
.0

4
.4

rc
2
0
7

9
8
3

9
2
6

1
.3

8
5
9

8
9
6

9
2
8

2
6
.7

9
4
6

9
4
8

9
5
0

0
.9

9
1
6

9
3
0

9
4
0

1
.0

5
.8

8
.9

3
.6

5
.4

rc
2
0
8

1
0
5
3

1
0
3
7

2
.3

9
3
7

9
7
6

1
0
3
2

2
3
.1

1
0
0
5

1
0
0
5

1
0
0
5

0
.6

1
0
3
4

1
0
3
4

1
0
3
4

0
.8

1
.5

7
.3

4
.6

1
.8

s
u
m

:
7
6
6
0

7
4
0
2

1
3

6
6
5
8

7
1
4
0

7
4
2
7

1
9
1
.5

7
4
3
2

7
4
4
2

7
4
4
5

6
.2

7
3
2
4

7
3
7
4

7
4
0
7

7
.4

a
v
g
.:

3
.4

6
.8

2
.9

5
.1

258 J. Karbowska-Chilinska, P. Zabielski

T
a
b
le

4
.

R
es

u
lt

s
fo

r
C

o
rd

ea
u

’s
te

st
p

ro
b

le
m

s
(n

fr
o
m

4
8

to
2
8
8
).

B
K

IL
S

G
A

G
A
P
R
(I
)

G
A
P
R
(I
I)

%
g
a
p

B
K

w
it
h

n
n
a
m
e

sc
o
re

sc
o
re

ti
m
e

m
in

a
v
g
.

m
a
x

ti
m
e

m
in

a
v
g
.

m
a
x

ti
m
e

m
in

a
v
g
.

m
a
x

ti
m
e

IL
S

G
A

G
A
P
R
(I
)
G
A
P
R
(I
I)

4
8
p
r1

3
0
8

3
0
4

0
.5

2
7
5

2
9
8

3
0
8

6
.4

3
0
5

3
0
5

3
0
5

0
.2

3
0
5

3
0
6

3
0
8

0
.3

1
.3

3
.2

1
.0

0
.6

9
6
p
r2

4
0
4

3
8
5

0
.6

3
7
0

3
8
1

3
9
3

1
0
.1

3
9
8

4
0
0

4
0
1

0
.4

3
8
2

3
8
6

3
8
6

0
.4

4
.7

5
.7

1
.1

4
.5

1
4
4
p
r3

3
9
4

3
8
4

1
.0

3
4
4

3
7
3

3
9
2

1
2
.8

3
9
3

3
9
3

3
9
3

0
.4

3
9
3

3
9
3

3
9
3

0
.6

2
.5

5
.3

0
.3

0
.3

1
9
2
p
r4

4
8
9

4
4
7

1
.9

4
1
3

4
4
9

4
7
1

2
1
.1

4
8
7

4
8
7

4
8
7

0
.6

4
7
0

4
7
0

4
7
0

0
.6

8
.6

8
.2

0
.4

3
.9

2
4
0
p
r5

5
9
5

5
7
6

4
.6

5
2
1

5
5
3

5
8
5

3
3
.4

5
4
9

5
5
9

5
7
7

2
.0

5
6
7

5
7
8

5
8
7

1
.6

3
.3

7
.1

6
.1

2
.9

2
8
8
p
r6

5
9
0

5
3
8

2
.5

4
7
1

5
1
2

5
6
8

2
7
.8

5
6
7

5
7
3

5
7
9

1
.6

5
8
0

5
8
2

5
8
3

1
.6

8
.8

1
3
.2

2
.9

1
.4

7
2
p
r7

2
9
8

2
9
1

0
.4

2
7
0

2
8
2

2
9
1

6
.0

2
8
8

2
8
8

2
8
8

0
.2

2
8
9

2
8
9

2
9
1

0
.3

2
.3

5
.4

3
.4

3
.0

1
4
4
p
r8

4
6
3

4
6
3

1
.0

4
1
0

4
2
6

4
4
7

1
4
.1

4
6
3

4
6
3

4
6
3

0
.4

4
6
3

4
6
3

4
6
3

0
.6

8
.0

2
1
6
p
r9

4
9
3

4
6
1

1
.4

4
2
2

4
4
8

4
7
0

2
4
.9

4
5
0

4
5
1

4
5
9

0
.9

4
5
5

4
5
6

4
5
8

1
.0

6
.5

9
.1

8
.5

7
.5

2
8
8
p
r1

0
5
9
4

5
3
9

3
.6

5
0
2

5
3
6

5
6
8

3
3
.5

5
3
6

5
5
6

5
7
0

1
.8

5
3
9

5
4
0

5
4
1

1
.7

9
.5

9
.8

6
.3

9
.1

s
u
m

:
4
6
2
8

4
3
8
8

1
7
.5

3
9
9
8

4
2
5
8

4
4
9
1

1
9
0
.2

4
4
3
6

4
4
7
5

4
5
2
2

8
.6

4
4
4
3

4
4
6
3

4
4
8
3

8
.7

a
v
g
.:

5
.2

8
.0

3
.3

3
.6

4
8
p
r1

1
3
3
0

3
3
0

0
.3

3
1
0

3
3
2

3
4
2

7
.0

3
4
2

3
4
4

3
4
5

0
.3

3
4
5

3
4
5

3
4
5

0
.2

-0
.6

-4
.3

-4
.5

9
6
p
r1

2
4
4
2

4
3
1

0
.9

4
0
1

4
1
7

4
3
3

1
0
.7

4
2
4

4
3
2

4
3
4

0
.4

4
3
7

4
3
7

4
3
7

0
.5

2
.5

5
.7

2
.3

1
.1

1
4
4
p
r1

3
4
6
1

4
5
0

1
.9

4
1
0

4
2
9

4
4
6

1
8
.8

4
3
1

4
5
5

4
5
7

0
.9

4
5
1

4
5
8

4
6
9

1
.2

2
.4

6
.9

1
.3

0
.6

1
9
2
p
r1

4
5
6
7

4
8
2

1
.1

4
6
4

4
8
9

5
2
4

2
3
.1

5
2
2

5
3
3

5
3
5

1
.5

5
1
0

5
1
8

5
2
6

1
.1

1
5
.0

1
3
.8

5
.9

8
.6

2
4
0
p
r1

5
6
8
5

6
3
8

5
.3

5
5
8

6
1
1

6
7
6

3
9
.6

6
8
7

7
0
0

7
0
1

2
.4

6
4
9

6
5
6

6
6
3

1
.8

6
.9

1
0
.8

-2
.1

4
.2

2
8
8
p
r1

6
6
7
4

5
5
9

4
.1

5
2
5

5
6
4

6
1
1

3
5
.6

6
0
0

6
0
7

6
0
9

1
.5

6
0
5

6
2
6

6
3
5

2
.5

1
7
.1

1
6
.3

1
0
.0

7
.1

7
2
p
r1

7
3
5
9

3
4
6

0
.2

3
3
2

3
4
9

3
5
6

8
.4

3
5
0

3
5
9

3
6
0

0
.3

3
5
3

3
5
3

3
5
3

0
.3

3
.6

2
.8

-0
.4

1
.7

1
4
4
p
r1

8
5
3
5

4
7
9

0
.8

4
3
2

4
6
8

5
0
8

1
6
.3

5
2
8

5
2
8

5
2
8

0
.7

5
3
6

5
3
6

5
3
6

0
.6

1
0
.5

1
2
.5

1
.3

-0
.2

2
1
6
p
r1

9
5
6
2

4
9
9

2
.7

4
5
0

5
0
1

5
3
0

2
9
.1

5
3
2

5
3
3

5
3
5

1
.3

5
3
1

5
3
4

5
4
6

1
.3

1
1
.2

1
0
.9

5
.1

4
.9

2
8
8
p
r2

0
6
6
7

5
7
0

2
.5

5
6
9

5
9
0

6
1
3

2
9
.1

6
0
1

6
1
1

6
1
2

2
.1

6
2
3

6
2
7

6
2
9

2
.2

1
4
.5

1
1
.5

8
.3

6
.0

s
u
m

:
5
2
8
2

4
7
8
4

1
9
.8

4
4
5
1

4
7
5
0

5
0
3
9

2
3
2
.9

5
0
1
7

5
1
0
2

5
1
1
6

1
1
.5

5
0
4
0

5
0
9
0

5
1
3
9

1
2
.0

a
v
g
.:

9
.4

1
0
.1

3
.4

3
.6

Parameter Synthesis for Timed Kripke
Structures

Extended Abstract

Micha l Knapik1 and Wojciech Penczek1,2

1 Institute of Computer Science, PAS, Warsaw, Poland
2 University of Natural Sciences and Humanities, II, Siedlce, Poland

{knapik,penczek}@ipipan.waw.pl

Abstract. We show how to synthesise parameter values under which a
given property, expressed in a certain extension of CTL called RTCTLP,
holds in a parametric timed Kripke structure. Similarly as in fixed-point
symbolic model checking approach, we introduce special operators which
stabilise on the solution. The process of stabilisation is essentially a trans-
lation from RTCTLP parameter synthesis problem to a discrete opti-
mization task. We argue that this leads to new opportunities in model
checking, including the use of integer programming and related tools.

1 Introduction

Complex systems, both hardware and software, present in critical areas need to
be verified. The best moment for the verification is the design phase, perhaps
even before any prototype is developed. This helps to reduce errors and costs;
the found flaws can also provide valuable pointers to a designer.

Model checking is one of the established methods for verification of complex,
timed, and reactive systems. In this approach, a model for a verified system is
built (e.g. a Kripke structure or a Petri net), and a property to be checked is
specified in a version of a modal logic (e.g. CTL or TCTL). The pair consisting
of a model and a formula is the input for a model checking tool. The output is
simply the property holds or property does not hold answer.

However, such an approach has its drawbacks. In the beginning phases of a
system design some of the features required in a model might be unknown (e.g.
timing constraints), which forces the designer to substitute them with some
guessed or standard values. Even if it is possible to present a full model of the
system, there is no guarantee that this specification will not be subject to some
changes. Often the minimal alteration of the original model may lead to violation
of a checked property, therefore the process of verification has to be repeated.

A system designer using model checking methods would substantially benefit
from a tool that is able to accept an underspecified model with some values
abstracted as parameters. In this case the expected output consists of a set of
parameter valuations under which a given property holds. This approach is called
parametric model checking or parameter synthesis. Parametric model checking

260 M. Knapik, W. Penczek

eliminates the needs for guessing and for performing batches of tests for ranges
of values.

In this paper we show how to perform parameter synthesis for timed Kripke
structures, i.e., Kripke structures where transition is augmented with an addi-
tional label specifying how long it takes to traverse it. The input logic is a certain
extension of Computation Tree Logic, which allows for expressing properties over
the restricted fragments of paths.

1.1 Related Work and Paper Outline

The logic considered in this paper and its models are based on the Real Time
Computation Tree Logic (RTCTL) and timed Kripke structures introduced in
[1].

As we show, the problem of parameter synthesis is decidable for RTCTLP. It
is however not decidable for even as simple properties as reachability for many
other models, e.g. parametric timed automata (PTA) [2, 3] and bounded para-
metric time Petri nets [4]. Difference bound matrix - based semi-algorithms for
reachability were extended to the PTA case in [5] and implemented in UPPAAL-
PMC. In [6] we showed how to synthesise by means of bounded model checking
a part of the set of valuations for PTA reachability. The problem of synthesis
of bounded integer valuations for PTA is analysed in [7] and shown to be in
PSPACE. In [8] the authors show how to synthesise the constraints on valu-
ations under which a PTA is time-abstract equivalent to some initial one; the
work is implemented in IMITATOR prototype tool. Parametric analysis is also
possible with HyTech [9] by means of hybrid automata.

In the next section we introduce the RTCTLP logic and its models. In Section
3 we show how to solve the synthesis problem via a translation to sets of linear
inequalities over natural numbers. We conclude the work with a comment on the
possible benefits and downsides of our approach and future plans.

2 Parameterized Temporal Logics

Let N denote the set of all natural numbers (including 0), and let P (D) denote
the power set of a set D. For any sequence x = (x1, . . . , xn) and 0 ≤ i ≤ n, let
x|i = xi be the projection of x on the i–th variable.

2.1 The Syntax of RTCTLP

The Real Time CTL [1] allows to express branching-time temporal properties
involving the integer time-step depth of considered paths.

Definition 1 (Syntax of RTCTLP). Let PV be a set of propositional variables
containing the symbol true. The formulae of RTCTLP are defined as follows:

1. every member of PV is a formula,
2. if α and β are formulae, then so are ¬α, α ∧ β,

Parameter Synthesis for Timed Kripke Structures 261

3. if α and β are formulae, then so are EX≤kα, EG≤kα, EαU≤kβ for k ∈ N.

As to give an example of the meaning of an RTCTLP formula, EG≤5p states that
“there exists a path such that p holds in each state reached from the beginning in
time not greater than 5.”

2.2 The Semantics of RTCTLP

We evaluate the truth of the formulae in the parametric timed Kripke struc-
tures. These are standard Kripke structures with the transitions decorated by
additional labels interpreted as time variables.

Definition 2. A parametric timed Kripke structure (a model) is a 5-tuple M =
(S, s0, T,→,L) where:

– S is a finite set of states,
– s0 ∈ S is the initial state,
– T is a set of time step parameters (variables),
– → ⊆ S×T ×S is a transition relation such that for every s ∈ S there exists
s′ ∈ S and t ∈ T with (s, t, s′) ∈ → (i.e., the relation is total),

– L : S −→ 2PV is a valuation function satisfying true ∈ L(s) for each s ∈ S.

Let s, s′ be two states of a model, and let t be a time step parameter. By

s
t→ s′ we denote that (s, t, s′) ∈ →. The intuitive meaning of s

t→ s′ is that
it takes t time units to reach s′ from s. We define in(s), out(s), link(s, s′) as
the sets of the labels of the transitions entering s, leaving s, and connecting

s with s′, respectively. More formally, in(s) = {t ∈ T | s′ t→ s for s′ ∈ S},
out(s) = {t ∈ T | s t→ s′ for s′ ∈ S}, and link(s, s′) = {t ∈ T | s t→ s′}.

A function ω : T → N is called a parameter valuation. The set of all
the parameter valuations is denoted by Ω. Consider an infinite sequence π =

(s0, t0, s1, t1, . . .) such that si ∈ S and si
ti→ si+1 for i ∈ N. By πi = si we denote

the i–th state of π. We define the time distance function between the positions
π0 and πj on a sequence π as δjπ =

∑j−1
i=0 ti, and we assume that δ0π = 0. If ω is

a parameter valuation, then let δjπ(ω) =
∑j−1
i=0 ω(ti). A sequence π is called an

ω–path if limj→∞δ
j
π(ω) =∞, or simply a path if ω is evident from the context.

Definition 3 (Semantics of RTCTLP). Let M = (S, s0, T,→,L) be a model
and s ∈ S. Let α, β ∈ RTCTLP, let ω ∈ Ω be a parameter valuation, and k ∈ N.
M, s |=ω α denotes that α is true at the state s of M under the valuation ω. (In
what follows we omit M where it is implicitly understood.) The relation |=ω is
defined inductively as follows:

1. s |=ω p iff p ∈ L(s),
2. s |=ω ¬α iff s 6|=ω α,
3. s |=ω α ∧ β iff s |=ω α and s |=ω β,
4. s |=ω EX

≤kα iff there exists a path π s.t. π0 = s, δ1π(ω) ≤ k, and π1 |=ω α,

262 M. Knapik, W. Penczek

5. s |=ω EG
≤kα iff there exists a path π such that π0 = s, and for all i ≥ 0

if δiπ(ω) ≤ k, then πi |=ω α,
6. s |=ω EαU≤kβ iff there exists a path π such that π0 = s and for some i ∈

N it holds that δiπ(ω) ≤ k and πi |=ω β, and πj |=ω α for all 0 ≤ j < i.

The RTCTLP logic slightly differs from RTCTL presented in [1]. Firstly, we
have omitted the non-superscripted modalities. It is straightforward to extend
the logic with these, and to see that the standard fixpoint algorithms for EG
and EU verification can be applied with no changes. Secondly, we define the
semantics on ω–paths, explicitly requiring the total traversal time to grow to the
infinity with the depth of the path. This is consistent with the usual requirement
of progressiveness of timed systems.

3 Translation to Linear Algebra

In what follows we fix a model M = (S, s0, T,→,L).
We need several simple notions concerning the sets of statements (called

linear statements) of the form c1t1 + . . . + cntn, where ti ∈ T are time step
parameters, ci ∈ N, and ti 6= tj for all 1 ≤ i, j ≤ n, i 6= j. The set of all linear
statements over T is denoted by LST ; we omit the T subscript if it is implicitly
understood. In this paper we consider only finite subsets of LST .

Let η = c1t1 + . . .+ cntn, and let ω ∈ Ω. We define the application of ω to η
as η[ω] = c1ω(t1) + . . . + cnω(tn). We also define the k-bounding operation for
k ∈ N as follows:

[η]k := min(c1, k + 1)t1 + . . .+min(cn, k + 1)tn.

To show an example, consider the statement η = 6t1 + 9t2 and 5-bounding
[η]5 = min(6, 6)t1 +min(9, 6)t2 = 6t1 + 6t2.

The operation of k-bounding has a property such that if ≈ ∈ {≤, <,>,≥},
then for any k ∈ N the inequalities η ≈ k and [η]k ≈ k have the same sets of
solutions. This can be easily verified on a case-by-case basis, by noticing that if
a given coefficient ci of η exceeds k+1, then any nonzero value of ti makes η ≈ k
true for ≈ ∈ {>,≥}, while ≈ ∈ {≤, <} means that only zero can be substituted
for ti.

Previous observation is crucial to the theory, as it means that every set
of linear statements over the finite parameter set T , obtained by means of k-
bounding with respect to some fixed natural k, is finite. We extend the []k
operation to subsets A ⊆ LS as follows:

[A]k = {[η]k | η ∈ A}.

Let A,B ⊆ LS, then we define A+B = {η + µ | η ∈ A and µ ∈ B}.
Now let us consider A ⊆ LS, k ∈ N, and ≈ ∈ {≤, <,>,≥}. We define [A]≈k

as follows:
[A]≈k =

⋃
η∈A
{ω | η[ω] ≈ k}.

Parameter Synthesis for Timed Kripke Structures 263

As to give an example, let A = {t1 + 2t2, t3}, then [A]<4 consists of all the
valuations ω such that ω(t1) + 2ω(t2) < 4, or ω(t3) < 4.

We call the set S × P (Ω) the parametric state space, and its elements are
called the parametric states. As to give an example, consider A ⊆ LS such that
A = {2t1 + 3t2, 2t1 + 3t4}. The pair of form (s0, [A]≤10) is a parametric state.

The last preliminary notion needed in the rest of the paper is the auxiliary
operator Flatten. Let B ⊆ S × P (Ω), then we define:

(s,A) ∈ Flatten(B) iff A =
⋃
{C | (s, C) ∈ B}, A 6= ∅.

To make this definition clearer, consider an example where B = {(s0, C1),
(s0, C2), (s1, C3), (s1, C4), (s2, C5)}. In this case Flatten(B) = {(s0, C1 ∪ C2),
(s1, C3 ∪ C4), (s2, C5)}.

If Flatten(B) = B, then the set B is called flat. If B is flat, then by B(s) we
denote the parameter selector, that is B(s) = C iff (s, C) ∈ B. The parameter
selector is a well defined partial function on S.

Algorithm 1 Synthesize(M,φ)

1: if φ = p then
2: return Ap
3: end if
4: if φ = ¬α then
5: Aα = Synthesize(M,α)
6: return ıAα
7: end if
8: if φ = α ∧ β then
9: Aα = Synthesize(M,α)

10: Aβ = Synthesize(M,β)
11: return Aα ∗Aβ
12: end if
13: if φ = EX≤kα then
14: Aα = Synthesize(M,α)
15: return EX≤kAα
16: end if
17: if φ = EG≤kα then
18: Aα = Synthesize(M,α)
19: return EG≤kAα
20: end if
21: if φ = EαU≤kβ then
22: Aα = Synthesize(M,α)
23: Aβ = Synthesize(M,β)
24: return EAαU≤kAβ
25: end if

264 M. Knapik, W. Penczek

3.1 The translation

Our aim is to find all the valuations under which a given formula φ ∈ RTCTLP

holds in a model M . In our solution we augment each state s with the set Aφ(s)
of parameter valuations such that s |=ω φ iff ω ∈ Aφ(s). This is done recursively
in Algorithm 1, with respect to the formula structure. For each s the set Aφ(s)
can be represented as a finite union of solution sets of a finite number of linear
(integer) inequalities. This means that Aφ(s) has a finite representation for each
s, and for this reason we call the method a translation from RTCTLP parametric
model checking to linear algebraic problem.

Let p ∈ PV, then Ap = {(s,Ω) | p ∈ L(s)} is the set of such pairs (s,Ω)
that p ∈ L(s). Intuitively, Ap contains the pairs consisting of a state in which p
holds, together with the full set Ω; this expresses the lack of restrictions on the
parameter values. Obviously, Ap is flat.

In the algorithm we use several new operators that are counterparts of propo-
sitional connectives and RTCTLP modalities:

1. operator ∗ – a counterpart of ∧,
2. operator ı – related to ¬,
3. operator EX≤k – a counterpart of EX≤k,
4. operator EG≤k – a counterpart of EG≤k.
5. operator EU≤k – related to EU≤k.

The detailed description of these notions is a subject of the rest of this section,
starting with the ∗ operator.

Definition 4. Let A,B be two flat subsets of S × P (Ω). Define:

A ∗B = {(s, C ∩ C ′) | (s, C) ∈ A, and (s, C ′) ∈ B}.

The next corollary follows immediately from the above definition.

Corollary 1. Let φ, ψ be RTCTLP formulae, and Aφ, Aψ be such flat subsets of
the parametric state space that s |=ω φ iff ω ∈ Aφ(s) and s |=ω ψ iff ω ∈ Aψ(s)
for all s ∈ S. Then s |=ω φ ∧ ψ iff ω ∈ (Aφ ∗Aψ)(s).

It should be noted that in our applications, the ∗ operation is purely symbolic,
as we deal with the sets of inequalities only.

Example 1. Consider the following sets:

Aφ = {(s0, Ω), (s1, {ω | ω(t1) + 3ω(t2) < 5})},
Aψ = {(s1, {ω | 2ω(t1) + 3ω(t3) < 4})},

We have Aφ ∗Aψ = {(s1, {ω | ω(t1) + 3ω(t2) < 5 ∧ 2ω(t1) + 3ω(t3) < 4})}.

In the translation of EG≤k and EU≤k we make use of the bounded backstep
operation. This operation is defined on sets of triples (s,A,C), where s is a state,
A is a set of linear statements used to track possible constraints on parameters,
and C is a set of parameter valuations used to track the allowed values of time
step parameters.

Parameter Synthesis for Timed Kripke Structures 265

Definition 5. Let D ⊆ S × P (LS)× P (Ω), k ∈ N, and Init be a flat subset of
S × P (Ω) such that for each e ∈ D there is f ∈ Init satisfying e|1 = f |1. Now,
(s,A,C) ∈ BackStepk(D, Init) iff:

1. there exists e ∈ D such that e|1 = s,
2. for some A′ ⊆ LS, C ′ ⊆ Ω, and s′ ∈ S there exists (s′, A′, C ′) ∈ D, such

that:
(a) the set link(s, s′) of time step parameters (treated as linear statements)

is nonempty (i.e. there is a transition from s to s′),
(b) A = [link(s, s′) +A′]k,
(c) C = C ′ ∩ Init(s).

While the bounded backstep operation may seem involved, it originates from a
natural idea. Let φ be some property and let Init be such a set that s |=ω φ iff
ω ∈ Init(s) for each state s. Let D ⊆ S × P (LS)× P (Ω) and (s′, A′, C ′) ∈ D.

s s′

s |=ω φ iff ω ∈ Init(s) s′ |=ω φ iff ω ∈ Init(s′)

A′ = {[δnπ]k | π0 = s′}A = {[δn+1
π]k | π0 = s and π1 = s′}

t1

Assume that C ′ = Init(s′), let n ∈ N, and A′ be the set of k–bounded time
distance functions for all paths leaving s′ and measuring the distance up to
the n–th position. It is easy to see, that BackStepk(D, Init) contains a tuple
(s,A, Init(s) ∩ Init(s′)), where A = [link(s, s′) + A′]k. The set A consists of
k–bounded time distance functions for all paths leaving s, entering s′ in the
next step, and measuring the distance up to the (n + 1)–th position. The set
Init(s)∩Init(s′) contains such parameter valuations ω that s |=ω φ and s′ |=ω φ.

Example 2. Consider the sets:

C1 = {ω | ω(t1) > 2}, C2 = {ω | ω(t2) + ω(t3) ≤ 4},
D = {(s1, {6t1 + 8t2}, C1), (s2, {4t2 + 7t3, t4}, C2)},

and assume that the only transitions involving s1 and s2 are (s1, t1, s2), (s1, t2, s2),
and let Init = {(s1, C1), (s2, C2)}. Let us compute BackStep5(D, Init). We can
see that link(s1, s2) = {t1, t2}, link(s1, s1) = link(s2, s2) = link(s2, s1) = ∅. Let
A = [{t1, t2}+ {4t2 + 7t3, t4}]5 = {t1 + 4t2 + 6t3, 5t2 + 6t3, t1 + t4, t2 + t4}, and
C = C2 ∩ Init(s1) = C2 ∩ C1 = {ω | ω(t1) > 2 and ω(t2) + ω(t3) ≤ 4}. In this
case BackStep5(D, Init) = {(s1, A,C)}.

We say that a sequence of sets H0, H1, . . . stabilizes if there exists i ≥ 0 such
that Hj = Hi for all j > i, and denote this as limj→∞Hj = Hi.

Let D be a finite subset of S × P (LS) × P (Ω). Notice that if we fix some
k ∈ N and Init, then the sequence defined by H0 = D, and Hi+1 = Hi ∪
BackStepk(Hi, Init) stabilizes. This is due to the fact that there is a finite

266 M. Knapik, W. Penczek

number of time parameters in a model (therefore a finite number of k-bounded
expressions built with respect to []k), and a finite number of parameter valuation
sets in D.

Let (s,A,C) ∈ S × P (LS) × P (Ω), ≈ ∈ {≤, <,>,≥}, and k ∈ N. Denote
[(s,A,C)]≈k=(s, [A]≈k∩C). Intuitively, this encodes a state together with those
parameter valuations which satisfy constraints present in [A]≈k (the path length
constraints), and in C (the initial constraints). We extend this notion to the space
on which BackStep operates, by putting [D]≈k = {[(s,A,C)]≈k | (s,A,C) ∈ D}
for any D ⊆ S × P (LS)× P (Ω).

Let us move to the first application of BackStepk operation, i.e., the trans-
lation of EG≤k. The following example provides some intuitions behind the
parametric counterpart of this modality.

Example 3. Consider model shown in Fig. 1, where L(s0) = L(s1) = {p}, and
formula EG≤2p. For the simplicity, the loops on states s2, s3 are unlabeled.

s0

p

s1

p s2

s3
t1

t1

t2

Fig. 1: A simple model

It is easy to see that s1 |=ω EG≤2p iff ω(t1) > 2 or ω(t2) > 2, i.e., using the
newly introduced notation, ω ∈ [out(s1)]>2. It also holds that s0 |=ω EG

≤2p if
ω ∈ [out(s0)]>2, but this is not an exhaustive description of all such parameter
valuations. Indeed, s0 |=ω EG

≤2p also if 2ω(t1) > 2 or ω(t1) + ω(t2) > 2, i.e.,
ω ∈ [t1 + out(s1)]>2. By a straightforward case-by-case analysis we can check
that s0 |=ω EG

≤2p iff ω ∈ [out(s0)]>2 ∪ [t1 + out(s1)]>2.

Definition 6. Let A be a flat subset of S × P (Ω) and k ∈ N. Define:

G0(A) = {(s, out(s), A(s)) | there exists e ∈ A such that e|1 = s},
Gj+1(A) = BackStepk(Gj(A), A).

We define EG≤kA = Flatten(
⋃∞
j=0[Gj(A)]>k).

The Flatten operator is used only in order to obtain the result in a less complex
form, where for each state s there exists at most one e ∈ EG≤kA such that
e|1 = s.

Theorem 1. Let φ be a formula of RTCTLP, and Aφ be such a flat subset of
S×P (Ω) that s |=ω φ iff ω ∈ Aφ(s). For any state s ∈ S, k ∈ N, and a parameter

valuation ω we have s |=ω EG
≤kφ iff ω ∈ (EG≤kAφ)(s).

Proof. If s |=ω EG≤kφ, then there exists a path π = (s0, t0, s1, t1, . . .), such
that for some n ∈ N it holds that π0 = s, δn+1

π (ω) > k and δiπ(ω) ≤ k for all

Parameter Synthesis for Timed Kripke Structures 267

0 ≤ i ≤ n, and πi |=ω φ for all 0 ≤ i ≤ n.

π =

δn+1
π (ω)>k︷ ︸︸ ︷

s0
t0→ s1

t1→ s2
t2→ . . .

tn−1→︸ ︷︷ ︸
δnπ (ω)≤k

sn
tn→ sn+1

tn+1→ . . .

For each 0 ≤ i ≤ n we have that πi |=ω φ, therefore Aφ(si) is well defined for each
0 ≤ i ≤ n, and ω ∈

⋂n
i=0Aφ(si). It is easy to see that (sn, out(sn), Aφ(sn)) ∈

G0(Aφ), and tn ∈ out(sn). Notice that sn−1
tn−1→ sn, thus (sn−1, [link(sn−1, sn)+

out(sn)]k, Aφ(sn−1) ∩ Aφ(sn)) ∈ BackStepk(G0(Aφ), Aφ) = G1(Aφ). Again, we
have that [tn−1 + tn]k ∈ [link(sn−1, sn) + out(sn)]k. After n + 1 such inductive
steps we obtain that there is a tuple (s0, A,

⋂n
i=0Aφ(si)) ∈ Gn(Aφ) such that

[t0 + t1 + . . .+ tn]k ∈ A, and ω ∈
⋂n
i=0Aφ(si). Recall that δnπ = t0 + t1 + . . .+ tn,

and as δnπ(ω) > k, we have that [t0 + t1 + . . . + tn]k(ω) > k, therefore ω ∈
[A]>k. This means that ω ∈ [A]>k ∩

⋂n
i=0Aφ(si), which in view of the fact that

[(s,A,
⋂n
i=0Aφ(si))]>k ∈ [Gn(Aφ)]>k concludes this part of the proof.

Now let ω ∈ (EG≤kAφ)(s). This means that for some m ∈ N, and em =
(sm, Bm), where sm = s we have that em ∈ [Gm(Aφ)]>k, and ω ∈ Bm. This in
turn means that there is a sequence (s0, A0, C0), (s1, A1, C1), . . . , (sm, Am, Cm)
such that:

1. Ai = [link(si, si−1) +Ai−1]k for all 0 < i ≤ m, and A0 = out(s0),

2. Ci =
⋂i
j=0Aφ(sj) and ω ∈ Ci for all 0 ≤ i ≤ m,

3. (si, Ai, Ci) ∈ Gi(Aφ) for all 0 ≤ i ≤ m,

4. [An]>k ∩ Cm = Bm.

From the above points it follows that there exists such a finite sequence π′ =
(sm, tm, sm−1, tm−1 . . . , s0, t0) that [δmπ′]k = [tm + tm−1 + . . . + t0]k ∈ Am, and
[δmπ′]k(ω) > k. Notice that the latter is equivalent to δmπ′(ω) > k, and that the
second point implies that si |=ω φ for all 0 ≤ i ≤ m. The sequence π′ is a prefix
of some infinite path π (due to the totality of the transition relation), such that
πi |=ω φ for all 0 ≤ i ≤ m, and δmπ (ω) > k. This means that s |=ω EG≤kφ,
which concludes the proof. ut

Definition 7. Let A,B be two flat subsets of S × P (Ω) and k ∈ N. Denote:

H0(A,B) = {(s, link(s, s′), A(s) ∩B(s′)) | there exists e ∈ B, e|1 = s′,

and link(s, s′) 6= ∅},
Hi+1(A,B) = BackStepk(Hi(A,B), A).

We define EAU≤kB = Flatten((
⋃∞
i=0[Hi(A,B)]≤k) ∪B).

Again, the Flatten operator is used only for the convenience, and the sequence
(
⋃j
i=0Hi)j≥0 is guaranteed to stabilize.

268 M. Knapik, W. Penczek

Theorem 2. Let φ, ψ be RTCTLP formulae, and Aφ, Aψ be such flat subsets of
parametric state space that s |=ω φ iff ω ∈ Aφ(s) and s |=ω ψ iff ω ∈ Aψ(s),
for each state s. For any state s, any k ∈ N, and parameter valuation ω it holds
that s |=ω EφU

≤kψ iff ω ∈ (EAφU≤kAψ)(s).

Proof. Assume that s |=ω EφU≤kψ. This means that there exists a sequence
π = (s0, t0, s1, t1, . . . , sn, tn, . . .) such that π0 = s, for some n ≥ 0 we have
δnπ(ω) ≤ k, πn |=ω ψ, and πi |=ω φ for all 0 ≤ i < n. If n = 0, then s |=ω ψ,
therefore ω ∈ Aψ(s); now it suffices to notice that Aψ is a (flattened) subset of
EAφU≤kAψ. We can therefore assume that n > 0, which means that sn−1 |=ω

φ, and sn |=ω ψ, thus ω ∈ Aφ(sn−1) ∩ Aψ(sn). As tn−1 ∈ link(sn−1, sn), we
obtain that

(
sn−1, link(sn−1, sn), (Aφ(sn−1)∩Aψ(sn))

)
∈ H0(Aφ, Aψ). Similarly

as in a first part of the proof of Theorem 1 we can now create a sequence
(s0, A0, C0), (s1, A1, C1), . . . , (sn−1, An−1, Cn−1) such that for all 0 ≤ i ≤ n− 1:

1. Ai = [link(si, si+1) + link(si+1, si+2) + . . .+ link(sn−1, sn)]k,

2. Ci =
⋂n−1
j=i Aφ(sj) ∩Aψ(sn) and ω ∈ Ci,

3. (si, Ai, Ci) ∈ Hn−i−1(Aφ, Aψ).

Now let us notice that [t0 + t1 + . . . + tn−1]k ∈ A0, and as δnπ(ω) ≤ k, also
[t0 + t1 + . . .+ tn−1]k(ω) ≤ k. This means that ω ∈ [A0]≤k ∩C0, therefore there
is e ∈ [H0(Aφ, Aψ)]≤k such that e|1 = s0 = s, and ω ∈ e|2, which concludes the
case.

Now let us assume that ω ∈ (EAφU≤kAψ)(s). If ω ∈ Aψ(s), then obviously
s |=ω ψ and s |=ω EφU≤kψ, therefore let us assume that for some m ∈ N we
have that e = (sm, Bm) ∈ [Hm(Aφ), Aψ]≤k where sm = s, and ω ∈ Bn. Again,
this means that there exist a state s′ such that ω ∈ Aψ(s′), and a sequence
(s0, A0, C0), (s1, A1, C1), . . . , (sm, Am, Cm) such that:

1. link(si+1, si) 6= ∅ for all 0 ≤ i < m, and link(s0, s
′) 6= ∅,

2. Ai = [link(si, si−1) + link(si−1, si−2) + . . .+ link(s0, s
′)]k for all 0 ≤ i ≤ m,

3. Ci =
⋂i
j=0Aφ(sj) ∩Aψ(s′) and ω ∈ Ci for all 0 ≤ i ≤ m,

4. (si, Ai, Ci) ∈ Hi(Aφ, Aψ) for all 0 ≤ i ≤ m,
5. [Am]≤k ∩ Cm = Bm.

From the above points we can infer the existence of such a finite sequence π′ =
(sm, tm, sm−1, tm−1, . . . , s0, t0, s

′, t′) (the t′ is an arbitrary time step parameter
from out(s′)) that:

1. ti ∈ link(si, si−1) for all 0 < i ≤ m, and t′ ∈ link(s0, s
′),

2. π′(i) |=ω φ for all 0 ≤ i ≤ m, and π′(m+ 1) |=ω ψ,
3. δmπ′(ω) ≤ k, as [δmπ′]k(ω) = [t0 + t1 + . . .+ tm]k(ω) ≤ k.

By the virtue of the totality of the transition relation this means that s |=ω

EφU≤kψ, which concludes the proof. ut

Definition 8. Let A be a flat subset of S × P (Ω), and k ∈ N. Denote:

Ik(A) = {(s, link(s, s′), A(s′)) | exists e ∈ A s. t. e|1 = s′ and link(s, s′) 6= ∅}.

We define EX≤kA = Flatten([Ik(A)]≤k).

Parameter Synthesis for Timed Kripke Structures 269

Intuitively, in Ik(A) for each state s we gather its connections with other states
s′ and constraints A(s′) imposed in s′. It suffices to ensure that these constraints
are consistent with conditions of transition from s to s′ in under k time units.

Corollary 2. Let φ be a formula of RTCTLP, let k ∈ N, and let Aφ be such a
flat subset of S×P (Ω) that s |=ω φ iff ω ∈ Aφ(s). For any state s and parameter

valuation ω we have s |=ω EX
≤kφ iff ω ∈ (EX≤kAφ)(s).

We have proved that the proposed translation is valid for all nonnegated expres-
sion. To complete the theory we show how to deal with negations.

Definition 9. Let A be a flat subset of S × P (Ω). We define:

ıA = Flatten({(s,Ω \A(s)) | exists e ∈ A such that e|1 = s}
∪{(s,Ω) | there is no e ∈ A such that e|1 = s}).

Let us present some intuitions concerning the translation of the negation. Let
Aφ characterize the states augmented with parameter valuations under which
the φ property holds. The ıAφ set is built by:

1. augmenting any state s represented in Aφ, by those valuations under which
φ does not hold (the complement of Aφ(s)),

2. including all the states which are not represented in Aφ together with the
full set of parameter valuations.

This gives rise to the following corollary.

Corollary 3. Let Aφ be such a flat subset of S×P (Ω) that s |=ω φ iff ω ∈ Aφ(s).
For any state s and ω ∈ Ω it holds that s |=ω ¬φ iff ω ∈ (ıAφ)(s).

4 Conclusions

The method presented in this paper allows for the synthesis of parameter values
in timed Kripke structures for properties expressed in RTCTLP logic. To be more
precise, for a given property φ the result of synthesis is the set Aφ of constraints
on time step parameters. These constraints are expressed as linear inequalities
over natural numbers, therefore our method is in fact a translation from the
problem of RTCTLP parameter synthesis to a problem stated in the language
of linear algebra. If properly implemented, this enables to take advantage of the
vast work and available tools from the discrete optimization field.

It is rather straightforward to show that for a given RTCTLP formula φ
it suffices to consider only the parameter step values which do not exceed the
greatest superscript in φ plus 1. While Ω can be limited to a finite set, an enu-
merative verification of all possible valuations from this set would soon prove to
be intractable. A symbolic model checking approach gives a chance of alleviating
these limitations via an efficient representation of statespace and operations on
its subsets. We plan to research the possibilities of implementing the presented
work using various versions of decision diagrams and SMT-theories.

270 M. Knapik, W. Penczek

Acknowledgements Micha l Knapik is supported by the Foundation for Polish
Science under International PhD Projects in Intelligent Computing. Project fi-
nanced from the European Union within the Innovative Economy Operational
Programme 2007-2013 and European Regional Development Fund.

References

1. Emerson, E.A., Trefler, R.: Parametric quantitative temporal reasoning. In: Proc. of
the 14th Symp. on Logic in Computer Science (LICS’99), IEEE Computer Society
(July 1999) 336–343

2. Alur, R., Henzinger, T., Vardi, M.: Parametric real-time reasoning. In: Proc. of the
25th Ann. Symp. on Theory of Computing (STOC’93), ACM (1993) 592–601

3. Doyen, L.: Robust parametric reachability for timed automata. Inf. Process. Lett.
102 (May 2007) 208–213

4. Tranouez, L.M., Lime, D., Roux, O.H.: Parametric model checking of time Petri
nets with stopwatches using the state-class graph. In: Proc. of the 6th Int. Workshop
on Formal Analysis and Modeling of Timed Systems (FORMATS’08). Volume 5215
of LNCS., Springer-Verlag (2008) 280–294

5. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.: Linear parametric model
checking of timed automata. In: Proc. of the 7th Int. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’01). Volume 2031 of LNCS.,
Springer-Verlag (2001) 189–203

6. Knapik, M., Penczek, W.: Bounded model checking for parametric timed automata.
T. Petri Nets and Other Models of Concurrency 5 (2012) 141–159

7. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed au-
tomata. In: Proceedings of the 19th international conference on Tools and Algo-
rithms for the Construction and Analysis of Systems. TACAS’13, Berlin, Heidelberg,
Springer-Verlag (2013) 401–415

8. André, E., Chatain, T., Encrenaz, E., Fribourg, L.: An inverse method for para-
metric timed automata. International Journal of Foundations of Computer Science
20(5) (Oct 2009) 819–836

9. Henzinger, T., Ho, P., Wong-Toi, H.: HyTech: A model checker for hybrid systems.
In: Proc. of the 9th Int. Conf. on Computer Aided Verification (CAV’97). Volume
1254 of LNCS., Springer-Verlag (1997) 460–463

Voronoi Based Strategic Positioning for Robot
Soccer

S. Kaden, H. Mellmann, M. Scheunemann, and H.-D. Burkhard

Department of Computer Science, Cognitive Robotics Group
Humboldt-Universität zu Berlin, Germany

{kaden,mellmann,scheunem,hdb}@informatik.hu-berlin.de

Abstract. Strategic positioning is a decisive part of the team play
within a soccer game. In most solutions the positioning techniques are
treated as a constituent of a complete team play strategy. In a com-
prehensive overview we discuss the team play and positioning methods
used within RoboCup and extract the essential requirements for player
positioning. In this work, we propose an approach for strategic position-
ing allowing for flexible formulation of arbitrary strategies. Based on the
conditions of a specific strategy, the field is subdivided in regions by a
Voronoi tessellation and each region is assigned a weight. Those weights
influence the calculation of the optimal robot position as well as the path.
A team play strategy can be expressed by the choice of the tessellation
as well as the choice of the weights. This provides a powerful abstraction
layer simplifying the design of the actual play strategy. We also present
an implementation of an example strategy based on this approach and
analyze the performance of our approach in simulation.

1 Introduction

With the advancement of RoboCup, team play turns into a key feature of success.
While in simulation leagues a strong team play is a decisive aspect since the very
beginning, in hardware leagues more basic aspects like motion, perception and
modeling usually yield more overall improvement. A central part of team play is
the strategic positioning of players on the field, i.e., the placement of robots not
in possession of the ball. Hereby, two core issues have to be addressed: where does
the player have to go to and how does he get there. The answer, depends among
others on numerous factors, involving player positions on the field, ball position,
distribution of team-mates and opponent players and so on. In this paper we
present an approach which allows to formulate all the aspects necessary for the
positioning and mechanisms to derive the target position and the path to it.

To achieve that, the whole field is separated into weighted regions. To obtain a
practical separation, Voronoi tessellation is employed due to its convex structure
and embedded neighboring relation. Each region is evaluated according to some
criteria. The weights encode a variety of aspects, e.g. obstacles, free space, the
probability that the ball is contained or the dominant regions of players. Based

272 S. Kaden, H. Mellmann, M. Scheunemann, and H.-D. Burkhard

on those weights, an optimal region can be determined, as well as a feasible path
to this region.

For illustration and testing purposes we utilize a supporter example strategy
to prove the functionality of our approach. Beside a simple heuristic strategy
for positioning, a scalar field is exploited for strategy description and weight
calculation for each region.

The residual paper is divided into four main parts. The next section offers
a comprehensive overview of strategic positioning approaches proposed within
the RoboCup. The description of the VBSM algorithm is given in section 3. In
section 4 we discuss the experiments and their results. At the end we present a
conclusion and provide an outlook for future work.

2 Related Work

The problem of the strategic positioning within the RoboCup context has been
widely investigated in the past years. The ideas vary a lot and there seems
to be no standard approach. Some major differences are surely reflections of
the characteristics exposed by the different leagues. In general, the solutions
within the simulation leagues are more elaborated, assume a much more rich
and reliable world model and are more computationally complex in comparison
to the solutions of the hardware leagues. In most cases the positioning issue is
not solved separately, it is mostly part of an entire team play solution. In the
following overview our main focus is rather on the positioning ideas than on the
high-level parts necessary to organize a team like role assignment.

One of the most direct ways to position a robot is to calculate its target
position as a geometric relation to its world model, which results in a reactive
behavior. Although very simple, those techniques proved to be quite effective
and robust to noisy data. An example for such positioning can be found in
[1] by Carlos E. Agüero et al. which targeted the issue of role switching and
role positions within the Four Legged League (4LL). Here the defender should
occupy a point on the line between the goal and the ball to prevent the opponent
attacker most effectively from scoring a goal. A supporter chooses the center
of the rectangle stretched by the ball and the most distant opponent corner.
Another example from 4LL is given by Phillips and Veloso, in [15]. They present
reactive supporter strategies. Here the field is subdivided in rough fixed regions,
such like offensive, defensive etc., which allows to choose different strategies
depending on which region the ball is in. For instance, when the ball is in the
offense region, the supporter covers a point left or right in a fixed distance beside
the ball. Is the ball situated in the defense region, it is followed by the supporter
in one axis which stays in the offense region. In addition, the supporter chooses
a corner of the opponent penalty area if the ball is close to the opponent goal
to catch the ball if it rebounds. In the Humanoid League (HL), K. Petersen, G.
Stoll and O. von Stryk [14] developed another reactive behavior for a supporter.
Similar to the previous approach, the supporter chooses a position relative to
the ball. Thereby the relation may be adjusted depending on the game situation.

Voronoi Strategic Positioning 273

Potential fields are another very popular tool for positioning. A potential field
is a function which assigns a direction to each point on the field and is usually
formulated as the negative gradient of a scalar field. To navigate the robot can
simply follow the direction of the field at its current position. This approach may
represent the world state, e.g., obstacles are represented as maxima (repeller), as
well as strategy, e.g., the target position is formulated as a minimum (attractor).
Potential fields are prone to local minima, which is a minor issue within dynamic
situations. They can adapt very smoothly in dynamic scenarios and can be re-
sistant to noise. These properties make them a very tempting tool for dynamic
planning scenarios with noisy data. A good example is presented by the team B-
Human in [17](SPL). Here, the team play is organized in three fixed formations
which are activated based on the state of the game, e.g., goal score. A formation
defines a role for each player. A specific role defines the actual player position on
the field, e.g., the target supporter position is calculated based on the position
of the ball and the striker. This target position as well as the current game sit-
uation is formulated by a potential field, which is used for navigation. Thereby,
the target position is formulated as an attractor whereas the other players, the
own penalty area as well as the line between the ball and the opponent goal are
formulated as repellers. This way the robot avoids obstacles and forbidden areas
on its way to the target position. A very similar approach is presented by Work,
Chown, Hermans, Butterfield and McGranaghan in [18](4LL). The formations
are additionally organized in strategies and each role splits in a number of sub
roles. A sub role is activated depending on the ball position on the field and
defines the target position of the player. The positioning itself is also based on
the potential fields and is formulated in a similar way to the Team B-Human
approach.

In their work [13] (SPL) Nieuwenhuisen, Steffens, and Behnke consider the
positioning of a robot as a path planning problem. Hereby, the task of approach-
ing the ball while avoiding obstacles is directly addressed. A multi resolution
occupancy grid in egocentric Cartesian and Log-Polar coordinates is used to
model the obstacles. The resolution of the grid is higher in the proximity of the
robot and the path is determined by the A* search. B-Human use in [17](SPL)
an extended bidirectional Rapidly-Exploring Random Tree to estimate the path
to the ball, which doesn’t require discretization of the space.

Another way is to formulate the positioning task as an optimization problem
where the world state and the strategy are encoded as conditions to be satisfied.
In their work Kyrylov, Razykov and Hou [7,8](S2D) subdivide the field in a grid.
Each cell is then rated according to certain criteria. For instance, the player
should be open for a direct pass, the distance to opponent players should be
maximized and the distance to the reference position defined by the strategy
should be minimal. These criteria, e.g., the reference position, are defined by the
formation and the roles of the players. The target position is then determined as
a Pareto-Optimum based on those criteria. Both publications deal with different
scenarios (offensive, defensive) and discuss different criteria for the optimization.

274 S. Kaden, H. Mellmann, M. Scheunemann, and H.-D. Burkhard

Voronoi diagram and its dual Delaunay triangulation state another popular
tool used for the player positioning. Hidehisa Akiyama and Itsuki Noda [2](S2D)
use in their work a Delaunay triangulation of the field to encode the positioning
of the robots depending on the ball position. To construct such triangulation,
a representative set of possible ball positions and the corresponding positions
of the players are predefined. Those ball positions define the nodes of the tri-
angulation. During the game the actual positions of the players are determined
as an interpolation between the positions provided by the nodes of the triangle
in which the ball is located. Another way to use Voronoi diagrams for position-
ing is presented by Hesam Addin Dashti et al. in [4](S2D). Thereby, the actual
positions of the robots define the Voronoi cells, i.e., are the Voronoi sites. The
repulsing and attracting properties of the objects on the playing field, e.g., ball,
opponents, goal, etc., are modeled as forces which affect the agent and are rep-
resented by vectors. The vector to the center of gravity of the agent’s Voronoi
cell provides an additional alignment vector. Thus the player try to relax the
Voronoi diagram and to keep as much distance between each other as possible,
which results in a good field coverage. In [3](S2D) the technique is extended by
including the opponent players as additional cells into the diagram.

Considering the time which is needed to reach a point instead of the Euclidean
distance to it provides another kind of regions which are called dominant regions
(DR). Figuratively speaking, a DR is defined as the area on the field which can
be reached by a particular player before the others. In general, calculation of
dominant regions requires a good motion model of the players which may be
especially a problem for opponent robots. In [12](SSL) Nakanishi, Murakami
and Naruse introduce the notion of a dominant polygon which essentially is an
approximation of the area which can be reached by the robot within a fixed
given time limit. Thereby a quadratic motion model for the players is used.
Those polygons are used on one hand to estimate the dominant regions for all
the player on the field and on the other hand to determine a good position for a
pass. To achieve a good passing position the robot essentially tries to leave the
dominant polygons of the opponents which may interfere. Another example is
presented in [11](SSL) by Nakanishi, Bruce, Murakami, Naruse and Veloso where
the dominant regions are used to plan pass combination. E.g., if a pass would
lead through an opponent region, a third player is moved in between to close the
gap and the pass is performed indirectly (1-2-3 shoot). The border between the
dominant regions of a pair of robots is calculated analytically assuming a simple
quadratic motion model . Calculating those borders pairwise for all the players
on the field leads to a full DR-diagram.

Colin McMillen and Manuela Veloso present in [10] (4LL) a different approach
based on plans. A Play is a plan which assigns roles for each of the players. A role
consists of a predefined responsibility region and a behavior strategy for each of
the three cases: the ball is outside or inside of the region, or the ball is not seen.
A particular play is applied when the game situation satisfies some predefined
requirements. When several plays are applicable, the one with the higher weight
is selected. The corresponding requirements are based on the game state like

Voronoi Strategic Positioning 275

remaining game time, count of players and the actual score. Another scenario
based approach is Scenario-Based Team working (SBT) [16] (S2D) by Ali Ajdari
Rad, Navid Qaragozlou and Maryam Zaheri. A scenario contains a sequence of
sub-plans consisting of actions for each robot. Furthermore, it is equipped with
a goal, e.g., shooting a goal or conquer the ball, triggering conditions, expected
costs etc.. During the execution each agent tries to satisfy its iterative sub-plan,
which defines the agent’s actions. To position the players the field is subdivided
in regions. The scenarios are structured in a directed graph, where the nodes
are particular scenarios and edges are weighted with a probability for the next
scenario to be executed. This graph is created before the game by connecting
the scenarios depending on their goals and triggers. The weights of the edges are
adjusted during the game depending on the success of a scenario.

The Situation Based Strategic Positioning (SBSP) described by Lúıs Paulo
Reis, Nuno Lau and Eugénio Costa Oliveira adapts concepts of human team
strategies implemented in the simulated domain by FC Portugal [6] and partly
used by the team CAMBADA within the Middle Size League (MSL) [9]. The
team strategy in SBSP consists mainly of a set of tactics, tactic activation rules
and roles. A tactic itself consists of predefined plans and team formations. The
formations describe the positioning of a player inside a formation. The position-
ing consists of a reference position, a predefined fixed region, as well as behavior
for the cases when the ball is inside or outside of this region. To position the
robot the reference position is adjusted with respect to the ball.

3 Voronoi Based Situation Map

Based on the analysis of the related work, the most common approach to define
a team strategy is defined by three layers: formations assigning each player a
role; roles defining the robots positioning on the field and its behavior; and
at last the positioning method which determines the actual movements of the
robot. In most cases, the positioning itself (the lowest layer) is implemented
directly as a kind of a geometric relation to dynamic and static objects on the
field, e.g., relative to the ball, a free position based on DR etc; or is formulated
as forces applied to alter the position, e.g., potential fields, alignment towards
the Voronoi centroids. Few approaches discretize the field in cells and try to
determine the position in a more elaborated way, e.g., path planning, Pareto-
optimum. In general, a simple positioning layer leads to more complexity in
the higher layers to generate sophisticated behavior. The following approach
strives to provide a generalized and flexible tool for the formulation of the robot
positioning and simplify the upper layers defining the overall strategy.

To make our idea more clear we introduce a simple example. Imagine a
situation with two robots and the ball placed in the opponent part of the field
like depicted in the Fig. 1. We define the one closer to the ball to be the striker
and the other one the supporter. Note, the robots will never change their roles
in our examples as we are focusing only on the positioning problem itself. In
this example neither the striker nor the ball moves. The only acting part is the

276 S. Kaden, H. Mellmann, M. Scheunemann, and H.-D. Burkhard

Fig. 1. An example situation: (left) initial positions of the supporter (center) and the
attacker (closer to the ball); the center (black diamond) of the red dashed rectangle
illustrates the target position for the supporter; the scalar field encoding the strategy
is depicted by the intensity of the yellow glow (the global minimum is at the diamond);
(right) the Voronoi tessellation with the weights of the regions depicted by the intensity
of the yellow color; path calculated by the A*.

supporter. We consider the situation from the point of view of the supporter. Its
only task is to move to a position where it could receive a pass or take over the
ball in case the striker loses it. For that we assume a simple heuristic strategy
for the supporter which is inspired by Carlos E. Agüero et al. in [1]: thereby the
supporter’s desired position p0 is defined as the center of the rectangle spanned
by the ball and the opposite opponent corner of the field as depicted in the
Fig. 1. Now the task is to formulate the problem of the supporter getting to the
point p0 while avoiding collisions with other objects like the striker or the goal
posts. Of course one could immediately imagine a simple positioning solution for
this case. But the aim of the presented approach is to provide a general solution
for a wide range of positioning problems. This example is just fine to illustrate
the concept and to explore its basic principles.

3.1 General Idea

The general idea is to separate the field in weighted regions, which are then
used to determine the target region as well as the path to this region. The
conditions defining the desired position and the path can be formulated in terms
of the separation in regions and the choice of weights. With this approach our
example strategy could be formulated in a way where the weight of the region

Voronoi Strategic Positioning 277

containing the desired position p0 is minimal and the regions containing obstacles
are assigned high weights causing the path finder to avoid them.

There are numerous possibilities to separate the field in regions. At this point
we decided to use Voronoi tessellation, which is a very powerful and flexible tool.
The tessellation is defined by a set of points, called Voronoi sites, distributed over
the field. Based on those points we use the Fortune’s algorithm [5] to calculate
the tessellation. Apart from a set of regions we also get a graph, called Delaunay
graph, which is defined by the cells as nodes and the neighborhood as edges.
This graph gives us a possibility for efficient search within the tessellation. With
this we can easily construct very complex tessellations based on the conditions
given by our strategy.

The whole situation map is defined by a Voronoi tessellation and positive
weights assigned to each cell. Thus, the map consist of the spatial separation
of the field in regions and a graph structure over the defining nodes. Basically,
we can consider this map as a weighted undirected graph where the weights of
the nodes are given directly by the definition and the weights for the edges are
determined as a combination of the metric distance between the defining points
and the weights of the nodes. From another point of view it can be seen as a
discretized scalar field. To solve the positioning task we employ the A* algorithm
to find the shortest path. Thereby the start node is the region containing the
position of the robot and the target node defined by the minimal weight.

More precisely, the Voronoi Based Situation Map (VBSM) is defined by
(G,W) where G := (V,E) is the Delaunay graph of the Voronoi sites V ⊂ R2.
The function W : V → R assigns a weight w ∈ R+ to each node of the graph G.
Note, each node represents a Voronoi cell and therefore the weights are assigned
to each of the Voronoi cells.

3.2 Tessellation of the Field

To achieve a desired tessellation we have to choose the points (the Voronoi sites)
appropriately. The resolution of the tessellation, i.e., number of points, has a
major impact on the computational cost of the tessellation, the weights as well
as the search. To resolve the trade-off between the accuracy and the speed, the
field is discretized in two steps. At first points are chosen in a way that their
Voronoi cells result in hexagons. These points are used to get a rough base
resolution. In the second step the tessellation is refined around the position of
the player, e.g., supporter. For that the position itself is added as a Voronoi site
as well as 16 Voronoi sites around it, which are equidistant distributed on a circle.
As the result, the scalar field will have a higher resolution around the player’s
position. Thus, the determined path will be more precise in the proximity of the
player. Note that the geometry of the tessellation changes over time depending
on the position of the player. The path calculated in one frame gives only a
rough direction for the movement. The resulting path which emerges through
the robot following the given directions will be much smoother as the higher
resolution around the robot moves with it. The Fig. 1 (right) illustrates the
resulting tessellation.

278 S. Kaden, H. Mellmann, M. Scheunemann, and H.-D. Burkhard

3.3 Positioning Strategy

As already described in the introductory example, the target position for the
supporter is determined as the center of the rectangle, which is defined by the
ball’s position and the outer opponent corner (from ball’s point of view). If the
ball is close to the longitudinal axis of symmetry the determined position of the
supporter might change the field sides due to noisy ball perception. To avoid this
problem a hysteresis is used. We utilize scalar fields to formulate this strategy
and to express it in terms of weights of the VBSM. Thereby, the target position
is modeled as global minima of a scalar field. The striker, goal posts as well
as the line between ball and opponent goal should be avoided and therefore are
modeled as maxima of the scalar field. For each of the objects we introduce an id
I := {target, striker, line, goalpost, · · · }. We assume there is a distance function
dι : R2 → R+ defined for each of the objects ι ∈ I. The distance function dι
assigns to each point x ∈ R2 the distance between x and the object ι. Except
for the target position, the objects should have a limited range of influence. To
formulate this we define the function Q : R+ → [0, 1] by

Qα,β(t) :=

{
e
α
β−

α
β−t , if β > t

0 , else
. (1)

The function Qα,β has a compact support which is bounded by the parameter
β and has its maximum equal 1 in t = 0. The parameter β describes the radius
of the influence and α describes the steepness of the slope of Qα,β . With this
function we now can define scalar fields Uι for each of the objects in I:

Utarget(p) :=
1

l
· dtarget(p) (2)

Uι(p) := Qαι,βι(dι(p)) (3)

where l is the length of the field diagonal. To model the striker and the line
between the ball and the opponent goal we have used in our experiments the
values αstriker := αline := 800, βline := βstriker := 1000 and for the goalposts
we have used αgoalpost := 800, βgoalpost := 500. For each Voronoi cell we define
the weight as a sum of the scalar fields at the Voronoi site p defining the cell:

W (p) :=
∑
ι∈I

Uι(p) (4)

3.4 Path Finding with A*

The graph structure of VBSM makes an efficient application of A* search pos-
sible. To define the cost function and the heuristic for the search, the weights of
the nodes can be seen as height information. Figuratively, they shape a kind of
mountains over the field, where the robot tries to get to the lowest point. With
this idea the cost function c can be defined as the Euclidean distance in three
dimensions:

c(p, q) :=

∥∥∥∥∥∥
 px

py
α ·W (p)

−
 qx

qy
α ·W (q)

∥∥∥∥∥∥
2

(5)

Voronoi Strategic Positioning 279

where p, q are two nodes of the Delaunay graph and the weight W defined in
the equation 4. The heuristic for a node p can be defined as the direct cost to
the target h(p) := c(p, p0). The factor α ∈ R+ is used to scale the influence of
the weight on the cost function and the heuristic. The heuristic function defined
this way is consistent which makes the A* search optimal.

4 Experimental Analysis

In this section we investigate some of the basic properties of the presented ap-
proach in isolated experimental setups. The experiments are performed in the
simulator SimSpark. To analyze the properties of the VBSM we utilize the knowl-
edge of the precise positions of the objects within the simulation. Thus, we can
assume there is no sensory noise. In particular this allows to observe the actual
path or the robot movement. The trajectory of the center of mass is projected
onto the playing field as walked path.

The following experiments illustrate the VBSM in an example scenario of
supporter positioning. It means, the situation is visualized from its point of
view. In particular we consider two different situations. At first we consider the
situation described in our introductory example from the section 3. To briefly
recall: the ball is placed in the opponent half; a robot (striker) is placed next
to the ball, while the supporter is placed in the center of the field; the only
active party is the supporter: its task is to get to its strategic target position as
depicted in Fig. 2. In the second situation the striker and the ball are located
in the upper opponent field part as shown in Fig. 2 (right). Here, the supporter
has to change the side to reach its position. In both experiments the influence
of the cell weights on the search costs is varied by changing the parameter α in
the cost- and heuristic function 5.

Due to the rough overall resolution of the tessellation, the estimated path
calculated in one frame approximates the ideal path only roughly. However, as
already mentioned, the geometry of the tessellation changes over time depending
on the position of the player, which leads to a smooth final path which actually
emerges through the robot following the estimated path as illustrated in the
Fig. 2. The defining conditions are reflected much better as well.

The influence of the parameter α on the final path can clearly be seen in
both situations illustrated in the Fig. 2. Figuratively spoken, the height of the
mountains defined by the cell weights is scaled by α, which changes the relation
between the cost of the actual distance and the costs produced by the weights.
Thus, with a small α the way around an obstacle seems to be longer than the
way through it and vice versa in the case of a large α. In the Fig. 2 (left) the
path is closer to the obstacle for a smaller and farther for a larger α. In the Fig. 2
(right) a too small α causes the robot to ignore the virtual obstacle defined by
the line between the ball and the goal. While the path is slightly adjusted in the
fist scenario, it is changed qualitatively in the second.

The estimated path can also be seen as a plan which roughly reflects the
situation on the field. The resolution of this plan is defined by the resolution of

280 S. Kaden, H. Mellmann, M. Scheunemann, and H.-D. Burkhard

Fig. 2. Walk path of the robot in two different scenarios with different influence α
of the cell weights in the search cost: from thin to thick the paths correspond to
α = 600, 1000, 3000; (left) the supporter walks to its position; (right) the supporter
changes the side with parameters α = 600 and α = 3100;

the VBSM. Thus, the plan is refined as the robot moves, which corresponds to
the least commitment principle. However, the resolution has to be high enough
to reflect crucial qualitative aspects of the situation. For instance, in the case of
too rough resolution some maxima might disappear between the cells in analogy
to the Nyquist–Shannon sampling theorem.

5 Conclusion and Future Work

We presented a new method for strategic positioning in RoboCup based on a
VBSM. Thereby the field is subdivided in regions by a Voronoi tessellation and
each region is assigned a weight. The region with a minimal weight is chosen
as the target region. The path to the target is estimated with A* on the De-
launay graph which is dual to the tessellation. Whereby, the distance between
the nodes as well as the assigned weights are represented by a cost function and
heuristics. A positioning strategy can be expressed in VBSM by the choice of
the tessellation, i.e., the Voronoi points, and the weights of the regions.

An example implementation was illustrated in a scenario of supporter po-
sitioning. Thereby, scalar fields have been used to calculate the weights. The
tessellation consists of two parts: a rough static tessellation of the whole field
and higher resolution around the robots position. This implementation has been
tested in simulation. It has been shown to produce a smooth resulting path
in static situations despite a rough discretization, which is mainly due to the
dynamic tessellation refinement for the direct vicinity of the robot.

Voronoi Strategic Positioning 281

This approach utilizes some well studied techniques and yields a flexible
and powerful method for a description of positioning strategies. From our ex-
periments the VBSM reveals a lot of capabilities and seems to be a promising
approach for further development.

So far only static scenarios have been considered. The main focus of the ongo-
ing research, is on investigating how more complex strategies can be formulated
with VBSM as well as its behavior in dynamic situations. Further studies also
need to investigate the choice of the tessellation as well as the way to assign the
weights. In particular, the refinement of the tessellation seems to be a crucial
aspect. Local refinement depending on the weights or along the estimated path
could lead to better representation of conditions encoded in the weights. Also
relaxing to a centroidal Voronoi tessellation could lead to a higher expressive
power of the weights as the defining points would mark the center of a region
representing it better. In the current implementation the tessellation is recalcu-
lated in every step, adaptive algorithms could reduce the computational costs by
adjusting the old tessellation rather than calculating a new one. Similar to the
tessellation, the weights could be propagated between the frames. This would
provide a possibility for modeling some time dependent properties directly in the
VBSM. For instance, the dominant regions could be estimated by propagation
of the weights representing an opponent between the cells based on its motion
model. Another idea is to lower the weights along the estimated path, which
would result in a kind of memory for the path and prevent oscillations.

References

1. Agüero, C.E., Matellán, V., Caˆnas, J.M., Gómez, V.M., Carlos, J.: Switch! dy-
namic roles exchange among cooperative robots. In: in Proceedings of the 2nd In-
ternational Workshop on Multi-Agent Robotic Systems - MARS 2006. INSTICC.
pp. 99–105. Press (2006)

2. Akiyama, H., Noda, I.: Multi-agent positioning mechanism in the dynamic envi-
ronment. In: Visser, U., Ribeiro, F., Ohashi, T., Dellaert, F. (eds.) RoboCup 2007:
Robot Soccer World Cup XI, Lecture Notes in Computer Science, vol. 5001, pp.
377–384. Springer Berlin / Heidelberg (2008)

3. Dashti, H.T., Kamali, S., Aghaeepour, N.: Positioning in robots soccer. In: Lima,
P. (ed.) Robotic Soccer, pp. 29–44. I-Tech Education and Publishing (2007)

4. Dashti, H., Aghaeepour, N., Asadi, S., Bastani, M., Delafkar, Z., Disfani, F.,
Ghaderi, S., Kamali, S., Pashami, S., Siahpirani, A.: Dynamic positioning based on
voronoi cells (dpvc). In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.)
RoboCup 2005: Robot Soccer World Cup IX, Lecture Notes in Computer Science,
vol. 4020, pp. 219–229. Springer Berlin / Heidelberg (2006)

5. Fortune, S.: A sweepline algorithm for voronoi diagrams. Algorithmica 2, 153–174
(1987)

6. Hannebauer, M., Wendler, J., Pagello, E., Reis, L., Lau, N., Oliveira, E.: Situation
based strategic positioning for coordinating a team of homogeneous agents. In:
Balancing Reactivity and Social Deliberation in Multi-Agent Systems, Lecture
Notes in Computer Science, vol. 2103, pp. 175–197. Springer Berlin / Heidelberg
(2001)

282 S. Kaden, H. Mellmann, M. Scheunemann, and H.-D. Burkhard

7. Kyrylov, V., Hou, E.: Pareto-optimal collaborative defensive player positioning
in simulated soccer. In: Baltes, J., Lagoudakis, M., Naruse, T., Ghidary, S. (eds.)
RoboCup 2009: Robot Soccer World Cup XIII, Lecture Notes in Computer Science,
vol. 5949, pp. 179–191. Springer Berlin / Heidelberg (2010)

8. Kyrylov, V., Razykov, S.: Pareto-optimal offensive player positioning in simulated
soccer. In: Visser, U., Ribeiro, F., Ohashi, T., Dellaert, F. (eds.) RoboCup 2007:
Robot Soccer World Cup XI, Lecture Notes in Computer Science, vol. 5001, pp.
228–237. Springer Berlin / Heidelberg (2008)

9. Lau, N., Seabra Lopes, L., Filipe, N., Corrente, G.: Roles, positionings and set plays
to coordinate a robocup msl team. In: Lopes, L., Lau, N., Mariano, P., Rocha, L.
(eds.) Progress in Artificial Intelligence, Lecture Notes in Computer Science, vol.
5816, pp. 323–337. Springer Berlin / Heidelberg (2009)

10. McMillen, C., Veloso, M.: Distributed, play-based coordination for robot teams in
dynamic environments. In: Lakemeyer, G., Sklar, E., Sorrenti, D., Takahashi, T.
(eds.) RoboCup 2006: Robot Soccer World Cup X, Lecture Notes in Computer
Science, vol. 4434, pp. 483–490. Springer Berlin / Heidelberg (2007)

11. Nakanishi, R., Bruce, J., Murakami, K., Naruse, T., Veloso, M.: Cooperative 3-
robot passing and shooting in the robocup small size league. In: Lakemeyer, G.,
Sklar, E., Sorrenti, D., Takahashi, T. (eds.) RoboCup 2006: Robot Soccer World
Cup X, Lecture Notes in Computer Science, vol. 4434, pp. 418–425. Springer Berlin
/ Heidelberg (2007)

12. Nakanishi, R., Murakami, K., Naruse, T.: Dynamic positioning method based on
dominant region diagram to realize successful cooperative play. In: Visser, U.,
Ribeiro, F., Ohashi, T., Dellaert, F. (eds.) RoboCup 2007: Robot Soccer World
Cup XI, Lecture Notes in Computer Science, vol. 5001, pp. 488–495. Springer
Berlin / Heidelberg (2008)

13. Nieuwenhuisen, M., Steffens, R., Behnke, S.: Local multiresolution path planning
in soccer games based on projected intentions. In: Röfer, T., Mayer, N., Savage,
J., Saranlı, U. (eds.) RoboCup 2011: Robot Soccer World Cup XV, Lecture Notes
in Computer Science, vol. 7416, pp. 495–506. Springer Berlin Heidelberg (2012)

14. Petersen, K., Stoll, G., von Stryk, O.: A supporter behavior for soccer playing
humanoid robots. In: Ruiz-del Solar, J., Chown, E., Plöger, P. (eds.) RoboCup
2010: Robot Soccer World Cup XIV, Lecture Notes in Computer Science, vol.
6556, pp. 386–396. Springer Berlin / Heidelberg (2011)

15. Phillips, M., Veloso, M.: Robust supporting role in coordinated two-robot soccer
attack. In: Iocchi, L., Matsubara, H., Weitzenfeld, A., Zhou, C. (eds.) RoboCup
2008: Robot Soccer World Cup XII, Lecture Notes in Computer Science, vol. 5399,
pp. 235–246. Springer Berlin / Heidelberg (2009)

16. Rad, A., Qaragozlou, N., Zaheri, M.: Scenario-based teamworking, how to learn,
create, and teach complex plans? In: Polani, D., Browning, B., Bonarini, A.,
Yoshida, K. (eds.) RoboCup 2003: Robot Soccer World Cup VII, Lecture Notes in
Computer Science, vol. 3020, pp. 137–144. Springer Berlin / Heidelberg (2004)

17. Röfer, T., Laue, T., Müller, J., Fabisch, A., Feldpausch, F., Gillmann, K., Graf,
C., de Haas, T.J., Härtl, A., Humann, A., Honsel, D., Kastner, P., Kastner, T.,
Könemann, C., Markowsky, B., Riemann, O.J.L., Wenk, F.: B-human team report
and code release 2011. Tech. rep. (2011)

18. Work, H., Chown, E., Hermans, T., Butterfield, J., McGranaghan, M.: Player po-
sitioning in the four-legged league. In: Iocchi, L., Matsubara, H., Weitzenfeld, A.,
Zhou, C. (eds.) RoboCup 2008: Robot Soccer World Cup XII, Lecture Notes in
Computer Science, vol. 5399, pp. 391–402. Springer Berlin / Heidelberg (2009)

Adaptive Grasping for a Small Humanoid Robot
Utilizing Force- and Electric Current Sensors

Heinrich Mellmann, Marcus Scheunemann, and Oliver Stadie

Department of Computer Science, Cognitive Robotics Group
Humboldt-Universitt zu Berlin, Germany

{mellmann,scheunem,stadie}@informatik.hu-berlin.de

Abstract. The ability to grasp objects of different size and shape is
one of the most important skills of a humanoid robot. Human grasping
integrates a lot of different senses. In particular, the tactile sensing is
very important for a stable grasping motion. When we lift a box without
knowing what is inside, we do it carefully using our tactile and propri-
oceptive senses to estimate the weight and thus, the force necessary to
hold and to lift this box. In this paper we present an adaptive controlling
mechanism which enables a robot to grasp objects of different weights.
Thereby, we only use the proprioceptive sensors like positions and electric
current at the joints and force sensors at the end-effectors providing the
robot with tactile feedback. We implemented and tested our approach
on a humanoid robot.

1 Introduction

One of the features that made humans a very successful living being is their
ability to grasp and manipulate objects. Such feature granted humans the possi-
bility to modify and adapt the surrounding environment making it more suitable
to their own needs. For such reason, grasping and manipulating objects can be
seen as a strategic goal for robotics. Restraining objects is a not trivial task due
to each object’s geometrical and physical peculiarities.

In particular, to grasp objects of different weights requires different force to be
applied for holding as well as for lifting. It has been shown in case of humans that
the force is adjusted anticipatory for both, the grasping as well as the lifting of
the object. At this junction anticipatory means a pre-evaluation based on certain
assumptions, e.g., on experience or visual analysis of the object. However, a
wrongly estimated force can quickly be adjusted while grasping before the fingers
are slipping on the surface (cf. [6]). These adjustments are very reactive and not
pre-planned by the higher cognition. As discussed in [9] this reflex is also called
the grasping force control reflex. Some research has been done on implementing
grasping reflexes on anthropomorphic robotic hands [4]. In particular, in [7] it
has been tried to imitate the primitive grasping reflex to grasp unknown objects.

In this paper we present an implementation of an adaptive bimanual grasping
motion on a humanoid robot Nao [5], which is based on the concept of humans’
grasping force control reflex. According to [3] this work with limited hardware

284 H. Mellmann, M. Scheunemann, O. Stadie

can be considered to the minimalistic approach to design. Our algorithm is espe-
cially able to adapt to objects of different weights by only using proprioceptive
sensors and tactile feedback. Thereby, only a few assumptions regarding the
properties of the objects are made. The basic idea is as simple as human strat-
egy: the robot tries to lift an object with as less force as possible and increases
its efforts in case it does not succeed. In order to recognize whether the object is
grasped or not we use proprioceptive sensors of the robot. The whole algorithm
is realized by local sensory loops. Thus, it is highly adaptive and requires only
little computational resources.

These discussed methods adapt in a reflex-like manner to the respective situa-
tion without planning more than one step in advance as well as without extensive
models or knowledge about the environment and about object to be grasped.
These local cognition methods may be embedded in existing grasping methods
and as a result, make them more robust to noise and environmental changes.
By the way we implicitly explore properties of the object to be grasped, like the
weight. This task belongs to the field of haptics more than to robotics according
to [3].

The robot’s grasping capabilities highly depend on the hands’ mechanical
structure, its sensors and, of course, the available computational power. More-
over, a robot has to be able to perform stable and flexible motions in order
to act in a dynamic environment, moving the whole body whenever necessary.
This is especially important if an object has to be grasped with both hands.
The presented dynamic control is integrated in a complete grasping behavior as
described in [8].

A detailed survey about the modeling of the grasping movement is demon-
strated in [3]. The general approach is to calculate the contact points first.
Extensive models and knowledge about the environment as well as the object
to be grasped are the basis for such calculations. The trajectory of the hands
in order to reach those points and the force to ideally hold the object are cal-
culated afterwards. Third, after adequately fixing the object further calculated
trajectories ensure that the object can be moved while staying fixed.

1.1 Outline

The remainder of the paper is structured as follows. At first we briefly outline the
hardware of the robot used. Thereby, we make a particular accent on its sensing
capabilities and its kinematic constraints. In the third section we present the
general design of the grasping algorithm and the dynamic control. In the fourth
part we show some experimental results benchmarking the control effectiveness
and we suggest some ideas where to address the further developments in the last
part.

2 Platform analysis

Nao robot is a humanoid robot produced by the French company Aldebaran
Robotics and is currently used in RoboCup competitions within the Standard

Adaptive Grasping for a Small Humanoid Robot . . . 285

Fig. 1. Humanoid robot Nao by Aldebaran Robotics equipped with additional force
sensors at its hands.

Platform League [1]. In this section we systematically analyze the available grasp-
ing abilities of the robot. At first we present the hardware, then we explore the
arm’s workspace and its constraints and finally we discuss its sensing capabilities.

2.1 Nao Robot

Nao robot has a very articulate body, it is 58cm of size and weighs about 4.8kg in-
cluding the battery. Each arm has four degrees of freedom describing a workspace
quite similar to the human arm’s one. The joints are actuated by DC motors and
the platform is equipped with a low power and low consumption Geode LX 800
processor with just 500 MHz. Since the CPU processing power is quite limited
compared to the robot’s physical structure, it is challenging to implement very
complex algorithms for motion controlling. Therefore simplicity in design is the
preferred approach. Figure 1 shows the robot Nao, while standing and while
grasping a ball.

Each of the joints is controlled by a PID controller. The API provides two
values for controlling each joint: target angle which should be reached and the
maximal electric current which is used to drive the joint. The last one is also
called stiffness of the joint, since it defines how hard the joint will try to reach
the requested position. Further details can be found in [5].

2.2 Sensors

The robot Nao is equipped with four force sensors on each foot, a gyroscope, an
accelerometer, two ultrasounds in the chest and two VGA cameras (operating
on a single bus) in the head. Each joint is equipped with sensors measuring the

286 H. Mellmann, M. Scheunemann, O. Stadie

actual angular position and the electric current consumed by the motor. The
camera images can be received up to 30 times per second, while all other sensor
data, like joint’s positions and electric current, can be read every 10 ms. The
motion system requires a control signal at the same frame rate, i.e., every 10 ms,
to ensure the correct execution of the planned movements. The gyroscope and
the accelerometer can be used together with the feet’s force sensors for inferring
robot body’s posture, while ultrasounds can be used for inferring the position
of obstacles in the front of the robot. The camera provides information about
the surrounding environment that is very effective for navigation and object
recognition. In particular, visual sensing can be used to control the high level
parts of the grasping motion, like aligning the hands around the ball, which do
not require very high reactivity. In [8] the joint’s motor internal sensors were
chosen to estimate the force applied by the end effector. In order to be able
to grasp and lift objects with different shape, weight and sturdiness, the robot
has to adapt the applied force, receiving a sensor feedback if necessary. In our
research we apply additional force sensors instead of hands to be more precisely
and simulate a one dimensional haptic perception.

2.3 Physical Preconditions

A robot’s grasping ability is highly dependent on its kinematic constraints. These
are, among other things, determined by the reachable space of the robot’s hands.
The reachable space is usually defined as the set of points that can be reached
by its end effector, e.g., the hand, with respect to a reference frame of the
robot. In general, this space is defined by some basic physical constraints that
a humanoid robot has to satisfy during the motion, including the kinematic
constraint (e.g., the limits of joint angles; and the collision constraint) and the
balance constraint. We represent the reachable space by a three dimensional
grid, thereby we consider basically the positions of the end effector but not its
rotation. Figure 2 illustrates the reachability grid for a hand of the Nao robot.

Nao’s arms are equipped with four joints, two for the shoulder and two for
the elbow as shown in the Figure 1 (right). Both links can be controlled along
the roll, while the second joint controls the pitch and the yaw for the shoulder
and the elbow respectively. The end effectors can operate in relatively large
workspaces that are partially overlapping each other. However, such freedom of
movement is a further node of complexity for determining a successful grasping
pose, because the same point in the space can be reached in many ways that
differs only on the end effector orientation. To reduce complexity, we fixed one
joint, thereby the degrees of freedom of each arm reduced by one. We decided
to fix the yaw-joint of the elbow, because its fixation limits the robot at least.
The right grid in the Figure 2 was generated with a fixed yaw-joint in the elbow.
Considering the difference between the full and the restricted grid, shown in the
center of the Figure 2, it can be seen that only some positions behind the robot
are lost by this restriction.

An interesting challenge to overcome on the Nao robot is dealing with the
hand’s structure itself. In the used version the Nao robot typically owns passive

Adaptive Grasping for a Small Humanoid Robot . . . 287

Fig. 2. The reachable space of the Nao’s hand is approximated by a three dimensional
grid; (left) the theoretical reachable grid generated in simulation; (right) reachable
positions with the fixed yaw-joint in the elbow; (center) difference between both grids;

hand effectors, which are equipped with three fingers. The passive fingers of
the robot result in very irregular surfaces making the control of the object more
difficult. Therefore we replace the hands by flat gripping adapters, as described
in 2.2, with expanded material to have friction characteristics similar to human
skin. Additionally, force sensors were built into the adapters, which provide
better control of the exerted force.

3 Grasping Algorithm

In this section we illustrate some simple controllers used for implementing a
grasping motion. At first we show the system’s infrastructure and an outline of
the control mechanism, on the second part we discuss three possible regulators
and finally we provide some experimental data to better analyze the motion
control.

3.1 General Design

The whole grasping motion can be divided in two parts: approaching the object
and restraining it. The first part of the motion is needed to bring the item in
the hands’ reachability space and can be further decomposed in the tasks of
recognizing the object, reaching it and crouching. Once the target is reachable
the core of the grasp motion is executed. At first the hands are aligned to the
object and then they are moved in order to squeeze the target. This part of
the motion assumes as reference system the robot’s chest as visualized in the
Figure 3 (right).

The end effectors are driven by inverse kinematic, so the same point can
be reached with different arm configurations. This feature makes the motion
more general but introduces an extra degree of complexity due to the freedom

288 H. Mellmann, M. Scheunemann, O. Stadie

pLpR µC pL

pR
µC

y

z

x

Fig. 3. Geometry of the grasping motion: µC denote the center of the grasping motion
(e.g., estimated center of gravity of the ball), pL and pR are the desired points for the
hands.

of rotation of the arm. In fact, hand’s orientation is coupled with elbow’s orien-
tation making impossible having a direct influence on hand’s rotation without
modifying the end effector position, as already pointed out in Section 2.3.

As a consequence, an item may be approached using different arm configura-
tions but not all of them offer a convenient grasping surface. For this reason, the
elbow’s rotation is fixed for the duration of the entire grabbing motion, forcing
the hands to touch an object always on the side with the flat gripping adapters.
In this way the Nao’s arms can be seen as a big two fingered gripper.

Thus, we formulate the geometry of the grasping task as follows: in the first
step align the hands around the point µC ∈ R3, representing the center of the
object, with a certain distance ρ ∈ R+. In the second step close the hands
reducing the distance ρ between the hands and the point µC . Thus, the actual
target positions for the hands can be calculated as points with the distance ρ left
and right from µC , i.e., pL = µC +ρ ·e2 and pR = µC−ρ ·e2 for the right and left
hand respectively, whereas e2 = (0, 1, 0)T . The point µC is controlled by vision
and is used for choosing a useful spot where to grasp the object, since the hands
will be placed according to it. The distance ρ is driven by joint sensor feedback
and a mapping of the end effector force applied to the target: the smaller ρ the
bigger the force intensity. Figure 3 visualizes the geometrical configuration of
the grasping.

3.2 Dynamic Control

In this section we discuss an integrated controlling mechanism adapting dynam-
ically to the weight of the grasped object. This allows for grasping and lifting
objects having different weights. The main task here is to estimate the right force
which is needed to grasp the object. The trivial solution is, of course, to take
the maximum force available. However, this strategy is obviously very inefficient

Adaptive Grasping for a Small Humanoid Robot . . . 289

and may destroy fragile objects, e.g., a paper cup. Thus, our general strategy
for the grasping is: as soft as possible, but as strong as necessary.

The problem to determine the force necessary for grasping is stated in [2]
as one of the most important sub problems of the grasping task. As we already
discussed in [8] the calculation efforts for the estimation of the necessary grasping
force may become very high. The presented method costs only few calculations.

The whole controller consists mainly of two parts: controlling of the stiffness
and controlling of the distance between the hands. Both parts are designed in a
way allowing for them to be considered independently.

Stiffness The stiffness is controlled for each joint separately by a P-controller.
Thereby, the stiffness is locally determined to be proportional to the difference
between the requested and the measured angle of the joint. Formally, the stiffness
σ at a joint is determined by

σ = |α̂− α| · C

where α̂ is the measured angle and α the requested one. The constant C can be
determined experimentally.

I.e., the stiffness of a joint is reduced to a minimum in the case if the requested
angle position can be reached. However, if the joint is prevented from reaching
the requested position by some external force, the stiffness is increased and the
joint is working with more force against the external obstacle. Thus, each of the
joints is reacting locally according to an external force.

Distance between Hands In order to control the distance ρ between the robots
hands we use a threshold controller based on the force F measured at the hands
of the robot, i.e., the distance between the hands is successively reduced by a δ
until the force F exceeds a certain threshold M . By this we ensure that a certain
minimal force M is applied to the object during the grasping.

ρ(t) =

{
ρ(t− 1)− δ for F (t− 1) < M
ρ(t− 1) otherwise

Thereby, for each object with a different weight we need another appropriate
force in order to lift it, i.e., in particular we need for each object a different
threshold for the controller. This threshold can be estimated by the means of
the controlling electric current of the joints (cf. Section 2.2). The more load is on
a joint, the higher is the corresponding electric current. In particular, the pitch
joints of the shoulders appeared to be the best suitable for this estimation. This
is because they are the only arm joints in our grasping geometry which apply
vertical force to the object. Our experiments have shown that for the used test
objects a cubic dependency between the threshold M and the electric current is
sufficient, i.e., for the measured current IL and IR at the left and right shoulder
respectively we can write

M = max (IL, IR)
3 · C

290 H. Mellmann, M. Scheunemann, O. Stadie

Fig. 4. Top row: robot is grasping a plastic bottle of coke with a weight of ca. 400g
which requires the maximal force the robot can apply; bottom row: grasping a paper
cup requires a gentle touch, a forceful grasp would deform the cup;

with an experimentally determined constant C. Intuitively, this rule means that
for a bigger weight of the object a larger grasping force is applied, i.e., the heavier
an object, the stronger the robot is grasping.

It should be remarked that the relation between the vertical lifting force
which is produced by the shoulder joints and the tangential force which is nec-
essary to hold the object between the hands strongly depends of the friction
between the hand palms and the object.

4 Experiments

To study the behavior of the integrated controller III-B an isolated scenario was
set up. The general robot’s task is to grasp and lift an object placed in front of
itself. For this challenge we use objects of different weights and consistencies. We
chose an empty coffee cup and a full cola plastic bottle as representative objects.
The cup weighs about 30g by the robot and can be crushed easily, whereas the
bottle is very sturdy and weighs approximately 500g.

The robot behavior in the experiment consists of three phases:

1. sit down and stretch the arms (positioned left and right of the object);

Adaptive Grasping for a Small Humanoid Robot . . . 291

2. clasp the hands around the object;
3. stand up with the grasped object and lifting it;

During the second and third phase the intrinsic grasp control mechanism is
active. The series of photographs shown in the Figure 4 illustrates the progress of
the experiment in which the robot lifts a bottle. Figure 5 visualizes some sensor
values, which were recorded during the experiment with the cup respectively
with the bottle. The upper graph shows the development of the force measured
on the hands of the robot, the center graph illustrates the development of the
controlling electric current measured at the shoulder pitch joints. For symmetric
reasons, in both cases the maximum is calculated between the left and the right
sensor. The vertical dashed lines separate the different phases of the grasping
motion.

At the end of the second phase you are able to spot the first contact with
the object in the image above, exactly in this moment the force increases for
the first time. The contact with the cup occurs earlier, because it has a slightly
larger radius than the bottle. In this example it can be clearly noticed how
the movement is adapted to different forms. In the third phase, the robot tries
to stand up while grasping the object. Concurrently the robot tries to lift the
object slightly with its arms. Therefore the shoulder pitch joints are actuated
(stretched) and we are able to measure the increasing controlling electric current.
If the object cannot be lifted the control current would increase steadily, which
can be observed in the middle graph of Figure 5.

The increase of the current leads to the reduction of the distance between
the hands and increases the force on the object. This strengthens the connection
between the object and hands. If the object is lifted the shoulder current will
not continue to increase and the force on the object remains on the current state
of the power in the shoulders.

This behavior can be observed very well in the top two graphs. In the case
of the cup (thin line) the current in the shoulders increases slightly till the cup
is lifted, whereas in the case of the bottle (thick line) the current increases more
significantly, with the result that the force rises to about 8N and the friction
between the hand and the bottle is large enough to lift it.

In this way just as much force is exerted as needed to generate the necessary
friction for lifting, thereby a behavior is originated that allows a lifting of light
and heavy objects with a minimum effort. That means the robot does not spend
more force than necessary. Another aspect is that in this way light and fragile
items, such as a cup, are not deformed or even broken.

5 Conclusions and Future Work

Grasping is still a hard task for a robot. As the main result of this paper an
algorithm was presented which enables a robot to grasp and control objects
with different weights. In the experimental setup the robot was able to lift a
fragile cup and a comparably heavy bottle. The most remarkable aspect is the
actuation of the arms while grasping the objects. By measuring the controlling

292 H. Mellmann, M. Scheunemann, O. Stadie

1 2 3 4 5 6 7 8

0

2

4

6

8

Time in s

F
o
rc
e
in

N

1 2 3 4 5 6 7 8

0

0.2

0.4

Time in s

E
.
C
u
rr
en
t
in

A

1 2 3 4 5 6 7 8

0.2

0.4

0.6

0.8

1

Time in s

A
n
g
le

in
R
a
d

Fig. 5. Sensory data of the robot Nao recorded while lifting two different objects:
a light paper cup (thin line) and a full plastic bottle of coke 0,5L (thick line). At
the top the progress of the force measured at the hands of the robot can be seen,
thereby the maximum of both hands is plotted. The middle plot illustrates the electric
current measured at the pitch joints of the robots shoulders, again the maximum of
both shoulders is visualized. At least, the bottom graph shows the measured roll-angle
of the left shoulder (both shoulders are moved symmetrically, so it is enough to plot
only one angle). The vertical dashed lines separate the different phases of the grasping
motion.

Adaptive Grasping for a Small Humanoid Robot . . . 293

electric current at the shoulder joints, an estimation of the tangential force which
is applied to the arms is allowed. If the arms are not actuated the electric current
does not behave proportional regarding the object’s weight due to the friction
in the gears.

Our future research will focus on more general rules for the adaptation and for
a more precise estimation of the object’s weight. In particular, measurements of
other body joints, e.g., the electric current of the knee, could also be incorporated
in order to exploit redundancy and to archive a better estimation of the force.

Additionally, we are working on a compensation of the weight of the object
by balancing the body. In order to do this the force resistive sensors in the feet
of the robot could be used. Thinking ahead, we hope to enable the robot to
estimate the actual weight of an object with respect to its own by exactly that
kind of balancing. Last not least, it is intended to incorporate this knowledge in
its own kinematic model so that as a consequence, a robot is able to walk with
an object, e.g., a bottle, still compensating its weight and inertia.

References

1. RoboCup website (1997), http://www.robocup.org
2. Bicchi, A., Kumar, V.: Robotic grasping and contact: A review. In: Proc. IEEE Int.

Conf. on Robotics and Automation. pp. 348–353. San Francisco, CA (2000)
3. Bicchi, A., Kumar, V.: Robotic grasping and manipulation. In: Nicosia, S., Siciliano,

B., Bicchi, A., (eds.), P.V. (eds.) Ramsete: Articulated and mobile robots for services
and Technology, vol. 270, chap. 4, pp. 55–74. Springer-Verlag, Berlin Heidelberg,
Germany (2001)

4. Folgheraiter, M., Gini, G.: Human-like reflex control for an artificial hand. BioSys-
tems 76(1-3), 65–74 (2004)

5. Gouaillier, D., Hugel, V., Blazevic, P., Kilner, C., Monceaux, J., Lafourcade, P.,
Marnier, B., Serre, J., Maisonnier, B.: Mechatronic design of nao humanoid. In:
Robotics and Automation, 2009. ICRA ’09. IEEE International Conference on. pp.
769 –774 (May 2009)

6. Jeannerod, M.: Intersegmental coordination during reaching at natural visual ob-
jects. In: Attention and Performance. vol. IX (1981)

7. Kawasaki, H., Mouri, T., Takai, J., Ito, S.: Grasping of unknown object imitating
human grasping reflex. In: 15th Triennial World Congress (2002)

8. Mellmann, H., Cotugno, G.: Dynamic motion control: Adaptive bimanual grasping
for a humanoid robot. Fundamenta Informaticae (2011), to appear

9. Tatsuma Sakurai, Masashi Konyo, S.O., Tadokoro, S.: Research of conditions of
stimulus for inducing grasping force control reflex. In: Proceedings of the 2010
IEEE/SICE International Symposium on System Integration (SII’10). pp. 408–413
(Dec 2010)

Towards a Jason Infrastructure for
Soccer Playing Agents?

Extended Abstract

Dejan Mitrović1, Mirjana Ivanović1, and Hans-Dieter Burkhard2

1 Department of Mathematics and Informatics, Faculty of Sciences,
University of Novi Sad, Serbia
{dejan, mira}@dmi.uns.ac.rs

2 Humboldt University, Institute of Informatics,
Rudower Chaussee 25, D-12489 Berlin, Germany

hdb@informatik.hu-berlin.de

Abstract. AgentSpeak and its practical interpreter Jason represent an
excellent framework for implementing complex, reasoning agents. This
paper discusses an ongoing research dedicated to extending Jason with
the support for soccer playing agents. The end goal is to design an ef-
ficient infrastructure, capable of deploying and running BDI agents in
the RoboCup soccer simulation league.

1 Intelligent agents playing soccer

RoboCup is an annual, internationally-recognized competition of football/soccer
playing robots [5]. By providing a formidable challenge in a fun environment, its
main goal is to support and further motivate the development of various artificial
intelligence techniques.

Many concepts of the multi-agent technology, including autonomy, pro-active
behaviour, coordination and cooperation, fit naturally into requirements of the
RoboCup competition. These concepts are directly supported by the complex,
Belief-Desire-Intention (BDI) agent architecture [6]. The BDI architecture has
a strong mathematical basis and is widely supported by a number of agent
development frameworks [2]. Our previous work on deploying BDI agents in
RoboCup simulations [4] was based on the agent-oriented programming language
AgentSpeak and its accompanying interpreter Jason [1]. The main reasons Jason
was selected as for this task include its direct support for BDI , and a high level
of customizability.

By analyzing the inner workings of Jason and the simulator, it was concluded
that both systems support agents that operate in sense-think-act cycles. This
fact simplifies the integration process significantly. To deploy Jason agents, it

? This work was partially supported by Ministry of Education, Science and Tech-
nological Development of the Republic of Serbia, through project no. OI174023:
”Intelligent techniques and their integration into wide-spectrum decision support”

Towards a Jason Infrastructure for Soccer Playing Agents 295

is sufficient to extend and modify the following set of the interpreter’s sub-
components:

– Simulated environment : a model of the game that enables the agents to sense
their surroundings, and act accordingly. The environment was extended with
custom parser and generator components which, respectively, extract agent’s
belief literals from the simulator’s set of percepts, and transform agent ac-
tions into concrete effectors;

– Execution control : handles Jason reasoning cycles. Development of a custom
execution control was necessary for several reasons, including the support for
key-framed motions. Key-framed motions often span across multiple Jason
reasoning cycles. The execution control assures that the appropriate sets of
commands are sent to the simulator as the motion progresses;

– Agent architecture: a link between the simulated environment and the re-
maining components.

Our custom implementation of these components was evaluated using a con-
crete implementation of a soccer playing agent [4]. The results have shown that
Jason is perfectly capable of satisfying strict time constraints imposed by the
official RoboCup simulator. However, further improvements and extensions are
needed in order to implement and deploy agents that exhibit more complex be-
haviour. Our ongoing work is dedicated to designing and re-implementing the
remaining parts of the Jason infrastructure [1]. This step is necessary in order
to fully integrate Jason into the RoboCup simulator, allowing Jason agents to
actually compete against other teams, and to do so by relying on extensively
researched and well-understood concepts and methodologies of the multi-agent
technology. In the long run, the plan is to further extend the infrastructure with
MOISE+, an advanced Jason-compatible framework for organizational mod-
elling that has already been tested in virtual soccer simulations [3].

References

1. Bordini, R.H., Hubner, J.F., Wooldridge, M.: Programming multi-agent systems in
AgentSpeak using Jason. Wiley Series in Agent Technology, John Wiley & Sons Ltd
(2007)

2. Bădică, C., Budimac, Z., Burkhard, H.D., Ivanović, M.: Software agents: Languages,
tools, platforms. Computer Science and Information Systems 8(2), 255–298 (2011)

3. Hubner, J.F., Sichman, J.S., Boissier, O.: Developing organised multiagent systems
using the moise+ model: programming issues at the system and agent levels. Inter-
national Journal of Agent-Oriented Software Engineering 1(3/4), 370–395 (2007)

4. Mitrović, D., Ivanović, M., Burkhard, H.D.: Intelligent Jason agents in virtual soccer
simulations. In: Klusch, M., Thimm, M., Paprzycki, M. (eds.) Multiagent System
Technologies - 11th German Conference. Lecture Notes in Computer Science, vol.
8076, pp. 334–345. Springer (2013)

5. RoboCup homepage. http://www.robocup.org/, retrieved on June 25, 2013
6. Wooldridge, M.J.: Reasoning about rational agents. Intelligent Robotics and Au-

tonomous Agents, The MIT Press (2000)

An ExpTime Tableau Method for Dealing with
Nominals and Quantified Number Restrictions

in Deciding the Description Logic SHOQ

Linh Anh Nguyen1,2 and Joanna Golińska-Pilarek3

1 Institute of Informatics, University of Warsaw
Banacha 2, 02-097 Warsaw, Poland

nguyen@mimuw.edu.pl
2 Faculty of Information Technology, VNU University of Engineering and Technology

144 Xuan Thuy, Hanoi, Vietnam
3 Institute of Philosophy, University of Warsaw

Krakowskie Przedmieście 3, 00-927 Warsaw, Poland
j.golinska@uw.edu.pl

Abstract. We present the first tableau method with an ExpTime (op-
timal) complexity for checking satisfiability of a knowledge base in the
description logic SHOQ, which extends ALC with transitive roles, hier-
archies of roles, nominals and quantified number restrictions. The com-
plexity is measured using binary representation for numbers. Our proce-
dure is based on global caching and integer linear feasibility checking.

1 Introduction

Description logics (DLs) are formal languages suitable for representing termi-
nological knowledge. They are of particular importance in providing a logical
formalism for ontologies and the Semantic Web. Automated reasoning in DLs is
useful, for example, in engineering and querying ontologies. One of basic reason-
ing problems in DLs is to check satisfiability of a knowledge base in a considered
DL. Most of other reasoning problems in DLs are reducible to this one.

In this paper we study the problem of checking satisfiability of a knowledge
base in the DL SHOQ, which extends the basic DLALC with transitive roles (S),
hierarchies of roles (H), nominals (O) and quantified number restrictions (Q).
It is known that this problem in SHOQ is ExpTime-complete [16] (even when
numbers are coded in binary).

Nominals, interpreted as singleton sets, are a useful notion to express identity
and uniqueness. However, when interacting with inverse roles (I) and quantified
number restrictions in the DL SHOIQ, they cause the complexity of the above
mentioned problem to jump up to NExpTime-complete [15] (while that problem
in any of the DLs SHOQ, SHIO, SHIQ is ExpTime-complete [16, 7, 15]).

In [8] Horrocks and Sattler gave a tableau algorithm for deciding the DL
SHOQ(D), which is the extension of SHOQ with concrete datatypes. Later,
Pan and Horrocks [13] extended the method of [8] to give a tableau algorithm

ExpTime Tableaux for SHOQ 297

for deciding the DL SHOQ(Dn), which is the extension of SHOQ with n-ary
datatype predicates. These algorithms use backtracking to deal with disjunction
(t) and “or”-branching (e.g., the “choose”-rule) and use a straightforward way
for dealing with with quantified number restrictions. They have a non-optimal
complexity (NExpTime) when unary representation is used for numbers, and
have a higher complexity (N2ExpTime) when binary representation is used.
In [1] Faddoul and Haarslev gave an algebraic tableau reasoning algorithm for
SHOQ, which combines the tableau method with linear integer programming.
The aim was to increase efficiency of handling quantified number restrictions.
However, their algorithm still uses backtracking to deal with disjunction and
“or”-branching and has a non-optimal complexity (“double exponential” [1]).

In this paper we present the first tableau method with an ExpTime (optimal)
complexity for checking satisfiability of a knowledge base in the DL SHOQ. The
complexity is measured using binary representation for numbers. Our procedure
is based on global caching and integer linear feasibility checking.

The idea of global caching comes from Pratt’s work [14] on PDL. It was
formally formulated for tableaux in some DLs in [3, 4] and has been applied to
several modal and description logics (see [12] for references) to obtain tableau
decision procedures with an optimal (ExpTime) complexity. A variant of global
caching, called global state caching, was used to obtain cut-free optimal (Exp-
Time) tableau decision procedures for several modal logics with converse and
DLs with inverse roles [5, 6, 9, 11].

Integer linear programming was exploited for tableaux in [2, 1] to increase ef-
ficiency of reasoning with quantified number restrictions. However, the first work
that applied integer linear feasibility checking to tableaux was [10, 11]. In [10],
Nguyen gave the first ExpTime (optimal) tableau decision procedure for check-
ing satisfiability of a knowledge base in the DL SHIQ, where the complexity
is measured using binary representation for numbers. His procedure is based on
global state caching and integer linear feasibility checking. In the current paper,
we apply his method of integer linear feasibility checking to SHOQ. It substan-
tially differs from Farsiniamarj’s method of exploiting integer programming for
tableaux [2]. Our method of dealing with both nominals and quantified number
restrictions is essentially different from the one by Faddoul and Haarslev [1].

Due to the lack of space, we restrict ourselves to introducing the problem of
checking satisfiability of a knowledge base in the DL SHOQ and presenting some
examples to illustrate our tableau method. For a full description of a tableau
decision procedure with an ExpTime complexity we refer the reader to [12].

2 Notation and Semantics of SHOQ

Our language uses a finite set C of concept names, a finite set R of role names,
and a finite set I of individual names. A concept name stands for a unary pred-
icate, a role name stands for a binary predicate, and an individual name stands
for a constant. We use letters like A and B for concept names, r and s for role

298 L.A. Nguyen and J. Golińska-Pilarek

names, and a and b for individual names. We also refer to A and B as atomic
concepts, to r and s as roles, and to a and b as individuals.

An (SHOQ) RBox R is a finite set of role axioms of the form r v s or
r ◦ r v r. For example, link v path and path ◦ path v path are such role axioms.

By ext(R) we denote the least extension of R such that:

– r v r ∈ ext(R) for any role r

– if r v r′ ∈ ext(R) and r′ v r′′ ∈ ext(R) then r v r′′ ∈ ext(R).

Let r vR s denote r v s ∈ ext(R), and transR(r) denote (r◦r v r) ∈ ext(R).
If r vR s then r is a subrole of s (w.r.t. R). If transR(s) then s is a transitive
role (w.r.t. R). A role is simple (w.r.t. R) if it is neither transitive nor has any
transitive subrole (w.r.t. R).

Concepts in SHOQ are formed using the following BNF grammar, where n
is a nonnegative integer and s is a simple role:

C,D ::= > | ⊥ | A | ¬C | C uD | C tD | ∃r.C | ∀r.C | {a} | ≥n s.C | ≤n s.C

A concept stands for a set of individuals. The concept > stands for the set
of all individuals (in the considered domain). The concept ⊥ stands for the
empty set. The constructors ¬, u and t stand for the set operators: comple-
ment, intersection and union. For the remaining forms, we give some examples:
∃hasChild .Male, ∀hasChild .Female, ≥2 hasChild .Teacher , ≤5 hasChild .>.

We use letters like C and D to denote arbitrary concepts.

A TBox is a finite set of axioms of the form C v D or C
.
= D.

An ABox is a finite set of assertions of the form a :C, r(a, b) or a 6 .= b.

An axiom C v D means C is a subconcept of D, while C
.
= D means C and

D are equivalent concepts. An assertion a :C means a is an instance of concept
C, and a 6 .= b means a and b are distinct individuals.

A knowledge base in SHOQ is a tuple 〈R, T ,A〉, where R is an RBox, T is
a TBox and A is an ABox.

We say that a role s is numeric w.r.t. a knowledge base KB = 〈R, T ,A〉 if:

– it is simple w.r.t. R and occurs in a concept ≥n s.C or ≤n s.C in KB , or

– s vR r and r is numeric w.r.t. KB .

We will simply call such an s a numeric role when KB is clear from the context.

A formula is defined to be either a concept or an ABox assertion. We use
letters like ϕ, ψ and ξ to denote formulas. Let null :C stand for C. We use α to
denote either an individual or null. Thus, α :C is a formula of the form a :C or
null :C (which means C).

An interpretation I = 〈∆I , ·I〉 consists of a non-empty set ∆I , called the
domain of I, and a function ·I , called the interpretation function of I, that
maps each concept name A to a subset AI of ∆I , each role name r to a binary
relation rI on ∆I , and each individual name a to an element aI ∈ ∆I . The
interpretation function is extended to complex concepts as follows, where]Z

ExpTime Tableaux for SHOQ 299

denotes the cardinality of a set Z:

>I = ∆I ⊥I = ∅ (¬C)I = ∆I − CI

(C uD)I = CI ∩DI (C tD)I = CI ∪DI {a}I = {aI}
(∃r.C)I =

{
x ∈ ∆I | ∃y

[
〈x, y〉 ∈ rI and y ∈ CI

]}
(∀r.C)I =

{
x ∈ ∆I | ∀y

[
〈x, y〉 ∈ rI implies y ∈ CI

]}
(≥n s.C)I =

{
x ∈ ∆I |]{y | 〈x, y〉 ∈ sI and y ∈ CI} ≥ n

}
(≤n s.C)I =

{
x ∈ ∆I |]{y | 〈x, y〉 ∈ sI and y ∈ CI} ≤ n

}
.

For a set Γ of concepts, define Γ I = {x ∈ ∆I | x ∈ CI for all C ∈ Γ}.
The relational composition of binary relations R1, R2 is denoted by R1 ◦R2.
An interpretation I is a model of an RBox R if for every axiom r v s (resp.

r ◦ r v r) of R, we have that rI ⊆ sI (resp. rI ◦ rI ⊆ rI). Note that if I is a
model of R then it is also a model of ext(R).

An interpretation I is a model of a TBox T if for every axiom C v D (resp.
C

.
= D) of T , we have that CI ⊆ DI (resp. CI = DI).
An interpretation I is a model of an ABox A if for every assertion a :C (resp.

r(a, b) or a 6 .= b) of A, we have that aI ∈ CI (resp. 〈aI , bI〉 ∈ rI or aI 6= bI).
An interpretation I is a model of a knowledge base 〈R, T ,A〉 if I is a model

of R, T and A. A knowledge base 〈R, T ,A〉 is satisfiable if it has a model.
An interpretation I satisfies a concept C (resp. a set X of concepts) if CI 6= ∅

(resp. XI 6= ∅). It validates C if CI = ∆I . A set X of concepts is satisfiable
w.r.t. an RBox R and a TBox T if there exists a model of R and T that satisfies
X. For X = A ∪ A′, where A is an ABox and A′ is a set of assertions of the
form ¬r(a, b) or a

.
= b, we say that X is satisfiable w.r.t. an RBox R and a

TBox T if there exists a model I of 〈R, T ,A〉 such that: 〈aI , bI〉 /∈ rI for all
(¬r(a, b)) ∈ A′, and aI = bI for all (a

.
= b) ∈ A′. In that case, we also say that

I is a model of 〈R, T , X〉.

3 A Tableau Method for SHOQ

We assume that concepts and ABox assertions are represented in negation nor-
mal form (NNF), where ¬ occurs only directly before atomic concepts. We use
C to denote the NNF of ¬C, and for ϕ = (a :C), we use ϕ to denote a :C. For
simplicity, we treat axioms of T as concepts representing global assumptions:
an axiom C v D is treated as C t D, while an axiom C

.
= D is treated as

(C t D) u (D t C). That is, we assume that T consists of concepts in NNF.
Thus, an interpretation I is a model of T iff I validates every concept C ∈ T .

Let EdgeLabels = {testingClosedness, checkingFeasibility}×P(R)×(I∪{null}).
For e ∈ EdgeLabels, let e = 〈πt(e), πr(e), πi(e)〉. Thus, πt(e) is the type of e, πr(e)
is a set of roles, and πi(e) is either an individual or null.

We define a tableaux as a rooted graph. Such a graph is a tuple G = 〈V,E, ν〉,
where V is a set of nodes, E ⊆ V × V is a set of edges, ν ∈ V is the root, each

300 L.A. Nguyen and J. Golińska-Pilarek

node v ∈ V has a number of attributes, and each edge 〈v, w〉 may have a number
of labels from EdgeLabels. Attributes of a tableau node v are:

– Type(v) ∈ {state, non-state}.
– SType(v) ∈ {complex, simple} is called the subtype of v.
– Status(v) ∈ {unexpanded, p-expanded, f-expanded, closed, open, blocked} ∪
{closed-wrt(U) | U ⊆ V and Type(u) = state ∧ SType(u) = complex for
all u ∈ U}, where p-expanded and f-expanded mean “partially expanded”
and “fully expanded”, respectively. Status(v) may be p-expanded only when
Type(v) = state. If Status(v) = closed-wrt(U) then we say that the node v is
closed w.r.t. the nodes from U .

– Label(v) is a finite set of formulas, called the label of v.
– RFmls(v) is a finite set of formulas, called the set of reduced formulas of v.
– IndRepl(v) : I→ I is a partial mapping specifying replacements of individu-

als. It is available only when v is a complex node. If IndRepl(v)(a) = b then,
at the node v, we have a

.
= b and b is the representative of its abstract class.

– ILConstraints(v) is a set of integer linear constraints. It is available only
when Type(v) = state. The constraints use variables xe indexed by labels e
of edges outgoing from v such that πt(e) = checkingFeasibility. Such a variable
specifies how many copies of the successor via e will be created for v.

If 〈v, w〉 ∈ E then we call v a predecessor of w, and w a successor of v. An
edge outgoing from a node v has labels iff Type(v) = state. When defined, the
set of labels of an edge 〈v, w〉 is denoted by ELabels(v, w). If e ∈ ELabels(v, w)
then πi(e) = null iff SType(v) = simple.

A node v is called a state if Type(v) = state, and non-state otherwise. It is
called a complex node if SType(v) = complex, and a simple node otherwise. The
label of a complex node consists of ABox assertions, while the label of a simple
node consists of concepts. The root ν is a complex non-state.

A node may have status blocked only when it is a simple node with the label
containing a nominal {a}. The status blocked can be updated only to closed or
closed-wrt(. . .). We write closed-wrt(. . .) to mean closed-wrt(U) for some U .

The graph G consists of two layers: the layer of complex nodes and the layer of
simple nodes. There are no edges from simple nodes to complex nodes. The edges
from complex nodes to simple nodes are exactly the edges outgoing from complex
states. That is: if 〈v, w〉 is an edge from a complex node v to a simple node w
then Type(v) = state; if Type(v) = state and 〈v, w〉 ∈ E then SType(w) = simple.
Each complex node of G is like an ABox (more formally: its label is an ABox),
which can be treated as a graph whose vertices are named individuals. On the
other hand, a simple node of G stands for an unnamed individual. If e is a label
of an edge from a complex state v to a simple node w then the triple 〈v, e, w〉
can be treated as an edge from the named individual πi(e) (an inner node of the
graph representing v) to the unnamed individual corresponding to w, and that
edge is via the roles from πr(e).

We will use also assertions of the form a : (�n s.C) and a : (�n s.C), where s
is a numeric role. The difference between a : (�n s.C) and a : (≤n s.C) is that,
for checking a : (� n s.C), we do not have to pay attention to assertions of the

ExpTime Tableaux for SHOQ 301

form s(a, b) or r(a, b) with r being a subrole of s. The aim for a : (� n s.C) is
similar. We use a : (�n s.C) and a : (�n s.C) only as syntactic representations of
some expressions, and do not provide semantics for them. We define

FullLabel(v) = Label(v) ∪ RFmls(v)−
{formulas of the form a : (�n s.C) or a : (�n s.C)}.

We apply global caching: if v1, v2 ∈ V , Label(v1) = Label(v2) and
(SType(v1) = SType(v2) = simple or (SType(v1) = SType(v2) = complex and
Type(v1) = Type(v2))) then v1 = v2. Due to global caching, an edge outgoing
from a state may have a number of labels as the result of merging edges.

We say that a node v may affect the status of the root ν if there exists a path
consisting of nodes v0 = ν, v1, . . . , vn−1, vn = v such that, for every 0 ≤ i < n,
Status(vi) differs from open and closed, and if it is closed-wrt(U) then U is disjoint
from {v0, . . . , vi}. In that case, if u ∈ {v1, . . . , vn} then we say that v may affect
the status of the root ν via a path through u.

From now on, let 〈R, T ,A〉 be a knowledge base in NNF of the logic SHOQ,
with A 6= ∅. 4 In this section we present a tableau calculus CSHOQ for checking
satisfiability of 〈R, T ,A〉. A CSHOQ-tableau for 〈R, T ,A〉 is a rooted graph
G = 〈V,E, ν〉 constructed as follows:

Initialization: V := {ν}, E := ∅, Type(ν) := non-state, SType(ν) :=
complex, Status(ν) := unexpanded, RFmls(ν) := ∅, Label(ν) := A ∪ {(a : C) |
C ∈ T and a is an individual occurring in A or T }, for each individual a occur-
ring in Label(ν) set IndRepl(ν)(a) := a.

Rules’ Priorities and Expansion Strategies: The graph is then ex-
panded by the following rules, which are specified in detail in [12]:

(UPS) rules for updating statuses of nodes,
(US) unary static expansion rules,
(DN) a rule for dealing with nominals,
(NUS) a non-unary static expansion rule,
(FS) the forming-state rule,
(TP) a transitional partial-expansion rule,
(TF) a transitional full-expansion rule.
Each of the rules is parametrized by a node v. We say that a rule is applicable

to v if it can be applied to v to make changes to the graph. The rule (UPS) has a
higher priority than (US), which has a higher priority than the remaining rules
in the list. If neither (UPS) nor (US) is applicable to any node, then choose a
node v with status unexpanded or p-expanded, choose the first rule applicable to
v among the rules in the last five items of the above list, and apply it to v. Any
strategy can be used for choosing v, but it is worth to choose v for expansion only
when v may affect the status of the root ν of the graph. Note that the priorities
of the rules are specified by the order in the above list, but the rules (UPS)
and (US) are checked globally (technically, they are triggered immediately when
possible), while the remaining rules are checked for a chosen node.

4 If A is empty, we can add a :> to it, where a is a special individual.

302 L.A. Nguyen and J. Golińska-Pilarek

Termination: The construction of the graph ends when the root ν receives
status closed or open or when no more changes that may affect the status of ν
can be made5.

To check satisfiability of 〈R, T ,A〉 one can construct a CSHOQ-tableau for
it, then return “no” when the root of the tableau has status closed, or “yes” in
the other case. It can be proved that (see [12]):

– A CSHOQ-tableau for 〈R, T ,A〉 can be constructed in ExpTime.
– If G = 〈V,E, ν〉 is an arbitrary CSHOQ-tableau for 〈R, T ,A〉 then 〈R, T ,A〉

is satisfiable iff Status(ν) 6= closed.

Remark 3.1. Our technique for dealing with quantified number restrictions is
similar to Nguyen’s technique used for SHIQ [10, 11]. There are some technical
differences, which are caused by that we use global caching for SHOQ, while
Nguyen’s work [10] uses global state caching for SHIQ (due to inverse roles)
and inverse roles can interact with quantified number restrictions.

We briefly explain our technique for dealing with nominals. Suppose v is
a simple node with Status(v) /∈ {closed, open} and {a} ∈ Label(v), a complex
state u is an ancestor of v, and v may affect the status of the root ν via a path
through u. Let u0 be a predecessor of u. The node u0 has only u as a successor
and it was expanded by the forming-state rule. There are three cases:

– If, for every C ∈ Label(v), the formula obtained from a :C by replacing every
individual b by IndRepl(u)(b) belongs to FullLabel(u), then v is “consis-
tent” with u.

– If there exists C ∈ Label(v) such that the formula obtained from a : C
by replacing every individual b by IndRepl(u)(b) belongs to FullLabel(u),
then v is “inconsistent” with u. In this case, if Status(v) is of the form
closed-wrt(U) then we update it to closed-wrt(U ∪ {u}), else we update it to
closed-wrt({u}).

– In the remaining case, the node u is “incomplete” w.r.t. v, which means that
the expansion of u0 was not appropriate. Thus, we delete the edge 〈u0, u〉
and re-expand u0 by an appropriate “or”-branching (see [12]).

There are also treatments for dealing with assertions of the form a :{b} and for
updating statuses of nodes in the presence of closed-wrt(. . .). 2

4 Illustrative Examples

Example 4.1. Let us construct a CSHOQ-tableau for 〈R, T ,A〉, where

A = {a :A, a :∃r.∃r.(A t {a}), a :≥3 r.∀r.¬A, a :∀r.B, a :≤3 r.B,

r(a, b), b :∀r.¬A, b : (∀r.(¬A u ¬{a}) t ¬B)},

R = ∅ and T = ∅. An illustration is presented in Figure 1.

5 That is, ignoring nodes that are unreachable from ν via a path without nodes with
status closed or open, no more changes can be made to the graph.

ExpTime Tableaux for SHOQ 303

Fig. 1. An illustration of the tableau described in Example 4.1. The marked nodes v4 –
v7 and v9 are states. The nodes ν, v1 – v4 are complex nodes, the remaining are simple
nodes. In each node, we display the formulas of its label.

At the beginning, the graph has only the root ν which is a complex non-
state with Label(ν) = A. Since {a : ∀r.B, r(a, b)} ⊂ Label(ν), applying a unary
static expansion rule to ν, we connect it to a new complex non-state v1 with
Label(v1) = Label(ν) ∪ {b :B}.

Since b : (∀r.(¬A u ¬{a}) t ¬B) ∈ Label(v1), applying the non-unary static
expansion rule to v1, we connect it to new complex non-states v2 and v3 with

Label(v2) = Label(v1)− {b : (∀r.(¬A u ¬{a}) t ¬B)} ∪ {b :∀r.(¬A u ¬{a})}
Label(v3) = Label(v1)− {b : (∀r.(¬A u ¬{a}) t ¬B)} ∪ {b :¬B}.

304 L.A. Nguyen and J. Golińska-Pilarek

Since both b :B and b :¬B belong to Label(v3), the node v3 receives status
closed. Applying the forming-state rule to v2, we connect it to a new complex
state v4 with

Label(v4) = Label(v2) ∪ {a :�1 r.∃r.(A t {a}), a :�2 r.∀r.¬A, a :�2 r.B}.

The assertion a :� 1 r.∃r.(A t {a}) ∈ Label(v4) is due to a : ∃r.∃r.(A t {a}) ∈
Label(v2) and the fact that the negation of b : ∃r.(A t {a}) in NNF belongs
to Label(v2) (notice that r(a, b) ∈ Label(v2)). The assertion a :� 2 r.∀r.¬A ∈
Label(v4) is due to a :≥ 3 r.∀r.¬A ∈ Label(v2) and the fact that {r(a, b),
b :∀r.¬A} ⊂ Label(v2). Similarly, the assertion a :� 2 r.B ∈ Label(v4) is due
to a :≤3 r.B ∈ Label(v2) and the fact {r(a, b), b :B} ⊂ Label(v2).

As r is a numeric role, applying the transitional partial-expansion rule6 to
v4, we just change the status of v4 to p-expanded. After that, applying the
transitional full-expansion rule to v4, we connect it to new simple non-states
v5, v6, v7 using edges labeled by e4,5, e4,6, e4,7, respectively, such that e4,i =
〈checkingFeasibility, {r}, a〉 for 5 ≤ i ≤ 7, and Label(v5) = {∃r.(A t {a}), B},
Label(v6) = {∀r.¬A, B}, Label(v7) = {∃r.(At{a}), ∀r.¬A, B}. The creation of
v5 is caused by a :�1 r.∃r.(At{a}) ∈ Label(v4), while the creation of v6 is caused
by a :� 1 r.∀r.¬A. The node v7 results from merging v5 and v6. Furthermore,
ILConstraints(v4) consists of xe4,i ≥ 0, for 5 ≤ i ≤ 7, and

xe4,5 + xe4,7 ≥ 1

xe4,6 + xe4,7 ≥ 2

xe4,5 + xe4,6 + xe4,7 ≤ 2.

Applying the forming-state rule to v5, the type of this node is changed from
non-state to state. Next, applying the transitional partial-expansion rule to v5, its
status is changed to p-expanded. Then, applying the transitional full-expansion
rule to v5, we connect v5 to a new simple non-state v8 with Label(v8) = {At{a}}
using an edge labeled by e5,8 and set ILConstraints(v5) = {xe5,8 ≥ 0, xe5,8 ≥ 1}.

Applying the non-unary static expansion rule to v8, we connect it to new
simple non-states v9 and v10 with Label(v9) = {A} and Label(v10) = {{a}}. The
status of v9 is then changed to open, which causes the statuses of v8 and v5 to be
updated to open. The node v10 is not expanded as it does not affect the status
of the root node ν.

Applying the forming-state rule to v6, the type of this node is changed from
non-state to state. Next, applying the transitional partial-expansion rule and then
the transitional full-expansion rule to v6, its status is changed to f-expanded. The
status of v6 is then updated to open.

Applying the forming-state rule to v7, the type of this node is changed from
non-state to state. Next, applying the transitional partial-expansion rule to v7, its
status is changed to p-expanded. Then, applying the transitional full-expansion
rule to v7, we connect v7 to a new simple non-state v11 with Label(v11) = {A t
6 which is used for making transitions via non-numeric roles

ExpTime Tableaux for SHOQ 305

{a}, ¬A} using an edge labeled by e7,11 and set ILConstraints(v7) = {xe7,11 ≥ 0,
xe7,11 ≥ 1}.

Applying the non-unary static expansion rule to v11, we connect it to new
simple non-states v12 and v13 with Label(v12) = {A,¬A} and Label(v13) =
{{a},¬A}. The status of v12 is then changed to closed. Since a :A ∈ Label(v4),
the status of v13 is updated to closed-wrt({v4}), which causes the status of v11 to
be updated also to closed-wrt({v4}). As the set ILConstraints(v7)∪ {xe7,11 = 0}
is infeasible, the status of v7 is updated to closed-wrt({v4}). Next, as the set
ILConstraints(v4) ∪ {xe4,7 = 0} is infeasible, the status of v4 is first updated to
closed-wrt({v4}) and then updated to closed. After that, the statuses of v2, v1, ν
are sequentially updated to closed. Thus, we conclude that the knowledge base
〈R, T ,A〉 is unsatisfiable. 2

Example 4.2. Let us modify Example 4.1 by deleting the assertion a :A from the
ABox. That is, we are now constructing a CSHOQ-tableau for 〈R, T ,A〉, where

A = {a :∃r.∃r.(A t {a}), a :≥3 r.∀r.¬A, a :∀r.B, a :≤3 r.B,

r(a, b), b :∀r.¬A, b : (∀r.(¬A u ¬{a}) t ¬B)},

R = ∅ and T = ∅. The first stage of the construction is similar to the one of
Example 4.1, up to the step of updating the status of v12 to closed. This stage is
illustrated in Figure 2, which is similar to Figure 1 except that the labels of the
nodes ν and v1 – v4 do not contain a :A. The continuation is described below
and illustrated by Figure 3.

Since Label(v13) = {{a},¬A}, applying the rule for dealing with nominals
to v13, we delete the edge 〈v2, v4〉 (from E) and re-expand v2 by connecting it
to new complex non-states v14 and v15 with Label(v14) = Label(v2) ∪ {a :¬A}
and Label(v15) = Label(v2) ∪ {a : A} as shown in Figure 3. The status of v13
is updated to blocked. The node v4 is not deleted, but we do not display it in
Figure 3.

Applying the forming-state rule to v14 we connect it to a new complex state
v16. The label of v16 is computed using Label(v14) in a similar way as in Exam-
ple 4.1 when computing Label(v4).

Applying the transitional partial-expansion rule to v16 we change its status
to p-expanded. After that, applying the transitional full-expansion rule to v16 we
connect it to the existing nodes v5, v6, v7 by using edges labeled by e16,5, e16,6,
e16,7, respectively, which are the same tuple 〈checkingFeasibility, {r}, a〉. The set
ILConstraints(v16) consists of xe16,i ≥ 0, for 5 ≤ i ≤ 7, and

xe16,5 + xe16,7 ≥ 1

xe16,6 + xe16,7 ≥ 2

xe16,5 + xe16,6 + xe16,7 ≤ 2.

Applying the forming-state rule to v15 we connect it to a new complex state
v17. The label of v17 is computed using Label(v15) in a similar way as in Exam-
ple 4.1 when computing Label(v4).

306 L.A. Nguyen and J. Golińska-Pilarek

Fig. 2. An illustration for Example 4.2 – Part I.

The expansion of v17 is similar to the expansion of v16. The set
ILConstraints(v17) is like ILConstraints(v16), with the subscripts 16 replaced
by 17. Analogously to updating the statuses of the nodes v13, v11, v7 in Ex-
ample 4.1 to closed-wrt({v4}), the statuses of v13, v11, v7 are updated to
closed-wrt({v17}). Next, as ILConstraints(v17) ∪ {xe17,7 = 0} is infeasible, the
status of v17 is first updated to closed-wrt({v17}) and then updated to closed.
After that, the status of v15 is also updated to closed. As no more changes that
may affect the status of ν can be made and Status(ν) 6= closed, we conclude that
the knowledge base 〈R, T ,A〉 is satisfiable. 2

ExpTime Tableaux for SHOQ 307

Fig. 3. An illustration for Example 4.2 – Part II.

5 Conclusions

We have presented the first tableau method with an ExpTime (optimal) com-
plexity for checking satisfiability of a knowledge base in the DL SHOQ. The
complexity is measured using binary representation for numbers. Our detailed
tableau decision procedure for SHOQ is given in [12].

This work differs from Nguyen’s work [10] on SHIQ in that nominals are
allowed instead of inverse roles. Without inverse roles, global caching is used in-
stead of global state caching to allow more cache hits. To deal with nominals, we
use additional statuses closed-wrt(. . .) for nodes of the graph to be constructed.

308 L.A. Nguyen and J. Golińska-Pilarek

Acknowledgments. This work was supported by Polish National Science
Centre (NCN) under Grants No. 2011/01/B/ST6/02759 (for the first author)
and 2011/02/A/HS1/00395 (for the second author).

References

1. J. Faddoul and V. Haarslev. Algebraic tableau reasoning for the description logic
SHOQ. J. Applied Logic, 8(4):334–355, 2010.

2. N. Farsiniamarj. Combining integer programming and tableau-based reasoning: a
hybrid calculus for the description logic SHQ. Master’s thesis, Concordia Univer-
sity, 2008.

3. R. Goré and L.A. Nguyen. ExpTime tableaux with global caching for description
logics with transitive roles, inverse roles and role hierarchies. In Proceedings of
TABLEAUX 2007, volume 4548 of LNAI, pages 133–148. Springer, 2007.

4. R. Goré and L.A. Nguyen. Exptime tableaux for ALC using sound global caching.
J. Autom. Reasoning, 50(4):355–381, 2013.

5. R. Goré and F. Widmann. Sound global state caching for ALC with inverse roles.
In M. Giese and A. Waaler, editors, Proceedings of TABLEAUX 2009, volume 5607
of LNCS, pages 205–219. Springer, 2009.

6. R. Goré and F. Widmann. Optimal and cut-free tableaux for propositional dynamic
logic with converse. In J. Giesl and R. Hähnle, editors, Proceedings of IJCAR 2010,
volume 6173 of LNCS, pages 225–239. Springer, 2010.

7. J. Hladik and J. Model. Tableau systems for SHIO and SHIQ. In Proceedings of
DL’2004, volume 104 of CEUR Workshop Proceedings, pages 168–177, 2004.

8. I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ(D) description logic.
In Proceedings of IJCAI’2001, pages 199–204. Morgan Kaufmann, 2001.

9. L.A. Nguyen. A cut-free ExpTime tableau decision procedure for the description
logic SHI. In Proceedings of ICCCI’2011 (1), volume 6922 of LNCS, pages 572–581.
Springer, 2011 (see also the long version http://arxiv.org/abs/1106.2305v1).

10. L.A. Nguyen. ExpTime tableaux for the description logic SHIQ based on global
state caching and integer linear feasibility checking. arXiv:1205.5838, 2012.

11. L.A. Nguyen. A tableau method with optimal complexity for deciding the de-
scription logic SHIQ. In Proceedings of ICCSAMA’2013, volume 479 of Studies in
Computational Intelligence, pages 331–342. Springer, 2013.

12. L.A. Nguyen and J. Golińska-Pilarek. A long version of the current paper. http:

//www.mimuw.edu.pl/~nguyen/shoq-long.pdf, 2013.
13. J.Z. Pan and I. Horrocks. Reasoning in the SHOQ(Dn) description logic. In Proc.

of DL’2002, volume 53 of CEUR Workshop Proceedings, pages 53–62, 2002.
14. V.R. Pratt. A near-optimal method for reasoning about action. J. Comp. Syst. Sci.,

20(2):231–254, 1980.
15. S. Tobies. Complexity results and practical algorithms for logics in knowledge rep-

resentation. PhD thesis, RWTH-Aachen, 2001.
16. http://owl.cs.manchester.ac.uk/navigator/.

SMT versus Genetic Algorithms: Concrete
Planning in the Planics Framework?

Extended Abstract

Artur Niewiadomski1, Wojciech Penczek1,2, and Jarosław Skaruz1

1 ICS, Siedlce University, 3-Maja 54, 08-110 Siedlce, Poland
artur@ii.uph.edu.pl, jaroslaw.skaruz@uph.edu.pl

2 ICS, Polish Academy of Sciences, Jana Kazimierza 5, 01-248 Warsaw, Poland
penczek@ipipan.waw.pl

Abstract. The paper deals with the concrete planning problem (CPP)
– a stage of the Web Service Composition (WSC) in the PlanICS frame-
work. A novel SMT-based approach to CPP is defined and its perfor-
mance is compared to the standard Genetic Algorithm (GA) in the
framework of the PlanICS system. The discussion of both the approaches
is supported by extensive experimental results.

Keywords: Web Service Composition, SMT, GA, Concrete Planning

1 Introduction

The main concept of Service-Oriented Architecture (SOA) [2] consists in using
independent components available via well-defined interfaces. Typically, a com-
position of web services need to be executed to realize the user objective. The
problem of finding such a composition is hard and known as the WSC problem
[2, 1, 11]. In this paper, we follow the approach of our system PlanICS [5, 6], which
has been inspired by [1].

The main assumption in PlanICS is that all the web services in the domain
of interest as well as the objects that are processed by the services, can be
strictly classified in a hierarchy of classes, organised in an ontology. Another
key idea is to divide the planning into several stages. The first phase deals with
classes of services, where each class represents a set of real-world services, while
the others work in the space of concrete services. The first stage produces an
abstract plan composed of service classes [9]. Next, offers are retrieved by the
offer collector (OC) (a module of PlanICS) and used by in a concrete planning
(CP). As a result of CP a concrete plan is obtained, which is a sequence of
offers satisfying predefined optimization criteria. Such an approach enables to
reduce dramatically the number of web services to be considered, and inquired
for offers. This paper deals with the concrete planning realised by SMT- and
GA-based planners.
? This work has been supported by the National Science Centre under the grant No.

2011/01/B/ST6/01477.

310 A. Niewiadomski, W. Penczek, J. Skaruz

While CPP has been extensively studied in the literature as shown by nu-
merous papers concerning an application of GA, the main contribution of our
paper is an application of an SMT-based planner for finding optimal concrete
plans. Such an approach based on SMT-solvers is quite promising and competi-
tive comparing to applications of GA. The second contribution is a comparison
of SMT-based approach performance with the results obtained from GA. While
dealing with very large state spaces, an SMT-solver may be time demanding, but
its advantage is demonstrated in finding always optimal concrete plans. Since a
planner based on GA, being quite fast, may have difficulties in finding optimal
concrete plans, we find both the approaches complementary.

In the last few years the CPP has been extensively studied in the literature.
In [4] a simple GA was used to obtain a good quality concrete plan. In [12]
CPP was transformed to a multicriteria optimization problem and GA was used
to find a concrete plan. However, the authors present the experiments on a
relatively small search space that could not provide valuable conclusions. Our
paper fills the gap by presenting the results that allow to examine scalability of
the algorithms and their efficiency when the large search space is considered.

Most of the applications of SMT in the domain of WSC is related to the au-
tomatic verification and testing. For example, a message race detection problem
is investigated in [7], [3] deals with a service substitutability problem, while [8]
exploits SMT to verification of WS-BPEL specifications against business rules.
However, to the best of our knowledge, there are no other approaches dealing
with SMT-solvers as an engine to WSC.

The rest of the paper is organized as follows. Sect. 2 deals with CPP in
PlanICS. Sect. 3 presents our SMT-based approach to solve CPP. Sect. 4 discusses
experimental results compared to results of the standard GA, while the last
section summarizes the results.

2 Concrete Planning Problem

This section defines CPP as the third stage of the WSC in PlanICS framework
and provides the basic definitions. We introduce the main ideas behind PlanICS
and define CPP as a constrained optimization problem. PlanICS is a system
implementing our original approach which solves the composition problem in
clearly separated stages. An ontology, managed by the ontology provider, con-
tains a system of classes describing the types of the services as well as the types
of the objects they process [10]. A class consists of a unique name and a set of
the attributes. By an object we mean an instance of a class. Below, we present a
simplified ontology, used further as a running example.

Example 1 (Ontology). Consider a simple ontology describing a fragment of some
financial market consisting of service types, inheriting from the class Investment,
representing various types of financial instruments, and three object types:Money
having the attribute amount, Transaction having the two attributes amount
and profit, and Charge having the attribute fee. Suppose that each investment

GA vs SMT 311

service takes m - an instance of Money as input, produces t and c - instances
of Transaction and Charge, and updates the amount of money remaining after
the operation, i.e, the attribute m.amount.

Two fundamental concepts of PlanICS are worlds and world transformations.

Definition 1 (World, Abstract World). Let D = Z ∪R ∪A, where Z is the
set of integers, R is the set of real numbers, and A = {set,null} is the set of
abstract values. Let O be the set of all objects, A be the set of all attributes, and
attr : O 7→ 2A be the function returning the attributes of an object. A world is
a pair (O, val), where O ⊆ O is a set of objects and val : O × attr(O) 7→ D is
a valuation function, which to every attribute of the objects from O assigns a
value from a respective domain or null, if the attribute does not have a value. A
world is abstract if all its object attributes have values from A.

Since the main part of this paper deals with an optimization problem, the do-
mains under consideration are the integer and the real numbers3. PlanICS uses
a state-based approach in which the worlds represent ’snapshots’ of the reality,
while the services transform them. A transformation of a world w by a service
of type s into a world w′, denoted by w s−→ w′, consists in processing a subset of
w, by changing values of object attributes and/or adding new objects, according
to the specification of s [10]. Often, a world w can be transformed by s in more
than one way. For example when w contains multiple objects of the same type
and one can designate more than one subset which can be processed by s. Thus,
we define a transformation context cx as a mapping from the objects of the input
and output of s to the objects of w. The transformation of w by s in the context
cx to w′ is denoted by w

s,cx−−→ w′ [9].
The user expresses a goal by a query, referring to objects and their attributes,

and adding constraints while defining initial worlds to start with and expected
worlds to be reached. Composition is thus understood as searching for a set of
services capable to process certain states in a desired way, that is, transforming
a subset of an initial world into a superset of an expected world (called a final
world). This is obtained by executing services according to a plan.

A specification of a user query consists of the following components: three
sets of objects IN , IO, and OU , two boolean formulas Pre (over IN ∪ IO)
and Post (over IN ∪ IO ∪ OU) specifying the initial and the expected worlds,
resp., a set of aggregate conditions and a set of quality expressions, to be defined
later. The objects of IN are read-only, these of IO can change values of their
attributes, and the objects of OU are produced in subsequent transformations.
The Pre and Post formulas define two families of valuation functions VPre and
VPost, determining values of objects from the initial and the expected worlds,
resp. A set of worlds is defined by a pair composed of a set of objects and a
family of valuation functions. In general, there are three main cases, when Pre or
Post formula defines a family of valuation functions instead of a single function.

3 Note that other types of values used in PlanICS framework, like strings, dates, and
Boolean values can be easily coded by integers.

312 A. Niewiadomski, W. Penczek, J. Skaruz

That is, when a formula contains: (i) an alternative, (ii) constraints that can be
satisfied by more than one valuation, or (iii) the formula does not specify values
of some attributes. In order to define a user query in a formal way, we need to
define the aggregate conditions and the quality expressions which, contrary to
the Pre and Post formulas, are evaluated over final worlds, so they can take into
account also objects not foreseen by the user, but created as by-products of the
transformations leading to the final worlds.

Definition 2 (Aggregate conditions, Quality expressions). A quality ex-
pression is a tuple (cl, sel, form, type), where cl is an object type (a class from
the ontology), sel is a boolean formula over attributes belonging to cl, form is a
real valued expression (built using standard arithmetic operators, like addition,
subtraction, multiplication and division) over attributes of class cl, and type ∈
{Sum,Min,Max}. An aggregate condition is a tuple (cl, sel, form, type,∼, lim),
where the first four components are defined as above, ∼ ∈ {<,≤,=, 6=, >,≥} is
a comparison operator, and lim ∈ R. A set of aggregate conditions is denoted by
Aggr, while a set of quality expressions is denoted by Qual.

The purpose of Qual is to specify criteria of the best plan, while Aggr is used in
order to add sophisticated restrictions on the resulting plan. Their interpretation
is the following. In order to evaluate a single aggregate condition or a quality
expression, first we need to separate a subset of a final world containing the
objects of type cl only. Next, we restrict this subset to the objects satisfying
sel condition. Then, for each object from the remaining set we compute the
value of form expression. Finally, the aggregation function type is applied to
the obtained set of values and as a result we get a single (real) value. In the case
of an aggregate condition, the obtained value is compared with lim constant,
using the provided operator ∼, and as a result we get a boolean value.

Example 2 (Query specification). Consider the ontology from Example 1. As-
sume that the user would like to invest up to $100 in three financial instru-
ments, but he wants to locate more than $50 in two investments. The above is
expressed by: IN = ∅, IO = {m : Money}, OU = {t1, t2, t3 : Transaction},
Pre = (m.amount ≤ 100), and Post = (t1.amount+ t2.amount > 50). The best
plan is clearly this which is the most profitable, i.e., the user wants to maximize
the sum of profits. Moreover, he wants to use only services of handling fees less
than $3. The above conditions are expressed by the following aggregate condi-
tion and the quality expression: Aggr = {(Charge, true, fee,Max,<, 3)}, and
Qual = {(Transaction, true, profit, Sum)}.

Formally, a user query is defined as follows:

Definition 3 (User query). A user query is a tuple (W I ,WE , Aggr,Qual),
where W I = (IN ∪ IO, VPre) and WE = (IN ∪ IO ∪ OU, VPost) are sets of
initial and expected worlds, respectively, Aggr is a set of aggregate conditions,
and Qual is a set of quality expressions.

In the first stage of composition an abstract planner matches services at the
level of input/output types and the abstract values. The result of this stage is a

GA vs SMT 313

Context Abstract Plan (CAP, for short), to be defined after introducing auxiliary
definitions. At this planning stage it is enough to know if an attribute does have
a value, so we abstract from the concrete values of the object attributes [9], using
the following definition.

Definition 4 (World correspondence). Let w = (O, val) be a world and
w′ = (O, val′) be an abstract world. We say that w′ corresponds to w iff for every

o ∈ O and for every a ∈ attr(o) val′(o, a) =

{
set, for val(o, a) 6= null,

null, for val(o, a) = null.

In order to compose services, we define the transformation sequences.

Definition 5 (Transformation sequence). Let k be a natural number and
seq =

(
(s1, cx1), . . . , (sk, cxk)

)
be a sequence of length k, where si is a service

type and cxi is a transformation context for i = 1, . . . , k. We say that a world
w0 is transformed by seq into a world wk iff there exists a sequence of worlds
(w1, w2, . . . , wk−1) such that ∀1≤i≤k wi−1

si,cxi−−−−→ wi. A sequence seq is called a
transformation sequence, if there are two worlds w,w′ such that w is transformed
by seq into w′. The world w′ is called a final world of seq.

Finally, we are in a position to define the result of the abstract planning phase.

Definition 6 (Abstract solution, CAP). Given a transformation sequence
seq and a user query q = (W I ,WE , Aggr,Qual). We say that seq is an abstract
solution for q iff for some w0 ∈W I , wk ∈WE, there are abstract worlds wI , wF ,
such that wI corresponds to w0 and wF corresponds to wk and wI is transformed
by seq into wF . A CAP for a query q is a pair CAPq = (seq, wF), where seq is
an abstract solution for q and wF is a final world of seq.

Thus, each CAP (seq, wF) contains information on the service types, the context
mappings, and a final world of seq. Note that using CAP, the ontology, and the
user query we are able to reproduce all the worlds of the transformation sequence.
A sequence seq is just a representative of a class of equivalent sequences [9, 10].

Collecting offers. In the second planning stage CAP is used by an offer collector
(OC), i.e., a tool which in cooperation with the service registry queries real-
world services. The service registry keeps an evidence of real-world web services,
registered accordingly to the service type system. During the registration the
service provider defines a mapping between input/output data of the real-world
service and the object attributes processed by the declared service type. OC
communicates with the real-world services of types present in a CAP, sending
the constraints on the data, which can potentially be sent to the service in an
inquiry, and on the data expected to be received in an offer in order to keep
on building a potential plan. Usually, each service type represents a set of real-
world services. Moreover, querying a single service can result in a number of
offers. Thus, we define an offer set as a result of the second planning stage.

314 A. Niewiadomski, W. Penczek, J. Skaruz

Definition 7 (Offer, Offer set). Assume that the n-th instance of a service
type from a CAP processes some number of objects having in total m attributes.
A single offer collected by OC is a vector P = [v1, v2, . . . , vm], where vj is a value
of a single object attribute from the n-th intermediate world of the CAP.

An offer set On is a k ×m matrix, where each row corresponds to a single
offer and k is the number of offers in the set. Thus, the element oni,j is the j-th
value of the i-th offer collected from the n-th service type instance from the CAP.

Example 3 (Offer, Offer sets). Consider the user query from Example 2 and
an exemplary CAP consisting of three instances of Investment service type. A
single offer collected by OC is a vector [v1, v2, v3, v4, v5], where v1 corresponds to
m.amount, v2 to t.amount, v3 to t.profit, and v4 to c.fee. Since the attribute
m.amount is updated during the transformation, the offers should contain values
from the world before and after the transformation. Thus v5 stands for the value
of m.amount after modification. Assuming that instances of Investment return
k1, k2, and k3 offers in response to subsequent inquiries, we obtain three offer
sets: O1, O2, and O3, where Oi is a ki × 5 matrix of offer values.

At the moment we develop two implementations of OC realizing the “simple”,
and the “intelligent” concept. The goal of the first approach is to rule out the
offers violating simple constraints from the user query. An intelligent OC, taking
advantage of an inference mechanism, a symbolic computation engine, and the
semantic knowledge from the ontology, aims at discovering more sophisticated
dependencies between offers and use them while collecting offers. Regardless of
the approach chosen, every implementation of OC should satisfy some common
requirements: a) the ability of a reconstruction of the intermediate worlds from a
CAP, b) returning offer sets corresponding to the objects processed by the service
types instances from a CAP, filled with the values acquired from real-world
services, c) propagating the values and constraints present in the user query
and returning them as expressions over offer sets, d) capturing the dependencies
between the values of object attributes from the worlds of a CAP and returning
them as expressions over offer sets, e) translating the set of quality expressions
specified as a part of the query to a scalar function defined over offer sets, being
the sum of all quality constraints.

In the third planning stage, the offers are searched by a concrete planner in
order to find the best solution satisfying all constraints and maximising a quality
function. Thus, we can formulate CPP as a constrained optimization problem.

Definition 8 (CPP). Let n be the length of CAP and let O = (O1, . . . , On) be
the vector of offer sets collected by OC such that for every i = 1, . . . , n

Oi =

 o
i
1,1 . . . o

i
1,mi

...
. . .

...
oiki,1

. . . oiki,mi

 , and the j-th row of Oi is denoted by P i
j . Let P denote

the set of all possible sequences (P 1
j1
, . . . , Pn

jn
), such that ji ∈ {1, . . . , ki} and

i ∈ {1, . . . , n}. The Concrete Planning Problem is defined as:

max{Q(S) | S ∈ P} subject to C(S), (1)

GA vs SMT 315

where Q : P 7→ R is an objective function defined as the sum of all quality
constraints and C(S) = {Cj(S) | j = 1, . . . , c for c ∈ N}, where S ∈ P, is a set
of constraints to be satisfied.

A solution of CPP consists in selecting one offer from each offer set such that all
constraints are satisfied and the value of the objective function is maximized.

Theorem 1. The concrete planning problem (CPP) is NP-hard.

Proof. See Appendix.

3 Concrete Planning using SMT

This section deals with our novel application of SMT to CPP viewed as a con-
strained optimization problem. The idea is to encode CPP as an SMT formula
such that there is a solution to CPP iff the formula is satisfiable. First, a set V
of all necessary SMT-variables (for simplicity called just variables) is allocated:

– q - for storing the subsequent values of the quality function found,
– oidi, where i = 1 . . . n and n is the length of the abstract plan. These

variables are needed to store the identifiers of offers constituting a solution.
A single oidi variable takes a value between 1 and ki.

– oi
j , where i = 1 . . . n, j = 1 . . .mi, and mi is the number of offer values in the
i-th offer set. We use them to encode the values of S, i.e., the values from
the offers chosen as a solution. From each offer set Oi we extract the subset
Ri of offer values which are present in the constraint set and in the quality
function, and we allocate only the variables relevant for the plan.

Next, using the variables from V, the offer values from the offer sets O =
(O1, . . . , On) are encoded as the formula

ofr(O,V) =
n∧

i=1

ki∨
d=1

(
oidi = d ∧

∧
oid,j∈Ri

oi
j = oid,j

)
. (2)

Then, the conjunction of all constraints is encoded as the formula ctr
(
C(S),V

)
,

and the objective function as the formula qual
(
Q(S),V

)
. For convenience its

value is bound with the variable q by q = qual
(
Q(S),V

)
. Thus, the formula

encoding the solutions of CPP is as follows:

cpp
(
O, Q(S),C(S),V

)
= ofr

(
O,V

)
∧ ctr

(
C(S),V

)
∧ q = qual

(
Q(S),V

)
(3)

The maximal value of q is searched using the SMTsearch procedure pre-
sented in Alg. 1 adapting the binary search method. The assumptions mechanism
of an SMT-solver is exploited, which consists in checking satisfiability of an SMT-
formula assuming that a set of boolean conditions are satisfied. In every iteration
the searched interval is divided in half and, since the objective function is to be

316 A. Niewiadomski, W. Penczek, J. Skaruz

Procedure SMTsearch(cpp
(
O, Q(S),C(S),V

)
, δ, min, max)

Input: encoded formula, accuracy, estimated min. and max. value of Q(S)
Result: the maximal value of q with an accuracy of δ

begin
pivot← (min+max)/2; a1 ← (q > pivot); i← 1; result← null;
A← {a1} ; // a single assumption a1 in the assumption set A
while (|max−min| > δ) do

if checkSat(cpp
(
O, Q(S),C(S),V

)
, A) then

i← i+ 1; result← q; min← q; pivot← (min+max)/2;
else

A← (A \ {ai}) ∪ {¬ai} ; // replace ai by ¬ai in A
max← pivot; pivot← (min+max)/2; i← i+ 1;

end
ai ← (q > pivot); A← A ∪ {ai};

end
return result

end
Algorithm 1: Pseudocode of the SMT-based CPP algorithm

maximized, a solution of value greater than a half (pivot) is searched. To this end
the whole formula is checked for satisfiability under the assumption (q > pivot).
If there is a solution, then its value becomes min. Otherwise, the searched value
is less or equal pivot, the last assumption is replaced by its negation, and pivot
value is assigned to max. Then, a new pivot value is computed and the algorithm
iterates again, while the length of the searched interval is greater than δ.

4 Experimental Results

In this section we present the results of the experiments performed using the Z3
SMT-solver running on a standard PC equipped with 2GHz CPU and 8GB RAM.
Since Genetic Algorithms are widely used in many optimization problems, we
compare the efficiency of our new SMT-based approach with the results obtained
using the standard GA, which we have implemented to this aim.

Implementation of GA. The only non-standard elements of our GA are the
concrete plan encoding scheme and the computation of the fitness function. An
individual is a sequence of indices of the offers chosen from the consecutive offer
sets. The fitness value of an individual is the sum of the optimization objective
and the ratio of the number of the satisfied constraints to the number of all
constraints (see Def. 8), multiplied by some constant β:

fitness(Ind) = Q(SInd) + β ·
|sat(C

(
SInd)

)
|

c
, (4)

where Ind stands for an individual, SInd is a sequence of the offer values corre-
sponding to Ind, sat

(
C(SInd)

)
is a set of the constraints satisfied by a candidate

GA vs SMT 317

solution represented by Ind, and c is the number of all constraints. The role of
β is to reduce both of the sum components to the same order of magnitude and
to control the impact of the components on the final result.

Experiments. In each of the experiments we use different optimization objec-
tives and constraints, and compare the obtained results. Equation 5 presents
the objectives Q1, Q2, Q3 used in the experiments 1-5, while the constraints are
combinations of C1,C2,C3 defined by Equation 6. In the experiments 6 and 7,
we use the constraints and the objective function of our working example.

Q1 =

n∑
i=1

oiji,1, Q2 =

n∑
i=1

oiji,2, Q3 =

n∑
i=1

(oiji,1 + oiji,2), (5)

C1 = {(oiji,1 < oi+1
ji+1,1

)}, C2 = {(oiji,2 < oi+1
ji+1,2

)}, C3 = {(oiji,2 = oi+1
ji+1,2

)}(6)

for i = 1, . . . , n− 1.

In all the experiments sets of offers generated randomly by our Offer Gen-
erator (OG) have been used. The values have been uniformly distributed in the
range between 0 and 100, but the α parameter has been introduced, which spec-
ifies a percentage of values below 33.3, in order to get different distributions of
high quality concrete plans. The following values of the GA parameters have
been used: the number of the individuals equals to 1000, the probability of mu-
tation equals to 0.5%, the probability of the one-point crossover operator equals
to 95%, and the algorithm was run 100 times for each setup. As to the SMT-
based algorithm, the 500 sec. time-out has been set. Each experiment has been
repeated only 10 times as the run-times obtained have been very similar, and
the quality values have been the same each time.

In Experiment 1 Q1 has been used as an optimization objective and C1 as
a set of constraints. In all experiments we have tested instances with 5, 10,
and 15 offer sets, containing 256, 512, and 1024 offers each. Two sets of offers
with α = 5% and α = 40% have been generated. The results are presented
in Table 1. The SMT-based planner always returns optimum, while GA, as a
non-deterministic algorithm, finds optimum in at most 20% cases, for instances
with 5 service types. All solutions are obtained within 0.25 to nearly 3 seconds.
Comparing quality we can observe that the difference between the SMT-solver
and GA ranges from 0.5% up to about 31% for instances with 15 service types.

In Experiment 2 the constraints remain the same (C1), the objective function
is similar (Q2), but we maximize the sum of other values than these used in the
constraints. Table 2 presents the impact of these changes on the SMT-based
planner. In comparison to the results of Exp. 1, the runtime of SMT-solver
increases.The biggest difference can be noticed for plans of length 15, however,
as it follows from the probability results, these are also hard to find for GA.
On the other hand, the power of SMT is in the ability to take advantage of the
constraints in order to reduce the search space. The results suggest that working
with constraints related to different variables than these used in the objective
function leads to longer runtimes of the SMT-solver.

318 A. Niewiadomski, W. Penczek, J. Skaruz

Table 1. The results of Experiment 1: left α = 40%, right α = 5%.
SMT GA SMT GA

Sp. n Offs t[s] Q t[s] AvgQ Bs. Pr. t[s] Q t[s] AvgQ Bs. Pr.
245

5
512 0.28 485 0.41 479.23 18 100 0.36 490 0.42 484.95 13 100

250 1024 0.52 490 0.86 481.95 4 100 0.52 490 0.76 484.9 9 100
280

10
256 0.51 920 0.47 720.21

0

92 0.47 955 0.47 794.64

0

91
290 512 0.68 955 0.83 797.97 91 0.72 955 0.83 824.96 97
2100 1024 1.27 955 1.59 802.44 100 1.33 955 1.59 853.56 98
2120

15
256 0.73 1350 0.9 929.3 10 0.95 1388 0.76 1102.07 14

2135 512 1.49 1377 1.47 998.8 15 1.28 1395 1.35 1092.33 12
2150 1024 2.06 1395 2.78 1027.43 16 2.09 1395 2.53 1086.85 14

Table 2. The results of Experiment 2: left α = 40%, right α = 5%.
SMT GA SMT GA

Sp. n Offs t[s] Q t[s] AvgQ Bs. Pr. t[s] Q t[s] AvgQ Bs. Pr.
245

5
512 0.87 499 0.37 493.62 4 100 0.50 499 0.39 498 17 100

250 1024 1.55 499 0.72 495.91 9 100 0.65 499 0.67 498.72 28 100
280

10
256 4.47 979 0.46 934.69 2 89 2.19 994 0.45 957.78 1 88

290 512 3.44 992 0.83 923.62 1 89 2.76 996 0.83 967.37

0

90
2100 1024 6.02 995 1.53 949.09

0

93 3.34 998 1.57 959.55 98
2120

15
256 249.46 1443 0.74 1269.87 8 100.26 1475 0.73 1416 9

2135 512 425.32 1467 1.5 1322.92 12 97.20 1489 1.35 1362.28 7
2150 1024 57.74 1493 2.67 1300.58 12 63.94 1495 2.49 1398.38 18

Table 3. The results of Experiment 3 (left) and Experiment 4 (right).
SMT GA SMT GA

Sp. n Offs t[s] Q t[s] AvgQ Pr. t[s] Q t[s] AvgQ Pr.
245

5
512 7.73 924 0.36 865.8 100 1.59 841 0.32 754.51 100

250 1024 3.95 947 0.61 892.13 100 1.41 904 0.62 781.3 100
280

10
256 > 500 1633* 0.4 1464.64 93 150.58 1207 0.4 1025.5 2

290 512 215.13 1803 0.7 1479.98 86 24.09 1562 0.69 1187.25 4
2100 1024 243.24 1862 1.29 1535.52 96 345.57 1655 1.34 1211.72 11
2120

15
256

> 500
2448* 0.64 2067.45 11

> 500
1550*

— 02135 512 2291* 1.15 2148.08 12 1567*
2150 1024 2630* 2.11 2134.35 17 2270*

Table 4. The results of Exp. 5 (left), Exp. 6 (center), and Exp. 7 (right).
SMT GA SMT GA SMT

Sp. n Offs t[s] Q t[s] AvgQ Pr. t[s] Q t[s] AvgQ Pr. t[s] Q
245

5
512 0.54 752 0.34 356.6 14 3.63 393 0.32 266.26 30 0.41 5

250 1024 0.85 866 0.64 420.2 10 3.48 469 0.6 274.86 30 0.68 10
280

10
256 0.73 noSol

— 0

35.24 683 0.4 289 8 0.32 noSol
290 512 5.01 780 159.09 753 0.68 399.22 18 1.18 12
2100 1024 3.51 1508 143.07 888 1.3 378.5 24 2.78 20
2120

15
256 1.10 noSol

>500
942* 0.64 446 1 1.00 noSol

2135 512 10.43 1164 767* 1.14 536 2 5.54 18
2150 1024 40.82 1287 755* 2.08 481 5 16.97 29

GA vs SMT 319

In order to discover the limitations of both the planners, in Experiments 3, 4,
and 5 we use the harder set of data, i.e., the offers generated with α = 40%. We
examine how the approaches deal with the “sum of sums” in the optimization
function, and thus in Exp. 3 we use Q3 as the optimization objective and C1

as the set of constraints. Moreover, we aim at confirming our conjecture on
behaviour of the SMT-solver in presence of a larger number of constraints. Thus,
in Exp. 4 we use Q3 as the optimization objective and C1 ∪ C2 as the set of
constraints. Table 3 presents the results.

Comparing the results of Exp. 2 and 3 one can notice that the more compli-
cated objective function has almost no influence on the runtime and the prob-
ability of finding solutions by GA. On the other hand, the instances from Exp.
3 seem to be a bit harder for GA because the quality difference between SMT
and GA is greater and ranges from 3.4% up to about 19%, and furthermore,
GA could not find an optimal solution. The results of our SMT-based approach
indicate that the constraints used in Exp. 3 are too weak to significantly bound
the search space. We were unable to find the optimal solution in four cases.

In Exp. 4 we use two times more constraints than in Exp. 3. Firstly, we
found the limit beyond which an application of GA is pointless. In Exp. 4 we
use 2 · (n − 1) constraints. For plans of length 10 and for 18 constraints GA
barely finds a few solutions quality of which differ from optimum by 12% to
almost 27%. Secondly, adding more constraints improves slightly the efficiency
of an SMT-solver. However, not only the number of constraints is important,
but also their influence on the number of existing solutions in the search space.
We prove it by choosing C1 ∪ C3 as the set of constraints (i.e., we change the
half of constraints from “less than” to “equal”) and running Exp. 5. The results
are in Table 4. The SMT-runtime decreases tremendously, as well as quality and
the probability of finding a solution by GA. Now, GA barely finds solutions of
length 5 quality of which differ from optimum by 13.7% up to almost 53%.

Experiments 6 and 7 are based on our working example and have been per-
formed on datasets with α = 90%. In Exp. 6 we used 6, 11, and 14 constraints for
plans of length 5, 10, and 15, respectively. The quality of solutions found by GA
is worse by about 30% to almost 58% than the ones found by the SMT-solver.
Moreover, the solutions have been found with a low probability. Unfortunately,
the runtimes of SMT-based planner are quite long in this case. However, using
a set of 11, 21, and 29 constraints for plans of length 5, 10, and 15, respectively,
which significantly reduces the number of solutions existing in the search space,
we obtain a very nice behaviour of our SMT-based planner in Exp. 7. Table 4
presents the results, where noSol means that there is no solution at all.

5 Conclusions

In the paper we have presented the concrete planning in the PlanICS framework,
its reduction to the constrained optimization problem, and a new SMT-based
approach to solve it. The experimental results, compared with results of the
standard GA, present advantages and disadvantages of both the approaches. The

320 A. Niewiadomski, W. Penczek, J. Skaruz

most important feature of the SMT-based planner is its ability of finding always
the optimal solution, provided that it is enough time and memory. In contrast,
GA finds sometimes the optimal solution of length at most 5, but it consumes
less time and memory. The ability of GA to find a concrete plan depends on the
number of constraints. The more optimization constraints the smaller probability
of finding a concrete plan. These drawbacks of GA are not common to our
SMT-based approach. Moreover, our experiments show that a large number of
constraints helps the SMT-solver to reduce the search space and to find the
optimal solution faster. Our experimental results show that an application of
the SMT-based method to solve CPP is promising and valuable against the well
known GA-based approach. Overall, both the approaches are complementary
and behave differently depending upon a particular problem instance.

References

1. S. Ambroszkiewicz. Entish: A language for describing data processing in open
distributed systems. Fundam. Inform., 60(1-4):41–66, 2004.

2. M. Bell. Introduction to Service-Oriented Modeling. John Wiley & Sons, 2008.
3. M. M. Bersani, L. Cavallaro, A. Frigeri, M. Pradella, and M. Rossi. SMT-based

verification of LTL specification with integer constraints and its application to
runtime checking of service substitutability. In SEFM, pages 244–254, 2010.

4. G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani. An approach for qos-
aware service composition based on genetic algorithms. In Proceedings of the 2005
Conference on Genetic and Evolutionary Computation, pages 1069–1075, 2005.

5. D. Doliwa, W. Horzelski, M. Jarocki, A. Niewiadomski, W. Penczek, A. Półrola,
and J. Skaruz. HarmonICS - a tool for composing medical services. In ZEUS,
pages 25–33, 2012.

6. D. Doliwa, W. Horzelski, M. Jarocki, A. Niewiadomski, W. Penczek, A. Półrola,
M. Szreter, and A. Zbrzezny. PlanICS - a web service compositon toolset. Fundam.
Inform., 112(1):47–71, 2011.

7. M. Elwakil, Z. Yang, L. Wang, and Q. Chen. Message race detection for web ser-
vices by an SMT-based analysis. In Proc. of the 7th Int. Conference on Autonomic
and Trusted Computing, ATC’10, pages 182–194. Springer, 2010.

8. G. Monakova, O. Kopp, F. Leymann, S. Moser, and K. Schäfers. Verifying business
rules using an SMT solver for BPEL processes. In BPSC, pages 81–94, 2009.

9. A. Niewiadomski and W. Penczek. Towards SMT-based Abstract Planning in Plan-
ICS Ontology. In Proc. of KEOD 2013 – International Conference on Knowledge
Engineering and Ontology Development, 2013 (to appear).

10. A. Niewiadomski, W. Penczek, and A. Półrola. Abstract Planning in PlanICS
Ontology. An SMT-based Approach. Technical Report 1027, ICS PAS, 2012.

11. J. Rao and X. Su. A survey of automated web service composition methods. In
Proc. of SWSWPC’04, volume 3387 of LNCS, pages 43–54. Springer, 2004.

12. Y. Wu and X. Wang. Applying multi-objective genetic algorithms to qos-aware web
service global selection. Advances in Information Sciences and Service Sciences,
3(11):134–144, 2011.

GA vs SMT 321

Appendix

Proof (NP-hardness of CPP). We show that concrete planning problem is NP-
hard by showing the linear reduction of 3-SAT problem to CPP. Consider a set
of propositional variables PV and 3-CNF formula ϕ = c1 ∧ c2 ∧ · · · ∧ cn, where
ci = (x1i ∨ x2i ∨ x3i), x

j
i = p or xji = ¬p, for every p ∈ PV, i = 1 . . . n and

j = 1 . . . 3. We encode the satisfiability problem of ϕ as a Concrete Planning
Problem CPP as follows.

We take a Context Abstract Plan (CAP) of length n, and n offer sets. Each
offer contains 3 values from the set {0, 1}, and each value corresponds to a single
propositional variable used in i-th clause. Each offer set contains all the possible
combinations of offer values (8 offers per set), that is, each offer set is an 8 × 3
matrix. Thus, P is the set of all possible binary sequences of length 3n.

We transform the formula ϕ to a set of constraints C in such a way that every
clause ci became a single constraint, where xji = p is encoded as oiki,j

= 1 and

xji = ¬p as oiki,j
= 0, for ki = 1 . . . 8 and p ∈ PV. Moreover, for every proposi-

tional variable p occurring in ϕ we take two subsets of offer variables Pp and Np,
which encode p and ¬p, respectively: Pp = {oiki,j

| for every i, j such that xji =

p} and Np = {oiki,j
| for every i, j such that xji = ¬p}. Now, for each non-

empty set Xp, where X ∈ {P,N} and p ∈ PV, we order the elements of
Xp according to increasing values of their indices and we build the sequence
Xp = (a1, a2, . . . , a|Xp|), where ai ∈ Xp. Next, we add the following constraints
to our constraint set: {(ai = ai+1) | for ai ∈ Xp and i = 1, . . . , (|Xp| − 1)}, that
is, we require the neighbouring elements of the sequence to be equal. Moreover,
for every pair of non-empty sequences (Pp, Np), where Pp = (a1, . . . , a|Pp|) and
Np = (b1, . . . , b|Np|), we add a single constraint: (a1 6= b1).

Finally, we take the constant objective function (e.g. Q(S) = 1, for S ∈ P).
Then, CPP has a solution iff ϕ is satisfiable.

Granular Mereotopology: A First Sketch

Lech Polkowski1,2 and Maria Semeniuk–Polkowska3

1 Polish-Japanese Institute of Information Technology
Koszykowa str. 86, 02-008 Warszawa, Poland

2 Department of Mathematics and Computer Science
University of Warmia and Mazury, Sloneczna 54, 10-504 Olsztyn, Poland

3 Chair of Formal Linguistics
University of Warsaw, Dobra str. 55, 00-312 Warszawa, Poland

polkow@pjwstk.edu.pl, m.polkowska@uw.edu.pl

Abstract. Mereotopology aims at a reconstruction of notions of set
topology in mereological universa. Because of foundational differences
between set theory and mereology, most notably, the absence of points
in the latter, the rendering of notions of topology in mereology faces
serious difficulties. On the other hand, some of those notions, e.g., the
notion of a boundary, belong in the canon of the most important notions
of mereotopology, because of applications in, e.g., geographic informa-
tion systems. Rough mereology allows for a formal theory of knowledge
granulation, and, granules may serve as approximations to open sets,
hence, it is reasonable to explore the possibility of their usage in buildup
of mereotopological constructs. This work is segmented into sections on
mereology, rough mereology, granule theory, mereotopology.
Keywords: spatial reasoning, mereotopology, rough mereology, bound-
ary, open set.

1 Standard Mereology

Under the term Standard Mereology we understand the theory of parts con-
structed by Stanislas Leśniewski, cf. [8], [10], [13]. Given some collection (a uni-
verse), say U , of things, a relation of part on them is a binary relation part which
is required to be

M1 Irreflexive: For each x ∈ U it is not true that part(x, x)
M2 Transitive: For each triple x, y, z of things in U , if part(x, y) and part(y, z),

then part(x, z)
Fig. 1 shows the chessboard with parts being white and black squares.
The relation of part gives rise to the relation of an ingredient, ingr, defined

as
ingr(x, y)⇔ π(x, y) ∨ x = y. (1)

Clearly, the relation of an ingredient is a partial order on things.
We formulate the third axiom of Standard Mereology which does involve the

notion of an ingredient. Before it, we introduce a property of things. For things
x, y, we let,

Granular Mereotopology: A First Sketch 323

Fig. 1. White and black squares as parts of the chessboard

I(x, y): For each thing t such that ingr(t, x), there exist things w, z such
that ingr(w, t), ingr(w, z), ingr(z, y)

Now, we can state an axiom.

M3 (Inference Rule) For each pair of things x, y, the property I(x, y) im-
plies that ingr(x, y)

The predicate of overlap, Ov in symbols, is defined by means of

Ov(x, y)⇔ ∃z.ingr(z, x) ∧ ingr(z, y). (2)

1.1 The class operator

Aggregation of things into a composite thing is done in set theory by means of
the union of sets operator. Its counterpart, and a generalization, in mereology,
is the class operator. For a non–empty property Φ of things, the class of Φ,
denoted ClsΦ, is defined by the conditions

C1 If Φ(x), then ingr(x,ClsΦ)

C2 If ingr(x,ClsΦ), then there exists z such that Φ(z) and I(x, z)

In plain language, the class of Φ collects in an individual object all objects
satisfying the property Φ.
The existence of classes is guaranteed by an axiom.

M4 For each non–vacuous property Φ there exists a class ClsΦ

The uniqueness of the class follows by M3.

In Fig. 1, we can discuss the class of white squares, the class of black squares,
or, the class of occupied squares.

Example 1. 1. The strict inclusion ⊂ on sets is a part relation. The corre-
sponding ingredient relation is the inclusion ⊆. The overlap relation is the
non–empty intersection. For a non–vacuous family F of sets, the class ClsF
is the union

⋃
F ;

324 L. Polkowski, M. Semeniuk–Polkowska

2. For reals in the interval [0, 1], the strict order < is a part relation and the
corresponding ingredient relation is the weak order ≤. Any two reals overlap;
for a set F ⊆ [0, 1], the class of F is supF .

The notion opposite to that of overlap is the notion of disjointness: its symbol
is extr, and, for things x, y,

extr(x, y)⇔ it is not true that Ov(x, y). (3)

The notion of a complement to an object, relative to another object, is rendered
as a ternary predicate comp(x, y, z), [8], par. 14, Def. IX, to be read:‘x is the
complement to y relative to z’, and it is defined by means of the following
requirements,

1. x = ClsEXTR(y, z);
2. ingr(y, z),

where EXTR(y, z)(t) holds if and only if ingr(t, z) and extr(t, y).
This definition implies that the notion of a complement is valid only when

there exists an ingredient of z exterior to y.
The notion of a class has been extensively studied motivated by its funda-

mental importance for foundations of mathematics, logics and mereology, cf.,
e.g., Lewis [9].

For the property Ind(x) ⇔ ingr(x, x), one calls the class ClsInd, the uni-
verse, in symbols V ,cf.,[8], par. 12, Def. VII. The complement with respect to
the universe of a thing serves as the complement in algebraic sense.

We let for an object x,

−x = ClsEXTR(x, V). (4)

It follows that

1. −(−x) = x for each object x;
2. −V does not exist.

In Fig. 1, the complement to the class of white squares is the class of black
squares (we assume that classes of squares are ingredients of the chessboard
as well). The operator −x can be a candidate for the Boolean complement in
a structure of a Boolean algebra within Mereology, constructed in [18], and
anticipated in [17]; in this respect, cf., [5]. This algebra will be obviously rid
of the null element, as the empty object is not allowed in Mereology , and the
meet of two objects will be possible only when these objects overlap. Under this
caveat, the construction of Boolean operators of join and meet proceeds as in
[18].

We define the Boolean sum x+ y by letting

x+ y = Cls(t : ingr(t, x) ∨ ingr(t, y)). (5)

In Fig. 2, we give an example of the sum which is the full moon as the sum
of the two quarters: 4th and 1st (’halves‘).

Granular Mereotopology: A First Sketch 325

Fig. 2. The 4th quarter of the moon =x; the 1st quarter of the moon =y; the full
moon= x+y

The product x · y, cf., [18] is defined in a parallel way,

If Ov(x, y) then x · y = Cls(t : ingr(t, x) ∧ ingr(t, y)). (6)

Operators +, ·,− and the unit V introduce the structure of a complete Boolean
algebra without the null element, cf., [18], [13].

An often invoked example of a mereological universe is the collection ROMn

of regular open sets in the Euclidean space En; we recall that an open set A is
regular open when

A = IntClA, (7)

where Int, Cl are , respectively, the interior and the closure operators of topology,
see, e.g., [10], Ch.2. In this universe, mereological notions are rendered as

1. ingr(A,B)⇔ A ⊆ B;
2. part(A,B)⇔ A ⊂ B;
3. Ov(A,B)⇔ A ∩B 6= ∅;
4. A ·B = A ∩B;
5. −A = Rn \ ClA;
6. A+B = A ∪B.

2 Rough Mereology

Rough Mereology, cf., , [10], [11], [12], introduces the notion of a part to a degree,
µ(x, y, r) read ‘x is a part in y to a degree of r’ with requirements

RM1 µ(x, y, 1)⇔ ingr(x, y)

RM2 µ(x, y, 1) ∧ µ(z, x, r)⇒ µ(z, y, r)

RM3 µ(x, y, r) ∧ s ≤ r ⇒ µ(x, y, s)

where ingr is the ingredient relation in an a priori assumed Mereology.

The relation µ called a rough inclusion in [11] can be induced in some ways
from t–norms, for t–norms, see, e.g., [6], [10], Ch. 4.

326 L. Polkowski, M. Semeniuk–Polkowska

2.1 Rough inclusions from residua of continuous t–norms

In the first case, for a continuous t–norm t, cf., e.g., [6], [10], Ch. 4, Ch. 6.2., the
residual implication x⇒t y defined as

x⇒t y = max{r : t(x, r) ≤ y}, (8)

yields the rough inclusion

µt(x, y, r)⇔ x⇒t y ≥ r. (9)

2.2 Rough inclusions from archimedean t–norms

In the other case, for the t–norm of Lukasiewicz,

tL(x, y) = max{0, x+ y − 1}, (10)

or, the product t–norm,

tP (x, y) = xy, (11)

see, e.g., [10], Ch. 4, which admit representations,

tL(x, y) = gL(fL(x) + fL(y)), tP (x, y) = gP (fP (x) + fP (y)) (12)

with

gL(x) = 1− x = fL(x), gP (x) = exp(−x), f(x) = −lnx, (13)

cf., [6], [10], Ch. 4, one defines the rough inclusion

µL(x, y, r)⇔ gL(|x− y|) ≥ r, (14)

respectively,

µP (x, y, r)⇔ gP (|x− y|) ≥ r. (15)

The last formula can be transferred to the realm of finite sets, with g either gL
or gP , as

µL
s (X,Y) = g(

|X 4 Y |
|X|

) =
|X ∩ Y |
|X|

, (16)

to the case of bounded measurable sets in En as

µL
G(X,Y) = g(

||X 4 Y ||
||X||

) =
||X ∩ Y ||
||X||

, (17)

where a4 b denotes the symmetric difference of a, b, |a| is the cardinality of a,
and, ||a|| is the measure (area) of a.

Granular Mereotopology: A First Sketch 327

2.3 Transitivity of rough inclusions

An important property of rough inclusions is the transitivity property. For rough
inclusions of the form µt with t being L or P , as well as for rough inclusions of
the form µt this property has the form, see Polkowski [10], Props. 6.7, 6.16,

µt(x, y, r) ∧ µt(y, z, s)⇒ µt(x, z, t(r, s)). (18)

In case of rough inclusions of the form µt, it becomes,

µt(x, y, r) ∧ µt(y, z, s)⇒ µt(x, z, t(r, s)). (19)

3 Granules as weakly open sets in rough mereology

We begin our study of mereotopology in a rough mereological universe U with
a given rough inclusion µ. In order to introduce topological structures, we first
introduce a mechanism of granulation in U . For a thing x in U and a real number
r in the interval [0, 1], we define the granule g(x, r, µ), about x of radius r, as

g(x, r, µ) is ClsM(x, r, µ), (20)

where
M(x, r, µ)(y)⇔ µ(y, x, r). (21)

Granules can be characterized in terms of rough inclusions as follows, see
Polkowski [10], Ch. 7, Props. 7.1, 7.2.

Proposition 1. For granules induced by rough inclusions of the form µt as well
as for granules induced by the rough inclusion µM , we have for each pair x, y of
things, ingr(y, g(x, r, µ)) if and only if µ(y, x, r).

For granules induced by rough inclusions µL, µP , the situation is more compli-
cated, see Polkowski [10], 7.3.

3.1 Open sets

We apply the granules to define neighborhoods of things in U . To this end, we
define a property N(x, r, µ) by letting,

N(x, r, µ)(y)⇔ ∃s > r.µ(y, x, s). (22)

The neighborhood n(x, r, µ) of a thing x of radius r relative to µ is defined as

n(x, r, µ) is ClsN(x, r, µ). (23)

The neighborhood system has properties of open sets, viz., see [10], Ch. 7,

1. If ingr(y, n(x, r, µ)), then ∃s.ingr(n(y, s, µ), n(x, r, µ));
2. If s > r, then ingr(n(x, s, µ), n(x, r, µ));

328 L. Polkowski, M. Semeniuk–Polkowska

3. If ingr(y, n(x, r, µ)) and ingr(y, n(z, s, µ)), then

∃q.ingr(n(z, sq, µ), n(x, r, µ)) and ingr(n(z, q, µ), n(y, s, µ)).

We define an open set as a collection of neighborhoods; the predicate open(F)
is therefore defined as,

open(F)⇔ ∀z.[z ∈ F ⇔ z is n(x, r, µ) for some x, r]. (24)

It is now possible to define open things as classes of open collections,

open(x)⇔ ∃F.open(F) ∧ x is ClsF. (25)

Closed things are defined as complements to open things,

closed(x)⇔ open(−x). (26)

We may need as well the notion of a closed collection, as the complement to
an open collection,

closed(F)⇔ open(−F), (27)

where, clearly, the complement −F is the collection obtained by applying the
mereological complement − to each member of F .

4 Boundaries

The practical importance of boundaries stems from their role as separating re-
gions among areas of interest like roads, rivers, fields, forests etc., and this causes
the theoretical interest in them. The notion of a boundary has been studied in
philosophy, mathematics, computer science by means of mereology. Mathemat-
ics resolved the problem of boundaries by topological notion of the boundary
(frontier) BdX of a set X in a topological space (U, τ) which was defined as

BdX = ClX \ IntX, (28)

i.e., any point x ∈ U satisfies

x ∈ BdX ⇔ ∀P.P open ∧ x ∈ P ⇒ P ∩X 6= ∅ 6= P ∩ (U \X).

It is evident from this definition that the notion of the boundary of X involves
in the symmetrical way the complement:

BdX = Bd(U \X). (29)

It also follows that the notion of a boundary is of infinitesimal character as
detecting whether x ∈ BdX involves neighborhoods of x of arbitrarily small
size.

Granular Mereotopology: A First Sketch 329

Philosophers noticed this duality of boundaries between things and their
complements and went even further, in the extreme cases, assigning the bound-
ary character to any thing by considering it as a potential boundary (the phe-
nomenon of plerosis, e.g., a point in the open disc can be the end point of any
radius from it to the perimeter of the disc, a fortiori, in the boundary of contin-
uum many segments. Moreover, e.g., the perimeter of the planar disc, considered,
e.g., in 3D space, can be the boundary of continuum many bubbles spanned on
the perimeter , see [2], [3], [15]).

4.1 Mereoboundaries

Topological definition of boundary led Smith [14] toward a scheme for defining
mereoboundaries. First, He proposes an axiomatic introduction of open sets as
interior parts, IP in symbols. In this context, the notion of straddling, Str in
symbols, is defined as,

Str(x, y)⇔ [∀z.IP (x, z)⇒ Ov(z, y) ∧Ov(z,−y)]. (30)

The notion of a boundary part is introduced in Smith [14] by means of an auxiliary
predicate

B(x, y)⇔ ∀z.ingr(z, x)⇒ Str(z, y). (31)

Boundary Bd(y) of a thing y is defined as

Bdy(y) = Cls{x : B(x, y))}. (32)

It is a straightforward task to verify that in the space ROMn of regular open
sets, each set x is an interior set of each of its supersets and requirements for
IP are fulfilled, Str(x, y) is satisfied in case Ov(x, y)∧Ov(x,−y) and B(x, y) is
satisfied for no x, y hence the boundary is not defined being empty. The reason
is a too liberal definition of straddling, allowing mere ingredients of a given thing
x.

4.2 Granular mereoboundaries

For this reason, we re–model the approach by Smith in [14] by allowing granular
neighborhoods as open things, a fortiori interior parts, and by restricting interior
parts to granular neighborhoods about the same thing. In detail, our approach
presents itself as follows.

We say that a granular neighborhood n(x, r, µ) granular straddles a thing y
if and only if the following property GStr(x, r, y) holds,

GStr(x, r, y)⇔ ∀s ∈ (r, 1).Ov(n(x, s, µ), y) ∧Ov(n(x, s, µ),−y). (33)

Let us observe that the notion of granular straddling is downward hereditary in
the sense that

GStr(x, r, y) ∧ s > r ⇒ GStr(x, s, y). (34)

330 L. Polkowski, M. Semeniuk–Polkowska

Also, it is manifest that this notion is upward hereditary, i.e.,

GStr(x, r, y)⇒ ∀s < r.GStr(x, s, y). (35)

With each granule g(x, r, µ), we associate the collection GN(x, µ) = {n(x, s, µ) :
s ∈ (0, 1)}, which we call the x − ultrafilter base. We say that an x-ultrafilter
base GN(x, µ) granular straddles a thing y if and only if there exists an s ∈ (0, 1)
such that GStr(x, s, µ), y) holds. We denote this fact with the symbol B(x, y).

We regard the collection GN(x, µ) as a point at infinity and, according to the
topological nature of boundary, we assign to the thing x such that the x-ultrafilter
base GN(x, µ) granular straddles a thing y this point at infinity as the boundary
point of y. Hence, we define the boundary of y, in symbols Bdy, as the collection
of those points,

Bdy is {x : B(x, y)}. (36)

Boundaries defined in this way are ingr−upward−hereditary in the sense,

ingr(z, x) ∧B(z, y)⇒ B(x, y). (37)

The proof follows from definitions by M3 and transitivity of the applied rough
inclusion. In view of the correspondence between things and ultrafilter bases,
we may say that the thing x is a boundary point of the thing y in case the
x–ultrafilter base granular straddles y. This approach does satisfy philosophical
postulates about boundary like

1. The boundary of a thing may not belong in the universe of considered things;
in other words, the boundary is of different topological type then the thing;

2. in order to preserve the typology of the boundary one has to preserve its
infinitesimal character;

3. the boundary of a thing may be a boundary of a plethora of other things ,
in particular, by necessity, it has to be the boundary of each complement to
the thing.

Let us observe that the set–theoretic complement to Bdy is open as it is the
collection,

{z : ∃s.ingr(n(z, s, µ), y) ∨ ingr(n(z, s, µ),−y)}, (38)

hence, Bdy is a closed collection for each thing y.
It is a straightforward task to check that in the space ROMn, for a regular

open set A, the granular boundary is defined by

B(Z,A)⇔ ClZ ∩A 6= ∅. (39)

5 Conclusion

We admit an infinitesimal nature of boundaries along with the fact that their
nature is distinct from the nature of things they bound, like it happens to closed

Granular Mereotopology: A First Sketch 331

nowhere dense boundaries of regular open sets, and we represent them by means
of ultrafilters constructed in the meta–space of collections of things. We have
aimed at giving a definition of boundary in purely mereological terms, without
any resort to augmentations which are necessary for a more exact description,
like geographic directions, notions of touching, contact, beacons, in a word many
other than mereological primitive notions, see, e.g., [1], [7].

References

1. Aurnague, M., Vieu, L., Borillo, A.: Representation formelle des concepts spatiaux
dans la langue. In: Denis, M. (ed.): Langage et Cognition Spatiale, Masson, Paris,
pp 69–102 (1997).

2. Brentano, F.: The Theory of Categories. Nijhoff, The Hague (1981).
3. Chisholm, R.: Spatial continuity and the theory of part and whole. A Brentano

study. Brentano Studien 4, pp 11–23 (1992–3).
4. Clarke, B. L.: A calculus of individuals based on connection. Notre Dame Journal

of Formal Logic 22(2), pp 204–218 (1981).
5. Clay, R.: Relation of Leśniewski’s Mereology to Boolean Algebra. The Journal of

Symbolic Logic 39, pp 638–648 (1974).
6. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998).
7. Hayes, P. J.: The second naive physics manifesto. In: Hobbs, J. R., Moore, R. C.

(eds.): Formal Theories of the Common–Sense World, Ablex, Norwood, pp 1–36
(1985).

8. Leśniewski, S.: Podstawy Ogólnej Teoryi Mnogości, I (Foundations of General
Set Theory, I, in Polish). Prace Polskiego Ko la Naukowego w Moskwie, Sekcya
Matematyczno–przyrodnicza (Trans. Polish Scientific Circle in Moscow, Section of
Mathematics and Natural Sciences) No. 2, Moscow (1916); see also Leśniewski, S.:
On the foundations of mathematics. Topoi 2, pp 7–52 (1982) (translation by E.
Luschei of the former).

9. Lewis, D.: Parts of Classes. Blackwell, Oxford UK (1991).
10. Polkowski, L.: Approximate Reasoning by Parts. An Introduction to Rough Mere-

ology. Springer Verlag, Berlin (2011).
11. Polkowski, L., Skowron, A.: Rough mereology. In: Proceedings of ISMIS’94. Lecture

Notes in Artificial Intelligence 869, Springer Verlag, Berlin, pp 85–94 (1994).
12. Polkowski, L., Skowron, A.: Rough mereology: a new paradigm for approximate

reasoning. International Journal of Approximate Reasoning 15 (4), pp 333–365
(1997).

13. Simons, P.: Parts. A Study in Ontology. Clarendon Press, Oxford UK (1987, repr.
2003).

14. Smith, B.: Mereotopology: A theory of parts and boundaries.Data and Knowledge
Engineering 20, pp 287–303 (1996).

15. Smith, B.: Boundaries: An essay in mereotopology. In: Hahn, L. (ed.): The Philos-
ophy of Roderick Chisholm. La Salle: Open Court, pp 534–561 (1997).

16. Sobociński, B.: Studies in Leśniewski’s Mereology. Yearbook for 1954-55 of the
Polish Society of Art and Sciences Abroad V, pp 34–43 (1954–5).

17. Tarski, A.: Les fondements de la géométrie des corps. Supplement to Annales de
la Société Polonaise de Mathématique 7, pp 29–33 (1929).

18. Tarski, A.: Zur Grundlegung der Booleschen Algebra. I. Fundamenta Mathemati-
cae 24, pp 177–198 (1935).

SMT-Based Reachability Checking
for Bounded Time Petri Nets

Extended Abstract

A. Półrola, P. Cybula, and A. Mȩski

1 University of Łódź, FMCS, Banacha 22, 90-238 Łódź, Poland
{polrola,cybula}@math.uni.lodz.pl

2 Institute of Computer Science, PAS, Jana Kazimierza 5, 01-248 Warsaw, Poland
meski@ipipan.waw.pl

Abstract. Time Petri nets by Merlin and Farber are a powerful mod-
elling formalism. However, symbolic model checking methods for them
consider in most cases the nets which are 1-safe, i.e., allow the places to
contain at most one token. In our paper we present a preliminary version
of the approach aimed at testing reachability for time Petri nets with-
out this restriction. We deal with the class of bounded nets restricted
to disallow multiple enabledness of transitions, and present the method
of reachability testing based on a translation into a satisfiability modulo
theory (SMT).

1 Introduction

The process of design and production of both systems and software – among
them, the concurrent ones – involves testing whether the product conforms to
its specification. This can be achieved using various kinds of formal methods.
However, in order to apply any of these methods, the system to be tested needs to
be modelled using an appropriate formalism. One of such formalisms, applicable
to modelling systems with time dependencies, are time Petri nets by Merlin
and Farber [1]. Numerous subclasses of time Petri nets have been proposed, i.e.,
1-safe, bounded, unbounded, distributed nets, and many others.

For concurrent systems, the size of the state-space of the analysed system is
a significant factor in the efficiency of the verification. The fact that verification
methods need to explore the reachable state-space can lead to the state-space
explosion problem. This follows from the fact that the size of the model grows
exponentially with the number of the components of the system. Therefore, the
development of methods that alleviate this problem is considered an important
research subject.

There exist many papers dealing with model checking time Petri nets [2–
11]. Most of them describe techniques based on explicitly-represented abstrac-
tions of the state spaces. The developed fully symbolic methods include decision
diagrams-based ones: reachability verification for Integer Timed Petri Nets [10]

SMT-Based Reachability Checking for Bounded Time Petri Nets 333

as well as LTL and ECTL verification for (1-safe) Distributed Time Petri Nets [6],
and SAT-based methods for the distributed nets [6, 8].

This paper presents our first attempt to apply a satisfiability modulo theory
(SMT) to verification of (bounded) time Petri nets, i.e., reachability testing
for the nets restricted to disallow multiple enabledness of transitions. We use
a bounded model checking technique (BMC), i.e., consider models truncated
up to a specific depth, and transform the reachability problem into a test of
satisfiability of a set of (integer) inequalities. Although the current version of
the method was implemented, and we provide some preliminary experimental
results, we consider our work to be in progress, and we plan on improving the
efficiency of our implementation, as well as to extend it in a way allowing to test
more involved reachability-related properties and to handle bounded nets with
multiple enabledness of transitions [12].

The rest of the paper is organised as follows: in Sec. 2 we introduce bounded
time Petri nets, their concrete state spaces and concrete models. The next Sec. 3
discusses reachability verification using SMT. In Sec. 4 and Sec. 5 we provide
some preliminary experimental results and concluding remarks.

2 Time Petri Nets

Let IN (IN+) denote the set of (nonnegative) integers, and IR (IR+) - the set of
(nonnegative) reals. We start with a definition of time Petri nets:

Definition 1. A time Petri net (TPN for short) is a tuple N = (P, T, F, cap, w,
m0, Eft, Lft), where

– P = {p1, . . . , pnP
} is a finite set of places,

– T = {t1, . . . , tnT
} is a finite set of transition s.t. P ∩ T = ∅,

– F ⊆ (P × T) ∪ (T × P) is a flow relation,
– cap : P → IN+ ∪ {∞} is a partial capacity restriction,
– w : F → IN+ is an arc weight function,
– m0 : P → IN with m0(p) ≤ cap(p) for each p ∈ P is an initial marking,
– Eft : T → IN, Lft : T → IN ∪ {∞} are functions describing the earliest

and the latest firing time of a transition, where for each t ∈ T we have
Eft(t) ≤ Lft(t).

A TPN N is called k-bounded, for some k ∈ IN+, if cap(p) ≤ k for each p ∈ P ,
and is called bounded if there is k ∈ IN such that N is k-bounded. The value k is
called a bound of N . In what follows we consider bounded time Petri nets only.

For a transition t ∈ T we define its preset •t = {p ∈ P | (p, t) ∈ F} and
postset t• = {p ∈ P | (t, p) ∈ F}, and consider only the nets such that for each
transition the preset and the postset are nonempty. Moreover, we restrict to the
nets satisfying the condition ∀p∈P cap(p) < 2 · min{w(p, t) | t ∈ T s.t. p ∈ •t}
which prevents multiple enabledness of transitions.

We introduce the following notations and definitions:

334 A. Półrola, P. Cybula, and A. Mȩski

– a marking of N is a function m : P → IN,
– a transition t ∈ T is enabled at a marking m (m[t〉 for short) if

? for each p ∈ •t it holds w(p, t) ≤ m(p), and
? for each p ∈ t• it holds m(p) − w(p, t) + w(t, p) ≤ cap(p) if p ∈ •t ∩ t•,

and m(p) + w(t, p) ≤ cap(p) otherwise,
– en(m) = {t ∈ T | m[t〉} is the set of all the transitions enabled in a marking
m of N ,

– the marking m′ obtained by firing t ∈ en(m) at m is given by

m′(p) =

m(p) if (p, t) 6∈ F ∧ (t, p) 6∈ F ;
m(p)− w(p, t) if (p, t) ∈ F ∧ (t, p) 6∈ F
m(p) + w(t, p) if (p, t) 6∈ F ∧ (t, p) ∈ F
m(p)− w(p, t) + w(t, p) if (p, t) ∈ F ∧ (t, p) ∈ F .

The marking is denoted by m[t〉 as well, if it does not lead to misunderstand-
ing,

– newly_en(m, t) = {u ∈ T | u ∈ en(m[t〉) ∧ (∃p∈(t•\•t)∩•um(p) < w(p, u) ∨
∃p∈•t∩t•∩•um(p) − w(p, t) < w(p, u) ∨ ∃p∈u•∩•tm(p) + w(u, p) > cap(p))} is
a set of transitions which became (newly) enabled by firing t at m.

2.1 Concrete State Spaces and Models

The current state of the net is given by its marking and the time passed since
each of the enabled transitions became enabled (which influences the further
behaviour of the net). A concrete state σ of a TPN N is thus a pair (m, clock),
where m : P → IN is a marking, and clock : T → IR+ is a function which for
each transition t ∈ en(m) gives the time elapsed since t became enabled most
recently. The set of all the states of N is denoted by Σ. The initial state of N is
σ0 = (m0, clock0), where m0 is the initial marking of N , and clock0(t) = 0 for
each t ∈ T .

For δ ∈ IR+, let clock + δ denote the function given by (clock + δ)(t) =
clock(t) + δ, and let (m, clock) + δ denote (m, clock + δ). The states of N can
change due to a passage of time or due to a firing of a transition. The transition
relation →⊆ Σ × (T ∪ IR+)×Σ of the net N is thus given by:

– in a state σ = (m, clock) a time δ ∈ IR+ can pass leading to a new state σ′ =
(m, clock′) (denoted σ δ→ σ′) iff (clock + δ)(t) ≤ Lft(t) for each t ∈ en(m)
(time successor relation),

– in a state σ = (m, clock) a transition t ∈ T can fire leading to a new state
σ′ = (m′, clock′) (denoted σ t→ σ′) if t ∈ en(m), Eft(t) ≤ clock(t) ≤ Lft(t),
m′ = m[t〉, and for all u ∈ T we have clock′(u) = 0 for u ∈ newly_en(m, t),
and clock′(u) = clock(u) otherwise (action successor relation).

Intuitively, the time successor relation does not change the marking of the net,
but increases the clocks of all the transitions, provided no enabled transition
becomes disabled by passage of time. Firing of a transition t takes no time (the
only change it introduces to the clocks is reseting these related to the newly
enabled transitions) and is allowed provided that t is enabled and its clock is

SMT-Based Reachability Checking for Bounded Time Petri Nets 335

not smaller than Eft(t) and not greater than Lft(t). The structure (Σ, σ0,→)
is called a concrete state space of N .

A timed run of N starting at a state σ0 ∈ Σ (σ0-run) is a maximal sequence
of concrete states, transitions and time passings ρ = σ0

a0→ σ1
a1→ . . ., where

σi ∈ Σ, and ai ∈ T ∪ IR+ for all i ∈ IN. A state σ? is reachable if there exists a
σ0-run ρ and i ∈ IN such that σ? = σi, where σi is an element of ρ. The set of
all the reachable states of N is denoted by ReachN .

Given a set of propositional variables PV , we introduce a valuation function
V : Σ → 2PV which assigns the same propositions to the states with the same
markings. We assume the set PV to be such that each q ∈ PV corresponds to
an (in)equality I(q) of the form m(p) ∼ a or m(p)⊕m(p′) ∼ a, where p, p′ ∈ P ,
∼∈ {≤, <,=, >,≥}, ⊕ ∈ {+,−}, and a ∈ {0, 1, . . . , 2k}, where k is a bound
of N . The function V is defined by q ∈ V ((m, clock)) iff I(q) holds for m. The
structure M(N) = (Σ, σ0,→, V) is called a concrete model of N .

3 Testing Reachability

The reachability problem for a time Petri net N consists in checking, given a
property ϕ, whether N can ever be in a state where ϕ holds. The property
is expressed in terms of propositional variables. Therefore, the problem can be
translated into testing whether the set ReachN contains a marking of certain fea-
tures expressed by ϕ. Checking this can be performed by an explicit exploration
of the concrete model for N , but such an approach is usually very inefficient.

If a reachable state satisfying ϕ exists then proving this can be done using
a part of the model only. This enables us to apply the bounded model checking
method [13]. The main idea of testing reachability using BMC consists in search-
ing for an reachability witness of a bounded length l (i.e., for a path leading from
the initial state to a state satisfying ϕ). One of the possible approaches to this
problem consists in generating a logical formula satisfiable iff such a witness ex-
ists, and checking its satisfiability using an appropriate solver. The most common
choice here is to use a SAT-solver and a propositional formula, but alternatively
an SMT-solver (i.e. a solver capable to test satisfiability of a first-order logic
over a built-in theory) and the corresponding first-order logic can be used. We
apply the second approach.

In order to check whether a state satisfying ϕ is reachable, we first replace the
modelM(N) by a model with a restricted set of timed labels, i.e., with IR+ sub-
stituted by [0, cmax +1], where by cmax we mean the greatest finite value of Eft
and Lft of the transitions in N . It can be shown that such a model is bisimilar
with M(N). Moreover, we restrict to integer time steps only, as they are suffi-
cient to prove reachability [14, 15]. Then, we represent the states of the obtained
model using integer variables, encode its transition relation in terms of the logic
over integer arithmetics, and encode all the paths of a given length l starting
at the initial state of N as a formula Path(l). We encode also the fact that the
property ϕ holds in the last state of a path as a formula encode_prop(σl, ϕ) (we
omit technical details of the encodings in the current version of the work), and

336 A. Półrola, P. Cybula, and A. Mȩski

check satisfiability of the formula α := Path(l)∧encode_prop(σl, ϕ). The above
procedure is started from the length of a potential witness l = 0, and repeated
iteratively up to (at most) l = |M(N)|. The process is stopped when the formula
α is satisfiable, as this means that reachability of a state satisfying ϕ is proven,
and therefore no further tests are necessary.

As usually in the case of bounded model checking methods, the above pro-
cedure can be inefficient if no state satisfying ϕ exists, since the depth of the
part of the model considered (i.e., l) strongly influences the size of the encoding.
Proving unreachability should therefore be done using a different algorithm we
do not deal with in the current version of the paper.

3.1 Solving Other Reachability-Related Problems

The language of the propositions used enables to express not only simple prop-
erties of the form “a place p contains exactly x tokens”, but also more involved
ones, corresponding to various features of a marking of the net, e.g., “a place
p contains more tokens than a place q”, “the difference between the numbers of
tokens in p and p′ is greater than 5” etc. However, augmenting the net with an
additional component enables testing also certain time-related properties.

p2p1
p3

time_exceeded

tick
[1,1]

[1,1]

Fig. 1. An additional component

An example of such a component is shown in Fig. 1. If we set cap(p2) and
w(p2, time_exceeded) to a certain value x ∈ IN+, the number of tokens in the
place p2 corresponds to the number of time units (not greater than x) passed
since the net started, and a token in p3 means that the time assumed has been
exceeded. So, augmenting the net with this component enables to express in
terms of reachability of a marking the properties like “a state satisfying ϕ is
reachable in less / more than x time units”. It is also possible to search for
minimal / maximal time in which a state satisfying ϕ is reached, using the
method similar to that described in [8].

4 Experimental Results

In this section, we present preliminary experimental results for the described
method. The implemented tool consists of a module that generates an SMT input
(the translation) for the SMT-solver, and a guiding module that performs the

SMT-Based Reachability Checking for Bounded Time Petri Nets 337

execution of the verification task which calls the generator module and the SMT-
solver for the increasing lengths of the paths, until the SMT-solver terminates
with a satisfiable formula.

We also provide a comparison with Sift which is a module of the Tina tool-
box [16] providing on-the-fly verification capabilities. The results we present
were generated using the switch -D, i.e., reachability was tested on the graph of
essential states [14], similarly as in our method.

The translation module is implemented in C++ language, and the guiding
module is implemented as a simple UNIX shell script. The SMT-solver used
in the experiments was Z3 (version 4.3.2) [17]. The experiments were executed
on a Linux 3.9.8 system, equipped with AMD X6 FX-6100 processor, and 8GB
of memory. However, for all our experiments we assume the time limit of 2000
seconds, and the memory limit of 2000 MiB.

4.1 Fischer’s Mutual Exclusion Benchmark

waiting2

waiting1

setx0_1

enter1
trying1

critical1

idle2

start2

trying2 critical2

setx0_2

place 0

place 2

idle1 start1 setx1−copy1

setx1

setx1−copy2

setx2−copy2

setx2

enter2
setx2−copy1

place 1
counter

[0,∞)

[0,∞)

[0,∞)

[0,∞)

[0, ∆]

[0, ∆]

[0, ∆]

[0, ∆]

[δ,∞)

[0, ∆]

[0, ∆]
[δ,∞)

Fig. 2. A net for Fischer’s mutual exclusion protocol for n = 2

In this benchmark we consider a net for the Fischer’s mutual exclusion pro-
tocol [18] depicted in Figure 2. In our figures we assume that unless stated (or

338 A. Półrola, P. Cybula, and A. Mȩski

denoted in the figure) otherwise, the weight of all the arcs is 1, and the capacity
restriction is also 1.

The net models n processes with critical sections. When the i-th process
enters (leaves) its critical section criticali (for i ∈ {1, · · · , n}), the number
of tokens in the counter place is incremented (decremented). We assume that
cap(counter) = n. The mutual exclusion property of the protocol depends on
the values of the time-delay constants δ and ∆, i.e., the property is preserved
iff ∆ < δ.

For this benchmark, we assume ∆ = 2 and δ = 1, and we test the reachability
of a marking m such that m(counter) > 1. The experimental results for this
benchmark are presented in Table 1. The time is given in seconds (cpu time),
and the memory in MiB. Where the assumed time or memory limit was exceeded,
we denote this in the tables with the symbol ?.

4.2 Assembly Line Benchmark

· · ·

· · ·

· · ·
storage

[a, b] [a, b] [a, b]

[c, d][c, d]
[g, h]

[e, f] [e, f]

[g, h] [g, h]
[c, d]

[e, f]

sup1
s1 s2 sn

ready1 ready2 readyn

sup2 supn done

idle1 idle2 idlen

prep1 prep2 prepn

asm1 asm2

asmn

start1
finish1

reset1

start2 startn

reset2 resetn

finish2 finishn

n
n

n− 1 n− 1 n− 2 1 1

n

[x, y]
d

delivered

Fig. 3. Assembly line

A net for an abstract assembly line inspired by the generalised transfer chain
model from [19] is presented in Figure 3. It consists of n assembly workers,
and a supplier that provides resources needed in the assembly process. There
are n resource packages which are represented by tokens in places supi for
i ∈ {1, · · · , n}. When an i-th worker receives the resource package via the si
transition, it first prepares for the assembly process (prepi), then performs the
assembly itself (asmi), and when finishing (finishi) it also delivers the assem-
bled product to the storage (storage). Then, it idles (idlei), and becomes ready
again (readyi).

For all p ∈ {sup1, · · · , supn, storage, delivered} we assume cap(p) = n. How-
ever, note that it could also be assumed that cap(supi) = n − i + 1 for i ∈
{1, · · · , n}.

SMT-Based Reachability Checking for Bounded Time Petri Nets 339

In our benchmark, we also assume the following time constraints in the sys-
tem: a = 0, b = 5, c = 0, d = 1, e = 0, f = 1, g = 0, h = 1, x = 0, and
y = 100. Then, we test the reachability of a marking m, where m(done) > 0 and
m(storage) > 0. The length of the witness for this property is n+ 2, where n is
the number of assembly workers. The experimental results for this benchmark
are presented in Table 2. Similarly as before, with ? we mark the cases when the
assumed time or memory limit was exceeded.

SMT-BMC TINA (sift)
n time memory time memory
2 1.143 12.4 0.01 4.02
3 2.864 12.4 0.01 4.02
4 5.165 12.72 0.01 4.02
5 7.860 16.07 0.01 4.02
6 11.543 22.80 0.01 4.02
7 16.632 27.13 0.01 4.02
8 23.782 33.60 0.01 4.02
9 34.094 40.93 0.03 21.05
10 45.082 52.79 0.05 39.62
11 62.156 60.41 0.06 37.93
12 88.648 73.39 0.09 42.87
13 113.881 82.92 0.12 72.55
14 144.093 102.99 0.12 133.74
15 188.220 119.49 0.28 199.49
16 230.758 132.14 0.39 296.74
17 287.631 147.20 0.57 392.93
18 349.011 168.58 0.68 514.87
19 425.466 194.11 0.89 684.80
20 517.590 212.50 1.16 903.99
21 634.941 262.36 1.64 1202.24
22 775.141 282.44 1.91 1539.24
23 980.982 334.33 2.47 1877.18
24 1097.792 359.29 3.35 2387.43?

25 1311.071 385.24 4.29 2932.49?

26 1508.893 423.76 5.34 3715.05?

27 1721.292 452.26 5.45 3631.68?

28 1986.422 506.51 5.28 3606.80?

29 2242.422? 551.32

Table 1. Results for Fischer’s Protocol

SMT-BMC TINA (sift)
n time memory time memory
2 1.073 15.70 0.01 4.02
3 2.387 27.52 0.01 4.02
4 4.574 43.74 0.01 4.02
5 8.071 60.08 0.01 4.02
6 13.315 85.56 0.01 4.02
7 20.373 106.97 0.02 4.02
8 30.039 142.03 0.03 28.24
9 41.742 172.50 0.05 38.12
10 54.235 202.65 0.13 95.74
11 71.999 235.27 0.25 214.80
12 94.619 295.05 0.56 519.68
13 124.712 336.16 1.28 1202.62
14 159.626 382.76 2.88 2664.55?

15 184.786 428.20 4.33 3552.93?

16 239.593 477.61 5.44 3891.19?

17 314.841 570.93 6.14 3891.19?

18 371.564 632.92
19 479.219 686.16
20 581.981 753.00
21 717.623 818.28
22 920.044 894.76
23 1135.285 964.96
24 1238.729 1115.49
25 1674.850 1195.32
26 1860.204 1280.82
27 2219.660? 1374.26

Table 2. Results for Assembly Line
system

It can be seen from the above results that our implementation has much
longer execution times than Tina. However, our method requires less memory
than the corresponding Tina execution, and the differences are also significant.

340 A. Półrola, P. Cybula, and A. Mȩski

One should also comment on the lack of any comparison with the imple-
mentation of the SAT-based reachability verification described in [8]. The paper
mentioned provides experimental results for the Fischer’s mutual exclusion pro-
tocol obtained on a computer equipped with Intel Pentium Dual CPU (2.00
GHz) and 2 GB of main memory, and confirms verifying the system consisting
of 40 processes in 2999.5 seconds and using 1153.2 MB of memory. This seems
to be a far better result. However, it should be noticed that the method of [8]
was developed for distributed TPNs, of a semantics aimed at making verifica-
tion more efficient than in the standard case (i.e., of the one in which clocks are
assigned to the processes of the net instead of to the transitions which enables
to reduce their number from 6n to n+ 1). The distributed nets are also 1-safe,
which reduces further the complexity of their description.

5 Final Remarks

We have presented a preliminary version of a reachability verification method
for (bounded) time Petri nets, based on bounded model checking and SMT. In
our future work we are going to build upon this method an approach allowing
to verify more involved properties. In the preliminary comparison with Tina our
method performed efficiently in terms of the memory consumption when testing
the reachability property, which is very promising for the mentioned extension
of our work.

Acknowledgements. Artur Mȩski acknowledges the support of the EU, Euro-
pean Social Fund. Project PO KL “Information technologies: Research and their
interdisciplinary applications” (UDA-POKL.04.01.01-00-051/10-00).

References

1. Merlin, P., Farber, D.J.: Recoverability of communication protocols – implication
of a theoretical study. IEEE Trans. on Communications 24(9) (1976) 1036–1043

2. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems
using time Petri nets. IEEE Trans. on Software Eng. 17(3) (1991) 259–273

3. Berthomieu, B., Vernadat, F.: State class constructions for branching analysis
of time Petri nets. In: Proc. of the 9th Int. Conf. on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’03). Volume 2619 of LNCS.,
Springer-Verlag (2003) 442–457

4. Boucheneb, H., Hadjidj, R.: CTL∗ model checking for time Petri nets. Theoretical
Computer Science 353(1) (2006) 208–227

5. Lime, D., Roux, O.H.: Model checking of time Petri nets using the state class
timed automaton. Discrete Event Dynamic Systems 16(2) (2006) 179–205

6. Mȩski, A., Penczek, W., Półrola, A., Woźna-Szcześniak, B., Zbrzezny, A.: Bounded
model checking approaches for verificaton of distributed time Petri nets. In: Proc. of
the Int. Workshop on Petri Nets and Software Engineering (PNSE’11), University
of Hamburg (2011) 72–91

SMT-Based Reachability Checking for Bounded Time Petri Nets 341

7. Penczek, W., Półrola, A.: Abstractions and partial order reductions for check-
ing branching properties of time Petri nets. In: Proc. of the 22nd Int. Conf. on
Applications and Theory of Petri Nets (ICATPN’01). Volume 2075 of LNCS.,
Springer-Verlag (2001) 323–342

8. Penczek, W., Półrola, A., Zbrzezny, A.: SAT-based (parametric) reachability for a
class of distributed time Petri nets. In: Trans. on Petri Nets and Other Models of
Concurrency IV. Volume 6550 of LNCS. Springer-Verlag (2010) 72–97

9. Virbitskaite, I.B., Pokozy, E.A.: A partial order method for the verification of
time Petri nets. In: Fundamental of Computation Theory. Volume 1684 of LNCS.
Springer-Verlag (1999) 547–558

10. Wan, M., Ciardo, G.: Symbolic reachability analysis of integer timed Petri nets.
In: Proc. 35th International Conference on Current Trends in Theory and Practice
of Computer Science (SOFSEM). (2009) 595–608

11. Yoneda, T., Ryuba, H.: CTL model checking of time Petri nets using geometric
regions. IEICE Trans. Inf. and Syst. 3 (1998) 1–10

12. Boyer, M., Diaz, M.: Multiple enabledness in Petri nets with time. In: Proc. of
the 9th Int. Workshop on Petri Nets and Performance Models (PNPM’01). (2001)
219–228

13. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Proc. of the 5th Int. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’99). Volume 1579 of LNCS., Springer-Verlag
(1999) 193–207

14. Popova-Zeugmann, L.: Time Petri nets state space reduction using dynamic pro-
gramming. Journal of Control and Cybernetics 35(3) (2006) 721–748

15. Janowska, A., Penczek, W., Półrola, A., Zbrzezny, A.: Towards discrete-time verifi-
cation of time Petri nets with dense-time semantics. In: Proc. of the Int. Workshop
on Concurrency, Specification and Programming (CS&P’11), Bialystok University
of Technology (2011) 215–228

16. Berthomieu, B., Ribet, P.O., Vernadat, F.: The tool TINA - construction of ab-
stract state spaces for Petri nets and time Petri nets. International Journal of
Production Research 42(14) (2004)

17. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Proc. of the 14th
Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’08). Volume 4963 of LNCS., Springer-Verlag (2008) 337–340

18. Abadi, M., Lamport, L.: An old-fashioned recipe for real time. In: REX workshop
on Real-Time: Theory in Practice. Volume 600 of LNCS., Springer-Verlag (1991)
1–27

19. Tsinarakis, G., Tsourveloudis, N., Valavanis, K.: Modular Petri net based model-
ing, analysis, synthesis and performance evaluation of random topology dedicated
production systems. Journal of Intelligent Manufacturing 16(1) (2005) 67–92

A Bi-objective Optimization Framework for
Query Plans

Piotr Przymus1, Krzysztof Kaczmarski2, and Krzysztof Stencel3

1 Nicolaus Copernicus University, Poland, eror@mat.umk.pl
2 Warsaw University of Technology, Poland, k.kaczmarski@mini.pw.edu.pl

3 The University of Warsaw, Poland, stencel@mimuw.edu.pl

Abstract. Graphics Processing Units (GPU) have significantly more
applications than just rendering images. They are also used in general-
purpose computing to solve problems that can benefit from massive par-
allel processing. However, there are tasks that either hardly suit GPU
or fit GPU only partially. The latter class is the focus of this paper.
We elaborate on hybrid CPU/GPU computation and build optimisation
methods that seek the equilibrium between these two computation plat-
forms. The method is based on heuristic search for bi-objective Pareto
optimal execution plans in presence of multiple concurrent queries. The
underlying model mimics the commodity market where devices are pro-
ducers and queries are consumers. The value of resources of computing
devices is controlled by supply-and-demand laws. Our model of the opti-
mization criteria allows finding solutions of problems not yet addressed
in heterogeneous query processing. Furthermore, it also offers lower time
complexity and higher accuracy than other methods.

1 Introduction

General-Purpose computing on Graphics Processing Units (GPGPU) involves
utilization of graphics processing units (GPU) in tasks traditionally handled
by central processing units (CPU). GPUs offer a notable processing power for
streams.

Execution of database queries is an example of a successful application of
GPGPU. The current research focuses on using the GPU as a co-processor [5].
GPU as co-processor may accelerate numerous database computations, e.g. rela-
tional query processing, query optimization, database compression or supporting
time series databases [5,13,14].

An application of GPU requires transferring data from the CPU memory
to the graphical device memory. The data transfer is usually time-consuming. It
may diminish the gain of the acceleration credited to GPU. This situation can be
improved by using lightweight compression methods that can significantly reduce
the costs associated with communication [13,14]. However, this does not solve all
the problems. In particular, GPU is optimized for numerical computation. Thus,
only selected operations will benefit from GPU. Small data sets are another
problem. For such sets the data transfer may dominate processing time and

A Bi-objective Optimization Framework for Query Plans 343

destroy the performance gain. Therefore, joint processing capabilities of both
CPU and GPU are worth considering. Furthermore, as it is common to have
more than one GPU in a computer, a potential use of various GPU devices
should be considered. This type of query plans is called heterogeneous.

The previous research efforts focused on the creation of query plans based
on a cost model. This approach finds plans with the best throughput. However,
it does not allow modelling all phenomena that can occur in heterogeneous sys-
tems. Performing a query as soon as possible is not always cost effective [8]. For
this reason, we propose a query processing model based on concepts of markets
that are known to be suitable for describing the interactions in a heterogeneous
world. They have already gained a considerable interest in the context of task
processing in heterogeneous systems [6]. In market models, manufacturers (pro-
cessing devices) compete with each other for customers (query plans). Similar
competition occurs among customers.

In this paper, we propose a query optimization model based on the commod-
ity market. A query plan is bi-objectively optimized to minimize: the processing
time and the value of consumed resources. For the user, a small difference in
execution time can be negligible. Thus, it is worth optimizing a query, so that
the execution time satisfies the user while other costs are minimized. In this case,
the cost may be, e.g. the responsiveness of the system, power consumption, heat
production, etc. One can also consider expressing the cost in financial terms.

2 Preliminaries

2.1 GPU and Heterogeneous query processing

From the parallel processing’s point of view, CPU accompanied by a GPU co-
processor is a shared nothing architecture. A GPU card has its own memory or
a separate area in the CPU main memory. Thus, the data has to be explicitly
transferred from the CPU main memory to the GPU main memory. Similarly,
the results produced by GPU have to be transferred back to the CPU main
memory. This data transfer often introduces significant overhead. Thus, it is im-
portant to include the transfer cost in the total execution time of an operation.
This cost is also a component of the execution time prediction.

Contemporary computer systems often include more than one GPU. Then,
it is possible to combine multiple computational units in a single query plan.
Such plans are called heterogeneous query processing. Each device may have
a different communication cost (e.g. PCIe or shared memory) with the CPU
main memory. Furthermore, devices can often communicate directly between
each other. Therefore, the main problem of heterogeneous query processing is
the construction of such a query plan that uses only computational units from
which query performance will benefit most and yet will minimize used resources.

Bress et. al. [5] identified problems of hybrid (CPU/GPU) query processing
which are also true in heterogeneous query processing:

344 P. Przymus, K. Kaczmarski, K. Stencel

Problem 1 Execution Time Prediction - as multiple database operations may
be executed concurrently it is hard to predict influence of concurrent tasks
on execution times.

Problem 2 Critical Query - since the GPU memory, the concurrent GPU ker-
nels execution and the PCIe bus bandwidth are all limited, only the critical
queries should be selected to use GPU (i.e., queries that benefit from GPU
usage and are important from global perspective).

Problem 3 Optimization Impact - as concurrent heterogeneous queries will in-
fluence each other, it is important to consider this aspect in the planning
process.

2.2 Commodity market approach in query processing context

In this paper we address these problems by showing that they may be solved by
applying a supply-and-demand pricing model taken from a commodity market.
In such a market resource owners (processing devices) price their assets and
charge their customers (queries) for consumed resources. Other pricing models
may also be used [6].

In the supply-and-demand model when supply (available resources) or de-
mand (needed resources) changes, the prices will be changed until an equilibrium
between supply and demand is found. Typically the value of a resource is influ-
enced by: its strength, physical cost, service overhead, demand and preferences
[6]. A consumer may be charged for various resources like CPU cycles, memory
used, the bus usage or the network usage. Typically, a broker mediates between
the resource owners and the consumer. The resource owners announce their val-
uation and the resource quality information (e.g. estimated time) in response
to the broker’s enquiry. Then, the broker selects resources that meet the con-
sumer utility function and objectives, like cost and estimated time constraints
or minimization of one of the objectives.

2.3 Bi-objective optimization

Bi-objective optimization is a problem where optimal decisions need to be taken
in the presence of trade-offs between two conflicting objectives. It is a special
case of multiple criteria decision making. Typically there are no solutions that
meets all objectives. Thus, a definition of an optimum solution set should be
established. In this paper we use the predominant Pareto optimality [11]. Given
a set of choices and a way of valuing them, the Pareto set consists of choices that
are Pareto efficient. A set of choices is said to be Pareto efficient if we cannot find
a reallocation of those choices such that the value of a single choice is improved
without worsening values of others choices. As bi-objective query optimization
is NP-hard, we need an approximate solution [12].

3 Heterogeneous Query Planer

The main aim of the new query planner is to propose a solution to the prob-
lems listed in Section 2.1, i.e., Execution Time Prediction, Critical Query and

A Bi-objective Optimization Framework for Query Plans 345

Optimization Impact. Furthermore, this planner also addresses heterogeneous
GPU cards and distributed processing. In this paper we propose a method to
build heterogeneous query plans based on the economics of commodity markets.
It is characterized by the fact that the resource producers determine the cost
of their resources and resource consumers jostle for resources. Furthermore, the
resources owners provide information on the quality of their resources, i.e., the
estimated processing time.

3.1 Notation

Table 1 contains a summary of the notation used in this paper. Assume a set of
units U , a logical query sequence QSlog and a dataset D. The goal is to build a
heterogeneous query sequence. Let QShet be a heterogeneous query sequence de-
fined in Equation (1). Let Dk+1 be the data returned by an operation Aokuik

(Dk).
The first row of QShet is created by replacing each operation oi ∈ QSlog with
an algorithm Aoiuj

∈ APoi . The second row is created by inserting an operation
Muk,uk′ (D) that copies the output of an algorithm on the unit u to the input of
the current algorithm on the unit u′.

Symbol Description
U = {u1, u2, . . . un} set of computational units available to process data
D dataset
Muk,uk′ (D) if uk 6= uk′ move D from uk to uk′ else pass
oi ∈ O database operation oi from set of operations O
Aoiuk

algorithm that computes the operation oi on uk
APoi = {Aoiu1

, Aoiu2
, . . . , Aoiun

} algorithm pool for the operation oi
trun(A

oi
uj
, D) estimated run time of the algorithm Aoiuj

on the data D
tcopy(Mui,uj , D)) estimated copy time of the data D from ui to uj
crun(A

oi
uj
, D) estimated run cost of the algorithm Aoiuj

on the data D
ccopy(Mui,uj , D) estimated copy cost of the data D from ui to uj
QSlog = o1o2 . . . on logical query sequence
QShet heterogeneous query sequence see Eq. 1
ft, gt estimated algorithm run time and copy time see Sec. 3.2
fc, gc estimated algorithm run cost and copy cost see Sec. 3.3
fb, gb estimated algorithm run and copy bi-objective scalar-

ization see Sec. 3.4
Fx(QShet) sum of fx and gx over columns of QShet where x ∈

{t, c, b} see Eq. 2
Table 1: Symbols used in the definition of our optimisation model

QShet =

(
Ao1ui1

(D1), Ao2ui2
(D2), Ao3ui3

(D3), . . . , Aonuin
(Dn)

Mu∗,ui1
(D1), Mui1

,ui2
(D2), Mui2

,ui3
(D3), . . . , Muin ,u

∗(Dn)

)
(1)

346 P. Przymus, K. Kaczmarski, K. Stencel

Fx(QShet) =
∑
Ao

u(D)

fx(A
o
u, D) +

∑
Mu′,u′′ (D)

gx(Mu′,u′′ , D) (2)

3.2 Single Objective Heterogeneous Query Planer

Procedure OptimalSeq(QSlog, u∗, x)
Input: QSlog = o1o2o3 . . . on - logical query sequence, u∗ - base unit, x ∈ { t -

time, c - cost, b - bioptimization } - optimization type
Result: QShybrid

1 seq_list = [];
2 for u in U do
3 Qu = Su(QSlog, u

∗);
4 QFu = Fx(Qu) ; /* e.g. Ft(Qu) */
5 append (u,Qu, QFu) to Seq_list;
6 end
7 QShybrid = pop minimum Qu (by QFu) sequence from Seq_list;

8 for (u, Qu, QFu) in Seq_list do
9 A, B, C = DiffSeq (QShybrid, Qu, u, x);

10 val, start, end = MaxSubseq(A,B,C);
11 if val > 0 then
12 Qhybrid(start : end) = Qu(start : end) ; /* subarray subsitution */
13 end
14 end
15 return Qbase

In this section, we introduce the algorithm that searches for a heterogeneous
query plan, i.e., a plan that operates on more than two devices.

For simplicity let us assume that x = t, ft(Aou, Di) = trun(A
o
u, Di) and

gt(Mu,u′ , D) = tcopy(Mu,u′ , D). Later in this article we will define functions
fc, gc and fb, gb to fit the model of the commodity market and the bi-objective
optimization. Let Su(QSlog, u∗) return such QShet that each operation oi ∈
QSlog is replaced with an algorithm from unit u algorithm pool, i.e., Aoiu ∈
APoi and the base device is set to u∗. Note that there is a specially designated
computing unit u∗ from which the processing starts. It also collects the data in
the end of processing, since the GPU computing is controlled by a CPU side
program.

The algorithm OptimalSeq starts by creating a query sequence for each com-
puting unit and estimating the processing cost for each item of this sequences
(lines 2-6). Next, one sequence (which minimizes Fx(Qu)) is selected as the base
sequence. It will be improved in later steps (line 7). Then, the algorithm iterates
over remaining query sequences in QShybrid in order to find such segments in
the remaining query sequences which improve original sequence (by replacing

A Bi-objective Optimization Framework for Query Plans 347

Procedure DiffSeq(seqbase, sequ, u, x)
Input: seqbase - base sequence, sequ - unit query sequence, u - sequ unit, x ∈ {

t - time, c - cost, b - bioptimization } - optimization type
Result: A - operations improvement array; B, C - copy to/from unit arrays

1 A, B, C = [], [], [];
2 for i in enumerate columns seqbase do
3 Aoub

(Di),Muf ,ut(Di) = seqbase[i];
4 Aou(Di),Mu,u(Di) = sequ[i];
5 append fx(Aoub

, Di)− fx(Aou, Di) to A ; /* e.g. ft(A
o
u, D) */

6 append gx(Muf ,u, Di) to B ; /* e.g. gt(Mu,u′ , D) */
7 append gx(Mu,ut , Di) to C;
8 end
9 return A,B,C

corresponding segment of the original sequence). This is done by calculating
the improvement and copy cost arrays in DiffSeq and finding maximal sequence
segment in MaxSubseq. A following variant of the proposed algorithm should
also be considered. Suppose that only one query sequence segment may be in-
serted (i.e., choose one sequence segment from remaining k − 1 sequences with
the biggest), this minimizes number of involved computational units and reduces
overall communication costs.

The procedure DiffSeq simply calculates element wise difference between two
query sequences fx(Aoub

, Di)−fx(Aou, Di) and copy costs from/to unit. The pro-
cedure MaxSubseq is based on Kadane’s algorithm for maximum subarray prob-
lem [1]. It scans through the improvement array, computing at each position the
maximum subsequence ending at this position. This subsequence is either empty
or consists of one more element than the maximum subsequence ending at the
previous position. Additionally, the copy to and copy from costs are included in
the calculation of the maximum subsequence (B and C arrays). The algorithm
returns the maximum improvement for a subsequence (which may be zero if the
subsequence does not improve the original query), the start and end items of
subsequence.

The complexity of OptimalSeq is O(k ∗ n) where k is the number of devices
(usually small) and n is the number of operations of the sequence. Su,Fx, DiffSeq
and MaxSubseq have the complexity O(n).

3.3 Economics in Heterogeneous Environment

To cope with the problems mentioned in Section 2.1, additional criteria are
necessary – in this work an approach based on a simple economic model is
proposed. Each consumer (client) has a query budget that can be used to pay
for the resources used to process queries. Each computational unit is a service
provider (producer) of services available in units algorithm pool APui

. Each
service provider establishes its own pricing for execution of any service from
APui . Pricing of the service depends on:

348 P. Przymus, K. Kaczmarski, K. Stencel

Procedure MaxSubseq(A, B, C)
Input: A - operations improvement array; B, C - copy to/from unit arrays
Result: maximum_improvment, start, end

1 max_ending_here = max_so_far = 0 ;
2 begin = tbegin = end = 0 ;
3 for i, x in enumerate(A) do
4 max_ending_here = max(0, max_ending_here + x) ;
5 if max_ending_here = 0 then
6 tbegin = i ;
7 max_ending_here -= B[i];
8 end
9 if max_ending_here - C[i] >= max_so_far then

10 begin = tbegin ;
11 end = i ;
12 max_so_far = max_ending_here ;
13 end
14 end
15 return max_so_far - C[end], begin, end

– the estimation of needed resources (the size of the data D, the performance
of the task Aoiui

),
– pricing of needed resources (the load of device ui – the greater the load on

the device, the higher cost of using the device),
– the preference of the device (e.g. device may prefer larger jobs and/or tasks

that give a greater acceleration on the GPU).

First, pricing for using the resources of computational unit is established. This
depends on the previous load of the device: the higher demand for computational
unit, the higher price for using it. This is a periodic process which calculates
prices every ∆tup seconds by calculating computational unit price Pu. Let 0 <
Lcurr < 1, 0 < Lprev < 1 be current and previous computational unit load
factors. Additionally, let Lth be a threshold below which prices should decrease,
and Pmin be the minimal price. Then the price is calculated using the following
formula4:

Pu :=

{
max(Pmin, Pu · (1 + ∆Pu

(1−∆U)
) if (∆P > 0 ∧∆U > 0) ∨ (∆P < 0),

Pu otherwise,
(3)

where ∆Pu = Lcurrent − Lthreshold and ∆Uu = Lcurrent − LPrevious. This is
similar to the dynamic pricing model proposed in [16] with exception to the
pricing formula i.e., we usemax(Pmin, Pu ·(1+ ∆Pu

(1−∆U)) instead ofmax(Pmin, Pu ·
(1 +∆Pu)), this modification reduces the excessive growth of prices.

To reflect the preference of the device in price we need to define a function re-
turning speedup factor between base device u∗ (defined in the previous section)

4Slightly abusing notation we will also denote the new price by Pu.

A Bi-objective Optimization Framework for Query Plans 349

and current device: speedup(Aou, Di) = trun(A
o
u∗ , Di)/trun(A

o
u, Di). Then we de-

fine a cost function as crun(Aou, Di) =
#Di

speedup(Ao
u,Di)

· Pu, where #Di

speedup(Ao
u,Di)

part combines the estimation of needed resources and the preference of the de-
vice. A computational unit with high speedup on given operation will get a
discount per data size when pricing this operation. Similarly, operations with a
lower speedup factor will be charged more per quantity. Additionally it is ob-
served [13] that often speedup depends on the size of processed data (usually
low speed-up on small datasets) so discount depends on data size.

It is also important to include cost of data transfer, let us define it as

ccopy(Mu,u′ , D) :=

{
0 if u,u’ share memory

#Di

bandwidth(#Di,u,u′)
· (Pu + Pu′)/2 otherwise

where bandwidth returns estimated bytes per second between u and u′ compu-
tational units. If direct data transfer is not available between u and u′ devices,
then transit device will be used (e.q. two GPU cards without direct memory
access will communicate using CPU RAM).

Now let fc(Aou, Di) = crun(A
o
u, Di) and gc(Mu,u′ , D) = ccopy(Mu,u′ , D). A

solution minimizing the cost may be found under the previous assumptions and
using procedure OptimalSeq.

3.4 Bi-objective Heterogeneous Query Planer

As finding Pareto optimal bi-objective query plan is NP-hard (bi-objective short-
est path problem) [12], we will use previously described OptimalSeq single ob-
jective approximation algorithm and extend it to bi-objective case.

We will use a priori articulation of preference approach which is often applied
to multi-objective optimization problems. It may be realized as the scalarization
of objectives, i.e., all objective functions are combined to form a single function.
In this work we will use weighted product method, where weights express user
preference [11]. Let us define:

fb(A
o
u, D) = crun(A

o
u, D)wc · trun(Aou, D)wt ,

gb(Mu,u′ , D) = ccopy(Mu,u′ , D)wc · tcopy(Mu,u′ , D)wt .

where wt and wc are weights which reflect how important cost and time is (the
bigger the weight the more important the feature – values of fb, gb are higher
than 1). It is worth to mention that a special case with wt = wc = 1 (i.e., without
any preferences) is equivalent to Nash arbitration method (or objective product
method) [11].

4 Preliminary Experimental Results

4.1 Simulation settings

In order to evaluate this model we prepared a proof of concept and evaluated it us-
ing custom developed simulation environment. Simulation environment was de-

350 P. Przymus, K. Kaczmarski, K. Stencel

Device o1 o2 o3 o4 o5 o6
GPU1 20 11 6 0.38 14 15
GPU2 5 11 6 0.33 4.66 5
CPU2 1 1 1.09 1 1.27 1.36

(a) Average speedup of operation
oi on given device compared to
CPU1

Option CPU1 CPU2 GPU1 GPU2
Unit threshold 0.75 0.75 0.4 0.4

Unit minimal price 5 5 70 70

(b) Pricing model configuration

Table 2: Simulation environment configuration

veloped using Python and SimPy framework. All presented experiments are de-
rived from simulation. There where four devices defined in environment: CPU1,
CPU2, GPU1, GPU2. Data transfer bandwidth between CPU* ↔ GPU* was
measured on real system, bandwidth of GPU1 ↔ GPU2 was calculated using
CPU1 as transit device. Following weights in bi-objective scalarization were used
wt = wc = 1 (i.e., without any preferences setting). Other settings of the sim-
ulation environment are gathered in Tables 2b and 2a. Simulation environment
generates new query sequences, when spawn event occurs. Spawn event is gener-
ated randomly in a fixed interval and generates randomly set of query sequences
(with fixed maximum). Every query sequence consists of maximally six oper-
ations and operates on random data volume. In the simulation the processed
data size has a direct (linear) influence on processing speed. Each device has
got a limited number of resources; a database operation can be performed only
if needed resources are available. In other cases the operation is waiting. After
generating desired number of query sequences the simulation stops spawning of
new tasks and waits until all generated query sequences are processed.

4.2 Simulation Results

Figure 1a presents simulated execution time of three scheduling frameworks
processing a pool of generated sequences of queries. To each generated query
sequence an optimization criterion (time, cost or bi-optimization) was assigned
with equal probability 1/3. Optimization criteria are only used if query schedul-
ing framework supports it, otherwise default criteria is used. All scheduling
frameworks process exactly the same pool of generated query sequences.

Compared frameworks are based on OptimalSeq algorithm but use different
objective function. Time objective planner uses only ft and gt functions as opti-
mization criteria; this means that it has no idea on load of each of devices. Self
Tuning Planner is based on idea presented in Breß et. al. [3], i.e. it maintains a
list of observed execution times on data D for each algorithm Aoiuj

. Observations
are interpolated (using e.q. cubic splines) to form new estimated execution time
function. And finally Bi-objective planner is a proof of concept implementation
of the model described in this work.

A Bi-objective Optimization Framework for Query Plans 351

(a) Simulated efficiency of Bi-objective
Heterogeneous Query Planer, Time based
Query Planer and Self-Tuning Query Plan-
ner

(b) Efficiency of Bi-objective Heteroge-
neous Query Planer for various optimiza-
tion tasks

(c) Simulated load of devices (0 < load < 1) (d) Pricing of device

Fig. 1: Simulation results. Note that time is in simulation ticks.

As expected Time Objective Planner is the slowest one since it has no knowl-
edge on the current load of devices. A solution suggested in [3] performs better.
However, there are two problems with this approach: first it adds an additional
overhead due to the interpolation of the observed execution times [3]; Secondly
as may be observed in 1a it takes some time before it adapts to a new situa-
tion (in early stage it performs similarly to the Time Objective Planner). This
is due the fact that it does not immediately react to load change of the device.
Instead, it has to gather enough observations before adapting. The best perfor-
mance is gained when using Bi-objective planner, this is due to the three types
of optimization and the cost model which assures proper load balancing.

As our framework support different types of optimization in the Figure 1b,
we present an impact of optimization type on processing performance. As it may
be observed, time optimization is the most appropriate for query processing with
high priority or with execution time constraint (like interactive queries or ad hoc
data mining). Cost optimization is appropriate for operations with low priority
or without time constraint (like batch processing or periodic jobs). Optimization

352 P. Przymus, K. Kaczmarski, K. Stencel

of both cost and time (without preferences) leads to moderate processing speed
but with better load balancing which is discussed later.

As proposed economic model is an important part of presented framework,
in Figure 1 interaction between device load 1c and established device pricing 1d
is illustrated. Notice how increased load influences unit pricing according to
the formula 3. It is worth noting that pricing model may be tuned for specific
applications (see Table 2b for this simulation settings).

4.3 Discussion

In Section 2.1 we cite three challenges of Hybrid Query Processing initially pre-
sented in Breß et.al. [3]. As our bi-objective optimization framework was designed
in order to address this challenges, an evaluation in the context of the former
mentioned problems is needed. We address Critical Query problem by allowing
different optimization targets for queries. Choosing time optimisation allows to a
priori articulate importance of a query. Also, the bi-objective optimization tends
to promote queries which may gain more on particular devices (due to the cost-
delay trade-off and the fact that the cost objective is designed to promote tasks
with greater speed-up 3.3). The problem of Execution Time Prediction is ad-
dressed indirectly with bi-objective optimisation. This is because the bi-objective
optimisation combines the cost objective function, which uses a current device
load when pricing a device, with the execution time objective. So in most cases
it is preferred to optimize both cost and time (without preferences towards any)
through time/cost trade-off. Lastly different types of optimization apply also to
Optimization Impact challenge. Choosing optimization criteria specifies a pos-
sible impact on other queries. Although, the preliminary results are promising
and seem to confirm this, an extended evaluation is needed in future.

5 Related Work

Multiobjective query optimization was considered i.a. in Stonebraker et.al. [17]
where a wide-area distributed database system (called Mariposa) was presented.
An economic auction model was used as cost model. To process a query a user
supplied a cost-delay trade-off curve. Because defining this kind of input data was
problematic Papadimitriou et.al. proposed a new approach where an algorithm
for finding ε-Pareto optimal solutions was presented. The solution was that a
user would manually choose one of presented solutions. This work differs both
in an optimisation method and an economic model involved.

In our framework a user supplies an optimization objective for a query a
priori (time, cost or bi-objective). Also as our model addresses the optimisation
of co-processing interaction a simpler commodity market model could be used
instead of a bidding model.

An extended overview on utilization of a GPU as a coprocessor in database
operations may be found in [3]. Breß et. al. [3] proposed a framework for op-
timisation of hybrid CPU/GPU query plans and present two algorithms for

A Bi-objective Optimization Framework for Query Plans 353

constructing hybrid query sequences. The first algorithm selected the fastest al-
gorithm for every element of a query sequence (including the cost of transfer
between devices) with complexity O(n). Unfortunately, this algorithm had two
flaws [3]: the constructed plan could generate too frequent data transfers be-
tween devices, which may significantly affect the performance of data processing
and also an optimal plan was not always generated. To overcome those prob-
lems they proposed the second algorithm. It searched for a continuous segment
of operations on GPU that could improve the base CPU sequence. In order to
find an optimal solution this algorithm generates all possible GPU sequences. Its
complexity is obviously higher: O(n2). Our work extends this approach by allow-
ing possible many various co-processing devices (Heterogeneous Query Planer in
Section 3.1). Secondly our work incorporates commodity market model as well
as bi-objective optimisation for better performance overcoming problems men-
tioned in 2.1. Additionally, the algorithm OptimalSeq presented in our work may
be used to produce a similar solution as the second algorithm by Breß et.al.[3]
but with better complexity (in case of two devices O(n)).

It is worth to mention two surveys: the first one describing economic models
in grid computing [6] and the second one describing methods for multi-objective
optimisation [11].

6 Conclusions and Future Work

In this paper, we proposed a bi-objective optimization framework for heteroge-
neous query plans. We also presented an algorithm for creating query sequences
in a heterogeneous environment with a single objective. This algorithm may be
used to construct query sequences similar to [3] but with better complexity. For
the purposes of this bi-objective optimization we designed a model including
time and cost objectives function. The cost objective function and pricing model
is build on foundations of commodity market economic model.

The preliminary experiments are very promising. We achieved good load
balancing of the simulated devices combined with better optimization results.

In future work, an extended evaluation of the presented framework is needed,
including; examination of parameters’ influence on the model behaviour, careful
assessment against Hybrid Query challenges. Another interesting field is exten-
sion of this model beyond CPU/GPU co-processing. Finally, the framework will
be evaluated in a prototype time-series database [14,13].

References

1. J. Bentley. Programming pearls: algorithm design techniques. Commun. ACM,
27(9):865–873, Sept. 1984.

2. S. Breß, F. Beier, H. Rauhe, E. Schallehn, K.-U. Sattler, and G. Saake. Auto-
matic selection of processing units for coprocessing in databases. In Advances in
Databases and Information Systems, pages 57–70. Springer, 2012.

354 P. Przymus, K. Kaczmarski, K. Stencel

3. S. Breß, I. Geist, E. Schallehn, M. Mory, and G. Saake. A framework for cost
based optimization of hybrid cpu/gpu query plans in database systems. Control
and Cybernetics, pages 27–35, 2013.

4. S. Breß, S. Mohammad, and E. Schallehn. Self-tuning distribution of db-operations
on hybrid cpu/gpu platforms. Grundlagen von Datenbanken, CEUR-WS, pages
89–94, 2012.

5. S. Breß, E. Schallehn, and I. Geist. Towards optimization of hybrid cpu/gpu query
plans in database systems. In New Trends in Databases and Information Systems,
pages 27–35. Springer, 2013.

6. R. Buyya, D. Abramson, J. Giddy, and H. Stockinger. Economic models for re-
source management and scheduling in grid computing. Concurrency and compu-
tation: practice and experience, 14(13-15):1507–1542, 2002.

7. W. Fang, B. He, and Q. Luo. Database compression on graphics processors. Pro-
ceedings of the VLDB Endowment, 3(1-2):670–680, 2010.

8. D. Florescu and D. Kossmann. Rethinking cost and performance of database
systems. ACM Sigmod Record, 38(1):43–48, 2009.

9. M. J. Franklin, B. T. Jónsson, and D. Kossmann. Performance tradeoffs for client-
server query processing. In ACM SIGMOD Record, volume 25, pages 149–160.
ACM, 1996.

10. D. Kossmann. The state of the art in distributed query processing. ACM Com-
puting Surveys (CSUR), 32(4):422–469, 2000.

11. R. T. Marler and J. S. Arora. Survey of multi-objective optimization methods for
engineering. Structural and multidisciplinary optimization, 26(6):369–395, 2004.

12. C. H. Papadimitriou and M. Yannakakis. Multiobjective query optimization.
In Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pages 52–59. ACM, 2001.

13. P. Przymus and K. Kaczmarski. Dynamic compression strategy for time series
database using gpu. In New Trends in Databases and Information Systems. 17th
East-European Conference on Advances in Databases and Information Systems
September 1-4, 2013 - Genoa, Italy, 2013.

14. P. Przymus and K. Kaczmarski. Time series queries processing with gpu support.
In New Trends in Databases and Information Systems. 17th East-European Con-
ference on Advances in Databases and Information Systems September 1-4, 2013 -
Genoa, Italy, 2013.

15. A. Raith and M. Ehrgott. A comparison of solution strategies for biobjective
shortest path problems. Computers & Operations Research, 36(4):1299–1331, 2009.

16. O. O. Sonmez and A. Gursoy. Comparison of pricing policies for a computa-
tional grid market. In Parallel Processing and Applied Mathematics, pages 766–773.
Springer, 2006.

17. M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell, C. Staelin, and
A. Yu. Mariposa: a wide-area distributed database system. The VLDB Journal,
5(1):48–63, 1996.

18. T. Westmann, D. Kossmann, S. Helmer, and G. Moerkotte. The implementation
and performance of compressed databases. ACM SIGMOD Record, 29(3):55–67,
2000.

Analysis of Multilayer Neural Networks with
Direct and Cross-Forward Connection

Stanis law P laczek and Bijaya Adhikari

Vistula University, Warsaw, Poland
stanislaw.placzek@wp.pl,bijaya.adhikari1991@gmail.com

Abstract. Artificial Neural Networks are of much interest for many
practical reasons. As of today, they are widely implemented. Of many
possible ANNs, the most widely used ANN is the back-propagation model
with direct connection. In this model the input layer is fed with input
data and each subsequent layers are fed with the output of preceeding
layer. This model can be extended by feeding the input data to each layer.
This article argues that this new model, named cross-forward connection,
is optimal than the widely used Direct Conection.

1 Introduction

Artificial Neural Networks have broad implementation in Machine Learning,
engineering and scientific applications. Their abilities to provide solutions to
problems involving imprecisions and uncertainties with trivial implementation
have enabled us to find solutions to real life problems as [1]:

1. Result approximation and data interpolation
2. Pattern recognition nad feature classification
3. Data compression
4. Trend prediciton
5. Error identification
6. Control

The problems mentioned above are solved by implementing ANN as universal
approximator function with multidimensional variables. The function can be
represented as:

Y = F (X) (1)

where:

– X-input vector
– Y -output vector

Selecting a network to solve a specific problem is a tedious task. Decision
regarding following thing must be made prior to attempting a solution.

356 S. P laczek, B. Adhikari

– Structure of Neural Network, number of hidden layers and number of neurons
in each layer. Conventionally, the size of input and output layers are defined
by dimension of X and Y vectors respectively.

– Structure of individual neurons encompassing activation function, which
takes requirement of learning algorithm into account.

– Data transfer methods between layers
– Optimization criteria and type of learning algorithm

Structure of Network can be defined in arbitrary way to accomplish complex
tasks. The structure plays vital role in determining the functionality of ANN.
This paper will compare and contrast two multilayer network structures.

– Direct Connection: This structure consists of at-least one hidden layer. Data
tis fed from preceeding layer to succeeding one.

Fig. 1. Structure of Direct Connection ANN

– Cross Forward Connection. In this structure, the input signal is passed on
to every layer in the network. Therfore, a layer j=1,2,3.....W ,where W is
the output layer, has two inputs : vector X and Vector Vj−1, output of
preceeding layer.

Structure of Cross Forward Connection is simpler than that of Direct Connec-
tion, in terms of neuron distribution in hidden layers. Learning time, as second
parameter, is shorter for Cross Forward Connection . In later part of the paper,

Analysis of Multilayer Neural Networks with . . . 357

Fig. 2. Structure of Forward Connection ANN

we will analyze a particular optimization problem for ANN where total number
of neurons, N, and number of layers , W, are given. Our target is to maximize
the total number of subspaces which are created by neurons of every hidden
layers. We will solve this complex problem with respect to the relation between
dimensionality of feature space, N0, and neurons’ number in all hidden layers,
Ni. This problem can be divided into two sub-problems.

– Ni ≤ N0 – liner optimization problem,
– Ni > N0 – non-linear optimization problem.

Where: i= 1,2,3,. W-1.
We can solve liner target function using liner-programming method. The non-
linear task, with liner constrains, can be solved using Kuhn- Tucker conditions.
As examples, we solved both sub-problems and discussed different ANN struc-
tures. In conclusion, we summarize our results giving recommendation for dif-
ferent ANN structures.

2 Criteria of ANN Structure Selection

The threshold function for the each neuron is defined as follows:

g(x) =

{
1, if x > 0

−1, if x ≤ 0
(2)

358 S. P laczek, B. Adhikari

Fig. 3. Two Layer ANN with Cross Forward Connection

We say that the network in Fig. 3 has structure 2-3-1. Where:

– N0=2; number of neurons in input layer.
– N1=3; number of neurons in hidden layer.
– N2=1; number of neurons in output layer.

Signal transfer from input layer to output layer in this structure can be repre-
sented in the following way.

U = W1 ·X (3)

V = F1(U) (4)

E = W2 · V + C2 ·X (5)

Y = F2(E) (6)

Where,

– X[0 : N0] -input signal
– W1[1:N1;0:N0] - weight coefficients matrix of hidden layer
– U [1:N1]-analog signal of hidden layer
– V [1:N1]-output signal of hidden layer

Analysis of Multilayer Neural Networks with . . . 359

– W2[1:N2;0:N1] - weight coefficients matrix of output layer
– E[1:N2]-analog signal of output layer
– Y [1:N2]-output signal of output layer
– C2[1 : N2; 0 : N0] -weight coefficients matrix of Cross connection

This network will be used for pattern recoginition after being trained by
teacher datas.

The architecure of ANN in fig(3) could be represented using hyper-spaces.
Lets imagine a hyperspace having dimension of the number of neurons in the
input layer. The first hidden layer, depicted in equation (3) and (4), divides
feature space, X, into subspaces.

Fig. 4. Structure of division of two dimensional input space by three neurons of the
first hidden layer.

Two dimensional feature space is divided into seven sub-spaces. These sub-
spaces correspond to internal structure of input data.

The function Φ (p,q) gives the maximum number of p dimensional sub-spaces
formed q number of p− 1 dimensional hyper-planes. The function has following
recursive form.[3]

Φ(p, q) = Φ(p− 1, q) + Φ(p− 1, q − 1) (7)

By definition of φ(p, q), it is clear that

Φ(p, 1) = 2 (8)

360 S. P laczek, B. Adhikari

and
Φ(1, q) = q + 1 (9)

In context of Neural Networks, q – number of neurons in the first hidden layer,Ni,
and p – dimension of input vector, N0.

Table 1. Number of sub spaces formed by division of p dimensional input Vector by
q neurons present in the first hidden layer

q \ p 1 2 3 4 5 6 7 8 9 10

1 2 2 2 2 2 2 2 2 2 2

2 3 4 4 4 4 4 4 4 4 4

3 4 7 8 8 8 8 8 8 8 8

4 5 11 15 16 16 16 16 16 16 16

5 6 16 26 31 32 32 32 32 32 32

6 7 22 42 57 63 64 64 64 64 64

7 8 29 64 99 120 127 128 128 128 128

8 9 37 93 163 219 247 255 256 256 256

9 10 46 130 256 382 466 502 511 512 512

10 11 56 176 386 638 848 968 1013 1023 1024

Now, re-writing (7), we get:

Φ(p, q) = Φ(1, q) +

p−1∑
k=1

Φ(k, q − 1) (10)

Solving recursion (10), we get :

Φ(p, q) = Cpq−1 + 2

p−1∑
k=0

·Ckq−1 (11)

where,

Ckn =
n!

k! · (n− k)!
(12)

In the equations above:

– p-dimension of input vector.
– q- number of neurons in hidden layer

Lets consider an example, for a network having three neurons in first hidden
layer and input vector of dimension 2. From (11), We get Φ(2,3)=7.

The number of subspaces formed due to division of the neurons in input
layer by the the neurons in the first hidden layer depends solely on the number
of neurons. The table presented above shows number of subspaces for different
values of p and q.

Coming back to the structure of Cross-Forward Connection, according to
Fig.3, input signals to the second hidden layer can be divided into two subsets:

Analysis of Multilayer Neural Networks with . . . 361

– input received from the output of previous layer-Vector V
– raw input received - vector X

All input signals are multiplied by the adjustable weights of associated neu-
rons i.e. matrices W2 and C2 respectively.

For ANN presented in fig.3, we can write:

ek =

N1∑
i=1

W2k,i · Vi +

N0∑
j=0

C2k,j ·Xj (13)

And, finally,
For ek=0,

N0∑
j=0

C2k,j ·Xj = −
N1∑
i=1

W2k,i · Vi (14)

The input space, X, in (14) represents the set of parallel hyper-planes. The
number of hyper-planes depend on Vi. For two dimension space, the second layer
of ANN is composed of four parallel lines formed by all possible combination of
values of Vi and Vj i.e.,0,0; 0,1; 1,0; 1,1.

Every subspace which is formed by the hidden layer is further divided into
two smaller sub-spaces by output neuron. For N0, dimensional input space and
N1 number of neurons in the first hidden layer, the maximum number of sub-
spaces is given by:

Ψ(N0, 2) = Φ(N0, N1) · Φ(N0, N2) (15)

For, W>2 ,number of sub-spcaes is:

Ψ(N0,W) =

W∏
i=1

Φ(N0, Ni) (16)

The number of subspaces of initial feature space in fig 3 is:

Ψ2,2 = Φ(2, 3) · Φ(2, 1) = 7 ∗ 2 = 14

For example, to divide input space into 14 subspaces, we require 3 neurons
in the first hidden layer and 1 in output layer. Whereas, we need 5 neurons in
the first hidden layer and 1 neuron in output layer to obtain the same number
of subspaces in the standard Direct Connection. It could be concluded that the
ANN with cross forward connection is more optimal than the regular straight
Forward Fonnection.

3 Learning Algorithm for Cross Forward Connection
Network

Less number of neurons helps convergence of algorithm during learning process.
We use standard back propagation algorithm. Aim function(goal of learning

362 S. P laczek, B. Adhikari

process) is defined as

e2 =
1

2
·
Nw∑
k=1

(yi − zi)2 (17)

where, zi is the value provided by the teacher and yi is the output computed
by the network.

And new value of weight coefficient is:

Wij(n+ 1) = Wij(n)− α · ∂e
2

∂Wij

∣∣∣
n

+ β[Wij(n)−Wij(n− 1)] (18)

and

Cij(n+ 1) = Cij(n)− α · ∂e
2

∂Cij

∣∣∣
n

+ β[Cij(n)− Cij(n− 1)] (19)

4 Structure Optimization of Cross Forward Connection
Network

ANN structure optimization is very complicated task and can be solved in dif-
ferent ways. Experience has taught us that ANN with 1 or 2 hidden layer is
able to solve most of the practical problems. The problem of ANN optimization
structure can be described as :

– maximizing number of subspaces, Ψ(N0,W).

when total number of neurons,N , and number number of layers, W , are given.

4.1 Optimization task for ANN with one hidden layer

For ANN with 1 hidden layer, the input neurons’ number,N0,is defined by the
input vector structure X and is known as apriori. The output neurons’ number
N2 is given by the output vector structure, Y - known as task definition. We
can calculate the neurons’ numbers in the hidden layer N1 using equation 16.
According to the optimization criterion and formula 16, the total number of
subspaces for ANN with one hidden layer is given by:

Φ(N0,W) = Φ(N0, 2) = Φ(N0, N1) · Φ(N0, N2) (20)

Finally we can calculate number of neurons in one hidden layer N1.

4.2 Optimization task for more than one hidden layer

For ANN with 2 or more hidden layers, optimization is more complicated. As
the first criterion, we assume that:

– the number of layers W is given and,
– total number of neurons N is given for all hidden layers.

Analysis of Multilayer Neural Networks with . . . 363

N can be calculated using:

N =

W−1∑
i=1

Ni = N1 +N2 +N3 ++NW−1 (21)

In practice we have to calculate neuron’s distribution between {1 : W −
1} layers. To find neuron’s distribution, we have to maximize the number of
subspaces according to the equation 22 with 23 as constraint.

ψ(N0,W − 1)opt = max
N1,N2...NW−1

w−1∏
i=1

Φi(N0, Ni) (22)

N =

W−1∑
i=1

Ni = N1 +N2 +N3 ++NW−1 (23)

From 11 and 22,

Φ(N0, Ni) = CN0

Ni−1 + 2

N0−1∑
k=0

·CkNi−1

for i ε [1;W − 1]

(24)

Please note that:

CN0

Ni−1 = 0

when Ni − 1−N0 < 0

Ni ≤ N0

(25)

Taking 22, 23, 24, and 25 into account, our optimization task can be written
as:

Ψ(N0,W − 1)opt = max
N1,N2...NW−1

{
W−1∏
i=1

[CN0

N1−1 + 2

N0−1∑
k=0

CkNi−1]

}
(26)

with constraints

N =

W−1∑
i=1

Ni (27)

CN0

Ni−1 = 0 for Ni ≤ N0 (28)

CkNi−1 = 0 for Ni ≤ k (29)

The optimization problem in 26 is non-linear and solution space can be di-
vided into :

364 S. P laczek, B. Adhikari

1. For all hidden layers Ni ≤ N0 and Ni ≤ k — linear task
2. For all hidden layers Ni > N0 and Ni > k — non-linear task

Set of hidden layers can be divided into two subspaces:

– S1 = {N1, N2, N3,, Nj} where j ≤W − 1.For S1, N ≤ N0 and Ni ≤ K
– S2 = {Nj+1, Nj+2, Nj+3,, NW−1}.For S1, Ni > N0 and Ni > K

Where W = number of layers and W-1 = number of hidden layers. This is
a mixed structure, for which final solution can be found using mixture of both
methods from point 1 and 2.

4.3 Neuron distribution in the hidden layers, where neurons’
number for all hidden layers is less or equal than initial feature
space

In this case, we have

Ni ≤ N0 for i ε{ 1;W − 1} (30)

So, the total number of subspaces is defined by

Φ(N0, Ni) =
(Ni − 1)!

N0!(Ni − 1−N0)!
+ 2 ·

N0−1∑
k=0

(Ni − 1)!

k!(Ni − 1− k)!
(31)

or,

Φ(N0, Ni) = 0 + 2 · 2Ni−1 = 2Ni (32)

Our optimization target can be written as,

Ψ(N0,W − 1)opt = max
Ni ε [1,W−1]

{
W−1∏
i=1

2Ni

}
= max
Ni ε [1,W−1]

{
2
∑W−1

i=1 Ni

}
for N =

W−1∑
i=1

Ni

Ni ≤ N0 and Ni, N0 ≥ 0

(33)

Equation 33 is monotonously increasing and can be written as

Ψ(N0,W − 1)opt = max
Ni ε [1,W−1]

{
W−1∑
i=1

Ni

}

For N =

W−1∑
i=1

Ni

Ni ≤ N0 and Ni, N0 ≥ 0

(34)

Analysis of Multilayer Neural Networks with . . . 365

Under the given number of layers, total number of neurons have to satisfy
the new constraints

Ni ≤ N0 and N ≤ (W − 1)N0 (35)

Example:
For ANN with N0 = 3, N1 ≤ 3, N2 ≤ 3, N3 = 1, W = 3, find optimum neurons
distribution between two hidden layers N1, N2.

It is known that for output layer N3 = 1 and therefore we will only consider
two hidden layer for optimization process. For allNi, where i = 1, 2 andNi ≤ N0,
using 35 we can write:

N ≤ (W − 1) ·N0 = (3− 1) · 3 = 6

Taking N0 = 3 using 34 we achieve

Ψ(N0,W − 1) = Ψ(3, 2) = max{N1 +N2}
and constraints

N1 ≤ 3

N2 ≤ 3

we use N1 +N2 = 4 < 6

(36)

To solve this optimization task, we can use linear programming methods or
use figure 5.

Using only discrete values of N1, N2 for N=4, we can find three solutins
(N1, N2) = {(1, 3), (2, 2), (3, 1)}

The following equations indicate the number of subspaces for different num-
ber of neurons.

Φ(N0, N1) = Φ(3, 1) = 21 = 2

Φ(N0, N1) = Φ(3, 2) = 22 = 4

Φ(N0, N1) = Φ(3, 3) = 23 = 8

(37)

Finally, we have three optimal solutions with three different ANN structure.
Every structure generates 16 subspaces and are euqivalent. Table 2.

Table 2. Solution of linear programming for N=4

N0 N1 N2 Φ(N0, N1) Φ(N0, N2) Ψ(N0,W − 1)

3 1 3 2 8 16

3 2 2 4 4 16

3 3 1 8 2 16

In conclusion, we can say that for every given total number of neurons,N ,
we have many possible neurons distribution between layers. Optimal number of
subspaces in the initial feature space has the same value, Ψ .

366 S. P laczek, B. Adhikari

Fig. 5. Graphical solution of linear programming when total number of neurons, N=6
and N=4

4.4 Neurons distribution in the hidden layers, where neurons’
number for all hidden layers is greater than initial feature space

Lets assume number of layers, W=3. It implies that we have only two hidden
layers. According formula 24.

Φ(N0, Ni) =CN0

Ni−1 + 2

N0−1∑
k=0

CkNi−1

for i ε [1 : W − 1] and Ni > N0

For whole ANN, total number of subspaces is given by

Ψ(N0,W − 1) =Ψ(N0, 2) = Φ1(N0, N1) · Φ2(N0, N2)

and N1 +N2 = N

so, N1 +N2 > 2N0

(38)

Taking all assumptions into account we can write,

Φ(N0, N1) = CN0

Ni−1 + 2 · (C0
Ni−1 + C1

Ni−1 ++ CN0−1
Ni−1) for N0 < Ni

Φ(N0, N1) < CN0

Ni−1 + 2 · 2Ni−1 < 2Ni
(39)

In this situation we do not know how many suspaces there are for Φ(N0, N1).
To find neurons distribution between the hidden layers we should know relations
between N0, Ni and N .

Analysis of Multilayer Neural Networks with . . . 367

Example:
For N0=3, W=3 N=8, and N=10, N=12 find neuron distribution in the layers,
were Ni > 3. We should maximize the quality criterion

Ψ(N0,W − 1)OPT = max
N1,N2....NW−1

W1∏
i=1

[
CN0

Ni−1 + 2 ·
N0−1∑
k=0

CkNi−1

]
(40)

For example,

Ψ(3, 2)OPT = max
N1,N2

2∏
i=1

[
C3
Ni−1 + 2 ·

2∑
k=0

CkNi−1

]
(41)

After simple algebraic operations, we achieve

Ψ(3, 2)OPT = max
N1,N2

{
N3

1 + 5N1 + 6

6
· N

3
2 + 5N2 + 6

6

}
N1 > 3

N2 > 3

N1 +N2 = 8 > 6

(42)

We solve the equation using Kuhn-Tucker conditions. Taking 42 into account.
we can write the following Lagrange equation

Table 3. Solution for non-linear Kuhn Tucker conditions for total number of neurons,
N=8–12

N N1 > 3 N2 > 3 Φ(3, 21) Solution

8 4 4 225 max

9
5 4 390 max
4 5 390 max

10
6 4 630
5 5 676 max
4 6 630

11

4 7 960
5 6 1092 max
6 5 1092 max
7 4 960

12

4 8 1395
5 7 1664
6 6 1774 max
7 5 1664
8 4 1395

368 S. P laczek, B. Adhikari

Fig. 6. Graphical solution of Kuhn Tucker conditions. Line N = N1 +N2 is a solving
line with one or more solutions. Only one point is max. Figure shows three solution
lines for N1 +N2 = 8, N1 +N2 = 10, N1 +N2 = 12

L =
N3

1 + 5N1 + 6

6
· N

3
2 + 5N2 + 6

6
−λ1 · (N1 − 4)− λ2 · (N2 − 4)− λ3 · (N1 +N2 − 8)

N1 − 4 ≥ 0

N2 − 4 ≥ 0

N1 +N2 − 8 = 0

(43)

5 Conclusion

For most practical purposes, ANNs with one hidden layer are sufficient. Learning
Algorithms for the networks are time consuming and depend on number of layers
and number of neurons in each layer. The running time of learning algorithm has
dependency, greater than linear, on the number of neurons. Hence, the running
time increases faster than the total number of neurons.

Cross Forward connection provides us an opportunity to decrease the number
of neurons and thus, the running time of learning algorithm.

We implemented both Direct Connection Neural Networks and Cross For-
ward Neural Networks with one hidden layer and used them for pattern recog-
nition.

Analysis of Multilayer Neural Networks with . . . 369

Our implementation required three input neurons and two output neurons.
We varied the number of neurons in hidden layer and trained both networks for
limited number of epoches and noted the sum of squared errors of each output
neurons. The procedure was repeated 20 times and the average sum of square of
errors were recorded. Datas for two cases are presented in table 4 and 5.

Table 4. Comparision for Direct Connection and Cross Forward Connection with
N0 = 3, N1 = 1,NW = 2

Epoches 10 50 100 500 1000 5000 10000 50000∑
ε2 for Direct

Connection
12.40415 9.10857 8.58351 8.48001 8.38696 8.260625 8.14166 8.0152∑

ε2 for Cross
Forward

2.22719 0.33131 0.12325 0.02912 0.00808 0.00148 0.00076 0.00014

Table 5. Comparision for Direct Connection and Cross Forward Connection with
N0 = 3, N1 = 4,NW = 2

Epoches 10 50 100 500 1000 5000 10000 50000∑
ε2 for Direct

Connection
6.91134 0.28018 0.11306 0.01864 0.00542 0.000092 0.000052 0.00009∑

ε2 for Cross
Forward

1.02033 0.12252 0.064224 0.01945 0.00441 0.000823 0.000381 0.00007

Table 4 and 5 clearly demonstrate that for the given number of neurons in
the hidden layer, Cross-Forward Connection are optimal. If we closely examine
the error term in table four for Direct Connection and the same in table 5 for
Cross Forward Connection we will notice that they are fairly comparable. It
demonstrates that Cross Forward Connecton Structure with one neuron neuron
in hidden layer is almost as good as Direct Connection with four neurons in
hidden layer. Thus, Cross-Forward connection reduce the required number of
neurons in ANNs.

In addition using optimizations criterion for Cross Forward Connection struc-
tures, we have solved two different tasks. For linear one , where Ni ≤ N0 for
i=1,2,. . . W-1, we e achieved an equivalent ANN structures with the same num-
ber of total subspaces Ψ(N0,W − 1). This means that for given total number
of neurons ,N , and number of layers W , there are multiple equivalent ANN
structures (Table 2). In practice this ANN structures can be used for tasks with
very big dimensionality of input vector X (initial feature space). For nonlinear
optimization task, where Ni > N0 for i=1,2,3. W-1, the target function
is nonlinear with liner constraints. There could be one or more optimum solu-
tions. Final solution depends on dimensionality of feature space N0 and relation
between N, Ni and W. In our example, for ANN with N0 = 3 , W=3, and

370 S. P laczek, B. Adhikari

N=8,9,10,11,12,. we achieved one optimum solution for even N0s and two
solutions for odd N0s (Table 3).

References

1. Stanisaw Osowski, Sieci Neuronowe do Przetwarzania Informacji. Oficyna
Wydawnicza Politechniki Warszawskiej, Warszawa 2006.

2. S. Osowski, Sieci neuronowe w ujeciu algorytmicznym.WNT, Warszawa 1996.
3. O.B.Lapunow, On Possibility of Circuit Synthesis of Diverse Elements, Mathemat-

ical Institut of B.A. Steklova, 1958.
4. Toshinori Munakate, Fundationals of the New Artificial Intelligence. Second Edition,

Springer 2008.
5. Colin Fyle, Artificial Neural networks and Information Theory, Departmeeent of

Ciomputing and information Systems, The University of Paisley, 2000.
6. Joarder Kamruzzaman, Rezaul Begg, Artificial Neural Networks in Finance and

Manufacturing, Idea Group Publishing, 2006.
7. A. Mariciak, J. Korbicz, J. Kus, Wstepne przetwarzanie danych, Sieci Nuronowe

tom 6, Akademicka Oficyna Wydawnicza EXIT 2000.
8. A. Marciniak, J. Korbicz, Neuronowe sieci modularne, Sieci Nuronowe tom 6, Aka-

demicka Oficyna Wydawnicza EXIT 2000.
9. Z. Mikrut, R. Tadeusiewicz, Sieci neuronowe w przetwarzaniu i rozpoznawaniu obra-

zow, Sieci Nuronowe tom 6, Akademicka Oficyna Wydawnicza EXIT 2000.
10. L. Rutkowski, Metody i techniki sztucznej inteligencji, Wydawnictwo Naukowe

PWN, warszawa 2006.
11. Juan R. Rabunal, Julian Dorado, Artificial Neural Networks in Real-Life Applica-

tions, Idea Group Publishing 2006.

Fractional Genetic Programming for a More

Gradual Evolution�

Artur Rataj

Institute of Theoretical and Applied Computer Science,
Ba�ltycka 5, Gliwice, Poland
arataj@iitis.gliwice.pl

Abstract. We propose a softening of a genetic program by the so–called
fractional instructions. Thanks to their adjustable strengths, a new in-
struction can be gradually introduced to a program, and the other in-
structions may gradually adapt to the new member. In this way, a trans-
formation of one candidate into another can be continuous. Such an
approach makes it possible to take advantage of properties of real–coded
genetic algorithms, but in the realm of genetic programming. We show,
that the approach can be successfully applied to a precise generalisation
of functions, including those exhibiting periodicity.

Keywords: genetic programming, real–coded genetic algorithm, evolu-
tionary method, gradualism

1 Introduction

One of the basic concepts in genetics is quantitative inheritance, i.e. a gradual
regulation of the strength of a single genetic trait. Such an inheritance is realised
by e.g. encoding a single trait with several genes, which collaboratively add up
to strengthen the trait.

A quantitative inheritance enables an easy way for an effective exploitative
searching of the candidate space – an offspring, which is similar to its parents,
has a high chance of being viable in similar environmental conditions, and thus
to be a next step in walking the candidate space. The similarity might make it
more difficult to find a substantially different environment by the offspring, yet
a need to live in a radically different environment is often not the case. Consider
e.g. the formation of limbs in animals – they evolved from fins in the process
of a long, exploitative transition, that employed slight changes in expressions
of genes and a gradual appearance of new genes. Actually, it has been recently
shown, that just varying of the expression of certain genes in fish makes their
fins more limb–like [5]. Such a graduality enabled a progressive change of the
environment from sea to land, with children being able to live in an environment
similar to that of their parents, though.

� This work has been supported under the project An active creation of a model of
space using a 3d scanner and an autonomous robot, N N516 440738

372 A. Rataj

The concept of graduality or continuity of the candidate space is the basis of
real–coded genetic algorithms [6, 14], supporting a number of dedicated genetic
operators [7].

We propose genetic programs in a form that is halfway between a tree repre-
sentation [3] and a linear list [11]—a linear sequence of functions (instructions)
is communicating using a stack, as introduced by [12], The basic difference of
our approach, though, lies in the graduality of the stack operations, constructed
to support the discussed continuity of instructions. The continuity is similar to
that of [13]. There are two basic differences, though:

– No need for special continuous equivalents of common operations like addi-
tion or multiplication. Instead, the original functions can be used directly.
The graduality is provided elsewhere—by a specially constructed stack.

– A program does not strictly follow a tree structure, as a value of a node
can be reused by a number of other nodes, which promotes reusability of
an instruction result and in effect reduces redundancy. Like in the case of
instructions, the dependencies out of the tree hierarchy can also form grad-
ually.

The paper is constructed as follows: Sect. 2 describes fractional stack oper-
ations. On the basis of these definitions, fractional operations are discussed in
Sect. 3. These build a fractional program, described in Sect. 4. A method of
evolving such programs is introduced in Sect. 5. Section 6 presents some tests.
Finally, there is a discussion in Sect. 7.

2 A Fractional Stack

Let the stack, in order to be compatible with the fractional instructions, have
a continuous length, so that it can support a fractional pushing and popping.
Thanks to this, a weak operation, i.e. having a low strength, may interact with
the stack so that there is only a minimal change to the stack state.

Let each element on the stack have a real value x and also a real length.
The length is specified by the strength s of a push operation push(s, x), and
contributes to the total length of the stack, which is a different value than the
total number of elements in that stack, i.e. the stack size. A pop operation, in
turn, y = pop(s), having the strength s, shortens the stack length by s, by
removing 0 or more top elements from the stack, and also possibly shortening
the length of the element f , which is on the top after that removal. The value
popped y is a mean of values of the elements removed or shortened, weighted
by the respective lengths of each element removed, and also by the amount of
shortening of the length of f .

Let us consider an example. Two operations push(0.6, 10) and push(1.2, 20)
led to a stack whose top fragment is shown in Fig. 1(a). Then, a pop(1.5) oper-
ation, in order to shorten the stack by a proper value, needed to remove the top
element and shorten the neighbouring element by 0.3, as seen in Fig. 1(b). The

Fractional Genetic Programming for a More Gradual Evolution 373

0.6

1.2 20

10

15

<
1
.5

>
 P

O
P

0.3 10
15

(a) (b)
Fig. 1. An example of a fractional pop(s): (a) before, and (b) after the operation.

value returned by that operation would be a weighted average

1.2 · 20 + 0.3 · 10
1.2 + 0.3

= 18.

Let i be an index of an element in the stack, 0 for the bottommost element,
S − 1 for the topmost element, where S is the total number of elements in the
stack. Then let Li be the length of the ith element in the stack.

3 Fractional Instructions

Given the stack operations, definitions of the fractional instructions are trivial.
Possible arguments of such an instruction are always popped from the stack,
and a possible result of the instruction is pushed back to the stack. A length of
each of the stack operations is given by the instruction strength. A low–strength
instruction can only minimally modify the stack contents, fulfilling in this way
the graduality criterion. In particular, a zero–strength instruction does nothing.

Let the set of instructions be limited to several stack handling operations, and
also a handful of arithmetic operations. Each instruction’s mnemonic is preceded
by the instruction’s strength. Table 3 lists the definitions of all instructions.
Arguments of binary operators are evaluated from left to right. As seen, 〈s〉 POP
does not use the popped value, the whole role of the instruction is to modify
the stack state. We introduce 〈s〉 COPY n:x, that multiplies the length of n
elements at the stack top by x. The instruction is modelled after the instruction
DUP – an equivalent of COPY 1:2, used to simplify programs implemented in
stack–based languages, like FORTH, FIFTH [8] or Java bytecode [10]. In our case
of fractional instructions, COPY can act as an adapter of n argument passed
between operations of different strengths.

4 A Fractional Program

Before the program is executed, its Ni input values Xi, i = 0, 1, . . .Ni − 1, are
pushed to the stack with a sequence of operations 〈1 + p〉 PUSH Xi. The fixed

374 A. Rataj

Table 1. A list of basic instructions.

Mnemonic Stack operations

〈s〉 PUSH x push(s, x)

〈s〉 POP pop(s)

〈s〉 COPY n:x

l0 = LS−1, v0 = pop(l0),
l1 = LS−1, v1 = pop(l1),

...
ln−1 = LS−1, vn−1 = pop(ln−1),

push(xln−1, vn−1),
push(xln−2, vn−2),

...
push(xl0, v0)

〈s〉 ADD push
(
s,pop(s) + pop(s)

)

〈s〉 MUL push
(
s,pop(s)pop(s)

)

〈s〉 NEG push
(
s,−pop(s)

)

〈s〉 INV push
(
s,pop(s)−1

)

〈s〉 SIN push
(
s, sin

(
pop(s)

))

value p ≥ 0 is a padding, that decreases the probability of a stack underflow –
the program may instead have a chance of popping the input value or its part
again. This is the only case of an instruction, that has a strength greater than 1,
but such an instruction never occurs in a program itself. We will use a padding
of 1 in tests.

If it is unlikely that a program needs a very long stack to solve a given
problem, the stack size might have some constant limit imposed, so that stack
overflows become possible. This way, such programs, as likely too complex, are
deemed invalid, which favours simpler solutions and also saves time by preventing
a further exploitation of such programs.

A program, after finishing, yields a single output value Y , which is equal
to whatever is left in the stack, but excluding its possible bottommost part, if
any, never used by the program, as that part contains unprocessed input values.
Thus,

Y = pop

((
S−1∑
k=0

Lk

)
−min (Lu, Ni)

)
(1)

where Lu is the global minimum length of the stack across all pop(s) instructions
executed within the program, or ∞ if there were no such instructions.

See that if the first instruction of a program is 〈1〉 COPY Ni:z, and then all
of the following instructions are of a strength z, then for given Xi and any z > 0
the program yields exactly the same Y . This shows, that an instruction retains
its characteristics for any strength, beside a different level of interaction with the

Fractional Genetic Programming for a More Gradual Evolution 375

stack. What is important, though, is the ratio between strengths of instructions
that communicate using the same stack, and not the absolute values of these
strengths.

5 Evolutionary Method

We have developed an evolutionary method that dynamically adjusts the ex-
ploration/exploitation scheme like it is often practised in genetic programming
[1, 4, 9]. The exploitation employs a novel technique that emphasises the advan-
tage of gradual instructions. To keep this paper focused, we do not go into the
complexities of maintaining a population of candidates.

5.1 Exploration – a new candidate

A candidate program has a fixed length Pn and a fixed maximum stack size
Ps, both roughly accommodated to the function to fit to, so that too complex
solutions are impossible.

There are several types of instructions to randomly pick. A priority is given
to 〈s〉 PUSH x, as otherwise most candidates would turn out to be invalid due
to stack underflows. We have chosen in tests that this type will be chosen with
PPUSH = 0.3, while for the 7 other types P¬PUSH = 0.1. The pushed value
will be drawn using a uniform distribution, spanning reasonable limits 〈−10, 10〉.
Arguments of 〈s〉 COPY n:x will be chosen using an uniform distribution as well.
The ranges are n ∈ 〈1, 2〉 as it accommodates a typical number of values popped
by an instruction; x ∈ 〈0, 2〉 not getting too large, as sequences of 〈s〉 COPY n:x
may effectively enlarge the upper limit of multiplying lengths of stack elements.

5.2 Exploitation – tuning of a candidate

A gradual exploitation shows the flexibility of the fractional programs. An in-
struction may have its strength gradually reduced even until it disappears, or
another instruction may appear with its strength near 0. Both such a deletion
and such an insertion may have an arbitrarily small influence on the program,
as very small strengths translate to only a minimal interaction with the stack.

The exploitation is a random walk in the candidate space, beginning with
a new candidate created by exploration. A backtrack to the previous position
occurs, if the mean square error (MSE) of the new candidate generalised of
fitting to a function g(x) is not better than the respective MSE of the previous
candidate, or if the new candidate is invalid because of a stack underflow or
overflow, or because of an arithmetic error like a division by zero. Let a single
step be called a modification Δ.

We are unsure which Δ is the best one for a given problem. Thus, we choose
to introduce a variability of its parameters – they are picked using probability
distributions before each step. Let these parameters be as follows – a minimum
threshold Θmin and an instruction perturbance level Φ, both chosen from 〈0, 1〉

376 A. Rataj

using an uniform distribution. Θmin controls how many instructions are modified
on average within Δ. The idea is, that it would sometimes be enough to modify
only a single instruction within Δ, and it might even be advantageous to do
so, if exactly a single instruction needs to be modified, in order to get a better
candidate; parallel modifications of other instructions might create an unwanted
drift in the candidate space in such a case. Yet, sometimes more instructions
need to be modified at once, in order to omit the Hamming wall [2]. Also, a
computation time is obviously crucial in genetic programming, and the random
walk might be faster at times if more instructions are modified per Δ. We allow
each case by Θmin being variable. Φ stems from a similar reasoning – it translates
to how much an instruction is modified on average within Δ. Sometimes a fast
walk is needed when e.g. a candidate is far from the optimum point in the
candidate space. Yet, sometimes small, precise steps are needed instead, when
e.g. the exploited candidate oscillates very closely around the optimum point.

Let within a single Δ, each of the instructions I be modified as follows:

1. Pick Θ ∈ 〈0, 1〉 using an uniform distribution. If Θ < Θmin, then do not
modify I. Go to 2 only otherwise.

2. Let a strength perturbance Φs = δsΦ and a value perturbance Φv = δvΦ
control, respectively, how much an instruction strength and an instruction
argument can be perturbed. We picked in tests fixed δs = δv = 1/20 as a
trade–off between the exploitation speed and precision.

3. Let 〈s〉 be the current strength of I, and 〈s〉′ the modified one. Let

〈s〉′ = max

(
0,min

(
1, 〈s〉+ uni

(
− Φs

2
,
Φs

2

)))
, (2)

where uni(a, b) picks a random value in the range 〈a, b〉 using an uniform
distribution.

4. If 〈s〉′ = 0, then let I be removed. Go to 5 only otherwise.
5. If I is of the type 〈s〉 PUSH v, let the pushed value v be modified to become

v′:

v′ = max

(
−10,min

(
10, v + uni

(
− Φv

2
,
Φv

2

)))
. (3)

6. If I is of the type 〈s〉 COPY n:m, let the length multiplier m be modified to
become m′:

m′ = max

(
0,min

(
2,m+ uni

(
− Φv

2
,
Φv

2

)))
. (4)

Note that v and m are clipped to the same range as when a new instruction is
created during the exploration.

After the instructions are modified, and if there have been r > 0 instructions
removed during that process, then let r new instructions be picked, exactly
as during the exploration, but let these new instructions be randomly inserted
to the program, so that it retains the original number of instructions Pn. Let
the strength of each be Φs, that is, a small value related to a maximum single
modification of an instruction strength.

Fractional Genetic Programming for a More Gradual Evolution 377

5.3 Adapting the exploration/exploitation ratio

Let the fitting quality of a candidate C to g(x) be MSE(C). Let the best candidate
so far be B. If none, assume MSE(B) = ∞.

The search loop consists of two phases: explore by creating a new candidate
T, and then exploit T, with the extent related to the ratio of quality of T to B.
If, after the whole exploitation stage, MSE(T) < MSE(B), then let T become the
new B. The loop ends, if MSE(B) ≤ MSEmax, where MSEmax is a fixed value,
chosen depending on the minimum acceptable quality of the candidate which we
want to find.

The mentioned extent decides on the exploration/exploitation balance, and
also on the distribution of the computation time to the exploitations of candi-
dates T, given their relative quality. As MSE(T) may decrease during the ex-
ploitation, let the extent be dynamically updated using the current value of
MSE(T). The extent is represented by a maximum failure count (MFC). The
value expresses the maximum possible number of subsequent exploitation steps,
which do not result in finding a better candidate. Thus, if a new path to im-
prove T is found, then the path is given a chance, irrespective of the length
of exploitation of the candidate so far. If MFC is reached, the exploitation is
terminated, and the search loop returns to the exploration phase as described.
MFC is computed for a new T, and, to adapt it dynamically as discussed, also
whenever the exploitation of T results in a candidate with lower MSE(T).

Let us consider a formula for MFC. Let its minimum value be MFCmin, so
that any candidate is given a moderate chance to improve, irrespective of that
candidate’s quality. We want, though, to give a considerably greater MFC for
candidates whose initial quality is estimated to be decent. Let the formula have
a fixed parameter tr > 0 to reflect that:

MFC = �tr
(
tanh

(
ts
MSE(T)

MSE(B)
− 1

)
+ 1

)
+MFCmin +

1

2
	. (5)

We see a hyperbolic tangent that serves as a threshold function. It is centred

around MSE(T)

MSE(B)
= 1. The threshold steepness is regulated by ts = 10.

Let MFCmin and tr be adjusted in a test of a relatively complex function, in
order to tune the evolutionary method towards more advanced tasks. We will
use a set of samples gL(x), described in detail further in Sect. 6. The parameters
in question will be tuned to minimise the average computation time t of the
evolutionary method. To save on time, each test will be terminated whenever
t = 1000. Figure 2(a) shows, that MFCmin = 500 is approximately optimal. Let
us then, having that value, test a range of values tr – a respective diagram in
Fig. 2(b) shows a respective optimum value of about tr = 1500.

A diagram of (5), using the adjusted parameters, is shown in Fig. 3.

6 Tests

Let us take advantage of the property of the presented method, that it is not
limited to a polynomial approximation, and chose a function to generalise g(x)

378 A. Rataj

1 10 100 1000 10000

0
20

0
60

0
10

00

MFCmin

co
m

pu
ta

tio
n

tim
e

[s
]

0 500 1000 1500 2000

0
20

0
60

0
10

00

tr

co
m

pu
ta

tio
n

tim
e

[s
]

(a) (b)

Fig. 2. Diagrams of computation time against (a) different MFCmin; for each sample,
tr is randomly picked using uni(0, 2000); (b) different tr and MFCmin = 500. The solid
lines are smooth approximations.

MSE(T)

MSE(B)

M
F
C

543210

104

103

Fig. 3. A diagram of maximum failure count, given the ratio of MSE between the
exploited candidate and the best one.

that contains a periodic function. Let us also make g(x) relatively non–trivial for
an evolutionary approach, by making the diagrams of its sub–components not
resembling g(x) – this may make it less possible, that such a sub–component
alone would be considered interesting enough in the exploitation stage to be
gradually completed by other sub–components. We will also model g(x) so that
along a certain part of its domain it is very similar to a function y = x2. The
parabola will serve as a honey–pot, that will attempt to distract our evolutionary
method by a deep and, thanks to the symbolic simplicity of the honey pot, easily
reachable local minimum. Let g(x) be

y = 8
(
1 + sin(0.59x+ 4.6)

)
. (6)

The diagram in Fig. 4 confirms, that the sub–functions of g(x) are dissimilar to
g(x), fitting–wise.

Fractional Genetic Programming for a More Gradual Evolution 379

y = x2
y = sin(0.59x)
y = 0.59x+ 4.6

y = sin(x)
g(x)

x

y

302013.63.60

30

25

20

15

10

5

0

Fig. 4. A diagram of f(x), some of its sub-components, and the honey–pot parabola.

An ideal generalising program is shown in Fig. 5. There are 9 instructions in

0 <1> PUSH 0.59
1 <1> MUL
2 <1> PUSH 4.6
3 <1> ADD
4 <1> SIN
5 <1> PUSH 1.0
6 <1> ADD
7 <1> PUSH 8.0
8 <1> MUL

Fig. 5. A program representing exactly g(x).

the program, but we will allow a larger Pn = 15, as it is unlikely, that such a
compact candidate will be found, especially without any preceding intermediate
stages with a larger number of instructions. The program requires only two
elements in the stack, but let the stack size be Ps = 10 because of the reasons
similar to the above ones.

Let there be two sets of samples for the evolutionary method. A ‘short’ set
gS(x) contains 30 samples of g(x) only from within a domain fragment S =
〈0.1, 3.6〉, and a ‘long’ set gL(x) contains 30 samples from L = 〈0.1, 13.6〉. Both
fragments start from 0.1 and not from 0, so that a lesser percentage of candidates
become invalid because of a possible division by zero.

To convey the computational efficiency, any of the tests will be limited with
a maximum computation time of 1000 seconds, and a number of tests that
succeeded in fulfilling this criterion will be given.

6.1 Extrapolation of an inflection

We see that gS(x) is very similar to the honey–pot, and as the honey–pot lacks
any inflection point, the hint to the evolutionary method that g(x) has an inflec-
tion point within S would be rather subtle. Let us use the presented method to

380 A. Rataj

extrapolate g(x) outside S, to see if the method was sensitive to that subtle hint.
Let MSEmax = 1 · 10−5 be rather small, as gS(x) is easy to fit by the discussed
method.

Out of the 20 tests run, 6 met the 1000 seconds criterion. Their generalising
diagrams are illustrated in Fig. 6. Five of these could be described as reasonable

y = g(x)

x

y

103.60

30
25
20
15
10
5
0

Fig. 6. A diagram g(x), and of a set of 6 functions fitting to gS(x) at MSEmax = 1·10−5 .

extrapolations, given the limited domain fragment covered by gS(x) – various
interpretations of the slopes, of a stationary point and of a deflection point are
seen. We see that the evolutionary method was able to propose interpretations
very different from the honey–pot function. The sixth extrapolations contains
garbage to the left of gS(x).

6.2 Extrapolation of periodicity

The set gL(x) presents a strong hint of being periodical. We expect the genetic
programs to finely extrapolate that periodicity. Let MSEmax = 1 ·10−4 be larger
than the error threshold used in the previous test, as gL(x) turns out to be
relatively more difficult to fit. This time, out of 20 tests run, all met the 1000
seconds criterion. The generalising diagrams of the first 10 tests are illustrated in
Fig. 7. We see a visually almost perfect fit, despite the relaxed value of MSEmax.
A fitting error shows, though, that the generalising programs are not identical
to g(x), and that the fitting quality decreases on average as the extrapolation
distance increases. Browsing the code of some of the respective final programs,
depicted in Fig. 8, confirms, that g(x) appears to be simpler than the generalising
programs.

7 Discussion

If we look at the code of the final candidates, shown in Fig. 8, it is seen, that
they still contain instructions of very different strengths, even if the generalised
function could be defined only in terms of instructions having a binary strength of
0 or 1. The fractional property of the programs serves thus not only the purpose

Fractional Genetic Programming for a More Gradual Evolution 381

δy
y = g(x)

x

δyy

0.1

0

-0.1
2013.60

20

15

10

5

0

Fig. 7. A diagram g(x), a set of 10 functions fitting to gL(x) at MSEmax = 1 · 10−4,
and a fitting error δy of each.

of a continuous evolution, but also extends the expressivity of the candidates.
Consider e.g. the following program: 〈1〉 PUSH x; 〈0.5〉 MUL, which computes
x2, even that x is pushed only once, and no power instruction is present.

As the programs utilise common algebraic operators and common mathemat-
ical functions, a question might be raised, if elegant symbolic equations could
be extracted from them. If a generalising program appears to be closely fitting,
yet representing a much complex equation that the generalised function, like in
the case of the test in Sect. 6.2, then perhaps a decrease of MSEmax might re-
fine the programs up to the point of making some of the fractional instructions
effectively almost disappear, by making their strengths very close to zero. An
algorithm simplifying a symbolic equation might then be applied, which would
hypothesise, that such instructions are redundant, and would remove them com-
pletely before simplifying the rest of the program in order to extract a symbolic
equation.

References

1. Alba, E., Dorronsoro, B.: The exploration/exploitation tradeoff in dynamic cellular
genetic algorithms. Evolutionary Computation, IEEE Transactions on 9(2), 126–
142 (2005)

2. Charbonneau, P.: Release notes for pikaia 1.2. Tech. rep., NCR/NT-451+ STR,
NCR Technical Note, Boulder, Colorado (2002)

3. Cramer, N.L.: A representation for the adaptive generation of simple sequential
programs. In: 1st International Conference on Genetic Algorithms. pp. 183–187.
Carnegie-Mellon University, Pittsburgh, PA, USA (1986)

4. Eiben, A., Schippers, C.: On evolutionary exploration and exploitation. Funda-
menta Informaticae 35(1-4) (1998)

5. Freitas, R., Gómez-Maŕın, C., Wilson, J.M., Casares, F., Gómez-Skarmeta, J.L.:
Hoxd13 Contribution to the Evolution of Vertebrate Appendages. Developmental
Cell 23(6), 1219–1229 (2012)

6. Goldberg, D.E.: Real-coded genetic algorithms, virtual alphabets, and blocking.
Complex Systems 5, 139–167 (1990)

382 A. Rataj

0 <0.5775> MUL 0 <0.3185> PUSH 7.1064
1 <0.3946> PUSH -6.7771 1 <0.2389> NEG
2 <0.9771> POP 2 <0.0788> PUSH -6.3361
3 <0.1400> PUSH 6.8841 3 <0.9691> SIN
4 <0.1872> NEG 4 <0.4833> ADD
5 <0.5722> SIN 5 <0.2392> ADD
6 <0.2324> PUSH 7.4358 6 <0.8587> COPY 1:1.1385
7 <0.5234> COPY 2:1.6608 7 <0.4592> PUSH 7.4412
8 <0.1365> PUSH 8.9045 8 <0.3479> MUL
9 <0.1909> PUSH 6.7019 9 <0.8930> PUSH 1.8314
10 <0.2116> PUSH -5.8994 10 <0.4190> POP
11 <0.2126> NEG 11 <0.8485> COPY 1:1.1542
12 <0.8238> MUL 12 <0.0793> COPY 1:1.1391
13 <0.2401> ADD 13 <0.0841> ADD
14 <0.1423> ADD 14 <0.0164> COPY 1:0.6350

0 <0.6323> ADD 0 <0.9452> PUSH -9.3873
1 <0.1373> NEG 1 <0.6560> PUSH -5.0818
2 <0.2402> PUSH -9.4909 2 <0.2104> PUSH -5.6119
3 <0.6012> NEG 3 <0.4147> INV
4 <0.8460> COPY 1:0.1593 4 <0.7736> COPY 1:1.3795
5 <0.1655> PUSH -4.3535 5 <0.6274> POP
6 <0.2287> COPY 2:1.2507 6 <0.3134> COPY 2:0.5906
7 <0.2647> PUSH 6.4488 7 <0.6651> COPY 1:0.9763
8 <0.8651> SIN 8 <0.6518> SIN
9 <0.1737> POP 9 <0.4214> POP
10 <0.3067> PUSH -4.2082 10 <0.8910> SIN
11 <0.6459> PUSH -7.4563 11 <0.4455> ADD
12 <0.8002> MUL 12 <0.2546> PUSH 7.0741
13 <0.1821> ADD 13 <0.4902> COPY 1:1.7485
14 <0.1140> ADD 14 <0.3605> MUL

Fig. 8. Example programs fitting to gL(x). To save space, digits only up to the 4th
decimal place are shown.

7. Herrera, F., Lozano, M., Sánchez, A.M.: A taxonomy for the crossover operator
for real-coded genetic algorithms: An experimental study. International Journal of
Intelligent Systems 18(3), 309–338 (2003)

8. Kenneth, H., Robbins, K.A., von Ronne, J.: FIFTH: A stack based GP language
for vector processing. In: EuroGP’07 Proceedings of the 10th European Conference
on Genetic Programming. vol. 1, pp. 102–113. Springer–Verlag Berlin, Heidelberg,
Valencia, Spain (2007)

9. Lin, L., Gen, M.: Auto-tuning strategy for evolutionary algorithms: balancing be-
tween exploration and exploitation. Soft Computing 13(2), 157–168 (2009)

10. Lindholm, T., Yellin, F.: Java virtual machine specification. Addison-Wesley Long-
man Publishing Co., Inc. (1999)

11. Oltean, M., Groşan, C., Dioşan, L., Mihăilă, C.: Genetic programming with lin-
ear representation: a survey. International Journal on Artificial Intelligence Tools
18(02), 197–238 (2009)

12. Perkis, T.: Stack-based genetic programming. In: Evolutionary Computation, 1994.
IEEE World Congress on Computational Intelligence., Proceedings of the First
IEEE Conference on. vol. 1, pp. 148–153. Orlando, FL, USA (1994)

13. Smart, W., Zhang, M.: Continuously evolving programs in genetic programming
using gradient descent. In: Mckay, R.I., Cho, S.B. (eds.) Proceedings of The Second
Asian-Pacific Workshop on Genetic Programming. Cairns, Australia (2004)

14. Wright, A.H., et al.: Genetic algorithms for real parameter optimization. In: Foun-
dations of Genetic Algorithms. pp. 205–218 (1990)

From EBNF to PEG

Extended Abstract

Roman R. Redziejowski

roman.redz@swipnet.se

1 Introduction

This is a continuation of paper [5] presented at CS&P’2012 and of its improved
version [6]. The subject is conversion of grammars from Extended Backus-Naur
Form to Parsing Expression Grammars. Parsing Expression Grammar (PEG),
as introduced by Ford [1,2], is essentially a recursive-descent parser with limited
backtracking. The parser does not require a separate ”lexer” to preprocess the
input, and the limited backtracking lifts the LL(1) restriction imposed on top-
down parsers.

In spite of its apparent similarity to Extended Backus-Naur Form (EBNF),
PEG often defines quite a different language. The question is: when an EBNF
grammar can be used as its own PEG parser? As found by Medeiros [3, 4], this
is, in particular, true for LL(1) languages. Which is of not much use if we use
PEG just to circumvent the LL(1) restriction. But, as noticed in [5], this result
is valid for a much wider class of grammars. Take as an example this grammar:

S = A|B
A = CxZ B = DyZ (1)

C = (a|c)+ D = (a|d)+ Z = z+

This grammar is not LL(1), and not even LL(k) for any k: each of A and B may
start with any number of a’s. But, a PEG parser invoked with input ”aaayzz”
will first try A, call C accepting ”aaa”, then finding ”y” instead of ”x” it will
backtrack and successfully accept B.

2 Previous Result

In [5,6], we considered a very simple grammar that has only two forms of rules:
”choice” A = e1|e2 and ”sequence” A = e1e2, where A is the name of the rule,
and each of e1, e2 is a letter of the input alphabet Σ, the name of a rule, or
the empty-word marker ε. Any EBNF grammar or PEG can be reduced to this
form by introducing additional rules. The names of rules are the ”nonterminals”
of the grammar. A nonterminal, a letter, the empty-word marker, or a formula
e1|e2 or e1e2 is referred to as an ”expression”. The set of all expressions of the
grammar is denoted by E. The grammar is assumed not to be left-recursive.

384 R. R. Redziejowski

Following [3,4], we used the method of ”natural semantics” to formally define
two interpretations of the grammar: as EBNF and as PEG. The method consists
in defining two relations, BNF and PEG .

Relation BNF is a subset of E ×Σ∗ ×Σ∗. We write [e] x BNF y to mean that
the relation holds for e ∈ E and x, y ∈ Σ∗. The relation is formally defined by a
set of inference rules shown in Figure 1: it holds if and only if it can be proved
using these rules. The rules are so constructed that [e] xy BNF y if and only if
the prefix x of xy belongs to the language L(e) of e according to the EBNF
interpretation.

[ε] x BNF x
(empty.b)

[a] ax BNF x
(letter.b)

[e1] xyz BNF yz [e2] yz BNF z

[e1e2] xyz BNF z
(seq.b)

[e1] xy BNF y

[e1|e2] xy BNF y
(choice.b1)

[e2] xy BNF y

[e1|e2] xy BNF y
(choice.b2)

Fig. 1. EBNF semantics

Relation PEG is a subset of E × Σ∗ × {Σ∗ ∪ fail}. We write [e] x PEG Y to
mean that the relation holds for e ∈ E, x ∈ Σ∗ and Y ∈ {Σ∗∪ fail}. The relation
is formally defined by a set of inference rules shown in Figure 2: it holds if and
only if it can be proved using these rules. The rules are so constructed that
[e] xy PEG y if and only if parsing expression e applied to xy consumes x, and
[e] x PEG fail if and only if e fails when applied to x.

[ε] x PEG x
(empty.p)

[a] ax PEG x
(letter.p1)

b 6= a

[b] ax PEG fail
(letter.p2)

[a] ε PEG fail
(letter.p3)

[e1] xyz PEG yz [e2] yz PEG Z

[e1e2] xyz PEG Z
(seq.p1)

[e1] x PEG fail

[e1e2] x PEG fail
(seq.p2)

[e1] xy PEG y

[e1|e2] xy PEG y
(choice.p1)

[e1] x PEG fail [e2] xy PEG Y

[e1|e2] xy PEG Y
(choice.p2)

where Y denotes y or fail and Z denotes z or fail.

Fig. 2. PEG semantics

From EBNF to PEG 385

Using these definitions, we obtained a sufficient condition for the two inter-
pretations to be equivalent, namely, that each choice A = e1|e2 satisfies:

L(e1)Σ∗ ∩ L(e2) Tail(A) = ∅, (2)

where L(e) is the language of e according to the EBNF interpretation, and
Tail(A) is any string that can follow A, up to the end of input. If S denotes
the grammar’s starting rule, and $ is the end-of-text symbol, Tail(A) is formally
defined as the set of strings y$ such that the proof of [S] w$ BNF $ for some
w ∈ L(S) contains a partial proof of [A] xy$ BNF y$ for some x.

The meaning of (2) is quite obvious: e1 must not compete with e2. The prob-
lem is in verifying it, as we have there an intersection of context-free languages
whose emptiness is, in general, undecidable. The approach proposed in [5, 6] is
to approximate the involved languages by languages of the form XΣ∗ where
X ⊆ Σ+. It results in the following condition, stronger than (2):

There exist X,Y ⊆ Σ+ such that

XΣ∗ ⊇ L(e1),

Y Σ∗ ⊇ L(e2) Tail(A), (3)

X� Y,

where X� Y means XΣ∗ ∩ Y = Y Σ∗ ∩X = ∅.
The sets X and Y can, in particular, be the sets of possible first letters of

words in L(e1) respectively L(e2) Tail(A). For such sets, X� Y is equivalent to
X ∩ Y = ∅, and the condition is identical to LL(1).

Even if the language is not LL(1), it may satisfy (2) if instead of single letters
we take some longer prefixes. A natural way to approximate L(e) by XΣ∗ is to
take as X the set of strings accepted by the first parsing procedures possibly
called by e. Or the first procedures called by them. If such approximations X,Y
satisfying (3) above exist, we have a parser that chooses its way by examining
the input ahead within the reach of one parsing procedure. It was suggested use
the name LL(1p) for languages that can be so parsed.

To find the possible approximations by first procedures, we used the relation
first where first(e) is the set of procedures called as first directly from e.

3 Beyond LL(1p)

In the example grammar (1), the first procedures of A and B are, respectively, C
and D, and L(C) 6� L(D), so this grammar is not LL(1p). However, X = L(Cx)
and Y = L(Dz) satisfy (3), guaranteeing that the grammar defines the same
language under both interpretation. Here the parser chooses its way by looking
at the text ahead within the reach of two parsing procedures. We can refer to
such grammar as being LL(2p). As we remarked before, it is not LL(2).

Checking if the grammar is LL(kp) requires finding possible sets of first k
procedures. This can be done using relation firstk, similar to that used for

386 R. R. Redziejowski

checking LL(k). Although the sets become large for larger k, it is a mechani-
cal procedure. However, checking of the relation� between these sets may not
be simple as it involves intersection of context-free languages. If we are lucky,
the languages may be regular, as in the above example. But in general, using
approximation by first procedures to check (2) is not always feasible, even for
k = 1.

4 Looking Farther Ahead

The mechanism used above to look far ahead in the input is the backtracking
of PEG. But, this backtracking is limited. When faced with e1|e2, the parser
cannot look ahead beyond e1 and then backtrack if it does not like what it sees
there. There exist grammars where the parser has to look beyond e1 to make
the correct decision. An example is the following grammar, modeled after [3,4]:

S = Xz

X = A|B A = ab|C (4)

B = a|Cd C = c

Interpreted as PEG, this grammar does not accept the string cdz that belongs
to L(S): A succeeds on c via C, leaving no chance to B. The grammar is not
LL(1p), nor even LL(kp) in the sense defined above. However, the grammar is
LL(2): a top-down parser can choose between A and B by looking at two letters
ahead: they are ab or cz for A and az or cd for B. The reason for the failure of
PEG is that X cannot look beyond A when faced with c as the first letter.

PEG has a special operation to examine the input ahead: the ”and-predicate”
&e. It means: ”invoke the expression e on the text ahead and backtrack; return
success if e succeeded or failure if it failed”. This can be formally defined by two
inference rules:

[e] xy PEG y

[&e] xy PEG xy
(and.p1)

[e] x PEG fail

[&e] x PEG fail
(and.p2)

In order to look beyond e1 in A = e1|e2, we can modify the grammar by
adding &e0 after e1, obtaining A = e1&e0|e2.

Consider as an example the grammar (4). The only rule that does not satisfy
(2) is X = A|B. One can easily see that by replacing it with X = A&z|B, we
obtain a PEG defining the same language as the EBNF grammar (4). This idea
has been used in [3, 4] to construct PEGs for LL(k) languages. We consider it
here for a wider class of languages.

We are going to consider the grammar where each choice has the form
A = e1&e0|e2. EBNF does not have the and-predicate; in order to speak of two
interpretations of the grammar, we define &e to be a dummy EBNF operation
with L(&e) = ε:

From EBNF to PEG 387

[&e] x BNF x
(and.b)

The problem is to choose the expression e0. We are going to show that the
two interpretations are equivalent if each choice A = e1&e0|e2 satisfies these
conditions:

Parsing expression e0 succeeds on every w ∈ Tail(A), (5)

L(e1)L(e0)Σ∗ ∩ L(e2) Tail(A) = ∅ . (6)

(Note that by taking e0 = ε, we obtain an &-free choice and (5,6) become
identical to (2).)

The demonstration consists of three Propositions:

Proposition 1. For every e ∈ E and w ∈ Σ∗, there exists a proof of either
[e] w PEG fail or [e] w PEG y where w = xy for some x.

Proof. This is proved in [3] using a result from [2]. A self-contained proof given
in [6] is easily extended to include the and-predicate.

Proposition 2. For each e ∈ E and x, y ∈ Σ∗, [e] xy PEG y implies [e] xy BNF y.

Proof. This is proved as Lemma 4.3.1 in [3]. The proof is easily extended to
include the and-predicate in EBNF.

Proposition 3. If every choice A = e1&e0|e2 satisfies (5,6) then for every
w ∈ L(S) there exists a proof of [S] w$ PEG $.

Proof. We show that for every partial result [e] xy$ BNF y$ in the proof of
[S] w$ BNF $ there exists a proof of [e] xy$ PEG y$. We use induction on the
height n of the proof tree for [e] xy$ BNF y$.

The case of n = 1 is easy. Take any n ≥ 1 and assume the Proposition holds
for every tree of height less or equal n. Consider a proof of [e] xy$ BNF y$ having
height n+ 1. The only non-trivial situation is a proof tree of height n+ 1 where
the last step results in [A] xy$ BNF y$ for A = e1&e0|e2. Two cases are possible:

Case 1: The result is derived from [e1] xy$ BNF y$ using and.b, seq.b and
choice.b1. By induction hypothesis there exists proof of [e1] xy$ PEG y$. By
definition, y$ ∈ Tail(A). As e0 succeeds on each string in Tail(A), we have
[&e0] y$ PEG y$ from and.p1. We can construct a proof of [e1&e0|e2] xy$ PEG y$
using seq.p1 and choice.p1.

Case 2: The result is derived from [e2] xy$ BNF y$ using and.b, seq.b and
choice.b2. By induction hypothesis there exists proof of [e2] xy$ PEG y$. In
order to use choice.p2, we have to show that [e1&e0] xy$ PEG fail.
Suppose this is not true. Then, by Proposition 1 exist proofs of [e1] uv$ PEG v$
and [&e0] v$ PEG v$ for some u, v such that uv = xy. By Proposition 2 exists
proof of [e1] uv$ BNF v$, which means u ∈ L(e1). The proof of [&e0] v$ PEG v$
requires [e] ts$ PEG s$ for some t, s such that ts = v. By Proposition 2 exists
proof of [e0] ts$ BNF s$, which means t ∈ L(e0). Thus xy = uts ∈ L(e1)L(e0)Σ∗.
But [e2] xy$ BNF y$ means xy ∈ L(e2) Tail(A), which contradicts (6). ut

388 R. R. Redziejowski

One can easily see that the necessary condition for the required e0 to exist
is:

L(e1) Tail(A) ∩ L(e2) Tail(A) = ∅ .

A systematic way of choosing a suitable e0 is still to be found.
It seems that for the LL(k) languages e0 should be the expression consuming
exactly FOLLOWk(A).

References

1. Ford, B.: Packrat parsing: a practical linear-time algorithm with backtracking.
Master’s thesis, Massachusetts Institute of Technology (2002)
http://pdos.csail.mit.edu/papers/packrat-parsing:ford-ms.pdf

2. Ford, B.: Parsing expression grammars: A recognition-based syntactic foundation.
In Jones, N.D., Leroy, X., eds.: Proceedings of the 31st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2004, Venice, Italy,
ACM (2004) 111–122

3. Medeiros, S.: Correspondência entre PEGs e Classes de Gramáticas Livres de Con-
texto. PhD thesis, Pontif́ıcia Universidade Católica do Rio de Janeiro (2010)

4. Mascarenhas, F., Medeiros, S., Ierusalimschy, R.: On the relation between context-
free grammars and Parsing Expression Grammars. UFRJ Rio de Janeiro, UFS
Aracaju, PUC-Rio, Brazil (2013) http://arxiv.org/pdf/1304.3177v1

5. Redziejowski, R.R.: From EBNF to PEG. In Popova-Zeugmann, L., ed.: Proceedings
of the 21th International Workshop on Concurrency, Specification and Programming
Berlin, Germany, September 26-28, 2012, Humboldt University of Berlin (2012) 324–
335
http://ceur-ws.org/Vol-928/

6. Redziejowski, R.R.: From EBNF to PEG. Fundamenta Informaticae (2013) to
appear

Towards an Object-Oriented Programming
Language for Physarum Polycephalum

Computing

Andrew Schumann1 and Krzysztof Pancerz1,2

1 University of Information Technology and Management
Sucharskiego Str. 2, 35-225 Rzeszów, Poland

aschumann@wsiz.rzeszow.pl
2 University of Management and Administration

Akademicka Str. 4, 22-400 Zamość, Poland
kpancerz@wszia.edu.pl

Abstract. In the paper, we present foundations of a new object-oriented
programming language for Physarum polycephalum computing. Both,
theoretical foundations and assumptions for a language specification are
considered. Physarum polycephalum is a one-cell organism. In the phase
of plasmodium, its behavior can be regarded as a biological substrate
that implements the Kolmogorov-Uspensky machine which is the most
generalized and nature-oriented version of a mathematical machine. The
proposed language will be used for developing programs for Physarum
polycephalum by the spatial configuration of stationary nodes (inputs).

Keywords: Physarum polycephalum, unconventional computing, nature-
inspired computing, object-oriented programming language, Kolmogorov-
Uspensky machine

1 Introduction

Physarum polycephalum is a one-cell organism belonging to Physarales, sub-
class Myxogastromycetidae, class Myxomycetes and division Myxostelida. In
the phase of plasmodium, it looks like an amorphous giant amoeba with net-
works of protoplasmic tubes. It feeds on bacteria, spores and other microbial
creatures (substances with potentially high nutritional value) by propagating
towards sources of food particles and occupying these sources. A network of pro-
toplasmic tubes connects the masses of protoplasm. As a result, the plasmodium
develops a planar graph, where the food sources or pheromones are considered
as nodes and protoplasmic tubes as edges. This fact allows us to claim that plas-
modium behavior can be regarded as a biological implementation of Kolmogorov-
Uspensky machines [7]. The modification of locations of nutrients (food sources)
causes a storage modification of plasmodium. Hence, the plasmodium may be
used for developing a biological architecture of different abstract automata such
as Kolmogorov-Uspensky machines [16, 22], Tarjan’s reference machine [21], and

390 A. Schumann, K. Pancerz

Schönhage’s storage modification machines [19, 20]. In Physarum Chip Project:
Growing Computers From Slime Mould [11] supported by FP7 we are going
to implement programmable amorphous biological computers in plasmodium of
Physarum. This abstract computer is called slime mould based computer.

One of the paths of our research in this area concerns creating a new pro-
gramming language that simulates plasmodium behavior. The following main
tasks can be distinguished in the first step of this path:

1. Constructing the programming language on the basis of storage machines.
The static storage structure is represented by a two-dimensional configura-
tion of point-wise sources of chemo-attractants and chemo-repellents.

2. Constructing the programming language on the basis of the Kolmogorov-
Uspensky machine (KUM), where edges are represented by protoplasmic
strands.

3. Developing programs represented by the spatial configuration of stationary
nodes (treated as inputs of the programs). Outputs of the programs may be
recorded optically.

The rest of the paper is organized as follows. In Section 3, we give foundations
of specification of a new language. Assumptions of specification are preceded by
a theoretical background of Physarum automata (see Section 2).

2 Physarum Automata

Plasmodium’s active zones of growing pseudopodia interact concurrently and in
a parallel manner. At these active zones, three basic operations stimulated by
nutrients and some other conditions can be observed: fusion, multiplication, and
direction operations. The fusion Fuse means that two active zones A1 and A2

both produce new active zone A3 (i.e. there is a collision of the active zones). The
multiplication Mult means that the active zone A1 splits into two independent
active zones A2 and A3 propagating along their own trajectories. The direction
Direct means that the active zone A is not translated to a source of nutrients
but to a domain of an active space with a certain initial velocity vector v. These
operations, Fuse, Mult, Direct, can be determined by the following stimuli:

– The set of attractants {N1, N2, . . .}. Attractants are sources of nutrients or
pheromones, on which the plasmodium feeds. Each attractant N is charac-
terized by its position and intensity. It is a function from one active zone to
another.

– The set of repellents {R1, R2, . . .}. Plasmodium of Physarum avoids light
and some thermo- and salt-based conditions. Thus, domains of high illu-
mination (or high grade of salt) are repellents such that each repellent R
is characterized by its position and intensity, or force of repelling. In other
words, each repellent R is a function from one active zone to another.

Such plasmodium behavior can be presented as an implementation of some
abstract automata.

Towards an Object-Oriented Programming Language 391

Fig. 1. The stimulation of the following operations in Physarum automata: (a) fusion,
(b) multiplication, and (c) direction, where A1, A2, A3 are active zones, N , N1, N2,
N3 are attractants, α is a protoplasmic tube, R is a repellent.

2.1 Physarum Cellular Automata

Recall that a cellular automaton is a 4-tuple A = 〈Zd, S, u, f〉, where (1) d ∈ N
is a number of dimensions, and the members of Zd are referred to as cells, (2)
S is a finite set of elements called the states of an automaton A, the members
of Zd take their values in S, (3) u ⊂ Zd \ {0}d is a finite ordered set of n
elements, u(x) is said to be a neighborhood for the cell x, (4) f :Sn+1 → S that
is f is the local transition function (or local rule). As we see an automaton is
considered on the endless d-dimensional space of integers, i.e., on Zd. Discrete
time is introduced for t = 0, 1, 2, . . . For instance, the cell x at time t is denoted
by xt. Each automaton calculates its next state depending on states of its closest
neighbors. The cellular automata thus represent locality of physics of information
and massive-parallelism in space-time dynamics of natural systems.

In abstract cellular automata, cells are physically identical. They can differ
just by one of the possible states of S. In case of Physarum, cells can possess
different topological properties. This depends on intensity of chemo-attractants
and chemo-repellents. The intensity entails the natural or geographical neigh-
borhood of the set’s elements in accordance with the spreading of attractants
or repellents. As a result, we obtain Voronoi cells. Let us define what they are
mathematically. Let P be a nonempty finite set of planar points and |P| = n.
For points p = (p1, p2) and x = (x1, x2) let d(p, x) =

√
(p1 − x1)2 + (p2 − x2)2

denote their Euclidean distance. A planar Voronoi diagram of the set P is a par-
tition of the plane into cells, such that for any element of P, a cell corresponding

392 A. Schumann, K. Pancerz

to a unique point p contains all those points of the plane which are closer to p
in respect to the distance d than to any other node of P. A unique region

vor(p) =
⋂

m∈P,m 6=p

{z ∈ R2: d(p, z) < d(m, z)}

assigned to a point p is called a Voronoi cell of the point p. Within one Voronoi
cell a reagent has a full power to attract or repel the plasmodium. The distance
d is defined by the intensity of reagent spreading. A reagent attracts or repels
the plasmodium and the distance, on which it is possible, corresponds to the
elements of a given planar set P. When two spreading wave fronts of the two
reagents meet, this means that on the board of meeting the plasmodium cannot
choose its one further direction and splits (see Figure 2).

Fig. 2. The Voronoi diagram for Physarum, where different attractants have different
intensity and power.

The direction of protoplasmic tubes is defined by concentrations of chemo-
attractants or chemo-repellents in Voronoi neighborhood. Each dynamics of pro-
toplasmic tube can be characterized at time step t by its current position xt and
the angle αt.

2.2 Physarum Kolmogorov-Uspensky Machines

Let Γ be an alphabet, k a natural number. We say that a tree is (Γ, k)-tree, if one
of nodes is designated and is called root and all edges are directed. Each node
is labeled by one of the signs of Γ and each edge from the same node is labeled
by different numbers {1, . . . , k} (so, each node has not more than k edges). We
see that by this definition of (Γ, k)-tree, the pseudopodia growing from the one
active zone, where all attractants are labeled by signs of Γ , and protoplasmic
tubes are labeled by numbers of {1, . . . , k}, is a (Γ, k)-tree.

Let r be the maximal possible path of (Γ ; k)-tree. We can always design
Physarum Voronoi diagrams (using attractants and repellents) for inducing dif-
ferent numbers r and appropriate local properties. The (Γ ; k)-tree limited by

Towards an Object-Oriented Programming Language 393

r is called (Γ ; k)-complex. Programming in Kolmogorov-Uspensky machines is
considered as transforming one (Γ ; k)-complex to another with the same r by
changing nodes and edges using some rules. In case of Physarum implementation
of Kolmogorov-Uspensky machines programming is presented as transforming
one Voronoi diagram into another with the same r by dynamics of Physarum
(e.g. when some attractants become eaten by Physarum).

The simpler version of the Kolmogorov-Uspensky machines is presented by
Schönhage’s storage modification machines.

2.3 Physarum Schönhage’s Storage Modification Machines

These machines consist of a fixed alphabet of input symbols, Γ , and a mutable
directed graph with its arrows labeled by Γ . The set of nodes X, identified with
attractants is finite, as well. One fixed node a ∈ X is identified as a distinguished
center node of the graph. It is the first active zone of growing pseudopodia. The
distinguished node a has an edge x such that xγ(a) = a for all γ ∈ Γ . That is, all
pointers from the distinguished center node point back to the center node. Each
γ ∈ Γ defines a mapping xγ from X to X. Each word of symbols in the alphabet
Γ is a pathway through the machine from the distinguished center node.

Schönhage’s machine modifies storage by adding new elements and redirect-
ing edges. Its basic instructions are as follows:

– Creating a new node: new W . The machine reads the word W , following the
path represented by the symbols of W until the machine comes to the last
symbol in the word. It causes a new node y, associated with the last symbol
of W , to be created and added to X. Adding a new node means adding a
new attractant within a Physarum Voronoi diagram.

– A pointer redirection: set W to V . This instruction redirects an edge from
the path represented by word W to a former node that represents word V .
It means that we can remove some attractants within a Physarum Voronoi
diagram.

– A conditional instruction: if V = W then instruction Z. It compares two
paths represented by words W and V and if they end at the same node, then
we jump to instruction Z, otherwise we continue. This instruction serves to
add edges between existing nodes. It corresponds to the splitting or fusion
of Physarum.

3 Foundations of Specification of an Object-Oriented
Programming Language for Physarum Polycephalum

The plasmodium of Physarum polycephalum functions as a parallel amorphous
computer with parallel inputs and parallel outputs. Data are represented by
spatial configurations of sources of nutrients. Therefore, we can generally as-
sume that a program of computation is coded via configurations of repellents
and attractants. The plasmodium of Physarum polycephalum is a computing

394 A. Schumann, K. Pancerz

substrate. In [10], Adamatzky underlined that Physarum does not compute. It
obeys physical, chemical and biological laws. Its behavior can be translated to
the language of computations.

In this section, we deal with foundations of specification of a new object-
oriented programming language for Physarum polycephalum computing on the
basis of using a Voronoi diagram for implementing Kolmogorov-Uspensky ma-
chines. In an object-oriented programming (OOP) paradigm, concepts are repre-
sented as objects that have data fields (properties describing objects) and associ-
ated procedures known as methods. The OOP approach assumes that properties
describing objects are not directly accessible by the rest of the program. They are
accessed by calling special methods, which are bundled in with the properties.
This approach has been implemented in our new language. Moreover, we have
referred to conventions used in the JavaBeans API [4], i.e., the object properties
must be accessible using get, set, and is (used for Boolean properties instead of
get). They are called accessor methods. For readable properties, there are getter
methods reading the property values. For writable properties, there are setter
methods allowing the property values to be set or updated.

Our new language has been proposed as a prototype-based programming lan-
guage like, for example, Self [1], JavaScript and other ECMAScript implemen-
tations [2]. Unlike traditional class-based object-oriented languages, it is based
on a style of object-oriented programming in which classes are not present. Be-
havior reuse is performed via a process of cloning existing objects that serve as
prototypes. This model is also known as instance-based programming.

Table 1. Main objects identified in Physarum polycephalum computing

Object Properties

Layer id, size, elements

Physarum id, position, intensity

Attractant id, position, intensity

Repellent id, position, intensity

The main objects identified in Physarum polycephalum computing are col-
lected in Table 1. We assume that a computational space is divided into two-
dimensional computational layers on which Physarum polycephalum, as well as
attractants and repellents, can be scattered. Our approach allows interaction
between elements placed on different layers. This property enables us to use,
in the future, the multi-agent paradigm in Physarum polycephalum computing.
The user can define, in the computational space, as many computational layers
as needed. For each layer, its size can be determined individually. We apply the
point-wise configuration of elements scattered on the layers. Therefore, for each
element (Physarum, attractant, repellent), its position can be determined using
two integers (coordinates). As it was mentioned in Section 2, attractants and

Towards an Object-Oriented Programming Language 395

repellents are characterized by the property called intensity. This property plays
an important role in creation of the Voronoi cells. For each attractant and repel-
lent, the intensity is a fuzzy value from the interval [0, 1], where 1 denotes the
maximal intensity, while 0 the minimal intensity, i.e., a total lack of impact of a
given attractant or repellent on Physarum polycephalum. The force of attracting
(repelling) of Physarum is a combination of intensity of attractants (repellents)
and distances between plasmodium and attractants (repellents), respectively.

Let p = (p1, p2) and x = (x1, x2) be points on the layer where Physarum and
attractant (repellent), respectively, are located. To create the Voronoi cells, we
can use the following measure modyfying a distance, which is commonly used:

f(p, x) =
1

ε(x)

√
(p1 − x1)2 + (p2 − x2)2,

where ε(x) is the intensity of attractant (repellent) placed at x. It means that
the Voronoi cells cover the force of attracting (repelling) of plasmodium instead
of simple distances between it and attractants (repellents). In the current version
of the language, the Voronoi cells are built within layers only.

Analogously to layers, the user can create and scatter on layers as many
elements as needed.

Below, we present an exemplary fragment of a code in our language responsi-
ble for creating the layer and elements, setting individual properties of elements
and scattering elements on the layer.

l1=new Layer;

p1=new Physarum;

a1=new Attractant;

a2=new Attractant;

a3=new Attractant;

a4=new Attractant;

l1.add(p1);

p1.setPosition(800,200);

l1.add(a1);

a1.setPosition(500,150);

a1.setIntensity(0.7);

l1.add(a2);

a2.setPosition(500,350);

a2.setIntensity(0.5);

l1.add(a3);

a3.setPosition(400,250);

a3.setIntensity(0.6);

l1.add(a4);

a4.setPosition(600,250);

a4.setIntensity(0.5);

For experiments with Physarum polycephalum computing, a specialized com-
puter tool (PhyChip Programming Platform) is being developed using the Java
environment. The tool consists of two main modules:

396 A. Schumann, K. Pancerz

1. Code creation and compilation module. For generating the compiler of our
language, the Java Compiler Compiler (JavaCC) tool [3] is used. JavaCC is
the most popular parser generator for use with Java applications.

2. Simulation module. It enables the user to perform time simulation of growing
pseudopodia, i.e., to run the program.

Fig. 3. The Voronoi cells for 4 attractants defined in the exemplary program generated
in our tool (attractants are marked with dots whereas Physarum with a square).

In Figure 3, we have shown the Voronoi cells generated in our computer
tool for 4 attractants (a1, a2, a3, a4) with different intensity assigned to them,
defined in the exemplary program. Attractants are marked with dots whereas
Physarum with a square. The measure defined earlier has been used to create
cells. It is easy to see that Physarum is attracted first of all by the most right
attractant.

4 Summation

In the paper, we have outlined theoretical foundations as well as assumptions
for a new object-oriented programming language for Physarum polycephalum
computing. The next mile steps in our research are the following: implementation
of operations based on the π-calculus model [17] of processes and extension
of the programming platform to the agent-oriented programming language for
computation with raw plasmodium.

Acknowledgments

This research is being fulfilled by the support of FP7-ICT-2011-8.

Towards an Object-Oriented Programming Language 397

References

1. Self, http://selflanguage.org/
2. ECMAScript, http://www.ecmascript.org/
3. JavaCC, http://java.net/projects/javacc/
4. JavaBeans. Tech. rep., Sun Microsystems (1997)
5. Adamatzky, A.: Reaction-diffusion algorithm for constructing discrete generalized

voronoi diagram. Neural Network World 6, 635–643 (1994)
6. Adamatzky, A.: Computing in Nonlinear Media and Automata Collectives. Insti-

tute of Physics Publishing (2001)
7. Adamatzky, A.: Physarum machine: implementation of a kolmogorov-uspensky

machine on a biological substrate. Parallel Processing Letters 17(4), 455–467 (2007)
8. Adamatzky, A.: Growing spanning trees in plasmodium machines. Kybernetes

37(2), 258–264 (2008)
9. Adamatzky, A., De Lacy Costello, B., T., S.: Universal computation with limited

resources: Belousov-zhabotinsky and physarum computers. International Journal
of Bifurcation and Chaos 18(8), 2373–2389 (2008)

10. Adamatzky, A.: Physarum Machines: Computers from Slime Mould. World Scien-
tific (2010)

11. Adamatzky, A., Erokhin, V., Grube, M., Schubert, T., Schumann, A.: Physarum
chip project: Growing computers from slime mould. International Journal of Un-
conventional Computing 8(4), 319–323 (2012)

12. Adamatzky, A., Costello, B.D.L., Asai, T.: Reaction-Diffusion Computers. Elsevier
Science, Amsterdam (2005)

13. Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cam-
bridge University Press (2005)

14. De Lacy Costello, B., Ratcliffe, N., Adamatzky, A., Zanin, A.L., Liehr, A.W., Pur-
wins, H.G.: The formation of voronoi diagrams in chemical and physical systems:
Experimental findings and theoretical models. International Journal of Bifurcation
and Chaos 14(7), 2187–2210 (2004)

15. Ilachinski, A.: Cellular Automata: A Discrete Universe. World Scientific (2001)
16. Kolmogorov, A.: On the concept of algorithm. Uspekhi Mat. Nauk 8(4), 175–176

(1953)
17. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I. Information

and Computation 100(1), 1–40 (1992)
18. Pavlović, D., Escardó, M.: Calculus in coinductive form. In: Proceedings of the

13th Annual IEEE Symposium on Logic in Computer Science. pp. 408–417 (1998)
19. Schönhage, A.: Real-time simulation of multi-dimensional turing machines by stor-

age modification machines. Project MAC Technical Memorandum 37, MIT (1973)
20. Schönhage, A.: Storage modification machines. SIAM Journal on Computing 9(3),

490–508 (1980)
21. Tarjan, R.: Reference machines require non-linear time to maintain disjoint sets.

Tech. Rep. STAN-CS-77-603 (1977)
22. Uspensky, V.: Kolmogorov and mathematical logic. The Journal of Symbolic Logic

57, 385–412 (1992)

About New Version of RSDS System

Zbigniew Suraj and Piotr Grochowalski

Institute of Computer Science
University of Rzeszów, Rzeszów, Poland
{zbigniew.suraj,piotrg}@ur.edu.pl

Abstract. The aim of this paper is to present a new version of a bib-
liographic database system - Rough Set Database System (RSDS). The
RSDS system, among others, includes bibliographic descriptions of pub-
lications on rough set theory and its applications. This system is also an
experimental environment for research related to the processing of bibli-
ographic data using the domain knowledge and the related information
retrieval.

Keywords: rough sets, data mining, knowledge discovery, pattern recog-
nition, database systems.

1 Introduction

The presented RSDS system is a bibliographic system that includes bibliograph-
ical references aimed at disseminating information on publications on rough set
theory and its applications [4–8]. The system is available for free at http://rsds.
univ.rzeszow.pl. Currently about 4000 bibliographical descriptions of publica-
tions are collected in its database.
The RSDS system is also an experimental environment for carrying out research
related to the broadly defined information processing based on the methods and
techniques in the field of ontology and rough sets. In addition, it enables one
to analyze the data contained in the database by using the advanced statistical
and graphical methods and techniques.

Apart from the bibliographical descriptions, it contains additionally:

– information on software related to the theory and applications of rough sets,
– bibliographies of people who render outstanding services to the development

of rough set theory and its applications,
– personal details about the authors of publications whose descriptions are

included in the database of this system.

The system was developed in the client-server technology, i.e., the data for
the system and mechanisms for handling such data are running on the server
and the user with the help of the web browser is able to access the resources.

The work on the system began in 2002 and it is continued. During the works
there were developed two versions of the system that have been made available
for users [9]-[11],[14]-[15],[19]. In March 2013, the third version of the system

About New Version of RSDS System 399

Fig. 1. The main window of the system.

was released. It has been completely rebuilt, allowing the introduction of larger
number of facilities for users of the system with the use of modern technology.

In the current version the following changes was introduced:

– exchange and reorganization of the engine of the system (CMS - Drupal),
– rebuilding the website design,
– rebuilding and upgrading the functionalities of the system,
– increasing the role of the administrator(s) of the system - admin panel,
– larger number of facilities for registered users - user panel,
– introduction of the status of data and the possibility of its modification,
– system-to-user communication via e-mail (on important issues).

The rest of the paper is organized as follows. Section 2 describes the logical
structure of the RSDS system. Functionalities of the system are presented in
Section 3. Section 4 provides description of data for the system. Section 5 gives
the system requirements. The future plans for the RSDS system are discussed
in section 6.

2 The Logical Structure of the System

The RSDS system structure can be divided into four functional layers. Each of
these layers includes modules and with the help of these modules the layers meet
specified tasks (see Figure 2):

– The presentation layer with the graphical interface module.
– The application layer with the modules of login, add/edit, search, graph and

statistical, download, auxiliary (biographies of people, software, maps).
– The communication layer with the module of communication with the database.

400 Z. Suraj, P. Grochowalski

Fig. 2. The logical structure of system.

– The physical layer containing the database.

The purpose of the modules from the presentation layer is to communicate
with the user with the usage of created interface.

In the application layer there are the modules implementing the main func-
tionalities of the system. The login module is responsible for the correct handling
of the login/logoff process of the users and storing information about the users
logged in the system. The add and edit module supports the process of im-
plementing the new data into the system or editing already existing ones. It
will ensure the correctness of the input data and its correct assignment to the
user-owner. The search module performs the search process of the publications
descriptions meeting the criteria set by the user. The operation of this module
has been improved by implementing the results of the research connected with
the information retrieval in it. The graphic and statistical module is designed not
only for the analysis of data in the system but also for the analysis of the activity
of the users. The analysis is carried out in various aspects, such as publications,
the authors of the publication and the relationships between them. The purpose
of this module is the presentation of the results of these analyzes. The download
module provides the users with different options of retrieving data from the sys-
tem in the form of prepared bibliography. Auxiliary modules extend the basic
functionality of the system to the biographies of people who render outstand-
ing services to the development of rough set theory and its applications, and
descriptions of available software related to the theory of rough sets and also a
world map showing where the given problem is growing solved.

The communication layer possesses a module that is responsible for the
proper communication with the database, which stores the data for the system.

The physical layer includes a relational database in which the data are stored
and presented in the system.

About New Version of RSDS System 401

3 System Functionalities

The basic functionalities of the RSDS system include:

– Adding new data.
– Editing existing data.
– Data search.
– Registration of users in the system.
– Saving data to a file.
– Sending data files to the administrator.
– Service of user comments.
– Statistics, analysis of statistical graphs, determining the Pawlak number of

the first and second kind, classifier of publications.
– Help.

Capabilities and the content of the RSDS system are constantly extended.
In order to store the held information in the simplest form and to exclude

redundancy (redundancy of data), the data for the RSDS system are stored in a
relational database. The database structure is based on the BibTeX format [22].
Well defined and uniform structures of the description decided about its choice.
Additionally, the possibility of getting the bibliographical descriptions in the
BibTeX format included in the system, allowing one to automatically generate
bibliographies and attach them to the prepared publication, has been added to
the system.

To share data, the system should be first equipped with it. Data entry and
other operations allowing a modification of data, require user authentication by
logging on to the system. New users, in order to get access to the full function-
ality of the system, need to register.

Data entry can be performed by two independent pathways:

– by predefined forms;
– with the usage of software able to read the files in the BibTeX format and

storing information in the system in the appropriate way.

The usage of predefined forms allows registered users to introduce new data into
the system individually. If one does not want to do this action individually or
intends to enter a large number of new data, he or she can send the data to
the system administrator and then administrator with the use of appropriate
software will enter the received data into the system. The advantage of the in-
dividual data input by users is that they are assigned to them. In such case the
users are authorized to edit the data in the future. This possibility is available
only for registered users, in order to avoid entering incorrect information into
the system. System with published descriptions (data) provides various options
of searching.

Searching for information on the RSDS system was implemented so far in
two main ways:

402 Z. Suraj, P. Grochowalski

– Alphabetical search by certain keywords, such as titles of publications, their
authors, editors, conference names, magazines, or year;

– Advanced search based on specified criteria, which sought description of
publication has to fulfill.

Each of the currently available options of finding information in the RSDS
system has both positive and negative aspects. Alphabetical search works when
you know for example: the author of sought publication, the name of the journal
in which the publication was published, who published a publication, or when
one knows the year of the publication. The weaker part of this search method,
however, is that in the absence of precise information about sought publication
the system provides the large number of publication descriptions meeting the
search criteria, which often have to be further analyzed by a painstaking selection
process. However, during advanced search, the user defines the criteria which
have to be fulfilled for the sought publication and, depending on the accuracy
of the selection of these criteria, he or she obtains more or less adequate results.
The problem of the further selection of obtained results still exists in many
cases. This process involves directing a user’s query to the database system to
find the matching (appropriate) data (publication) for your search pattern. This
matching is based on the finding of exact pattern in the data in the database.
If the matching to the pattern data is found, it will be annexed to the result.
This is repeated for all data located in the database. Then the edited result set
(publication) is sent to the user (see Figure 3).

Fig. 3. The current course of the process of searching for the information in the RSDS
system.

Finding information in the system process supplemented with the additional
knowledge (using ontology and methods of rough set theory) is presented in the
general form shown in Figure 4. This process in comparison with the mapping

About New Version of RSDS System 403

specified search pattern is different in this that the system after receiving the
user’s query accede to its confrontation with the information included in the
system [1–3, 17, 21]. This is done as follows: from the resources of the system
are retrieved the specific ontologies for publication and they are verified for
their belonging to the inner circle of the sought information in the domain of
general ontology (taking into account the relationships between different types of
concept). In the case of positive verification the approximations are appointed for
a specific publication. They are then aggregated into a single value representing
the total adjustment to the published information. When appointed value is
greater than the threshold value, the given publication will be included in the
result set. This process is repeated for all the data (publications). Next, after
the result set processing (division of publication into groups) it is sent to the
user. The developed methodology has been implemented in the system and made
available to the users in the ontological search section. In order to streamline
the process of building queries, for the system has been prepared the editor to
assist the creation of query-by-user. The functionalities of this editor are: auto
completion of entered concepts, defined relational operators such as AND, OR,
NOT, and taking into account the priority of the process by using parentheses.

Fig. 4. The process of searching information in the RSDS system based on additional
knowledge.

In order to minimize the time complexity of the process, the determining of
the detailed ontology is carried out once. Determination of the detailed ontology
is a part of the process relying on the preparation for the implementation of the
system of bibliographic information for retrieval based on domain knowledge.
This process can be carried out in several steps, which also has been shown
(see Figure 5). The first step is to develop the general ontology by the domain

404 Z. Suraj, P. Grochowalski

expert. Then, on the basis of the system resources, supported by the domain
knowledge (general ontology) the detailed ontologies are determined. In the pro-
cess of the detailed ontology generation new concepts or relationships between
concepts can occur. In that case the system in cooperation with the domain
expert is able to include such concepts in the general ontology, thus creating
extended domain ontology. The final step in this process is to determine the
degrees of bibliographical descriptions match to the elementary concepts from
the general ontology. This is done because of the minimization of time required
for determining the response to a query from user.

Fig. 5. The process of preparing the bibliographic system for searching information
based on additional knowledge.

The system, in addition to bibliographical data (represented in the form of
descriptive or BibTeX format) provides a fairly wide range of different statistics
and the results of the analyzes of the data [12, 13, 16, 18].

In the carried out research the data collected from the year 1981 to the
present are taken into account. They are analyzed in two ways: statistical and
graphic. In relation to statistic data are processed in different compartments of
time:

1. till the defined periods, five-years in the incremental relation, i.e., 1981-1985,
1981-1990, 1981-1995, etc.

2. in certain five-years, i.e., 1981-1985, 1986-1990, 1991-1995, etc.

In terms of graphic analysis it is made on the basis of the defined cooperation
CG graph. The graph vertices are the authors of the publications included in the
bibliographic system. Two vertices are connected by the edge when two authors
have written at least one common publication.

In statistical analysis were determined the following values characterizing
the examined data set, i.e., the number of authors in respect to the number of

About New Version of RSDS System 405

written publication, various kinds of means, standard deviations associated with
a particular medium, the number of works in respect to the number of authors
creating them.

Graph analysis of the defined CG graph lies in its overall analysis that is the
appointment of the average degree of vertex, of isolated vertices, etc. CG graph
after the rejection of isolated vertices has been further analyzed. It was based on
the determination of the components of the graph and the analysis of the largest
component. Determination of components allowed on determining the groups of
authors writing joint publications - the cooperating authors. These groups are
reflected in reality. The analyzed parameters of the largest component allows for
its accurate interpretation.

Additionally, the system allows users to read the Pawlak number of the first
and second kind, which values indicate the strength of the proximity of pub-
lishing author’s work with prof. Z. Pawlak, i.e., the less value of the Pawlak
number represents the stronger relation between the author of published work
and Professor Pawlak [18, 20].

All analyzes are performed dynamically, i.e., the calculation of parameters is
taking into account any change in the data collected in system.

4 Input-output Data

Bibliographical descriptions are described in the system according to specifi-
cations of BibTeX [22]. This means that the description of each publication is
divided into elements defined by BibTeX, such as title, publisher, year of pub-
lication, the keywords, abstract, etc. The prepared descriptions are placed in
a relational database. Each component is stored in the database structure de-
fined as a string, the importance of which, unfortunately, neither database nor
database languages can understand. An example of a bibliographic description
located in the system is presented in Table 1. Descriptions of publications are
formulated in English.

Table 1. The example of bibliographic description in the BibTeX format.

@INPROCEEDINGS{,
author = {Hu, Xiaohua Tony and Cercone, Nick},
title = {Mining knowledge rules from databases: A rough set approach},
booktitle = {Proceedings of the 12th International Conference on Data Engineering},
conference = {International Conference on Data Engineering (CDE), New Orleans,

USA},
pages = {96-105},
publisher = {IEEE Computer Society Press},
address = {Los Alamitos, CA, USA},
month = {February},
year = 1996,
isbn = {0-8186-7240-4},
abstract = {In this paper, the principle and experimental results of an attribute-

oriented rough set approach for knowledge discovery in databases are de-
scribed. . . . },

keywords = {knowledge mining and discovery},
}

406 Z. Suraj, P. Grochowalski

5 System Requirements

The RSDS system can be run on any computer that is connected to the Internet.
The computer must have an operating system equipped with web browser. The
presented above requirements must be met, as the RSDS system is an online
system and requires a permanent connection to the Internet. In addition, a web
browser, in which the system will be running, must support JavaScript scripting
language, CSS style sheets and cookies. The system has been tested with the
following browsers: Internet Explorer 9, Mozilla Firefox 17, and Chrome 23.

6 Plans for the Future

The directions of further research and work related to the system will be:

– development of a method for the formal verification of the correctness of the
defined relations in the general ontology,

– increase of the degree of efficiency of information retrieval,
– automation of the process of processing of the owned information,
– attempt to improve the quality of semantic analysis,
– development of new functionalities of the system increasing its features such

as: automatic discovery of scientific user profile, finding new data from In-
ternet resources, extending the analysis of owned data, etc.

Acknowledgment. We would like to thank everyone who contributed to the
creation and development of the RSDS system, in particular to Grzegorz Świstak
and Przemys law Wanat.

References

1. Grochowalski P. and Pancerz K., The outline of an ontology for the rough set theory
and its applications. In Czaja L., Penczek W., Salwicki A., Schlingloff H., Skowron
A., Suraj Z., Lindemann G., Burkhard H.-D. (Eds.), Proceedings of the Work-
shop on Concurrency, Specification and Programming, CS&P2008, Gross-Vater
See, Berlin, 29 September - 1 October, 2008, vol. 1-3, pp. 192–204. Informatik-
Berichte, 2008.

2. Grochowalski P. and Pancerz K., The outline of an ontology for the rough set
theory and its applications. Fundamenta Informaticae, 93(1-3):143–154, 2009.

3. Pancerz K. and Grochowalski P., Matching Ontological Subgraphs to Concepts: a
Preliminary Rough Set Approach. In Proceedings of the 10th International Confer-
ence on Intelligent Systems Design and Applications (ISDA’2010), Cairo, Egypt,
November 29 - December 1, 2010, pp. 1394–1399, IEEE Xplore, 2010.

4. Pawlak Z., Rough Sets. International Journal of Computer and Information Sci-
ences, 11:341–356, 1982.

5. Pawlak Z., Grzyma la-Busse J.W., S lowiński R., and Ziarko W., Rough Sets. Com-
munications of the ACM, 38(11):88–95, November 1995.

6. Pawlak Z. and Skowron A., Rough Sets and Boolean Reasoning. Information
Sciences, 177(1):41–73, 2007.

About New Version of RSDS System 407

7. Polkowski L.T., Rough Sets. Mathematical Foundations. Advances in Soft Com-
puting. Physica-Verlag, Heidelberg, 2002.

8. Skowron A. and Pal S.K. (Eds.), Special Volume: Rough Sets, Pattern Recognition
and Data Mining, vol. 24(6), Pattern Recognition Letters. North Holland, 2003.

9. Suraj Z. and Grochowalski P., The Rough Sets Database System: An Overview.
In Komorowski J., Grzyma la-Busse J.W., Tsumoto S., S lowiński R. (Eds.), Pro-
ceedings of the 4th International Conference on Rough Sets and Current Trends in
Computing, RSCTC 2004, Uppsala, Sweden, June 2004, vol. 3066, Lecture Notes
in Artificial Intelligent, pp. 841–849, Springer-Verlag, 2004.

10. Suraj Z. and Grochowalski P., The Rough Set Database System: An Overview.
Transactions on Rough Sets III, Lecture Notes of Computer Sciences, vol. 3400,
Springer-Verlag, Berlin, pp. 190–201, 2005.

11. Suraj Z. and Grochowalski P., Functional extension of the RSDS system. In Hirano
S., Inuiguchi M., Miyamoto S., Nguyen H.S., S lowiński R., Greco S., Hata Y. (Eds.),
Proceedings of the 5th International Conference on Rough Sets and Current Trends
in Computing, RSCTC 2006, Kobe, Japan, November 2006, vol. 4259, Lecture
Notes in Artificial Intelligent, pp. 786–795. Springer-Verlag, 2006.

12. Suraj Z. and Grochowalski P., Patterns of collaborations in rough set research. In
Gomez V., Bello R., Falcon R. (Eds.), Proceedings of the International Symposium
on Fuzzy and Rough Sets, ISFUROS 2006, Santa Clara, Cuba, December 5-8, 2006,
pp. 1–7.

13. Suraj Z. and Grochowalski P., Patterns of Collaborations in Rough Set Research. In
Bello R., Falcon R., Pedrycz W., Kacprzyk J. (Eds.), Granular Computing: at the
Junction of Fuzzy Sets and Rough Sets, Studies in Fuzziness and Soft Computing,
vol. 224, Springer-Verlag, 2008, pp. 79–92.

14. Suraj Z. and Grochowalski P., The Rough Set Database System. Transactions on
Rough Sets VIII, Lecture Notes of Computer Sciences, vol. 3400, Springer-Verlag,
pp. 307–331, 2008.

15. Suraj Z., Grochowalski P., Garwol K., and Pancerz K., Toward intelligent searching
the rough set database system: an ontological approach. In Szczuka M., Czaja
L. (Eds.), Proceedings of the CS&P’2009 Workshop, Kraków-Przegorza ly, 28-30
September, 2009, vol. 1-2, pp. 574–582, Warsaw University, 2009.

16. Suraj Z. and Grochowalski P., Some Comparative Analyses of Data in the RSDS
System. In Yu J., Greco S., Lingras P., Wang G., Skowron A. (Eds.), Proceedings of
the 5th International Conference on Rough Sets and Knowledge Technology, RSKT
2010, Beijing, China, October 15-17, 2010, Lecture Notes in Artificial Intelligence,
vol. 6401, Springer-Verlag, pp. 8–15, 2010.

17. Suraj Z. and Grochowalski P., Toward intelligent searching the Rough Set Database
System (RSDS): an ontological approach. Fundamenta Informaticae, 101(1-2):115–
123, 2010.

18. Suraj Z., Grochowalski P., and Lew L., Pawlak Collaboration Graph and Its Prop-
erties. Proceedings of the 13th International Conference on Rough Sets, Fuzzy Sets,
Data Mining and Granular Computing (RSFDGrC’2011), Moscow, Russia, June
27-30, 2011.

19. Suraj Z. and Grochowalski P., RoSetOn: The Open Project for Ontology of Rough
Sets and Related Fields. In J.T. Yao et al. (Eds.), Proceedings of the 6th In-
ternational Conference on Rough Sets and Knowledge Technology, RSKT 2011,
Banff, Canada, October 9-12, 2011, Lecture Notes in Computer Science, vol. 6954,
Springer-Verlag, pp. 414–419, 2011.

408 Z. Suraj, P. Grochowalski

20. Suraj Z., Grochowalski P., and Lew L, Discovering Patterns of Collaboration in
Rough Set Research: Statistical and Graph-Theoretical Approach. In J.T. Yao
et al. (Eds.), Proceedings of the 6th International Conference on Rough Sets and
Knowledge Technology, RSKT 2011, Banff, Canada, October 9-12, 2011, Lecture
Notes in Computer Science, vol. 6954, Springer-Verlag, pp. 238–247, 2011.

21. Suraj Z., Grochowalski P, and Pancerz K., Knowledge Representation and Au-
tomated Methods of Searching for Information in Bibliographical Data Bases: A
Rough Set Approach. In Skowron A., Suraj Z. (Eds.), Rough Sets and Intelligent
Systems - Professor Zdzis law Pawlak In Memoriam, Intelligent Systems Reference
Library, vol. 43, pp. 515–538, 2012.

22. BibTeX. Available: http://www.bibtex.org/

Generation of Labelled Transition Systems for Alvis
Models Using Haskell Model Representation

Marcin Szpyrka, Piotr Matyasik, and Michał Wypych

AGH University of Science and Technology
Department of Applied Computer Science

Al. Mickiewicza 30, 30-059 Kraków, Poland
{mszpyrka,ptm,mwypych}@agh.edu.pl

Abstract. Alvis is a formal modelling language for concurrent systems with the
following advantages: a graphical modelling language used to define intercon-
nections among agents, a high level programming language used to define the
behaviour of agents and the possibility of a formal model verification. An Alvis
model semantics find expression in an LTS graph (labelled transition system).
Execution of any language statement is expressed as a transition between for-
mally defined states of such a model. An LTS graph is generated using Haskell
representation of an Alvis model and user defined Haskell functions can be used
to explore the graph. The paper deals with the problem of translation of an Alvis
model into its Haskell representation and discusses possibilities of model verifi-
cation with the so-called Haskell filtering functions.

Keywords: Alvis, formal verification, Haskell, labelled transition system

1 Introduction

Alvis [1], [2], [3] is a formal modelling language being developed at AGH-UST in
Krakow, Department of Applied Computer Science. The main aim of the project is to
provide a flexible modelling language for concurrent systems with possibilities of a
formal models verification. Alvis combines advantages of high level programming lan-
guages with a graphical language for modelling interconnections between subsystems
(called agents) of a concurrent system. States of a model and transitions among them
are represented using a labelled transition system (LTS graph for short [4]) which is
used to verify the model formally by using model checking techniques [5], [6], [7],
[8]. Previous research on Alvis was focused on the untimed version of the language
with α0 system layer (multiprocessor environments) [1], [2]. Using this system layer
makes Alvis an alternative for other formalisms as Petri nets [9], [10], [11], process
algebras [12] etc., but main advantages of Alvis approach for systems modelling are:
similarity of Alvis syntax and syntax of procedural languages, graphical language for
modelling interconnections between agents and the method of models states description
which is similar to information provided by software debuggers.

The scheme of the modelling and verification process with Alvis is shown in Fig. 1.
From the users point of view, the process starts from designing a model using prototype
modelling environment called Alvis Editor. The designed model is stored using XML

410 M. Szpyrka, P. Matyasik, M. Wypych

Design of

communication

diagram

Implementation

of code layer

Implementation

of �lter functions

Speci�cation

of requirements

(µ calculus)

Veri�cation with

�lter functions

Model checking

Alvis

Editor

Alvis

Translator

editor

GHC

CADP

Model design

translation

LTS graph
generation

Fig. 1. Modelling and verification process with Alvis

file format. Then it is translated into Haskell [13] source code and its Haskell repre-
sentation is used to generate the LTS graph. The Haskell functional language has been
chosen as middle-stage representation of an Alvis model because Haskell is also used as
a part of Alvis language i.e. Alvis uses Haskell to define parameters, data types and data
manipulation functions. Haskell has been also used to implement the LTS graph gene-
ration algorithm. Such an LTS graph is stored as a Haskell list. A designer has access
to such a source code, so user-defined Haskell functions (called filtering functions) that
search an LTS graph for some states or parts of the graph that meet given requirements
can be included into the model. The source code is compiled with GHC compiler. The
results of received program execution are the LTS graph for the given model and the
report of the model verification with filtering functions.

Another approach to Alvis model verification relies on using CADP toolbox [14].
CADP offers a wide set of functionalities, ranging from step-by-step simulation to mas-
sively parallel model-checking [5], [6], [7]. An Alvis LTS graph can be converted into
BCG (Binary Coded Graphs) format which is one of acceptable input formats for CADP
Toolbox. Then the CADP evaluator is used to check whether the model satisfies require-
ments given as regular alternation-free µ-calculus formulae [6], [15], [7].

Generation of Labelled Transition Systems for Alvis Models Using Haskell ... 411

The paper deals with the problem of translation of an Alvis model into its Haskell
representation and discusses possibilities of model verification with filtering functions.
Selected ideas connected with Alvis and LTS graphs are presented in Secion 2. Sec-
tion 3 deals with the middle-stage Haskell model representation. Methods of LTS graph
exploration are considered in Section 4. A short summary is given in the final section.

2 Alvis Models

An Alvis model is defined as a triple A = (H,B,ϕ), whereH is a hierarchical commu-
nication diagram,B is a syntactically correct code layer, and ϕ is a system layer. In this
paper we consider models with α0 system layer only. This layer is based on the assump-
tion that each active agent has access to its own processor and in case of conflicts agents
priorities are taken under consideration. If two or more agents with the same highest
priority compete for the same resources, the system works non-deterministically. More-
over, before generation of the Haskell model representation models are transformed into
equivalent non-hierarchical form. Thus, from now on we will consider models defined
as A = (D,B, α0), where D = (A, C, σ) is a non-hierarchical communication dia-
gram, where: A = {X1, . . . , Xn} is the set of agents consisting of two disjoint sets,
AA, AP such that A = AA ∪ AP , containing active and passive agents respectively;
C ⊆ P × P , where P is the set of all ports, is the communication relation, such that:

– a connection cannot be defined between ports of the same agent;
– procedure ports are either input or output ones i.e. ports defined as procedures are

used to transfer signals (values) either to or from a passive agent;
– a connection between an active and a passive agent must be a procedure call;
– a connection between two passive agents must be a procedure call from a non-

procedure port.

The start function σ makes it possible to delay activation of some agents.
Active agents perform some activities and are similar to tasks in Ada programming

language [16]. Each of them can be treated as a thread of control in a concurrent system.
By contrast, passive agents do not perform any individual activities, and are similar to
protected objects (shared variables). Passive agents provide other agents with a set of
procedures (services). For more details see [2]. A description of the Alvis syntax can
be also found at the Alvis project web site http://fm.kis.agh.edu.pl.

An example of Alvis model for a sender-buffer-receiver system is given in Fig. 2.
Agent S (sender) puts sequentially valueless signals to the buffer (agent B) and agent
R (receiver) gets such signals from the buffer. AgentB offers two procedures (services,
ports) to connected agents.

States of an Alvis model and transitions among them are represented using a la-
belled transition system. An LTS graph is an ordered graph with nodes representing
states of the considered system and edges representing transitions among states.

Definition 1. A Labelled Transition System is a tuple LTS = (S,A,→, s0), where:

– S is the set of states and s0 ∈ S is the initial state;
– A is the set of actions;
– →⊆ S ×A× S is the transition relation.

412 M. Szpyrka, P. Matyasik, M. Wypych

agent Sender {
loop { out put; }} -- 1, 2

agent Buffer {
i :: Int = 0;
proc (i == 0) put { in put; i = 1; } -- 1, 2
proc (i /= 0) get { out get; i = 0; }} -- 3, 4

agent Receiver {
loop { in get; }} -- 1, 2

Fig. 2. Alvis model for sender-buffer-receiver system

The usage of LTS graphs is a universal method of a state space representation and
is omnipresent in formal modelling languages. Different languages like Petri nets, time
automata, process algebras etc. use different methods of describing nodes and edges in
LTS graphs. They also use different names for them e.g. reachability graphs in Petri
nets [9], [11], but the general structure of these graphs is still the same. The common
feature of these approaches is the encoding of the considered system states using math-
ematical ideas typical for the chosen formalism. On the other hand they differ from
methods used in programming languages significantly. In contrast to this, Alvis syntax
is very similar to procedural programming languages and the used method of a model
state description is similar to information provided by software debuggers. A state of
an Alvis model is represented as a sequence of agents states [4], [2]. To describe the
current state of an agent we use the following pieces of information.

– Agent mode (am) represents the type of the current agent activity e.g., Running (X)
means that an agent is performing one of its statements, while waiting (W) means
that the agent is waiting for an event (for active agents). For passive agents, waiting
means that the corresponding agent is inactive and waits for another agent to call
one of its accessible procedures. On the other hand, Taken (T) means that one of
the passive agent procedures has been called and the agent is executing it.

– Program counter (pc) points out the current statement of an agent.
– Context information list (ci) contains additional information about the current state

of an agent e.g. if an agent is in the waiting mode, ci contains information about
events the agent is waiting for.

– Parameters values list contains the current values of the corresponding agent pa-
rameters.

LTS graph for model from Fig. 2 is shown in Fig. 3. Let us consider state 11:

– am(B) = T, pc(B) = 1 – agent B is taken and performs its first step;

Generation of Labelled Transition Systems for Alvis Models Using Haskell ... 413

– ci(S) = [proc(B.put, put)] – agent S has called procedure B.put via port S.put;
– am(R) = W, pc(R) = 2, ci(R) = [in(get)] – agent R is waiting after performing

step 2 (out statement), context information list points out that the agent is waiting
for finalisation of the communication that has been initialised via port R.get.

(0)
S: (X,1,[],())

B: (W,0,[in(put)],0)
R: (X,1,[],())

(1)
S: (X,2,[],())

B: (W,0,[in(put)],0)
R: (X,1,[],())

loop(S)

(2)
S: (X,1,[],())

B: (W,0,[in(put)],0)
R: (X,2,[],())

loop(R)

(3)
S: (X,2,[proc(B.put,put)],())

B: (T,1,[],0)
R: (X,1,[],())

out(S.put)

(4)
S: (X,2,[],())

B: (W,0,[in(put)],0)
R: (X,2,[],())

loop(R)loop(S)

(5)
S: (X,1,[],())

B: (W,0,[in(put)],0)
R: (W,2,[in(get)],())

in(R.get)

(6)
S: (X,2,[proc(B.put,put)],())

B: (T,2,[],0)
R: (X,1,[],())

in(B.put)

(7)
S: (X,2,[proc(B.put,put)],())

B: (T,1,[],0)
R: (X,2,[],())

loop(R) out(S.put)

(8)
S: (X,2,[],())

B: (W,0,[in(put)],0)
R: (W,2,[in(get)],())

in(R.get)loop(S)

(9)
S: (X,1,[],())

B: (W,0,[out(get)],1)
R: (X,1,[],())

exec(B)

(10)
S: (X,2,[proc(B.put,put)],())

B: (T,2,[],0)
R: (X,2,[],())

loop(R) in(B.put)

(11)
S: (X,2,[proc(B.put,put)],())

B: (T,1,[],0)
R: (W,2,[in(get)],())

in(R.get) out(S.put)

(12)
S: (X,2,[],())

B: (W,0,[out(get)],1)
R: (X,1,[],())

loop(S)

(13)
S: (X,1,[],())

B: (W,0,[out(get)],1)
R: (X,2,[],())

loop(R) exec(B)

(14)
S: (X,2,[proc(B.put,put)],())

B: (T,2,[],0)
R: (W,2,[in(get)],())

in(R.get) in(B.put)

(15)
S: (W,2,[out(put)],())
B: (W,0,[out(get)],1)

R: (X,1,[],())

out(S.put)

(16)
S: (X,2,[],())

B: (W,0,[out(get)],1)
R: (X,2,[],())

loop(R) loop(S)

(17)
S: (X,1,[],())
B: (T,3,[],1)

R: (X,2,[proc(B.get,get)],())

in(R.get) exec(B)

(18)
S: (W,2,[out(put)],())
B: (W,0,[out(get)],1)

R: (X,2,[],())

loop(R) out(S.put)

(19)
S: (X,2,[],())
B: (T,3,[],1)

R: (X,2,[proc(B.get,get)],())

in(R.get) loop(S)

(20)
S: (X,1,[],())
B: (T,4,[],1)

R: (X,2,[proc(B.get,get)],())

out(B.get)

(21)
S: (W,2,[out(put)],())

B: (T,3,[],1)
R: (X,2,[proc(B.get,get)],())

in(R.get) out(S.put)

(22)
S: (X,2,[],())
B: (T,4,[],1)

R: (X,2,[proc(B.get,get)],())

out(B.get)

exec(B)

loop(S)

(23)
S: (W,2,[out(put)],())

B: (T,4,[],1)
R: (X,2,[proc(B.get,get)],())

out(B.get)

exec(B)

out(S.put)

exec(B)

Fig. 3. LTS graph for model from Fig. 2

414 M. Szpyrka, P. Matyasik, M. Wypych

A state of a model can be changed as a result of executing a step. Most of the
Alvis statements e.g. exec, exit , etc. are single-step statements. By contrast, if , loop
and select are multi-step statements. We use recursion to count the number of steps for
multi-step statements. For each of them the first step enters the statement interior. Then
we count steps of statements put inside curly brackets. The set of all possible steps for
the considered Alvis models contains the following elements:

– exec – performs an evaluation and assignment;
– exit – terminates an agent or a procedure,
– if – enters an if statement,
– in – performs communication (input side),
– jump – jumps to a label,
– loop – enters a loop,
– null – performs an empty statement,
– out – performs communication (output side),
– select – enters a select statement,
– start – starts an inactive agent,
– io – performs communication (both sides).

Results of all these steps execution have been formally defined in [2].

3 Haskell Model Representation

An Alvis model is translated into Haskell source code and this middle-stage represen-
tation is used for LTS graph generation and for verification purposes. In order to obtain
it following steps has to be performed:

– flattening Alvis hierarchical model,
– constructing agents list,
– generating state tuple for every agent,
– generating system state tuple by combining individual agents states, ordered re-

spectively to agent list generated earlier,
– generating the enable function according to Alvis language rules [1], [2],
– generating the fire function,
– appending LTS generation code,
– appending LTS export code,
– appending main function.

Some elements common for all Alvis models are defined inside Alvis module, which
is included into any model source file. This module contains for example enumerated
data types for possible steps, entries of context information lists etc. Individual source
files generated for models have the following structure:

1. User defined data types (if any).
2. User implemented functions for parameters manipulation (if any).
3. Definition of individual agents state types and the corresponding model state type.
4. Definition of the initial state.
5. Implementation of enable and fire functions.
6. Implementation of LTS graph generation algorithm.
7. Implementation of export functions into: text, dot and aldebaran formats.

Generation of Labelled Transition Systems for Alvis Models Using Haskell ... 415

8. User implemented filtering functions.
9. The main function.

The initial part of the Haskell source file for the model from Fig. 2 is shown in
Fig. 4. It contains: the list of the model agents, data types for these agents’ states and
for the model state (type State), data type for LTS graph node representation (type
Node) and the initial model state. The Node type contains: the node index, a model
state and a list of enabled steps in that state (a step label and the target node number).

module Main where
import Alvis

agents = ["S", "B", "R"]

type SState = (Mode, Int, [ContentsInfo], ())
type BState = (Mode, Int, [ContentsInfo], (Int))
type RState = (Mode, Int, [ContentsInfo], ())

type State = (SState, BState, RState)
type Node = (Int, State, [(String, Int)])

s0 :: State
s0 = ((X,1,[],()), (W,0,[CIn "put"],(0)), (X,1,[],()))

Fig. 4. Part of Haskell source file for model from Fig. 2

The Haskell representation of an Alvis model behaviour is based on the so-called
enable-fire approach which takes inspiration from Petri nets. The enable function takes
a model state and an agent name and provides a list of the agent steps that are enabled
(can be performed) in the state. The fire function takes an enabled step and a state and
gives a new state that is the result of the step execution. A pseudo-code representation
of the LTS graphs generation algorithm is shown in Fig. 5. It requires three elements to
be given based on selected system layer, model structure and agents code. The first one
is an initial state which can be straightforward extracted from system description. The
second and third ones are enable and fire functions mentioned before.

The algorithm runs until it processes all elements form nodeList. This list after
computation contains the resulting LTS. The stateList is a helper list for quick check if
a given state was already computed. For each state (line 5) algorithm computes a list of
all enabled transitions (line 7). Afterwards it fires every transition and checks whether
the resulting state has already been computed (line 11). Effectiveness of this step is
crucial for computation time of the whole algorithm. If the state is present on stateList
a new transition is added to the currently checked state (line 14). Otherwise a new
state is added to nodeList and stateList (lines 17-18) and a transition from currently
investigated state to the new one is appended (line 16). A small part of the enable and
fire functions generated for the considered example is given in Fig. 6.

416 M. Szpyrka, P. Matyasik, M. Wypych

1: nodeList ← [(0, s0, [])]
2: curIdx ← 0
3: stateList ← [(0, s0)] . for quick access to index of a given state
4: while curIdx < #nodeList do
5: s← nodeList [curIdx].state
6: tl← nodeList [curIdx].transitions
7: transList ← transitions enabled in state s
8: while transList not empty do
9: trans ←get and remove first element from transList

10: state ← fire(trans, s)
11: i← index of state in stateList
12: last ← #nodeList − 1 . indexing from 0
13: if ∃i then . state already on list
14: nodeList [curIdx]← (curIdx , s, tl ++[t, i])
15: else . state is new
16: nodeList [curIdx]← (curIdx , s, tl ++[t, last + 1])
17: nodeList append (last + 1, state, [])
18: stateList append (last + 1, state)
19: end if
20: end while
21: curIdx ← curIdx + 1
22: end while

Fig. 5. LTS graph generation algorithm

enable :: State -> String -> [TTransition]
enable ((am1,pc1,ci1,()),(am2,pc2,ci2,pv2),(am3,pc3,ci3,())) "S"
| am1 == X && pc1 == 1 = [TLoop "S" 1]
| am1 == X && pc1 == 2 && (procfree ci1) && am2 == W
&& elem (CIn "put") ci2 = [TOutAP "S.put" "B.put" 2]
| am1 == X && pc1 == 2 && (procfree ci1) = [TOut "S.put" 2]
| otherwise = []

fire :: TTransition -> State -> State
fire (TOutAP "S.put" "B.put" 2)
((am1,pc1,ci1,pv1),(am2,pc2,ci2,pv2),(am3,pc3,ci3,pv3))
= ((am1,pc1,ci1 ++ [CProc "B.put,put"],pv1),(T,1,[],pv2),
(am3,pc3,ci3,pv3))

Fig. 6. Part of the source code for enable and fire functions for model from Fig. 2

The generation of LTS graphs is the main aim of using the Haskell model represen-
tation. However, it should be underlined that the source file contains also functions for
exporting LTS graphs into different formats. The most important one is the aldebaran
format. LTS graphs stored in the aldebaran format can be automatically converted into
BCG (Binary Coded Graphs) format which is one of the acceptable input formats for
the CADP Toolbox. The conversion method is provided by one of CADP tools.

Generation of Labelled Transition Systems for Alvis Models Using Haskell ... 417

4 Model Verification with Filtering Functions

The Haskell approach to Alvis model verification requires Haskell programming skills,
because the so-called filtering functions must be user-defined and included into the
generated source file. Some of the functions are universal and can be included into
any model, so it is possible to import them from an external Haskell module. However,
most of these functions are based on the considered model State type and must be
defined for a model individually.

deadState :: Node -> Bool
deadState (n,s,ls) = ls == []
-- filter deadState lts

singleOutState :: Node -> Bool
singleOutState (n,s,ls) = (length ls) == 1
-- filter singleOutState lts

Fig. 7. Examples of universal filtering functions

Examples of universal filtering functions are given in Fig. 7. The deadState func-
tion searches for states without outgoing arcs (dead states), while the singleOutState
function searches for states with single outgoing arc. Included comments illustrate the
usage of these functions.

sRunning :: Node -> Bool
sRunning (_,((X,_,_,_),_,_),_) = True
sRunning _ = False

twoWaiting :: Node -> Bool
twoWaiting (_,((W,_,_,_),(W,_,_,_),_),_) = True
twoWaiting (_,((W,_,_,_),_,(W,_,_,_)),_) = True
twoWaiting (_,(_,(W,_,_,_),(W,_,_,_)),_) = True
twoWaiting _ = False

procfree :: [ContentsInfo] -> Bool
procfree [] = True
procfree ((CProc _):_) = False
procfree (_:xs) = procfree xs

noProc :: Node -> Bool
noProc (_, ((_,_,ci1,_),_,(_,_,ci3,_)), _)
| procfree ci1 && procfree ci3 = True
| otherwise = False

Fig. 8. Examples of special filtering functions

418 M. Szpyrka, P. Matyasik, M. Wypych

These functions do not use the internal structure of the LTS graph node, thus can
be used in any model. However, knowledge of the State type details is fundamen-
tal for implementing more sophisticated filtering functions. The main disadvantage of
such functions is their adaptation to the given model. Examples of special filtering func-
tions implemented for the model from Fig. 2 are shown in Fig. 8. The sRunning func-
tion searches for states with agent S in the running mode. Presented functions use the
Haskell pattern matching mechanism. The underscore sign is a wild-card and its role
changes depending on the place e.g. the first one replaces the number of a node, the
second one – the program counter of agent S and the fifth – the state of agent B. The
twoWaiting function searches for states with two agents in the waiting mode. The
last noProc function searches for states when no procedure is executed. The auxiliary
recursive procfree function searches a context information list for proc entries.

The functions presented so far are used to search for states which fulfil given filter
condition. As shown in Fig. 7, they are used together with the standard filter func-
tion. More elaborated functions may search an LTS graph oneself. Example of such a
function is given in Fig. 9. The node2node function returns pairs of nodes connected
with an arc with the given label. It uses two auxiliary functions: iNode searches for a
node with the given number and endNodeNo searches for the number of the end node
for the given arc.

iNode :: Int -> [Node] -> Node
iNode i ((n,s,ls):ns)
| i == n = (n,s,ls)
| otherwise = iNode i ns

endNodeNo :: String -> [(String, Int)] -> Int
endNodeNo _ [] = -1
endNodeNo s ((a,i):ls)
| s == a = i
| otherwise = endNodeNo s ls

node2node :: String -> [Node] -> [Node] -> [(Node,Node)]
node2node _ _ [] = []
node2node label ltscopy ((n,s,ls):ns) =
if k /= -1
then ((n,s,ls),(iNode k ltscopy))
: (node2node label ltscopy ns)

else node2node label ltscopy ns
where k = endNodeNo label ls

Fig. 9. Filtering function searching for parts of an LTS graph

5 Summary

Alvis is being developed to provide a simple tool for formal modelling and verification
of concurrent systems. Compared to the most popular formalisms like Petri nets, process

Generation of Labelled Transition Systems for Alvis Models Using Haskell ... 419

algebras etc. its syntax is simple and very similar to procedural programming languages.
The knowledge of all of the formal definitions presented in [2] is obsolete for the end
user. From user’s point of view, the most important are an Alvis model and its LTS
graph generated for the model automatically.

The paper deals with the problem of LTS graphs generation for Alvis models. It
has been solved using a middle-stage Haskell model representation. This approach has
been chosen out of consideration for the usage of Haskell in Alvis models. The Haskell
representation of an Alvis model is based on two functions called enable and fire that
provide the list of transitions enabled in the given states and results of these transitions
execution. The functions are used in the presented algorithm for LTS graphs generation.
It should be emphasized that this enable-fire approach can be used for generation states
spaces for other formalism. For example, it has been successfully used for XCCS pro-
cess algebra [17], [18]. In this case, instead of Alvis 4-tuples string values have been
used to represent states of individual agents (algebraic equations). Nevertheless, exactly
the same Haskell implementation of the LTS generation algorithm has been used to gen-
erate LTS graphs. This stresses the flexibility of this approach. It is enough to adapt the
enable and fire functions to a considered formalism and presented approach can be used
for verification purposes.

The second advantage of the considered approach is the possibility of model ver-
ification using Haskell implemented algorithms (functions). The generated LTS graph
is stored as a Haskell list, thus not only is it possible to translate it into the aldebaran
format and use CADP toolbox to verify its properties, but also user defined Haskell
functions can be used to explore an LTS graph. This Haskell based approach is a com-
pletion of the CADP based verification. Analysis of Alvis models can be realized using
the CADP evaluator tool. In such approach, a specification of requirements is given as
a set of µ-calculus formulas [6] and the tool is used to check whether the model LTS
graph satisfies them. It should be emphasized that this is an action based approach. A
µ-calculus formula concerns actions labels while states of considered model are repre-
sented using their numbers only. On the other hand, the Haskell approach is rather states
oriented. We can use the Haskell pattern matching mechanism to filter states that ful-
fil given requirements. Moreover, the Haskell approach can be used to implement user
defined verification algorithms that search for some specified parts of an LTS graph
and are not provided by verification toolbox. For example, this is a good path to test
user-defined non-standard verification procedures fast. Moreover, Haskell expressive-
ness allows to fit even quite complicated algorithms in a few lines of code as compared
to imperative languages.

References

1. Szpyrka, M., Matyasik, P., Mrówka, R.: Alvis – modelling language for concurrent sys-
tems. In Bouvry, P., Gonzalez-Velez, H., Kołodziej, J., eds.: Intelligent Decision Systems
in Large-Scale Distributed Environments. Volume 362 of Studies in Computational Intelli-
gence. Springer-Verlag (2011) 315–341

2. Szpyrka, M., Matyasik, P., Mrówka, R., Kotulski, L.: Formal description of Alvis language
with α0 system layer. Fundamenta Informaticae (2013) (to appear).

420 M. Szpyrka, P. Matyasik, M. Wypych

3. Szpyrka, M., Matyasik, P., Wypych, M.: Alvis language with time dependence. In: Proceed-
ings of the Federated Conference on Computer Science and Information Systems, Krakow,
Poland (2013) 1607–1612

4. Kotulski, L., Szpyrka, M., Sędziwy, A.: Labelled transition system generation from Alvis
language. In König, A., et al., eds.: Knowledge-Based and Intelligent Information and Engi-
neering Systems – KES 2011. Volume 6881 of LNCS. Springer-Verlag (2011) 180–189

5. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, London, UK (2008)
6. Emerson, E.A.: Model checking and the Mu-calculus. In Immerman, N., Kolaitis, P.G.,

eds.: Descriptive Complexity and Finite Models. Volume 31 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science. American Mathematical Society (1997)
185–214

7. Mateescu, R., Sighireanu, M.: Efficient on-the-fly model-checking for regular alternation-
free µ-calculus. Technical Report 3899, INRIA (2000)

8. Penczek, W., Półrola, A.: Advances in Verification of Time Petri nets and Timed Automata.
A Temporal Logic Approach. Volume 20 of Studies in Computational Intelligence. Springer-
Verlag (2006)

9. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77(4)
(1989) 541–580

10. Suraj, Z., Fryc, B.: Timed approximate Petri nets. Fundamenta Informaticae 71(1) (2006)
83–99

11. Szpyrka, M.: Analysis of RTCP-nets with reachability graphs. Fundamenta Informaticae
74(2–3) (2006) 375–390

12. Bergstra, J.A., Ponse, A., Smolka, S.A., eds.: Handbook of Process Algebra. Elsevier Sci-
ence, Upper Saddle River, NJ, USA (2001)

13. O’Sullivan, B., Goerzen, J., Stewart, D.: Real World Haskell. O’Reilly Media, Sebastopol,
USA (2008)

14. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2006: A toolbox for the construction
and analysis of distributed processes. In Damm, W., Hermanns, H., eds.: Computer Aided
Verification. Volume 4590 of LNCS., Springer-Verlag (2007) 158–163

15. Kozen, D.: Results on the propositional µ-calculus. Theoretical Computer Science 27(3)
(1983) 333–354

16. Barnes, J.: Programming in Ada 2005. Addison Wesley (2006)
17. Balicki, K., Szpyrka, M.: Tag abstraction for XCCS modelling language. In: Proceedings of

the Concurrency Specification and Programming Workshop (CSP 2009). Volume 1., Krakow,
Poland (September 28-30 2009) 26–37

18. Balicki, K., Szpyrka, M.: Formal definition of XCCS modelling language. Fundamenta
Informaticae 93(1-3) (2009) 1–15

Bisimulation-Based Concept Learning
in Description Logics

Thanh-Luong Tran1,3, Quang-Thuy Ha2, Thi-Lan-Giao Hoang1,
Linh Anh Nguyen3,2, and Hung Son Nguyen3,2

1 Department of Information Technology,
Hue University of Sciences, 77 Nguyen Hue, Hue city, Vietnam

{ttluong,hlgiao}@hueuni.edu.vn
2 Faculty of Information Technology,

VNU University of Engineering and Technology, 144 Xuan Thuy, Hanoi, Vietnam
thuyhq@vnu.edu.vn

3 Faculty of Mathematics, Informatics and Mechanics,
University of Warsaw, Banacha 2, 02-097 Warsaw, Poland

{nguyen,son}@mimuw.edu.pl

Abstract. Concept learning in description logics (DLs) is similar to
binary classification in traditional machine learning. The difference is
that in DLs objects are described not only by attributes but also by bi-
nary relationships between objects. In this paper, we develop the first
bisimulation-based method of concept learning in DLs for the following
setting: given a knowledge base KB in a DL, a set of objects standing
for positive examples and a set of objects standing for negative exam-
ples, learn a concept C in that DL such that the positive examples are
instances of C w.r.t. KB, while the negative examples are not instances
of C w.r.t. KB.

1 Introduction

In this paper we continue our study [12, 15, 7, 4] on concept learning in descrip-
tion logics (DLs). This problem is similar to binary classification in traditional
machine learning. The difference is that in DLs objects are described not only by
attributes but also by binary relationships between objects. The major settings
of concept learning in DLs are as follows:

1. Given a knowledge base KB in a DL L and sets E+, E− of individuals,
learn a concept C in L such that: (a) KB |= C(a) for all a ∈ E+, and
(b) KB |= ¬C(a) for all a ∈ E−. The set E+ (resp. E−) contains positive
(resp. negative) examples of C.

2. The second setting differs from the previous one only in that the condition
(b) is replaced by the weaker one: KB 6|= C(a) for all a ∈ E−.

3. Given an interpretation I and sets E+, E− of individuals, learn a concept
C in L such that: (a) I |= C(a) for all a ∈ E+, and (b) I |= ¬C(a) for all
a ∈ E−. Note that I 6|= C(a) is the same as I |= ¬C(a).

422 T.-L. Tran et al.

As an early work on concept learning in DLs, Cohen and Hirsh [3] studied
PAC-learnability of the CLASSIC description logic (an early DL formalism) and
its sublogic C-CLASSIC. They proposed a concept learning algorithm based on
“least common subsumers”. In [9] Lambrix and Larocchia proposed a simple
concept learning algorithm based on concept normalization.

Badea and Nienhuys-Cheng [1], Iannone et al. [8], Fanizzi et al. [6], Lehmann
and Hitzler [10] studied concept learning in DLs by using refinement operators as
in inductive logic programming. The works [1, 8] use the first mentioned setting,
while the works [6, 10] use the second mentioned setting. Apart from refinement
operators, scoring functions and search strategies also play important roles in
algorithms proposed in those works. The algorithm DL-Learner [10] exploits
genetic programming techniques, while DL-FOIL [6] considers also unlabeled
data as in semi-supervised learning.

Nguyen and Sza las [12] applied bisimulation in DLs [5] to model indiscerni-
bility of objects. Their work is pioneering in using bisimulation for concept learn-
ing in DLs. It also concerns concept approximation by using bisimulation and
Pawlak’s rough set theory [13, 14]. In [15] Tran et al. generalized and extended
the concept learning method of [12] for DL-based information systems. They
took attributes as basic elements of the language. An information system in a
DL is a finite interpretation in that logic. Thus, both the works [12, 15] use the
third mentioned setting. In [7] Ha et al. developed the first bisimulation-based
method, called BBCL, for concept learning in DLs using the first mentioned
setting. Their method uses models of KB and bisimulation in those models to
guide the search for the concept to be learned. It is formulated for a large class
of useful DLs, with well-known DLs like ALC, SHIQ, SHOIQ, SROIQ. The
work [7] also introduced dual-BBCL, a variant of BBCL, for concept learning in
DLs using the first mentioned setting.

In this paper, we develop the first bisimulation-based method, called BBCL2,
for concept learning in DLs using the second mentioned setting, i.e., for learning
a concept C such that: KB |= C(a) for all a ∈ E+, and KB 6|= C(a) for all
a ∈ E−, where KB is a given knowledge base in the considered DL, and E+,
E− are given sets of examples of C. This method is based on the dual-BBCL
method (of concept learning in DLs using the first mentioned setting) from
our joint work [7]. We make appropriate changes for dealing with the condition
“KB 6|= C(a) for all a ∈ E−” instead of “KB |= ¬C(a) for all a ∈ E−”.

The rest of this paper is structured as follows. In Section 2, we recall notation
and semantics of DLs. We present our BBCL2 method in Section 3 and illustrate
it by examples in Section 4. We conclude in Section 5. Due to the lack of space,
we will not recall the notion of bisimulation in DLs [5, 7], but just mention the
use of the largest auto-bisimulation relations and list the bisimulation-based
selectors [7].

Bisimulation-Based Concept Learning in Description Logics 423

2 Notation and Semantics of Description Logics

A DL-signature is a finite set Σ = ΣI ∪ ΣdA ∪ ΣnA ∪ ΣoR ∪ ΣdR, where ΣI is
a set of individuals, ΣdA is a set of discrete attributes, ΣnA is a set of numeric
attributes, ΣoR is a set of object role names, and ΣdR is a set of data roles.4 All
the sets ΣI , ΣdA, ΣnA, ΣoR, ΣdR are pairwise disjoint.

Let ΣA = ΣdA ∪ΣnA. Each attribute A ∈ ΣA has a domain dom(A), which
is a non-empty set that is countable if A is discrete, and partially ordered by
≤ otherwise.5 (For simplicity we do not subscript ≤ by A.) A discrete attribute
is a Boolean attribute if dom(A) = {true, false}. We refer to Boolean attributes
also as concept names. Let ΣC ⊆ ΣdA be the set of all concept names of Σ.

An object role name stands for a binary predicate between individuals. A
data role σ stands for a binary predicate relating individuals to elements of a
set range(σ).

We denote individuals by letters like a and b, attributes by letters like A and
B, object role names by letters like r and s, data roles by letters like σ and %,
and elements of sets of the form dom(A) or range(σ) by letters like c and d.

We will consider some (additional) DL-features denoted by I (inverse), O
(nominal), F (functionality), N (unquantified number restriction), Q (quantified
number restriction), U (universal role), Self (local reflexivity of an object role).
A set of DL-features is a set consisting of some or zero of these names.

Let Σ be a DL-signature and Φ be a set of DL-features. Let L stand for ALC,
which is the name of a basic DL. (We treat L as a language, but not a logic.)
The DL language LΣ,Φ allows object roles and concepts defined as follows:

– if r ∈ ΣoR then r is an object role of LΣ,Φ
– if A ∈ ΣC then A is concept of LΣ,Φ
– if A ∈ ΣA \ΣC and d ∈ dom(A) then A = d and A 6= d are concepts of LΣ,Φ
– if A ∈ ΣnA and d ∈ dom(A) then A ≤ d, A < d, A ≥ d and A > d are

concepts of LΣ,Φ
– if C and D are concepts of LΣ,Φ, R is an object role of LΣ,Φ, r ∈ ΣoR,
σ ∈ ΣdR, a ∈ ΣI , and n is a natural number then
• >, ⊥, ¬C, C uD, C tD, ∀R.C and ∃R.C are concepts of LΣ,Φ
• if d ∈ range(σ) then ∃σ.{d} is a concept of LΣ,Φ
• if I ∈ Φ then r− is an object role of LΣ,Φ
• if O ∈ Φ then {a} is a concept of LΣ,Φ
• if F ∈ Φ then ≤1 r is a concept of LΣ,Φ
• if {F, I} ⊆ Φ then ≤1 r− is a concept of LΣ,Φ
• if N ∈ Φ then ≥ n r and ≤ n r are concepts of LΣ,Φ
• if {N, I} ⊆ Φ then ≥ n r− and ≤ n r− are concepts of LΣ,Φ
• if Q ∈ Φ then ≥ n r.C and ≤ n r.C are concepts of LΣ,Φ
• if {Q, I} ⊆ Φ then ≥ n r−.C and ≤ n r−.C are concepts of LΣ,Φ
• if U ∈ Φ then U is an object role of LΣ,Φ

4 Object role names are atomic object roles.
5 One can assume that, if A is a numeric attribute, then dom(A) is the set of real

numbers and ≤ is the usual linear order between real numbers.

424 T.-L. Tran et al.

(r−)I = (rI)−1 UI = ∆I ×∆I >I = ∆I ⊥I = ∅

(A = d)I = {x ∈ ∆I | AI(x) = d} (A 6= d)I = (¬(A = d))I

(A ≤ d)I = {x ∈ ∆I | AI(x) is defined, AI(x) ≤ d}

(A ≥ d)I = {x ∈ ∆I | AI(x) is defined, d ≤ AI(x)}

(A < d)I = ((A ≤ d) u (A 6= d))I (A > d)I = ((A ≥ d) u (A 6= d))I

(¬C)I = ∆I \ CI (C uD)I = CI ∩DI (C tD)I = CI ∪DI

{a}I = {aI} (∃r.Self)I = {x ∈ ∆I | rI(x, x)} (∃σ.{d})I = {x ∈ ∆I | σI(x, d)}

(∀R.C)I = {x ∈ ∆I | ∀y [RI(x, y)⇒ CI(y)]}

(∃R.C)I = {x ∈ ∆I | ∃y [RI(x, y) ∧ CI(y)]

(≥ nR.C)I = {x ∈ ∆I | #{y | RI(x, y) ∧ CI(y)} ≥ n}

(≤ nR.C)I = {x ∈ ∆I | #{y | RI(x, y) ∧ CI(y)} ≤ n}

(≥ nR)I = (≥ nR.>)I (≤ nR)I = (≤ nR.>)I

Fig. 1. Interpretation of complex object roles and complex concepts.

• if Self ∈ Φ then ∃r.Self is a concept of LΣ,Φ.

An interpretation in LΣ,Φ is a pair I =
〈
∆I , ·I

〉
, where ∆I is a non-empty set

called the domain of I and ·I is a mapping called the interpretation function of
I that associates each individual a ∈ ΣI with an element aI ∈ ∆I , each concept
name A ∈ ΣC with a set AI ⊆ ∆I , each attribute A ∈ ΣA \ΣC with a partial
function AI : ∆I → dom(A), each object role name r ∈ ΣoR with a binary
relation rI ⊆ ∆I × ∆I , and each data role σ ∈ ΣdR with a binary relation
σI ⊆ ∆I × range(σ). The interpretation function ·I is extended to complex
object roles and complex concepts as shown in Figure 1, where #Γ stands for
the cardinality of the set Γ .

Given an interpretation I =
〈
∆I , ·I

〉
in LΣ,Φ, we say that an object x ∈ ∆I

has depth k if k is the maximal natural number such that there are pairwise
different objects x0, . . . , xk of ∆I with the properties that:

– xk = x and x0 = aI for some a ∈ ΣI ,
– xi 6= bI for all 1 ≤ i ≤ k and all b ∈ ΣI ,
– for each 1 ≤ i ≤ k, there exists an object role Ri of LΣ,Φ such that
〈xi−1, xi〉 ∈ RIi .

By I|k we denote the interpretation obtained from I by restricting the do-
main to the set of objects with depth not greater than k and restricting the
interpretation function accordingly.

A role inclusion axiom in LΣ,Φ is an expression of the form R1 ◦ . . .◦Rk v r,
where k ≥ 1, r ∈ ΣoR and R1, . . . , Rk are object roles of LΣ,Φ different from
U . A role assertion in LΣ,Φ is an expression of the form Ref(r), Irr(r), Sym(r),

Bisimulation-Based Concept Learning in Description Logics 425

Tra(r), or Dis(R,S), where r ∈ ΣoR and R,S are object roles of LΣ,Φ different
from U . Given an interpretation I, define that:

I |= R1 ◦ . . . ◦Rk v r if RI1 ◦ . . . ◦RIk ⊆ rI
I |= Ref(r) if rI is reflexive
I |= Irr(r) if rI is irreflexive
I |= Sym(r) if rI is symmetric
I |= Tra(r) if rI is transitive
I |= Dis(R,S) if RI and SI are disjoint,

where the operator ◦ stands for the composition of binary relations. By a role
axiom in LΣ,Φ we mean either a role inclusion axiom or a role assertion in LΣ,Φ.
We say that a role axiom ϕ is valid in I (or I validates ϕ) if I |= ϕ.

A terminological axiom in LΣ,Φ, also called a general concept inclusion (GCI)
in LΣ,Φ, is an expression of the form C v D, where C and D are concepts in
LΣ,Φ. An interpretation I validates an axiom C v D, denoted by I |= C v D,
if CI ⊆ DI .

An individual assertion in LΣ,Φ is an expression of one of the forms C(a)
(concept assertion), r(a, b) (positive role assertion), ¬r(a, b) (negative role asser-
tion), a = b, and a 6= b, where r ∈ ΣoR and C is a concept of LΣ,Φ. We will
write, for example, A(a) = d instead (A = d)(a). Given an interpretation I,
define that:

I |= a = b if aI = bI

I |= a 6= b if aI 6= bI

I |= C(a) if aI ∈ CI
I |= r(a, b) if

〈
aI , bI

〉
∈ rI

I |= ¬r(a, b) if
〈
aI , bI

〉
/∈ rI .

We say that I validates an individual assertion ϕ if I |= ϕ.

An RBox (resp. TBox, ABox) in LΣ,Φ is a finite set of role axioms (resp.
terminological axioms, individual assertions) in LΣ,Φ. A knowledge base in LΣ,Φ
is a triple 〈R, T ,A〉, where R (resp. T , A) is an RBox (resp. a TBox, an ABox)
in LΣ,Φ. An interpretation I is a model of a “box” if it validates all the ax-
ioms/assertions of that “box”. It is a model of a knowledge base 〈R, T ,A〉 if it
is a model of R, T and A. A knowledge base is satisfiable if it has a model. An
individual a is said to be an instance of a concept C w.r.t. a knowledge base
KB , denoted by KB |= C(a), if, for every model I of KB , aI ∈ CI .

426 T.-L. Tran et al.

P1 : 2010

Awarded
//

�� �� &&

P2 : 2009

¬Awarded
//

�� ��

P5 : 2006

¬Awarded

P3 : 2008

¬Awarded
//

66

77

P4 : 2007

Awarded

AA

// P6 : 2006

Awarded

Fig. 2. An illustration for the knowledge base given in Example 2.1

Example 2.1. This example is based on an example of [15, 7]. Let

Φ = {I,O,N,Q}, ΣI = {P1,P2,P3,P4,P5,P6}, ΣC = {Pub,Awarded , Ad},
ΣdA = ΣC , ΣnA = {Year}, ΣoR = {cites, cited by}, ΣdR = ∅,
R = {cites− v cited by , cited by− v cites}, T = {> v Pub},
A0 = {Awarded(P1),¬Awarded(P2),¬Awarded(P3),Awarded(P4),

¬Awarded(P5),Awarded(P6),Year(P1) = 2010,Year(P2) = 2009,

Year(P3) = 2008,Year(P4) = 2007,Year(P5) = 2006,Year(P6) = 2006,

cites(P1,P2), cites(P1,P3), cites(P1,P4), cites(P1,P6),

cites(P2,P3), cites(P2,P4), cites(P2,P5), cites(P3,P4),

cites(P3,P5), cites(P3,P6), cites(P4,P5), cites(P4,P6)},

where the concept Pub stands for “publication”. Then KB0 = 〈R, T ,A0〉 is
a knowledge base in LΣ,Φ. The axiom > v Pub states that the domain of
any model of KB0 consists of only publications. The knowledge base KB0 is
illustrated in Figure 2 (on page 426). In this figure, nodes denote publications
and edges denote citations (i.e., assertions of the role cites), and we display only
information concerning assertions about Year , Awarded and cites. C

An LΣ,Φ logic is specified by a number of restrictions adopted for the language
LΣ,Φ. We say that a logic L is decidable if the problem of checking satisfiability of
a given knowledge base in L is decidable. A logic L has the finite model property
if every satisfiable knowledge base in L has a finite model. We say that a logic
L has the semi-finite model property if every satisfiable knowledge base in L has
a model I such that, for any natural number k, I|k is finite and constructable.

As the general satisfiability problem of context-free grammar logics is unde-
cidable [2], the most general LΣ,Φ logics (without restrictions) are also undecid-
able. The considered class of DLs contains, however, many decidable and useful
logics. One of them is SROIQ - the logical base of the Web Ontology Language
OWL 2. This logic has the semi-finite model property.

Bisimulation-Based Concept Learning in Description Logics 427

3 Concept Learning for Knowledge Bases in DLs

Let L be a decidable LΣ,Φ logic with the semi-finite model property, Ad ∈ ΣC
be a special concept name standing for the “decision attribute”, and KB0 =
〈R, T ,A0〉 be a knowledge base in L without using Ad. Let E+ and E− be
disjoint subsets of ΣI such that the knowledge base KB = 〈R, T ,A〉 with A =
A0∪{Ad(a) | a ∈ E+}∪{¬Ad(a) | a ∈ E−} is satisfiable. The set E+ (resp. E−)
is called the set of positive (resp. negative) examples of Ad. Let E = 〈E+, E−〉.

The problem is to learn a concept C as a definition of Ad in the logic L
restricted to a given sublanguage LΣ†,Φ† with Σ† ⊆ Σ \ {Ad} and Φ† ⊆ Φ such
that: KB |= C(a) for all a ∈ E+, and KB 6|= C(a) for all a ∈ E−.

Given an interpretation I in LΣ,Φ, by ≡Σ†,Φ†,I we denote the equivalence re-
lation on ∆I with the property that x ≡Σ†,Φ†,I x

′ iff x is LΣ†,Φ†-equivalent to x′

(i.e., for every concept D of LΣ†,Φ† , x ∈ DI iff x′ ∈ DI). By [7, Theorem 3], this
equivalence relation coincides with the largest LΣ†,Φ†-auto-bisimulation∼Σ†,Φ†,I
of I (see [7] for the definition of this notion).

Let I be an interpretation. We say that a set Y ⊆ ∆I is divided by E if there
exist a ∈ E+ and b ∈ E− such that {aI , bI} ⊆ Y . A partition P = {Y1, . . . , Yk}
of ∆I is said to be consistent with E if, for every 1 ≤ i ≤ n, Yi is not divided
by E. Observe that if I is a model of KB then:

– since C is a concept of LΣ†,Φ† , by [7, Theorems 2 and 3], CI should be the
union of a number of equivalence classes of ∆I w.r.t. ≡Σ†,Φ†,I

– we should have that aI ∈ CI for all a ∈ E+, and aI /∈ CI for all a ∈ E−.

The idea is to use models of KB and bisimulation in those models to guide the
search for C. We now describe our method BBCL2 (Bisimulation-Based Concept
Learning for knowledge bases in DLs using the second setting). It constructs a
set of E−0 of individuals and sets of concepts C, C0. E−0 will cover more and
more individuals from E−. The meaning of C is to collect concepts D such
that KB |= D(a) for all a ∈ E+. The set C0 is auxiliary for the construction
of C. When a concept D does not satisfy the mentioned condition but is a
“good” candidate for that, we put it into C0. Later, when necessary, we take
disjunctions of some concepts from C0 and check whether they are good for
adding to C. During the learning process, we will always have that:

– KB |= (
d
C)(a) for all a ∈ E+,

– KB 6|= (
d
C)(a) for all a ∈ E−0 ,

where
d
{D1, . . . , Dn} = D1u. . .uDn and

d
∅ = >. We try to extend C to satisfy

KB 6|= (
d
C)(a) for more and more a ∈ E−. Extending C enables extension of

E−0 . When E−0 reaches E−, we return the concept
d

C after normalization and
simplification. Our method is not a detailed algorithm, as we leave some steps
at an abstract level, open to implementation heuristics. In particular, we assume
that it is known whether L has the finite model property, how to construct
models of KB , and how to do instance checking KB |= D(a) for arbitrary D
and a. The steps of our method are as follows.

428 T.-L. Tran et al.

1. Initialize E−0 := ∅, C := ∅, C0 := ∅.
2. (This is the beginning of a loop controlled by “go to” at Step 6.) If L has

the finite model property then construct a (next) finite model I of KB .
Otherwise, construct a (next) interpretation I such that either I is a finite
model of KB or I = I ′|K , where I ′ is an infinite model of KB and K is a

parameter of the learning method (e.g., with value 5).
3. Starting from the partition {∆I}, make subsequent granulations to reach

the partition {Yi1 , . . . , Yik} corresponding to ≡Σ†,Φ†,I , where each Yij is
characterized by an appropriate concept Cij (such that Yij = CIij).

4. For each 1 ≤ j ≤ k, if Yij contains some aI with a ∈ E− and no aI with
a ∈ E+ then:
– if KB |= ¬Cij (a) for all a ∈ E+ then

if
d
C is not subsumed by ¬Cij w.r.t. KB (i.e. KB 6|= (

d
C v ¬Cij))

then add ¬Cij to C and add to E−0 all a ∈ E− such that aI ∈ Yij
– else add ¬Cij to C0.

5. If E−0 = E− then go to Step 8.
6. If it was hard to extend C during a considerable number of iterations of the

loop (with different interpretations I) then go to Step 7, else go to Step 2.
7. Repeat the following:

(a) Randomly select some concepts D1, . . . , Dl from C0 and
let D = (D1 t . . . tDl).

(b) If KB |= D(a) for all a ∈ E+,
d

C is not subsumed by D w.r.t. KB
(i.e., KB 6|= (

d
C) v D), and E− \E−0 contains some a such that KB 6|=

(
d
C)(a), then:

i. add D to C,
ii. add to E−0 all a ∈ E− \ E−0 such that KB 6|= (

d
C)(a),

iii. if E−0 = E− then go to Step 8.
(c) If it was still too hard to extend C during a considerable number of

iterations of the current loop, or C is already too big, then stop the
process with failure.

8. For each D ∈ C, if KB 6|=
d

(C\{D})(a) for all a ∈ E− then delete D from C.
9. Let C be a normalized form of

d
C.6 Observe that KB |= C(a) for all

a ∈ E+, and KB 6|= C(a) for all a ∈ E−. Try to simplify C while preserving
this property, and then return it.

For Step 2, if L is one of the well known DLs, then I can be constructed
by using a tableau algorithm (see [7] for references). During the construction,
randomization is used to a certain extent to make I different from the interpre-
tations generated in previous iterations of the loop.

We describe Step 3 in more details:

– In the granulation process, we denote the blocks created so far in all steps by
Y1, . . . , Yn, where the current partition {Yi1 , . . . , Yik} consists of only some
of them. We do not use the same subscript to denote blocks of different

6 Normalizing concepts can be done, e.g., as in [11].

Bisimulation-Based Concept Learning in Description Logics 429

– A, where A ∈ Σ†C
– A = d, where A ∈ Σ†A \Σ

†
C and d ∈ dom(A)

– A ≤ d and A < d, where A ∈ Σ†nA, d ∈ dom(A) and d is not a minimal
element of dom(A)

– A ≥ d and A > d, where A ∈ Σ†nA, d ∈ dom(A) and d is not a maximal
element of dom(A)

– ∃σ.{d}, where σ ∈ Σ†dR and d ∈ range(σ)

– ∃r.Ci, ∃r.> and ∀r.Ci, where r ∈ Σ†oR and 1 ≤ i ≤ n
– ∃r−.Ci, ∃r−.> and ∀r−.Ci, if I ∈ Φ†, r ∈ Σ†oR and 1 ≤ i ≤ n
– {a}, if O ∈ Φ† and a ∈ Σ†I
– ≤1 r, if F ∈ Φ† and r ∈ Σ†oR
– ≤1 r−, if {F, I} ⊆ Φ† and r ∈ Σ†oR
– ≥ l r and ≤mr, if N ∈ Φ†, r ∈ Σ†oR, 0 < l ≤ #∆I and 0 ≤ m < #∆I

– ≥ l r− and ≤mr−, if {N, I} ⊆ Φ†, r ∈ Σ†oR, 0 < l ≤ #∆I and 0 ≤ m < #∆I

– ≥ l r.Ci and ≤ mr.Ci, if Q ∈ Φ†, r ∈ Σ†oR, 1 ≤ i ≤ n, 0 < l ≤ #Ci and
0 ≤ m < #Ci

– ≥ l r−.Ci and ≤mr−.Ci, if {Q, I} ⊆ Φ†, r ∈ Σ†oR, 1 ≤ i ≤ n, 0 < l ≤ #Ci
and 0 ≤ m < #Ci

– ∃r.Self, if Self ∈ Φ† and r ∈ Σ†oR

Fig. 3. Selectors. Here, n is the number of blocks created so far when granulating ∆I ,
and Ci is the concept characterizing the block Yi. It was proved in [15] that using these
selectors is sufficient to granulate ∆I to obtain the partition corresponding to ≡Σ†,Φ†,I .

contents (i.e. we always use new subscripts obtained by increasing n for new
blocks). We take care that, for each 1 ≤ i ≤ n, Yi is characterized by an
appropriate concept Ci (such that Yi = CIi).

– Following [12, 15] we use the concepts listed in Figure 3 (on page 429) as
selectors for the granulation process. If a block Yij (1 ≤ j ≤ k) is divided by
DI , where D is a selector, then partitioning Yij by D is done as follows:

• s := n+ 1, t := n+ 2, n := n+ 2,

• Ys := Yij ∩DI , Cs := Cij uD,

• Yt := Yij ∩ (¬D)I , Ct := Cij u ¬D,

• the new partition of ∆I becomes {Yi1 , . . . , Yik} \ {Yij} ∪ {Ys, Yt}.
– Which block from the current partition should be partitioned first and which

selector should be used to partition it are left open for heuristics. For exam-
ple, one can apply some gain function like the entropy gain measure, while
taking into account also simplicity of selectors and the concepts character-
izing the blocks. Once again, randomization is used to a certain extent. For
example, if some selectors give the same gain and are the best then randomly
choose any one of them.

As a modification for Step 3, the granulation process can be stopped as soon
as the current partition is consistent with E (or when some criteria are met).

430 T.-L. Tran et al.

But, if it is hard to extend C during a considerable number of iterations of the
loop (with different interpretations I), then this loosening should be discarded.

Observe that, when ¬Cij is added to C, we have that aI ∈ (¬Cij)I for all
a ∈ E+. This is a good point for hoping that KB |= ¬Cij (a) for all a ∈ E+.
We check it, for example, by using some appropriate tableau decision procedure,
and if it holds then we add ¬Cij to the set C. Otherwise, we add ¬Cij to C0.
To increase the chance to have Cij satisfying the mentioned condition and being
added to C, we tend to make Cij strong enough. For this reason, we do not use
the technique with LargestContainer introduced in [12], and when necessary, we
do not apply the above mentioned loosening for Step 3.

Note that any single concept D from C0 does not satisfy the condition KB |=
D(a) for all a ∈ E+, but when we take a number of concepts D1, . . . , Dl from C0

we may have that KB |= (D1 t . . . tDl)(a) for all a ∈ E+. So, when it is really
hard to extend C by directly using concepts ¬Cij (where Cij are the concepts
used for characterizing blocks of partitions of the domains of models of KB), we
change to using disjunctions D1 t . . .tDl of concepts from C0 as candidates for
adding to C.

4 Illustrative Examples

Example 4.1. Let KB0 = 〈R, T ,A0〉 be the knowledge base given in Exam-
ple 2.1. Let E+ = {P4, P6}, E− = {P1, P2, P3, P5}, Σ† = {Awarded , cited by}
and Φ† = ∅. As usual, let KB = 〈R, T ,A〉, where A = A0 ∪ {Ad(a) | a ∈
E+} ∪ {¬Ad(a) | a ∈ E−}. Execution of our BBCL2 method on this example is
as follows.

1. E−0 := ∅, C := ∅, C0 := ∅.
2. KB has infinitely many models, but the most natural one is I specified

below, which will be used first:

∆I = {P1,P2,P3,P4,P5,P6}, xI = x for x ∈ {P1,P2,P3,P4,P5,P6},
PubI = ∆I , AwardedI = {P1,P4,P6},

citesI = {〈P1,P2〉 , 〈P1,P3〉 , 〈P1,P4〉 , 〈P1,P6〉 , 〈P2,P3〉 , 〈P2,P4〉 ,
〈P2,P5〉 , 〈P3,P4〉 , 〈P3,P5〉 , 〈P3,P6〉 , 〈P4,P5〉 , 〈P4,P6〉},

cited byI = (citesI)−1, the function YearI is specified as usual.

3. Y1 := ∆I , partition := {Y1}
4. Partitioning Y1 by Awarded :

– Y2 := {P1,P4,P6}, C2 := Awarded ,
– Y3 := {P2,P3,P5}, C3 := ¬Awarded ,
– partition := {Y2, Y3}.

5. Partitioning Y2:
– All the selectors ∃cited by .>, ∃cited by .C2 and ∃cited by .C3 partition
Y2 in the same way. We choose ∃cited by .>, as it is the simplest one.

– Y4 := {P4,P6}, C4 := C2 u ∃cited by .>,

Bisimulation-Based Concept Learning in Description Logics 431

– Y5 := {P1}, C5 := C2 u ¬∃cited by .>,
– partition := {Y3, Y4, Y5}.

6. The obtained partition is consistent with E, having Y3 = {P2,P3,P5} ⊂ E−,
Y4 = {P4,P6} = E+ and Y5 = {P1} ⊂ E−. (It is not yet the partition
corresponding to ≡Σ†,Φ†,I .)

7. Since Y3 ⊂ E− and KB |= ¬C3(a) for all a ∈ E+, we add ¬C3 to C and add
the elements of Y3 to E−0 . Thus, C = {¬C3} and E−0 = {P2,P3,P5}.

8. Since Y5 ⊂ E− and KB |= ¬C5(a) for all a ∈ E+ and
d

C is not subsumed
by ¬C5 w.r.t. KB , we add ¬C5 to C and add the elements of Y5 to E−0 .
Thus, C = {¬C3,¬C5},

d
C = ¬¬Awarded u ¬(Awarded u ¬∃cited by .>)

and E−0 = {P1,P2,P3,P5}.
9. Since E−0 = E−, we normalize

d
C to Awarded u ∃cited by .> and return

it as the result. (This concept denotes the set of publications which were
awarded and cited.) C

Example 4.2. Let KB0, E+, E−, KB and Φ† be as in Example 4.1, but let
Σ† = {cited by ,Year}. Execution of the BBCL2 method on this new example
has the same first two steps as in Example 4.1, and then continues as follows.

1. Granulating {∆I} as in [15, Example 11] we reach the partition
{Y4, Y6, Y7, Y8, Y9} consistent with E and have that:
– Y4 = {P4}, Y6 = {P1}, Y7 = {P2,P3}, Y8 = {P6}, Y9 = {P5},
– C2 = (Year ≥ 2008), C3 = (Year < 2008),
C5 = C3 u (Year < 2007), C6 = C2 u (Year ≥ 2010),
C7 = C2 u (Year < 2010), C9 = C5 u ¬∃cited by .C6.

2. We have C6 = (Year ≥ 2008) u (Year ≥ 2010). Since Y6 ⊂ E− and KB |=
¬C6(a) for all a ∈ E+, we add ¬C6 to C and add the elements of Y6 to E−0 .
Thus, C = {¬C6} and E−0 = {P1}.

3. We have C7 := (Year ≥ 2008) u (Year < 2010). Since Y7 ⊂ E− and KB |=
¬C7(a) for all a ∈ E+ and

d
C is not subsumed by ¬C7 w.r.t. KB , we add

¬C7 to C and add the elements of Y7 to E−0 . Thus, C = {¬C6,¬C7} and
E−0 = {P1,P2,P3}.

4. We have C9 := (Year < 2008)u(Year < 2007)u¬∃cited by .((Year ≥ 2008)u
(Year ≥ 2010)). Since Y9 ⊂ E− and KB |= ¬C9(a) for all a ∈ E+ and

d
C

is not subsumed by ¬C9 w.r.t. KB , we add ¬C9 to C and add the elements
of Y9 to E−0 . Thus, C = {¬C6,¬C7,¬C9} and E−0 = {P1,P2,P3,P5}.

5. Since E−0 = E−, we normalize and simplify
d

C before returning it as the
result. Without exploiting the fact that publication years are integers,

d
C

can be normalized to

(Year < 2008) u [(Year ≥ 2007) t ∃cited by .(Year ≥ 2010)].

C = (Year < 2008) u ∃cited by .(Year ≥ 2010) is a simplified form of the
above concept, which still satisfies that KB |= C(a) for all a ∈ E+ and
KB 6|= C(a) for all a ∈ E−. Thus, we return it as the result. (The returned
concept denotes the set of publications released before 2008 that are cited
by some publications released since 2010.) C

432 T.-L. Tran et al.

5 Discussion and Conclusion

We first compare the BBCL2 method with the BBCL and dual-BBCL methods
from our joint work [7]. First of all, BBCL2 is used for the second setting of con-
cept learning in DLs, while BBCL and dual-BBCL are used for the first setting.
BBCL2 is derived from dual-BBCL, but it contains substantial modifications
needed for the change of setting. BBCL2 differs from BBCL at Steps 1, 4, 5, 7,
8, 9, and differs from dual-BBCL by the use of E−0 at Steps 1, 4, 5 and 7.

Comparing the examples given in this paper and in [7], apart from detailed
technical differences in concept learning, it can be seen that the first setting re-
quires more knowledge7 in order to obtain similar effects as the second setting.
In other words, the second setting has effects of a kind of closed world assump-
tion, while the first setting does not. The overall impression is that the second
setting is more convenient than the first one.

Recall that our BBCL2 method is the first bisimulation-based method for
concept learning in DLs using the second setting. As for the case of BBCL and
dual-BBCL, it is formulated for the class of decidable ALCΣ,Φ DLs that have the
finite or semi-finite model property, where Φ ⊆ {I,O, F,N,Q,U, Self}. This class
contains many useful DLs. For example, SROIQ (the logical base of OWL 2)
belongs to this class. Our method is applicable also to other decidable DLs with
the finite or semi-finite model property. The only additional requirement is that
those DLs have a good set of selectors (in the sense of [15, Theorem 10]).

Like BBCL and dual-BBCL, the idea of BBCL2 is to use models of the
considered knowledge base and bisimulation in those models to guide the search
for the concept. Thus, it is completely different from the previous works [6,
10] on concept learning in DLs using the second setting. As bisimulation is the
notion for characterizing indiscernibility of objects in DLs, our BBCL2 method is
natural and very promising. We intend to implement BBCL2 in the near future.

Acknowledgments

This paper was written during the first author’s visit at Warsaw Center
of Mathematics and Computer Science (WCMCS). He would like to thank
WCMCS for the support. This work was also supported by Polish National
Science Centre (NCN) under Grant No. 2011/01/B/ST6/02759 as well as by
Polish National Center for Research and Development (NCBiR) under Grant
No. SP/I/1/77065/10 by the strategic scientific research and experimental de-
velopment program: “Interdisciplinary System for Interactive Scientific and
Scientific-Technical Information”.

References

1. L. Badea and S.-H. Nienhuys-Cheng. A refinement operator for description logics.
In Proceedings of ILP’2000, volume 1866 of LNCS, pages 40–59. Springer, 2000.

7 like the assertions (¬∃cited by .>)(P1) and (∀cited by .{P2,P3,P4})(P5), which state
that P1 is not cited by any publication and P5 is only cited by P2, P3 and P4

Bisimulation-Based Concept Learning in Description Logics 433

2. M. Baldoni, L. Giordano, and A. Martelli. A tableau for multimodal logics and
some (un)decidability results. In Proceedings of TABLEAUX’1998, volume 1397
of LNCS, pages 44–59. Springer, 1998.

3. W.W. Cohen and H. Hirsh. Learning the Classic description logic: Theoretical and
experimental results. In Proceedings of KR’1994, pages 121–133.

4. A.R. Divroodi, Q.-T. Ha, L.A. Nguyen, and H.S. Nguyen. On C-learnability in
description logics. In Proceedings of ICCCI’2012 (1), volume 7653 of LNCS, pages
230–238. Springer, 2012.

5. A.R. Divroodi and L.A. Nguyen. On bisimulations for description logics. In Pro-
ceedings of CS&P’2011, pages 99–110 (see also arXiv:1104.1964).

6. N. Fanizzi, C. d’Amato, and F. Esposito. DL-FOIL concept learning in description
logics. In Proc. of ILP’2008, volume 5194 of LNCS, pages 107–121. Springer, 2008.

7. Q.-T. Ha, T.-L.-G. Hoang, L.A. Nguyen, H.S. Nguyen, A. Sza las, and T.-L. Tran. A
bisimulation-based method of concept learning for knowledge bases in description
logics. In Proceedings of SoICT’2012, pages 241–249. ACM, 2012.

8. L. Iannone, I. Palmisano, and N. Fanizzi. An algorithm based on counterfactuals
for concept learning in the Semantic Web. Appl. Intell., 26(2):139–159, 2007.

9. P. Lambrix and P. Larocchia. Learning composite concepts. In Proc. of DL’1998.
10. J. Lehmann and P. Hitzler. Concept learning in description logics using refinement

operators. Machine Learning, 78(1-2):203–250, 2010.
11. L.A. Nguyen. An efficient tableau prover using global caching for the description

logic ALC. Fundamenta Informaticae, 93(1-3):273–288, 2009.
12. L.A. Nguyen and A. Sza las. Logic-based roughification. In A. Skowron and

Z. Suraj, editors, Rough Sets and Intelligent Systems (To the Memory of Professor
Zdzis law Pawlak), Vol. 1, pages 529–556. Springer, 2012.

13. Z. Pawlak. Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer
Academic Publishers, Dordrecht, 1991.

14. Z. Pawlak and A. Skowron. Rudiments of rough sets. Inf. Sci., 177(1):3–27, 2007.
15. T.-L. Tran, Q.-T. Ha, T.-L.-G. Hoang, L.A. Nguyen, H.S. Nguyen, and A. Sza las.

Concept learning for description logic-based information systems. In Proceedings
of KSE’2012, pages 65–73. IEEE Computer Society, 2012.

Preprocessing for Network Reconstruction:
Feasibility Test and Handling Infeasibility

Annegret K. Wagler and Jan-Thierry Wegener?

Laboratoire d’Informatique, de Modélisation et d’Optimisation des Systèmes
Université Blaise Pascal (Clermont-Ferrand II)

BP 10125, 63173 Aubière Cedex, France
Annegret.Wagler@univ-bpclermont.fr wegener@isima.fr

Abstract. The context of this work is the reconstruction of Petri net
models for biological systems from experimental data. Such methods
aim at generating all network alternatives fitting the given data. For
a successful reconstruction, the data need to satisfy two properties: re-
producibility and monotonicity. In this paper, we focus on a necessary
preprocessing step for a recent reconstruction approach. We test the data
for reproducibility, provide a feasibility test to detect cases where the re-
construction from the given data may fail, and provide a strategy to
cope with the infeasible cases. After having performed the preprocessing
step, it is guaranteed that the (given or modified) data are appropriate
as input for the main reconstruction algorithm.

1 Introduction

The aim of systems biology is to analyze and understand different phenomena as,
e.g., responses of cells to environmental changes, host-pathogen interactions, or
effects of gene defects. To gain the required insight into the underlying biological
systems, experiments are performed and the resulting experimental data have to
be interpreted in terms of models that reflect the observed phenomena. Depend-
ing on the biological aim and the type and quality of the available data, different
types of mathematical models are used and corresponding methods for their re-
construction have been developed. We focus on Petri nets, a framework which
turned out to coherently model both static interactions in terms of networks and
dynamic processes in terms of state changes [1–4].

In fact, a (standard) network P = (P, T,A,w) reflects the involved system
components by places p ∈ P and their interactions by transitions t ∈ T , the
arcs in A ⊂ (P × T) ∪ (T × P) link places and transitions, and the arc weights
w : A → N reflect stoichiometric coefficients of the corresponding reactions.
Moreover, each place p ∈ P can be marked with an integral number xp of tokens
defining a system state x ∈ Z|P |+ . If a capacity cap(p) is given for the places,

? This work was founded by the French National Research Agency, the European
Commission (Feder funds) and the Région Auvergne in the Framework of the LabEx
IMobS3.

Preprocessing for Network Reconstruction 435

then xp ≤ cap(p) follows and we obtain X := {x ∈ N|P | : xp ≤ cap(p)} as set of
potential states. A transition t ∈ T is enabled in a state x if xp ≥ w(p, t) for all
p with (p, t) ∈ A (and xp+w(t, p) ≤ cap(p) for all (t, p) ∈ A), switching or firing
t yields a successor state succ(x) = x′ with x′p = xp − w(p, t) for all (p, t) ∈ A
and x′p = xp + w(t, p) for all (t, p) ∈ A. Dynamic processes are represented by
sequences of such state changes.

Petri net models can be reconstructed from experimental time-series data by
means of exact, exclusively data-driven reconstruction approaches [5–10]. These
approaches take as input a set P of places and discrete time-series data X ′
given by sequences (x0;x1, . . . ,xm) of experimentally observed system states.
The goal is to determine all Petri nets (P, T,A,w) that are able to reproduce
the data, i.e., that perform for each xj ∈ X ′ the experimentally observed state
change to xj+1 ∈ X ′ in a simulation.

In general, there can be more than one transition enabled at a state. The
decision which transition switches is typically taken randomly (and the dynamic
behavior is analyzed in terms of reachability, starting from a certain initial state).
To properly predict the dynamic behavior, (standard) Petri nets have to be
equipped with additional activation rules to force the switching or firing of special
transitions, and to prevent all others from switching.

This can be done by using priority relations and control-arcs and leads to
the notion of X ′-deterministic Petri nets [11], which show a prescribed behavior
on the experimentally observed subset X ′ of states: the reconstructed Petri nets
do not only contain enough transitions to reach the experimentally observed
successors xj+1 from xj , but exactly this transition will be selected among all
enabled ones in xj which is necessary to reach xj+1 (see Section 2.2 for details).

For a successful reconstruction, the data X ′ need to satisfy two properties:
reproducibility (for each xj ∈ X ′ there is a unique observed successor state
succX ′(xj) = xj+1 ∈ X ′) and monotonicity (meaning that all essential responses
are indeed reported in the experiments), see Section 2.1. Having reproducible
data is clearly evident for a successful reconstruction; the necessity of monotone
data is shown in [12].

In this paper, we focus on a necessary preprocessing step for the reconstruc-
tion approach described in [8]. We test the data for reproducibility, provide a
feasibility test (based on previous works in [7]) to detect cases where the recon-
struction from the given data may fail (see Section 3.1), and provide a strategy
(based on previous works in [7,9]) to cope with infeasible cases (see Section 3.2).
We close with some concluding remarks.

2 Reconstructing Petri Nets from Experimental Data

In this section we describe the input and the desired output of the reconstruction
method from [8], whereas we refer the reader for details on the reconstruction
approach itself to [8].

436 A. K. Wagler, J.-T. Wegener

2.1 Input: Experimental Time-Series Data

First, a set of components P (later represented by the set of places) is chosen
which is expected to be crucial for the studied phenomenon and which can be
treated in terms of measurements1.

To perform an experiment, the system is stimulated in a state x0 (by external
stimuli like the change of nutrient concentrations or the exposition to some
pathogens) to generate an initial state x1 ∈ X . Then the system’s response to the
stimulation is observed and the resulting state changes are measured at certain
time points. This yields a sequence (x1, . . . ,xk) of states xi ∈ X reflecting the
time-dependent response of the system to the stimulation, denoted by

X ′(x1,xk) = (x0;x1, . . . ,xk).

Note that we also provide the state x0 as the starting point for the stimulation,
which will be needed later (see Section 3.2). Every sequence has an observed
terminal state xk ∈ X , without further changes of the system. The set of all
terminal states in X ′ is denoted by X ′term.

For technical reasons, we interpret a terminal state xk ∈ X ′term as a state
which has itself as observed successor state, i.e., xk = succX ′(xk).

Typically, several experiments starting from different initial states in a set
X ′ini ⊆ X are necessary to describe the whole phenomenon, and we obtain ex-
perimental time-series data of the form

X ′ = {X ′(x1,xk) : x1 ∈ X ′ini,xk ∈ X ′term}.

We write x ∈ X ′ to indicate that x is an element of a sequence X ′(x1,xk) ∈ X ′.

Example 1. As running example, we consider the light-induced sporulation of
Physarum polycephalum [10]. The developmental decision of P. polycephalum
plasmodia to enter the sporulation pathway is controlled by environmental fac-
tors like visible light [13]. A phytochrome-like photoreversible photoreceptor pro-
tein is involved in the control of sporulation Spo which occurs in two stages PFR

and PR. If the dark-adapted form PFR absorbs far-red light FR, the receptor is
converted into its red-absorbing form PR, which causes sporulation [14]. If PR is
exposed to red light R, it is photo-converted back to the initial stage PFR, which
can prevent sporulation in an early stage, but does not prevent sporulation in a
later stage. Figure 1 gives an example of experimental time-series data reflect-
ing this behavior, containing three time-series: X (x1,x4) = (x0;x1,x2,x3,x4),
X (x5,x0) = (x2;x5,x0) and X (x6,x8) = (x3;x6,x7,x8).

In the best case, two consecutively measured states xj ,xj+1 ∈ X ′ are also
consecutive system states, i.e., xj+1 can be obtained from xj by switching a
single transition. This is, however, in general not the case (and depends on the
chosen time points to measure the states in X ′), but xj+1 is obtained from xj

1 Possibly, it is known that a certain component plays a crucial role, but it is not
possible to measure the values of that component experimentally.

Preprocessing for Network Reconstruction 437

x0

0
0
1
0
0

x1

1
0
1
0
0

x2

0
0
0
1
0

x3

0
0
0
1
0

x4

0
0
0
1
1

x5

0
1
0
1
0

x6

0
1
0
1
0

x7

0
0
1
0
0

x8

0
0
1
0
1

FR

R R

d1 d2 d3

d4 d5 d6

Fig. 1. This figure shows experimental time-series data X ′ for the light-induced
sporulation of Physarum polycephalum. The experimental setting uses the set P =
{FR,R, Pfr, Pr, Sp} of studied components, observed states are represented by vec-
tors of the form x = (xFR, xR, xPfr , xPr , xSp)

T having 0/1-entries only. Dashed arrows
represent stimulations to the system and solid arrows represent the observed responses.

by a switching sequence of some length, where the intermediate states are not
reported in X ′.

For a successful reconstruction, the data X ′ need to satisfy two properties:
reproducibility and monotonicity. The data X ′ are reproducible if for each xj ∈
X ′ there is a unique observed successor state succX ′(xj) = xj+1 ∈ X ′. Moreover,
the data X ′ are monotone if for each such pair (xj ,xj+1) ∈ X ′, the possible
intermediate states xj = y1,y2, ...,ym+1 = xj+1 satisfy

y1p ≤ y2p ≤ . . . ≤ ymp ≤ ym+1
p for all p ∈ P with xjp ≤ xj+1

p and
y1p ≥ y2p ≥ . . . ≥ ymp ≥ ym+1

p for all p ∈ P with xjp ≥ xj+1
p .

Whereas reproducibility is obviously necessary, it was shown in [12] that mono-
tonicity has to be required or, equivalently, that all essential responses are indeed
reported in the experiments.

Remark 1. When continuous data is discretized for the reconstruction approach,
all local minima and maxima of the measured values have to be kept for each
p ∈ P to ensure monotonicity.

2.2 Output: X ′-Deterministic Extended Petri Nets

A standard Petri net P = (P, T,A,w) fits the given data X ′ when it is able to
perform every observed state change from xj ∈ X ′ to succX ′(xj) = xj+1 ∈ X ′.
This can be interpreted as follows. With P, an incidence matrix M ∈ Z|P |×|T |
is associated, where each row corresponds to a place p ∈ P of the network, and
each column M·t to the update vector rt of a transition t ∈ T :

rtp =Mpt :=

−w(p, t) if (p, t) ∈ A,
+w(t, p) if (t, p) ∈ A,
0 otherwise.

438 A. K. Wagler, J.-T. Wegener

Reaching xj+1 from xj by a switching sequence using the transitions from a
subset T ′ ⊆ T is equivalent to obtain the state vector xj+1 from xj by adding
the corresponding columns M·t of M for all t ∈ T ′:

xj +
∑

t∈T ′
M·t = xj+1. (1)

Hence, T has to contain enough transitions to perform all experimentally ob-
served switching sequences. The network P = (P, T,A,w) is conformal with X ′
if, for any two consecutive states xj , succX ′(xj) = xj+1 ∈ X ′, the linear equa-
tion system xj+1 − xj = Mλ has an integral solution λ ∈ N|T | such that λ is
the incidence vector of a sequence (t1, ..., tm) of transition switches, i.e., there
are intermediate states xj = y1,y2, ...,ym+1 = xj+1 with yl + M·tl = yl+1

for 1 ≤ l ≤ m. Hereby, monotonicity avoids unnecessary solutions, since no
homogeneous solutions of equation (1) have to be considered, see [10,12].

To also force that the networks exhibit the experimentally observed dynamic
behavior in a simulation, we equip standard networks with additional activation
rules to further control the switching of enabled transitions, see [5, 6, 8, 11].

On the one hand, the concept of control-arcs can be used to represent cat-
alytic or inhibitory dependencies. An extended Petri net P = (P, T, (A ∪ AR ∪
AI), w) is a Petri net which has, besides the (standard) arcs in A, two additional
sets of so-called control-arcs: the set of read-arcs AR ⊂ P × T and the set of
inhibitor-arcs AI ⊂ P × T . We denote the set of all arcs by A = A ∪ AR ∪ AI .
Here, an enabled transition t ∈ T coupled with a read-arc (resp. an inhibitor-
arc) to a place p ∈ P can switch in a state x only if a token (resp. no token) is
present in p; we denote by TA(x) the set of all such transitions.

On the other hand, in [9, 10, 15] the concept of priority relations among
the transitions of a network was introduced in order to allow the modeling of
deterministic systems. In Marwan et al. [9] it is proposed to model such priorities
with the help of partial orders O on the transitions in order to reflect the rates of
the corresponding reactions where the fastest reaction has highest priority and,
thus, is taken. For each state x, only a transition is allowed to switch if it is
enabled and there is no other enabled transition with higher priority according
to O; we denote by TA,O(x) the set of all such transitions. We call (P,O) a Petri
net with priorities if P = (P, T,A, w) is a (standard or extended) Petri net and
O a priority relation on T .

For a deterministic behavior, TA,O(x) must contain at most one element for
each state x to enforce that x has a unique successor state succX (x), see [15]
for more details. For our purpose we consider a relaxed condition, namely that
TA,O(x) contains at most one element for each experimentally observed state
x ∈ X ′, but TA,O(x) may contain several elements for non-observed states x ∈
X \ X ′. We call such Petri nets X ′-deterministic (see [11]).

The extended Petri net P = (P, T,A, w) is catalytically conformal with X ′ if
tl ∈ TA(yl) for each intermediate state yl of any pair (xj ,xj+1) ∈ X ′, and the
extended Petri net with priorities (P,O) is X ′-deterministic if {tl} = TA,O(yl)
holds for all yl.

Preprocessing for Network Reconstruction 439

The desired output of the reconstruction approach consists of the set of all X ′-
deterministic extended Petri nets (P, cap,O) (all having the same set P of places
and the same capacities cap deduced from X ′ by cap(p) = max{xp : x ∈ X ′}).

Figure 2 shows an X ′-deterministic extended Petri net fitting the experimen-
tal data from Example 1.

FR R

SpPfr

Pr commited

t1

t2

t3

t4

Fig. 2. This figure shows an X ′-deterministic extended Petri net fitting
the experimental data from Example 1. The set of components is P =
{FR,R, Pfr, Pr, Sp, committed}, where FR,R, Pfr, Pr and Sp have been measured
directly in the experiment. The here added component committed cannot be measured
directly, but only indirectly by the behavior of Physarum polycephalum observed in
the experiment. The here shown network corresponds to solution (a) from Figure 4.
In this X ′-deterministic extended Petri net there is a read-arc from Pr to t2 and one
from committed to t3. Furthermore, we have the set of priorities O = {t2 < t4, t3 < t4}.
The control-arcs and priorities ensure |TA,O(x)| = 1 for every state x ∈ X ′.

3 Feasibility Test and Handling Infeasibility

Before the reconstruction is started, a preprocessing step is necessary in order
to verify or falsify whether the experimental time-series data X ′ is suitable for
reconstructing X ′-deterministic extended Petri nets (see Section 3.1). If the test
is successful, the reconstruction algorithm can be applied. For the case that the
given data are not suitable for the reconstruction, we provide a method to handle
the infeasible cases (see Section 3.2).

For that, we interpret (as in [7]) the experimental time-series data X ′ as a
directed graph D(X ′) = (VX ′ , AD ∪ AS) having the measured states x ∈ X ′ as
nodes and two kinds of arcs:

• AD := {(xj ,xj+1) : xj+1 = succX ′(xj)} for the observed responses,
• AS := {(x0,x1) : X ′(x1,xk) = (x0;x1, . . . ,xk)} for the stimulations.

We call D(X ′) the experiment graph of X ′. It can be interpreted as a minor
of the reachability graph, where observed responses may correspond to directed
paths with intermediate states.

Our main objective is to test the given experimental time-series data X ′ for
reproducibility, i.e., whether each state x ∈ X ′ has a unique successor state
succX ′(x) ∈ X ′. We provide a feasibility test to ensure this property (based
on previous tests for standard Petri nets [7] and extended Petri nets [5], see

440 A. K. Wagler, J.-T. Wegener

Section 3.1). If this test fails, we have a state x ∈ X ′ with at least two successors
in X ′, and it is not possible to reconstruct an X ′-deterministic extended Petri
net from X ′ in its current form. As proposed in [7, 9, 10], this situation can be
resolved by adding further components2 to P with the goal to split any state
x ∈ X ′ with two successors into different states each having a unique successor.
We present in Section 3.2 an approach for this step (based on previous works for
standard Petri nets [7, 9]).

3.1 X ′-Determinism Conflicts and Feasibility Test

Definition 1. Let X ′ be experimental time-series data. We say that two time-
series Xi = X ′(xi0 ,xik) and X` = X ′(x`0 ,x`m) are in X ′-determinism conflict,
when there exists a state x ∈ X ′ with succXi(x) 6= succX`

(x) and call x the
corresponding X ′-determinism conflict state. We have

• a strong X ′-determinism conflict if xik 6= x`m or Xi = X`;
• a weak X ′-determinism conflict if xik = x`m and Xi 6= X`.

The definition of strong X ′-determinism conflicts includes the case discussed
in [5, 7] that there must not exist a terminal state xj ∈ X ′term that occurs as
intermediate state in an experiment. Furthermore, it includes the case that a
state xj ∈ X ′ \ X ′term has itself as successor, i.e., succX ′(xj) = xj , which would
result in dj = 0 (see Example 2).

Example 2. In the experimental time-series data X ′ shown in Figure 1 we have
no weak but two strong X ′-determinism conflicts:

• in the sequence X ′(x1,x4) the states x2 and x3 are equal but have different
successor states,

• the sequences X ′(x5,x0) and X ′(x6,x8) have equal initial state x5 = x6,
but different terminal states. Besides the initial states, the states x0 and x7

are X ′-determinism conflict states.

Obviously, every X ′-determinism conflict violates the condition of the data
being reproducible, and the reconstruction of X ′-deterministic extended Petri
nets from X ′ is not possible. However, the converse is true:

Lemma 1. Let X ′ be experimental time-series data. If every state x ∈ X ′ has
a unique successor state succX ′(x) ∈ X ′ then there exists an X ′-deterministic
extended Petri net.

Sketch of the proof. The pre-condition that every state has a unique successor
in X ′ includes the cases that no non-terminal state has itself as successor and that
no terminal state is an intermediate state of any experiment. This guarantees
2 Since P is only a projection from the real world, it is possible that some components
of the system, crucial for the studied phenomenon, were not taken into account or
could not be experimentally measured.

Preprocessing for Network Reconstruction 441

the existence of a standard network P = (P, T, ·, ·) being conformal with X ′.
Since every state has a unique successor state it follows for all states xj ,xl ∈ X ′
with succ(xj) 6= succ(xl) that there exists a non-empty subset P ′ ⊆ P so that
xj
p 6= xl

p holds for every p ∈ P ′. Therefore, P can be made X ′-deterministic by
adding appropriate control-arcs (p, t), where p ∈ P ′ and t ∈ T , in a way that
exactly the transition is enabled which was observed in the experiments. ut

Two time-series X ′(xi0 ,xik) and X ′(x`0 ,x`m) with xik = x`m may be in
weak X ′-determinism conflict, due to differently chosen time points of the mea-
surements. We test the data for such a situation and try to resolve the conflict
by linearizing these sequences, respecting monotonicity.

A linear order L (or total order) on a set S is a partial order where addi-
tionally (a ≤ b) ∈ L or (b ≤ a) ∈ L holds for all a, b ∈ S. In this case, we say
that the set S is totally ordered (w.r.t. L). A totally ordered subset U ⊆ S of a
partially ordered set S is called a chain of S.

On a time-series X ′(x1,xk) = (x0;x1, . . . ,xk), a linear order is induced by
the successor relation: xj ≤ xj+1 iff xj+1 = succX ′(x1,xk)(x

j), hence X ′ can be
considered as a partially ordered set (ordered by the successor relation), where
each time-series X ′(x1,xk) is a chain of X ′. Let succX ′(xj) = xj+1 and

Box(xj ,xj+1) :=

{
y ∈ X :

xjp ≤ yp ≤ xj+1
p if xjp ≤ xj+1

p

xjp ≥ yp ≥ xj+1
p if xjp ≥ xj+1

p

}
.

Note that due to monotonicity, all intermediate states y of any refined sequence
from xj to xj+1 lie in Box(xj ,xj+1). Consequently, if two time-series Xi =
X ′(xi0 ,xik) and X` = X ′(x`0 ,x`m) with xik = x`m are in weak X ′-determinism
conflict, and x is a determinism conflict state then we have to test whether

(i) succXi(x) ∈ Box(x, succX`
(x)) or

(ii) succX`
(x) ∈ Box(x, succXi

(x)),

see Figure 3 for an illustration. If one of the two conditions holds, we conclude
succXi

(x) < succX`
(x) (resp. succX`

(x) < succXi
(x)); otherwise we cannot find a

X ′-deterministic linear order. Therefore, x is no longer a X ′-determinism conflict
state, but a new X ′-determinism conflict state x′ is detected since either

(i) x′ = succXi(x) has two successor states: succXi(succXi(x)), succX`
(x) or

(ii) x′ = succX`
(x) has two successor states: succXi

(x) and succX`
(succX`

(x)).

Hence, the procedure has to be repeated for x′ until succXi
(x′) = succX`

(x′)
holds or the test fails (see Algorithm 1). This works since in case of a weak
X ′-determinism conflict at least the terminal states xik and x`m are equal.

Whenever the test described above is successful for x and all subsequent
X ′-determinism conflict states x′, we say that it is resolvable, otherwise we say
it is an unresolvable weak X ′-determinism conflict. We further obtain:

Theorem 1. Let X ′ be experimental time-series data. There exists an X ′-deter-
ministic extended Petri net if and only if there are neither strong X ′-determinism
conflicts nor unresolvable weak X ′-determinism conflicts.

442 A. K. Wagler, J.-T. Wegener

xi0

x`0

x

succXi
(x)

succX`
(x)

xik = x`m? ?

Fig. 3. This figure shows a weak X ′-determinism conflict. To resolve this conflict we
can test if the two different successor states (resulting from two different experiments) of
the X ′-determinism conflict state x can be ordered in such a way that the monotonicity
constraint is not violated. In other words, we test if one of these successor states is an
unmeasured intermediate state of x and the other successor state.

Sketch of the proof. If neither strong X ′-determinism conflicts nor unresolv-
able weak X ′-determinism conflicts exists, the statement follows from the pro-
cedure described above and from Lemma 1.

Conversely, suppose that an unresolvable weak (or strong) X ′-determinism
conflict state exists. In the case that x = succX ′(x) holds for at least one strong
X ′-determinism conflict state x, then there does not exist any standard network
being conformal with X ′. Otherwise, there exist conformal standard networks,
but none of them can be made X ′-deterministic.

Let x be an unresolvable weak (or strong) X ′-determinism conflict state
for two time-series X ′i = X ′(xi0 ,xik) and X ′` = X ′(x`0 ,x`m). First note that x
remains an unresolvable weak (or strong) X ′-determinism conflict state for every
refined sequence (respecting the monotonicity constraint) of X ′i and X ′` . Thus,
w.l.o.g. we can assume that succX ′i (x) 6= succX ′` (x) and denote the respective
transitions by ti and t`. Since both transitions ti and t` are (and need to stay)
enabled at x, there is no way to add priorities and/or control-arcs to force
the network to deterministically show the observed behavior of X ′i and of X ′`
simultaneously. ut

3.2 Handling Infeasibility

Due to Theorem 1, it is impossible to reconstruct X ′-deterministic extended Petri
nets from experimental time-series data X ′ containing a strong X ′-determinism
conflict or an unresolvable weak X ′-determinism conflict. In this section we show
how these conflicts can be resolved by using additional components.

For that we extend, as proposed in [7,9], all the n-dimensional state vectors
x ∈ X ′ to suitable (n+ a)-dimensional vectors

xj :=

(
xj

zj

)
∈ X ′ =

{
x =

(
x
z

)
∈ Zn+a : 0 ≤ z ≤ 1, x ∈ X ′

}
.

The studied extensions xj ∈ Nn+a of the states xj ∈ X ′ correspond to suitable
labelings of the experiment graph D(X ′):

Preprocessing for Network Reconstruction 443

Algorithm 1 Resolving weak X ′-determinism conflicts by linearization
Input: time-series X ′(xi0 ,xik), X ′(x`0 ,x`m) in weak X ′-determinism conflict
Output: adjusted time-series if resolvable weak X ′-determinism conflict or false oth-

erwise
1: for all conflict states x do
2: xi ← succX ′(xi0 ,xik)(x), x

` ← succX ′(x`0 ,x`m)(x)
3: L ← ∅ . stores the linear order
4: while xi 6= x` do
5: if xi ∈ Box(x,x`) then
6: L ← L ∪ {xi < x`}
7: x← xi

8: xi ← succX ′(xi0 ,xik)(x
i)

9: else if xl ∈ Box(x,xi) then
10: L ← L ∪ {x` < xi}
11: x← x`

12: x` ← succX ′(x`0 ,x`m)(x
`)

13: else
14: return false
15: return adjusted time-series according to L

• if a = 1, to (0, 1)-labelings, where label i is assigned to node xj if xjn+1 =
zj = i is selected for i ∈ {0, 1};

• if a = 2, to (0, 1, 2, 3)-labelings, where the labels are assigned to the four
different states (0, 0)T , (1, 0)T , (0, 1)T and (1, 1)T ;

• if a ≥ 3 we use similar encodings for all 2a different 0/1-vectors.

By using appropriate additional components, states that appear equal in exper-
imental time-series data X ′ become different in X ′ (see Figure 4 for an illus-
tration). It is already stressed in [7] that not every labeling for the experiment
graph D(X ′) is reasonable, as a state xk ∈ X ′ with xk ∈ X ′term might have a suc-
cessor state, a state xj might have multiple successor states, or some stimulation
changes more than the target input component(s). To obtain suitable labelings
for X ′-deterministic extended Petri nets, we adjust Definition 15 from [7]:

Definition 2. A labeling L of X ′ is valid if it satisfies the following conditions:

(i) every state x has a unique successor state succ(x),
(ii) any stimulation preserves the values on the additional component(s),
(iii) for every d = succ(x)−x and d′ = succ(x′)−x′ with d = d′ follows d = d

′
.

From Condition (i) we can conclude that we have x = succX ′(x) if and
only if x ∈ X ′term. Condition (ii) ensures that a stimulation does not change
more than the target input component(s), and finally, Condition (iii) ensures a
minimal number of label switches, while keeping the data as close as possible
to the original measurements. Furthermore, due to symmetry reasons, we can
choose a label for one state, e.g., a conflict state.

444 A. K. Wagler, J.-T. Wegener

Example 3. Besides symmetric solutions, there are two possible valid labelings
with a = 1 for the experimental time-series data from Figure 1. These two
solutions are shown in Figure 4. The solutions are obtained by applying the
conditions of Definition 2 as follows. We start by selecting an X ′-determinism
conflict state, here x2, and choose its label as x2

z = 0. Due to Condition (ii),
x5
z = 0 follows. Condition (i) implies that x3 (resp. x6) must be different from

x2 (resp. x5). Therefore, x3
z = 1 and x6

z = 1 follows. Since we have d4 = d5,
Condition (iii) implies that the only valid labels for x0 and x7 are 0 and 1,
respectively. Condition (ii) shows x1

z = 0. Finally, we can choose a label for x4

and x8, respectively. However, since d3 = d6, if follows from (iii) that both labels
must be equal.

(
x0

0

) (
x1

0

) (
x2

0

) (
x3

1

) (
x4

1

)

(
x5

0

) (
x6

1

) (
x7

1

) (
x8

1

)

FR

R R

d
1

d
2

d
3

d
4

d
5

d
6

(
x0

0

) (
x1

0

) (
x2

0

) (
x3

1

) (
x4

0

)

(
x5

0

) (
x6

1

) (
x7

1

) (
x8

0

)

FR

R R

d
1

d
2

d
3

d
4

d
5

d
6

Fig. 4. This figure shows values for additional components resolving the strong
X ′-determinism conflicts from Example 2 in Figure 1.

In order to find all valid labelings of a general experiment graph D(X ′) =
(VX ′ , AD ∪ AS) we set up an optimization problem encoding the conditions
for valid labelings and having as objective the minimization of the number a of
additional components. For that we introduce decision variables yji to determine
whether label i is assigned to xj .

We are interested in finding min{a ∈ N : P(a) 6= ∅}, where P(a) is given by

a∑

i=1

|yji − yli − (ypi − yqi)| ≥ 1
for all(xj ,xl), (xp,xq) ∈ AD,

with xj = xp,xl 6= xq
(2a)

yji − yli = 0 for all (xj ,xl) ∈ AS (2b)

yji − yli = ypi − yqi
for all (xj ,xl), (xp,xq) ∈ AD,

with xl − xj = xp − xq
(2c)

yj1, . . . , yj2a ∈ {0, 1} for all (xj ,xl) ∈ AD, i = 1, . . . , 2a, (2d)

where equations (2a) ensure that every state has a unique successor state (Con-
dition (i) from Definition 2), equations (2b) that no stimulation changes the state

Preprocessing for Network Reconstruction 445

of additional components (Condition (ii)), and equations (2c) preserve equal dif-
ference vectors (Condition (iii)). The conditions (2d) ensure that we have binary
decision variables yij . Each valid labeling corresponds to a vector in P(a).

Note, due to inequalities (2a) the optimization problem is non-linear and has
a non-convex set of feasible solutions. However, it is only necessary to find the
minimal a so that P(a) 6= ∅. We can consider the set P(a) as the union of 2a
convex sets (see Figure 5 for an illustration). Therefore, we can split the problem
into 2a linear subproblems, each having a convex (=polyhedral) feasible region.
For that, we define two sets for each subproblem 1 ≤ k ≤ 2a, namely P+(k)
and P−(k), so that P+(k) ∪ P−(k) = {1, . . . , a} and P+(k) ∩ P−(k) = ∅ and
P+(p) 6= P+(q), P−(p) 6= P−(q) for all p 6= q. The sets induce the indices i
so that yji − yli − (ypi − yqi) ≥ 0 and yji − yli − (ypi − yqi) ≤ 0, respectively.
Hereby, we have all possible combinations. For the sake of readability let zjlpqi =
yji−yli−(ypi−yqi). Then we replace inequalities (2a) by the following constraints

∑

i+∈P+(k)

zjlpqi+ −
∑

i−∈P−(k)
zjlpqi− ≥ 1 for all (xj ,xl), (xp,xq) ∈ AD, (3a)

zjlpqi+ ≥ 0
for all i+ ∈ P+(k),

for all (xj ,xl), (xp,xq) ∈ AD,
(3b)

zjlpqi− ≤ 0
for all i+ ∈ P+(k),

for all (xj ,xl), (xp,xq) ∈ AD,
(3c)

where AD := {(xj ,xl), (xp,xq) ∈ AD with xj = xp,xl 6= xq}. These linear
subproblems can be solved by standard solvers, and the optimal solution a of
the original problem is obtained if one subproblem turns out to be feasible. All
(minimal) valid labelings are then in P(a).

Fig. 5. In this figure the division of (2a) into 2a subproblems is illustrated within the
2-dimensional space (i.e., a = 2). Each of the resulting 4 subproblems has a convex
feasible region (highlighted by the dotted regions) whose union corresponds to the
feasible region of the original problem.

446 A. K. Wagler, J.-T. Wegener

4 Conclusion

In this work, we give a preprocessing step for a reconstruction algorithm from [8]
that reconstructs extended Petri nets with priorities from experimental time-
series data X ′, so-called X ′-deterministic extended Petri nets. For a successful
reconstruction the data must be reproducible and monotone. While reproducibil-
ity is clearly evident, the necessity of monotone data is shown in [12]. In this
paper we give a feasibility test for the data and a strategy for handling infeasible
cases.

Firstly, the preprocessing step examines the given experimental time-series
data for reproducibility, i.e., it tests if all measured states x ∈ X ′ have a unique
successor state (see Section 3.1). If this test is successful we can reconstruct an
X ′-deterministic extended Petri net (Lemma 1).

Whenever two time-series Xi and X` have a common state x but different
successor states in each of these sequences (i.e., succXi

(x) 6= succX`
(x)) we have

an X ′-determinism conflict. Depending on whether the terminal states of these
conflicts are equal or not, we have a weak or a strong X ′-determinism conflict.

When we encounter a weak X ′-determinism conflict we try to linearize the
two sequences by the induced order of the successor relation. This is done in the
second step of the preprocessing (see Section 3.1).

If linearizing the time-series is not possible or when there are strong X ′-de-
terminism conflicts, we cannot reproduce X ′-deterministic extended Petri nets
(Theorem 1). In this case we extend the data by adding additional components
to every state of X ′ (see Section 3.2). Finally, in order to compute valid vectors
of additional components, we solve an optimization problem.

After having performed the preprocessing step, the reproducibility of the
(given or modified) data X ′ can be guaranteed such that X ′ can serve as appro-
priate input for the main reconstruction algorithm.

References

1. Chen, M., Hofestädt, W.: Quantitative Petri net model fo gene regulated metabolic
networks in the cell. In Silico Biology 3 (2003) 347–365

2. Koch, I., Heiner, M.: Petri nets. In Junker, B.H., Schreiber, F., eds.: Biological
Network Analysis. Wiley Book Series on Bioinformatics (2007) 139–179

3. Marwan, W., Wagler, A.K., Weismantel, R.: Petri nets as a framework for the re-
construction and analysis of signal transduction pathways and regulatory networks.
Natural Computing 10 (2011) 639–654

4. Pinney, J.W., Westhead, R.D., McConkey, G.A.: Petri net representations in sys-
tems biology. Biochem. Soc. Tarns. 31 (2003) 1513–1515

5. Durzinsky, M., Marwan, W., Wagler, A.K.: Reconstruction of extended Petri nets
from time-series data by using logical control functions. Journal of Mathematical
Biology 66 (2013) 203–223

6. Durzinsky, M., Marwan, W., Wagler, A.K.: Reconstruction of extended Petri nets
from time series data and its application to signal transduction and to gene regu-
latory networks. BMC Systems Biology 5 (2011)

Preprocessing for Network Reconstruction 447

7. Durzinsky, M., Wagler, A.K., Weismantel, R.: An algorithmic framework for net-
work reconstruction. Journal of Theoretical Computer Science 412(26) (2011)
2800–2815

8. Favre, M., Wagler, A.K.: Reconstructing X ′-deterministic extended Petri nets
from experimental time-series data X ′. In: Preceedings of the 4th International
Workshop on Biological Processes & Petri Nets. (2013) 45–59

9. Marwan, W., Wagler, A.K., Weismantel, R.: A mathematical approach to solve
the network reconstruction problem. Math. Methods of Operations Research 67(1)
(2008) 117–132

10. Wagler, A.K.: Prediction of network structure. In Koch, I., Schreiber, F., Reisig,
W., eds.: Modeling in Systems Biology. Volume 16 of Computational Biology.,
Springer London (2010) 309–338

11. Wagler, A.K., Wegener, J.T.: On minimality and equivalence of Petri nets. Pro-
ceedings of Concurrency, Specification and Programming CS&P’2012 Workshop 2
(2012) 382–393

12. Durzinsky, M., Wagler, A.K., Weismantel, R.: A combinatorial approach to re-
construct Petri nets from experimental data. In Heiner, M., Uhrmacher, A.M.,
eds.: CMSB. Volume 5307 of Lecture Notes in Computer Science., Springer (2008)
328–346

13. Starostzik, C., Marwan, W.: Functional mapping of the branched signal transduc-
tion pathway that controls sporulation in Physarum polycephalum. Photochem
Photobiol 62(5) (1995) 930–933

14. Lamparter, T., Marwan, W.: Spectroscopic detection of a phytochrome-like pho-
toreceptor in the myxomycete Physarum polycephalum and the kinetic mechanism
for the photocontrol of sporulation by pfr. Photochem Photobiol 73(6) (2001) 697–
702

15. Torres, L.M., Wagler, A.K.: Encoding the dynamics of deterministic systems.
Math. Methods of Operations Research 73 (2011) 281–300

An Holistic State Equation for Timed Petri Nets

Matthias Werner1, Louchka Popova-Zeugmann2, Mario Haustein1, and E. Pelz3

1 Professur Betriebssysteme, Technische Universität Chemnitz
2 Institut für Informatik, Humboldt-Universität zu Berlin

3 LACL, UPEC, France

1 Introduction

Timed Petri nets (TPN) or Duration Petri nets (DPN) is a well-know approach
to extend “classic” Petri nets in order to allow the modeling of time [1].

In [2], a state equation for TPN was provided that describes the net’s mark-
ing in an algebraic manner, but not its transitions clocks. Hence, proofing the
nonreachability of a marking is mainly done by symbolic manipulation of the
state equation, which is impractical for the automated generation of such proofs.
Here, we introduce a holistic state equation that allows for modeling the clocks
algebraically in addition to markings and thus provides a more automatical way
to show the nonreachablity of specific markings.

2 Timed Petri Nets

2.1 Notation

This section introduces the basic notations we use in our paper. N+ = N \ {0}
denotes the set of natural numbers without 0, and Q+

0 denotes the set of nonneg-
ative rational numbers. Let S be a finite set. |S| is the number of elements of S.
Multisets can contain an element multiple times and are designated by Fraktur
letters. The]-operator denotes the union of multisets. The number of occur-
rences of each element in the result of the]-operation is given by the sum of the
occurrences of this element in both operands. |S|e denotes the multiplicity of e
in the multiset S. 1c is the indicator function which yields 1 iff the condition c
holds or 0 otherwise.

A matrix A ∈M(m,n) is a matrix with m rows and n columns. A superindex
in parentheses distinguishes different matrices or vectors, and their elements,
respectively. Zm×n = (zi,j) ∈ M(m,n) is the zero matrix with zi,j = 0 and
En = (ei,j) ∈M(n, n) denotes the identity matrix with:

ei,j =

{
1 i = j

0 else

An Holistic State Equation for Timed Petri Nets 449

The relation r(1) ≤ r(2) of the two vectors r(1), r(2) ∈ M(m, 1) means, that

all elements of r
(1)
i are less or equal than the corresponding elements of r

(2)
i .

The relation r(1) 6≤ r(2) means, that the above relation does not hold, i.e. there

exists at least one i ∈ {1, . . . ,m} with r
(1)
i > r

(2)
i . The relations < and 6< are

defined analogously.

2.2 Timed Petri Nets

Definition 1 (Petri net).
The structure N = (P, T, F, V,m(0)) is called a Petri net (PN), iff

1. P , T are finite sets with P ∩ T = ∅ and P ∪ T 6= ∅,
2. F ⊆ (P × T) ∪ (T × P) (relation between places and transitions),
3. V : F → N+ (weight of the arcs),
4. m(0) : P → N (initial marking)

A marking of a Petri net is a function m : P → N, such that m(p) denotes the
number of tokens at the place p. The pre- and post-sets of a transition t are given
by •t = {p : (p, t) ∈ F} and t• = {p : (t, p) ∈ F}, respectively. Each transition
t ∈ T induces the marking change t− and t+, defined as follows:

t−(p) =

{
V (p, t) (p, t) ∈ F
0 else

t+(p) =

{
V (t, p) (t, p) ∈ F
0 else

A transition t ∈ T is enabled (may fire) at a marking m, iff t−(p) ≤ m(p) for
every place p ∈ P . When an enabled transition t at a marking m fires, this yields
a new marking m′ given by m′(p) := m(p)− t−(p) + t+(p). The firing is denoted

by m
t−→ m′.

Definition 2 (Timed Petri net).
The structure Z = (N , D) is called a Timed Petri net (TPN) iff:

1. N (called Skeleton of Z) is a Petri net,
2. D : T → Q+

0 .

D(t) is the duration of the firing transition t and denotes the delay of t. It is
easy to see, that considering TPNs with D : T → N will not result in a loss of
generality. Therefore, only such time functionsD will be considered subsequently.

An active transition t passes through three phases. First it consumes tokens
from •t which leads to a new marking m′(p) := m(p)− t−(p). This change takes
no time. Then time D(t) passes. During this time, the marking m′ may change
to m′′ by the firing of other transitions. Finally t delivers tokens to t• which
leads to the marking m′′′(p) := m′′(p) + t+(p).

Definition 3 (Maximal step).
Let z = (m,u) be a state in the Timed Petri net Z = (P, T, F, V,m0, D). Then
M ⊆ T is a maximal step in z, if

450 M. Werner, L. Popova-Zeugmann, M. Haustein, E. Pelz

1. ∀t ∈M : u(t) = 0,
2.

∑
t∈M

t− ≤ m,

3. ∀t̂ ∈ T \M : t̂− ≤ m ∧ u(t̂) = 0 =⇒ t̂− 6≤ m−
∑
t∈M

t−.

In a Timed Petri net, an enabled transition must fire immediately. In case of non-
self-concurrent transitions, a transition can only be enabled, if it is not active at
the moment. Please note, immediate transitions are implicitly self-concurrent.
In the following we will consider all delayed transitions as not self-concurrent.

Definition 4 (Firing).
Let z1 = (m1, u1) be a state in the Timed Petri net Z and M ⊆ T . Then M can

fire in z1 (notation: z1
M−→), if M is a maximal step in z1. After the firing of M

the net Z changes into the state z2 = (m2, u2) (notation: z1
M−→ z2) with:

m2 := m1 −
∑
t∈M

t− +
∑
t∈M

D(t)=0

t+ and u2(t) :=

{
D(t) t ∈M
u1(t) else

In a Timed Petri net it is possible that after firing of a maximal step containing
transitions with zero delay some transitions are still enabled. For that purpose,
we define a global step:

Definition 5 (Global step).
Let z be a state in the Timed Petri net Z. The multiset G over T is called a
global step in z, that is computed by the following procedure:

1. G := ∅;
2. Let M be a maximal step in z;
3. if M 6= ∅ then G := G]M else stop;

4. Let z
M−→ z′; Set z := z′; goto 2;

To ensure finite global steps, we do not allow Timed Petri nets with time dead-
locks, i.e., with a closed directed path that contains immediate transitions only.

Definition 6 (Elapsing of time).
Let z1 = (m1, u1) be a state in the Timed Petri net Z. Then, the elapsing of one
time unit is possible in Z (notation: z1 −→

1
), if

∀t ∈ T : u1(t) = 0 =⇒ t− 6≤ m1

After the elapsing of one time unit the Timed Petri net Z is in the state z2 =
(m2, u2) (notation: z1 −→

1
z2) with:

m2 := m1 +
∑
t∈T

u1(t)=1

t+ and u2(t) :=

{
u1(t)− 1 u1(t) ≥ 1

0 else

An Holistic State Equation for Timed Petri Nets 451

3 State Equation

3.1 Structure

Like in classical Petri nets, we describe the structure of a Timed Petri net by
two matrices C+,C− ∈ M(|P |, |T |) over the base set N, with c+i,j = t+j (pi) and

c−i,j = t−j (pi). Furthermore the delay of each transition is encoded in a delay
matrix Γ ∈M(|T |, d), where d = max{D(t) : t ∈ T}+ 1 specifies the maximum
delay. The matrix Γ is given by the following definition:

γi,j =

{
1 j = D(ti) + 1

0 else

3.2 Dynamics

The dynamic of a Petri net at each point of time, is unambiguously decribed by
its state. In our model, the state consists of two parts, the place marking m and
the clock matrix U. The place marking is given by a vector m ∈ M(|P |, 1)
over N, which specifies how many tokens are on each place. In contrast to
classical Petri nets not only the marking is part of the state. The clock ma-
trix U ∈M(|T |, d) accounts for all active transitions. The element ui,j specifies
how often a transition ti has consumed D(ti)−j+1 time steps ago, and therefore
how often it will deliver in j − 1 time steps from now. Thus, the first row of U
states how many times each transition will finish right now. Because a zero delay
transition tk is intrinsically self-concurrent, the value of uk,1 may have any value
from N. But the row sum of delayed transitions is at most 1, due to the lack of
self-concurrency. It is easy to see, that all values ui,j for j > D(ti) + 1 are zero.

To calculate the state reached by a given firing sequence, we have to represent
the sequence inside our equation. In classical Petri nets this is done by the Parikh
vector. We extend the Parikh vector to the Parikh matrix. The Parikh matrix
Ψ ∈M(|T |, |T |) of a global step G is defined by

Ψ = diag(ψ1, . . . , ψ|T |) with ψi = |G|ti

To use m, U and Ψ together, three operators A ∈M(d, 1) (adoption operator),
R ∈ M(d, d) (progress operator) and Λ ∈ M(|T |, d) (selection operator) are
necessary, specified by the corresponding matrices:

A =
(
1 0 . . . 0

)T
ri,j =

{
1 i− j = 1

0 else
λi,j =

{
1 j = 1

0 else

Ψ̇ = Ψ ·Λ ·A gains the “classical” Parikh vector. The term Ψ (i) later used
is an abbreviation of

∑i
j=1 Ψ̇

(j) and specifies how often each transition has fired
until time step i.

452 M. Werner, L. Popova-Zeugmann, M. Haustein, E. Pelz

3.3 Algebraical Representation of State Changes

Using the definitions of the section above, we can derive an algebraic description
for a single state change:

U′ = U + Ψ Γ m′ = m−C−Ψ Λ A + C+ Ψ Γ A (Firing) (1)

U′′ = U′R m′′ = m′ + C+ U′R A (Time elapsing) (2)

To apply Equations (1) and (2) to arbitrary sequences, we introduce time
indices to m and U and mark the results of Equation (1) by a hat and the
results of Equation (2) by a tilde. Firing steps and timing steps are dennoted by

(m̃(i), Ũ(i))
G(i)

−−−→ (m̂(i), Û(i)) and (m̂(i), Û(i)) −−→
1

(m̃(i+1), Ũ(i+1))

respectively. Every firing sequence σ can then be represented by alternating firing
and time elapsing steps, where some of the G can be empty sets of course:

σ : (m̃(1), Ũ(1))
G(1)

−−−→ (m̂(1), Û(1)) −−→
1
· G(2)

−−−→ · · · −−→
1
· G(i)

−−−→ (m̂(i), Û(i))

The term m̃(1) is equal to the initial marking m(0) and Ũ(1) is the zero matrix
Z|T |×d, because no transition is active in the initial state.

3.4 State equation

We now consider the actual state equation. From Equations (1) and (2) we can
derrive the following equations on m̂(i) and Û(i) for the sequence σ.

Û(i) =

i∑
j=1

Ψ(j) Γ Ri−j (3)

m̂(i) = m(0) + C+

 i∑
j=1

Ψ(j) Γ

i−j∑
k=0

Rk

A−C− Ψ (i)

= m(0) + C+(ψ
(i−D(tk))
k + · · ·+ ψ

(1)
k)k −C− Ψ (i) (4)

With defining Ψ (i) := (ψ
(i−D(tk))
k + · · ·+ ψ

(1)
k)k, Equation (4) can be expressed

in a more compact way:

m̂(i) = m(0) + C+Ψ (i) −C− Ψ (i) (5)

Let Υ̂ (i) := Û(i) ·
(
0 1 · · · 1

)T
dennote all transition which are active im-

mediately after the zero delay transitions in firing step i have delivered. Since
each delayed transition can only be active once at each point of time, only clock
matrices Û(i) are valid, which fulfill the following constraint:(

1 · · · 1
)T !
≥ Û(i) ·

(
0 1 · · · 1

)T
= Υ̂ (i)

An Holistic State Equation for Timed Petri Nets 453

By substituting Û(i) in the former equation with the right side of Equation (3),
we get: (

1 · · · 1
)T !
≥ (ψ

(i−D(tk)+1)
k + · · ·+ ψ

(i)
k)k = Υ̂ (i) (6)

Because the inner term of the former equation is zero for immediate transitions,
it follows that Υ̂ (i) must be an element of B1 × · · · ×B|T |, with

Bk =

{
{0, 1} D(tk) > 0

{0} else

The right part of Equation (6) helps reformulating Equation (4) into

m̂(i) = m(0) + (C+ −C−) · Ψ (i) −C− Υ̂ (i) (7)

The vector Ψ (i) sums up all transition which have completed until time step i.
It is easy to see that Ψ (i) + Υ̂ (i) yields the Parikh vector Ψ (i). An equation for
m̃(i) can be obtained by applying Equations (2) to Equation (7):

m̃(i) = m̂(i−1) + C+ Û(i−1) R A

= m̂(i−1) + C+ Û(i−1) ·
(
0 1 0 · · · 0

)T
= m̂(i−1) + C+ Û(i−1) ·

(
0 1 1 · · · 1

)T −C+ Û(i−1) ·
(
0 0 1 · · · 1

)T
= m̂(i−1) + C+ Û(i−1) ·

(
0 1 · · · 1

)T −C+ Ũ(i) ·
(
0 1 · · · 1

)T
= m̂(i−1) + C+ Υ̂ (i−1) −C+ Υ̃ (i) (8)

= m(0) + (C+ −C−) · (Ψ (i−1) + Υ̂ (i−1))−C+ Υ̃ (i) (9)

The vector Υ̃ (i) := Ũ(i) ·
(
0 1 · · · 1

)T
specifies all transition which are in progress

after the i-th time step has finished. This vector is elementwise less or equal than
Υ̂ (i−1), because we have to subtract the elements of the second column of Û(i−1)

to yield Υ̃ (i). Furthermore Υ̃ (i) is elementwise less or equal than Υ̂ (i), which
follows directly from Equation (1). Obviously no element of the Υ -vectors can
be negative. In case of a transition tk with delay less than 2, the k-th element
of Υ̃ (i) is zero in any case, because due to the construction of Γ only the first or
the second element of the k-th row of Û (i−1) can be non-zero. Consequently it
holds:

(0)k
!
≤ Υ̃ (i)

!
≤
{
Υ̂ (i−1)

Υ̂ (i)

}
!
≤ (1D(tk)>0)k and Υ̃ (i)

!
≤ (1D(tk)>1)k (10)

4 Non-Reachability and Application Example

State equations provide a criterion to decide whether a given marking is not
reachable in a specified Petri net. When the state equation does not have a
solution, the marking is not reachable. In case of Timed Petri nets, Equations (7)

454 M. Werner, L. Popova-Zeugmann, M. Haustein, E. Pelz

and (9) as well es the constraint Equations (10) form a system of diophantene
(in-)equalities. If this system does not have a valid solution, a given m̂-marking
and m̃-marking, resp., is not reachable. A solution is valid if and only if the
Parikh vector candidate does not contain a negative element. Furthermore we can
draft on predecessor markings and maximal step conditions to further discard
some valid solutions of the state equation.

In this section we show how the state equation in the recent section can be
used for a more systematical nonreachability proof of the example given in [2].
Consider the following Timed Petri net Z:

p1

p2 p3

t1〈1〉 t2〈1〉

t3〈1〉

t4〈1〉

1

1 2

1

2

3

1 2

Fig. 1. Petri net from [2]; transition times are given in angle bracket

We want to show that the marking m∗ =
(
0 2 0

)T
is not reachable. To do so,

one has to show that both m̃(i) = m∗ and m̂(i) = m∗ are not reachable in Z.
Lets consider the m̃(i)-case first. First we have to determine all Ψ (i−1) + Υ̂ (i−1)

which solve Equation (9). The solution space St depends on Υ̃ (i) and can be
calculated by the Gauss-Algorithm:

St(Υ̃ (i)) =

−1

0
0
0

+

3 2 6 2
0 0 0 −1
1 1 3 1
0 0 0 0

 · Υ̃ (i) + k ·

1
1
0
1

 : k ∈ Z

In this special case it follows from Equation (10) that Υ̃ (i) must be the zero
vector, so only one solution space has to be considered during the further calcu-
lation. As stated, a valid solution cannot contain a negative component. Thus,
we can rule out all Υ̂ (i−1) for which the set N|T | ∩ {S − Υ̂ (i−1) : S ∈ St} is
empty. Algorithmically this problem can be decided by integer linear program-

ming techniques. In our example at least υ̃
(i−1)
3 must be zero, which narrows the

set of possible Υ̂ (i−1) down to eight distinct cases, shown in the following table.
With the aid of Equation (8), we can calculate the corresponding m̂(i−1):

An Holistic State Equation for Timed Petri Nets 455

candidates for
Υ̂ (i−1)

0
0
0
0

1
0
0
0

0
1
0
0

1
1
0
0

0
0
0
1

1
0
0
1

0
1
0
1

1
1
0
1

corresp.
m̂(i−1)

0
2
0

 0
1
0

 −1
2
0

 −1
1
0

 0
2
−2

 0
1
−2

 −1
2
−2

 −1
1
−2

Because places cannot contain a negative amount of tokens, we can rule out the
last six cases. The remaining two cases can be discarded by aid of Definition 3.
According to the definition of a maximal step for all active transitions tk, i.e.,
all transitions tk for which υ̂k = 0, it must hold m̂ 6≥ t−k . Now we consider t4

which is active in both cases. The maximal step condition m̂(i−1) 6≥
(
0 1 0

)T
resulting from t4 is not fulfilled. Thus, the two remaining solutions are not valid
in Z. Consequently m∗ cannot be reached as a m̃-marking.

Now, we show m∗ is not reachable as a m̂-marking. First, we calculate the
set Y of possible Υ̂ (i) by using the definition of the maximal step:

Y(m̂(i)) = {Υ̂ : (∀k : υ̂k = 0 =⇒ m̂(i) 6≥ t−k)}

In our example, at least υ̂
(i)
3 = 1 and υ̂

(i)
4 = 1, otherwise the maximal step

condition for t3 and t4, resp., would not be fulfilled. Then we calculate the
solution set Sf of Equation (7).

Sf (Υ̂ (i)) =

−1

0
0
0

+

2 2 6 3
0 −1 0 0
1 1 2 1
0 0 0 0

 · Υ̃ (i) + k ·

1
1
0
1

 : k ∈ Z

In the example every possible Υ̂ (i) yields at least one Parikh vector Ψ (i). From
m̂(i) we can calculate m̃(i) by:

m̃(i) = m̂(i) + C+ Υ̃ (i) −C+ Υ̂ (i)

Due to Equation (10) the vector Υ̃ (i) must be the zero vector in this example.
Consequently we can calculate m̃(i) without further case discriminations on Υ̃ (i):

Υ̂ (i)

0
0
1
1

1
0
1
1

0
1
1
1

1
1
1
1

corresp. m̃(i)

−3
2
−2

 −3
1
−2

 −4
2
−2

 −4
1
−2

456 M. Werner, L. Popova-Zeugmann, M. Haustein, E. Pelz

This leads to an invalid solution for the marking in each case. Thus, m∗ is not
reachable as a m̂-marking, too.

5 Conclusion

We have presented a new state equation for Timed Petri nets. In contrast to [2]
the new equation is a holistic one: It describes the marking as well as the clocks,
whereas [2] has dealt with the net’s marking only.

Also, we have demonstrated in an example how the new state equation can
be used to prove non-reachability.

References

1. Ramchandani, C.: Analysis of asynchronous concurrent systems by Timed Petri
Nets. Project MAC-TR 120, MIT (February 1974)

2. Popova-Zeugmann, L., Werner, M., Richling, J.: Using state equation to prove
non-reachability in timed petrinets. Fundam. Inf. 55(2) (August 2002) 187–202

3. Popova-Zeugmann, L., Pelz, E.: Algebraical characterisation of interval-timed petri
nets with discrete delays. Fundamenta Informaticae 120(3–4) (2012) 341–357

Query Rewriting Based on Meta-Granular
Aggregation

Piotr Wiśniewski1 and Krzysztof Stencel2

1 Faculty of Mathematics and Computer Science
Nicolaus Copernicus University

Toruń, Poland
pikonrad@mat.uni.torun.pl

2 Institute of Informatics
The University of Warsaw

Warsaw, Poland
stencel@mimuw.edu.pl

Abstract. Analytical database queries are exceptionally time consum-
ing. Decision support systems employ various execution techniques in
order to accelerate such queries and reduce their resource consumption.
Probably the most important of them consists in materialization of par-
tial results. However, any introduction of additional derived objects into
the database schema increases the cost of software development, since
programmers must take care of their usage and synchronization. In this
paper we propose novel query rewriting methods that build queries us-
ing partial aggregations materialized in additional tables. These methods
are based on the concept of meta-granules that represent the informa-
tion on grouping and used aggregations. Meta-granules have a natural
partial order that guides the optimisation process. We also present an
experimental evaluation of the proposed rewriting method.

1 Introduction

In the article [1] we presented the idea of materializing partial aggregations in
order to accelerate analytical queries. The inherent cost of this idea is attributed
to the need of database triggers that keep the materializations up to date in
real time. In particular we showed an application programming interface that
facilitates defining and using partial aggregations. We designed and implemented
appropriate mechanisms that automatically create necessary triggers.

The solutions presented in [1] suffer from a noteworthy deficiency. The ap-
plication programmer is obliged to cater for additional database objects that
store materialized data. He/she not only has to create them, but also has to
address them through API methods in order to use them in analytical queries.
In particular, it is impossible to use these facilities through queries formulated
in HQL, i.e. the standard query language of Hibernate ORM [2].

In this paper we address the abovementioned deficiency. We present an algo-
rithm to rewrite HQL queries so that the usage of materialized aggregations is
transparent to application programmers.

458 P. Wiśniewski, K. Stencel

This algorithm is based on analyses of the grouping granularity and opportu-
nities to reconstruct necessary data from partial aggregations that are persisted
in the database. In order to control the complexity of the space of aggregations
that can possibly be materialized, we introduce the notion of a meta-granule. It
represents a potentially interesting aggregation level. The set of meta-granules
is partially ordered. The rewrite method efficiently analyses and traverses the
graph of this partial order.

Our solution is based on the idea of materialized views. A recent example of
an implementation of such views are FlexViews [3] within MySQL based on the
results described in [4, 5]. FlexViews rely on applying changes that have been
written to the change log.

This article is organized as follows. In Section 2 we recall the idea of partial
aggregations and introduce the running example used thorough the paper. We
also discuss the integration of the prototype with Hibernate, a major object-
relational mapping system. In Section 3 we formalize meta-granules and their
partial order. In Section 4 we introduce the query rewrite algorithm that utilizes
meta-granules. Section 5 summarizes the results of our experimental evaluation
of possible gains triggered by the proposed optimization algorithm. Section 6
concludes.

2 Partial aggregation

invoice

invid
date
cid

customer

cid
fname
sname
cgid

invoiceline

invlinid
qty
price
invid
pid

product

pid
name

customergroup

cgid
name

Fig. 1. The original schema of the database on customers and invoices.

Example 1. Let us consider a database schema on customers and their invoices
as show on Figure 1. Assume that the company database often has to answer
queries that follow the pattern of the SELECT statement presented below.

SELECT invoiceline.pid, invoice.date,
sum(invoiceline.qty)

FROM invoice JOIN invoiceline USING (invid)

Query Rewriting Based on Meta-Granular Aggregation 459

GROUP BY invoice.date, invoiceline.pid
HAVING date BETWEEN ’2011-07-16’ AND ’2011-07-22’

In order to serve such queries efficiently we extend the database schema from
Figure 1 by adding the derived table dw invline value by customer date as
shown on Figure 2. These tables will store partial sums that are needed to quickly
answer the query shown above.

dw_invoice_value_by_customer_date

cid
value
date

dw_invline_value_by_product_date

pid
value
date

invoice

invid
date
cid

customer

cid
fname
sname
cgid

invoiceline

invlinid
qty
price
invid
pid

product

pid
name

customergroup

cgid
name

Fig. 2. The schema of the database on customers and invoices extended with derived
tables that store materialized aggregations.

In our research we exploit the possibility to hide internals of optimization
algorithms in the layers of the object-relational mapping [6]. In our opinion this
additional layer of abstraction is a perfect place to put disparate peculiarities of
optimisation algorithms. The database server is not the only place to implement
query rewriting. Moreover, this ORM option is sometimes the only one, e.g. when
the database system is not open-source. It also facilitates writing reusable code
that does not depend on the SQL dialect of a particular DBMS. We applied this
approach successfully to recursive querying [7] and index selection [8].

Thanks to the generators hidden in the object-relational mapping layer, the
extra tables from Figure 2 will be created automatically. For the application
programmer it is enough to augment the declaration of the Java entity class
InvoiceLine with the annotation shown on Listing 1.1.

Listing 1.1. Java class InvoiceLine with annotations that cause generation of mate-
rialized aggregations

@Entity
public class I n v o i c e l i n e {

. . .

460 P. Wiśniewski, K. Stencel

@DWDim(Dim = ” date ”)
private Invo i c e i n v o i c e ;
private Long i n v l i n i d ;
@DWDim
private Product product ;
@DWAgr(func t i on=”SUM”)
private I n t e g e r qty ;
. . .

When the materialized aggregations are computed and stored in the database,
DBMS can execute the following query using derived storage objects instead of
the original user query. The modified query will be served significantly faster
since it addresses pre-aggregated data.

SELECT pid, date, value
FROM dw_invline_value_by_customer_date
WHERE date BETWEEN ’2011-07-16’ AND ’2011-07-22’

If we add an appropriate annotation to the entity class Invoice, the mate-
rialized aggregation dw invoice value by customer date can be automatically
generated. Figure 2 shows this derived table as well. It allows for a notable ac-
celeration of preparation of reports on sales partitioned by dates and customers.

3 Granularity and meta-granules

In this paper granularity is the partitioning implied by the grouping clause,
while meta-granules are schema items that unambiguously define this parti-
tion. Basic meta-granules are tables with data we want to summarize, e.g.
invoice line, unit is a meta-granule that represents individual rows of the
table invoice line. The meta-granule invoice line, product, date stands
for the partitioning formalized in our example query. Let us assume that we want
to get the total sales for a particular day. For an application programmer it is
obvious that instead of base data we can use existing materialized aggregations.

A similar meta-granule invoice line, customer, date describes grouping
by the customer and the date of sale. For this meta-granule we created a ma-
terialized aggregation as shown of Figure 2. If a user now poses a query for the
total sales on a given day, we can choose among two meta-granules that can
accelerate his/her query.

Let us introduce a partial order of meta-granules. A meta-granule g1 is smaller
or equal than a meta-granule g2, if and only if each row in g2 can be computed
by aggregating some rows of g1.

In the analysis of our running examples we will use the following symbols of
meta-granules:

gil = invoice line: unit

gpd = invoice line: product, date

Query Rewriting Based on Meta-Granular Aggregation 461

gcd = invoice line: customer, date

gd = invoice line: date

Then, the following inequalities are satisfied:

gil ≤ gpd ≤ gd

gil ≤ gcd ≤ gd

On the other hand, the meta-granules gpd and gcd are incomparable. Thus, the
partial order of meta-granules is not linear.

Let us analyze another example queries that allow identifying other meta-
granules.

SELECT invoice.date, cg.name
sum(invoiceline.qty)

FROM customergroup cg JOIN customer USING(cgid)
JOIN invoice USING(cid)
JOIN invoiceline USING (invid)
GROUP BY invoice.date, cg.name
HAVING date = ’2011-07-16’

This query induces the following meta-granule:

gcgm = invoice line: customer group, month(date)

SELECT month(invoice.date), product.pid
sum(invoiceline.qty)

FROM invoice JOIN invoiceline USING (invid)
JOIN product USING (pid)
GROUP BY month(invoice.date), product.pid

This query induces the following meta-granule:

gpm = invoice line: product, month(date)

SELECT invid, sum(invoiceline.qty)
FROM invoice JOIN invoiceline USING (invid)
GROUP BY invid
HAVING date = ’2011-07-16’

This query induces the meta-granule:

gi = invoice line: invoice

Our extended schema presented on Figure 2 does not contain these meta-
granules. If a meta-granule is associated with a materialized aggregation stored
in the database, this meta-granule will be called proper. Otherwise, the meta-
granule is called virtual.

Figure 3 shows the partial order of all meta-granules enumerated in presented
examples. Virtual meta-granules are depicted as rectangles, while proper met-
granules are portrayed as ovals. Observe that each meta-granule is bigger or equal
to the proper meta-granule of basic facts, i.e. gil . Data in all meta-granules is
derived from gil by some aggregation.

462 P. Wiśniewski, K. Stencel

cgm cgid, month d date pm pid, month

cd cid, date

pd pid, date

i invid

il inv line

Fig. 3. The partial order of meta-granules

4 The rewriting algorithm

The optimization method based on meta-granules is composed of the following
steps. Assume that a query has been posed.

1. We identify the needed meta-granule. We check if the query has internal
WHERE clause. Next, we analyze the grouping used and we compute the
meta-granule required to compute the answer to the query.

2. If this meta-granule is proper, the query will get rewritten so that it uses
the materialization associated with the meta-granule instead of the base fact
table.

3. If this meta-granule is virtual, we will find the maximal proper meta-granule
not greater than the meta-granule of the query. This maximal meta-granule
will be used in the rewriting of the original query.

Since the set of all meta-granules is finite, the set of meta-granules smaller
that the given virtual meta-granule always contains maximal elements. This set
is never empty, since there exists basic fact meta-granule that is smaller than
any mete-granule. However, there can be more than one maximal meta-granule
in this set. Let us consider the following example query:

SELECT invoice.date, sum(invoiceline.qty)
FROM invoice JOIN invoiceline USING (invid)
GROUP BY invoice.date, product.pid

This query induces the metagranule:

gd = invoice line: date

For this virtual meta-granule we have two maximal proper meta-granules. They
are gcd and gpd. The usage of any of them means a significant acceleration of the
execution of this query.

Query Rewriting Based on Meta-Granular Aggregation 463

5 Experimental evaluation

In this Section we show the potential gains of using the optimization algorithm
proposed in this paper. We used a computer with Pentium G2120 3.1 GHz (Ivy
Brigde), 8 GB RAM. The disk was 120 GB SDD SATA III for the system and
Raid 0 on 2x Caviar Black 1 TB 7400rpm for the database storage. We used plain
PostgreSQL 9.1 installed on Ubuntu 13.04. No upfront optimization or tuning
has been performed. The tested database have the schema shown on Figure 1.
The volumes of data are summarized by Table 1.

Table 1. Row counts of tables from the example schema

Table name Row count

customer 4 999 000

customergroup 50 000

invoice 99 973 000

invoiceline 1 049 614 234

product 9 000

We use three databases instances with different sets of proper meta-granules
from Figure 3. The database plain contains only the basic meta-granule with
invoice lines. The database med additionally has proper meta-granules cd and
pd. The database full materializes all meta-granules from Figure 3. Table 2
recaps proper meta-granules of all these three databases. It also shows their
sizes in gigabytes.

Table 2. Proper meta-granules and volumes of tested database instances

Database name Proper meta-granules Volume

plain il 101 GB
med cd, il, pd 110 GB
full cd, cgm, d, i, il, pd, pm 120 GB

5.1 Rewriting queries

Let us start from a simple query that returns 10 customer groups with biggest
sales in March 2006. This query can be formulated as follows assuming the
schema from Figure 2.

SELECT cgid, sum(price * qty) as sum_val,
extract(year FROM date) as year,
extract(month FROM date) as month

464 P. Wiśniewski, K. Stencel

FROM invline JOIN inv USING (invid)
JOIN cust USING (cid)

GROUP BY cgid, year, month
HAVING extract(year FROM date) = 2006
AND extract(month FROM date) = 3

ORDER BY sum_val DESC
LIMIT 10;

Since in the database plain no non-trivial proper meta-granule is available,
out rewriting algorithm cannot modify this query. When run in this form, it
finishes in 1 067.5 seconds.

However, in the databasemed we have the meta-granule cd at our disposal. It
contains data pre-aggregated by cid and date. Therefore, our algorithm rewrites
the query to use this proper meta-granule:

SELECT cgid, sum(sum_val) as cgmsum_val,
extract(year FROM date) as year,
extract(month FROM date) as month

FROM aggr_cd JOIN cust USING (cid)
GROUP BY cgid, year, month
HAVING extract(year FROM date) = 2006
AND extract(month FROM date) = 3

ORDER BY cgmsum_val DESC
LIMIT 10;

Now the query will run 41.6 seconds. We have accelerated this query 25
times. Although, the database med does not contain all possible meta-granules,
the running time has been significantly reduced. Of course further increase of
efficiency is possible if we have even more proper meta-granules as in the database
full. In this case, the algorithm will choose using the meta-granule cgm to get
the following query that runs in half a second.

SELECT cgid, sum_val, year, month
FROM aggr_cgm
WHERE year = 2006
AND month = 3
ORDER BY sum_val DESC
LIMIT 10

In the second example query we ask for 15 best sale days in 2005. This
query can be formulated as shown below assuming the schema from Figure 2.
Only in this form it can be run against the database plain that has no proper
meta-granules. It takes 3 475.1 seconds to complete its execution.

SELECT date, sum(price * qty) as sum_val
FROM invline JOIN inv USING (invid)
GROUP BY date

Query Rewriting Based on Meta-Granular Aggregation 465

ORDER BY sum_val DESC
LIMIT 15

With the database med the optimiser has two options. It can use either the
meta-granule cd or pd as presented below. It takes 56.2 sec to completion with
cd and 19.9 sec with pd. Since both queries are plain SQL, the cost model of
the underlying database should be used to determine the query to be run. In
this case we have two maximal meta-granules to choose.

SELECT date, sum(sum_val) as dsum_val
FROM aggr_cd
GROUP BY date
ORDER BY dsum_val DESC
LIMIT 15;

SELECT date, sum(sum_val) as dsum_val
FROM aggr_pd
GROUP BY date
ORDER BY dsum_val DESC
LIMIT 15;

When we have all possible proper meta-granules and in the database full we
can use the meta-granules d and run the following query in 41 milliseconds.

SELECT date, sum_val
FROM aggr_d
ORDER BY sum_val DESC
LIMIT 15;

The third query is to list 10 best selling products together with the sold
volume from September to December 2006. In absence of proper meta-granules
it can be formulated as follows. In this form for the database plain this query
runs for 1 074 seconds.

SELECT pid, sum(qty) as sum_qty,
sum (price * qty) as sum_val

FROM invline JOIN inv USING (invid)
WHERE extract(year FROM date) = 2006
AND extract(month FROM date) between 9 and 12

GROUP BY pid
ORDER BY sum_val DESC
LIMIT 10;

In the database med we can employ the proper meta-granule pd and get the
following query that completes in 38.8 seconds.

466 P. Wiśniewski, K. Stencel

SELECT pid, sum(sum_qty) as pmsum_qty,
sum (sum_val) as pmsum_val

FROM aggr_pd
WHERE extract(year FROM date) = 2006
AND extract(month FROM date) between 9 and 12

GROUP BY pid
ORDER BY pmsum_val DESC
LIMIT 10;

The abundant meta-granules of the database full allow executing the follow-
ing query instead. It finishes in 1282 miliseconds.

SELECT pid, sum(sum_qty) as pmsum_qty,
sum (sum_val) as pmsum_val

FROM aggr_pm
WHERE year = 2006
AND month between 9 and 12

GROUP BY pid
ORDER BY pmsum_val DESC
LIMIT 10;

The results of the tests are summarized in Table 3. Obviously, the usage
appropriate proper meta-granules significantly accelerates the queries. However,
even when only limited subset of meta-granules is proper, our rewriting algorithm
can notably boost the query execution. This is the case of the database med.
Although the optimization algorithm did not have the optimal meta-granule, it
could successfully employ the meta-granules that were at its disposal.

Table 3. Summary of query execution times for tested database instances

Database Query 1 Query 2 Query 3

plain 1 067.5 s 3 475.1 s 1 074.2 s
med 41.6 s 56.2 s 19.9 s 38.8 s
full 0.5 s 0.04 s 0.001 s

5.2 Preparing meta-granules

As usual, keeping derived data structures in sync with the base data induces a
significant overhead. In this Section we show experiments that assess this over-
head. We performed inserting a number of invoices into each database instance.
On average each invoice contained 10 lines. We performed two subsequent runs
with 10 000 invoices and one run with 15 000 invoices and one with 20 000
invoices. Before each run (but the second with 10 000 invoices) the database
management system was shutdown in order to make the database buffer cold

Query Rewriting Based on Meta-Granular Aggregation 467

initially. Table 4 summarizes the run times. As we can see, avoiding creation of
some proper meta-granules (comparemed with full) spares a noteworthy amount
of time.

Table 4. Time spent on inserting new invoices and synchronizing proper meta-granules

Invoices Buffer plain med full

10 000 cold 2m 58.335s 29m 06.670s 37m 56.663s
10 000 hot 3m 03.308s 9m 05.212s 13m 01.924s
15 000 cold 4m 30.261s 20m 59.395s 36m 30.021s
20 000 cold 6m 32.502s 29m 59.064s 44m 38.321s

6 Conclusions

In this paper we presented a novel method to select materialized data in ana-
lytical query execution. A fact table can be pre-aggregated for numerous sets
of its dimensions. We call this sets of dimensions meta-granules and introduce
their partial order. “Bigger” meta-granules are more aggregated, i.e., contain
less specific data. Whenever an ad-hoc query is posed, the database system can
choose using some of the stored meta-granules as a means to accelerate the
query. Sometimes, DBMS can find a perfect meta-granule. If such meta-granule
does not exists, DBMS will not give up. According to the presented rewriting
algorithm, DBMS will use the maximal suitable meta-granule, i.e. the one that
is least coarse but still fits the query. Our solution has two benefits. First, the
database administrator does not have to create all imaginable materializations.
Second, even if some reasonable materialization has been forgotten, the database
system can still use exiting imperfect meta-granules to boost the query.

We have also shown results of the experimental evaluation of out method. It
proves that even if some ideal meta-granules lack, the database system can still
offer satisfactory performance. The experiments also attest that the overhead
caused by the need to keep materialized data in sync is acceptable.

References

1. Gawarkiewicz, M., Wiśniewski, P.: Partial aggregation using Hibernate. In: FGIT.
Volume 7105 of LNCS. (2011) 90–99

2. O’Neil, E.J.: Object/relational mapping 2008: Hibernate and the Entity Data Model
(EDM). In Wang, J.T.L., ed.: SIGMOD Conference, ACM (2008) 1351–1356

3. Flexviews: Incrementally refreshable materialized views for MySQL (2012)
4. Mumick, I.S., Quass, D., Mumick, B.S.: Maintenance of data cubes and summary

tables in a warehouse. In Peckham, J., ed.: SIGMOD Conference, ACM Press (1997)
100–111

468 P. Wiśniewski, K. Stencel

5. Salem, K., Beyer, K., Lindsay, B., Cochrane, R.: How to roll a join: asynchronous
incremental view maintenance. SIGMOD Rec. 29 (2000) 129–140

6. Melnik, S., Adya, A., Bernstein, P.A.: Compiling mappings to bridge applications
and databases. ACM Trans. Database Syst. 33 (2008)

7. Szumowska, A., Burzańska, M., Wiśniewski, P., Stencel, K.: Efficient implemen-
tation of recursive queries in major object relational mapping systems. In: FGIT.
(2011) 78–89

8. Boniewicz, A., Gawarkiewicz, M., Wiśniewski, P.: Automatic selection of functional
indexes for object relational mappings system. International Journal of Software
Engineering and Its Applications 7 (2013)

Checking MTL Properties of Discrete Timed
Automata via Bounded Model Checking?

Extended Abstract

Bożena Woźna-Szcześniak and Andrzej Zbrzezny

IMCS, Jan D lugosz University.
Al. Armii Krajowej 13/15, 42-200 Czȩstochowa, Poland.

{b.wozna,a.zbrzezny}@ajd.czest.pl

Abstract. We investigate a SAT-based bounded model checking (BMC)
method for MTL (metric temporal logic) that is interpreted over linear
discrete infinite time models generated by discrete timed automata. In
particular, we translate the existential model checking problem for MTL
to the existential model checking problem for a variant of linear temporal
logic (called HLTL), and we provide a SAT-based BMC technique for
HLTL. We show how to implement the BMC technique for HLTL and
discrete timed automata, and as a case study we apply the technique in
the analysis of TGPP, a Timed Generic Pipeline Paradigm modelled by
a network of discrete timed automata.

1 Introduction

Nowadays the interest in model checking [5] is focused not only on standard
concurrent systems, but also on soft real-time systems, i.e., systems the goal
of which is to ensure a certain subset of deadlines in order to optimize some
application specific criteria. A number of formalisms, which use a discrete time
domain, have been proposed in the literature to model the behaviour of these
systems, e.g. discrete timed automata [2] and discrete timed Petri nets [7]. To
express the requirements of the systems mostly standard temporal logics are
used: computation tree logic (CTL) [4], the soft real-time CTL (RTCTL) [6],
linear temporal logic (LTL) [13], and metric temporal logic (MTL) [8, 10, 14].

Bounded model checking (BMC) [3, 11, 12] is a symbolic verification method
that uses only a portion of the considered model that is truncated up to some
specific depth. It exploits the observation that we can infer some properties
of the model using only its fragments. This approach can be combined with
symbolic techniques based on decision diagrams or with techniques which involve
translation of the verification problem either to the boolean satisfiability problem
(SAT) or to the satisfiability modulo theories (SMT) problem.

The original contributions of the paper are as follows. First, we define a
SAT-based BMC for soft real-time systems, which are modelled by discrete

? Partly supported by National Science Center under the grant No.
2011/01/B/ST6/05317.

470 B. Woźna-Szcześniak, A. Zbrzezny

timed automata, and for properties expressible in MTL. Next, we report on
the implementation of the proposed BMC method as a new module of VerICS
[9]. Finally, we evaluate the BMC method experimentally by means of a timed
generic pipeline paradigm (TGPP), which we model by a network of discrete
timed automata.

The rest of the paper is structured as follows. In Section 2 we brief the
basic notion used through the paper. In Section 3 we define the BMC method
for HLTL. In Section 4 we discuss our experimental results. In Section 5 we
conclude the paper.

2 Preliminaries

We assume familiarity with the notion of discrete timed automaton (DTA) and
their semantics in terms of the Kripke structure (called model). We refer the
reader to the body of the paper [15] for details; note that a discrete timed
automaton is basically a timed automaton with the restriction that clocks are
positive integer variables. Further, we assume the following syntax of MTL. Let
p ∈ PV, and I be an interval in N = {0, 1, 2, . . .} of the form: [a, b) or [a,∞), for
a, b ∈ N and a 6= b; note that the remaining forms of intervals can be defined by
means of [a, b) and [a,∞). The MTL formulae in the negation normal form are
defined by the following grammar:

α := > | ⊥ | p | ¬p | α ∧ α | α ∨ α | αUIα | αRIα

We refer the reader to the body of the paper [15] for the semantics of MTL; note
that to get the discrete time semantics for MTL from the dense time semantics
for MITL, in all the definitions presented in [15] at page 5, it is enough to replace
the set of positive real numbers with the set of positive integer numbers, and to
drop the assumption about single intervals.

Determining whether an MTL formula ϕ is existentially (resp. universally)
valid in a given model is called an existential (resp. universal) model checking
problem.

In order to define a SAT-based BMC method for MTL, we first translate the
existential model checking problem for MTL that is interpreted over the region
graph (i.e., a standard finite model defined for (discrete) timed automata) to the
existential model checking problem for HLTL that is also interpreted over the
region graph. For the details on this translation and the semantics of the HLTL
language we refer the reader to [15]; note that the single intervals do not affect
this translation. Here we only provide the syntax of HLTL and the translation
scheme.

Let ϕ be an MTL formula, n the number of intervals in ϕ, p ∈ PV a propo-
sitional variables, and h = 0, . . . , n − 1. The HLTL formulae in release positive
normal form are given by the following grammar:

α :=> | ⊥ | p | ¬p | α ∧ α | α ∨ α | Hhα | αUα | αRα

Checking MTL Properties of Discrete Timed Automata ... 471

where the symbols U and R denote the until and release modalities, respectively.
The indexed symbol Hh denotes the reset modality representing the reset of
the clock number h. In addition, we introduce some useful derived temporal

modalities: Gα
def
= ⊥Rα (always), Fα

def
= >Uα (eventually).

Let ϕ be a MTL formula. We translate the formula ϕ inductively into the
HLTL formula H(ϕ) in the following way:

H(>) = >, H(⊥) = ⊥, H(p) = p, H(¬p) = ¬p, for p ∈ PV,
H(α ∨ β) = H(α) ∨H(β), H(α ∧ β) = H(α) ∧H(β),
H(αUIhβ) = Hh(H(α)U(H(β) ∧ pyh∈Ih ∧ (pnf ∨H(α)))),
H(αRIhβ)) = Hh(H(α)R(¬pyh∈Ih ∨H(β))).

Observe that the translation of literals as well as logical connectives is straight-
forward. The translation of the UIh operator ensures that: (1) the translation of
β holds in the interval I – this is expressed by the requirement H(β) ∧ pyh∈Ih ;
(2) the translation of α holds always before the translation of β; and (3) if the
value of the clock yh belong to the final zone, i.e. the values of all the clocks are
bigger then some maximal value (in this case the proposition pnf is not true),
then the translation of H(α) is taken into account as well. The translation of the
RIh operator makes use of the fact αRIhβ = βUIhα ∧ β ∨GIhβ.

This translation preserves the existential model checking problem, i.e., the
existential model checking of an MTL formula ϕ over the discrete model can be
reduced to the existential model checking of H(ϕ) over the region graph.

The next step in defining a SAT-based BMC method for MTL relies on intro-
ducing a discretisation scheme for the region graph (defined for a given discrete
timed automaton) that will represent zones (i.e. sets of equivalent clock valu-
ations) of the region graph by exactly one specially chosen representative, and
proving that a discretised model based on this scheme preserves the validity of
the HLTL formulae - the discretised model constitutes the base for an imple-
mentation of our BMC method. We do not report on this step here in detail,
since it requires introducing the huge mathematical machinery, but in fact it
can be done in a way similar to the one presented in [16]. However, this will be
provided in the full version of the paper.

The final step in defining a SAT-based BMC method for MTL relies on
defining the BMC method for HLTL. This is described in the next section.

3 Bounded model checking for HLTL

Bounded semantics of a logic in question with existential interpretation is always
used as the theoretical basis for the SAT-based bounded model checking. In
the paper we have decided not to provide this semantics and not to show its
equivalence to the unbounded semantics. This will be presented in the full version
of the paper. Here, we only focus on the core of the BMC method, i.e. on the
translation to SAT.

Let A be a discrete timed automaton, ϕ an MTL formula, ψ = H(ϕ) the
corresponding HLTL formula, M a discretized model for Aϕ (this an extension

472 B. Woźna-Szcześniak, A. Zbrzezny

ofA – for the exact construction we refer to [15]), and k ≥ 0 a bound. We propose
a BMC method for HLTL, which is based on the BMC technique presented in
[17]. More precisely, we construct a propositional formula

[M, ψ]k := [Mψ,ι]k ∧ [ψ]M,k (1)

that is satisfiable if and only if the underlying model M is a genuine model for
ψ. The constructed Formula (1) is given to a satisfiability solving program (a
SAT-solver), and if a satisfying assignment is found, that assignment is a witness
for the checked property. If a witness cannot be found at a given depth, k, then
the search is continued for larger k.

The definition of the formula [M, ψ]k requires, among other, states of the
model M to be encoded in a symbolic way. This encoding is possible, since
the set of states of M is finite. In particular, we represent each state s by
a vector w = (w1, . . . , wr) (called a symbolic state) of propositional variables
(called state variables), whose length r depends on the number of locations
and clocks in Aϕ. Further, we need to represent finite prefixes of paths in a
symbolic way. We call this representation a j-th symbolic k-path πj and define
it as a pair ((w0,j , . . . , wk,j), uj), where wi,j are symbolic states for 0 ≤ j <
fk(ψ) and 0 ≤ i ≤ k, and uj is a symbolic number for 0 ≤ j < fk(ψ). The
symbolic number uj is a vector uj = (u1,j , . . . , ut,j) of propositional variables
(called natural variables), whose length t equals to max(1, dlog2(k+ 1)e), and it

is used to encode the looping conditions. Next, we need an auxiliary function f̂k :
HLTL→ N that gives a bound on the number of k-paths sufficient for validating
a given HLTL formula. The function is defined as f̂k(ψ) = fk(ψ) + 1, where
fk(>) = fk(⊥) = fk(p) = fk(¬p) = 0 for p ∈ PV; fk(α ∧ β) = fk(α) + fk(β);
fk(α∨β) = max{fk(α), fk(β)}; fk(Hhα) = fk(α)+1; fk(αUβ) = k·fk(α)+fk(β);
fk(αRβ) = (k + 1) · fk(β) + fk(α).

The formula [Mψ,ι]k – the 1st conjunct of Formula (1) – encodes f̂k(ψ)-times
unrolled transition relation, and it is defined in the following way:

[Mψ,ι]k := Iι(w0,0)∧
f̂k(ϕ)∨
j=1

H(w0,0, w0,j)∧
f̂k(ψ)∧
j=1

k−1∧
i=0

T (wi,j , wi+1,j)∧
f̂k(ψ)∧
j=0

k∨
l=0

B=
l (uj)

(2)
where wi,j are symbolic states, uj is a symbolic number, Iι(w0,0) and B=l (uj) are
formulae encoding the initial state, and the value l, respectively. H(w,w′) is a
formula that encodes equality of two global states. The formula T (wi,j , wi+1,j) is
disjunction of three formulas: T (wi,j , wi+1,j), TA(wi,j , wi+1,j), andA(wi,j , wi+1,j)
that encode respectively the time, time-action, and action successors of M.

The formula [ψ]M,k := [ψ]
[0,1,Fk(ψ)]
k – the 2nd conjunct of Formula (1) – en-

codes the translation of a HLTL formula ψ along a k-path, whose number belongs
to the set Fk(ψ) = {j ∈ N | 1 ≤ j ≤ f̂k(ψ)}. The main idea of this translation
consists in translating every subformula α of ψ using only fk(α) k-paths. More
precisely, given a formula ψ and a set Fk(ψ) of indices of k-paths, following [17],
we divide the set Fk(ψ) into subsets needed for translating the subformulae of

Checking MTL Properties of Discrete Timed Automata ... 473

ψ. We assume that the reader is familiar with this division process, and here
we only recall definitions of the functions we use in the definition of the formula

[ψ]
[0,1,Fk(ψ)]
k .
First, we recall the relation ≺ that is defined on the power set of N as: A ≺ B

iff for all natural numbers x and y, if x ∈ A and y ∈ B, then x < y. Now, let
A ⊂ N be a finite nonempty set, and n, d ∈ N, where d ≤ |A|. Then,
• gl(A, d) denotes the subset B of A such that |B| = d and B ≺ A \B.
• gr(A, d) denotes the subset C of A such that |C| = d and A \ C ≺ C.
• gs(A) denotes the set A \ {min(A)}.
• if n divides |A| − d, then hp(A, d, n) denotes the sequence (B0, . . . , Bn) of

subsets of A such that
⋃n
j=0Bj = A, |B0| = . . . = |Bn−1|, |Bn| = d, and

Bi ≺ Bj for every 0 ≤ i < j ≤ n.

Now let hUk (A, d)
df
= hp(A, d, k) and hRk (A, d)

df
= hp(A, d, k + 1). Note that if

hUk (A, d) = (B0, . . . , Bk), then hUk (A, d)(j) denotes the set Bj , for every 0 ≤ j ≤
k. Similarly, if hRk (A, d) = (B0, . . . , Bk+1), then hRk (A, d)(j) denotes the set Bj ,
for every 0 ≤ j ≤ k + 1. Further, the function gs is used in the translation of
subformulae of the form Hhα, if a set A is used to translate this formula, then
the path of the number min(A) is used to translate the operator Hh and the set
gs(A) is used to translate the subformula α. For more details on the remaining
functions we refer to [17].

Now we are ready to define the formula [ψ]
[0,1,Fk(ψ)]
k . Let ψ be a HLTL

formula, and k ≥ 0 a bound. We can define inductively the translation [ψ]
[m,n,A]
k

of ψ along the n-th symbolic k−path πn (n ∈ Fk(ψ)) with starting point m
by using the set A as shown below. Let cl(wm,n, h) denote the fragment of the
symbolic state wm,n that encodes the h-th clock from the set Y, n′ = min(A),
hUk = hUk (gs(A), fk(β)), and hRk = hRk (gs(A), fk(α)). Then,

[>]
[m,n,A]
k := >, [⊥]

[m,n,A]
k := ⊥, [p]

[m,n,A]
k := p(wm,n), [¬p][m,n,A]

k := ¬p(wm,n),

[α ∧ β]
[m,n,A]
k := [α]

[m,n,gl(A,fk(α))]
k ∧ [β]

[m,n,gr(A,fk(β))]
k ,

[α ∨ β]
[m,n,A]
k := [α]

[m,n,gl(A,fk(α))]
k ∨ [β]

[m,n,gl(A,fk(β))]
k ,

[Hh(αUβ)]
[m,n,A]
k :=

∧m−1
j=0 H(wj,n, wj,n′) ∧Hh=0(wm,n, wm,n′)∧ ∧kj=m+1H6=h

(wj,n, wj,n′) ∧
(∨k

j=m([β]
[j,n′,hU

k (k)]
k ∧ ∧j−1i=m[α]

[i,n′,hU
k (i)]

k)
)
∨∧k

j=m+1H 6=h(wj,n, wj,n′) ∧Hh=0(wm,n, wm,n′)∧(∨m−1
l=0 (Llk(πn′) ∧∧l−1j=0H(wj,n, wj,n′) ∧H(wl,n′ , wk,n′)∧∧m−1

j=l+1H 6=h(wj,n, wj,n′))
)
∧
(∨m−1

j=0 (B>j (un′) ∧ [β]
[j,n′,hU

k (k)]
k

∧∧j−1i=0 (B>i (un′)→ [α]
[i,n′,hU

k (i)]
k))

)
∧∧ki=m[α]

[i,n′,hU
k (i)]

k ,

[Hh(αRβ)]
[m,n,A]
k :=

∧m−1
j=0 H(wj,n, wj,n′) ∧Hh=0(wm,n, wm,n′) ∧∧kj=m+1H6=h

(wj,n, wj,n′) ∧
(∨k

j=m([α]
[j,n′,hR

k (k+1)]
k ∧∧ji=m[β]

[i,n′,hR
k (i)]

k)
)

∨∧kj=m+1H 6=h(wj,n, wj,n′) ∧Hh=0(wm,n, wm,n′)∧(∨m−1
l=0 (Llk(πn′) ∧∧l−1j=0H(wj,n, wj,n′) ∧H(wl,n′ , wk,n′)∧∧m−1

j=l+1H 6=h(wj,n, wj,n′))
)
∧
(∨m

j=0(B>j (u′n) ∧ [α]
[j,n′,hR

k (k+1)]
k

474 B. Woźna-Szcześniak, A. Zbrzezny

∧∧j−1i=0 (B>i (un′)→ [β]
[i,n′,hR

k (i)]
k))

)
∧∧ki=m[β]

[i,n′,hR
k (i)]

k

∨∧m−1j=0 H(wj,n, wj,n′) ∧Hh=0(wm,n, wm,n′) ∧∧kj=m+1

H6=h(wj,n, wj,n′) ∧∧kj=m[β]
[j,n′,hR

k (j)]
k ∧ B≤right(h)(cl(wk,n′ , h))

∨B>right(h)(cl(wk,n′ , h)) ∧∧m−1j=0 H(wj,n, wj,n′) ∧Hh=0

(wm,n, wm,n′) ∧∧kj=m+1H 6=h(wj,n, wj,n′) ∧∧kj=m[β]
[j,n′,hR

k (j)]
k

∧(
∨k−1
l=m(Llk(πn′))∨ B>right(h)(cl(wk,n′ , h)) ∧Hh=0(wm,n, wm,n′)

∧∧kj=m+1H 6=h(wj,n, wj,n′) ∧∧kj=m[β]
[j,n′,hR

k (j)]
k ∧(∨m−1

l=0 (Llk(πn′) ∧∧l−1j=0H(wj,n, wj,n′) ∧H(wl,n′ , wk,n′)∧∧m−1
j=l+1H 6=h(wj,n, wj,n′) ∧∧m−1j=l+1[β]

[j,n′,hR
k (j)]

k)
)
.

where p(w) is a formula that encodes a set of states of M in which p ∈ PV holds;
H(w,w′) is a formula that encodes equality of two global states; Hh=0(w,w′) is
a formula that for two global states encodes the equality of their locations, the
equality of values of the original clocks (i.e., clocks from X), and the equality
of values of the new clocks (i.e., clocks from Y) but the value of clock yh. For
clock yh the formula guarantees that its value in the 2nd global state is equal
to zero; H6=h(w,w′) is a formula that for two global states encodes the equality
of their locations, the equality of values of the original clocks, and the equality
of the values of the new clocks with the potential exception of clock yh. For
clock yh the formula guarantees that its value in the 2nd global state is greater
than zero; HX(w,w′) is a formula that encodes equality of two global states on
locations and values of the original clocks; B∼j (v) is a formula that encodes that
the value represented by the vector of propositional variables v is in arithmetic
relation ∼ with the value j, where ∼ ∈ {<, 6, =, >, >}; Llk(πj) := B>k (uj) ∧
HX(wk,j , wl,j).

The following theorem, whose proof will be provided in the full version of the
paper, guarantees that the bounded model checking problem can be reduced to
the SAT-problem.

Theorem 1. LetM be a discrete abstract model, and ψ a HLTL formula. Then
for every k ∈ N, ψ is existentially valid in M with the bound k if, and only if,
the propositional formula [M, ψ]k is satisfiable.

4 Experimental results

Our SAT-based BMC method for MTL, interpreted over the discrete time mod-
els, and discrete timed automata is, to our best knowledge, the first one formally
presented in the literature, and moreover there is no any other model checking
technique for the considered MTL language. Further, our implementation of the
presented BMC method uses Reduced Boolean Circuits (RBC) [1] to represent
the propositional formula [M, ψ]k. An RBC represents subformulae of [M, ψ]k
by fresh propositions such that each two identical subformulae correspond to the
same proposition.

Checking MTL Properties of Discrete Timed Automata ... 475

For the tests we have used a computer with Intel Core i3-2125 processor,
8 GB of RAM, and running Linux 2.6. We set the time limit to 900 seconds, and
memory limit to 8GB, and we used the state of the art SAT-solver MiniSat 2.
The specifications for the described benchmark are given in the universal form,
for which we verify the corresponding counterexample formula, i.e., the formula
which is negated and interpreted existentially.

To evaluate the performance of our SAT-based BMC algorithms for the ver-
ification of several properties expressed in MTL, we have analysed a Timed
Generic Pipeline Paradigm (TGPP) discrete timed automata model shown in
Figure 1. It consists of Producer producing data (ProdReady) or being inactive,
Consumer receiving data (ConsReady) or being inactive, and a chain of n inter-
mediate Nodes which can be ready for receiving data (NodeiReady), processing
data (NodeiProc), or sending data (NodeiSend). The example can be scaled
by adding intermediate nodes or by changing the length of intervals (i.e., the
parameters a, b, c, d, e, f , g, h) that are used to adjust the time properties of
Producer, Consumer, and of the intermediate Nodes.

ProdReady
x0 ≤ b

start

ProdSend

Send1
x0 := 0

Produce
x0 ≥ a
x1 := 0

Node1Ready
x1 ≤ d

start

Node1Proc
x1 ≤ f

Send1
x1 ≥ c
x1 := 0

Node1Send

Proc1
x1 ≥ e
x2 := 0

Send2
x1 := 0

· · · NodenReady
xn ≤ d

start

NodenProc
xn ≤ f

Sendn
xn ≥ c
xn := 0

NodenSend

Procn
xn ≥ e
xn+1 := 0

Sendn+1

xn := 0

ConsReady
xn+1 ≤ d

start

ConsFree
xn+1 ≤ h

out
xn+1 ≥ g
xn+1 := 0

Sendn+1

xn+1 ≥ c
xn+1 := 0

Fig. 1. A Generic Timed Pipeline Paradigm discrete timed automata model

We have tested the TGPP discrete timed automata model, scaled in the
number of intermediate nodes and with all the intervals set to [1, 3], on the
following MTL formulae:

ϕ1 = G[0,∞)(ProdSend ⇒ F[2n+1,2n+2)ConsFree), where n is the number of
nodes. It expresses that each time Producer produces data, then Consumer
receives this data in 2n+ 1 time units.

ϕ2 = G[0,∞)(ProdSend⇒ F[2n+1,2n+2)(ConsFree ∧ F[1,2)ConsReady)), where
n is the number of nodes. It expresses that each time Producer produces
data, then Consumer receives this data in 2n + 1 time units and one unit
after that it will be ready to receive another data.

Since there is no model checker that supports the MTL properties of systems
modelled by discrete timed automata, we were not able to compare results of
the application of our method to a TGPP system with others.

We provide a preliminary evaluation of our method by means of the running
time and the consumed memory. We have observed that for both formulae ϕ1 and

476 B. Woźna-Szcześniak, A. Zbrzezny

ϕ2, we managed to compute the results for 5 nodes in the time of 900 seconds.
The exact data for the mentioned maximal number of nodes are the following:
ϕ1: k = 20, fk(ϕ1) = 3, bmcT is 6.50, bmcM is 19.54, satT is 25.24, satM is

43.00, bmcT+satT is 31.74, max(bmcM,satM) is 43.00;
ϕ2: k = 20, fk(ϕ2) = 24, bmcT is 89.96, bmcM is 163.40, satT is 610.23, satM

is 310.00, bmcT+satT is 700.19, max(bmcM,satM) is 310.00;
where k is the bound, fk(ϕ) is the number of symbolic k-paths, bmcT is the en-
coding time, bmcM is memory use for encoding, satT is the satisfiability checking
time, satM is memory use for the satisfiability checking.

The preliminary results are very promising and indicate that the method is
worthy of further investigation for which purpose especially designed benchmarks
will be developed.

5 Conclusions

We have introduced a SAT-based approach to bounded model checking of dis-
crete timed automata and properties expressed in MTL with discrete semantics.
The method is based on a translation of the existential model checking for MTL
to the existential model checking for HLTL, and then on the translation of the
existential model checking for HLTL to the propositional satisfiability problem.
The two translations have been implemented and tested on the benchmark,
which has been carefully selected in such a way as to reveal the advantages and
disadvantages of the presented approaches.

References

1. P. A. Abdulla, P. Bjesse, and N. Eén. Symbolic reachability analysis based on SAT-
solvers. In Proceedings of the 6th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’00), volume 1785 of LNCS,
pages 411–425. Springer-Verlag, 2000.

2. R. Alur and D. Dill. A theory of Timed Automata. Theoretical Computer Science,
126(2):183–235, 1994.

3. A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model
checking. In Highly Dependable Software, volume 58 of Advances in Computers,
pages 118–149. Academic Press, 2003.

4. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using Branching Time Temporal Logic. In Proceedings of the Workshop on Logics
of Programs, volume 131 of LNCS, pages 52–71. Springer, 1981.

5. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts, 1999.

6. E. A. Emerson, A.K. Mok, A. P. Sistla, and J. Srinivasan. Quantitative temporal
reasoning. Real-Time Systems, 4(4):331–352, December 1992.

7. M. Felder, D. Mandrioli, and A. Morzenti. Proving Properties of Real-Time Sys-
tems Through Logical Specifications and Petri Net Models. IEEE Transaction on
Software Engineering, 20(2):127–141, 1994.

Checking MTL Properties of Discrete Timed Automata ... 477

8. C. A. Furia and P. Spoletini. Tomorrow and all our yesterdays: MTL satisfiability
over the integers. In Proceedings of the Theoretical Aspects of Computing - ICTAC
2008, volume 5160 of LNCS, pages 253–264. Springer-Verlag, 2008.

9. M. Kacprzak, W. Nabialek, A. Niewiadomski, W. Penczek, A. Pólrola, M.Szreter,
B. Woźna, and A. Zbrzezny. VerICS 2007 - a model checker for knowledge and
real-time. Fundamenta Informaticae, 85(1-4):313–328, 2008.

10. R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time
Systems, 2(4):255–299, 1990.

11. A. Lomuscio, W. Penczek, and B. Woźna. Bounded model checking for knowledge
and real time. Artificial Intelligence, 171:1011–1038, 2007.

12. W. Penczek, B. Woźna, and A. Zbrzezny. Bounded model checking for the universal
fragment of CTL. Fundamenta Informaticae, 51(1-2):135–156, 2002.

13. A. Pnueli. The Temporal Logic of Programs. In Proceedings of the 18th IEEE
International Symposium on Foundations of Computer Science (FOCS’77), pages
46–57. IEEE Computer Society Presss, 1977.

14. M. Pradella, A. Morzenti, and P. San Pietro. A metric encoding for bounded
model checking. In Proceedings of the 2nd World Congress on Formal Methods
(FM 2009), volume 5850 of LNCS, pages 741–756. Springer-Verlag, 2009.

15. B. Woźna-Szcześniak and A. Zbrzezny. A translation of the existential model
checking problem from MITL to HLTL. Fundamenta Informaticae, 122(4):401–
420, 2013.

16. A. Zbrzezny. A new discretization for timed automata. In Proceedings of the Inter-
national Workshop on Concurrency, Specification and Programming (CS&P’04),
volume 170 of Informatik-Berichte, pages 178–189. Humboldt University, 2004.

17. A. Zbrzezny. A new translation from ECTL∗ to SAT. Fundamenta Informaticae,
120(3–4):377–397, 2012.

On Boolean Encodings of Transition Relation for
Parallel Compositions of Transition Systems∗

Extended abstract

Andrzej Zbrzezny

IMCS, Jan Długosz University in Częstochowa,
Al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland.

a.zbrzezny@ajd.czest.pl

Abstract. We present and compare different Boolean encodings of the transi-
tion relation for the parallel composition of transition systems, both for the asyn-
chronous and the synchronous semantics. We compare the encodings considered
by applying them to the SAT-based bounded model checking (BMC) of ECTL∗

properties. We provide experimental results which show that our new encoding
for the asynchronous semantics significantly increases the efficiency of the SAT-
based BMC.

Keywords: transition system, parallel composition, SAT-based bounded model
checking, Boolean encoding.

1 Introduction

One of the most important practical problems in model checking is the exponential
growth of number of states of the transition system, depending on the number of com-
ponents of the modelled system. Edmund M. Clarke, co-inventor of the model check-
ing, stressed that the problem of overcoming the exponential explosion in the number of
states has been one of the most important research questions he was dealing with since
the inventing of model checking [1–3]. Reducing the negative impact of the exponential
explosion of the state space requires in particular the methods and algorithms to have
the highest possible efficiency.

The aim of this paper is to present and compare different Boolean encodings of
the transition relation for the parallel composition of transition systems, both for the
asynchronous and the synchronous semantics. We provide experimental results which
show that our new encoding for the asynchronous semantics significantly increases the
efficiency of the SAT-based bounded model checking.

2 Preliminaries

2.1 Transition systems

Transition systems ([4]) are often used as models to describe the behaviour of systems.
They are basically directed graphs where nodes represent states, and edges model transi-
∗ Partly supported by National Science Center under the grant No. 2011/01/B/ST6/05317.

On Boolean Encodings of Transition Relation . . . 479

tions, i.e., state changes. A state describes some information about a system at a certain
moment of its behaviour.

Definition 1. A transition system is a tupleM = (S,Act,−→, I, AP,L), where S is
a nonempty finite set of states, Act is a set of actions, I ⊆ S is the set of initial states,
−→ ⊆ S × Act × S is a transition relation, AP is a set of atomic propositions,
and L : S → 2AP is a labelling function that assigns to each state a set of atomic
propositions that are assumed to be true at that state. Transition systems are also called
models.

For convenience, we write s σ−→ s′ instead of (s, σ, s′) ∈ −→. Moreover, we write
s −→ s′ if s σ−→ s′ for some σ ∈ Act.

From now on we assume that transition systems are finite, i.e. the sets S, Act and
AP are finite We also assume that a transition system has no terminal states, i.e. for
every s ∈ S there exist s′ ∈ S such that s −→ s′. The set of all natural numbers is
denoted by N and the set of all positive natural numbers by N+. A path in M is an
infinite sequence ρ = (s0, s1, . . .) of states such that sj−→sj+1 for each j ∈ N.

2.2 Parallel compositions of transition systems

Definition 2. Let J be a non-empty, finite set of indices and let {Mj | j ∈ J} be
a family of transition systems, i.e. Mj = (Sj , Actj ,−→j , Ij , APj , Lj). Assume that
APi ∩ APj = ∅, for i 6= j. Moreover, let J(σ) = {j ∈ J | σ ∈ Actj}, and ε /∈ Actj
for each j ∈ J .

1. The asynchronous parallel composition of the family {Mj | j ∈ J} of tran-
sition systems is the transition system M = (S,Act, 7−→, I, AP,L) such that
S =

∏
j∈J

Sj , Act =
⋃
j∈J

Actj , I =
∏
j∈J

Ij , AP =
⋃
j∈J

APj , L =
⋃
j∈J

Lj , and

7−→ is defined as follows: for every s, s′ ∈ S and every σ ∈ Act: s σ7−→ s′ if and
only if the following conditions hold:
(a) sj

σ−→j s
′
j for j ∈ J(σ),

(b) s′j = sj for j ∈ J \ J(σ).
2. The synchronous parallel composition of the family {Mj | j ∈ J} of transition sys-

tems is the transition systemM = (S,Act,−→, I, AP,L) such that S =
∏
j∈J

Sj ,

Act =
∏
j∈J

(Actj ∪ {ε}), I =
∏
j∈J

Ij , AP =
⋃
j∈J

APj , L =
⋃
j∈J

Lj , and −→ is

defined as follows: for every s, s′ ∈ S and every σ ∈ Act: s σ−→ s′ if and only if
the following conditions hold:
(a) (∀j ∈ J) (σj = ε =⇒ s′j = sj),
(b) (∃j ∈ J)((σj 6= ε),

(c) (∀j ∈ J) (σj 6= ε =⇒ sj
σj−→j s

′
j),

(d) (∀i ∈ J)(σi 6= ε =⇒ (∀j ∈ J(σi)) σj = σi).

480 A. Zbrzezny

Recall that if |J(σ)| > 1 for an action σ ∈
⋃
j∈J Actj , then the action σ is called a

shared action; otherwise, i.e. if |J(σ)| = 1, it is called a local action. The actions from
Act are called joint actions.

In the transition systemM being the asynchronous parallel composition of a family
of transition systems only one local or shared action may be performed at a given time
in a given global state ofM. Moreover, a shared action σ has to be performed in all the
componentsMj , for j ∈ J(σ).

In the transition systemM being the synchronous parallel composition of a family
of transition systems a joint action σ ∈ Act is to be performed by the system at a
given time in a given global state of M. It means, that every component Mj of the
system can perform an action (also an empty action ε). Notice however, that at least
one component has to perform a non-empty action. Moreover, if one of the components
performs a shared action σ, then the action σ has to be performed in all the components
Mj , for j ∈ J(σ).

Observe that if s 7−→ s′ then there exists σ ∈ Act such that (s, σ−→, s′). Thus every
path of the asynchronous parallel composition of transition systems is also a path of the
synchronous parallel composition of transition systems. It follows that every ECTL∗

formula valid in the asynchronous parallel composition of a given family of transition
systems is also valid in the synchronous parallel composition of this family. Note that
the converse of the implication does not hold. However, let us note that each formula of
the form E(Fψ1 ∧ . . . ∧Fψm), where ψ1, . . . , ψm are propositional formulae, valid in
the synchronous parallel composition of the given family of transition systems is also
valid in the asynchronous parallel composition of this family.

3 Boolean Encodings of States, Actions and Transition Relations

We start with describing the Boolean encoding of states, actions and the transition re-
lation of a given model by means of propositional formulae, which are built over a
set PV of propositional variables plus the constants true and false, with help of the
propositional connectives ¬, ∧, ∨ and→.

Let {Mj | j ∈ J} be a finite family of transition systems and letM be the parallel
composition (either asynchronous or synchronous) of {Mj | j ∈ J}. Since the set Sj
of states of eachMj is finite, every element of Sj can be encoded as a bit vector of the
length dlog2 |Sj |e. Therefore, each state ofMj can be represented by a valuation of a
vector wj (called a symbolic local state) of unique propositional state variables. Then,
each state of M can be represented by a valuation of a vector w (called a symbolic
global state) of the vectors wj .

Similarly, since the set Actj of actions of each Mj is finite, the set Act is also
finite, and it follows that every element of Actj can be encoded as a bit vector of the
length dlog2 |Act|e. Therefore, each action ofMj can be represented by a valuation of
a vector aj (called a symbolic action) of unique propositional action variables. Then,
each element of the set Act can be represented by a valuation of a vector a (called
a symbolic joint action) of the vectors aj .

Let SV = {w1, w2, . . .} be a set of propositional state variables and AV =
{v1, v2, . . .} be a set of propositional action variables. We assume that SV ∩AV = ∅.

On Boolean Encodings of Transition Relation . . . 481

Moreover, let PV = SV ∪ AV and V : PV → {0, 1} be a valuation of propositional
variables (a valuation for short). For every m, r ∈ N+ each valuation V induces the
functions S : SV m → {0, 1}m and A : AV r → {0, 1}r defined as follows:

S(wj1 , . . . , wjm) = (V (wj1), . . . , V (wjm))
A(vj1 , . . . , vjr) = (V (vjr), . . . , V (vjr))

Our aim is to define either a Boolean formula T (w,w′) so that for each valuation
V ∈ {0, 1}SV , V satisfies T (w,w′) iff S(w) 7−→ S(w′) in M or a Boolean for-
mula T (w,a,w′) so that for each valuation V ∈ {0, 1}PV , V satisfies T (w,a,w′) iff

S(w)
S(a)−→ S(w′) inM.

3.1 The standard Boolean encoding of asynchronous parallel composition

This encoding is implemented in all the SAT-based verification modules of VerICS [5–
10]. In this encoding we use the following auxiliary propositional formulae:

– Hj(wj ,w
′
j) for j ∈ J is a Boolean formula defined so that for each valuation

V ∈ {0, 1}SV , V satisfies T (wj ,w
′
j) iff S(w′j) = S(wj);

– Tj,σ(wj ,w
′
j) for j ∈ J and σ ∈ Actj is a Boolean formula defined so that for each

V ∈ {0, 1}SV , V satisfies Tj,σ(wj ,w
′
j) iff S(wj)

σ−→ S(w′j) inMj .

Now it is possible to define the Boolean formula T (w,w′)

T (w,w′) =
∨

σ∈Act

 ∧
j∈J(σ)

Tj,σ(wj ,w
′
j) ∧

∧
j /∈J(σ)

Hj(wj ,w
′
j)

which symbolically encodes the transition relation 7−→ of the asynchronous parallel
composition of the family {Mj | j ∈ J}.

3.2 The Boolean encoding of synchronous parallel composition

We have recently implemented this encoding in the module BMC4ELTLK of VerICS.
This module was used for performing experimental results presented in the article [11],
which was recently accepted for publication. However, the encoding in question was
not described in [11]. In this encoding we use the following auxiliary propositional
formulae:

– Hσ(aj) for j ∈ J and σ ∈ Actj ∪ {ε} is a Boolean formula defined so that for
each valuation V ∈ {0, 1}AV , V satisfiesHσ(aj) iff A(aj) = σ;

– Tj,σ(wj ,aj ,w
′
j) for j ∈ J and σ ∈ Actj is a Boolean formula defined so that

for each valuation V ∈ {0, 1}PV , V satisfies Tj,σ(wj ,aj ,w
′
j) iff A(aj) = σ and

S(wj)
σ−→ S(w′j) inMj .

Now we can define the Boolean formula Tj(wj ,aj ,w
′
j)

Tj(wj ,aj ,w
′
j) =

(
H(wj ,w

′
j) ∧Hε(aj)

)
∨

∨
σ∈Actj

Tj,σ(wj ,aj ,w
′
j)

482 A. Zbrzezny

which symbolically encodes the transition relation −→j ofMj . Eventually, we define
the Boolean formula T (w,a,w′) which symbolically encodes the transition relation
−→ of the synchronous parallel composition of the family {Mj | j ∈ J}.

T (w,a,w′) =
∧
j∈J

Tj(wj ,aj ,w
′
j) ∧

∧
σ∈Act

 ∧
j∈J(σ)

Hσ(aj) ∨
∧

j∈J(σ)

Hε(aj)

The first subformula of the above conjunction assures that executing a joint action

σ consists of executing all the actions that are the components of σ. The second subfor-
mula requires that each action σ being a component of a joint action has to be executed
in all the components of the synchronous parallel composition in which it appears.

3.3 A new Boolean encoding of asynchronous parallel composition

This encoding is inspired by the encoding for the synchronous parallel composition.
However, it is not directly derived from the encoding for the synchronous parallel com-
position. In the new encoding for asynchronous parallel composition b stands for a
vector (of the length dlog2 |Act|e) of propositional action variables so that every ac-
tion in Act can be be represented by a valuation of propositional variables in b. In the
encoding we use the following auxiliary propositional formula:

– Tj,σ(wj ,b,w
′
j) for j ∈ J and σ ∈ Actj is a Boolean formula defined so that

for each valuation V ∈ {0, 1}PV , V satisfies Tj,σ(wj ,b,w
′
j) iff A(b) = σ and

S(wj)
σ−→ S(w′j) inMj .

Now we can define the Boolean formula Tj(wj ,b,w
′
j) which symbolically encodes

the transition relation −→j ofMj :

Tj(wj ,b,w
′
j) =

H(wj ,w
′
j) ∧

∧
σ∈Actj

¬Hσ(b)

 ∨ ∨
σ∈Actj

Tj,σ(wj ,b,w
′
j)

Intuitively, Tj(wj ,b,w
′
j) assures that either A(b) /∈ Actj and S(wj) = S(w′j)

(i.e. no action is performed inMj in a given step) or S(wj)
A(b)−→ S(w′j) inMj .

Eventually, we define the Boolean formula T (w,b,w′) which symbolically en-
codes the transition relation 7−→ of the synchronous parallel composition of the family
{Mj | j ∈ J}:

T (w,b,w′) =
∧
j∈J
Tj(w,b,w′) ∧

∨
σ∈Act

Hσ(b)

The first subformula of the above conjunction assures that for each action from
Act the following condition is satisfied: if this action is to be performed in one of the
components of the asynchronous parallel composition, then it has to be performed in
all the components in which it appears. The second subformula requires that the vector
b represents an action σ ∈ Act.

On Boolean Encodings of Transition Relation . . . 483

4 Experimental Results

Our experiments were performed on a computer equipped with Intel Xeon 2 GHz pro-
cessor, 4GB of RAM and the operating system Ubuntu Linux Server with the kernel
3.5.0. We set the default limits of 1 GB of memory and 1800 seconds. Moreover, we
used PicoSAT [12] in version 957 to test the satisfiability of the propositional formulae
generated by the module BMC4ECTLS [9].

As the first benchmark we used the generic pipeline paradigm (GPP) introduced in
[13]. The GPP consists of the Producer that is able to produce data, the Consumer that
is able to receive data, and a chain of n intermediate Nodes that are able to receive,
process, and send data. We assume that the following local states ProdReady, Readyj
and ConsReady are initial, respectively, for Producer, Nodej and Consumer. The global
system is obtained as the parallel composition of the components, which are shown in
Figure 4.

Fig. 1. The automata for the Sender, the Nodes and the Producer.

As the second benchmark we used the train controller system (TC) introduced in
[14]. The TC consists of a controller, and n trains (for n > 2). Each train uses its own
circular track for travelling in one direction. Eventually, each train has to pass through
a tunnel, but because there is only one track in the tunnel, the trains arriving from each
direction cannot use it simultaneously. There are signals on both sides of the tunnel,
which can be either red or green. Each train notifies the controller when it request
entry to the tunnel or when it leave the tunnel. The controller controls the colour of the
displayed signal. The local state Awayj is initial for Trainj, and the local state Green is
initial for Controller. The global system is obtained as the parallel composition of the
components, which are shown in Figure 4.

As the third benchmark we used the dining philosophers problem [15, 16]. We have
modelled this problem by means of a parallel composition of 2n+1 transition systems.
The global system consists of n transition system each of which models a philoso-
pher, together with n transition systems each of which models a fork, together with
one transition system which models the lackey. The latter transition system is used to

484 A. Zbrzezny

Fig. 2. The automata for the Trains and the Controller.

coordinate the philosophers’ access to the dining-room. In fact, this automaton ensures
that no deadlock is possible. The global system is obtained as the parallel composition
of the components, which are shown in Figure 3.

Fig. 3. The automata for the j-th Philosopher, the j-th Fork and the Lackey.

Let I(w) be a propositional formula such that for each valuation V ∈ {0, 1}SV , V
satisfies I(w) iff S(w) is an initial state of the model. In order to compare experimental
results for the three Boolean encodings of transition relation we have tested first (on a
symbolic path of the length 1) the ECTL∗ formula ϕ0 = E(true) that is valid in
the models considered. The translation of the formula ϕ0 results in the propositional
formula:

– I(w) ∧ T (w,w′) for the old encoding of the asynchronous parallel composition,

On Boolean Encodings of Transition Relation . . . 485

– I(w) ∧ T (w,a,w′) for the encoding of the synchronous parallel composition,
– I(w) ∧ T (w,b,w′) for the new encoding of the asynchronous parallel composi-

tion.

As we expected, the experimental results for the formula ϕ0 (Table 1) show that
the new encoding of the transition relation for the asynchronous parallel composition
significantly influence the size (i.e. the number of clauses) of the resulting propositional
formulae: for the GPP and 1800 nodes the number of clauses for the new encoding is 56
times less than for the old one; for the TC and 2800 trains the number of clauses for the
new encoding is 25 times less than for the old one; for the DP and 1250 philosophers
the number of clauses for the new encoding is 26 times less than for the old one.

Moreover, the results from Table 1 show that the encoding of the transition rela-
tion for the synchronous parallel composition results in propositional formulae that are
shorter than formulae for the old encoding and significantly longer than formulae for
the new encoding.

Encoding of the (?Max) number Number of Number of
transition relation of components variables clauses

Generic Pipeline Paradigm
New ?105000 3727243 10131599
Sync ?28000 3689932 8130256
New 28000 989629 2688769
Old ?1800 3283218 9833442
Sync 1800 190792 426140
New 1800 63577 172637

Train Controller
New ?87000 3829207 10617501
Sync ?29000 4262182 9800524
New 29000 1320132 3670282
Old ?2800 3991404 11949004
Sync 2800 346605 809243
New 2800 131235 365609

Dining Philosophers
New ?2400 288650 805804
Sync ?2350 812694 1994856
New 2350 283150 790554
Old ?1150 3374711 10137875
Sync 1150 376831 927590
New 1150 138855 387680

Table 1. Results for the formula ϕ0 generated by the SAT-based BMC translations

Although, in our opinion, testing the formula ϕ0 for different systems allows to
draw reliable conclusions about the presented encodings, we have also tested some for-

486 A. Zbrzezny

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

c
la

u
s
e

s

Number of nodes

Clauses for GPP, Formula 0

OLD-ASYNC
NEW-ASYNC

SYNC
 0

 5000

 10000

 15000

 20000

 25000

 10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

c
la

u
s
e

s

Number of nodes

Clauses for TC, Formula 0

OLD-ASYNC
NEW-ASYNC

SYNC
 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r

o
f

c
la

u
s
e

s

Number of nodes

Clauses for DP, Formula 0

OLD-ASYNC
NEW-ASYNC

SYNC

Fig. 4. Number of clauses for the formula ϕ0.

mulae each of which expresses either a reachability or an extended reachability property
(i.e. a formula of the form E(Fψ1 ∧ . . . ∧ Fψm), where ψ1, . . . , ψm are propositional
formulae). For all the tested systems we assume that for every local state s, L(s) = {s}.

For the GPP we have tested the following two formulae:

– ϕ1(n) = EF(Received)
– ϕ2(n) = EF(Send1 ∧ . . . ∧ Sendn)

Let us note that for the asynchronous parallel composition the witness for the for-
mula ϕ1(n) has the length 2n+2, and the witness for the formula ϕ2(n) has the length
n2 + 2n, whereas for the synchronous parallel composition the witness for the formula
ϕ1(n) has the length 2n + 2, and the witness for the formula ϕ2(n) has the length 3n.
The experimental results for the tested formulae ϕ1 and ϕ2, are presented at the pictures
9 and 10 respectively.

 1

 10

 100

 1000

 10 100

M
e

m
o

ry
 i
n

 M
B

.

Number of nodes

Total memory for GPP, Formula 1

OLD-ASYNC
NEW-ASYNC

SYNC
 0

 500

 1000

 1500

 2000

 2500

 3000

 10 20 30 40 50 60 70 80

T
im

e
 i
n

 s
e

c
.

Number of trains

Total time for GPP, Formula 1

OLD-ASYNC
NEW-ASYNC

SYNC

Fig. 5. Experimental results for GPP and the formula ϕ1.

 0.1

 1

 10

 100

 10 100

M
e

m
o

ry
 i
n

 M
B

.

Number of nodes

Total memory for GPP, Formula 2

OLD-ASYNC
NEW-ASYNC

SYNC
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 5 10 15 20 25 30 35 40

T
im

e
 i
n

 s
e

c
.

Number of trains

Total time for GPP, Formula 2

OLD-ASYNC
NEW-ASYNC

SYNC

Fig. 6. Experimental results for GPP and the formula ϕ2.

On Boolean Encodings of Transition Relation . . . 487

For the TC we have tested the following two formulae:

– ϕ3(n) = E(F(Tunnel1) ∧ F(Tunneln)
– ϕ4(n) = E(F(Tunnel1) ∧ . . . ∧ F(Tunneln))

Let us note that for the asynchronous parallel composition the witness for the for-
mula ϕ3(n) has the length 5, and the witness for the formula ϕ4(n) has the length
3(n − 1) + 2, whereas for the synchronous parallel composition the witness for the
formula ϕ4(n) has the length 4, and the witness for the formula ϕ4(n) has the length
2n. The experimental results for the tested formulae ϕ3 and ϕ4, are presented at the
pictures 7 and 8 respectively.

 0

 200

 400

 600

 800

 1000

 1200

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

M
e

m
o

ry
 i
n

 M
B

.

Number of trains

Total memory for TC, Formula 1

OLD-ASYNC
NEW-ASYNC

SYNC
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

T
im

e
 i
n

 s
e

c
.

Number of trains

Total time for FTC, Formula 1

OLD-ASYNC
NEW-ASYNC

SYNC

Fig. 7. Experimental results for TC and the formula ϕ1.

 0

 5

 10

 15

 20

 25

 30

 2 3 4 5 6 7 8 9

M
e

m
o

ry
 i
n

 M
B

.

Number of trains

Total memory for TC, Formula 2

OLD-ASYNC
NEW-ASYNC

SYNC
 0

 200

 400

 600

 800

 1000

 1200

 1400

 2 3 4 5 6 7 8 9

T
im

e
 i
n

 s
e

c
.

Number of trains

Total time for FTC, Formula 2

OLD-ASYNC
NEW-ASYNC

SYNC

Fig. 8. Experimental results for TC and the formula ϕ2.

For the DP we have tested the following two formulae:

– ϕ5(n) = E(F(Eat0) ∧ F(Eatn−1)
– ϕ6(n) = E(F(Eat0) ∧ . . . ∧ F(Eatn−1))

Let us note that for the asynchronous parallel composition the witness for the for-
mula ϕ5(n) has the length 7, and the witness for the formula ϕ6(n) has the length
4n + 1, whereas for the synchronous parallel composition the witness for the formula
ϕ5(n) has the length 6, and the witness for the formula ϕ6(n) has the length n+ 3 for
n > 6 and 9 otherwise. The experimental results for the tested formulae ϕ5 and ϕ6, are
presented at the pictures 7 and 8 respectively.

488 A. Zbrzezny

 1

 10

 100

 1000

 10000

 10 100 1000 10000

M
e

m
o

ry
 i
n

 M
B

.

Number of Philosophers

Total memory for DP, Formula 1

OLD-ASYNC
NEW-ASYNC

SYNC
 0.01

 0.1

 1

 10

 100

 1000

 10000

 10 100 1000 10000

T
im

e
 i
n

 s
e

c
.

Number of Philosophers

Total time for DP, Formula 1

OLD-ASYNC
NEW-ASYNC

SYNC

Fig. 9. Experimental results for DP and the formula ϕ1.

 1

 10

 100

 10

M
e

m
o

ry
 i
n

 M
B

.

Number of Philosophers

Total memory for DP, Formula 2

OLD-ASYNC
NEW-ASYNC

SYNC
 0.1

 1

 10

 100

 1000

 10000

 10
T

im
e

 i
n

 s
e

c
.

Number of Philosophers

Total time for DP, Formula 2

OLD-ASYNC
NEW-ASYNC

SYNC

Fig. 10. Experimental results DP and for the formula ϕ2.

5 Conclusions and Future Work

The experiments showed that our new Boolean encoding for asynchronous parallel
composition is the most effective one while comparing to the other two considered.
Moreover, the encoding of the transition relation for the synchronous parallel composi-
tion is nearly as effective as the new encoding for asynchronous parallel composition.
The standard Boolean encoding used so far in the SAT-based verification modules of
VerICS turned out to be the worst one. This is clearly seen for the formula ϕ0(n) that is
verified on the path of the length 1. The length equal to 1 assures that the experimental
results for the formula ϕ0(n) are affected by the Boolean encoding of the transition
relation only.

The above conclusions, which are based on the experimental results presented in
Section 4, are also supported by the fact that the length of the resulting Boolean formula
for standard Boolean encoding for asynchronous parallel composition is O(|Act| · n),
whereas the length of the resulting Boolean formula for our new Boolean encoding for
asynchronous parallel composition is O(|Act| · log |Act|).

Let us note that the experimental results for the formulae ϕj(n), for j = 1, . . . , 6,
are affected not only by the Boolean encoding of the transition relation but also by the
encoding of the translation of ECTL∗ formulae to SAT. Nevertheless, the experimen-
tal results for these formulae confirm that the new encoding for asynchronous seman-
tics significantly increases the efficiency of the SAT-based bounded model checking.
It means that the effectiveness of the most of the SAT-based verification modules of
VerICS could be significantly improved.

Moreover, the experimental results for the formulae ϕ2(n), ϕ4(n) and ϕ6(n) show
that for formulae for which the length of the witness is significantly shorter for the

On Boolean Encodings of Transition Relation . . . 489

synchronous semantics, it is worth to apply the synchronous semantics instead of the
asynchronous one.

We strongly believe that the choice of a SAT-solver will not change our conclusions.
Nevertheless, in the nearest future we are going to repeat all the experiments for the
other SAT-solvers.

References

1. Clarke, E.M.: The birth of model checking. In: 25 Years of Model Checking - History,
Achievements, Perspectives. Volume 5000 of Lecture Notes in Computer Science., Springer
(2008) 1–26

2. Clarke, E.M.: Model checking - my 27-year quest to overcome the state explosion prob-
lem. In: Logic for Programming, Artificial Intelligence, and Reasoning, 15th International
Conference, LPAR 2008, Doha, Qatar, November 22-27, 2008. Proceedings. Volume 5330
of Lecture Notes in Computer Science., Springer (2008) 182

3. Clarke, E.M., Emerson, E.A., Sifakis, J.: Model checking: algorithmic verification and de-
bugging. Communications of the ACM 52(11) (2009) 74–84

4. Baier, C., Katoen, J.P.: Principles of model checking. MIT Press (2008)
5. Zbrzezny, A.: Improvements in SAT-based reachability analysis for timed automata. Funda-

menta Informaticae 60(1-4) (2004) 417–434
6. Zbrzezny, A.: SAT-based reachability checking for timed automata with diagonal con-

straints. Fundamenta Informaticae 67(1-3) (2005) 303–322
7. Kacprzak, M., Nabiałek, W., Niewiadomski, A., Penczek, W., Półrola, A., Szreter, M.,

Woźna, B., Zbrzezny, A.: VerICS 2007 - a model checker for knowledge and real-time.
Fundamenta Informaticae 85(1-4) (2008) 313–328

8. Zbrzezny, A.: Improving the translation from ECTL to SAT. Fundamenta Informaticae
85(1-4) (2008) 513–531

9. Zbrzezny, A.: A new translation from ECTL∗ to SAT. Fundamenta Informaticae 120(3-4)
(2012) 377–397

10. Zbrzezny, A., Półrola, A.: SAT-based reachability checking for timed automata with discrete
data. Fundamenta Informaticae 79(3-4) (2007) 579–593

11. Męski, A., Penczek, W., Szreter, M., Woźna-Szcześniak, B., Zbrzezny, A.: BDD- versus
SAT-based bounded model checking for the existential fragment of linear temporal logic
with knowledge: Algorithms and their performance. Autonomous Agents and Multi-Agent
Systems (2013) to appear.

12. Biere, A.: Picosat essentials. Journal on Satisfiability, Boolean Modeling and Computation
(JSAT) 4 (2008) 75–97

13. Peled, D.: All from one, one for all: On model checking using representatives. In: Proc.
of the 5th Int. Conf. on Computer Aided Verification (CAV’93). Volume 697 of LNCS.,
Springer-Verlag (1993) 409–423

14. Hoek, W., Wooldridge, M.: Cooperation, knowledge, and time: Alternating-time temporal
epistemic logic and its applications. Studia Logica 75(1) (2003) 125–157

15. Dijkstra, E.: Hierarchical ordering of sequential processes. Acta Inf. 1 (1971) 115–138
16. Hoare, C.: Communicating sequential processes. Prentice Hall (1985)

Author Index

A
Adhikari, Bijaya 355
B
Bellia, Marco 1
Betts, Jack 15
Bodin, Evgeny 122
Burkhard, Hans-Dieter 27, 271, 294
Bak, Kamil 39
C
Castiglioni, Valentina 49
Chai, Ming 61
Chrzastowski-Wachtel, Piotr 73
Cybula, Piotr 332
Czaja, Ludwik 88
D
Dolińska, Iwona 99
Domańska, Monika 27
Dubtsov, Roman 111
G
Garanina, Natalia 122
Gerlach, Jens 133
Golińska-Pilarek, Joanna 296
Gomolińska, Anna 145
Go lab, Pawe l 73
Grabowski, Adam 157
Grochowalski, Piotr 398
Gruska, Damas 169
H
Ha, Quang-Thuy 421
Haustein, Mario 448
Heitmann, Frank 181
Hoang, Thi-Lan-Giao 421
I
Ivanović, Mirjana 294
J
Janicki, Ryszard 193
Jankowski, Andrzej 206
K
Kacprzak, Magdalena 219
Kaczmarski, Krzysztof 342
Kaden, Steffen 271
Kalenkova, Anna 232

Karbowska-Chilinska, Joanna 245
Kleijn, Jetty 193
Knapik, Micha l 259
Koutny, Maciej 193
Krasuski, Adam 39
Köhler-Bußmeier, Michael 181
L
Lanotte, Ruggero 49
Lewiński, Bartosz 73
Lomazova, Irina A. 232
M
Masiukiewicz, Antoni 99
Matyasik, Piotr 409
Mellmann, Heinrich 271, 283
Mikulski, Lukasz 193
Mitrović, Dejan 294
Müller, Berndt 15
Meski, Artur 332
N
Nguyen, Hung Son 421
Nguyen, Linh Anh 296, 421
Niewiadomski, Artur 309
O
Occhiuto, Maria Eugenia 1
Oshevskaya, Elena 111
P
Pancerz, Krzysztof 389
Pelz, Elisabeth 448
Penczek, Wojciech 259, 309
Polkowski, Lech 322
Popova-Zeugmann, Louchka 448
Przymus, Piotr 342
Pó lrola, Agata 332
P laczek, Stanis law 355
R
Rataj, Artur 371
Redziejowski, Roman 383
Rzadkowski, Grzegorz 99
S
Sawicka, Anna 219
Scheunemann, Marcus 271, 283
Schlingloff, Holger 61
Schumann, Andrew 389
Semeniuk-Polkowska, Maria 322
Sidorova, Elena 122

Skaruz, Jaros law 309
Skowron, Andrzej 206
Stadie, Oliver 283
Stencel, Krzysztof 342, 457
Suraj, Zbigniew 398
Swiniarski, Roman 206
Szczuka, Marcin 39
Szpyrka, Marcin 409
T
Tini, Simone 49
Tran, Thanh-Luong 421
V
Virbitskaite, Irina 111
W
Wagler, Annegret K. 434
Wegener, Jan-Thierry 434
Werner, Matthias 448
Wísniewski, Piotr 457
Wolski, Marcin 145
Woźna-Szcześniak, Bozena 469
Wypych, Micha l 409
Z
Zabielski, Pawe l 245
Zbrzezny, Andrzej 469, 478

	frontmatter.pdf
	CSP2013-cover
	preface

	paper-01
	paper-02
	paper-03
	paper-04
	Searching for Concepts in Natural Language Part of Fire Service Reports

	paper-05
	paper-06
	paper-07
	paper-08
	paper-09
	paper-10
	paper-11
	paper-12
	paper-13
	paper-14
	paper-15
	paper-16
	paper-17
	paper-18
	paper-19
	paper-20
	paper-21
	paper-22
	paper-23
	paper-24
	paper-25
	paper-26
	paper-27
	paper-28
	paper-29
	paper-30
	A Bi-objective Optimization Framework for Query Plans

	paper-31
	paper-32
	paper-33
	paper-34
	paper-35
	paper-36
	paper-37
	paper-38
	Preprocessing for Network Reconstruction: Feasibility Test and Handling Infeasibility

	paper-39
	paper-40
	paper-41
	paper-42
	authorindex

